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In the era of precision cosmology, a wide range of cosmological surveys, such
as the LSST, DESI, Euclid and WFIRST will precisely probe the large-scale struc-
ture of the universe, shedding light on the nature of the dark sectors. Given
how sensitively the growth of structure depends on the nature of the underlying
gravitational field, this will be a unique opportunity to constrain the so-called
Modified Gravity models (MG), that are theoretical alternatives to dark energy,
which attempt to explain cosmic acceleration through a large-scale modifica-
tion to General Relativity. In order to fully utilize the wealth of incoming data,
however, theoretical predictions of structure formation in such alternative sce-
narios are necessary. Due to the existence of an additional degree of freedom
that these models introduce, N-body simulations prove to be highly computa-
tionally expensive. In the first chapter of this thesis, we discuss how we can
overcome this issue by using Lagrangian hybrid techniques, which can lead to
a speed-up by 2 orders of magnitude, compared to the conventional tools, while
still achieving % level of accuracy. Then, in chapter 2 we proceed to introduce
novel statistics that can help us more confidently detect MG signals hidden in
cosmic density fields, by up-weighting the significance of cosmic voids, where
the MG-ACDM degeneracy is broken. In the scales where structure formation
is analytically tractable, finally, we show that we can make accurate analytical

predictions for the two-point statistics of halos in MG, using Lagrangian per-



turbation theory and the Gaussian Streaming Model, simultaneously capturing,
for the first time in modified gravity, the effects of both halo-bias (in chapter 3)
and redshift space distortions (in chapter 4), effects crucial for the interpretation
of photometric and spectroscopic observations. Our results demonstrate that a
series of analytical, semi-analytical and simulation-based tools can be utilized
in order to dramatically improve our understanding of the nature of cosmic ac-

celeration and gravity at cosmic scales.
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CHAPTER 1
INTRODUCTION

1.1 The problem of cosmic acceleration

The accelerated expansion of the universe, as precisely measured by Type 1la
supernovae [138| [147], baryon acoustic oscillations (BAO) in galaxy cluster-
ing [63} 136, 137, 189], and the Cosmic Microwave Background (CMB) radiation
[173, 7, 6], represents one of the greatest, open questions in modern cosmology
and physics. This is due to the fact that such a feature directly contradicts the
common expectation, prior to this discovery, of a decelerating universe, due
to the mutual gravitational attraction of cosmic matter described by Einstein’s
General Relativity (GR). In order to illustrate this argument, let us describe the
dynamics of an evolving universe containing matter and energy that abide by
the principles of GR. Following the Lagrangian description of field theory, the

GR action, S, is expressed as follows:

R
167G

S = f d*x\—g [ + Ln(8uvs Ym) | » (1.1)

with £, denoting the Lagrangian of matter fields ,,, that follow the geodesics
of the metric tensor g,,, the determinant of which is g and G the gravitational
constant. Finally, R is the Ricci scalar, the definition of which will be presented
shortly. From the variational principle, taking & = 0 gives the Einstein equa-
tions of GR:

1
Gy =R, - Eg”VR = 8nGT,,,. (1.2)

In (1.2), which employs the Einstein notation and assumes ¢ = / = 1, R, is the

Ricci tensor (which is given by derivatives of the metric tensor) and R = R,,g"”



the Ricci scalar. On the right hand side of (1.2), 7}, is the energy-momentum

tensor.

Physical cosmology amins to identify the solutions of (1.2) (or any alternative
theory of gravity) that are consistent with the Large-Scale Structure (LSS) of the
universe. At 0" perturbative order, an expanding homogeneous and isotropic

spacetime is described by the Friedmann - Robertson - Walker (FRW) metric:
ds* = g, dx'dx’ = —dt* + a*(H)6;;dx'dx’, (1.3)

where a(t) is the scale factor in an expanding universe and ¢;; the Kronecker

delta. For a perfect isotropic fluid, the energy momentum tensor takes the ma-

trix form: .
-0 0 0 0
0O P 0O O
T! = (1.4)
0O 0 PO
0O 0 0 P

where p and P are the density and pressure, respectively. Now solving eq. (1.2)
with (1.3) and (1.4), at the 0" level of perturbations we get the two Friedmann

equations )
H(@ = (g) =22, (15)
and
H+H2:g:—$@+3p):—?p(1+3w), (1.6)

where k is the curvature parameter, which is equal to {1,0, -1}, depending on
whether the geometry of the universe is closed, flat (i.e. Euclidean) or open,
w= f)’ is the equation of state and dots indicate derivatives with respect to time.
A wide range of observations suggests that the dominant form of matter at cos-

mic scales is Cold Dark Matter (CDM), which behaves as a pressure-less fluid



(w=0) and interacts merely gravitationally. However, one immediately notices
that eq. for w = 0 predicts a continuous phase of cosmic deceleration,
(a) < 0, in stark contrast to the overwhelming amount of observational evidence
supporting a recent phase of accelerated expansion [138) 147, 63, 136, 137, 189]!
Eq. implies that, assuming GR, acceleration can be generated only by a
source of energy with equation of state w < —1. Within the set of principles
laid out so far, this condition can be minimally satisfied by the existence of a
positive cosmological constant A, that plays the role of constant vacuum en-
ergy density and causes the expansion of the universe to accelerate. Indeed,
the energy-momentum conservation condition V,7* = 0 gives the continuity
equation

0+ 3Hp(l +w) =0, (1.7)

which shows that a constant energy density (i.e. p = 0) implies a negative equa-
tion of state, equal to w = —1, which is consistent with the acceleration condition
w < —% from (1.6). This scenario, the A-Cold Dark Matter (ACDM) model of the
universe, can successfully account for all observations up to date and has been

rightfully called the standard model of cosmology.

1.2 The motivation for modifying gravity

Despite the notable observational success of ACDM, the model unfortunately
suffers from an undesirable property: the value of the vacuum energy predicted
by quantum field theory is orders of magnitude larger than the best-fit one that
is necessary to explain cosmic acceleration, so A needs to be fine-tuned; the in-
famous cosmological constant problem [201]. Such an unfortunate mismatch,

together with the need to fully explore the space of all theoretical alternatives,



has generated growing interest in considering beyond-ACDM scenarios. Intro-
ducing a minimally coupled scalar field with a negative equation of state called
“dark energy” or quintessence [202} [143] 52] could also match the observed ex-
pansion history of ACDM, but suffers from fine-tuning obstacles of a very simi-

lar nature.

All the proposals we considered so far attempt to tackle the problem of cos-
mic acceleration by introducing a new energy source term, that is, modifying
the right hand side of (L.2). In light of the theoretical challenges these scenarios
face, an alternative proposal considers looking into the left hand side of (1.2),
and states that what we observe might be the signal of a fundamental misun-
derstanding of the behavior of gravity at large scales, the so-called Modified
Gravity (MG) models [97, 84]. Such scenarios broadly attribute cosmic acceler-
ation to a new scalar field ¢, in the presence of which the gravitational action

becomes

R
167G

S = f d“x\/?g[ + L(¢, 0,0, 0,0") + L, (PP Mrig ). (1.8)

Modifying the Einstein-Hilbert action as in (I.8), however, introduces in prin-
ciple an additional degree of freedom that is conformally coupled to matter (as
one can see in the third term of the Lagrangian) and can produce significant
deviations from the predictions of GR, which have passed a wide array of pre-
cise observational tests, especially in the Solar System [206]. Furthermore, the
recent simultaneous detection of gravitational waves and EM counterparts by
the LIGO/ Virgo collaboration [3}68, 155, 1, 2], has placed additional constraints
[150, 65] 54} 19] into the form of the most general expression of a scalar-tensor
theory that produces second order equations of motion, described by the Horn-

deski action [80, 58]



In order to be able to confront such tight constraints successfully, while
at the same time provide a stable self-accelerative cosmic mechanism, viable
MG candidates contain a restoring property, called “screening” [90] 91]], which
is a dynamical mechanism that weakens the additional fifth forces in high-
density environments through the corresponding scalar field self-interactions,
encoded in the second Lagrangian term in (L.8). In the Vainshtein mechanism
[187, 18], GR is recovered thanks to the second derivative terms in the scalar
field Lagrangian, that become large in high density environments and effec-
tively weaken the coupling to the matter sources. The Vainshtein mechanism
is very efficient in the vicinity of a massive source and contains a rich phe-
nomenology, which makes it particularly attractive. Another popular class of
screening consists of the chameleons [92, 93], where in regions of high potential
the scalar fields become massive and cannot propagate, resulting thus in sup-
pression of the fifth forces. Despite the fact that chameleons cannot produce
self-acceleration [197], their very interesting phenomenology makes them serve
as ideal testbeds for gravity and considerable efforts have been put into their
study in the past decade [45]. Other screening classes include the symmetrons
[7Z, 130], that employ spontaneous symmetry breaking and share qualitative
similarities with the chameleons and the K-Mouflage [61} 18], in which devia-

tions are suppressed when scalar field gradients exceed a certain value.

The observed inhomogeneous LSS of the Universe, is the outcome of the
subsequent nonlinear gravitational evolution of the primordial density fluctua-
tions, partially modulated by the late-time acceleration. As a result, it provides
us with an observational window into the fundamental physics that shaped this
process, including sensitive tests of the underlying large-scale gravitational law,

making it particularly valuable for constraining the various MG models. In-



deed, if we consider linear perturbations around the smooth expanding FRW

spacetime, the metric (in the conformal-Newtonian gauge) will take the form
ds* = —(1 + 20)dr* + a*(H)(1 + 2¥)6;dx'dx/, (1.9)

where the perturbation ® corresponds to the Newtonian potential and ¥ is the
perturbation to the spatial curvature. In the context of pure GR considerations,

solving (1.9) with (1.2) gives us the known form of the Poisson equation
V0 = 47Gop,, (1.10)

which describes how the matter density perturbations dp,, are the source of the
gravitational potential and force. In MG scenarios, however, as we shall see in

the following chapters, we generally find that
V2O = 472G, 1 15Pms (1.11)

where G.;r # G is a complicated function of both space and time that will give
rise to non-trivial deviations from GR in cosmic scales, impacting structure for-
mation in an observable manner. As we are entering the era of “precision cos-
mology”, multiple spectroscopic and photometric surveys of the LSS, both al-
ready operating, such as the DES [4] and also about to be commissioned in the
next decade, like DESI [106], Euclid [105]], the LSST [5] and WFIRST [172], will
provide us with particularly precise maps of the LSS that will shed light on
the mysterious nature of the dark sector. Taking full advantage of this wealth

of cosmological information poses a great challenge for experiment and theory

alike.

On the theoretical side, fully utilizing upcoming observations requires a pre-
cise modeling of the distinct LSS signals both from ACDM and also its alterna-

tives. These predictions should extend down to the smaller scales, where the



non-linear nature of the gravitational equations renders the problem analyti-
cally intractable and makes full N-body simulations of structure formation in-
evitable. In the case of MG scenarios, the necessary simulations are notoriously
computationally expensive, due to the need to account for the MG screening
mechanism, which is highly nonlinear and adds a new layer of complexity to
the whole process. In Chapter |2, we will discuss how to speed up such sim-
ulations for MG by two orders of magnitude, by employing the efficient hy-
brid COLA scheme, that combines Lagrangian perturbation theory (LPT) with
a pure N-body component and represents an ideal trade-off between accuracy

and computational cost.

The MG screening mechanism, that suppresses deviations from GR by
means of a novel scalar field interplay, might restore the phenomenological
viability of such candidates, but at the same time suppresses these signals so
much, to the extent that their detection becomes very challenging, even for the
future ambitious surveys of the LSS. In Chapter 3, we will demonstrate that a
set of very simple density transformations, that up-weight the lower density,
unscreened regions, can help us more confidently expose modifications to grav-

ity that can be hidden in the cosmic web.

If our focus is restricted on detecting signals of MG on relatively larger
scales, where the problem of structure formation is analytically tractable, useful
insights can be gained by employing perturbative approaches, that require only
a very small fraction of the computational cost a full N-body simulation would
require. Even in that case, however, if we want our predictions to realistically
confront the upcoming observations, for the variety of competing scenarios, we

need to account for the fact that the observed galaxies do not perfectly trace the



underlying dark matter density field (the evolution of which is straightforward
to predict), but are biased tracers of it. In Chapter 4} we will obtain accurate pre-
dictions for statistics of biased tracers in theories of MG, combining the halo

model with the framework of Lagrangian perturbation theory.

A significant portion of the upcoming observations, such as the ones that
will be obtained by DESI [106], Euclid [105] and WFIRST [172], will be spectro-
scopic ones, that will determine the positions of galaxies in redshift space. The
peculiar velocities of galaxies about the Hubble flow, contribute a spectroscopic
component that introduces thus an anisotropy in the observed clustering pat-
tern, the Redshift Space Distortions (RSD). In Chapter |5} finally, we will show
how the analytical framework developed in Chapter 4 can be expanded to in-
corporate the RSD effects for biased tracers, for the first time in MG, by means

of the scale-dependent Gaussian streaming approach.



CHAPTER 2
EFFICIENT SIMULATIONS OF LARGE SCALE STRUCTURE IN
MODIFIED GRAVITY COSMOLOGIES WITH COLA

2.1 Introduction

In this chapter, we will implement an adaptation of the COLA approach, a hy-
brid scheme that combines Lagrangian perturbation theory with an N-body ap-
proach, to model non-linear collapse in chameleon and symmetron modified
gravity models. Gravitational screening, a key feature of such models, as we
shall see, will be modeled effectively through the attachment of a suppression
factor to the linearized Klein-Gordon equations. The adapted COLA approach
will then be benchmarked, with respect to an N-body code both for the ACDM
scenario and for the modified gravity theories. This work has been published in

[189].

A variety of analytical, semi-analytical and numerical approaches have been
used to study ACDM and dark energy scenarios in the non-linear regime of the
large-scale structure of the Universe. Lagrangian perturbative techniques up to
tirst [212}[135] or second order [38], have been shown to produce accurate results
for ACDM in the linear and mildly non-linear scales without having to perform
a complete numerical treatment of structure formation. They fail to achieve
the desired accuracy, however, at smaller, non-linear scales for which a full N-
body simulation is required. In light of the computational resources necessary
for N-body simulations, and given the successes of Lagrangian Perturbation
Theory (LPT), hybrid schemes have been proposed, with the aim of combining

the strengths of both approaches. In this chapter, we focus on the Comoving



Lagrangian Acceleration (COLA) hybridization scheme [182]. By evolving the
large scales analytically using LPT and the small scales exactly with a full N-
body treatment, the COLA method manages to produce accurate results deep
in the mildly non-linear regime with only a few number of time steps, making

it possible to produce fast results in exchange for some accuracy.

In modified gravity simulations, the need to accurately capture the effects
of the fifth forces and the screening mechanism adds a new layer of complex-
ity. For an exact description, one needs to solve the full Klein-Gordon equation,
whose non-linearities render the procedure both challenging and computation-
ally expensive. It is natural consequently to investigate whether an inexpensive,
approximate scheme can be used instead. A linear treatment of the perturbation
equations, together with the linearized Klein-Gordon equation it produces may
seem efficient at first, but a more careful examination shows [39, 40] that it fails
to incorporate the non-linear screening effects and gives poor results. Effective
approaches [207] have managed to implement screening successfully, however,
following a phenomenological path. An ineffective but computationally fast lin-
earized scheme, can be combined with the attachment of a screening factor for
a spherically symmetric configuration, to speed up MG simulations without the

sacrifice of much accuracy.

Given the success of Lagrangian approaches in ACDM simulations and the
need to develop effecient, but representative, realizations of the LSS in different
cosmological scenarios, it is natural to see alternative routes in MG models. The
benefits of LPT have already been discussed in the context of generating initial
conditions, appropriate for coupled scalar field cosmologies [108] or MG models

[188] . In this chapter, we study the effectiveness of the COLA hybrid scheme,

10



in which the linear scales are evolved exactly using LPT and the non-linear ones
using N-body simulations, for MG scenarios. As far as the N-body component
is concerned, the fifth force calculation lies in the solution of the linearized KG
equation and an approximate screening implementation through the thin shell
factor for a dense sphere, similar to [207]. In chameleon-type (and symmetron)
models, a scalar field acquires a very large mass within a massive object and
consequently decouples due to the Yukawa suppression, so essentially only a

fraction of the total mass (thin shell) contributes to the fifth force.

The layout of the rest of the chapter is as follows: in Sec. [2.2 we first review
the MG models studied and the non-linear approaches used in the analysis.
In Sec. we present our results, assessing the performance for the scheme
to predict a number of LSS observables, including the matter power spectrum,
the redshift space distortions, and halo mass function, before summarizing the

findings and discussing implications in Sec.

2.2 Formalism

2.21 Modified gravity and screening models

A wide class of viable scalar-tensor theories have been shown to be described by
a Horndeski Lagrangian [80,58]. Using a general single scalar field Lagrangian,

in the Einstein frame, written in terms of a scalar field ¢ and its derivatives,

2

M
L= 2R+ L3, 0,8, 0,0"$) + L(e¥ Mgy, Y1), 1)

11



where R is the Ricci scalar, ¢ the scalar field, Mp, the reduced planck mass Mp, =
Vi and £, is the Lagrangian for the matter sector, in which the matter fields
Y, are non-minimally coupled to the scalar field with a dimensionless coupling

constant 8(¢). In the chameleon and symmetron models, the properties of the

single scalar field can be described by a simple, scalar field Lagrangian
1
L=-5(V) - V(@ (22)

where V(¢) is the self-interacting potential. Varying the action gives us the equa-

tions of motion for the scalar field, the Klein-Gordon equation
|:|¢ = Veff’qg (23)

where the effective potential combining the self-interaction potential and cou-

pling term is given by
eﬁ¢/ M pl pm

Verr = V(d) +
£f ¢ M

(2.4)

The chameleon screening mechanism lies in the fact that the effective mass of

the scalar field calculated at the minimum, m, which is given by

has to be positive. For the chameleon theories, this requirement is guaranteed
through the interplay between a monotonically decreasing potential V(¢) and an
increasing coupling. In the symmetron model, on the other hand, the viability is

restored using a “Mexican hat” symmetry breaking potential [77], the behavior

of which still gives rise to a positive density-dependent mass.

The observational consequences of such models can be demonstrated by ex-

tracting the scalar field profile, ¢(r), produced by the density profile

pe. ifr<R.
p(r) = (2.6)
Do ifr>R.

12



where ris the radial distance from the center of a compact spherically symmetric
configuration of density p. and radius R. (not to be confused with the Ricci
scalar R), that is isolated on a uniform density background p... Under spherical

symmetry, (2.3) becomes

L d (,de\ (3V  B@p.lr)
ﬁd_r(r E)_(aff M, ) 27

Even though does not have, in principle, an analytical solution, accurate
approximations can be performed for two different configurations, that corre-
spond to opposite regimes with respect to screening [93} 92]. The first case is
that of a large, strongly perturbing object of very large density p,., for which the
interior field is forced to acquire the value that corresponds to the minimum of

the effective potential, ¢, and the scalar field profile outside the object is given

by

(¢C - ¢°0) RC —Meol
- ¢ ,
r

O(r) = oo + r>R.. (2.8)

The corresponding fifth-force experienced by a unit mass particle outside the

object is

ARC) GM

Fy(r) = 2530( 7% 7(1+mo<,r)e-m°°’, (2.9)

where m.., ., are respectively the background values of the mass and coupling
and M the mass of the object. Given the characteristic large values of the Comp-
ton wavelength A, = m_!, the scalar field is essentially free within our scales of

interest and the Yukawa suppression can be neglected in (2.9),

Mot < 1. (2.10)

R~ o ()5

R. ] r*°
The above approximation is valid when the “screening factor” is

ARC — |¢oo - ¢c|
Rc 2ﬂooMPl(DN

< 1, (2.11)

13



which also defines the criterion for the existence of a thin shell [77, 91], whose
mass is the fraction of the total that actually contributes to the fifth force, due
to the strong Yukawa suppression deep inside dense objects. The Newtonian
gravitational potential is denoted by ®y in . On the other hand, when

linear perturbation theory is valid, which is the case when % > 1, the linearized

form of gives

GM
Fy(r) = 25507, Moot < 1 (2.12)

for the fifth force. Based on (2.10)-(2.12), we see that in the linear regime the fifth
force is the same as the Newtonian force with a coupling 242 and deep in the

non-linear (screened) regime, it is suppressed by the thin shell factor (2.11).

Furthermore, it should be also noted that, as shown in [41]], one can derive a
pair of functions B(a), m(a), for the characterization of a model within the above
framework. Unlike models with constant couplings, symmetrons exhibit an
additional form of screening [77,130] due to the fact that in dense environments

symmetry is restored and the coupling 5(¢) vanishes.

Adopting this formulation, linear perturbation theory gives [113} 41] for
the growth of CDM density perturbations in the quasi-static limit and for sub-

horizon scales
Gepr(k,a)

= (2.13)

.. . 3
O + 2HS,, = EQ,,,(a)Hz(s,,,
with
Gerplh,a) {4 2B8%(a)k?
G - k2 + a*m?*(a)

(2.14)

where a is scale factor, with a = 1 today, and & is the comoving wavenumber.

The effects of gravity modifications at the linear approximation are incorpo-

rated in the second term. For very large scales and/or early times (GR regime),
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am(a)/k > 1 and (2.13)) reduces to the standard GR expression in the weak grav-
ity regime, where the Newtonian gravitational potential is given by the Poisson

equation,
3 H;
VZCDN = EQm();O(Sm (215)

When am(a)/k < 1 however (scalar-tensor regime), the second term becomes

significant and gives the linearized Klein-Gordon equation for the fifth potential

¢
_ ﬁ(a) p’naz
k* + a’?m?(a) M,

ok, a) = - (2.16)

with the real space expression being

B@)ap

My,

V2 = a’m*(a)p + S (2.17)

The f(R) model

f(R) theories [48] are widely-studied modified gravity scenarios, that give rise
to acceleration on cosmic scales and can be incorporated [43] into the chameleon
formalism with a constant coupling 8 = 1/ V6 . The first model we tested thus,

was the Hu-Sawicky f(R) model [81] with a scalar field mass

1 R R n+l1 %
where
R = —3(H2Q,)? (a-3 + 4%) (2.19)
QmO

where H, is the Hubble Constant and Q4 and Q,, are, respectively, the dark
energy and dark matter fractional energy densities today. The mass takes the
form

1+5

m(a)

P (Quoa™ +4Q
! ( ! ] (@ ) [Mpe/h]. (2.20)

- 2997 2|f_Ro| (Qmo + 4QAO)%
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Furthermore, the screening factor is given by

AR. 3
R. 2

Jr
Dy

( Qm0+4QAO )n+1 (221)

Qmoa_3 + 4QAO

fro = % .o and n are the model’s free parameters. In this chapter, we consider
the model for n = 1 and | f}0| = {107%,107,107°%}. These describe cosmologically
viable scenarios whose non-linear properties have been simulated using the full

Klein-Gordon equation [213,207] with which our results can be compared.

The symmetron model

The general framework laid previously, can also incorporate the symmetron
model, with a “Mexican hat” symmetry breaking potential [77], for which scalar

tields couple to matter after a > a,,,, with

1 3
m(a) - 1 — (assb)
/?.(p() a

Bla) = fo[1 - (“j’f

and the coupling vanishes for a < a,y, when symmetry is restored. The screen-

(2.22)

ing factor for this model becomes [55, 207]

107°
Oy

AR _ Lo ( 440 )2 (2.23)

R. - 3.0aisb Mpc/h

We consider this model with values a,y, = 0.5,8) = 1 and A4 = 1Mpc/h which
again have been shown [55] to predict deviations consistent with experimental
constraints. It should be also pointed out that, as explained previously, models
of this type exhibit field dependent couplings which cause additional screening
due to the coupling suppression in dense environments, where symmetry is

again restored. This effect is not taken into account in our approximate scheme.
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2.2.2 Simulating non-linear clustering
The N-body method

The COLA code has been loosely based on A. Klypin’s PM code [95], and this
motivates the latter’s use as a comparison for our approximate scheme’s effec-
tiveness. It is also a simple and representative implementation of a Particle-
Mesh (PM) N-body code. N-body simulations for MG using the PM code have
been performed previously [176, 104, 94]. For each scenario, we consider 10
simulated realizations, initialized at an initial redshift z; = 49, at which density
perturbations on the scales we study are linear. After providing a linear power
spectrum from the cosmological code CAMB [107] for the desired ACDM cos-
mology at the time z;, N, = 256° particles are placed in our simulation box with
side L=200 Mpc/h, in a mesh of 512%, using 1st order Lagrangian Perturbation
Theory (Zel’dovich approximation) [212]. The parameters that define our back-
ground ACDM cosmology are Q,y = 0.25, Qx9 = 0.75, h = 0.7, n;, = 1.0 and
o = 0.8. The particle positions are updated, using 500 time steps, through the
displacement equation:

1
X+ 2HX = __ZVXCDN- (224:)
a

In Fig. it is shown that the choice of 500 iterations, which corresponds to
steps of Aa = 0.00196 in the scale factor, guarantees convergence at the 0.08%

level.
In MG cosmologies, the modified geodesic equation gives, in the weak grav-
ity regime, the modified version of (2.24),

) BN, 1 B
X + (2H + M—quﬁ)x = a2 (VX(DN + MP[ VX¢) , (225)
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where the term |Mip,¢' is negligible given observational constraints from varia-
tions of constants [207]. Equation (2.25), which also holds for the full non-linear
KG description, forms a closed system of equations with (2.15) and (2.17) that

are solved in the Fourier space for the potentials ®y and ¢.

The linearized form of KG equation, , does not incorporate the screen-
ing effects. To account for the screening effect, we adopt an effective parame-
terization similar to the one proposed in [207]. In section Sec. we showed
that the linear solution for the fifth force, (2.10), is suppressed by the screening
factor deep in the non-linear regime. As a result, we incorporate the screening

effects by explicitly attaching the screening factor to the fifth force in accordance

with (2.10)-(2.12) and (2.25),

1
X+ 2HX = — (VXCDN +

a2

_Vx¢

AR. B
T ) (2.26)

To interpolate properly between the screened and the unscreened regime we set

40 o o
AR, | sy panten < 1
o (2.27)
c o
1 L R

Within our approximate scheme, the functions |¢., — ¢.| and B have been set
equal to the background ones |¢(a)| and B(a) correspondingly, which has been

shown to be a good approximation in [207].

The COLA method

The fact that N-body codes manage to simulate the Large Scale Structure accu-
rately but at a significant computational cost, has motivated the development
of several analytical perturbative techniques to avoid a full blown N-body sim-

ulation. Lagrangian Perturbation Theory (LPT) [212, 38] works perturbatively
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Figure 2.1: The fractional difference between the ACDM power spectrum,
P,, for one realization as obtained using different choices of
time steps, n, and the high resolution results, Pgy, for PM (left)
, and Py, for COLA (right), respectively.
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Figure 2.2: The ratio of the 1* (left) and 2" (right) order growth factors, D,
and D, respective, relative to the ACDM growth factor in each
case, for the | fRo| = 10~* model (solid lines) and the symmetron
scenario (dashed lines) described in section(3.2.1

in a Lagrangian displacement field and manages to give accurate results in the
Linear and the Mildly Non-Linear regime. However, it quickly fails to capture
the non-linearities associated with the smaller scales and consequently it un-
derestimates significantly the power at large k. Given that we have to choose

between accurate, but expensive N-body simulations and fast but approximate
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perturbative techniques, it is reasonable to ask whether one can efficiently com-
bine the benefits of both approaches. Such a hybrid method, named COmoving
Lagrangian Acceleration (COLA) was proposed in [182]. Here we outline the
basic framework and its modifications for MG, while details can be found at
[182]. The particle comoving positions are decomposed as a sum of two pieces,

in the “manifestly” exact form
X = Xyes + XrpT (228)

By defining a new time variable df = Hog = %a’n, where 7 is conformal time,
(2.24) can be cast in the simpler form
2 a
T (X) = —EVX(DN, (229)
0
with T = % = Hioa,] = Q(a)d,, and Q(a) = a3%§). In the Lagrangian description x =
q-+s(q, a), with q the initial Eulerian position and s the Lagrangian displacement
and
2

a
T%(s) = —EVXCDN. (2.30)
0

One can now solve for the residual displacement in ACDM
2
T2(8ye5) = —;—SV@N - T[Dy(@)ls; - T*[Dx(@)]ss. (231)
where D, (a) and D,(a) are the first and second order growth factors, respectively,
and sy, s, are the Zel’dovich and second order LPT displacements. The fact that
the LPT piece is evolved analytically and we only solve numerically for s,

can be interpreted as working on a frame that is co-moving with observers that

follow LPT trajectories.

T can be discretized using a Leapfrog scheme [142] to get the core COLA

equations for each particle’s position and velocity change between the times
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Figure 2.3: Left: Tracking a particle’s position throughout the simulation
for the exact and approximate hybrid in the | fR0| = 10"* model.
Right: Ratio of the power spectra obtained from the approxi-
mate and the exact method for the | fRO| = 10"* model today.

a,ar

af d
x(ay) = X(a;) + v(a,) f Q(‘;)+

+(s1(0.ap) —si(q.a) +

+ (s2(q,ap) — $2(q, @)

v (2.32)
v(ay) = v(a;) — (f p Q(a)da] X
l—l.SQmOac (V@N(x) + A??C Mivxé(x)) -
C Pl

~T{s1)(a.) - T*[s:1(a0)]

where a tilde denotes a quantity in units of 1.5Q,,0H} /a.

Initial conditions are produced using the 2LPT initial conditions code (2LP-
Tic) [158] which does so by performing LPT up to second order. In a ACDM
cosmology, growth functions D,(a) and D,(a) are scale independent [212, [38]]
and one only needs to produce an LPT snapshot for z = 0 for both generat-

ing initial conditions and obtaining the LPT terms at the different timesteps.
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In such a case, the LPT displacements are given by s;(q,a) = Di(a)si(q,ao),
s$>(q, a) = D,(a)s2(q, ap) and reduces to the standard COLA ACDM scheme
(with the fifth force term omitted). Initial conditions and background cosmol-
ogy are produced, for 10 realizations, for the same cosmological parameters as
used in the PM code, at the initial redshift z=9.0 which has been shown [182] to
work well for COLA in ACDM. The simulation box size, number of particles and
mesh size are the same as used in the PM code. It should be noted though that
we don’t perform a comparison of the codes by initiating both with identically
seeded initial conditions, but instead, we compare the statistical consistency of
the means of the 10 runs for each of the two techniques with the respective sets
each using different random generated seeds. In its initial formulation, COLA
was used with 10 time steps, which enables accurate predictions down to k ~ 0.5
h/Mpc, which can be also seen in Fig. where the ACDM power spectrum by
COLA is presented for various choices of time steps. By increasing the number
of steps to 50, still significantly fewer than the typical number of iterations per-
formed in a standard N-body code, we can provide accuracy down to smaller
scales, k ~ 2 h/Mpc. The ACDM COLA run-time in this set up is ~10 times
shorter than that of the PM code. COLA’s accuracy as a function of the number

of time steps used, is further discussed in section[2.3.1]

When gravity is modified, the core equations need to be changed appropri-
ately to account for the additional fifth forces and the screening effects. As in
the N-body code, one can use an approximate framework to model the modi-
tied gravity effects both on the growth rate and screening: solving the linearized
KG equation and attaching the screening factor to fifth force term
in . For the LPT component of COLA, one must consider that, in MG the-

ories, the growth factors D, and D, become scale dependent.
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In Figure we summarize the first and second order growth factors for a
chameleon and symmetron scenario. In each case as we approach late times, z <
2 for the chameleon model, and z < 0.5 for the symmetron, we find significant
scale dependent deviations from ACDM at the level of 10% for D; and 25% for
D, at k=0.1 h/Mpc today, which means that not all Fourier modes evolve the
same way with time [188]. This causes the LPT trajectories of a given particle to
bend, in principle. As a consequence one has to be very cautious about how to
obtain the LPT terms at the different times. We briefly outline the application of
LPT to scale dependent growth functions in MG in Appendix

Unlike the ACDM case, here the growth factors’ scale dependent nature does
not allow one to evolve the Zel’dovich and 2™ order displacements with a single
scale independent function for all scales. To account for that, we have consid-
ered two alternative modifications to COLA. In the first approach, we create an
MG version of COLA that calculates the LPT displacements numerically at each
time step using an MG version of 2LPTic. The relevant LPT terms in are
calculated after Fourier transforming and (A.14). Besides the modified N-
body component, the fact that we have to solve numerically for the Lagrangian
terms at every discrete time step increases the computational cost significantly.
In a second approach, we utilize the fact that the LPT part of the scheme serves
to evolve the linear scales, for which the MG deviations with respect to ACDM
are known to be small for most times and adopt an approximate scheme in
which only the N-body part is modified and the ACDM solutions are used for
the Lagrangian displacements. The resulting scheme has the same N-body com-

ponent as in (2.32) and the known ACDM LPT terms, in which the Lagrangian
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displacements are evolved with D s(a) and D, A(a).

da
O(a)

+ (Dra(ay) = D1 a(@))s1(q, ao)+

+

x(ay) = x(@) + (@) f '

+ (Dz,A(a £)— DZ,A(ai)) $2(q, ao)

T (2.33)
v(ay) = v(a;) — [f p Q(a)da] X
l— 1.5Q,0a, (chbN(x) + Ay?c Mﬁvxq?(x)) -
c Pl

~T°[D Al(@)$1(4, @) = T*[D2al(a)s2(q, ao)| .

A comparison of the two approaches for the f(R) model with| fR0| =107, for
which we expect the largest modifications, is shown in Fig. One comparison
tracks a given particle inside our volume during the simulation and we also
compare the resulting power spectra using both schemes. We find excellent
agreement between the approximate and fully modified schemes, in both the
linear and mildly non-linear regimes. We also find very small differences for the
position and displacement vectors (magnitude & direction) with differences in
angular orientation of at most 11 arcseconds, and differences in the magnitude
of steps less than 2,5%, which result in power spectra that have a fractional
difference no larger than 0.3% today. The approximate scheme takes under half
the run time of the full implementation. In light of these results, we adopt the
approximate scheme in the COLA simulations used in this analysis. This has the
great advantage of not having to solve numerically for the LPT displacements

at every time step, without sacrificing much accuracy.
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Figure 2.4: [Top] Power spectra benchmarking for ACDM with the PM N-
body code [red dashed line] and COLA method [blue full line].
The nonlinear power spectrum fit developed by Smith et al.
[green dotted line] is also shown for comparison. [Bottom] Ra-
tio between both the COLA and PM code ACDM results above
to the fit by Smith et al. The number of time steps used for
COLA and PM is 50 and 500, respectively.

2.3 Analysis/Results

2.3.1 Modified gravity results

In this section we present the results of the assessment of COLA’s performance
with respect to the predicted power spectra, redshift space distortions (RSD)
and dark matter halos for the modified gravity scenarios and ACDM. For every

given model and choice of parameters, simulations have been performed using

both COLA and the PM code.
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Figure 2.5: Fractional difference in the CDM power spectra for the MG sce-
nario relative to the ACDM model, Péﬁ, ata = 1, for the same
initial conditions for [left] the f(R) scenario, for fz, = 107,107
and 107%, and [right] the symmetron model with a5 = 0.5.
The averaged results, and standard deviations, from the simu-
lations with the PM code [red dashed line] and the COLA code
[blue full] are presented in each case. The number of time steps
used for COLA and PM is 50 and 500, respectively.

Power spectra

To appropriately benchmark the COLA performance for modified gravity, we
tirst compare the performance of COLA for ACDM. In Fig. we show the
ACDM power spectra as obtained by both codes, together in comparison with
the fit by [171]. The two results agree well within a standard deviation of each
other for all scales, but start to, underestimate power, consistently with one an-
other, by k ~ 2h/Mpc, relative to higher resolution simulations. For that reason,
we choose to compare performance down to a scales with k = 2.5 h/Mpc, while

the Nyquist wavenumber, for our simulation, is k ~ 4 h/Mpc.

In Fig. the fractional difference in the power spectra is plotted for all
our models and both codes are found to agree with each other well within one

standard deviation, with the differences being smaller than 1%. Our results
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demonstrate the consistency between COLA and the N-body approach using
the approximate scheme. In turn this connects with previous work that has
shown, in general, the good degree of consistency of this approximate scheme
with N-body simulations using the full Klein Gordon for the same models in the
literature [213, 55, 39, 207]. In particular the results for the | fRO| =107 & | fRO| =
107° models are in excellent agreement with the literature for all scales. Our
results confirm findings in [207], in studying the effectiveness of the linearized
screening schema: for the lowest screening f(R) model, With| fR0| =10, and the
symmetron model the effective screening parameterization, respectively, under
and overestimates the power, relative to the full KG simulation, at the non-linear

scales.

Fig. 2.6/ shows our COLA scheme’s accuracy in predicting the fractional dif-

ference in the power spectra for the highest deviation model, fRO| =10, as a
function of the number of time steps used, for one realization. We find that using
50 time steps provides excellent convergence, at the level of 0.9%, to the scales

we want to consider, k ~ 2 Mpc/h. Using 30 time steps provides convergence at

the level of 8% at k ~ 2 Mpc/h.

Redshift space distortions

A great amount of observational effort is being invested in studying the three-
dimensional Large Scale Structure (LSS) through spectroscopic galaxy surveys
that measure precise redshifts. Among various challenges faced by such mea-

surements, the observed clustering structures appear distorted in redshift space.

Density perturbations give rise to peculiar velocities with respect to the Hub-
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Figure 2.6: [Top] Fractional difference in the CDM power spectra for the
| fR0| = 107 scenario relative to ACDM for one realization, as ob-
tained by COLA using various choices of time steps. [Bottom]
Ratio of the fractional difference rat, = (%)n for each choice to
the high resolution result using 400 steps, rats -

ble flow, which result in the redshift space position r,, being different than the

real space position r,, with the relationship between them taking the form

v-h
r,=r,+ —n. (2.34)
H,
By v we denote the peculiar velocity and by fi the unit vector along the line
of sight. At linear scales, coherent motions of galaxies that tend to collapse
within an overdense region, cause it to appear squashed in redshift space. As

shown by [87], in the distant observer approximation, such an overdensity will

be distorted in the redshift space:
5k, a) = (1+ fir*) 6, (k. a), (235)
where y is the angle between the peculiar velocity and the line of sight in &
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space, k, and f the linear growth rate,

dInD(a)

Jola) = dlna ’

(2.36)

with subscript ‘g’ to differentiate it from the f(R) function. Such an effect gives
rise to, based on (2.35), an overestimation of the power spectrum measured in
the redshift space:

2
Puk. ) = (1+Byl’) Py(k. ), (237)

where we introduced the factor 8, = f,/b (not to be confused with the coupling
B) to account for the galaxy bias b, with b = 1 for cold dark matter. Averaging

(2.37) over all directions, gives the 0" order piece
21,
Py(k.a) = (1 +3p; + i | Pik.a). (2.38)

At smaller, non-linear, scales the random incoherent velocities of galaxies within
virialized structures cause overdense regions to appear elongated along the line
of sight (“Fingers of God”), causing suppression of power. An exact quantita-
tive treatment of the phenomenon is hard, due to the complicated nature of the
small-scale velocity correlations and as a result phenomenological approaches
have been proposed. Such models [134] treat the line-of-sight distortion as a ra-
dial convolution of the correlation function &, (including the Kaiser boost) with

an incoherent velocity distribution f(v)

é:s(rJ_,rll) = f 'fr(rJ_’r)f(rll —}")d}", (239)

where r, and r; are the perpendicular and parallel components. Assuming a
Gaussian velocity distribution [134], the Fourier space expression would then
be

2
Py(k.pt,a) = P,(k,a) (1 + B’ exp(-k*1’02,,) (2.40)
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with o, being the comoving distance dispersion that is related [200] to the

velocity dispersion o, through
o, = aH(a)o com (2.41)

Even though the exponential term in (2.40) is reasonable as a damping term
for capturing the non-linear power suppressions, it has been noted [56] that an

exponential pairwise velocity distribution

1
fo) = exp(= V21l /o) (242)
V2o,
is a better fit. This gives rise to the dispersion model [132]
3 \2 1
Ps(k,/.l,(l) = (1 +ﬁglJ ) P,(k, Cl) [%] , (243)

in which the damping effects are incorporated through a Lorentzian term and
Ocom (OT 0p) is considered a free parameter to be fitted to the data. It should
be noted that o, is actually scale and bias dependent, which is one of the limi-
tations the dispersion model faces [159]. The above description can still prove
to be a very useful tool for obtaining an effective non-linear velocity dispersion
parameter and thus quantifying the non-linear FoG effect. Integrating
over all directions gives the monopole piece, which can be fitted over the re-
sults to obtain o,. This is slightly different than other approaches: [10] pro-
posed attaching a simple factor —5— to the Kaiser boost with o being a free
parameter, loosely related to o,, while [100] suggested attaching a free function
Fk,u) = HBAW + Ck*u* and marginalized over the parameters A, B and C for to

account for the uncertainties in constraining the effects of modified gravity on

the RSD power spectrum.

Through the mapping (2.34), we obtained redshift space power spectra for
all of the simulated models, with the results presented in Fig[2.7l We compared
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Analytic prediction
Scenario Prsa/Prear | fq Yerf o ,(km/s)
ACDM 1.35 0.462 0.556 567
fR),|fr| = 107 1.35 0.463 0.555 605
fR),|fz| = 107 1.38 0.491 0.512 714
fR),|fr,| = 107 1.42 0.541 0.443 834
Symmetron 1.35 0.464 0.554 611

Table 2.1: Analytic predictions for the RSD to real space power spectrum
ratios, P,s/Prea, CDM growth rates, f, = dinD,(a)/dIna, and the
equivalent growth exponent, y.;; = dinf,/dInQ,(a), are evalu-
ated at k = 0.05h/Mpc. The effective velocity dispersion values,
o, are obtained by fitting the average power spectrum results to
the monopole of the RSD suppression function in (2.43).

the large scale results to analytic predictions arising from the linear growth rate,
and also used the monopole model in (2.43) to obtain an effective velocity dis-
persion damping factor for the FoG effect. The results are summarized in Fig.

and Table

We first benchmarked COLA’s performance for ACDM. We see that the
PM and COLA codes” RSD predictions for ACDM do not differ by more than

0.5% at all the scales of interest and agree remarkably well with the analyti-

Py(k)
Pr(k)

cal prediction, with expected values of f,(a = 1)=0.467 and =1.354, assum-
ing f, = Q,(a)’, with y = 0.55. At smaller scales , the “Fingers of God” effect
quickly dominates, and causes power suppression and find this suppression is

well modeled by (2.43) with o, = 567 km/sec.

For the MG models, the additional fifth forces cause the redshift space power
spectra to have, in principle, different shapes. In large scales, the enhanced
clustering results in higher coherent velocities of collapse into overdense regions

which translates to a higher boost in the RSD power spectra with respect to GR,
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translating into higher values for the growth rate and a lower y. For lower
magnitude modifications, the suppression of the fifth forces gives results that
tend to the ACDM prediction. At smaller scales, the fifth forces cause higher
random velocity dispersions inside virialized structures, making the damping

effects stronger in MG.

These combined effects cause the redshift space distortions to be more pro-
nounced in MG compared to GR. This can be clearly seen in the upper left panel
in Fig.(2.7). As expected, the redshift space distortions vary from the most pro-
nounced, in the lowest screening model, to very small deviations from GR in the
strong screening regime. For the same models, the redshift space power spectra
from the PM code agree with COLA well within a standard deviation. The re-
sults using the approximate schema are in good agreement with full non-linear
MG N-body simulations for redshift space distortions in f(R) gravity performed
by [85]. For all the models, COLA predicts deviations that are 0.5% more pro-

nounced (higher in large scales, smaller in small scales) than the PM code.

Halo Mass Function

To determine the halo mass function we identify halos in the simulations using
the Rockstar halo finder [25] for all models. In Fig. 2.8 we show the comparison
of the halo mass function predicted by COLA and the PM code, together with
a high accuracy result by [126]. COLA and PM are found to be in a better than
2.5% agreement in the lower and intermediate mass range, while in the highest

mass bins there is a maximum difference of 10%.

In Fig. we plot the fractional difference in the halo mass function with
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respect to ACDM, for all of our models. The COLA and PM code results agree
in general, well within the standard deviation from the averaged suite of sim-
ulations. In particular, In the | fR0| = 107 and | fR0| = 107 models, the PM code
predicts a fractional boost in the halo mass function that is higher than COLA’s
by < 2% and 2.5%, for the lower and intermediate bins, while in the highest bin
COLA gives a boost larger by 5% and 3% correspondingly. For the | fR0| =107°
and symmetron models, the differences are 1% and smaller, with the PM code
giving greater number counts for the two mass bins below 10'*M,/h and COLA
being higher for the bin over 10'*M,/h. The differences between the predictions
in each case and especially in the high mass bin, are within, and likely largely re-
sulting from, the differences observed in the ACDM benchmarking of the mass

functions.

While we do not perform a simulation with the full non-linear Klein-Gordon
equation, we note that compared to other full KG treatments in the literature
[207,213], our method performs well and only slightly underestimates the mass
function for the | fR0| =10 &| fR0| = 107> models, in accordance with the general
features noticed in the power spectra discussion. In agreement with [207], we
observe an underestimation of halos in the lower end of our mass range (around
M ~ 103 M,/h) for the | fRO| = 107° model, indicating too much screening, and an

overestimation of the mass function for the symmetron model.

2.4 Conclusions

In this chapter, we have implemented a hybrid scheme, that combines La-

grangian Perturbation Theory and N-body approaches, to numerically charac-
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terize the evolution of large scale structure in chameleon and symmetron, mod-
ified gravity theories which exhibit gravitational screening in the non-linear
regime. LPT is used to evolve linear scales analytically in combination with
a full N-body approach that is used for the non-linear scales to reduce computa-
tional costs. An effective screening scheme is implemented in place of a solution
to the full Klein-Gordon equation for the fifth potential, in which an effective

suppression factor is attached to the real-space linearized perturbations.

We demonstrate that while in MG spatial modes evolve differently in LPT
(and can have deviations from the nominal GR geodesic paths), the scheme can
be further simplified, for the models we studied, by using a displacement co-
ordinate system based on scale-independent ACDM growing modes combined
with a modified, screened Poisson equation. We note that, while this approxi-
mate scheme works well for the chameleon and symmetron models we consider,
it should always be tested against the exact LPT solution for a new modified

gravity model.

Our method was applied on the f(R) and symmetron models and it was
tested against power spectra, redshift space distortions and dark matter halo
mass functions, using a fiducial number of 50 time steps. At the same time,
we assessed our hybrid’s performance against simulations from a pure N-body
code with the same screening implementation for the same models, using 500

iterations.

With regards to power spectra, we found COLA to be in better than 1%
agreement with the N-body code at all scales for all the models studied. Note
that the effective screening scheme we use has previously been shown to be

in good agreement with results using the full non-linear Klein Gordon in an
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N-body implementation [207]. We find, as was discussed in [207], that the ef-
fective screening approach does underestimate power, relative to that found
in solving the full Klein-Gordon [213], as one moves into the fully non-linear
regime (k >~ 2Mpc/h), however this is also beyond the regime of applicability
of COLA’s scheme.

COLA and the N-body code are in better than 0.5% agreement with respect
to redshift space distortions for all the scales and models of interest. The distor-
tions were modeled by attaching the linear Kaiser factor for the enhancement
at large scales and a Lorentzian dispersion factor for the small scale suppres-
sion due to incoherent motions within virialized structures. We find that the
monopole is a well fit using an effective pairwise velocity dispersion as a fit-
ting parameter to quantify the suppressions at non-linear scales. The additional
tifth forces present in the chameleon and symmetron models, cause the redshift
space distortions to be more pronounced with respect to ACDM. This can be
seen by the larger boosts in linear scales due to the higher coherent velocities,
and by the stronger suppressions in the non-linear scales because of the higher
values of the velocity dispersion. The adapted COLA scheme gives reasonable
results for the predicted fractional boost in the halo mass function relative to
ACDM, with the differences between the N-body and COLA results in the halo
mass function estimation most likely being due to the difference between the

two codes in ACDM.

In this chapter, we have focused on chameleon and symmetron-type scalar-
tensor theories, but it would be very interesting to see how well this scheme
performs for the simulation of other screening mechanisms as well such as the

Vainshtein mechanism [187], as well as other dark energy models, such as those
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with non-minimal couplings between dark matter and a quintessence scalar
tield [108]. Given the level of consistency between COLA and the N-body pre-
dictions for the monopole of the redshift power spectrum, it would also be in-
teresting to investigate the COLA scheme’s ability to capture higher order mo-
ments of the angular power spectrum to, for example, calculate the ratio of the
quadrupole to monopole moments to estimate 3, in a way that is robust to sys-

tematic effects from incomplete modeling of the nonlinear distortions [103} 85].

Many theories being considered as explanations for cosmic acceleration have
tantalizing predictions in the non-linear regime but also present computational
challenges in modeling them. With a suite of next-generation large scale struc-
ture surveys, including LSST, DESI, Euclid and WFIRST, starting in next few
years, there is an unprecedented opportunity to measure the properties of large
scale structure clustering as it transitions from linear to mildly and then strongly
non-linear scales, and using multiple tracers. The results presented here demon-
strate that COLA, proposed to enable accurate and efficient, non-linear predic-
tions for ACDM,, is a viable approach to study non-linear collapse for a broader
portfolio of cosmological scenarios. For example, in a paper that has followed
our work in [208], the effectiveness of the COLA approach has also been studied
in the f(R) and nDGP models, and was shown to perform very well in predict-
ing the fractional deviations with respect to the ACDM power spectra and halo

mass functions, using a small number of time steps.
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Figure 2.7: The ratio of the redshift space power spectrum, P,,, to the

real space equivalent, P, for the different models.

[Top

left] A side-by-side comparison of the suppression of the red-
shift space clustering by non-linear velocity correlations for
the COLA model for ACDM [black], f(R) models with fg,
107,105 and 107° [blue circle, red triangle and green square,
respectively], and the symmetron model with a,,, = 0.5 [cyan
diamonds]. The remaining plots show the comparison of PM
[red dashed line] and COLA code [blue full] predictions for
the RSD to real space power spectrum ratio for each model in
turn: [top right] ACDM, [middle left] fz, = 107*, [middle right]
fr, = 107°, [bottom left] fz, = 107, [bottom right] symmetron.
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[black dotted line] is also shown for comparison. The number
of time steps used for COLA and PM is 50 and 500, respectively.
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Figure 2.9: Fractional difference in the CDM halo mass function, n(M), for

halos of mass M, at a = 1, for each MG scenario relative to
the ACDM model, for the same initial conditions: [left] the
f(R) scenario, for fz, = 107*,107° and 107°, and [right] the sym-
metron model with a,, = 0.5. The averaged results, and stan-
dard deviations, from the simulations with the PM code [red
dashed line] and the COLA code [blue solid line] are presented
in each case. The number of time steps used for COLA and PM
is 50 and 500, respectively.
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CHAPTER 3
BEYOND o: TAILORING MARKED STATISTICS TO REVEAL MODIFIED
GRAVITY.

3.1 Introduction

As we have already seen in the previous chapter, models that seek to explain
cosmic acceleration through modifications to General Relativity (GR) evade
stringent Solar System constraints through a restoring, screening mechanism.
Screening, while essential for a mechanism’s viability, also greatly suppresses
the modified gravity signals in the high density regions, which dominate the
power spectrum signal, making their detection particularly challenging even for
the ambitious future surveys of the LSS. This has motivated the consideration of
density transformations that up-weight the lower density regime in favor of the
higher, screened densities, so as to enhance MG signals in a density-dependent
way. Penalizing the higher densities to increase the amount of information en-
coded in the 2-point statistics of cosmological density fields has been a valuable
strategy even in the context of ACDM considerations. A logarithmic transform
of the density field [128)] [199| 49], makes the field more Gaussian allowing the
recovery of more information from the 2-point function. Clipping the very high
densities [168, [169] has also been found to produce similar beneficial effects.
In the context of MG, clipping the screened densities [116] allows better dis-
crimination between MG and GR, while in [114] a new generalized restricted

logarithmic transform was found to boost signals.

In this work, we investigate the performance of a new density transforma-

tion that up-weights the significance of lower densities and was first proposed
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in [204], both as a simple density transformation and as a marked correlation
function. We find such a function to provide discriminatory power between
MG and GR and to increase the Fisher information significantly. Furthermore,
we perform a systematic comparison of the performance of these various trans-
formations and discuss our approach in the context of related work in the liter-

ature. The line of work discussed below has been published in [190].

The organization of this chapter is as follows: in Sec. [3.2| we first review the
MG models studied, the simulation data used and the different density trans-
formations considered. In Sec. [3.3| we present our results, assessing the perfor-
mance of the different functions, before concluding and discussing future work

in Sec.

3.2 Formalism

3.2.1 Modified gravity models

The most general form of a Lagrangian that describes ghost-free scalar-tensor

extensions to GR is of the known Horndeski form [80, 58]. If by Mp, we denote

the reduced planck mass Mp; = \/”;%’G, by R the Ricci scalar, and by £,, the matter
sector component with fields y,, that possess non-minimal coupling to the scalar

tield ¢, the Einstein frame form of such a Lagrangian is

2

M
L= "R+ L8.0,6.0,0) + L@ PM0g,. ). (1)

The particular subclass that contains the screening mechanisms considered here,

the chameleons and the phenomenologically similar symmetrons, corresponds
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to a scalar field Lagrangian of the form
1
L=-3(Ve) - V(@ (3.2)

The conformal coupling to matter, expressed through the dimensionless cou-

pling constant (¢), gives rise to an effective potential

eﬁ¢/Mpl

Pm
—, 3.3
. (3-3)

Verr = V() +
which consists of the self-interaction potential V(¢) and a matter dependent
component. The qualitative features of the particular screening mechanism
are incorporated into the interplay between these two components. In the
chameleon screening, V(¢) is of runaway form and in high densities the field
settles down to a minimum of V., becomes very massive and decouples. In the
symmetron model, on the other hand, the interaction potential is of the “Mexi-
can hat” symmetry breaking form [77], which additionally generates a density-
dependent coupling. In low-density regions, spontaneous symmetry breaking

allows coupling to matter, while in high-density environments the symmetry is

restored, the coupling to matter vanishes and GR is recovered.

The f(R) model

Adding a non-linear function of the Ricci scalar R to the String-frame expression
of the Einstein-Hilbert action, has been shown to produce cosmic acceleration,
making the so-called f(R) theories [48] widely-studied modified gravity mod-
els. Here we consider the Hu-Sawicky f(R) model [81], which can be incorpo-
rated [43] into the chameleon screening formalism with 8 = 1/ V6 and is usually

parametrized as

f(R) = _mZM (3.4)
o (R/m2)" + 17 '
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where m = Hy VQ,,, is a characteristic mass scale determined by the the Hubble
Constant Hy, and Q,,, the matter fractional energy density today. The additional

requirement of matching the ACDM background expansion dictates that I =

63—22 and the two final free parameters of the model are fz, = % o and n, with
n+l
r €1 Qo "

=15l o] - 3.5

Ja nC% (3(Qmo + QAO)) (3:5)

By Quo above we denote the dark energy fractional energy density today. Fi-
nally, within this formulation the characteristic model-dependent mass takes
the form

m(a) [Mpc/h]. (3.6)

n+l

1 ( 1 ]é (Qmoa_3 + 4QA0)1+§
(Qno +4Qn0) >

" 2997 | 21l
In this work, we will consider models that correspond to n = 1 and | f}0| =
{107%,107%}, that correspond to representative choices of a weak and a strong

modification choice respectively.

The symmetron model

The free parameters of the symmetron model presented previously, are the scale
factor at which symmetry breaking occurs, a,, the force length range 4, and

the coupling parameter §,. The characteristic coupling and mass take the form

Bla) = o1 - (2 )3

m(a) = % - (e )3

$0 a

(3.7)

We study the model with the choice of values a,y, = 0.5, 140 = 1Mpc/hand By = 1
for the free parameters, which represents a viable, realistic candidate based on

the current experimental constraints.
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N-body Simulations

In order to produce accurate realizations of the LSS for a wide range of scales,
analytical considerations are inadequate due to the non-linear nature of the col-
lapsed structures and as a result we have to resort to full blown N-body simu-
lations. In the case of MG scenarios, the situation is further complicated by the
need to accurately capture the screening effects, which are fundamentally incor-
porated in the non-linearities. In this chapter, we use z = 0 density snapshots
that have been produced in CDM N-body simulations presented in [189]. The
simulations were performed using a suitably modified version of A. Klypin’s
PM code [95], in which the MG screening was captured effectively through
the attachment of a phenomenological thin shell factor to the fifth force term
[207]. The simulations were initialized at an initial redshift of z; = 49, for 40
random initial seeds, for a background ACDM cosmology that corresponds to
Qo = 0.75, Q0 = 025, 05 = 0.8, ny, = 1.0 and & = 0.7. The simulation box
side L and number of particles used N, were L=200 Mpc/h and N, = 256° re-
spectively, while the density was resolved in a 512° grid using the Cloud-In-Cell
(CIC) assignment scheme. More details on the specifics of the simulations and

the screening implementation can be found at [189].

3.2.2 Density transformations

The fundamental quantity of interest in our analysis, is the fractional cold dark

matter over-density §(x, a), which is defined as

sx,a) = LD (3.8)

m
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with a the scale factor, p,,(X,a) the matter density in each grid cell and p,, the
mean density at the cosmological time considered (which is a = 1 for our analy-

sis).

Using the CIC interpolation scheme, the density field, ¢, from each snap-
shot is reconstructed on a 256* resolution Cartesian grid and is then projected
onto three orthogonal 2D planes that correspond to the 3 independent Carte-
sian axes. Through this process, the 40 random seeds initially produced for
each model, generate 120 independent realizations. We find that 2D projections
are significantly better for considering the transformations than the 3D density
fields, sampled in the initial 256 snapshots, because the 3D cells, when up-
and down- weighted with the transformation, are more sensitive to the sparse

sampling and shot noise. The 3D cell size, which is an arbitrary choice, that cor-

\3
responds to this choice of parameters, is equal to 0.5 (M: ‘) . This choice of cell
volume was found to provide the best combination of low shot noise and high

resolution.

Through a specific transformation, a new field ¢’ = f(6) can be constructed,
with the aim of enhancing the amount of information that can be extracted. In
the following section, we briefly introduce the various density transformations
investigated in this chapter and focus on the key aspects that will be relevant to

our analysis.

Logarithmic transformation

The non-linearities in the dark matter power spectrum have been shown

[128] 199| 49] to become significantly smaller, and the amount of carried in-
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formation significantly greater, in terms of signal-to-noise, when the fractional

matter over-density undergoes a transformation
§=In@E+1). (3.9)

Besides restoring the linear character of the power spectrum, down-weighting
screened regions through a logarithmic mapping [116,114] can serve to enhance

the predicted power of MG signals.

After such a mapping is performed, a large-scale multiplicative bias, b,,,, de-
velops [146] between the power spectra of the original and transformed fields,

as given by
2
In(1+6)

(o
Pini46)(k) = 2 Py(k) = bj,, Ps(k), (3.10)

log
é

with being valid as k — 0 and where o denotes the variances of the
density fields, as calculated by integrating over the corresponding power spec-
tra. Predicting the developed multiplicative bias, as has been also performed
through other expressions proposed in [128, 209], will be particularly useful in
interpreting the large-scale behavior of ratios of transformed fields in section
when compared to the ratios of standard power spectra. Measuring ratios
of transformed-density power spectra could, however, be performed directly,
without requiring knowledge of the ordinary power spectrum or biases with
respect to it. It should be noted here, that we calculate o7, through a direct
integration of the logarithmic power spectrum over a top-hat filter, rather than

making use of the phenomenological formula proposed in [146]].
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Clipped transformation

Another transformation that reduces the contribution of higher over-densities,
for the sake of maximizing the extraction of cosmological information from the
up-weighted, less dense regions, is clipping [168, 169, [116]. In this procedure,
all densities higher than a desired threshold ¢, are truncated to form a new
distribution:

5 ifs<6
§ =6, = (3.11)

0o if 6 > .
After is applied, the new density field is “renormalized” using the new
mean density of the distribution, in order to ensure that (¢’) = 0, which was
proposed in [168] to get results that are rather insensitive to the choice of the
threshold. In our analysis we found such a prescription to perform slightly
better in terms of the Fisher information, compared to when the density field
is not “renormalized”, and so this is the one adopted. Just like the logarithmic
transform, clipping enhances the extracted signals not only in ACDM, but also

in MG, by emphasizing on regions not subject to screening.

Similar to the result of (3.10), the response of the density power spectrum to

clipping on linear scales can be calculated [169] by

0_2

P(k) = £ Py(k), (3.12)
g

Se

where P.(k) is the power spectrum of a clipped field 6., and the variances are
again given by integrating the power spectra. The validity of (3.12) can, if de-
sired, be extended into the mildly non-linear regime after the introduction of

perturbative one-loop contributions [169].
Given that the value of ¢ itself is dependent on the details of each simula-
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tion, the fraction of cells clipped is a more easily transferable descriptor and so

this is the one we will report.

Marked transformation

The use of density-dependent marks has been explored in the context of break-
ing degeneracies in halo occupation distributions [205], and as a probe of iden-

tifying MG signatures in the LSS [204].

In this work, we consider an analytical function as a means of re-weighting

the density field,

p.+ 1Y ps+1 b
5’:m5):( ):(—) 313
( Psx + Pm P +pm(5+ 1) ( )

where p. and p are free parameters and p,, the grid cell density field, in units of

the mean density p,,.

3.3 Results

In Figure we present the ratios between the MG and ACDM matter power

spectra, Pf ng, for all transformations considered. For the transformed fields,
the ratios are found to have, in principle, different values than in the case of the
standard ¢, on both the large and the small scales. The large scales are charac-
terized by signal suppression with respect to the standard ratios, which, for the
logarithmic and clipped transformations, is consistent with the low-k analytical

predictions from equations (3.10) and (3.12). For the logarithmic case, in par-
ticular, applying (3.10) twice on the individual MG and GR power spectra and
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dividing by parts, gives

Pii16(MG) by Ps(MG)
Pini+5(GR)  b%, Ps(GR)

(3.14)

When by < bggr, which we found to be the case for all MG models, the dif-
ferent values of the multiplicative bias produced, as seen through (3.14), result
in the transformed ratio being smaller at the lowest k bins. As shown in the
left column of Figure 3.1 for all 3 gravity models, when applied on our simu-
lations, performs well in predicting the offset between the two ratios at
the smallest k modes. We note that in some previous analyses, e.g. [116], the
power spectrum ratios were normalized applying arbitrary multiplicative fac-
tors to align the transformed ratios with unity at the lowest k bins, however this
is not necessary, since there is a clear analytic reason, in , for an inequality
between the two ratios. We find that the clipped statistic has a lower standard
error, in particular at small k, than the logarithmic and marked cases. This can
be attributed to the fact that the clipped mapping only alters a small fraction
(~1%) of the highest density regions, while the logarithmic and marked cases
affect the whole volume, and upweight the most sparse regions associated with

larger shot noise, as found in [169].

On small scales, the signal is enhanced for the symmetron and the | fg,| = 107°
models for all transformations by roughly 1 %, and also for the |fz,| = 10~ model

in the marked transformation.

We calculate the covariances for Py/P,, in Figure directly by consider-
ing the ratios of the statistics from the MG and ACDM simulations with match-
ing initial conditions. The errors could, alternatively, be calculated from the co-
variances of the individual simulations, as was proposed in [114], however, for

simulations like ours in which the MG and ACDM simulations have the same
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initial conditions, one needs to factor in the cross-correlation between the two

[64]:
P Puc Y
Var( Mo ) = [ MG ) X (3.15)
Prcpum Pacom
Var(Pygc) _ 2C0V(PMGa Pacom) + Var(Pxcpm)
P/2\46 PyucPrcom P?\CDM

In order to assess each transformation’s efficiency in enhancing the informa-
tion carried in MG signals, we calculate the matter power spectra of the 2D pro-
jected density fields, and density transformations, as described in sec. for
each of the 120 independent realizations. In addition to the fractional boosts in
the calculated power, expressed through the ratio %, the fundamental quan-

tity of interest for statistically distinguishing MG models is the Fisher informa-

tion about parameters «, 5 [184] :

P 8% In L (datala, B, priors)
v a0 :

Given a set of data with dependence on the parameters a,, L is defined as the

(3.16)

likelihood function of the parameters from the data, and in the case of a single

parameter «, the above reduces to the Fisher information about a parameter a:

I - _<02 1n£(data|a)>

0«

(3.17)

When restricting our focus on information encoded in the power spectra, as
relevant for our analysis, (3.17) takes the form

L <6P(k,-) &In L 3P(kj)>

Oa OP(k;)OP(k;) O« (.18)

in which the expectation value of the middle derivative term , basically the
power-spectra Fisher matrix, can be well approximated [148) 149, [129] by the

inverse covariance C i‘j‘, with

1 Nyeed

N1 > (Prtki) = Pik) (Potk)) = Pky)) (3.19)

r

C,‘j =
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for the Ny..s = 120 realizations. It should be noted at this point that the precision
in the covariance matrix calculation could be improved by applying a set of si-
nusoidal weightings that depend on combinations of the fundamental modes
[72], as e.g. performed in [128], but we do not apply such an improvement in
this chapter. Under these assumptions, the Fisher information about a parame-

ter a takes the common form:

Npins
& 0Pk) . OP (k)
Io= 7 Cil (3.20)

i,j

In this parametrization, changes in the gravitational model are reflected upon
the different values taken by the single parameter « (not to be confused with
the scale factor a), which for the {(R) models is set equal to the respective val-
ues of |f,|, for the symmetron equal to z,4, = 1, and equal to 0 for ACDM, as
the limit of both parameters that recovers GR. The numerator in the derivative
terms is of course given by the difference between the corresponding MG and
ACDM power spectra. In the general and realistic treatment involving multi-
ple cosmological parameters, the inverse Fisher matrix is associated with the
marginalized errors in the parameter estimates, while, in our single-parameter
case, the unmarginalized error in the parameter estimation is predicted to be

[184], o, = 1'%

To express the additional Fisher information encoded in each density map-
ping, we define the “Fisher boost”, given by the ratio of VI, calculated for a
given mapping to the VI, by the standard density for the same cosmological

model:

1,(8")

Fisher boost = L.G)

(3.21)

While the Fisher information provides a way to quantify the sensitivity of an

estimator to changes in cosmological model parameters, the “signal-to-noise”

52



ratio (SNR), :

Nbins

SNR = J > PU)C; Pk, (3.22)
LJ

is another method used in the literature to compare the performance of differ-

ent statistics for the same cosmological model [177, [128]. As a comparison we

consider how the SNR is affected by the choice of density transformation for

the ACDM model. In the same vein as in (3.21), we consider the change in the
ACDM SNR created by each transformation, as the “SNR boost”:

_ SNR()

SNR boost = .
©9%t = SNR(9)

(3.23)

For the clipped density transformation, the threshold, d, relating the fraction
of the volume which is clipped, is a free parameter. In Figure we show
the sensitivity of the Fisher boost as « varies from 0 to |fz,| = 107, as well as
for the SNR boost, for ACDM, to the choice of §,. We find that a threshold
value that corresponds to clipping the 1.1% most dense cells of the simulated
volume maximizes both quantities. We note that our choice of using the same
clipping threshold (the same value of ¢y) for both MG and ACDM models is
different than in Ref. [116], in which different clipping thresholds were chosen
for ACDM and MG. The choice in [116] was made to match the MG to ACDM
power spectra ratios of the transformed field to those for the normal density
tield at the lowest k bins. As we discussed for the logarithmic case, however,
the ratios of the normal and clipped density fields, in general, will not be equal

on large scales but instead are determined by the variances of the original and

remapped fields, through (3.12).

For the marked function, varying the values of the two free parameters, p

and p,, is found to have, qualitatively, little effect on the shape and form of
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the transformed ratio, but a significant impact on the magnitude of the Fisher
and SNR boosts, as shown in Figure By fixing p and varying p, and vice
versa, we found the pair of values p = 10,p, = 4 to be the optimal choice that
maximizes the Fisher information as a goes from 0 to |fz,] = 107%, and the SNR

boost in our GR simulations.

As was shown in Figure the difference between the signal amplitudes
and covariances, for the transformed statistics, relative to the normal density
tield is scale, as well as model, dependent. In Figure the variation of the
square root of the Fisher information in the power spectrum from ACDM to
|fz,] = 107 is plotted as a function of the maximum wavenumber k,,,,, demon-
strating a monotonically increasing behavior for all 4 transforms. Out of all the
MG models considered, |fx,| = 107° represents the most viable, smallest pertur-
bation around ACDM, which motivates its use as the representative example for
the behavior of the Fisher information in Figures and 3.4 When focusing
our analysis on wave-modes larger than 0.4 1/M pc, all transformations comfort-
ably predict boosts in the Fisher information, with the marked and logarithmic
mappings performing better than the clipped transformation for all scales. Even
though the mark predicts a higher Fisher boost than the logarithmic transfor-
mation, the predicted difference is smaller than respective error bars, making
it thus hard to differentiate confidently between these two mappings with the
current number of realizations. The error bars have been calculated using the

Jackknife method.

In Figure[3.5| and in a similar manner as in Figure [3.4] we plot the variation
in the cumulative SNR for all transformations, recovering the same qualitative

behavior as in the Fisher information case. The marked and logarithmic trans-
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Fisher Boost
Konax 1.0 h/Mpc 1.9 h/Mpc 3.5 h/Mpc
Transformation In(1 +6) | &, | m(5) [ In(1+0) | o, | m(5) In(1 +6) | &, | m(5)
Symmmetron 1.6 1.3 1.5 2.2 1.6 24 24 2.3 2.5
fR :\fel =100 |23 1.7 24 2.8 1.9 3.3 2.8 25 3.2
FR) :fgl = 107% 2.1 1.6 22 2.7 1.9 32 29 22 3.8

Table 3.1: A summary of the boost in the Fisher information when using
the power spectra of the transformed, logarithmic, clipped and
marked, density statistics relative to that of the standard density
tield for ACDM and the three modified gravity, symmetron and
f(R), models. The sensitivity of the Fisher boost to the maximum
wavenumber considered is shown through the comparison of
results with three different values of k,,,4,.

formations perform comfortably better, in terms of the SNR boost, than the clip-
ping case, with the difference from each other being once again smaller than the
error bars. As in the Fisher case, the error bars were obtained by the Jackknife

approach.

The Fisher boosts for each of the transformations, and each modified gravity
model, when calculated to three different maximum wavenumbers, 1, 1.9 and

3.5 h/Mpc, are summarized in Table

Just like in the [fz,| = 107° model, the behavior of which has been shown
in detail in Figure the marked and logarithmic transformations produce
the highest increase in the Fisher information for the rest two gravity models
under consideration, and for all 3 wavenumbers reported, with the differences
between the two mappings being smaller than the corresponding uncertain-
ties. Furthermore, again in a similar manner with the |fz,| = 107° case, the
Fisher boosts achieved by the optimal clipping transformation are lower than
the ones produced by the other two transformations, demonstrating an overall
consistent behavior for all 3 MG models. Our results also reconfirm that clip-

ping high-density screened regions results in unscreening and enhancement of
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MG deviations [116] and quantifies the boost on the Fisher information, to our

knowledge, for the first time.

Our results are also consistent with other studies [114], that have shown,
within the context of MG, that logarithmic mappings improve the total SNR, as
they also do for ACDM [128], and demonstrate that such transformations can
be valuable in providing additional discriminatory power for difficult to detect
MG models. It should be noted here that the “restricted” logarithmic function
proposed in [114], which is essentially the the “sliced correlation function” at
fixed ¢ proposed in [127], is found to produce Fisher and SNR boosts of 1.1 and
5.7 in the case of the |f,| = 107° and ACDM models, respectively, as opposed
to corresponding boosts of 3.2 and 3.8 produced by the marked transformation,

for k > 3.5h/Mpc.

In addition to the Fourier space statistics investigated above, we have also
assessed the potential for discriminating between GR and MG models, using a
real-space marked correlation function. Marked correlation functions have been
proposed [27, 26,169,167, 163, 170] as an extension to the standard, autocorrela-
tion function &(r). We consider the marked correlation function M(r) of the form

[204],
1+ W(r)

M(r) = Tf(r)’

(3.24)

where W(r) is the correlation function weighted by the mark in (3.13). In Figure
we show, for one realization, the variation in M(r), between GR and MG
models for varying values of p and p.. This demonstrates that using a marked
correlation function of this form can serve as another quantity that breaks the
degeneracy between MG models and the standard ACDM cosmological sce-

nario. In Figure we plot the marked correlation function M(r) with p = 10
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and p, = 0.4, for ACDM and the |fx,| = 10™* model, averaged over 10 random
realizations. For this analysis, we used the initial 10, out of the total of 30, re-
alizations of the 3D density snapshots resolved in the 256° mesh, rather than
the projected ones, while the 3D real space autocorrelation functions were cal-
culated using the Super W of Theta (SWOT) code [53]. We note that, given the
functional form of (3.24), the observed difference between the MG and ACDM
models is smaller than that for the standard power spectra. At r = 1.81Mpc/h,
the fractional difference is maximal, Macpy/Mug = 1.37, while at r = 4Mpc/h,
Macom/ Muc = 1.13. The SNR boost between W and the standard ¢ is equal to
~ 3 for ACDM.

3.4 Conclusions

Re-weighting cosmological density fields in order to suppress the contribution
of dense, screened regions in favor of the low-density, unscreened regime, has
been proposed as a recipe to improve the detectability of potential MG signa-
tures. In this chapter, we assess the performance of a new analytical function,
tirst proposed in [204], both as a density re-mapping and as a real space marked
correlation function and also perform a systematic comparison with the loga-
rithmic and clipping transformations. Besides the fractional deviation in the

dark matter power spectra, PIAJ e, each transformation is assessed through the

boost, with respect to the standard density field, in the Fisher information in
the power spectra for all MG models, as well as through the boost in the total

signal-to-noise ratio for ACDM.

By exploring the parameter space of the “marked” density transformation,
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we found the parameter choice of p = 10, p. = 4, to be the one that produces
the maximum boost in the Fisher information for the |fz,| = 107° model, as well
as the highest increase in the signal-to-noise in ACDM. The logarithmic map-
ping was found to perform roughly equally well, within the levels of accuracy,
in maximizing these quantities, while both transformations were found to be
superior to clipping of density peaks. These results, that also hold for the rest of
the gravity models considered, demonstrate that the marked tracer could serve
as a useful tool with which to discriminate between MG models and the stan-

dard cosmological scenario.

The value of the clipping threshold that truncates the densest 1.1% of each
snapshot, was found to be the optimal one that simultaneously produces the
maximum boosts in the Fisher information and the total signal-to-noise ratio,
for all models considered. By studying the performance as a function of the
maximum Fourier mode, &, included, we found clipping to predict smaller
boosts compared to the other two transformations at all scales, while still per-

forming considerably better than the standard density field.

Finally, we assessed the discriminatory potential of a real-space, marked cor-
relation function of the form , which, tested on the |fz,| = 107 model,
was found to provide a maximum difference relative to ACDM of 37% at
r = 1.81Mpc/h and a ACDM SNR boost of ~3, comparing W to ¢, clearly demon-

strating the power of such a real space statistic.

In this work, we have focused on the application of the statistics using the
dark matter particle distribution from the N-body simulations. We recognize
that in reality surveys sample astrophysical, biased, baryonic tracers of the dark

matter distribution, and the next natural step, that we will undertake in future
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work, will be to investigate the utility of these statistics on mock galaxy catalogs
that more accurately represent what we will observe with upcoming surveys.
Other lines of improvement could be incorporating the effects of redshift-space

distortions to the current analysis.

Models that aim to explain cosmic acceleration through modifications to GR,
evade strict solar system constraints through characteristic screening mecha-
nisms which suppress deviations in high-density environments. In our work
we demonstrate how one can, through a series of simple density transforma-
tions, differentiate more confidently between ACDM and alternative scenarios.
Such density-dependent suppressions make the detection of potential MG sig-
natures challenging, even for future ambitious surveys of the LSS, like the LSST,

Euclid and DESI.
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Figure 3.1: A side-by-side comparison of the ratios of the MG matter
power spectra, Py, for the symmetron [top row], |fz,| = 107
[middle row] and |fz,| = 10™* [bottom row] modified gravity
models relative to ACDM, Pxcpu. For each model, the ratio is
shown for the three density transformations: logarithmic trans-
formation [left column, red triangle], the clipped density field
when 1.1% of the volume is clipped [center column, red square]
and the “marked” transform, m(¢) [right column, red star], with
p. = 4and p = 10, compared to the standard density field, ¢
[all panels, blue circle]. The green lines in the left and middle
columns show the variance-dependent, analytic predictions for
the power spectrum ratios for the large scale regime, as k — 0,
for the logarithmic and the clipped transformation, from equa-
tions (10) and (12) respectively. The error bands correspond to
the standard deviations over the 120 realizations.
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Figure 3.2: The variation of the Fisher and SNR boosts, defined in (3.21)
and (3.23), for the clipped density transformation relative to
the normal density distribution, as a function of the clipping
threshold, shown as the % of the simulation volume that is
clipped (i.e. has § > &)). The Fisher boost is shown for an
| fz,] = 107 cosmology, while the SNR for the ACDM scenario.
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Figure 3.3: The variation of the Fisher and SNR boosts, defined in (3.21)
and , for the marked transformation in an |f;,| = 107 and
ACDM scenario, correspondingly, as a function of [left] p., with
fixed p = 10, and [right] p, with fixed p. = 4.
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Figure 3.4: [Top] The variation of the Fisher boost for the logarithmic
[black, full], clipped [blue, dashed] and marked [red,dotted]
transformation as a function of k,,, for the |fz| = 107° case.
[Bottom] The variation of the square root of the Fisher informa-
tion for the standard [green, dashdot], logarithmic [black, full],
clipped [blue, dashed] and marked [red,dotted] density trans-
formation as a function of k,,, for the |f,| = 107 model. The
error bars have been obtained using the Jackknife approach.
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Figure 3.5: [Top] The variation of the signal-to-noise ratio (SNR) boost
for the logarithmic [black, full], clipped [blue, dashed] and
marked [red,dotted] transformation as a function of k,,,,, for the
ACDM case. [Bottom] The variation of the signal-to-noise ra-
tio (SNR) for the standard [green, dashdot], logarithmic [black,
tull], clipped [blue, dashed] and marked [red,dotted] density
transformation as a function of k,,,, for ACDM. The error bars
have been obtained using the Jackknife approach.
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Figure 3.6: The variation of the marked correlation function, M(r) for one
realization, as a function of comoving length scale, r, for the
ACDM [red, full line] and |f;,| = 107* [blue, dashed line] sce-
nario, as a function of [left] p., with fixed p = 10, and [right] p,
with fixed p. = 0.4.
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Figure 3.7: The marked correlation functions, M, for ACDM [red, full line]
and the |fx,| = 107 [blue, dashed line] model, for p. = 0.4 and
p = 10, showing the average and variance over 10 realizations.
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CHAPTER 4
CONVOLUTION LAGRANGIAN PERTURBATION THEORY FOR
BIASED TRACERS BEYOND GENERAL RELATIVITY

4.1 Introduction

In this chapter, we will compare analytic predictions for real and Fourier space
two-point statistics for biased tracers from a variety of Lagrangian Perturbation
Theory approaches against those from state of the art N-body simulations in

f(R) Hu-Sawicki and the nDGP braneworld modified gravity theories.

From a theoretical standpoint, models of structure formation rely upon accu-
rately tracing the nonlinear evolution of dark matter perturbations. In the linear
regime and when gravity is governed by GR, different modes evolve indepen-
dently, with the time evolution encapsulated in the scale-independent growth
factor. At nonlinear scales, however, the dynamics of the self-gravitating dark
matter system can only be tracked accurately by full-blown N-body simulations,
which are highly computationally expensive . Additional complexity arises in
accounting for the fact that the observed galaxies do not perfectly trace the un-
derlying dark matter density field, but are biased tracers of it [86]. While this ef-
fect can be easily captured by introducing a multiplicative bias factor in the large
scales [62]], in the regime of nonlinear dynamics, empirical modeling needs to be
combined with sophisticated simulations in order to predict the spatial distribu-
tion of galaxies inside gravitationally collapsed dark matter halos [29, 99, 214].
Furthermore, when MG configurations are considered, the fifth forces introduce
an additional layer of complexity, scale-dependent growth is generally present

even at the linear level and in the nonlinear scales, one needs to solve the scalar
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tield Klein-Gordon (KG) equation that is highly nonlinear and adds to the com-
putational costs significantly. The intermediate, quasi-linear, scales can fortu-
nately be analytically accessed by higher order Perturbation Theory (PT) [30,47]
approaches or hybrid methods [182, 189].

The Lagrangian Perturbation Theory approach [212| 44,38, 78| 183,120, 119,
46, [122], 59] to structure formation is one the oldest and most popular analytical
frameworks in the literature, that has been been particularly successful at de-
scribing the Baryon Acoustic Oscillation (BAO) peak [63], observed at a comov-
ing scale of ~110 Mpc/h, and the power-law correlation function, on comoving
scales ~20-90 Mpc/h, in ACDM [194]. Combined with a model for halo bias
[86, 124} 166,123,157, [119], it can be used to predict the 2-point statistics for ha-
los in the real and redshift space [46, (119} 193], which serves as a crucial step to
the theoretical description of galaxy clustering. Additional contributions from
small-scale physics can also be included using techniques inspired by effective
tield theory theory [196,193]. In the context of MG cosmologies, extensive stud-
ies have been performed in the framework of Eulerian Standard Perturbation
Theory (SPT) [98), 1179, 142} 180, 28}, 166, 35, 36]. LPT was first found to work very
well within the COLA hybrid framework for chameleon and Vainshtein MG
cosmologies [189], while third order LPT for dark matter was recently devel-

oped in the case of scalar-tensor theories in [15].

In this work, we perform a comprehensive study of how LPT can be used to
make predictions for biased tracers in modified gravity theories, and how well
the predictions compare with full numerical simulations for a variety of modi-
tied gravity models. We study chameleon and Vainsthein MG theories, focusing

on the f(R) Hu-Sawicki [81] and nDGP braneworld models [60] as popular, rep-
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resentative examples for each category. The underlying dark matter clustering
is described using the formalism in [15]. We then consider the Convolution
Lagrangian Perturbation Theory (CLPT) [46] for biased tracers, as well as the
variants, using the particular resummation scheme in [196,193]. We extend the
peak-background split formalism (PBS) [86) 20, [157] in which the Lagrangian
bias factors are calculated as responses, to account for modifications to the halo
mass function in modified gravity theories and the environmental dependence
of screening effects. We show how this formalism should be extended in the case
of each screening mechanism. Finally, we cross-check and validate our results
in terms of the 2-point statistics against state-of-the-art cosmological N-body
simulations that allow us to assess the LPT predictions in the nonlinear, quasi
non-linear and baryon acoustic oscillation peak regimes. Comparison with sim-
ulations is required to ensure that the predictions will be sufficiently robust for
upcoming surveys such as DESI, Euclid, LSST and WFIRST. The work presented
below, has been published in [191].

This chapter is structured as follows: in Section we present the MG
models we studied and the details of the N-body simulations employed to test
our LPT implementation. We summarize the formalism for developing biased
tracer statistics for GR in Section In Section we discuss the mod-
ifications required to the perturbative schemes to predict the real and Fourier
space 2-point statistics and the associated bias parameters for tracers of differ-
ent masses for models beyond GR. The LPT predictions are compared to statis-
tics derived from simulations in Section#.3.2] Finally, we conclude, and discuss

implications for future work, in Section
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4.2 Formalism

4.2.1 Modified gravity models

The f(R) model

Despite the latest surge in the field of MG, deformations to GR, together with
associated experimental tests, have been around for almost as long as GR itself
[206]. One of the oldest attempts consisted of adding a nonlinear function f(R)
of the Ricci scalar R to the standard Einstein-Hilbert action, the so-called f(R)

theories [57], with a resulting action S of the form:

R+ f(R)
167G

S:fd4x\/—_g

+ Lm] , 4.1)

with £, denoting the matter sector Lagrangian and G the gravitational constant.
Since such an action frees up an additional degree of freedom, the latest interest
in this class of theories comes from the idea that a modification of this type is

responsible for cosmic acceleration, rather than dark energy [48].

Such a model is the Hu-Sawicki f(R) model [81], which we study in this

chapter and the functional form of which is given by:

C1 (R/mz)n

_ 2
JR) = =m o (R/m2)" +1°

(4.2)

In equation (5.2), Q,,y denotes the matter fractional energy density and H, the
Hubble Constant, both evaluated today, m = H, v€,,, which has dimensions of

mass and 7, ¢; and ¢, are free parameters.

In order to match the ACDM expansion history and for sufficiently small
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values of |fg,|, the background value of the Ricci scalar, R, becomes equal to:

_ 9)
R =3Q,H> (1 + 49—“’). (4.3)

'm0

where Q, is the dark energy fractional density evaluated at the present time.

The derivative fz = % becomes a functional of the cosmological parame-

ters when evaluated today, through the relationship

fr, = & (%)Mrl (4.4)
o 5 \3(Quo + Qo) . '

The above mapping allows us to reduce the number of free parameters and
the Hu-Sawicki model is commonly parametrized by quoting the values chosen
for n and |fg,|, with the latter being the background value of the fifth potential

evaluated today.

The reason the Hu-Sawicki model is so popular is that it can be cast into the
form of a scalar-tensor theory that realizes the chameleon screening mechanism
[92,93], through a conformal transformation [43]], with the quantity fz identified
as the scalar field that is coupled to matter. Through the interplay between mat-
ter and the self-interaction potential, the scalar chameleon field becomes mas-
sive near high over-densities and the associated fifth forces get exponentially
suppressed due to the Yukawa effect. A stronger screening effect is manifested
in lower values of the parameter |f |, with the limit of |fz,| — 0 exactly recov-
ering GR. Following the literature and also because of the available simulations
(as we will discuss below in[4.2.1)), we choose n = 1 and consider three different
f(R) models with | fR0| = {107%,107°,10™*}, which we shall refer to, from now on,

as F6, F5 and F4.

When considering perturbations around a homogeneous and isotropic FRW

metric in the conformal Newtonian gauge, the resulting system of the Poisson
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and KG equations becomes [81]:
1
V2Dy = 47Gd>Sp,, — EVZfR,

a? 81Ga?
V2fy = ——06R -
Jr 3 3

(4.5)

OPm;
where @y is the Newtonian potential and dp,, the matter density perturbation.
OR, the perturbation to the Ricci scalar, can be written as a function of the scalar

field fz, which will play a central role in our screening implementation in Sec-

tion

The nDGP model

The second MG model under consideration comes from the realm of higher-
dimensional braneworld cosmology. The simplest example of such a config-
uration is the so-called Dvali-Gabadadze-Porrati (DGP) model [60], which is

described by an action of the following form:

R
35 — 5
+ fd by g5(167rGrc)' (4.6)

In this model, the spacetime consists of 5 dimensions, rather than the usual 4,

R
167G

+ L,

S :fd4x\/—_g[

but the standard model fields are restricted to a 4-dimensional (4D) brane and
the free parameter, r., denotes the length-scale below which gravity becomes
4D. Rs and g5 denote the corresponding 5D versions of the Ricci scalar and met-
ric tensor determinant, respectively. The resulting Friedman equation from (5.4)
is:

H 2 Pm

€E— =

7. 247G’

(4.7)

where € = +1. Each of the two values of € represents a particular branch of
the model, with € = +1 producing the self-accelerating solution, which, how-

ever, suffers from undesirable “ghost” instabilities [96] and is thus an unphys-
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ical model to consider. The value of € = —1 corresponds to the so-called nor-
mal branch, hereafter called nDGP, which is well behaved, but does not self-
accelerate and can match a ACDM expansion history only in the presence of

dark energy.

When focusing on the normal branch and in the quasi-static limit for sub-
horizon scales, the perturbations in the conformal Newtonian gauge give the

modified Poisson system of equations [98]:

1
V2®y = 4nGa*Sp,, + EVZ(,O,

871G 2 2 (48)
Vi = 2 bpn ~ 3| (Ve ~ (VY 07|
with the coupling S8 given by
Hi
B(a) = 1 + 2H(a)r, (1 4 3H((Z;2] (4.9)

The nDGP model is a typical example of a scalar-tensor theory that realizes
the Vainshtein screening mechanism [187, [18], in which the modifications to
gravity are suppressed in the existence of large second derivatives of the scalar
tield. In the second equation of , in particular, it can be seen how, once the
second derivatives of the scalar field become large in high densities, the second
term on the right hand side (r.h.s.) becomes significant and effectively weakens

the source strength, resulting in strong screening of the fifth forces.

We consider the nDGP model for two choices of the free parameter r,, corre-
sponding to n = Hyr, = 1 and n = 5, which we shall call, from now on, N1 and

NS5, respectively.
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N-body Simulations

Accurate realizations of structure formation in the nonlinear regime can only be
achieved by performing N-body simulations. In this chapter, we test our results
against two groups of state-of-the-art N-body simulations, that serve comple-

mentary purposes to each other, as explained below.

The first group of simulations, to which we shall refer as Group I from now
on, are the ELEPHANT simulations, presented in [50]. These span the param-
eter space of both MG models we study: the F4, F5 and F6 f(R) models and N1
and N5 nDGP models. The f(R) simulations were performed using the ECOS-
MOG code [112,37], while the nDGP ones [73] using the ECOSMOG-V version
[111} 21], both of which were based on the GR code RAMSES [185] and where
suitably extended to integrate the scalar field KG equation for the corresponding
models using adaptive-mesh-refinement techniques. The parameters describ-
ing the background ACDM cosmology are the best-fit ones given by the 9-year
WMAP release [76] and have the following values: Q, = 0.046, Q.;, = 0.235,
Q,=0281,Q,=0719,h=0.7n,=0971 and 05 = 0.82. N, = 10243 equal mass
particles were placed in a simulation box with a side L,,, = 1024 Mpc/h and
the density field was resolved in a 1024° resolution grid. Furthermore, the sim-
ulations were initialized at redshift z; = 49 using the Zel’dovich approximation

[212] and evolved through z; = 0.

Gravitationally bound dark matter halos were identified using the ROCK-
STAR halo finder [25]. Finally, so as to get an estimate of the variance, each
model was simulated for 5 random realizations, corresponding to different ran-

dom phases in the initial density field.

72



The 1024* (Mpc/h)* volume simulations’ results in Group I become noisy at
scales r > 100 Mpc/h. To probe the BAO scales, where LPT has been previ-
ously found to perform very well for GR [194], we also test our results against
the largest volume f(R) simulations performed to date for the modified grav-
ity lightcone simulation project [13]. In these simulations, which we will call
Group II from now on, the box side is Lj,, = 1536 Mpc/h with 2048° equal
mass particles used, for GR and the | ﬁ0|:10‘5 model. The parameters describ-
ing the background ACDM cosmology are the best-fit ones given by the Planck
collaboration [139] and have the following values: ©, = 0.0486, Q, = 0.3089,
Q; = 0.6911, h = 0.6774, n;, = 0.9667 and oz = 0.8159. The simulations were
performed using the MG code MG-GADGET [141], which is a MG extension
to the code P-GADGET3, an improved version of the code GADGET-2 [174],
created for GR simulations. Dark matter halo catalogues were produced using
the SUBFIND algorithm [175]. Each model has been simulated for one random

realization.

For more detailed discussions on the N-body implementations, we refer in-

terested readers to the corresponding publications.

4.2.2 Convolution Lagrangian Perturbation Theory for biased

tracers in MG
LPT for dark matter

The Lagrangian Perturbation Theory approach to structure formation has been

extensively studied [212} 44 38, 78, 183} 120, 119, 46, 122} 59] in the context of
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ACDM scenarios. Opposite to the Eulerian picture, in which one monitors the
evolution of the desired quantities at a given, fixed, position, in LPT one instead
tracks down the evolution of a given fluid element over time. Starting from
an initial, Eulerian, comoving position q at a desired early time #,, each mass
element is mapped to its comoving Lagrangian position x(q, 7) at time ¢, through

the relationship

x(q,1) = q+ ¥(q, ). (4.10)

The Lagrangian displacement ¥(q, t), taken to be 0 at the initial time 1, is the
fundamental quantity of interest in LPT. Furthermore, enforcing mass conser-
vation, through the continuity equation, between the initial and final infinitesi-
mal volume elements centered around q and x, respectively, gives p,,(x, )d*x =
om(q, 10)d>q. Assuming f, refers to an epoch early enough that the density pertur-
bations around the background density p are negligible, meaning p,.(q, to) = P,
allows us to obtain the dark matter fractional overdensity, ¢,,, in the Lagrangian

picture:

1 +6,(x,1) = fd3q5D [x - q-Y(q,0)] = (4.11)

J(q, 1)’
with 6, being the Dirac delta function and J(q, ) the determinant of the defor-

mation matrix
ox' o'

Ji'i:a_qj: ,‘j+a—qj.

(4.12)

For an irrotational flow, which is a good approximation for cold dark matter
and assuming that the gravitational evolution is governed by GR, perturbations
around a flat FRW metric give the geodesic and Poisson equations, in the quasi-
static approximation and for sub-horizon scales, as:
. . 1
X+ 2Hx = —;wa(x, 1),

. (4.13)
;viw(x, 1) = 4nGpo(X, 1).
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We should point out that in (5.11)) y(x, ) denotes the metric perturbation, which
should not be confused with the Lagrangian displacement field ¥(q, 7).
In the LPT picture, we perturbatively expand ¥ as

¥(q,1) = Z ¥ (q,1) = YV(q,1) + ¥?q,1) + ¥(q,0)... (4.14)

n=1
and equations (5.7)-(5.10) form a closed system, that is recursively solved for the
various orders of ¥W. The first order solution is the so-called Zel’dovich approx-

imation [212].

In MG theories, as also explained in Section an additional degree of
freedom is present, that directly couples to matter and causes particles to de-
viate from the nominal geodesics of GR. Consequently, equations are, in
principle, modified for a scalar-tensor theory and so is the LPT framework pre-
sented above. In [189], the LPT approach was expanded for chameleons and
symmetrons, including the first order contribution to the Klein-Gordon equa-
tion and was shown to perform very well in the context of the COLA hybrid
framework. The LPT approach for scalar-tensor theories up to third order was

presented in [15], the main results of which we summarize in this section.

In [28], which developed an SPT framework for studying MG theories with
a screening mechanism in the nonlinear regime, based on the closure theory
approximation in [178], the scalar field KG equation for a Brans-Dicke-like (BD)

theory with interactions of a scalar field, ¢, was written as:

(3 + 20030) 5K, 1) = 81Gp 0k )~ 1(9), (4.15)
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where 7 (¢) denotes the perturbative form of the field self-interaction term:

I(¢) = MKk ,n¢

1 ( &kd’k
+3 W%(k — ki) My(ky, k) (k)p(ks)
1 [ d&Pkd’kydk
3 fl(zTésst(k —ki23)
XM (ky, ko, k3)g(k )p(kz)p(ks), (4.16)

where we adopted the standard notation k;; = k; +k; +k; and M, (k, 1), M(k,, k,)
and M;(k;, k>, k3) are mass terms. The higher order piece in the Fourier space
representation of the interaction term in equation (5.16), incorporates the screen-
ing effect, up to third order, that is responsible for recovering GR at small scales.
The mapping between a given scalar-tensor theory and the BD form above can
be easily performed through assigning appropriate values to the mass terms
and the BD coupling wgp above, as we will later show for our two models of

study.

The perturbed modified Einstein equations have the form [15]

A 1

VT ¥ = -5 Viu(x, 1),
a (4.17)

ivzl/l(x 1) = 4nGp (X, 1) — Lv2¢ _ L (v2¢ -~ v2¢)
a* X" T 2a? 282\ % ’
where we use 1) and introduce the time derivative operator 7 = j—; +2H %,
as in [120]. The last term in the second line of (5.14)), called frame-lagging in [15],
is a geometrical term that occurs due to the fact that, in LPT, the KG equation
should be expressed in Lagrangian (Vz), rather than Eulerian coordinates (Vi)

Taking this into account, equations (5.15)-(5.14) are combined to give

2

—1 2 _
(771), T ¥iik) = ~AGR)s(K) + PETTTA s
Myk) 1/, > '
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where, following the definitions in [28], we have

_ K

1 2 2
k) = 5 [(3 + 2wpp) K + Mya ]

and all the quantities are Fourier transforms in the Lagrangian q-space. The
inverse Jacobean in reflects the derivative transformation to the gq-
space, where the Einstein notation is adopted. Furthermore, 6(k), 67(k) and
(Viqﬁ - V2¢) (k) are the Lagragian Fourier transformations of the Lagrangian-
transformed overdensity (5.8), the higher order interaction Kernels in and

the frame-lagging Kernel, correspondingly. The expression for the latter is given

in [15]. Equation (4.18) forms a closed system with (5.8), (5.9), (5.15) and (5.16)

that is solved, perturbatively, to obtain the MG solution up to various orders in

¥, as in (5.10).

Solving for the first order solution, one gets [189]:
k- ¥V =Dk, 1)6V(k,t = 0), (4.20)
which can be easily solved for the displacement field, as:
ik

i J
Wik, t) = ﬁD(“(k, 1ok, t = 0). (4.21)

We see that the r.h.s of (4.21) can be conveniently decomposed into a product of
the first order density mode at very early times, §"'(k, 7 = 0), early enough to be

gaussian and a space-time dependent growth factor DV(k, 1), given by:
7 DYk, 1) = A(k) DV (k, 7). (4.22)

In the GR limit, A(k) = A(k = 0) = 4nGp,,, D'V becomes scale independent and is
nothing else than the first order growing mode for GR; the Zel’dovich approxi-

mation.
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Moving on to the second order piece, we have:

i (dkd’k
kW =2 f (zlﬂ < 26p(k — ki) DP (k1 k)o'"s,”, (4.23)
where, for compactness, we adopted the notation 6( ) = (k;,0) and the second

order growth factor, D®(ky, k,), is given by [15]:
Ko
k2 k2
+D%) (k1. ko) — D) (ky, ko). (4.24)

DP(k;,ky) = DP(k,ky) - D@)(kl,kz)

The four individual components are given by:

A(k)) DY (k1 ks) = A()DV (k) DV k),
— A(k)) DY (k1. ko) = (Ak)) + Aky) — A(K) DV (k1)DV(ky),

2Ao) K2 Ma(k;, ko) DV (k))DY (k) (4:25)
3 ) a OI1(k)II(k)I1(ky) ’

(7 -
(7
(7" - AGo) Dk ko) = (
(7 -

AK) DK, k) = (31%) K2k, ko) DVl )D (ko).

The two last terms represent the second order contributions to the growth factor,
given by the screening and frame-lagging effects, correspondingly, while the
expression for K\, is given in [15]. Despite its lengthier expression, when taking
the GR limit we get DY) = D) = 0 and DY’ = D{?, allowing D to become scale-
independent, reducing to the known GR result, which can be well approximated

by D@(r) = -2 (D(])(t))2 for ACDM cosmologies [38].

Solving for the third order piece in results in a lengthy differential
equation for the third order MG growth factor, D®(k;, ks, k3), that also needs to
be symmetrized. The result is given by equation in the appendix It
should be also noted that equations (4.22), and f(B.5) can be either solved
by inverting the linear operator (‘f’ - A(k)) using its Green function, as done in

[122, [15], or by numerically solving the corresponding differential equations.
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Even though both methods give results that agree with each other well, we
chose to proceed with the latter because it is computationally faster. The dif-
ferential equations were solved using a 5 order Runge-Kutta scheme, imple-

mented in Mathematica [83]].

We finish this section by showing the particular expressions for the mass
terms in (5.16) and the sources in (5.18) for the f(R) and nDGP models we study.
For the f(R) Hu-Sawicki model, the Brans-Dicke scalar is simply wpp = 0, while

the mass terms are given by the expansion [98]:

oy @R

g o (4.26)
dfy
which, using (5.2), gives [15]:
3H? (Qua +4Q4)
M(a) = >
2frl (Q +4Q0)
OH? (Qua +4Q,)
My(a) = == T (4.27)
Hfrol (Q, +4Q4)
7
45H; (Qua™ +40,)
M;(a) =

8lfrel  (Qn +4Q,)°

In the case of the nDGP braneworld model, a similar procedure, informed

by (4.8), gives the relevant expressions [98), 17]:

M(a) =0,
Mk, k a)—2n—2(k2k2—(k k2)?)
2U8 ], B2, - H2a4 1R~ 1 2 ’

0

Mi(ki,Kkr, K3,a0) = 18———
3(Ki1, ko, K3, a) HeaS4nGpy

[(k1 ko)kiks + 2(Kkg - ky)*k3

—2(Kky - K2)(Kq - k3)(K; - K3) — (Kq - Ka)(Ky - ks)z],

with g defined in (4.9). It is interesting to notice that, even though the interac-

tion term in (4.8) contains only second order derivatives, in (4.28) a 3" order
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mass contribution is now present, that arises when transforming the Eulerian

derivatives to the Lagrangian space through (5.9).

2-point statistics for biased tracers in GR

The perturbative theory of galaxy clustering [59], which aims to describe the
statistics of biased tracers in the quasi-linear regime, consists of a perturbative
description for the evolution of the underlying dark matter density field, com-
bined with an analytical description for the bias parameters at each given order.
In the case of cold dark matter, the calculation of the 2-point statistics, even in
LPT, is a more straightforward process, since one just needs to plug the g-space
Lagrangian overdensity, mapped to the Eulerian frame through (5.8), into the

common expressions for the autocorrelation function:

E(r) = (0n(X)5n(x + 1)) (4.29)
and its Fourier space counterpart, the matter power spectrum

2n)} 6p(k + K)P(k) = (5,,(K)S,,(K')). (4.30)

When studying biased tracers, like for example dark matter halos, we need
an analytical model to describe their statistical prevalance with respect to the
underlying density field. Following [119, 46], we employ a model of a local
in matter density Lagrangian bias in which the positions of biased tracers are
purely specified by a distribution of the underlying CDM density field d(q, =

0) = 6(q), encoded through a function F [6z(q)], as

px(q) = pxF [dr(q)], (4.31)
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where, consistent with the literature, we use the subscript X to indicate biased
tracers. Jdg(q) denotes the primordial density field smoothed over some scale
R, while py is the mean density of tracers. Density conservation provides the

equivalent of equation (5.8) for tracers,

Ox(X,1) = f d’qF [6p(@)] 6p [x — q — ¥(q, D] - 1. (4.32)

This model of local Lagrangian bias, which corresponds to a non-local bias in
the Eulerian space, can be extended to include a biasing scheme that is non-local
in the Lagrangian space [121]. Combining and and after some trans-
formations one gets the general expression for the 2-point correlation function

for biased tracers in LPT,

&Lk di; da
1 = | &g | —=e* | L2 1(q,k, Ay, ), 4.33
+&x(r) f Qf(zﬂ)3e 2n) 2n) (q 1, 42) (4.33)
with
L(q.k, 41, d2) = Fy Fy el ol (434)
K(q,k, 11, 2)

where F,, F, are the Fourier space representations of F, with corresponding
wavemodes A; and 1, and A = ¥, — ¥;. The notation 6(q;) = §; has been
adopted for all quantities. The ensemble average K in can be cast into
an exponent of a power series in cumulants, through the cumulant expansion
theorem, (¢’*) = exp [Z}’V": | ]"V—N!(XN )C], which, combined with a multinomial expan-
sion, gives:

AT

K(q.k, A1, 1) = exp [Z LAk ki (A A (4.35)

m!n!r!
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in terms of a series of correlators
% = (8
£1(q) = (6162)c,
AT(G) = ([0 N e, (4.36)
Wi (@) = (6707 A jAk)..,
Ui™(q) = (070300,
where we adopted the commonly used notation for the Lagrangian cumulants

in (5.26).

Keeping all terms in that contain cumulants up to third order, which
is the equivalent of the one-loop correction to the linear power spectrum, re-
sults in a highly oscillatory integrand that presents challenges when ensuring
the integral is fully converged. [120] proposed expanding all contributions to
the exponent but the scale-independent “zero-lag” piece of A}, which results in
a non-perturbative resummation scheme that is simpler to handle analytically.
Building upon this result, [46] proposed keeping all the terms of A} in the ex-
ponent, in their Convolution Lagrangian Perturbation Theory (CLPT) scheme.
Keeping only the linear component of A?}Q exponentiated, as done in [196, 193],
and performing the A and k integrations in gives a CLPT expression for
the 2-point real space correlation function,

s e @A) 1 ioop
1 +&x(r) = qu Q) AL X 1_§GUAU

1
+6FijkWijk - bl (ZUzgz + AIIJOGZJ>
b, (VUG + UPg))

+b% ({fL — UEDU;I)G,‘J‘ — Uillgi)

1
+§b%§i - 2b1b2'§LU§1>gi], (4.37)
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with

g = (A D)i(g—T)),
Gi; = (Ail)ij - 8i8j»
Tie = (AD)ige + (ALDug + (ALDjg — gig - (4.38)

Furthermore, in (5.24) we define U}® = U;, W}, = W;; and use superscript num-
bers in brackets to indicate the various orders of contribution. The 1% and 2
order Lagrangian bias factors, b, and b,, are the expectation values of the 1* and

2" order derivatives of the Lagrangian bias function F, respectively, through the

identity [119}121],

(4.39)

_ [ dA - 12 e d'F
bnszF(/l)e 2 (i) _<d(5” >

In the case of dark matter, we have F = 1 and F(1) = 275,() [46], and we

recover b, = b, = 0 for the unbiased, dark matter distribution.

The Fourier transform gives the CLPT power spectrum for biased tracers

[196),193]:

. 1 L 1 ]
Px(k) = f d’ge™ e % [1 — Skik; A" — kike e Wi

2 6
+by (2ik;U; — kikjAlY) + by (i UP - kik, U U
0 (& + iU — kb, UV U

1
+=b2E2 + 2b br&1 ik, UY |. (4.40)
2 25L i

In addition to the one-loop expressions for the two-point statistics, we also
calculate the Zel’dovich (1* order LPT) approximation [203] for biased tracers
in the configuration and Fourier space, which can be identified as the subset of
terms in (5.24) and that are linear in P (k). These are the terms that depend

on combinations of &, UV and AZL]
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While, for GR, CLPT does a very good job at modeling the configuration
space &(r), it is known to perform less well in reconstructing clustering in the
Fourier space [194]. Expanding the resummed exponent in and perform-
ing the resulting integrals gives the Eulerian one-loop Standard Perturbation

Theory (SPT) power spectrum for biased tracers in GR [119],
9 3
PR = (1=Koi) (L + b Po(k) + 52 01(K) + 50a(k)
1 6 3
+§Q3(k) +by (7Q5(k) + 2Q7(k)) + b, (§Q8(k) + Q9(k))
1
+b7 (Qo(k) + Q11(K)) + 2b1b, Q1a(k) + Ebéle(k)

6 8
+5 (1+ b)) [R(k) + Ry (k)] - ol (1 + b)) R, (k), (4.41)

where

00

0

7l
is the 1D variance of the Lagrangian displacement and the functions Q, and

R, were defined in [119] for GR. The SPT power spectrum has been shown to

follow the power spectrum much better than the CLPT prediction in GR [194].

The correlation function obtained from Fourier transforming (4.41) is, unfor-
tunately, known to be ill-behaved [120]. However, if one performs an alternative
resummation proposed in [120, [119], known as Lagrangian Resummation The-

ory (LRT), the resulting power spectrum,

Pg}RT(k) = Kol

9 3 1
(1 +by)* Pr(k) + %Ql(k) + §Q2(k) + §Q3(k)

6 3
+b (7Qs(k) + 2Q7(k)) + by (7Q8<k> + Qg(k))
+b3 (Qo(k) + Q11(k)) + 2b,b2Q15(k)

1 6
+503013(0 + 2 (1+ b1)* [Ri(K) + Ro(K)

8
51 (A +b)R k)|, (4.43)
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which differs from (4.41) only by the exponential prefactor, can be Fourier trans-
formed to the configuration space and is found to characterize the BAO scales
well for both dark matter [120, 194] and biased tracers [119, 46]. It decays

sharply for large values of k however.

Calculation of bias parameters in GR

In this section, we present an analytical model for the calculation of the bias
parameters in GR, which will be extended to include MG in section [4.3.1]
It should be noted though, that even in the complete absence of an analytical
model, one or both of the bias parameters in CLPT can be treated as free parame-
ters, to be fitted over simulations, as for example done in [46,145]. With regards
to analytical models for bias, arguably the most popular one is the halo ap-
proach [125, 124} 164, 166,117, 133,161} 51]], that is based on the extended Press-
Schechter (PS) formalism [140, 33]], in combination with the Peak-Background
Split (PBS) approach [86]. A discussion of the accuracy of such approaches can
be found in [118,[79]. In what follows, we briefly summarize the main ingredi-

ents of this prescription in GR.

Let M, be the mass of a collapsed region at a redshift of interest z, that is
enclosed in a Lagrangian region of radius R, which, given the mean matter

density p,,0, will be given by

Ry = ( 3Mo ) . (4.44)
47Tpm0

The variance of matter density fluctuations in this region is,

2
o (My) = f dick W2 (kRy) P.(k,z = 0), (4.45)

27?2
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with P, (k, z = 0) the linear matter power spectrum evaluated today and W (kR)

the top-hat smoothing Kernel,

3 [sin(kRy) — kR cos(kRy)]

W (kRy) = T
0

. (4.46)

For GR, density perturbations are evolved in time, relative to present time using

the GR linear growth factor D(z).

Based on the PS theory and its variants [140}33], the comoving mean number
density of halos per logarithmic mass bin d In M, 7, can be analytically modeled

as:
2N Om
(M) = P— p—vc(M)f [ve(M)]

d1nv.(M)
oVolnM M ’

v (4.47)

where N, is the mean number of halos with mass M, in a bin of width dM,

enclosed in a comoving volume V.

The quantity v.(M), the peak significance, is given by

6cr é‘cr

M) = D T Dot

(4.48)

where D(z) is the linear growth factor at the time of collapse z, normalized so
that D(z = 0) = 1. In (#.48), 0(M, z) = D(z)o(M) is the variance at redshift z, with
o (M) the variance evaluated today and 6., is the critical overdensity for
collapse at redshift z. For an Einstein De-Sitter (EDS) cosmology, the latter is
always 6., = 1.686, which turns out to be a very good approximation for ACDM

cosmologies and will be adopted here.

fve(M)] is the multiplicity function, that in the original PS theory is given

ch [vel = \/gvce_zvg- (449)

The prescription (#.47), often referred to as the universal mass function, is exact

by:

in an EDS universe with a power law power spectrum. While (4.49) has been
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used to describe the halo mass function for a broad range of cosmologies, it
lacks the necessary accuracy for precision predictions. For this reason, Sheth

and Tormen (ST) [166], introduced an alternative function:

2
vef vl = \/;Aw)

1 -1
where A(p) = [1 +717227PT(0.5 - p)] and ¢, p are free parameters that can be

2

] \Vgvee ™, (4.50)

1+

(qv2)?

titted over N-body simulations. The best fit pair was initially proposed to be
(¢, p) = (0.707,0.3) which was later updated to (¢, p) = (0.75,0.3). These are

considered to be the “standard” ST parameters [166} 165]. For the PS function,

qg=1,p=0.

Based on the PBS argument [86], a large-wavelength density perturbation
A (that is effectively constant on small scales) has the same effect on the for-
mation of biased tracers as a modification to the mean background density by
this offset. If by 7,(M, A) we denote the halo mass function’s response to such
a perturbation, also sometimes called the conditional mass function, then the

fractional overdensity of halos will be given by [125, 124, 164]:

ﬁh(M’ A)

1 +6,(M) = 7 (M.0)°

(4.51)

where 71,(M,0) = n,(M), is the standard, unconditional halo mass function. It
also worth noticing that equation (4.51)) also defines F [6z(q)], through (5.21).

The Lagrangian bias of order n, is then given by

1 d"ny(M,A)

n,(M,0) dA Ao

bE(M) = (4.52)

where the time argument in the above is assumed and omitted for simplicity.
Equation (5.28) is the rigorous definition of the bias parameters, that is exact

even in the absence of an analytical description for the halo mass function and
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can be calculated numerically, for example employing separate universe simu-
lations [157]. In the presence of a universal mass function, the conditional mass

function is given by the same expression (4.47), but with the modified peak sig-

6(,'V_A
D(@)o(M)”

nificance v.(M) =

[164] by (4.51)), as:

in which case the the bias factors are easily calculated

BLEM) = -n" L d"(vef Ive])

T DM vef v v (4.53)

which are the so-called PBS Lagrangian biases. Applied on the ST function
(4.50), the PBS biases are:

-1 2
piM) = — g2 -1+ —L2 |,
Ocr 1+ (qu)p
- ‘ X (4.54)
. 1 - ) 2p(2qvc+2p— l)
by(M) = — |qVe = 3qv; + P
6cr 1+ (qvg)

These PBS biases are identical to the Lagrangian bias factors defined within the

context of CLPT through (5.27) [119} 121].

4.3 Results

4.3.1 Lagrangian Perturbation Theory for Biased Tracers in MG

2-point statistics for Biased Tracers in MG

In section we showed the expressions for the calculation of 2-point statis-
tics in CLPT and its variants, under the assumption that gravitational evolution

is governed by GR. Here we explain how each of these relationships have to be

88



modified in the case of MG theories. We note that these results are consistent

with those recently presented in [17].

The two-point statistics for biased tracers in MG are given, as in GR, by the
definitions and in the configuration and Fourier space, respectively.
Considering biased tracers in the Lagrangian space, through (5.21), the over-

density of biased tracers in LPT is given by

Ox(X,1) = f d*qF [6p(@)] 6p [x — q — ¥(q, D] - 1, (4.55)

where we used density conservation. The above equation is similar to (5.22)
for GR, but differs in that the Lagrangian field ¥(q) follows the MG evolution
presented in Section In particular, if we work in terms of the Fourier trans-

form of W(q), labeled as ¥(p), the n” order LPT solutions in MG will be given

by,

g (& dp n
¥p) = — et -

X LY (1, ... P)SL(P1)--01(Pn), (4.56)

where 6,(p,) are the linear-density Fourier transformed fields at the time of eval-

uation and the Kernels LE.")(pl, .., Py) are given by [15]:

J
L =5,
J p2

P_j DP(py, p2)

p?> DY (p1)DD(p,)’

P Don(pi,p2p3)
p> DO (p))DD(pr)DD(p3)

The MG growth factors in (4.57), are the ones given by (4.22), (4.24) and (B.5).
Plugging the overdensity (4.55) into (5.23) and (4.30) and working as in (4.33)-
(5.26), we arrive at equations (5.24) and (4.40), that give the 2-point statistics for

LEZ)(Pl, p2) = (4.57)

(L5‘3))sym(pl’ P2, P3) =1
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biased tracers in MG and depend on the MG Lagrangian correlators
Tk = (&)
§1(q) = (6162)c,
ATNG) = (0] 0N e (4.58)
Wi (@) = (6707 A jA).,
U™(q) = (07050
For the MG correlators (4.58), we use the same definition and index structure

as in GR, but these functions differ from their GR counterparts, because the

quantities in the cumulants follow the MG LPT solutions (4.57). In particular,
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plugging (£.56) and (4.57) into (4.58), we get the Lagrangian correlators in MG:

1 dk( 3 .
V{m)(q) = 50 7(—7)[131(/()]/140]1(]@),
1 dk{ 3 .
iY@ = 55 7(——)[Q1<k>]m]1(kq>,
3 dk j»(k
") = 1 f |2 [Rilug + 4Rs + [Q1]6 + 20 ”,(C 2
-3 dk
%) = s [ RR G + 4R + Q1o +20:] sk
1
UNg) = 5 | dkk(=1) Puik)jitkg),
1 5
UDg) = o | dkk —ﬁ)&(k)]l(kq)
1
Up(@ = 5 | dkk —;) Qs(k) i (kq),
1 6 :
U@ = 3 f dkk —7) [Ri(K) + Ro(k)]yy 1 (),
1 1
X' (@) = 5 dkﬁ[z([Rl]MG—Rz<k>)+3[R1]MGjo(kq)
k
=3 [(Rilue + 2R + 2 [Ri(K) + Ro()] g +205] 2 ‘”)
12) 1 3
Yo' (@ = a2 dk(_ﬁ)[[Rl]MG""zRZ
. ji(kg)
+2 [R1(k) + Ra(K)]yy + 205 | X | jo(kg) — 3 |
1 k
X@) = 5 [k (k)[——zhli(f)],
V@) = 55 | dk a(k)[ 2jo(kq )+6”]Eq‘p], (4.59)
where we additionally performed the decompositions
A’""(q) = Xon(@)0ij + YinGiq
(4.60)

Wii(q@) = Vi(@)qi6 i + Va(@)q01 + V3(@)qibij + T(9)qiq j9x

and defined a(k) = Pr(k) + 55 2 0,(k) + Rl(k) The functions Q, (k) and R,(k) that
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appear in the r.h.s of (4.59), are defined, as in GR, to be:

3 00
O.(k) = o) ; drP;(kr)
1
xf dxPL(k V1 + r2 = 2rx)0,(r, x)
-1
3 ) 1
R, (k) = k—zPL(k) f drP,(kr) f dxR (1, x). (4.61)
4r 0 -1

The scale and redshift dependency of the growth factors alters the evaluation of

these expressions relative to GR:

2, .2
= ofae A@X +r —2rx
=22\ D»_p®»__~___~-
2 r( a b1 +r2=2rx
~ rx(1 —rx) (= _ 0 X2+ =2~ =0
- M p@_p» T =7, p® _ p?
2 1+r2—2rx( ¢ b1+ - 2rx FL o1
0 = x2(1 —rx)?
T+ = 2rx)?
~ _ X2+ =2rx
— x| p@ _p@X T T A
Os rx( “ b1 4+r2=2rx
O = x2(1 = rx)
T A+ = 2rx)

~2) (2
+ DFL - D(S[]

] e
~  rx(1—rx)
T 142 -2
Qi =¥
Oy = rx
Qi3 =1

r*(1-x%) (- _ o X2+ =2rx - _
— 2 _ pD 2 _ pH®
Uy = 5. |DP-D +D? -D2|.
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and o
21 Dsym(k9 —p, p)

Rl = —r2

10" DOk (DO(p))?
5 rx(l—rx) =0 =25 A2 AQ
Rz— m(Da _Db X +DFL_D6I)

(4.63)

~ ~ 2(1 - _
[Rik) + Ratw] = ) (D2

[~] _ rPl-x) (D@—D(z) 2+D(2>_D(2>)
Upe = T3 2~ opg \Pa b X FL~ “s1)-

The functions Q;-Q;3 in (4.62) and R, R, in (4.63)) differ from GR as they depend

on the MG growth factors (4.22), (4.24) and (B.5). In addition, the functions
[O1]ye, [Rilue and [Ry(k) + Ry(k)],,; are new ones that arise in MG. In the GR

N2 .2 n?2) (2
- DPx +DFL—D6])

limit, that corresponds to D’ = D = 1and DY) = DY) = 0, [Qi]y6 = O,
[Rilyc = Ry, [Ri(k) + Ry (k)] = Ri(k) + Ry(k) and the functions Q, and R, reduce
to their GR expressions in [120]. In that limit, furthermore, the correlators
recover their GR forms presented in [46]. The derivations of the above, along

with a more detailed discussion, are presented in Appendices[B.T|and

In Figure we show the contributions of the different terms in (5.24) as a
function of r for the F4 model (which predicts the largest deviations from GR),

evaluated at z = 0.5.

As in the GR case, proceeding to expand the resummed exponent in (4.40)
and performing the resulting integrals, as shown in Appendix gives the

equivalent of the Eulerian one-loop SPT power spectrum for biased tracers in
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Figure 4.1: Contributions to the CLPT correlation function prediction, &,
given in (5.24), for the F4 model at z=0.5, by the various terms
in the expansion: dark matter (no bias prefactors) [blue solid],
b, term [black dash-dot], b, term [cyan dotted], b7 term [red
dash], b? term [orange dash-dot] and b,b, term [brown solid].

MG:
P (k) =

9 3 1
(1 - kzO’i)(l +by)* Pr(k) + 9—8Q1(k) + §Q2(k) + §Q3(k)

+ by (ng(k) + 2Q7(k)) + by (%Qg(k) + Qg(k))
(4.64)

+ 57 (Qo(k) + Q11 (k) +2b152Q12(k)
1 6
+ 50300300 + = (b7 + b1 ) [Ri () + Ro(b)] g
6 8
+ 7 (1+by) [Rl(k) + Rz(k)] - ﬁ (1 + b)) R (k).
Equation (4.64), that depends on the functions (4.61), is the MG version of
(4.41). Appendix provides a more thorough discussion. While we refer to

this as the “SPT” expression, we note that, unlike in GR, where equation (4.41)

has been shown to be identical to the SPT expression, in MG, additional terms
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that appear when transforming the Klein-Gordon equation from Eulerian to La-

grangian coordinates need to be considered to show the equivalence [17].

The LRT power spectrum for MG theories is obtained, just like in GR, by

keeping the zero-lag term exponentiated:

2 2 9 3 1
PR (k) = eFoL|(1+ by)* Prlk) + 95 2100 + 5020 + 5.03(k)

6 3
+b, (7Q5<k> + 2Q7(k)) + by (7Q8<k) + anc))
+53 (Qo(k) + Q11(k)) + 2b15,Q12(k)

1 6
#300130) + 5 (5] + 1) [RiK) + Ro®)] g

6 8
+7(1 +by) [Ri(k) + Ry (k)] — ﬁ(l + b)) R (k)| (4.65)

The derivation is discussed in Appendix The configuration space counter-
part, £&87(r), is obtained by Fourier transforming (4.65),

Pk
(0= f ot T 466
dk 2 pLRT . ( ' )
= [ SRRk,

with jy(kr) the zeroth-order Bessel function.

To evaluate the expressions (5.24), (4.40), (4.64) and (4.65) we modified a

publicly available code released by [193] in [[] that efficiently performs the 2D
integrals in (5.24), using Haskel transformations, as well those in
and . On top of the functions Q;-Q;3 and R;, R,, the code was extended
to evaluate the new functions [Qi],,5, [Rilyc and [R,(k) + Ry(k)],,;, as well as
the modified correlators (4.59). We make this code publicly available in] Our

modified version accepts the modified gravity model growth factors, Dyq(k, z)

"nttps://github.com/martinjameswhite/CLEFT_GSM
https://github.com/CornellCosmology/bias_MG_LPT_products
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as input along with the linear power spectrum given by:

Dy(k,2)

2
L
DIk, 0)] PL(k,0). (4.67)

Pk, 2) = [

The linear power spectrum for the background ACDM cosmology is calculated

using the publicly available code CAMB [107].

After calculating the necessary MG growth factors using our Mathematica
notebook, we feed our modified version of the code with tabulated values of the
growth factors for the various values of k, r and x needed at a given cosmological
redshift z. The PYTHON module computes the various Q,(k) and R, (k) functions
through equations and , which are then used to calculate the various
components of the CLPT power spectrum Px(k). The k functions can then be
simply combined to give the SPT and LRT power spectra, by equations
and (4.65), respectively. Finally, the modified C++ counterpart follows a similar
procedure to compute the configuration space two-point correlation function

given by CLPT, through (5.24). The procedure is explained in more detail in the
Appendix

We finish this section by noting that, even though we restrict our model to
the case of a local Lagrangian bias, our framework can be extended to include
a curvature bias and/or corrections from EFT, as in [193]. For modified gravity
theories with scale-dependent growth, a general expansion bias is not possible
in principle, though for some theories, such as the f(R), the effects of the fifth
force can be perturbatively absorbed in terms of higher-order derivatives [59,

17].
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Calculation of bias parameters in MG

In this section we turn to the final necessary ingredient to describe biased trac-

ers, an analytical model for the calculation of the bias parameters in MG.

Central to the GR derivation in Section4.2.2} is the assumption that spherical
collapse is independent of the exterior spacetime, which, in the case of GR evo-
lution, is given by Birkhoft’s theorem. In MG theories, however, the additional
degree of freedom violates Birkhoff’s theorem, which will have important con-
sequences for the modeling of the halo mass function, as well as on its response

to an external density perturbation.

The Press-Schechter formalism relies upon the assumption that the lin-
early evolved critical overdensity, d.,, is always constant at the time of collapse,
for example 6., = 1.686 for an EDS evolution. This is not the case for MG due to
the presence of the additional scalar field that generates the fifth forces. Follow-
ing [109] 115], if we define 1 + ¢, = yf, the evolution of a spherically symmetric

halo density perturbation, will be given by:
" 3 N N A _
Vi - (2 - 59(a>) Vi Q@ (i~ 1)y =0, (4.68)

where ’ denotes derivatives with respect to In(a) and G.;, the modified New-
ton’s constant, is given by

Geff = (1 + E) G, (4:69)

For the nDGP braneworld model,[156]

2 Jl+p-1
= ) 4.70
3@ x7 &70
where B(a) was defined in (4.28) and
2 31
X 2 ___ Yy 4.71)

~ 1.10894a°8%(a) ¥}
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with the nDGP parameter, n = Hyr.. Note that the fifth force modification does
not depend on either the mass or the environment, a property of the Vainshtein
mechanism, which means that the collapse barrier for this model is redshift and
scale independent [156, 22]. Thanks to this property, the halo biases for this
model can be easily calculated by the corresponding GR expressions (4.54), with
a different value for the constant threshold ¢,,. For the background cosmology
of the Group I simulations, at z = 0.5, we integrate equation (4.68) and find ¢,
to have values (linearly extrapolated at z = 0.5) of 6., = 1.571 and 6., = 1.657 for

the N1 (n = 1) and N5 (n = 5) cases, respectively.

For f(R) models, for a collapsing sphere of mass M and radius Ry, E is given

by
AR _(AR\* (ARY
E=28*3—-3 (—) + (—) , (4.72)
Rth Rth Rth
with 8 = \/lg. Finally, I%—f: is given by
AR |fld’
Ry Q,y,°HIR’
o n+1 Qx n+l1 (473)
y 1+ 4Q_m _ 1+ 4Q_m
(ema) " + 452 ma) " +432) |

Here the overdensity related to y, is embedded on a longer wavelength envi-
ronment with over density, 1 + &, = y,.,. In models that realize the chameleon
screening mechanism, like the f(R) Hu-Sawicki, only a thin shell of a massive
sphere contributes to the fifth force, with a fractional thickness 1%—1’:, that causes an
enhancement given by E. It is this factor E that causes the environmental depen-
dence of spherical collapse in MG, through (#.68). When set equal to zero, we
recover the standard GR solution, which is the one that describes the evolution

of the environment, since on such a long wavelength perturbations G.;y ~ G
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Figure 4.2: Critical overdensity for collapse, 6., as a function of halo
mass for the F4 [top], the F5 [middle] and the F6 [bot-
tom] MG models at z = 0.5 and for various environments.
The different color curves correspond to the solutions for
the following values of the environment overdensity, 6., =
[-1(purple), —0.72,-0.43,-0.15,0.13,0.42,0.7,0.98, 1.27, 1.55(red)].
The horizontal black line shows the 6. = 1.686 value for GR.
The background cosmology is that of the Group I simulations.

and we have:

2 3 /7 1 _3 _
Yenv — (2 - EQ((,Z)) Yeny + EQ(‘I) (yenv - 1)yenv =0. (474)

In light of the coupling between a collapsing halo and the background on
which it evolves, as seen through (@.68), it is clear that in MG the collapse barrier,
., that is constant in GR, should now be promoted to a function of both the

mass M and the environment overdensity 6,,,. For each choice of M and 6.,
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equations and form a system of coupled differential equations that
we solve simultaneously, as in [109}[115]. The critical overdensity is identified as
the smallest value of the boundary condition ¢,(a;) at the initial scale factor a; =
0.002, that causes a singularity i.e. signifying the onset of nonlinear collapse, at
the scale factor of interest, which is then evolved to that scale factor a through
[109] 115]:

DY(a)

on(a) = D(T(ai)éh(ai), (4.75)

with DV the linear GR growth factor

In Figure we show the critical density, .,(z, M, 8.,,,) as a function of mass,
M, for the three f(R) models at z = 0.5, as it was obtained for a variety of environ-
mental densities, ¢.,,. Because the gravitational strength, G.;/, is greater in the
modified models this allows haloes to form more easily, translating into a lower
value of ¢, than the value in ACDM. G,/ is scale dependent and tends towards
the GR value on large scales (which would collapse into large mass haloes). GR
is also recovered for highly screened models and high density environments.
For this reason the critical threshold tends towards the GR value 6., = 1.686 for
smaller values of fg, increasing values of M and more positive values of J,,,
(regions with larger screening) as found in [109} [115]. The deviations from GR
become progressively less pronounced as we move from weaker (F4, top panel)

to stronger (F6, lower panel) screening, as one would expect.

Having calculated the function 6..(z, M, 8,,,) for the three f(R) models, the
MG halo mass function can be again given by the universal prescription (4.47),
but now with a modified peak significance

5CV(Z’ M’ 66}’1\/)

Ve (@ M- Oan) = T vy

(4.76)
The growth factors in MG are scale-dependent, meaning that in equation (4.76))
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one should in principle use DE&)G(k, z), however, it has been shown [109, [115],

that it is sufficient to use the GR growth factor, DV(z) to define the v, parame-
ters. Modifications beyond this assumption are accounted for later in the free

parameters of the halo mass function.

The dependence on the mass and the environment alters, and makes envi-
ronment dependent, not only the unconditional halo mass function in MG, but
also the conditional one. In the presence of a long-wavelength density pertur-
bation, A, the conditional halo mass function will be again described by (4.47),

but now with a modified v/, given by:

6cr(za M’ 5env + A) -A
DD(2)o (M)

VéMG(Ma 6611\)) = (477)

Application of the bias definition (5.28) in that case, gives the first and second
order bias parameters
d(scr(Ms(Senv) — 1

dbeny
5CV(M? 56’1\/)

2p

bllt/lG(M’ 6env) = m

2

[ClngG -1+

(M, Seny) =

( décr(Ms6elw) —
d6eilv

02 (M, Seny)

2p (qugMG +2p — 1) (4.78)

1+ (qvfMG)p

2
) lqszMc - 39"5/140 +

dzécr(M9 6env) 1 2 2P
+ Voo — 1+ —m— |-
A%y OaMsSa) | 1 (2]

In the case of a sample of halos in a mass range of width dM around a single

value M, the conditional and unconditional mass functions need to be first av-
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eraged over the mass range,

b/IVIG(M’ 5env) =

dé(ﬁi‘(Mvéc’l‘lV)
L ( dbory 1) Vemc Of Vemcl dInveye M
IdM 6cr(M’ 6env) M aVCMG dM ’
byi(M, S0ny) =
MaE X (4.79)
d(SCI'(Ma(S(’I‘IV)
L ( dbeny - 1) V%MG azf[VCMG] dln VeMG dM
Lon G (M, Sew) M Vs dAM
» (M Seny)
N 1 f % Vemc Of [Vemcl dInveyg M
IdM 6cr(M’ é‘env) M aVcMG dM ’
with
fvemcl dInveye
Ly = dM. 4.80
= [[| MLl (480

The details of the peak-background split derivations, for (4.78), (4.79), are shown
in more detail in Appendix

We note that another popular method, as an alternative to PBS, for calculat-
ing halo biases is the excursion set approach [33]. Here the universal halo mass
function is associated with the Brownian-walk, first crossing distribution of a
collapse threshold. In the GR case, the redshift and scale independence of the
collapse barrier leads to an analytical solution that recovers the common PBS
biases. Given the potential scale, environment and redshift dependence that o,,
has in MG models however, there is no analytical solution for the excursion set
approach in MG and one would need to perform numerical simulations, rather
than analytic prediction available for PBS, to determine the predicted biases

[109] 102} 110].

In order to make predictions to compare against simulations, given that the

correlation statistics sample a distribution of environments, rather than a spe-
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cific value of ¢,,,, we average all environment-dependent quantities over a prob-
ability distribution for environments in which halos form and reside, defining

these on a fixed scale ¢ which we set to 8 Mpch/h [101} 110, [102],

Osw 6env 6@"\) _Osw_l
pl(éenv):\/Tr 1+(w_1)6. ](1_5 ) ,
(4.81)
X exp BT O }
66}1\1 d ’
2 (1-4=)

3
where 8 = (g) /(5cr0'§;2/ “N with w = Oer ™5 3

The list of environments over which we average the other dependent quanti-

ties for the rest of this work, is 6., = [-1,-0.72,-0.43,-0.15,0.13,0.42,0.7,0.98, 1.27, 1.55].

In Figure 4.3l we demonstrate the impact of the reduced 6., values in modi-
tied gravity models, separately from modifications to the halo mass function it-
self, by plotting the environmentally averaged bias parameters b}, and b?,. for
GR and three f(R) models we study calculated from relations and ,
while assuming the same underlying halo mass model, with (g, p) = (0.707,0.3) for
all models. As described earlier, the increased gravitational strength in modi-
fied gravity models, parameterized by G, in (4.69), allows haloes of a given
mass to collapse more readily, yielding a lower critical threshold values for 6.,
and a lower bias relative to the background (reduced b, relative to GR). The de-
viations from GR are most pronounced in the models with least screening, like

the F4 model and are suppressed in the presence of stronger screening.

To accurately predict the biases in the various modified gravity models,
we also need to accurately characterize the halo mass function. The values
(g = 0.707, p = 0.3) used to characterize the ST halo mass function in GR were
tixed by fitting to ACDM simulations [166] and would not be expected to pre-

dict the mass function for modified gravity theories, given the different physics
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Figure 4.3: First and second order Lagrangian bias factors b, [Top] and b,
[Bottom], as a function of halo mass M, calculated for GR [solid
black], F6 [dash-dot blue], F5 [green dotted] and F4 [red dash],
through relationships and (4.78), using the Sheth-Tormen
values (g, p) = (0.707,0.3) at z = 0.5. For the 3 f(R) models, the
biases are the environmentally averaged.

involved in the growth rate and collapse of nonlinear structures. Since the form
of the halo mass function is critical to evaluating the biases for the LPT correla-
tion function and power spectra predictions, we determine the best fit values for
(¢, p) from the simulated halo mass functions for each model in the mass ranges
considered. These then uniquely determine the predictions for the biased tracer
correlation and power spectra. This approach minimizes the errors that would
be introduced at the outset of the LPT modeling from an inaccurate halo mass
function. To do this, we evaluate the environment averaged Sheth-Tormen halo
mass function for various pairs values of (g, p), each using the MG pre-
scription , over the distribution of environments and identify the

104



pair of values that best fits the corresponding halo mass functions from the sim-

ulations, through the simple criterion that minimizes the quantity

3|y

ST (M;,q,p)
previously used to fit the halo mass function in Galileons [22, 23]. In (4.82), i is

1, (4.82)

the number of mass bins over which the sum is performed, which, can be tuned
to model a narrow mass range rather than fitting the whole range with a single

set of parameters.

In Figure we plot the halo mass functions for the GR and three f(R) MG
models we consider at z = 0.5, together with the best fit ST halo mass functions
obtained through (4.82). In the case of f(R) gravity, we plot both the mean ST
halo mass function, as well as the halo mass function for each value of §,,,, to

give a sense of the variation among various different environments.

In Table we show the best fit values of (g, p) for the different models,
mass ranges and simulations considered. For Group I simulations, we study
predictions at z = 0.5 for halos in a mass range (2 — 3.5) X 10"*M,/h, for all
models. For the Group II simulations we analyze a z = 1 snapshot, where we
consider halos in three separate mass bins: a lower mass bin of 9 x 10! — 2 x
10'2 My/h, an intermediate bin of 5 x 10'? — 1 x 10'* My /h and a higher mass bin,

1.1x 10" =9 x 10'3 My /h.

In Figure we present the predicted correlation function, &, for differ-
ent environments for the F6 model, along with the correlation function for the
environment averaged bias values. Changing the environment can have a no-
table effect on the predicted correlation function, with variations of ~ 10% for
the F6 model presented in the figure. A decrease in the background environ-

mental density corresponds to a reduction in the correlation function because

105



Best-fit ST —— Bestfit ST
107 5 ¢ GR Simulation + F4 Simulation

dNp
dM

—— Bestfit ST —— Bestfit ST
¥ F5 Simulation + F6 Simulation

dNp
dM

—— Best-fit ST —— Bestfit ST
107 8N N1 Simulation + N5 Simulation
™~
10 N
\
10 N
=
== AN
SIS, AN
0 AN
N
10-12
1013
108 101 10 101
Mp(Mo/h) My(Mo/h)

Figure 4.4: Halo mass function, in the form of number of halos dN,, per
mass bin dM, as a function of halo mass M, calculated from the
Group I simulations at z = 0.5, for GR [black dot] in the upper
left panel, F4 [red triangle] in the upper right panel, F5 [green
square] in the middle left panel, F6 in the middle right panel
and N1 and N5 nDGP models in the lower left and right pan-
els, respectively . Alongside with the simulations, we show the
analytical Sheth-Tormen halo mass functions [#.47), plotted us-
ing the best-fit (¢, p) values for each model using the criterion
(4.82). For the f(R) models, the best-fit values correspond to the
environmentally averaged halo mass function, through ,
shown with black curves, while we also plot the halo mass
functions for individual values for é.,, for each f(R) model. The
color scheme and distribution of values for §,,, is the same as

in Figure

lower values of §,,, give rise to a lower d., and consequently a lower value for

the linear bias b;.
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Best-fit ST Predicted Biases

Models q p by b,

Group I : GR 0.726 0.345 0.301 -0.501
Group I : F4 0.671 0.361 0.120 -0.435
Group I : F5 0.765 0.321 0.211 -0.470
Group I : F6 0.670 0.362 0.230 -0.449
Group I : N1 0.701 0.369 0.224 -0.661
Group I : N5 0.702 0.357 0.268 -0.503

Group 11 : GR Low | 0.674 0.362 0.345 -0.183
Group I1 : GR Mid. | 0.728 0.342 0.925 -0.05
Group 1l : GR High | 0.806 0.594 1.720 1.900
Group II : F5 Low | 0.733 0.314 0.295 -0.170
Group I1 : F5 Mid. | 0.788 0.282 0.909 -0.033
Group 11 : F5 High | 0.746 0.305 1.491 0.416

Table 4.1: The table presents the values for the best-fit Sheth-Tormen pa-
rameters (g, p) for the halo mass function (4.47), with respect to
the simulations, through the criterion (#.82), as well as the bias
factors b; and b, evaluated through using the best-fit val-
ues. All the evaluations for the Group I simulations were per-
formed at redshift z = 0.5 and for the Group II simulations at
z = 1. The labels low, mid. and high indicate reference to the
three mass bins, specified in the text. For all f(R) models, the
bias values shown are environmentally averaged as described
in the text.

4.3.2 Comparison with simulations

In this Section, we compare the performance of the various LPT resummation
schemes under consideration, combined with our bias model, against the cor-
responding results from the Group I and Group II simulations, discussed in
Section with respect to the correlation function and the power spectrum.
All correlation functions from the simulations have been calculated employing
the publicly available code CUTE [9], using 30 linearly spaced bins in the range
0 — 140 Mpc/h. The power spectra, on the other hand, have been extracted us-

ing a Cloud-In-Cell (CIC) mass assignment scheme, on a grid with resolution of
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Ngrig = 1024° and N,y = 1200° cells, for the Group I and Group II simulations,
respectively. The power was binned in 30 linearly spaced points in the k range

of 0.008 — 0.3 h/Mpc.

As discussed in Section for Group I simulations, we study predictions
at z = 0.5 for halos in the mass range (2 — 3.5) x 10'2M/h, for all models. For
the Group II simulations we analyze a z = 1 snapshot, where we consider halos
in three separate mass bins: a lower mass bin of 9 x 10'' — 2 x 10'> M/h, an
intermediate bin of 5 x 10" — 1 x 10'* My/h and a higher mass bin, 1.1 x 10" —

9 x 10" My/h.

Correlation function

To assess the accuracy and performance of the LPT predictions, we first utilize
the Group II simulations as a comparison dataset. Given that we only have 1
realization available for the F5 and GR models, the correlation functions exhibit
noise due to the random initial phase, but still facilitate valuable conclusions
about the performance of the methods tested given the appropriate combina-
tion of large volume and high resolution. These allow us to evaluate the perfor-
mance of CLPT and its variations simultaneously across a wide range of scales,
including both the BAO scales and the region roughly following a power-law

scaling relation, down to r ~ 5 Mpc/h.

The LPT predictions use the PBS biases evaluated from the best fit halo mass
function, when fitted over the specific mass ranges, for each bin as summarized
inTable[4.T). Both the LPT and simulation results are compared to the Zel’dovich

prediction for the correlation function.
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Figure 4.5: [Top] Two-point correlation function prediction form
CLPT, through (5.24), for the F6 model at z = 05
for the wvarious bias values given when §,, =
[-1(purple), —0.72,-0.43,-0.15,0.13,0.42,0.7,0.98, 1.27, 1.55(red)]
through and the result when averaged over environ-
ments [black line] using (4.81). [Bottom] Fractional deviation,
;— — 1, for the CLPT result for each environment in the top
panel, with respect to the CLPT curve given by the mean b,
and b, values (black curve in the top panel).

To benchmark our findings we consider both the GR simulations as well as
those for the modified gravity model. Figure [4.6|shows these comparisons for
the three mass bin ranges, and Figure .7 shows the fractional variations with

respect to the Zel’dovich component of CLPT.

For both the GR and modified gravity cases it is important to carefully un-
derstand the form of the halo mass function to get accurate LPT predictions. We

tind that simply adopting the standard ST pair of values, (0.75,0.3), gives a poor
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Figure 4.6: Two-point correlation functions for the Group II simulation

snapshots at z = 1 for GR [top panel] and F5 [lower panel]
models. The predictions from CLPT (5.24) [solid blue], the
Zel’dovich approximation [dashed cyan], LRT (4.66) [dotted
magenta] and the linear theory [dashed green], using the bias
values shown in Table are compared to the correlation
function extracted from simulations, shown with Poisson er-
ror bars, for the three mass bins defined in Section the
low mass [red triangle], intermediate mass [black dot] and high
mass [brown square] bins.

approximation to the first order bias b, (for the various values of halo mass),
consistent with the findings of the simulation creators [13] when they extracted
the bias estimate from the simulations and compared it to a standard ST predic-
tion. For the results with the best fit halo mass parameters, we find that the full

CLPT results for both the GR and the F5 model, incorporating the bias parame-
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Figure 4.7: Fractional deviations in the power-law regime of the corre-
lation function predictions with respect to the Zel’dovich ap-
proximation for the results shown in Figure For the GR
analysis [top panel], we also plot the ratio of the CLPT predic-
tion using the standard ST values (g, p) = (0.75,0.3) [dashed-
dot blue], rather than the best fit ones in Table divided by
the Zel’dovich result.

ters evaluated using our PBS model (Table and the environment averaging
where necessary, does a very good job, in describing the power-law correla-
tion function, 20 — 80 Mpc/h, for all three mass bins and significantly improves
upon linear theory at the BAO peak. For all three mass ranges, shown in Figure
the simulated correlation function falls below the Zel’dovich approximation
and we find that the CLPT predictions are reflecting this better than both the lin-

ear and LRT predictions. The three approaches, CLPT, LRT and Zel’dovich, all
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perform well in characterizing the BAO peak for the low mass and intermediate
mass bins, for the largest differences being in the highest mass bin for F5, where
the LRT approach performs slightly better. The LRT performs poorly at the
smaller scales, under 20M pc/h, significantly overshooting the observed correla-
tion function, consistent with the results reported in previous studies performed
on ACDM cosmologies [194, 119, 46| [145]. The Zel’dovich approximation pro-

vides the best agreement at scales below 10M pch/h.

It is also interesting to notice that, in Figure while the correlation func-
tions have similar values for GR and the F5 model in the lowest mass bins, the
F5 result is noticeably lower than the GR one for the highest mass bin. The am-
plitude of the correlation function depends on the interplay between the dark
matter component (which has higher values in MG) and mostly the linear bias
factor, b;, which is lower for MG. In the lower mass bins, the combination of
the above two is such that the difference between the GR and the F5 curves is
almost neutralized, while in the highest mass bins the linear bias factor b, is,
relatively, even lower, causing the F5 two-point function to have clearly lower

values than in the GR case.

To expand on the results from the large volume simulations, we now look
into the comparison with the Group I simulations, that, while spanning a
smaller volume, allow us to test our schemes for a wider range of models. For
each model, five different random realizations are available and the error bars
represent the standard deviations over these realizations. Starting with the f(R)
family, which is plotted in Figure we see that the picture painted for the F4
an F'5 models here is similar with the one for the F5 model (at z = 1), with CLPT

performing the best at scales r > 20 Mpc/h and the Zel’dovich result being su-
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Figure 4.8: Two-point correlation functions from the Group I simulations,
calculated at z = 0.5, for GR [black dots] in the upper left panel,
for F4 [red triangles] in the upper right panel, for F5 [green
squares] in the lower left panel and for F6 [blue right trian-
gles] in the lower right panel. The results are the average over
the 5 realizations and the error bars shown are standard devi-
ations. Furthermore, for each model we plot the predictions
from CLPT [solid blue], from the Zel’dovich approxima-
tion [dashed cyan], from LRT [dotted magenta] and from
linear theory [dashed green], using the bias values shown in
Table The linear theory result for the F5 model is plotted
using a blue dashed line instead, for ease of comparison.

perior at capturing the smaller scales, while the trend is more pronounced in

the F4 case. For the F6 model however, not only does CLPT perform better at

these larger scales, but it seems to trace the simulation results more accurately

compared to Zel’dovich down to r~ 7 Mpc/h.

To explore this small scale performance sensitivity to screening in more de-

tail note we consider what makes the linear order LPT and its one-loop exten-

sions perform differently. In [194] (and also in [181]]), it was argued, in dark
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matter-only studies, that LPT does a poor job at estimating the higher order cor-
rections to the linear displacement dispersion, given by (4.42) and the one-loop

correction piece in LPT given by

1 « 9 10
O-%loop = @jo‘ dk(%Ql(k) + ﬁRl(k) . (483)

Comparison with simulations in [181}[194], found CLPT to overestimate the size
of this correction at small scales, through , with the true value of the total
o} + 07, being closer to o7, which is what the Zel’dovich result uses. Be-
cause one-loop CLPT strongly depends on these corrections, through its zero-
lag terms (as can be seen in Appendix [B.2), it performs worse at the smaller
scales compared to its Zel'dovich counterpart. Calculated from our theory pre-

2

diction for GR at z = 0.5, the ratio % = 0.126, close to the value in Fig-

£ 2
(r]loop
2

ure 5 of [194]. In comparison, for the f(R) models at z = 0.5, the ratio =
is (F4,F5,F6) = (0.212,0.180,0.152). The higher values for F4 and F5 lead to
an overestimation in these cases that is responsible for the worse behavior at
smaller r. It Is worth noting here that if we do not include screening, the ratio
%‘%”” = 0.17 in the F6 model, as opposed to the full value of 0.152. For the z = 1
Group II simulations, the ratios are (GR, F5) = (0.08,0.103), which explains the
lower discrepancy and better performance of CLPT for F5. This also is consistent
with considering that this is an earlier reference in which clustering differences
between the theories will be less pronounced. From a physical standpoint, the
overestimation reflects an inability in LPT (including the Zel’dovich result), to
trap dark matter particles within halos [194], which seems to be more apparent
in the LPT approach for stronger MG chameleons. Fortunately, as we said ear-

lier, these models are the ones that violate the observational constraints and are

thus less interesting from an astrophysical standpoint.
Finally, we test our LPT approaches applied on the nDGP models, that repre-
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Figure 4.9: Two-point correlation functions from the Group I simulations,
calculated at z = 0.5, for N1 [orange diamonds] in the upper
panel and for N5 [purple hexagons] in the lower panel. The
results are the average over the 5 realizations and the error bars
shown are standard deviations. Furthermore, for each model
we plot the predictions from CLPT [solid black], from
the Zel’dovich approximation [dashed cyan], from LRT
[dotted magenta] and from linear theory [dashed green], using
the bias values shown in Table

sent the Vainshtein screening mechanism, and the correlation functions of which
are presented in Figure for all LPT schemes and the Group II simulations.
Just like in the f(R) models, CLPT does a very good job at describing the cor-
relation function for large scales and beyond that, it even seems to perform at
least equally well as the Zel’dovich curve down to scales r ~ 10 Mpc/h, similar
to the F6 and GR cases in Figure 4.8/ discussed earlier. The measurement of the
1-loop statistic discussed in the previous paragraph is consistent with this; for
the nDGP models, the ratio%‘%"” = (0.129,0.122) for (N1, N5) respectively, very

consistent with the GR value = 0.126. This is the case even in the weaker screen-
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ing case, the N5 model, and is a very promising sign, given that the Vainshtein
mechanism is highly efficient at screening modifications to gravity at smaller
scales and contains viable candidates that self-accelerate (even though this par-
ticular model does not). The relative performance among the different resum-
mation schemes is very similar to the one observed in the GR and f(R) cases,
with all LPT models improving the accuracy at the BAO peak upon linear the-
ory, with the LRT scheme giving more power that CLPT and then the Zel’dovich
result. The characterization of the BAO peak on scales r > 100 Mpc/h is limited
in the simulation box with side 1,024 Mpc/h; larger-volume simulations for the
nDGP model, comparable to the Group II simulations for F5 or GR, will allow
us to more clearly trace the region between 100 — 140 Mpc/h and draw stronger

conclusions about how our models perform at the BAO scales.

The fact that CLPT performs well for all modified gravity models considered
in the power-law and BAO scales is very encouraging. On the smaller scales, its
robustness for highly screened models is also a positive result. If an MG model
was ever detected, it would be a highly screened case, given the tight constraints
placed on GR; models F4 and F5 are actually ruled out by observations [45], but
we include them in our analysis to fully investigate the chameleon phenomenol-

ogy with LPT.

Power spectrum

Complementary to the correlation function, we also perform tests on its Fourier
space counterpart, the halo power spectrum. The mass bins and bias values
used in the power spectra calculations are exactly the same as the ones pre-

sented in the correlation function case, but with the additional step that all
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Figure 4.10: Power spectra from the Group II simulations, calculated for
F5 at z = 1, in the low mass [red triangle], intermediate mass
[black dot] and high mass [brown square] bins, that were de-
fined in Section 4.3 The error bars shown are Poisson error
bars. Furthermore, for each mass bin we plot the predictions
from CLPT [dotted magenta], from SPT [solid
blue] and from linear theory [dashed green], using the bias
values shown in Table

power spectra are shot noise corrected [162]: P(k) = P(k) — t, where P(k) is
the uncorrected power spectrum, and »,, is the number density of halos in each
bin. Especially for the higher mass bins that contain less halos, this effect is not
negligible, especially at higher k. We also identify the scale at which perturba-
tion theory starts to fail, ky,, with the vertical dashed-dot blue line, using the

definition [120], ky; = (202)7!, with o the linear power spectrum dispersion

defined in (4.42)).

In Figure we present the F5, Group II snapshot at z = 1. We find the
expanded, SPT power spectrum (4.64) to perform very well at capturing the

small k£ and to follow the power spectrum until k ~ 0.25#/Mpc, where it starts to
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Figure 4.11: Power spectra from the Group I simulations, calculated at
z=0.5, for GR [black dots] in the upper left panel, for F4 [red
triangles] in the upper middle panel, for F5 [green squares] in
the lower left panel, for F6 [blue right triangles] in the lower
middle panel, for N1 [orange diamonds] in the upper right
panel and for N5 [purple hexagons] in the lower right panel.
The results are the average over the 5 realizations and the
error bars shown are standard deviations. Furthermore, for
each model we plot the predictions from CLPT (5.24) [dotted
brown], from SPT [solid blue] and from linear theory
[dashed green], using the bias values shown in Table The
linear theory result for the F5 model is plotted using a pink
dashed line instead, for ease of comparison.

overestimate power compared to the simulations, for all three mass bins. This
behavior is consistent with what was found in the GR case in earlier works
on [194, 119] and also for dark matter in MG [15]. The linear theory result
is only accurate at very large scales and quickly underestimates the power at

k > 0.05h/Mpc. Unlike in the correlation function comparison, where LPT was
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found to perform very well at a wide range of scales, here we see that the CLPT
power spectrum decays quickly and performs considerably worse than
the SPT expansion. This is not unexpected, since the power spectrum in LPT
has been found to receive, unlike in the configuration space, significant contri-
butions from large, nonlinear k modes, where LPT performs poorly and fails to
trap particles inside dark matter halos [194]. Our results show that this to also
the case in our MG models. We find that this effect is even more pronounced in
the LRT power spectrum (4.65), which decays sharply in k-space, for this reason

we do not include the result in our plots.

In Figure summarizing the GR and f(R) cases from the Group I simu-
lations, at z = 0.5, while the CLPT consistently underestimates the power spec-
trum for all models, the SPT result tracing the simulation points well for F5 and
F6 until k£ ~ 0.2h/Mpc, at which it starts to overestimate the power spectrum.
The performance for the the F4 model is slightly worse on small scales. This
earlier deviation is not surprising given that the model has the smallest ky; pre-

diction, resulting from a comparatively higher 1D linear dispersion.

For the two nDGP models, also shown in Figure we find that the SPT
predictions perform well at scales k < 0.15 Mpc/h but overestimate the power
on small scales. The CLPT predictions consistently underestimate the power,

and are broadly comparable to the linear prediction.

4.4 Conclusions

In this work, we modeled the two-point statistics of biased tracers in modified

gravity (MG) up to one-loop order in the linear power spectrum, using the Con-
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volution Lagrangian Perturbation Theory (CLPT) framework and its variants.
Following standard methods in the literature, the linear piece of the two-point
Lagrangian correlator for dark matter is kept exponentiated in the expression
for the two-point correlation function, but everything else is expanded, lead-
ing to a series of convolution integrals, the expressions of which we derive for

scalar-tensor theories.

The evolution of the underlying dark matter density field is described by the
LPT framework for dark matter, suitably extended to study scalar-tensor theo-
ries, along with an analytical model for the calculation of the first and second
order bias parameters in MG. To perform the bias calculations, we employ the
Peak-Background split (PBS) approach, in which biases are modeled rigorously
as responses of the universal Sheth-Tormen halo mass function in the presence
of a long-wavelength density perturbation. This is extended in MG theories,
to account for the dependence of the gravitational collapse on the environment
and screening. Our PBS implementation, provides a quantitative prediction for
the increased production, and the related lower biases, for haloes of a given
mass. We apply this scheme to the f(R) Hu-Sawicki and the nDGP braneworld
models, that are representatives of the chameleon and Vainshtein screening
mechanisms, respectively. We make the code used for the analytic predictions
publicly available in [ and evaluate their performance against state-of-the-art
cosmological N-body simulations, for a variety of MG models at z = 0.5 and
z = 1, with respect to the correlation function and the power spectrum in a vari-

ety of mass regimes and scales.

The CLPT implementation, in combination with the analytical bias model,

gives good agreement with the simulations, with the only free parameters nec-

Shttps://github.com/CornellCosmology/bias_MG_LPT_products
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essary being those to best-fit the Sheth-Tormen universal halo mass function at
the given mass range. The CLPT predicts the correlation function across scales
20 — 80 Mpc/h, tracing the simulation results at an accuracy of 2 — 3% and bet-
ter. At the BAO scales, that provide a valuable probe of fundamental physics,
CLPT was found to improve significantly upon the linear theory and Zel’dovich
predictions for the F5 models, just like in GR. The Lagrangian Resummation
Theory (LRT) approach improved the accuracy a little further at BAO scales for
the highest mass range considered. At scales of r < 20 Mpc/h, the CLPT per-
formed well for the highly screened model F6 and for the nDGP models, while
the Zel'dovich predictions performed better for the weakly screened F5 and F4
models. The reason for this behavior was identified, being an overestimation
in these low-screening chameleon models of the one-loop contributions to the

zero-lag terms at small scales.

In Fourier space, consistent with findings for GR, the CLPT power spectrum
was found to underestimate power quickly, compared to the simulations for all
MG models. This is due to the power spectrum receiving significant contribu-
tions from large k, where LPT performs poorly. The Standard Perturbation The-
ory (SPT) approach, though, which is the low-k expanded version of this power
spectrum, performs very well and remains consistent with the simulation re-
sults down to k ~ 0.2h/Mpc for the f(R) models and down to k ~ 0.154/Mpc
for the two nDGP models. Beyond these scales, the SPT curve overestimates the

power spectrum, as has been found for GR previously.

While we have focused our analysis on LPT predictions for real space, our
model can be expanded to capture the redshift-space distortions required for

upcoming LSS surveys. Furthermore, even though we focused on a local in
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matter density bias scheme in the Lagrangian space, in which the bias is purely
a function of the local density, one can extend this to include other factors deter-
mining bias into the formalism, such as curvature bias, and model them success-
fully by this PBS scheme. The same applies for potential extensions to include
EFT corrections to our LPT model, as in [193], which could also be used to calcu-
late the components of the Gaussian Streaming Model for MG theories. Finally,
our CLPT MG framework can be used to analytically predict marked statistics
in MG and assess their ability to boost the MG signals carried in cosmic density

fields, as in [204, 190]. We leave these natural extensions to future work.

In the coming decade, a wide array of cosmological surveys will span a
large part of the observable universe, searching for hints of new physics beyond
ACDM. In this work we demonstrate that semi-analytical approaches, exten-
sively employed in the context of standard GR, can serve as invaluable tools to
predict structure formation in cosmologies with an extra degree of freedom in
the gravitational sector. A next step for these approaches are to confront them
in comparison to realistic simulations of galaxies and clusters that will be ob-
served with surveys coming online in the coming year or two and assess survey

ability to identify and constrain potential deviations from GR.
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CHAPTER 5
AN ACCURATE PERTURBATIVE APPROACH TO REDSHIFT SPACE
CLUSTERING OF BIASED TRACERS IN MODIFIED GRAVITY

5.1 Introduction

In this chapter, we will extend the scale-dependent Gaussian Streaming Model
(GSM) to produce analytical predictions for the anisotropic redshift-space cor-
relation function for biased tracers in modified gravity models. In the hierar-
chical picture of structure formation, the tiny perturbations in the primordial
dark matter density field grow, under the influence of non-linear gravitational
collapse, partly opposed by cosmic expansion, to give rise to the rich cosmic
pattern observed today. On the large, linear scales and when GR is assumed,
dark matter over-densities evolve as a simple function of time, for all scales,
whereas on smaller, non-linear scales, computationally expensive N-body sim-
ulations are inevitable. This picture is further complicated by the fact that the
galaxies observed by surveys of the LSS, do not perfectly trace the underlying
dark matter density field, but are biased tracers of it [86] and, are observed in
redshift space [88},62], which introduces redshift-space distortions (RSD) to the
observed clustering statistics. In the case of MG models, another layer of com-
plexity is added — one needs to account for the presence of the additional degree
of freedom that enhances structure formation and interferes with the evolution
of dark matter and biased tracers in a non-linear manner. In the intermediate,
quasi-linear scales, higher order Perturbation Theory (PT) [30,47] approaches or
hybrid methods [182, 189], integrating both analytic and numerical simulation

approaches, are of great benefit.
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RSD effects are induced by the peculiar velocity field of galaxies about the
Hubble flow, which breaks the isotropy of the two-point correlation function of
galaxies detected through spectroscopic means. At large scales, RSD lead to an
enhancement of the amplitude of the correlation function, the “Kaiser boost”
[88], that can be modeled analytically, while on the opposite end, the non-linear
regime, the Fingers-Of-God (FOG) effect suppresses the correlation function, an
effect that is frequently captured through phenomenological “streaming” mod-
els [56)131]]. In [145], the Gaussian Streaming Model (GSM) was introduced, to
model the RSD correlation function in the quasi-linear scales. It used a non-
perturbative resummation of the linear treatment by [67] that convolves the
real-space correlation function of biased tracers with a Gaussian pairwise ve-
locity distribution function [160]. The accuracy of the original approach, that
used Eulerian Standard PT (SPT) to model the velocity moments, was further
improved in [198], using the Lagrangian Perturbation Theory (LPT) approach
to structure formation [212} 44, 38, [78], 1183, 1120, 119, 46, 122] with a resumma-
tion scheme called Convolution LPT (CLPT) [46] in which the effects of the bulk
flows are not expanded in perturbative order. Further advancements included
adding higher order velocity moments [186] 32] or small-scale physics effects

through corrections from Effective Field Theory (EFT) [196} 193].

While halo bias and RSD have been studied in tandem for modified gravity
in the context of N-body simulations, for example [12, 24 [75]], they have only
been studied separately, to date, for perturbative approaches to the clustering
statistics [98), 1179, 42, (180, 28, 166}, 135, 34, 36| 17, 16, [191]. In [17,191], CLPT was
extended to predict the two-point statistics for biased tracers in MG, based on
the LPT framework for MG developed in [15] and also an analytical model for

the prediction of the Lagrangian bias factors in MG [191], extending the Peak-
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Background Split formalism (PBS) [86, 20, 157, 124]. Applied on the f(R) Hu-
Sawicki [81] and the nDGP [60] models, it was shown to perform very well
against results obtained by N-body simulations across a wide variety of screen-
ing levels and cosmological redshifts. In the work of [35], the GSM model was
employed to model the RSD correlation function in MG models, shown to work
very well against data obtained by N-body simulations, but only quantified in
the context of pure dark matter considerations and with a local linear bias. Fur-
thermore, [35] used RegPT and also the SPT scheme previously used by [145],
for the perturbative representations of the GSM ingredients, but not LPT, which

was used in the GSM implementation by [198] and will be the focus of this work.

Building upon the previous work of [17, [191], in this chapter we move
forward to expand the scale-dependent GSM, in particular as presented in
[198] 193], so as to make analytical predictions for the anisotropic redshift-space
correlation function for biased tracers in MG theories. The underlying density
tield is evolved using the LPT for scalar-tensor theories presented in [15], while
the effect of bias is captured through a local Lagrangian bias, up to second or-
der, with the corresponding bias values predicted by the ST model for MG that
was presented, and found to work well, in [191]. We apply this framework on
two widely-considered MG models, the chameleon f(R) Hu-Sawicki [81] and
the Vainshtein-screened nDGP [60] braneworld model and compare our results
against state-of-the-art N-body simulations. We first make sure that our CLPT
predictions for the remaining GSM ingredients, the pairwise velocity and the
scale-dependent velocity dispersion, match the simulations sufficiently well, as
already done for the real-space 2-point correlation function inc, before proceed-
ing to cross-check the predictions for the monopole and the quadrupole of the

RSD 2-point correlation function against the corresponding ones from the sim-
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ulations. This last step is crucial for confirming the robustness of our analytical
predictions, as well as the level of their accuracy, as we enter the era of precision
cosmology. Our analytical approach is the first one, to the best of our knowl-
edge, that captures both the effects of halo bias and RSD in the context of MG.

These results have been published in [192].

This chapter is structured as follows: in Sec. we introduce the MG sce-
narios on which we focus and also introduce the N-body simulations used to
cross-validate our analytical results. In Sec. we show how the GSM is im-
plemented in scenarios in which gravity deviates from GR. Then, in Sec. we
discuss the accuracy of our results through the comparison against the N-body
simulations, before concluding in Sec. The details of the various derivations

are laid out in Appendices[D]and

5.2 Modified Gravity Scenarios and Simulation Tools

In this section, we briefly introduce the MG models we consider and also

present the N-body simulations we used to cross-check our model’s validity.

5.2.1 Modified Gravity Scenarios

One of the oldest ways to depart from GR in the literature, proposes adding a
function of the Ricci scalar to the standard form of the Einstein-Hilbert action.

In particular, if R is the Ricci scalar, these models, the “f(R)” class of theories
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[57], are described by an action S of the form:

R+ f(R)

_ 4 —
S—fd)m/_g 167G

+ Lm] , (5.1)

where in the above expression, modifications to gravity manifest themselves
through the nonlinear function f(R). In we use L, for the matter sector
Lagrangian and G for the gravitational constant. The renewed interest in mod-
ifications of this type, is motivated by the possibility that such models can be
responsible for the observed accelerated expansion of the universe [48]. In what
is probably the best-studied candidate of this class, the f(R) Hu-Sawicki model

[81], the modifying function is of the form:

f(R) = _mZCI(R—/mz)n (5.2)
CZ(R/mZ)"+ 1, '

with m = Hy VQ,0, Hy being the Hubble constant, Q,, the fractional matter den-
sity evaluated today and ¢y, ¢, and n the free parameters of the model. The num-
ber of free parameters is further reduced by imposing a background expansion

that matches the ACDM one in the high curvature limit (R > m?), which gives:

_ Qm n+l
fRo = _nCI ( 0 ) s (53)

5 \3(Quo + Qp0)
where we defined the scalaron, fz = %, that is evaluated today in equation

. Thanks to this expression, this model is usually parametrized with |f,|
and n. Its popularity lies in the fact that it realizes the interesting phenomenol-
ogy of the chameleon screening mechanism [92} 93], as can be shown through
a conformal transformation [43]. As |fz,| — 0 and/or n — oo, the deviations
are suppressed and GR is recovered. In our analysis, we always fix n = 1 and
consider three variations of |fz,| = {107, 1073, 107*}, that will be referred to from

now on as F6, F5 and F4, respectively.
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In the case of Vainshtein screening, there is a characteristic scale away from a
massive source, the Vainshtein radius, below which fifth forces are strongly sup-
pressed, due to the existence of large second derivatives of the gravitational po-
tential. A MG model that exhibits this behavior is the Dvali-Gabadadze-Porrati
(DGP) model [60], in which spacetime is actually 5-dimensional (5D), with an

action of the form:

R
_ Ay o | —
S‘fdx g[l6ﬂG+Lm

R
5 5
+ - .4

where by Rs and gs we label the 5D equivalent versions of the Ricci scalar and
the metric determinant. Gravity does become 4-dimensional, however, below
a characteristic scale r, and the usual 4D spacetime corresponds to a brane, on
which the Standard Model fields are confined. The DGP model contains a self-
accelerating branch (sDGP), which unfortunately has been shown to exhibit un-
desirable “ghosts” that make it unstable [96]]. For this reason, we consider the
“normal” branch instead, called the nDGP, that is assumed to co-exist with a
dark energy component, so that a ACDM homogeneous evolution is matched.
We study two instances of the nDGP model, those with n = Hyr, = 1 and n =5,

that we label and, from now on call, N1 and N5, correspondingly.

5.2.2 N-body Simulations

In this section, we briefly introduce the N-body simulations we will use to assess

the performance of our analytical model, which is a crucial step for our analysis.

The first set of simulations, that we will refer to from now on as Group I
simulations, are the Extended LEnsing PHysics using ANalaytic ray Tracing

(ELEPHANT) simulations [50], that were performed with two modified ver-
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sions of the GR code (RAMSES): the ECOSMOG module [112} 37] produced
snapshots for the F6, F5 and F4 cases at a cosmological redshift of z = 0.5, while
ECOSMOG-V [111, 21} 73] was used to produce the nDGP N1 and N5 realiza-
tions, also at z = 0.5. 1024° dark matter particles were evolved, in a simulation
box with a side L;,, = 1024Mpc/h and a cosmology specified by the following

parameters:
{0, Qn0, h, ng, 03, Q1 = {0.281,0.719,0.7,0.971, 0.82, 0.046}. (5.5)

So as to reduce the effects of cosmic variance, each model is run using 5 dif-
ferent random realizations. Finally, the dark matter halos in each snapshot are

identified through the ROCKSTAR halo finder [25].

The second group of simulations available, that we will call Group II, come
from the MG lightcone simulation project [13], that employed the MG code MG-
GADGET [141], to simulate GR and F5 cosmologies at a variety of redshifts; in
our work we focus on the z = 1 snapshot. Using 2048* dark matter particles in
a cubic box with side L, = 1536 M pc/h, they are the largest-volume MG simu-
lations performed up-to-date, which allows us to explore our GSM predictions
at the Baryon Acoustic Oscillation (BAO) scales [63]. The ACDM cosmology in

these simulations is given by:
{Q,0, Q0. h, g, 075, 5} = {0.3089,0.6911,0.6774,0.9667,0.8159,0.0486}.  (5.6)

The halo catalogues are produced making use of the SUBFIND code [175] and

each model is simulated for only one random seed.

Finally, to compute the real-space two-point correlation function, the RSD
anisotropic correlation function and also the velocity information from the sim-

ulations, we utilize the publicly available code CUTE [9], using 30 linearly space
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bins in the range 0 — 140 Mpc/h, both in the real and in the redshift space. For
the Group I simulations, all error bars are calculated as the standard deviations
over the 5 available realizations, whereas in the Group II case, where only 1 re-
alization is available, we use the Jackknife method, splitting the simulation box

into 64 sub-volumes.

As was also done in [191]], for the Group I simulations, we analyze a z = 0.5
snapshot of halos in the mass range (2 — 3.5) x 10'2M/h, for all models, using
only the main halos identified by ROCKSTAR. For the Group II simulations, on
the other hand, we focus our predictions on a redshift of z = 1, considering
halos in three separate mass bins: a lower mass bin of 9 x 10'' — 2 x 10'* My/h,
an intermediate bin of 5x 10" — 1 x 10'* My /h and a higher mass bin, 1.1 x 10'* —

9 x 10" My/h.

5.3 Redshift-Space Correlation Function For Biased Tracers In

Modified Gravity

In this section, we present our analytical framework for the redshift-space cor-
relation function of biased tracers in modified gravity cosmologies. Before the
topic of RSD is addressed, we briefly summarize the LPT framework for struc-
ture formation in MG cosmologies, as well as the analytical treatment of La-

grangian bias for dark matter halos in such scenarios.
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5.3.1 Lagrangian Perturbation Theory For Dark Matter In Mod-

ified Gravity

In the Lagrangian Perturbation Theory framework [212,44,38,78,[183} 120} [119),
46|, 122]], the time-dependent growth of dark matter overdensities is traced in a
coordinate system that is comoving with matter particles, as they move along
their fluid trajectories. In particular, the fundamental element of LPT is a dis-
placement, vector, field ¥, which in each moment of interest #, maps a parti-
cle from an initial “Lagrangian” position q to its final, Eulerian position vector

x(q, 1), encoded through the following relationship:

x(q,1) = q +¥(q,1). (5.7)

Imposing conservation of matter mass between q and x, one gets

S, 1) = =71 (5.8)

J(q,1)
with 6,(x,1) = 2 -1 in (5.8) denoting the fractional matter overdensity and
J(q, 1) = det(J;;), the determinant of the Jacobian of the mapping (5.7)), given by

ox' oY’
Jij: x :6ij+ﬁ.
q

5 (5.9)

Unlike the Eulerian approach, in LPT the expansion parameter is the displace-

ment ¥, as

(9]

¥(q,n = ) Y0 =¥"(q,0+ ¥ +¥q,0).. (5.10)

n=1

Equations (5.7)-(5.9) form a closed system that can be solved, order by order,

when combined with the coupled pair of the geodesic and Poisson equations
1

X+ 2H% = —— V(x, 1),
a

| (5.11)
= Vi (x, 1) = 4nGp,u(X, 1),
a
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with y(x, t) representing the scalar metric perturbation. Equations (5.11) have
been derived perturbing about a Friedmann-Robertson-Walker (FRW) back-
ground assuming a GR-like evolution. The first order solution to the system

(5.7)-(5.11) is the well-known Zel’dovich approximation [212], in which
Wik, 1) = ik D(“(t)é(“(k t=0), (5.12)

where §V(k,r = 0) is the linearized overdensity at early times and D)(z) the

linear growth factor in GR, which is the growing solution of
7 DV(t) = Ay DY), (5.13)

with Ay = 4nGp,, and the differential operator g = y z2 +2H4 defined in [120].

dt’

In the presence of a modification to gravity, the above picture is compli-
cated by the action of the additional degree of freedom, the impact of which
should be taken into account by the LPT framework. In the work of [189], LPT
was studied for the MG chameleons and symmetrons, up to second order, in
the context of the COLA hybrid approach, which was found to recover results
from full N-body simulations with high accuracy. LPT was first expanded to
capture MG theories up to third order by [15] (also see [16, 17, [191]), which is
the approach we closely follow and briefly summarize here. For a scalar-tensor
theory, equations (5.11) are replaced by the modified version of the perturbed

Finstein equations:

VY = ——V2¢/(x 7,
(5.14)
—Vzw(x 1) = 4nGp (X, 1) + —V§¢
combined with the Klein-Gordon (KG) equation
1
(3 +2wpp) =Kok, 1) = 81GpnS(Ks, 1) = (9. (5.15)
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Here, wpgp is a function that depends on the specific theory, and is named in that
way because for Brans-Dicke (BD) theories it reduces to the BD parameter. The
under-script x is meant to show that the quantities are evaluated in the Eulerian
basis. The term 7(¢) is the perturbative representation of the screening due to

the field ¢ self-interactions [98], given by

B | dhdk
I¢) = Mlkng+s | =05

1 ki dPlod’k
_ fﬁd[)(k - k123)M3(k1 Ko, k3)¢(kl)¢(k2)¢(k3)’

op(k = k)M (K, ko)p(ky) (k)

6

with M, (k, t), M»(k, k;) and M;(k,, ks, k;) being mass terms and where we used

the convention k;; = k; + k; + k;. The first order solution in MG is
, ik’
Wik, t) = ﬁD(“(k, ok, t = 0), (5.16)
where the MG linear growth factor D" (k, r) is now obtained through
7 DYk, 1) = A(k)DV(k, 1), (5.17)

with

_ K

1
(k) = — |3 + 2wpp) & + Mya?|.
3a?
A generic feature of many MG models, for which M, # 0, is that, unlike in
the GR case (5.13), the linear growth factor is scale-dependent. The 2™ and 3™
order LPT solutions in MG contain two additional contributions, compared to
the simpler GR case: a screening term, due to the field self-interactions and a,
geometric in nature, Frame-Lagging component that arises when transforming
the KG equation from an Eulerian to a Lagrangian basis. The expressions for the

2" and 3™ order solutions, as well as for the perturbative mass terms M, — M;

in the f(R) and nDGP cases can be found in [15]] and also [16} 17, [191].

134



We finally note that a scale dependent linear growth function implies the

linear growth rate is also scale dependent,

dIn DYk, a
Flk) = dl—(). (5.19)
na
We find it useful to define the large-scale value, f;, as
Jo=fk=0). (5.20)

For MG models with M, # 0, fy coincides with the standard growth rate in
ACDM. In models with vanishing mass, such as the nDGP, f(k) = f; is scale

independent, but its value does not coincide with that of ACDM.

5.3.2 Lagrangian Biased Tracers In Modified Gravity

Galaxies do not exactly trace the underlying distribution of dark matter, which
in principle biases observable quantities [86], like the clustering statistics, ex-
tracted from such observations. This effect is taken into account by the per-
turbative theory of galaxy clustering, which has been greatly explored using a
variety of analytical approaches; a comprehensive review of this topic can be
found in [59]. Given an analytical model for the nonlinear evolution of the un-
derlying dark matter overdensities (for which we choose LPT), the effects of
halo or galaxy formation are captured through a set of bias parameters. Build-
ing upon our LPT formalism laid out in the previous section we employ
a local Lagrangian bias to study overdensities of halos, within which the ob-
served galaxies form and reside. Before addressing the biasing scheme in MG
scenarios, it is worth mentioning that in the context of GR, approaches in the

literature have employed a variety of Lagrangian bias schemes, ranging from
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a local-in-matter-density Lagrangian bias [119, 46|], to a local Lagrangian bias
including curvature and tidal terms [193], all the way to extensions with a non-

local Lagrangian bias [121]].

The two-point statistics of biased tracers in modified gravity models have
recently been expressed using a local-in-matter and curvature Lagrangian bias
[17], as well as a local-in-matter density bias [191]. While we will focus on pre-
dictions using the latter, we will present the expressions including the curva-
ture bias, which is more general and contains, as we will see below, the local
in matter density terms as a limiting case. We make the common assumption
that tracers are initially identified in the primordial dark matter density field,
at a sufficiently early time 1), through a local function F. In particular, if by
Or(q,9) = 0r(q) we denote the dark matter density field, smoothed out over a
spatial scale R, then the initial fractional overdensity of tracers (in our case ha-

los), 6x(q, ty) = 6x(q), will be given by [17] ﬂ

1+6x(q) =7 ’/ifq) = F|6r(@), V25r(q) - (5.21)

X

When F = 1 in (5.21), we get 6x(q) = 0, recovering thus the dark matter case.
Having identified the initially biased tracers through (5.21)), their subsequent
nonlinear evolution is found after applying the continuity equation between q

and x:
I+ 6x(x,1) = f & qF 5r(@). V26r(q)| 65 [x — q — ¥(q. )] (522)

where in the above equation 6x(q) is the extrapolated linear density field eval-

uated at the observation time. Our goal is to model the two-point correlation

n principle, in MG theories with an additional scalar field ¢, the bias function F should also
depend on the Laplacian, V?¢, but as noted in [59] and further developed in [17], expanding the
KG equation reveals that this dependence is degenerate with V2§ for k-modes smaller than the
scalar field mass and can thus be absorbed.
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function for halos, defined by

Ex(r) = (0x(X)0x(X + 1)), (5.23)

where the angle brackets indicate an ensemble averaging. Plugging the result
(5.22) into (5.23) and after performing a multinomial expansion and several in-
tegrations, one gets the two-point correlation function for biased tracers, up to

1-loop order, as [46,(17, 191]:

X e~ 2 @A) 1 oop 1
1+ §X(r) = fd q (271_)3/2 |AL|1/2 x[1- EGUAI] + grl]kvvljk

—by (2Uigi + A}JQGU) - b, (Ul.(l)Uﬁ.l)G,-j + Uizog,-)

I
+0} (6 - UGy = Ul'g) + 50363 - 20162600,

+2(1 + by) by V&, + b@zév“&} (5.24)
with
g = (Ailg;—r),
Gy = (ADij~ 88
T = A+ (ALug) + (AL kg — 8i88ks (5.25)
and where we defined
0k = (67

£1(q) = (6162)c,
AT = (SPSIAA e, (5.26)
W) = (6] AA AL,
U™ (§) = (07050
The Lagrangian correlators (5.26), as first defined in [46], are the elementary in-
gredients of the LPT correlation function and contain cumulants of the
differential LPT displacement field, A = ¥, — ¥, where we adopted the short-

hand notation ¥(q;) = ¥, etc. In lb we also defined A?]Q = A, Wlpj(,)co = W, and
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U!° = U;. These correlators differ in GR [46] and MG [17,191], because the
LPT displacement fields they contain follow a different time-evolution in each
of these two cases, as explained in the previous Section (this difference
manifests itself in the “k-functions” in [46] and [17, 191]]). Finally, we note that
in (5.24) only the linear part of A;; is kept exponentiated following [196, 193], a
variant of the Convolution Lagrangian Perturbation Theory (CLPT) resumma-

tion scheme [46] that maintains also the loop components in the exponential.

In expression (5.24), we identify the local-in-matter-density bias parameters
[119] 121]

b, = f ‘;—iﬁe—%ﬂoﬁ (", (5.27)

where F is the Fourier-space representation of the Lagrangian function F. The

extension of (5.27) to include the higher-order bias by:; can be found in [17, 14].

One approach to evaluate biases is the excursion set approach [33]. This
does not, however, have an analytical solution for generic MG models, due to
the fact that the critical overdensity for gravitational collapse is not a constant at
a given cosmological time, as it is in GR. One can then perform brownian-walk

simulations in that case, as was done in [17].

In our analysis here, we will evaluate predictions from only with a
local-in-matter density Lagrangian bias, which simply corresponds to the limit
by: = 0 of this relationship. In the total absence of an analytical method to
evaluate the bias parameters b,, they can be treated as free parameters to be
titted over the N-body simulations, a method followed by [46) 145, 193], for
instance. In [191], an analytical model was developed, for the calculation of the
bias parameters in MG models, which is the one we adopt in this work. Based

on the PBS formalism [86], the Lagrangian bias factors of order n are given by
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[125, 124, [164]:
1 d'y(M,A)

n,(M,0)  dA" Ao

bE(M) = (5.28)

where 71,(M, 0) is the halo mass function of halos with mass M and 7,(M, A) is
its response, in the presence of a long-wavelength density perturbation A. By
suitably modeling 7,(M, 0) and its response in MG, using the Sheth-Tormen (ST)
model [166] with an environment-dependent gravitational collapse, [191] de-
rived the PBS biases in MG models (relationships (78)-(80) in that work). This
approach was shown to agree very well with simulations and thus we adopt it
in this work as well; readers interested in more details about this implementa-
tion, are referred to [191]. The halo bias values b, and b,, used in this chapter,
are the ones shown in Table I of [191], predicted for each gravity model, halo

mass range and cosmological time.

5.3.3 Direct Lagrangian Approach to RSD in Modified Gravity

In the previous section we discussed how LPT can be used to robustly
model the two-point statistics of halos in both the cases of GR and MG. How-
ever, the peculiar velocities of the observed galaxies, sourced by the perturba-
tions in the underlying density field, contribute to the line-of-sight component
of the observed recession velocity, contaminating thus the information extracted
from spectroscopic means. These “Redshift-Space Distortions”, in particular, in-
troduce an anisotropy in the observed clustering pattern [88, 70, [71]. To model
their impact on the clustering statistics, and following standard practice, we fix
the line-of-sight in the Cartesian Z direction for all objects, adopting the plane-
parallel approximation. This approximation has been shown to work well in

the context of modern surveys of the LSS [151, 210]. Having adopted this ap-
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proach, if x is the real-space position of a tracer with peculiar velocity v(x), then

its observed, “redshift-space” position s will be:

2-v(x),

+ CZH—(CZ)Z’ (529)

with H(a) the Hubble factor at a given scale-factor a. As a consequence, the

redshift-space 2-point correlation function for halos

&x(r) = (0x(s)ox(s + 1)), (5.30)

becomes directionally dependent, unlike the real-space expression given by

(5.23).

With the advent of precision cosmology, a great deal of theoretical effort has
been put into analytically modeling (5.30), with the various different approaches
summarized in [195]. Within the framework of LPT, the most straightforward
approach, called “Direct Lagrangian” in [195] and considered in [46} 203 [196],
takes advantage of the fact that, in LPT, the displacement field simply trans-
forms as:

Y=Y+

(5.31)

This can be easily seen if ones combines (5.29) and with the fact that the
peculiar velocity in LPT is given by v = a'¥. (5.31) can then be further simplified
if one notices that, up to order n, the LPT field evolves as ¥ o D"(a), giving

YO = nfyHY™, with fy(a) = 222 the GR growth rate, thus giving

W = (6 + nfoziz;) P, (5.32)

J
Then it quickly follows that the Lagrangian correlators i will also transform

accordingly, e.g.
U™ = (8, + nfoziz;) UL, (5.33)

1

140



In the Direct Lagrangian approach, the RSD correlation function is calculated

through directly mapping the Lagrangian correlators (5.26) to redshift-space, as
in (5.32)-(5.33), and then using (5.24) with the shifted correlators.

In MG, however, the situation is a little more complicated, because, as we
saw in , the MG growth factor is scale-dependent. As a result, ¥ cannot
be simplified as in GR and does not apply. Instead, the LPT displacement
tield will now transform as

P

P = i 52 y m’a, (5.34)

where the added shift has to be evaluated numerically. In the Appendix [E|, we
present the details on how the Direct Lagrangian approach is implemented in
MG theories with scale-dependence. It is worth emphasizing, at this point, that
the fact that the RSD shift depends so sensitively on the underlying gravity

model, is exactly what makes it such a powerful cosmological probe.

5.3.4 The Gaussian Streaming Model In Modified Gravity

In the previous section, we saw that, despite their success at accurately captur-
ing the real-space clustering statistics for a wide range of models, Lagrangian
methods prove to be inadequate at directly predicting the velocity-induced
redshift-space anisotropies. This problem can be overcome by employing the
Gaussian Streaming Model (GSM), first proposed in [145], inspired by the the
work of [67]. In order to address the discrepancy between the traditional
phenomenological “streaming” (or dispersion) models [56, 131] and the linear
Kaiser limit [88]], [67] adopted a probabilistic approach to relate the distributions

of tracers in the real and redshift space. In particular, if # is the pairwise veloc-
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ity Probability Density Function (PDF), then the real-space correlation function

of tracers, £4(r), will be mapped to the redshift-space one as [67, [160]:

I+ &y(sy, ) = fdy[l +EMIPQY = s — nylr), (5.35)
where s, s are the perpendicular and parallel to the line-of-sight components
of the redshift-space separation s, with s = \/r-l-sﬁ and r = +/s2 +)2. By taking
the linear limit of (5.35), and allowing for the scale-dependence of the pairwise
velocity moments, [67] showed that line-of-sight variations of the pairwise ve-
locity and its dispersion drive the correlation function away from isotropy in
redshift space. The pairwise velocity PDF % is in principle not Gaussian, even
in the case of a Gaussian density field, but can be well approximated by a Gaus-

sian near its peak [160]. Using a non-perturbative resummation of the linearized

limit of (5.35) in [67], [145] proposed the GSM expression:

« d
1+ &(sL, s)) = f S
210, )

where u = 7 -2 = 2, uv5(r) the pairwise velocity and o1,(r, 1) the pairwise ve-

2
(51 =y = mvia()
20'%2(1”,#)

[1+&(r)]exp|— , (5.36)

locity dispersion along the line-of-sight. Using CLPT to model the ingredients
of the GSM, the accuracy of the initial approach was improved in [198], which
was able to match the redshift-space halo clustering statistics extracted from N-
body simulations at the few % level. Further improvements included adding
tidal bias and EFT corrections [193]], as well as higher moments in the cumulant
expansion [186)} [31), 32], while the GSM was also applied to observational data
(144,152,153, 18, 211]]. In [35], the GSM was employed to model the anisotropic
correlation function for dark matter in MG, using RegPT and the SPT approach
in [145], but not LPT.

Building upon the formalism presented in [198] and having already laid the
foundation in Section we proceed to expand the GSM (5.36)) to predict the
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anisotropic redshift-space correlation function for biased tracers in MG, mod-
eling its ingredients with CLPT. To do so, we need to express the two velocity
moments in CLPT, as we have already done with &(r), which is performed be-

low.

5.3.5 Velocity Moments in Modified Gravity

With regards to the calculation of the velocity moments in MG, the main point
of divergence from the corresponding approach in GR employed in [198)} 193],
lies in the fact that the LPT growth factors are also scale-dependent in this case,
as we saw in section Keeping this in mind, below we present the main
results and summarize how they differ from their GR counterparts, with the
details shown in the Appendix [D} The relative peculiar velocity between two

tracers at Eulerian positions x, and x;, is

Vn(XZ) - Vn(Xl) ‘i’2n - ‘illn An
_ _ On 37
aH H H’ (5-37)

where we made use of the fact that v = a¥. In GR, one typically uses, as we also
saw in section the fact that W o« D"(a) in the EDS approximation, which
gives ¥ = nfyH¥™, so as to simplify (5.37), which is not the case in MG; here

A, needs to be evaluated numerically. Following standard practice, one may

then define the velocity generating function [160, 198]
Zr,3) = ([1 + S5Ol +6x(x + )] ), (5.38)

with éx(r) = Z(r,0) — 1. In the case of a local Lagrangian bias (5.22)) and after the

usual Fourier transforms (as in [16}191]), it can be expressed as:

&Ik LAy BN ~ - L
Z(I‘, J) = fd3q f Wezk(q—r) W (2702 Fle(e [/1161+/1262+711V26|+n2V252+k A+J H)]>,

(5.39)
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where we defined A, = (1;,m), F1 = F(A)) and A, = (1, ), F> = F(A»), as in
[17]. Given a generating functional, the velocity moments of order p can then

be straightforwardly evaluated as [198]:

p
([1+ 6x (T[T + bx(x + r)](]_[[v,»k(x +1) - v,-k<x>])> =

k=1
s

= —i
o al;,

P i
— fd3qf d3k3 PSR dzA; dZAi F1F2 x <l—[(ﬁ))ei[ﬁlal+4252+mv25]+n2V252+k-A]>
(2m) (2m)” (2m) i \H

)Z(r, .,

= fd3qM]7,(i1,.,ip)(r’ q)’
(5.40)

where in the last line we defined M, ;, ;) as the integrand quantity.

The real-space mean pairwise velocity along the pair separation vector, 7, is
defined as :

o) = via = (L OXCONL+ O+ DIVA(X + 1) = %))
2 2t ([ + ox(®)I[1 + ox(x + D)) -

(5.41)

The denominator of is simply equal to 1 + &x(r) from (5.24), whereas the
numerator represents the galaxy-number weighted average pairwise velocity.
Given the definition (5.40), and using the CLPT scheme for MG discussed in
Section we have [198]:

o deMarg)
N TN

(5.42)

with
e~ 1@ A i(g;r))

Q)2 AL |12

M,,(r,q) = fo
. . . D .
(2191 UV — gidiy + b, U + b1U" - EGijWijk —2bygiAlY
+2b1byE USD = 2[by + B2 UPUD - 02, g,AY - 2b,GLUDAY

—2bV2682,n], (5.43)
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where we defined

. 1 . . 1 .
Uiq) = H(fS(ql)A% Aii(q) = E@ZAJ‘)
U_ZO — <62(q1)Al> U11 — <6(q1)6(q2)A1>
b Hfo ’ L Hfo ’
Ao = (5(q)AA)) o (DDA
ij = fOH ’ ijk — f()H ’

Bon = =ViéL(q).

(5.44)

The expressions for the new correlators are presented in the Appendix
[D} Here we briefly stress that, even though these definitions are the same as in
the GR case [198, 193], the functions take different values in MG, because
of the different evolution of the LPT displacement field (manifesting itself in
the A and A functions). Similarly, this is also the case for the M, function in
(5.43), that depends on these functions. The quantity entering is actually
the pairwise velocity along the line-of-sight, rather than the separation vector,

which simply accounts to multiplying v, from (5.41) by p.

The pairwise velocity dispersion along the line-of-sight is defined as

([1 +6x(I[1 + 5x(x + D][v(x + 1) = v.(X)]*)
([1+6x(@][1 +ox(x +1)]) ’

@'%2(7', U = (545)

which is commonly decomposed into components parallel 67 and perpendicu-

lar 6 to the pair separation vector, r, in which case
Gha(rp) = 167 + (1 = i), (5.46)

The two components can be calculated after taking projections of the second

velocity moment, the pairwise velocity dispersion tensor, given by [198]:

) fd3qM2,nt71(r’ (I)
0-12 nm =
’ 1+ &x(r)

(5.47)
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and where we additionally defined
i = <J£A02iﬁlé>, 1o _ «5(22)#’ - % (5.49)

The expressions for the functions are presented in the Appendix D} It is
worth adding here, that all by terms identified in o7, ,,, are multiplications of
U functions and terms that although are order P;, have a size similar to 1-loop
terms [193], which is why they are dropped and thus absent in (5.48). More
importantly, even though we do not generally include EFT corrections in our
biasing scheme, we emphasize on the fact that one of the leading EFT countert-

erms in (5.48) is of the form @,6,,, [193], which corresdonds to the correction:

0-loo
L+ &paned
AD ) matter
0-12,nm - O-IZ,nm t+ s 1-loop 6nma (550)
1L +¢&

that leads to a constant shift, «,, at large scales. This naturally accommodates
the need to add a constant shift to the PT prediction for o{, ,, so as to match the
values extracted from N-body simulations, as was found in [145| 198, 193] for
GR and as we will also show to be the case for MG, in the next section.

2

. . n . 2 _ A2
Having obtained &7,, we get the cumulant version Tl = O m = Vi2aV12.m [193]],

which is then projected as:
5 s 1 s s
TI() = Fafn0 Lo, TLE) = SO+ FaFn) 1, (D). (5.51)

The combination of (5.46)-(5.51) gives us o7,(r, u) that is the final necessary in-
gredient to enter eqn (5.36). Finally, as was the case for &éx(r) in (5.24), we even-

tually consider the velocity moments v;, and o, with a local in matter density
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Lagrangian bias (meaning by2s = 0), the bias factors b, and b, of which are eval-

uated using the analytical model discussed in section [5.3.2}

5.4 Results

The objective in this work is to assess and compare configuration-space
(redshift-space) predictions coming from our analytical model, against those ex-
tracted from the Group I and Group II N-body simulations, that we introduced
in section5.2.2]

In section we first confirm that the velocity information entering the
GSM (5.36), the real-space pairwise velocity and the pairwise velocity disper-
sion for halos, in (5.42) and (5.47), are accurately captured by our CLPT imple-

mentation in MG.

In section [5.4.2] we assess the predictions for the redshift-space 2-point cor-
relation function for halos using both the Direct Langrangian and GSM ap-
proaches. Using the PBS formalism for the bias values, the 3 ingredients used
as input in the GSM expression (5.36), are calculated through (5.24), and
(5.47). The real-space 2-point correlation function for halos in MG has already
been cross-checked and confirmed in [191], using the same CLPT and bias

schemes against the same set of simulations.

To perform the various integrations, we use a suitably modified version of
the public C++ code released by [193]], to incorporate the modifications to al-
low deviations from GR. This extends our previous work in [191], made pub-

licly available in https://github.com/CornellCosmology/bias_MG_
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LPT_products. The code accepts as input the linear power spectrum and the
LPT growth factors up to 3" order, evaluated for each MG model and cosmol-
ogy. The linear power spectra are calculated using the publicly available code
CAMB [107], while the growth factors are extracted from the MATHEMATICA note-

books released in the above GitHub repository.

5.4.1 Halo Pairwise Velocity Statistics

We begin this section by comparing the CLPT predictions for the real-space pair-
wise velocity of halos in MG, obtained through (5.41)-(5.43), against the results

from the N-body simulations.

In Fig. we compare the analytical CLPT predictions for the real-space
pairwise velocity of halos in MG, obtained through (5.41)-(5.43), against the re-
sults from the N-body simulations. In the top panels we show comparisons
for GR and the F5 MG model for the 3 mass bins in the z = 1 snapshot of the
Group II simulations. The F5 CLPT curves are found to trace the shape of the
pairwise velocity well, across a wide range of halo masses, achieving the same
level of agreement as in the known GR case, down to scales of r ~ 10 Mpc/h.
The 1-loop CLPT result significantly improves upon the accuracy of the linear-
theory prediction. These results are consistent with what was observed in the

corresponding GR case in [198].

Performing the same comparison against the F6 and N1 & N5 models of the
Group I snapshots at z = 0.5, shown in the bottom panel of Fig. we again
tind that CLPT has the same level of agreement as previously, but down to scales

of r ~ 17 Mpc/h for the F6 & N5 models and for » ~ 20 Mpc/h for the N1 case.
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Given that this comparison is now performed at a lower redshift than in the
Group II case, where the expected scale where nonlinearities become significant

(and PT fails) is larger, this result is expected.

The bias parameters we use here, derived by fitting the ST parameters to the
simulated halo mass function, are a key factor in achieving accurate predictions
for the pairwise velocity, which is a necessary requirement for accurate predic-
tions using the GSM approach. An alternative option is to treat the biases as
free parameters, that give the best-fit to the simulations, as for example done in

[46, 198, 193].

We next investigate how well our CLPT framework performs in capturing
the halo pairwise velocity dispersion from the simulations, for all MG models
we consider. When performing this comparison, in terms of the dispersion com-
ponents parallel (6) and perpendicular (63) to the pair separation vector, we
uncover the existence of a persistent offset between the theoretical curves and
the simulated values, manifesting itself in all cases we study. This phenomenon
has been observed in the context of GR, both when using Eulerian [145] and La-
grangian [198, 193] PT to model o and in MG [35], which we also find to be the
case in our CLPT implementation for MG models. This mismatch is attributed
to small-scale contributions to the halo velocity dispersion, that are impossible
to capture analytically [145,[198]. It was observed that simply adding a constant
offset so as to match the two predictions at large scales suffices to get an accurate
perturbative representation of 0. We should also note, at this point, that this
feature was also discussed by [160], who noted that nonlinear contributions to
the velocity dispersion contribute a constant in the large-scale limit, that cannot

be captured by linear theory. In [193], that considered EFT corrections in the
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Figure 5.1: Real-space pairwise velocity for GR [top left] and the F5 model
[top right] at z = 1, obtained by the Group II simulations in the
low mass [blue square], intermediate mass [black circle] and
high mass [red triangle] bins, and for F6 [bottom left] and the
N1 & N5 models [bottom right, orange diamond and purple
hexagon respectively] at z = 0.5 from the Group I simulations.
Lines denote the theoretical predictions from 1-loop CLPT,
through (5.41)-(5.43), for each corresponding model. The green
dotted lines in the upper panels represent the linear prediction
for the high mass bin.

context of the GSM, it was shown that one of the EFT counter-terms contribut-
ing to the velocity dispersion is of the form (5.50), which reduces to a constant
at large scales and naturally accommodates for the need to correct this offset
with a constant free parameter. In our work, and in agreement with the above
results, we find the CLPT prediction from & , combined with a con-
stant offset to match the largest simulation bin at » = 137.8 Mpc/h, to be able
to capture the shape of & and 6 very well for all the modified gravity models,

as well as GR. The values of the constants added for each model are reported in
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Table

When looking at Table one notices that the Zel’dovich result for o al-
ways falls a little short of the simulated value at the largest spatial bin and needs
to be corrected by a small positive constant. Trying to correct for this deficit by
including the 1-loop contributions, however, always results at a relatively larger
overestimate of the large-scale value of the dispersion, which then needs to cor-
rected by adding a large negative constant, contrary to the Zel’dovich results
that need only a small positive offset. This behavior has been observed before
for ACDM in [145, [198) 186, 193] (see in particular fig.4 and the discussion after
eq. 44 in [186]), with the authors of [186] arguing that the better performance of
linear theory, relatively over CLPT, should be considered an accident because
one expects large corrections to o due to the presence of zero-lag correlators.
Furthermore, [193] also reported large values for the offset (see table 1 of that
chapter), while the same method was applied to fit real data in [144), 82]. We
further find parallels with what was observed in [194] 191] for predictions of
the dispersion of the LPT displacement field. There, it was shown that 1-loop
LPT tends to over-predict the LPT displacement-field dispersion, compared to
the simulations, because this quantity depends on zero-lag correlators, that are
hard to model perturbatively. Linear theory, on the other hand, was found to
give a closer estimate, a little short of the simulated value, as we also see to be
the case when modeling the pairwise velocity dispersion. If we take the large-

scale limit of the CLPT expression for the pairwise velocity dispersion &
(5.48), we find that

52,67 — XL + X3P + 26, XL0), (5.52)
with X, and X!° the constant limits of functions X(¢) and X'°(g), defined in

(D.36)D.38), as ¢ — . As a result of (5.52), we see that the two pairwise
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velocity dispersion components é—ﬁ and &2 also involve zero-lag quantities in
their large-scale limit, which explains the connection that can be drawn between
these two cases. As in [191], we find this overestimation to be more pronounced
in MG, compared to the GR case, getting progressively more pronounced with
higher deviations from GR, which explains why the degree of analytical over-
estimation in the LPT predictions becomes more severe, as one considers mod-
els that are less screened. We also notice that the degree of analytical over-
estimation increases with halo mass in the Group II snapshots. This is also ex-
plained from where we see that the 1-loop correction of the large-scale
limit of the velocity dispersion depends on the the linear halo bias, through the
third term. Higher halo masses correspond to a larger value for the linear bias
by, which in turn makes the third term larger, relative to the lower mass cases,
resulting in an overall even larger overestimation in this case. The fact that the
bias dependence appears beyond the linear level, explains why the shifts re-
quired for the Zel’dovich predictions are very similar across the different mass
bins for both the GR and the F5 snapshots of the Group II simulations. Also,
this bias dependence implies that, for a fixed halo mass range, and given that
the bias b; increases with redshift, this overestimation can become relatively
more pronounced at higher z. E| Finally, in Table we notice that 1-loop LPT
predicts increasing values for the large-scale limit of the pairwise velocity dis-
persion, as we move towards higher halo masses, whereas the opposite trend is
reflected in the Group II simulations. Even though this is interesting, we cannot
certainly say whether this trend is statistically significant, as there is only one
available realization and thus we defer this investigation to future work, when

more simulations become available.

2 At this point, however, we should be careful not to directly compare the results reported for
the two redshifts of Table as they refer to two snapshots with different mass ranges, which
also correspond to different cosmologies.
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Model 67 (r =100Mpc/h)[(Mpc/h)*] | Shift (r=137.8Mpc/h)
LPT | Zel. | Sim. LPT | Zel.
Group I: GR 36.2 23.8 279 -7.7 4.0
Group I: F6 43.3 25.0 27.8 —15.5 2.5
Group I: N1 44.6 29.5 36.2 -8.6 6.5
Group I: N5 37.6 25.1 29.7 -7.5 4.3
Group II: GR low-mass | 28.6 19.9 20.9 -8.3 1.4
Group II: GR mid-mass | 32.4 19.8 20.7 —-11.8 1.0
Group II: GR hi-mass | 37.6 19.8 20.5 -17.3 0.5
Group II: F5 low-mass | 33.2 21.8 225 -10.5 0.5
Group II: F5 mid-mass | 38.5 21.8 21.8 -16.5 0.0
Group II: F5 hi-mass 43.4 21.8 20.9 —-22.5 -1.0

Table 5.1: The left-hand columns compare the values for o“ﬁ, the pairwise
velocity dispersion parallel to the separation vector, predicted
by 1-loop LPT [1* column] and the Zel’dovich approximations
[27 col.] of with those obtained from the N-body sim-
ulations [3" col.], at r = 100Mpc/h for all the gravity models.
The right-hand columns present the values of the constant shifts,
added to theoretical predictions to give large scale agreement
with simulations (at the largest bin center r =137.8 Mpc/h), for
the 1-loop & Zel’dovich LPT results from & (5.49).

In the left panel of Fig. the &7 and ¢ CLPT predictions from &
are compared against the simulations for the F6 model at z = 0.5. It is
found that the 1-loop result, shifted by a constant, significantly improves upon
the (also shifted) Zel’dovich approximation and remains consistent (within 1-o-
errorbars) with the simulations down to r ~ 30 Mpc/h for oA'ﬁ and r ~ 20 Mpc/h
for 2. When we shift the 1-loop CLPT result by the EFT counter-term (5.50), the
accuracy is further improved and the results remain consistent down to smaller
r. If we perform the same comparison for the F5 Group II snapshot at z = 1,
however, as done for the high mass bin in the right panel of Fig. we find
that the constant that needs to be added to the 1-loop curve is very large and

negative, comparable to the large-scale amplitude of o. This leads to negative
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and unphysical values for the dispersion components at low r . In particular, the
perpendicular component of the pairwise velocity dispersion, o2, becomes neg-
ative at r = 11.2,6.1,2.5 Mpc/h for the high mass, intermediate mass and low
mass bins of the F5 snapshot, respectively. The behavior is qualitatively similar
for o7, but the values remain physical (positive) down to slightly smaller scales.
The reason this happened at z = 1 is that, since it is an earlier cosmological time,
the velocity dispersion is smaller compared to the z = 0.5 case and compara-
ble to the negative constant that needs to be added in order to adjust the CLPT
prediction. To overcome this issue, which manifests itself for all three z = 1
halo mass bins and for both MG and GR scenarios, we can model the disper-
sion components using the other two approximations, the (shifted by a positive
constant) Zel’dovich curve and/or the EFT-shifted 1-loop result, which are both
better behaved at all scales of interest, as can be seen in Fig. In [193] another

approach to avoid the issues associated with o

< 0 was proposed, namely to
keep the linear part of the dispersion in the exponent and determinant of
and expand out the higher orders. As we discuss below, we did not find it to
be necessary to adopt this approach in order to get accurate quadrupole predic-

tions for the models we considered. Thus we do not consider this approach in

our work.

In Fig. we perform the same comparison between theory and simula-

2

| and 67, for the N5 Group I snapshot at z = 0.5 and also

tions, with respect to &
for all 3 mass bins of the F5 Group II case at z = 1, finding very similar results
as in Fig. We note that the reason that we only show the shifted Zel’dovich
results in the F5 Group Il case of the right panel, is because it is this choice that

will give the best match with the simulations, with respect to the values of the

quadrupole of the redshift-space correlation function, as we will see below. In
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Figure 5.2: The pairwise velocity dispersion parallel [top] and perpendic-
ular [bottom] to the pair separation vector for the F6 model at
z = 0.5 from the Group I simulations [left panels, green right
triangles]] and the F5 model at z = 1 from the high mass bin
of the Group II simulations [right panels, blue squares]. In all
panels the comparison to the theory predictions is shown for
the 1-loop [solid blue line] and the Zel’dovich [red dashed line]
CLPT predictions from & (5.48), shifted by a constant, as
well as from the 1-loop CLPT prediction shifted by a correction
term given by EFT [green dotted line], as in (5.50). The values
of the applied constant shifts are reported in Table
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this work we choose a shift constant value to match & at large scales. This
gives very good agreement for both components, with only a small mismatch

between the large-scale trends of the theory and simulation-derived values of

&i in Figs & as was also noted in [[145, 198, [193].

In the following analysis of the correlations functions, we use 1-loop CLPT
to model the 3 ingredients entering the GSM expression (5.36), with the pairwise
velocity dispersion shifted by a constant to match the simulations at the largest
r bin. For the Group I simulations the LPT predicted value is shifted down by
a constant. To compare to the Group II simulations, at higher redshift, since the
constant shift to the predicted velocity dispersion leads to negative dispersion
measurements at small separations, we use the (shifted) Zel’dovich result for
the velocity dispersion, together with the 1-loop expressions for £(r) and vi,(r),

as inputs into the GSM expressions.

5.4.2 Halo Redshift-Space 2-point Correlation Function

In this section, we present our predictions for the anisotropic redshift-space 2-
point correlation function for halos, as obtained from the various analytical ap-
proaches considered and compare how well they capture the results from the
MG N-body simulations. Given the directional dependence induced by RSD,
the correlation function will now not only depend on the redshift-space separa-
tion s = ,/s7 + sj, but also on the cosine y; = 2- § = 4 (not to be confused with
u = 2). Following common practice, the 2D anisotropic correlation function can

then be expanded in a basis of Legendre polynomials, P;(u,), as

E(s,p15) = D E(PY(uy), (5.53)
1
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Figure 5.3: The pairwise velocity dispersion parallel [top] and perpendic-
ular [bottom] to the pair separation vector for the F6 model at
z = 0.5 [green right triagnles] in the left panel, for the N5 model
at z = 0.5 [purple hexagons] in the middle panel and for the F5
model at z = 1 in the right panel. In the right panel, the results
are shown in the low mass [blue squares], intermediate mass
[black circles] and the high mass [red triangles] bins identified
in the Group II simulations. For the z = 0.5 case, the lines rep-
resent the 1-loop CLPT prediction from & for each
model, shifted by a constant, whereas in the z = 1 case, the lines
show the prediction given by the Zel’dovich approximation in
each bin, shifted by a constant. The values of the constant shifts
are reported in Table
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Figure 5.4: The monopole [Top] and quadrupole [Bottom] of the redshift-
space correlation function for the F6 model at z = 0.5, as ob-
tained by the Group I simulations [green right triangles] and by
the direct Lagrangian approach using 1-loop CLPT [solid black
line] and the Zel’dovich approximation [red dashed line].

where the multiples of order / can then be obtained from

20+1 (!
b= f 1P ). (5.54)

Our comparison will focus on the first three non-vanishing multipoles, the
monopole, the quadrupole and the hexadecapole, for which / = {0,2,4} and

Pyuy) = {1, 3p2 = 1)/2, (35u* — 3012 + 3)/8}, respectively.
Having obtained &(s, uy), either from an analytical model or the simulations,
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we integrate (5.54) to get the multipoles. In the case of the Direct LPT and the
GSM approaches, we perform a Gauss-Legendre integration scheme for the an-
gular part, and trapezoidal quadrature for the radial part, whereas to extract

this information from the simulations we use Simpson’s rule.

In section[5.3.3) we described the Direct Lagrangian approach to the redshift-
space correlation function for halos in MG. As is shown in the upper panel of
Fig. we see that this approach, both at the Zel’dovich level and including
1-loop corrections, can capture the monopole reasonably well, down to at least
scales of r ~ 20 Mpc/h for the Group I F6 sample at z = 0.5. When performing
the same comparison with respect to the quadrupole, however, and as shown
in the bottom panel of Fig. we find that the Direct approach performs very
poorly, failing to follow the simulation trend at scales lower than r < 50 Mpc/h.
Moreover, we notice that adding loop contributions to the linear, Zel’dovich
approximation, does not improve the quadrupole analytical result, instead it
performs even worse. This counterintuitive outcome is not new in the literature,
but has been observed in [203] for GR (see Figs. 2 and 3 of that work), and
here shown to also be the case in MG cosmologies, which motivates pursuing
another avenue towards a precise modeling of redshift-space anisotropies, by

means of the scale-dependent GSM approach.

We proceed to evaluate the performance of the GSM approach in MG, given
by (5.36). For the comparison, the “GSM” curves are obtained following a con-
stant shift to the LPT-predicted velocity dispersion for the lower redshift, Group
I, simulations, and a shift to the Zel’dovich-predicted velocity dispersion for the
higher redshift, Group II sims. When the 1-loop result for the velocity disper-
sion is shifted by the EFT term , the theoretical curve is labeled as “GSM
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Figure 5.5: The monopole of the redshift-space two-point correlation
function for GR [black circles] in the top left panel, for the
F6 model [green right triangles] in the top right panel, for the
N1 model [orange diamonds] in bottom left panel and for N5
model [purple hexagons] in the bottom right panel, as obtained
from the Group I simulations at z = 0.5. Furthermore, for
each model we plot the theoretical predictions given by the
Gaussian Streaming Model (GSM) up to 1-loop order [black
solid lines], by the Zel’dovich Streaming Model (ZSM) [ma-
genta dotted lines] and by the GSM with the 1-loop velocity
dispersion shifted by the EFT counter-term [green dot-
dash line].

EFT” in all figures. Finally, we consider the GSM predictions when simply us-
ing the Zel’dovich linear (LPT) theory to approximate all 3 ingredients of the
model, the Zel’dovich Streaming Model (ZSM) [203].

In Fig. the GSM prediction is shown to perform very well, across the
spectrum of MG models probed in the Group I simulations, in capturing the
monopole of the correlation function, down to scales of r ~ 15 Mpc/h. This is

consistent with findings for the real-space monopole in [191]. The differences
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Figure 5.6: The monopole of the redshift-space two-point correlation
function for GR [top] and for the F5 model [bottom], as ob-
tained in the low mass [red triangles], the intermediate mass
[black circles] and the high mass [blue squares] halo bins iden-
tified in the Group II simulations at z = 1. Furthermore, for
each model and mass bin we plot the theoretical predictions
given by the Gaussian Streaming Model (GSM) up to 1-loop
order with the shifted Zel’dovich dispersion [solid red (low
mass), black dot-dash (intermediate mass) and blue dash (high
mass) lines], by the Zel’dovich Streaming Model (ZSM) [ma-
genta dotted lines] and by the GSM with the 1-loop velocity
dispersion shifted by the EFT counter-term [green solid,
dot-dash and dash lines].
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between the results using the EFT shift and the Zel’dovich approximation are
rather small, and for larger scales well within the 1o error bars, demonstrating

consistency between the monopole predictions from the different approaches.

The same level of consistency is observed when comparing against the z = 1
snapshot of the Group II simulations, as apparent in Fig. this time across
all 3 mass halo bins identified in the sample. The GSM result with the shifted
Zel’dovich dispersion remains consistent with the simulated monopole for a
wide range of scales, including both the BAO region and also the power-law
regime, down to r ~ 20 Mpc/h. Adding the EFT shift to the 1-loop velocity
dispersion causes an almost indistinguishable change to the theoretical predic-
tion, but the Zel’dovich approximation performs considerably better at scales
r < 20 Mpc/h. The latter has also been observed when studying the real-space

counterpart in [191]].

Moving on to the redshift-space quadrupole and starting with the Group I
simulations, as shown in Fig. we determine that the GSM achieves a signifi-
cant improvement compared to the Direct Lagrangian approach of the previous
section, with the theoretical prediction remaining consistent with the N-body
simulations, down to scales of at least r ~ 17 Mpc/h, for all cases. Adding
the EFT shift to the velocity dispersion further improves the accuracy at small
scales, with the difference being practically indistinguishable at scales r > 40
Mpc/h. The ZSM result, however, performs much more poorly in this case,
for all models, demonstrating the need to include the 1-loop corrections for an

accurate prediction of the quadrupole.

As in the monopole case, the same level of consistency is observed when

comparing against the Group Il simulations, which is done in Fig. where we
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Figure 5.7: The quadrupole of the redshift-space two-point correlation

function for GR [black circles] in the top left panel, for the
F6 model [green right triangles] in the top right panel, for the
N1 model [orange diamonds] in bottom left panel and for N5
model [purple hexagons] in the bottom right panel, as obtained
from the Group I simulations at z = 0.5. Furthermore, for
each model we plot the theoretical predictions given by the
Gaussian Streaming Model (GSM) up to 1-loop order [black
solid lines], by the Zel’dovich Streaming Model (ZSM) [ma-
genta dotted lines] and by the GSM with the 1-loop velocity
dispersion shifted by the EFT counter-term [green dot-
dash line].

see that the 1-loop GSM result with the shifted Zel’dovich dispersion accurately
captures the simulated quadrupole, for all mass bins and both in GR and the
F5 MG model. Even for the high mass bin, that contains much less halos, and
is inevitably noisier, the trend of the simulation data points is clearly traced
by our GSM prediction. The GSM prediction obtained using the EFT shift to

the velocity dispersion seems to perform noticeably worse, in this snapshot, for
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Figure 5.8: The quadrupole of the redshift-space two-point correlation
function for GR [top] and for the F5 model [bottom], as ob-
tained in the low mass [red triangles], the intermediate mass
[black circles] and the high mass [blue squares] bins identi-
fied in the Group II simulations at z = 1. Furthermore, for
each model and mass bin we plot the theoretical predictions
given by the Gaussian Streaming Model (GSM) up to 1-loop
order with the shifted Zel’dovich dispersion [solid red (low
mass), black dot-dash (intermediate mass) and blue dash (high
mass) lines], by the Zel’dovich Streaming Model (ZSM) [ma-
genta dotted lines] and by the GSM with the 1-loop velocity
dispersion shifted by the EFT counter-term [green solid,
dot-dash and dash lines].
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Figure 5.9: The hexadecapole of the redshift-space two-point correlation
function as obtained in the F5 low mass bin identified in the
Group II simulations [left], as well as in the N5 model of
the Group I snapshot [right]. Furthermore, for each case we
plot the theoretical predictions given by the Gaussian Stream-
ing Model (GSM) up to 1-loop order [solid blue line], by the
Zel’dovich Streaming Model (ZSM) [magenta dotted lines] and
by the GSM with the 1-loop velocity dispersion shifted by the
EFT counter-term [green dashed].

all mass bins. Just like in the Group I case of Fig. the ZSM seems to be

inadequate at accurately capturing the quadrupole at quasi-linear scales.

Finally, we compare our analytical predictions with respect to the hexade-
capole of the anisotropic correlation function for two cases: the F5 low mass bin
in the Group II simulations, as well as the N5 model in the Group I snapshot,
both of which are shown in Fig. While the noise increases significantly be-
tween the quadrupole and the hexadecapole, so we should take these results
only as indicative, we find that the GSM prediction traces the simulated hex-
adecapole well down to scales of at least r ~ 17 Mpc/h, but with an offset of a
few percent. This offset is for theoretical predictions with bias values obtained

with the PBS formalism; an alternative might be to allow biases to vary and fit
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to the data.

These results overall demonstrate that the GSM can serve as an invaluable
tool to model the anisotropic correlation function of halos in MG models, ex-
tending the success of this approach beyond the previously explored domain
of GR cosmologies. It is worth emphasizing, also, that since the Lagrangian
bias factors are calculated through our analytical model, the only free parame-
ter needed to get accurate quadrupole predictions has been the constant offset
added to the components of the pairwise velocity dispersion of halos, a value
that can be easily determined through a single large-scale measurement of o

(either from N-body simulations or observations).

5.5 Conclusions

In this work, we expanded the Gaussian Streaming Model to predict the
redshift-space anisotropic correlation function for biased tracers in Modified
Gravity models. This is the first time, to our knowledge, that the effects of both
redshift-space distortions and halo bias have been jointly studied analytically

for scenarios that go beyond GR.

We build upon our previous work on the study of biased tracers in MG using
LPT [17,191], and employ the Convolution LPT resummation scheme, with a lo-
cal Lagrangian bias, to analytically describe the necessary missing ingredients
that enter the GSM for such models: the real-space halo pairwise velocity and
its scale-dependent dispersion. The approach includes analytic determination
of the bias parameters using the PBS formalism with fitted Sheth-Tormen pa-

rameters. Through cross-checking our analytical predictions across a large suite
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of state-of-the-art N-body simulations for the f(R) Hu-Sawicki and the nDGP
MG models, we find that the 1-loop CLPT prediction for the real-space halo
pairwise velocity remains consistent with the simulated data for the scales of

interest, a fact that is crucial for the accuracy of the GSM prediction.

When performing the same comparison with respect to the halo pairwise ve-
locity dispersion, however, we find that the CLPT approach is able to match the
simulated curve only if an offset is added to the theoretical dispersion result. In
doing this, we have followed two different strategies; namely, we added a phe-
nomenological constant shift to it, as proposed in [145], and included a leading
order EFT effect that contributes as a scale dependent shift, tending to a constant
large scales [193]. We have seen that although theoretically well-motivated, the
EFT prescription does not necessarily work better than the constant shift, which
is evident in the quadrupole of the Group II of simulations (Fig.[5.8). The pair-
wise dispersion is nonlinear in nature, as has been settled down since the semi-
nal work of Scoccimarro [160], such that it would be not surprising that higher
order contributions were important, which also could be the reason of why their
parallel and perpendicular to the line of sight components require slightly dif-

ferent offsets to match simulations, as it is done in [145, [198].

In establishing that the CLPT approach can accurately predict the ingredi-
ents that enter the GSM expression, we proceed to evaluate the performance
of the model against the N-body simulations, with respect to the redshift-space
monopole, the quadrupole and the hexadecapole of the anisotropic correlation
function of halos. Unlike direct Lagrangian approaches, which prove to be sig-
nificantly inaccurate, we find that the 1-loop GSM approach can successfully

capture the redshift-space quadrupole for all MG models, remaining consistent
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with the corresponding results from the simulations down to scales of at least
r ~ 17 Mpc/h and including the BAO peak. In the hexadecapole case, the GSM
prediction traces the shape of simulated result down to equally small scales, but

with a few percent offset.

Our analysis overall shows that our theoretical analytical predictions using
the GSM implementation achieve strong agreement with the non-linear simu-
lated data for a variety of MG models, across different levels of screening and
different screening mechanisms, and across a wide range of halo masses. We
emphasize the fact that this agreement occurs across all scales down into the
mildly non-linear regime, through simply matching a single shift parameter in
the halo pairwise velocity dispersion, that can be determined through compar-
ing the theory with a large-scale (linear regime) observed measurement. The
predictions come with bias parameters determined by the PBS formalism but
an alternative is to consider the bias factors as free parameters, that could be fit
with the simulations. The approach is one that has great potential for making
accurate clustering predictions for upcoming spectroscopic large scale structure

surveys.

In this work, we have followed the commonly used approach in GSM-PT
that fits a constant or EFT shift to the pairwise velocity dispersion obtained
from the simulations. On the other hand, in applications of the GSM to sur-
veys, a constant shift is added directly into eq. by means of a substitution
o1,(r) — o1,(r) + 03, and with o . considered a free parameter to be fitted
with observations; see e.g., [144, 82]. In order to utilize the GSM approach for
parameter inferences on real data, these works treated the offset as a nuisance

parameter with a broad prior of 0 — 40 applied. We also find, in agreement with
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these results in the context in GR, that adding large offsets is an inherent part of
ensuring a good fit with the data. Understanding the connection between the
offset and the underlying nonlinear clustering in MG, as well as the impact of
marginalizing over offsets in parameter estimation are areas of definite interest

in future work.

The framework developed is flexible and could be easily applied to any
scalar-tensor theory of interest. Future lines of improvement include explor-
ing how more general bias schemes, like for example including tidal bias terms,
in conjunction with corrections from EFT [193] can serve to further improve
the accuracy of the analytical model. It would be also very interesting to see
how including higher-order cumulants to the GSM expansion, as in [186]], could
yield additional predictive power. Last but not least, our perturbative treat-
ment can be used to disentangle modifications to gravity with estimators be-
yond the standard 2-point statistics, such as the marked correlation function
[204,1190, [74, 11}, [154] and higher order statistics. We plan to address these natu-

ral extensions in future work.

In this era of precision cosmology, the next-stage cosmological surveys, such
as DESI, EUCLID and the LSST, will thoroughly explore the LSS of the universe
providing an opportunity to shed light on the dark sector. This highlights the
need to compliment such observational endeavors with efficient analytical ap-
proaches to characterize the distinctive signatures of theoretical models of the
dark sector that the observations can constrain. In this work we have shown that
the GSM, previously only explored for GR-based cosmologies, can also serve as
a valuable predictive tool to probe cosmic modifications to gravity in redshift-

space as well as real-space, to explore modified gravity cosmologies with biased
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tracers observed through spectroscopic and photometric surveys.
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CHAPTER 6
CONCLUSIONS

It is hard to overstate how profound the impact of the discovery of cosmic ac-
celeration has been on the foundations of modern cosmology and physics. One
of the theoretical avenues explored in order to provide a viable cosmic self-
accelerative mechanism, has been the idea that Einstein’s General Relativity, one
of the cornerstones of modern theoretical physics, might actually break down
at cosmic scales. Such Modified Gravity theories that are being considered as
explanations for cosmic acceleration, make tantalizing predictions in the non-
linear regime of the LSS, which will be detectable in the era of precision cos-
mology, but also present great computational challenges in theoretically mod-
eling and actually detecting them. In the present thesis we discussed how we
can employ a combination of analytical, semi-analytical and simulation-based
techniques, so that our theoretical predictions can successfully confront the up-

coming cosmological observations.

In order to speed up N-body simulations for MG theories, we implemented
an adaptation of the COLA approach, a hybrid scheme that combines La-
grangian perturbation theory with an N-body approach, to model non-linear
collapse in the chameleon and symmetron classes of screening. The screening
effects were modeled effectively, through the attachment of a suppression fac-
tor to the linearized Klein-Gordon equations. The adapted COLA approach was
then benchmarked, with respect to an N-body code both for the ACDM scenario
and for the modified gravity theories. It was found to perform well in the es-
timation of the dark matter power spectra, with consistency of 1% to k ~ 2.5

h/Mpc. Redshift space distortions were also shown to be effectively modeled
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through a Lorentzian parameterization with a velocity dispersion fit to the data.
These results demonstrated that COLA, proposed to enable accurate and effi-
cient, non-linear predictions for ACDM, can be effectively applied to a wider
set of cosmological scenarios, with intriguing properties, for which clustering
behavior needs to be understood for upcoming surveys such as LSST, DESI,

Euclid and WFIRST.

The screening mechanism is a fundamental property that MG models ex-
hibit, which is necessary for them to evade stringent Solar System constraints
to gravity and remain viable. This strong suppression of the deviations, how-
ever, can make a potential detection extremely challenging, even for the future
ambitious surveys of the LSS. Down-weighting the high density, screened re-
gions in favor of the low density, unscreened ones offers the potential to expose
such modifications with much greater success. To that end, we assessed the
performance of a new “marked” transformation with this suppression property
and performed a systematic comparison with the previously known clipping
and logarithmic density transformations, in the context of ACDM and the sym-
metron and f(R) modified gravity models. Performance was measured in terms
of the fractional boost in the Fisher information and the signal-to-noise ratio
(SNR) for these models relative to the statistics derived from the standard den-
sity distribution. We found that all three statistics provided improved Fisher
boosts over the basic density statistics. Our results demonstrate how a series of
simple analytical transformations could dramatically increase the predicted in-
formation extracted on deviations from GR from large-scale surveys, and make

the prospect for a potential detection much more feasible.

Understanding the relationship between the distribution of halos and the
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underlying cosmic dark matter density field, known as large-scale halo bias, not
justin ACDM but also in MG theories, is a necessary step in order to successfully
interpret cosmological signals. To that end, we produced analytic predictions
for real and Fourier space two-point statistics for biased tracers in MG, using
the framework of Lagrangian Perturbation Theory, which we then compared
against those from state of the art N-body simulations in the f(R) Hu-Sawicki
and the nDGP braneworld theories of modified gravity. We found that the novel
physics of gravitational collapse in scalar-tensor theories with the chameleon or
the Vainshtein screening mechanism could be effectively factored in with bias
parameters analytically predicted using the Peak-Background Split formalism,
when updated to include the environmental sensitivity of modified gravity the-
ories, as well as changes to the halo mass function. These findings demonstrated
that the Convolution Lagrangian Perturbation Theory (CLPT) and Standard
Perturbation Theory (SPT) approaches can provide accurate analytic methods
to predict the correlation function and power spectra, respectively, for biased
tracers in modified gravity models and are able to characterize both the BAO,

power-law and small scale regimes needed for upcoming galaxy surveys.

Finally, we extended the scale-dependent Gaussian Streaming Model (GSM)
to produce analytical predictions for the anisotropic redshift-space correlation
function for biased tracers in modified gravity models. This was achieved
through employing the Convolution Lagrangian Perturbation Theory (CLPT)
re-summation scheme, with a local Lagrangian bias schema provided by the
peak-background split formalism, so as to predict the necessary ingredients that
enter the GSM, the real-space halo pairwise velocity and the pairwise velocity
dispersion. We further considered effective field theory contributions to the

pairwise velocity dispersion in order to model correctly its large scale behav-
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ior. Our method was applied on two widely-considered modified gravity mod-
els, the chameleon-screened f(R) Hu-Sawicki model and the nDGP Vainshtein
model, predictions that we compared against state-of-the-art N-body simula-
tions for the same models. This analysis demonstrated that the GSM approach
can comfortably predict the monopole and the quadrupole of the redshift-space
correlation function for halos, achieving a very good level of agreement with the
simulation data, for a wide range of screening mechanisms, levels of screening
and halo masses at z = 0.5 and z = 1. Consequently, this work highlighted the
applicability of the GSM for cosmologies beyond GR, demonstrating that it can

serve as a powerful predictive tool for the next stage of cosmological surveys.

The work laid out in this thesis aims to serve as the stepping stone upon
which multiple exciting future lines of work can emerge. Already shown to
be able to achieve results at the % level of accuracy, requiring only a tiny frac-
tion of the standard computational cost, the COLA method is ideal to use in
cases where we need to perform hundreds or thousands of simulations, in or-
der to adequately explore the parameter space of any given viable MG model.
In work that is currently underway within the Dark Energy Science Collabo-
ration, the COLA approach is being utilized to provide the training data set
for a Gaussian process emulator for summary statistics in the case of the f(R)
modified gravity. Going beyond the current method, COLA’s capabilities can
be easily expanded in order to incorporate predictions for other observables in
MG, such as weak lensing, the effects from other fundamental quantities, such
as the sum of neutrino masses and finally, statistics in other classes of MG mod-
els. The fundamental principles of the COLA method will be expanded, in a
research theme that has recently begun, in order to produce predictions for the

most general class of scalar-tensor MG theories with second order equations of
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motion, which is, as we have already seen, the Horndeski class. Furthermore,
the techniques developed in the MG implementation of COLA can be used to
incorporate MG predictions into the mass-Peak Patch algorithm, an efficient

LPT-based method for generating realistic halo mocks.

The marked statistics we considered in this work, are simple density trans-
formations that were shown to significantly boost the signals of MG that could
be lurking in the cosmic web. However, the analysis was performed in the sim-
plified setting of pure dark matter considerations. The next step would be to
quantitatively assess the performance of such transformations in the context
of realistic galaxy mocks, for a variety of MG scenarios; such an attempt has
already been underway within the DESI collaboration. More importantly, as
Stage-IV cosmology surveys are starting to see their first light (as DESI already
has done), it will be crucial and exciting to apply the statistics we developed
on these datasets. Furthermore, it would be very interesting to explore whether
such statistics can enhance our ability to constrain other cosmological proper-
ties that also manifest themselves in the cosmic voids, such as the sum of the

neutrino masses, the dark matter equation of state or the nature of inflation.

The perturbation theory approaches explored in this thesis, represent a
quick, one-time-step approach to capture the 2-point statistics of biased trac-
ers in MG, both in the real and the redshift space of galaxy clustering. Mul-
tiple lines of improvement can be applied in order to further enhance the ac-
curacy of these predictions and also push them down to even smaller scales.
These include, but are not necessarily restricted to, improving the accuracy of
the bias modeling, adding contributions from higher orders in perturbation

theory and also capturing small scale effects, which are impossible to model
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from first principles, through effective field theory corrections. Furthermore,
the accuracy in the prediction of the statistics in redshift-space, can be fur-
ther improved by considering including higher order cumulants in the Gaus-
sian streaming model re-summation scheme. Our work was so far focused on
obtaining predictions for the 2-point statistics in the configuration space only,
but an effort to obtain similar predictions for the MG halo power spectrum,
by modeling the various velocity moments in the Fourier space, has recently
begun. Such perturbative approaches are uniquely suitable to model the co-
variance matrix of the 2-point galaxy correlation function, an accurate predic-
tion of which would actually require thousands of available simulations for a
given model. Indeed, the LPT framework we developed is being currently em-
ployed to forecast constraints placed on gravity theories, when spectroscopic
galaxy samples will be combined with clustering abundances identified from
the thermal-Sunyaez Zeldovich effect in the CMB. Last but not least, there is a
wealth of other observables that can be analytically modeled using LPT for MG,
such as higher-order clustering statistics, the Lyman-a forest, multiple tracers

and the Sunyaev-Zeldovich effect.

In the coming decade, the next-stage cosmological surveys, such as DESI,
EUCLID, the LSST and WFIRST, will thoroughly explore the LSS of the uni-
verse, providing a unique opportunity to shed light on the true nature of the
dark sector. This fact highlights the need to complement such observational en-
deavors with a wide range of analytical, semi-analytical and simulation-based
approaches to characterize the distinctive signatures of theoretical models of the
dark sector that the observations can constrain. The work performed as part of

this thesis serves to complete a crucial step towards this goal.
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APPENDIX A
LAGRANGIAN PERTURBATION THEORY IN MODIFIED GRAVITY

LPT [38] works perturbatively in a displacement field s(q, a)
X =q+s(q,a) +sq,a) + ..., (A1)

where q and x are the initial and final comoving Eulerian particle positions. In
this formulation, all the information is reflected in the mapping through the
displacement field. Working up to first order gives the so-called Zel’dovich ap-
proximation in ACDM, for which the s(q, a) can be decomposed into a product

of temporal and spatial factors
V¢s1(q, a) = Di(a)Vgsi1(q, ap) (A.2)
and
V¢s(q, ap) = -6(q, ao) (A.3)

with 6(q, ap) being the Gaussian density field generated by an initial linear

power spectrum and D, (a) the scale independent first order growth factor, given

by
D, +2HD, = %Qm(a)Hle (A.4)

In an MG scenario, the growth factor is not scale independent any more and
Vgs1 = Di(q, a)V¢si(q, ao) (A.5)
where

Gerr
G

Di(k,a) + 2HD,(k,a) = %Qm(a)Hle(k, a) (A.6)

in Fourier space. This implies that particle trajectories, unlike in ACDM, are not

straight lines [188]]. (A.3) and (A.5) indeed give

Vq 2
s; = —-Di(q, a)ﬁé(q, ap) — o(q, Clo)ﬁDl(q, a) (A7)
a a
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The second term, responsible for the trajectory bending, vanishes when the
growing mode is scale independent, in which case one recovers the standard
ACDM Zel’dovich approximation. When working up to second order (2LPT),

we have in a similar fashion
Va$2(q. @) = Dr(a)V82(g, a0), (A-8)
where the second order growth factor is given by
Ds(a) + 2HDy(a) = %Qm(a)HzDz(a) (1 - D%(a)) (A.9)
For the early times, the spatial part is given by

1
V¢s2(q, ag) = 3 Z (Sli,islj,j - Sli,jslj,i) : (A.10)

i#]

In the MG case, we will have again

VqSZ(q7 a) = DZ(qa a)VqSZ(q7 a0)7 (A]']')
with the scale dependent second order growth factor that obeys

Ds(k,a) + 2HD>(k, a) = EQ,,,(a)HZDZ(k, a)x
2 (A.12)

G,rr
1_D2 k, eff’
( 1(k, a)) G

in the Fourier space. The fact that all of our models recover GR at early times,
guarantees that the early time spatial part is still given by (A.10). In our imple-
mentation of the full MG COLA scheme, a suitably modified version of 2LPTic

produces the LPT terms at every time step, through the Fourier space versions
of (A.5) and (A.11)

si(k,a) = —le(k a)o(K, ao)

(A.13)
SZ(k a) - __DZ(k a) Z Slllsljj Slljsljl)

i#j
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and also the same for the accelerations

k
T2[s,(k, a)] = ;{—2T2 [D1(k, @)16(k, o)
(A.14)

ik 1
Tz[Sz(k, a)] = —ETZ[Dz(k, 61)]5 Z (Sli,islj,j - Sli,jslj,i) .
i#]
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APPENDIX B
ONE LOOP CORRECTIONS FOR BIASED STATISTICS IN MG

In section [4.3.1] of the main text, it was stated that the two point statistics for
biased tracers, up to one loop in CLPT, are given by equations and (4.40),
in the configuration space and the Fourier space, respectively. The expressions
are convolutional integrals over a sum of individual terms that depend on the
Lagrangian correlators (4.58), which are essentially the fundamental blocks of
CLPT. These expressions (4.58), however, are functions of the Lagrangian co-
ordinates q, while the LPT solutions for the displacement fields up to various
orders are found in the Fourier space (through the growth factors (#.22),
and (B.5)). As was also stated in[4.3.1} substituting the LPT solutions into
gives the integral expressions for the MG Lagrangian correlators (4.59),
that depend on the functions (4.61), which are also the building blocks of the
SPT and LRT power spectra and (4.65). We start with the innermost layer
of integration, deriving the expressions for the k-dependent functions in
section before showing how to get to the correlators in section
Finally, in section we show how the SPT and LRT expressions for the two-
point statistics are derived. The notation and index structure is the one adopted

in [120] 119, 46]. These results are consistent with those recently presented in
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[17].
B.1 Polyspectra and k-functions in MG

In LPT, we solve for the displacement field ¥(q) across various orders in pertur-

bation theory, as

¥(q,) = ) Y0 =¥"(q0)+ ¥+ ¥q0). (B.1)

n=1

In the Fourier space representation, ¥(p), the solutions are expanded as
5 . ((&p &p C
POp) = — S -

X L (D1, - P)SL(P1)--OL(Pn),

(B.2)

where 6, (p,) are the linear density fields in the Fourier space at the time of eval-
uation. For gravitational evolution governed by GR, the growth factors are only
functions of time, and under the additional assumption of an Einstein-De Sitter
evolution, the Kernels Lﬁ.")(pl, ... P») admit simple scale-independent expressions
and can be simply evolved in time by powers of the linear growth factor
[120]. This assumption gives results accurate at the sub-percent level for ACDM

cosmologies [38].

In MG, however, the simple description presented above does not hold, in
principle, because the growth factors depend on both space and time, as we saw

in Section Following [15], we define
J
L) =2
j P

P’ D?(p1,p2)

p* DO(p1)DV(py2)

P Din(i,p2ps)

p? DV (p1)DD(p2) DN (ps3)’

LS'Z)(pl, p2) = (B.3)

(L§'3))xym(pl’ P2, p3) =i

181



where the MG growth factors are calculated through the prescription described
in Section4.2.2]and their time arguments have been dropped for notational sim-
plicity. Furthermore, the subscript in the third order Kernel is meant to empha-
size on the fact that the configuration that enters the 2-point statistics should be
symmetrized [120, [15]. The symmetrized third order growth factor that enters

the two-point statistics is given by [15]:

DY) (k,—p,p) = DV(k,—p,p) + DV (k, p, -p), (B.4)

sym
with D®(k, —p, p) given by:

(7 - Ak)) DV (k, —p, p) = D (p) (A(p) + T — A(k)) D(p, k)X

(P (k+ p))2 o o
- prkE | D™ (p) (A(p) + A(lp + KkI) - 2A(k)) D™ (p, k)

2 (k- p)’
k2p2

+ (2A(K) - Alp + ) — A(p)) DV(k) (D (p))

— (A(p + k) - () D) (DO(p)) = DOk (DV(p))

Mk o0 (2A(0> )2 M. K)lp + kP

3M(p + k) P 3 ) 6aM(p + KDIKII(p) (B.5)
2

m®]| (P &+p) p.(k+p) Do TApD

2
p-(k+p) (kK
( p’lp+ k|2) - p|k(Jr ;?) (A(k + pl) — A(0)) DY (p. K)D(p)

2
38T )+ A - 24000) D) (V)
k*p
1 kK 3)
N 5 6(12H(k) K&Isym

2

(k, —p, p)DV (k) (D (p))
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In (B.5), we additionally defined

., &p)

3 Y @ (B.6)
240) M0 K) +2(555) Kr 0. WIK)(p)

3 3H(k)I(p)

DV (k)D(p)

and also used the kernels K(F2L) and Ké?sym, the forms of which were shown in [15].
The second and third order LPT kernels need to be evaluated numerically,
now, for each value of py, p, and z and so should , which is the main point
of divergence between the MG implementation and the corresponding one in

GR.

Now, following [119], we define the mixed polyspectra C;, ;,, as

(Or(ky)...0L (k) P;, (p1)... Piy (P3))e =
(B.7)
= 2n)’opk; + .. + K+ .pi + .+ YD)V Ciy iy (P1s - PN)-
It is useful to decompose the various polyspectra into the various constituents,

order by order in perturbation theory, as e.g.

Ci(B) = CV(B) + CP () + C(B) + CEV(P) + ..

Ciw(P1, P2, P3) = C;Jl.klz)(ﬁl, P2, P3)+ (B.8)
Cl('jl'kzl)(p_)lﬁp_)% ﬁS) + ngz.kll)(p_)l, ﬁz, p_)g) + ...,

where the additional notation has been adopted

@1(k))...0L(k) P (p1)... T (py))e =
(B.9)
= Qn)*op(k; + .. + ki + .pi + ..+ py)(=)"C ) (py, .. py)
and as previously, the bracketed numbers in the superscripts indicate the or-
ders of contribution in each ¥,(p). The various polyspectra can be expressed as

functions of the Lagrangian kernels (B.3), by identifying the different contribu-
tions across each order in LPT, as in (B.8) and plugging the solutions (B.2) into
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equation (B.9). The ones relevant for the two-point statistics of biased tracers
are [119]:
Ci () = L ()L} (p)PL(p)

C*(p) = ! f i LA, p-p)LP P, p - p)x
ij 2 ) Qnp P i P

X P(p)Pr(p = p'D
1
C® = €7 = —5 LY @)Pu(p)

X f L2 (L) o~ DIPLP)
(2m)3 /e TR BT (B.10)

C(1.P2:3) = ~L7 (1. P)PL(P)PL(pP2)
C (P P2, p3) = (P13 ps, p2) =

= _Lgl)(pz)LEZ)(pl,PZ)PL(Pl)PL(Pz)

Cii(p1 P2, p3) = Cpi (p3, p1 p2) = Cly (92, p3, p1) =

= Lfl)(Pl)LE-I)(Pz)PL(Pl)PL(Pz),

where by P, (p) we denote the MG linear power spectrum.

The scalar functions Q,(k) and R,(k) that contribute to the SPT power spec-
trum (and as we shall see in the next section, to the Lagrangian correlators
(4.58)), are expressed as functions of the polyspectra in GR [119]. Fortu-
nately, since in MG the above picture is only modified through the modified
Kernels in (B.3), the relationships that give the various scalar functions are of
the same form as the ones presented in [119] (in particular, equations (A50)-
(A67) in Appendix A). However, one should be cautious at this point, because
certain symmetries that are present in the GR solutions, are not preserved any-
more. In particular, the integral in the Lh.s of eq. (A59) in [119] will not be equal
to R (k) + R,(k) anymore, because of the scale and redshift dependence of the
MG growth factors. In a similar manner, the functions resulting from eq. (A57)

and (A61), that used to be equal to R, (k) and Q,(k), respectively, in GR, will dif-
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ter for our MG models and should be additionally calculated. We denote these
by [R(k) + Ry(k)] 6, [Ri1(K)] 6 and [Q1(k)],,; to emphasize on their GR limit. In
order to illustrate how these calculations are performed, we show the deriva-
tions for [R, (k) + Ry(k)],,c and [Q1(k)],,;, that are both new in MG and serve as a

representative example of each category. For the former, we have:

d’p

57Ci (PP -k k) =

7
[RA(8) + Ro®)] g = ~5kik f

f —kik L(l)(k)L(z)( —p,K)PL(p)PL(k) =

- P fdrdx -k-p D®(p,k)
ot |k — pl2 DDO(p)DV(p — k)

(B.11)

PL(kr):
= P(k)f dP(k)fd r(-rx DP(=p.k)
4n2 " 0 P o Trr—2mx P %),

where we defined the quantities x = k-p, p=krand

7 D®(-p,k)

3DD()DIK)

_7DP(kVT+ 2 =2rx ki kr) (B.12)
3 DO(kr)DM (k)

D(-p.k) =

Da - DbX2 + DFL - Daz,

as was done in [15]. Similarly, for [Q;(k)],,; we will have:

[01(0)] 6 = (kk ki — Kkid 1) f = Lk, —pp-k) =
= g(kikjkl — k kiéﬂ)x

d3
f L L (P - WL (p.p - WPLP)PL - p) =

s vy PP~ k*) - k*p(k — P,
T 4m? plk — pl?

DP(p,k - p)PL(kr)PL(Ik — pl) =

(B.13)

k3 00 1 },.2(1 _ xZ) _
A P ————~ D¥p,k - p)P.(k -
i | e [ ax D0k - pPue - ph,
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where |k — p| = k V1 + r?> — 2rx is used and similarly as before, we defined
7 D®(pk-p)
3 DD(p)DD(k = pl)
7 D? (k. kr,k V1 + 2 = 2rx)
3 pO(PDOGKNT + 12 = 2r0)

b Dx2+r2—2rx+D b
I 2 -2 L or

D?(p.k-p) =

(B.14)

The above two Kernels, as well as all of the rest that we need, can be compactly

written in the form [119]:

S
On(k) = ) L drPy(kr)

1 (B.15)
X f dxPL(k V1 + 12 = 2rx)0,(r, x)
-1
and
5 - Lo
R, (k) = _2PL(k)f drPL(kr)f dxR,(r, x). (B.16)
47T 0 —1

Using similar methods as the one presented above we get that the various Q,(k),
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and after some algebra, are given by:

2 2 2
~ _ 2pe p@X HrT =2 ooy Do)
O =r (D“ -Db, 1 +7r2-2rx *DpL =Dy
~ rx(1—rx) (- X2+ =2rx  ~ =0
- 7 D(z)_D()—+D()_D()
Q> 1+r2—2rx[ a b1 +r2=2rx FL o
x x2(1 = rx)?
Q3_(1+r2—2rx)2
2, 2
~ _ s m@X +r 20X o) Do)
Q5—rx(Da - D, 572 2rx + Dy, — Dy,
~ x2(1 —rx)
Q7_(1+r2—2rx)
2’ o (B.17)
~ _ofre  m@X T D2rx o) Lo
Os=r (D“ -Db, 1 +7r2-2rx *DpL =Dy
~ rx(1 —rx)
Q= 14+r2-2rx
Q11=X2
12 =rXx
13—”2

A rP(-x) (= _ o X2+ =2rx _
- "7 | p@_pHhD 2 _ pHD
[Ql]MG_ 1+7r*—2rx b =Dy 1+r*—2rx +Dr = D).

Similarly, in accordance with equation (B.16), we will have the R, (k) functions:

21 D$)(k, —p, p)

k=15 1 1 2
107 DO&) (DD (p))

~ rx(1-rx) /- — > _ 5 =0
R, = 5O _ pO2 + P2 _ HO

: 1+r2—2rx( “ b FL 61—) (B.18)

R1(k) + Ra(k _ A=) s @2 50 AO

[Rik) + Roh)] o = a5 (DY = D' + D) - DY)

~ (1 -x*) - _ _ _

- "7 (p®_phD,2 2 _ pD
[ I]MG T 1+ 2 -2 (Da Dy x"+ Dy D(SI)'

The functions Q;-Qs, R, and R, are the only ones that are necessary to calcu-
late LPT statistics for pure dark matter considerations in MG, with the rest of
them that we present here, being the additional functions needed for statistics
of biased tracers in MG (in the configuration space). It should be emphasized

at this point, that even the functions that have the same integral structure as in
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GR (for example, Q9-Q;3), do differ from their GR values, but this difference is

manifested in the MG linear power spectra that appear in the integral relations

(B.15) and (B.16).

Let us finish this section, by noting that in the GR limit, the above functions
can be rather easily shown to recover their standard GR forms given in [119], if
one keeps in mind that Dfszf) = D% =0and DY = D’ = 1 (for Einstein-De Sitter)

in this limit.

B.2 Lagrangian correlators and g-functions in MG

Having derived the expressions for the scalar functions Q,(k) and R,(k) in MG
cosmologies, we will now derive the integral formulas for the Lagrangian cor-
relators (4.58), that are the building blocks of the 2-point statistics in CLPT. We
will adopt the notation of [46] in this section and will show how the functions in
their Appendix B will change for our MG models. To illustrate how the connec-
tion between the functions and the ones presented in the previous section
is drawn and also to show how these calculations are performed, we pick a
reprsentative example of one these functions, U\> and show the derivation be-

low. Starting with the definition:

U3 = 365N, 19
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we plug in the Fourier space representation of the field A; = ¥i(qz) — ¥i(q1), as

well of the linear overdensities and get:

U(q) = §'x

3 3

< (‘2175 (dzf)l (dz:)z £'P>® i1 ql( ipq _ eip“ll)5(p2)5‘(p1)\i1(2)(p)>

N d3p d3p1 d3p2 ip1-q1 i(p+p2)-q2 [ 7 ~ £2) (BZO)
1) evamienyt ¢ o(p2)o(p)¥~(p)

d%p d3p1 d3p2 lpzqz t(p+p1)q1
@2n)* 2n)* 2n)

c

<6(pz)5(p1)‘i’(2)(p)> :

c

This expression contains two terms, which turn out to be equal. For this reason,
we focus on the first one and notice that the cumulant can be expressed as a

polyspectrum, through (B.9). The substitution gives:

d’p d’p, &’p; p1-q (P+P2)CI2< 5 V7 >
PG i 5(0)3 (0 P -
oy 2 2 (P2)o(p)'Y“(p) )
d’p d3 P1-q Al ()
_ ¢ 95 CP(pr.pip1 - p) =
20 o (P, P;p1 —P) = (B.21)
i f @
_ g'e™ | —=C7(pr.p:p1 —p).
(271) 2y’

Ic

In the last line, we defined the integral I, that can be calculated by using the

definitions (B.10):

d3p 2
Ic=f—C§ '(p1,p;P1 —P) =
2n)?

d’p
ayﬁ@—mmmwm>
- _Eﬁf (P1i = )D(Z)P P
772 ) @ny T L(P)PL(P) (B.22)

3p1, P f f —rX) —
drP d D?
2 ) Pr(p1) rPr(pir) xl n r2 rx

[Ri(p1) + Ro(pD]ye

3 pi
:—7])—1[ 1(p1) + Ra(p) i
pl
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where we made use of the previous result (B.11). Plugging the result (B.22) into
(B.21) and relabelling p, as k, we have

Al d3p d3k d3p2 eik'ql
@n)* (2n)* 2n)’

: f O 0 [RyK) + RoB) ] = (B.23)

ei(p+pz)-qz<5(p2)5(k)‘P(2)(p)> =

c

452

1

3
L[ (—7) [R\(0) + Ro()] .1 k),

where we made use of the Bessel function identity % f_ 11 dxxe™ 4 = jj (kqg). In
exactly the same way, the second term in is equal to the first, which finally
gives:

Uy(g) = 2%2 f dkk(—g) [RiK) + Ra(k)] 6 1 (k). (B24)
This is the MG equivalent of equation (B28) in Appendix B of [46], which is

obviously recovered in the GR limit. In a similar manner, but after lengthy
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calculations, we get the expressions for all the correlators:

1 dk( 3
me)(q) = f? (_3) [Ri(K)) 6 Ji(kg),

1 dk( 3
Vi'P(g) = ) f7 (—7) [21(0)] g Ji(kq),

3 [dk Jolkq)
(112) _
S - 147[2 f [2 [Rl]MG + 4R2 + [Q ]MG + 2Q2] kq .
(112) 3 dk .
r 1472 [2 [RilmG + 4Rz + [Ql] mc T 2Q2] J3(kq),

1

UVg) = 5z [ dkk ) 2B ko)
1 5

U (q) = fdkk 21) 1(k) j1(kg),

UL (q) = fdkk —7) Os(k) j1(kg),
(B.25)

6
U (g) = f dkk —7) [Ri (k) + Ra(K)] 1y 71 (Kkq),

1
X = f dkﬁ(z([RI]Mc — Ry(k)) + 3[R 1y jo(kq)

jl(kq)}

=3[Ry + 2Rs + 2 [R1 (k) + Ra(k) ]y + 205 X

Y2 (q) = f dk( 134)([R1]Mc + 2R,

2[Ry (k) + Ray(K)] 6 + 2Q5) X | jolkq) —

Jl(kfI)
kg |’

Jikq)
. kq ]

1
X(g) = f dkak)| 2

V@)= ! f dka(k)[ 2]0(/“1)"'6j1(kq>],

kq
where we defined a(k) = P(k) + 5501 (k) + 3R, (k) and, following [46], we decom-

posed the matter terms as

Amn(Q) mn(Q)éij + Ymn@i@j (B 26)

Wii(q@) = Vi(@)qi0 jx + V2(q)q ok + V3(q)qioij + T(q)qiq jqx-
Now that the basic framework has been laid out, let us finish this section by

191



briefly summarizing the steps followed to calculate the two point statistics for
a given model: after calculating the necessary MG growth factors, (4.22),
and , using our Mathematica notebook, we feed our modified version of the
code in[[] with tabulated values of the growth factors for the various values of k,
r and x needed at a given cosmological redshift z, as well as with the MG linear
power spectrum given by:

D}k, 2)

2
L
DL0) 0)) PL (K, 0). (B.27)

PLMG(k’ Z) = [

The linear power spectrum for the background ACDM cosmology is calculated
using the publicly available code CAMB [107]. The PYTHON module com-
putes the various Q,(k) and R, (k) functions through equations (B.17) and (B.18),

which are then used to calculate the various components of the CLPT power
spectrum Px(k), through the integrations and (#.40). To calculate (B.25),
the g—function module is modified accordingly. The k functions can then be
simply combined to give the SPT and LRT power spectra, by equations
and (4.65), respectively. Finally, the modified C++ counterpart follows a similar
procedure to compute the configuration space two-point correlation function

given by CLPT, through (5.24).

B.3 SPT and LRT Power spectra

In the main text, it was stated that the SPT and LRT power spectra, given
by (4.64) and (4.65), correspondingly, are produced when one expands the re-

summed terms in the exponent of relation (4.40). Here we show how this

derivation takes place, a process that once again shares a lot of similarities with

Thttps://github.com/martinjameswhite/CLEFT_GSM
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the corresponding one in GR. When fully expanding the resummed Lagrangian

correlator Af; in (4.40), one gets:

Px(k) = f d’qe™

. .
X |1 = Shikjdij - ékikjkkWi i + by (2ik:U; — kik;AlY)

(B.28)
+ by (iki U = kiU UY) + b7 (&1 + ik,U}! = kik,UVUY)

1
+ Eb%é}z‘ + 2b1b2§LikiUl.(1)

As done previously, we pick one of terms that is modified, that is the term

btik;U}', and perform the integration as an example. Plugging in U} from (B.25):

i b} f dqe™ kU =

i b% 6 3 ikqx .

52 7 | dadpe™ kxp [Ri(p) + Ro(p)lyg j1(pg) =

~ b% 6 2 : : ikgx

7 f dqdpkpq” [Ri(p) + Ro(pP)] e J1(P9) f dxe"*x =
-1

b_flz

L= | dqdp kpg’ [Ri(p) + Ra(p)lyg i (pa)ir(kq) = (B.29)

b} 12 RPN
— = dp kp [Ri(p) + Re(D) |y |  daq” ji(pg)jitkq) =
0

6 k
b= f dp 150(p = D [Ri(P) + Ro(p) i =

by [Ri(k) + Ra(K) ] 6 »

where we also used the identity fooo dqq® j(pg)ji(kq) = 300(p — k). Similar com-
putations for the rest of the terms give . In the LRT case, we expand ev-
erything but the ¢g-independent, “zero-lag” piece of Aj;, which is equal to 2076;j,
with o7 = 25 fooo dkP; (k). Since this term is scale-independent, it can be pulled
out of the q integral and all the other integrations can be performed in the same

manner as above, resulting in (4.65), that differs from (4.64) only in terms of the

resummed exponential factor.
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APPENDIX C
PBS BIASES IN MG

In this section, we will explain the derivation of the Lagrangian PBS biases
in MG models with environmentally dependent gravitational collapse.
The PBS argument is commonly employed in conjunction with the halo ap-
proach [125,[124] 164], where one states that the conditional halo mass function
(M, A), modulated by a long-wavelength density perturbation A, is modeled
by the universal mass function prescription (#.47), with the collapse threshold
shifted as 6., — 6., — A. The same result was also derived in [157], based on the
rigorous definition (5.28), following a separate universe approach: with regards
to galaxy clustering, a large-scale density perturbation, A, can be viewed as a

modification of the mean physical density 9,, by an offset, that is [59]
O = (1 + A)om, (C.1)

where 9,, should not be confused with the mean comoving density p,, and in a

similar manner, the fractional overdensity at a point x, §,,(x), is shifted as:
5 (X) = 6,(x) + A. (C.2)

This reasoning can be employed to calculate the conditional halo mass function
fi,(A), by noticing that depends solely on comoving quantities (that will
not change), with the only exception of the density threshold ¢,,, through the

peak significance
y. = 6cr — Ocr — @m
¢ DO@QoM)  DO@o(M)o,’

(C.3)

that quantifies how rare a fluctuation above the density barrier o, = (1 + .,)0m

is, given an RMS amplitute at the time of collapse z, 6orys = DV (2)o(M)g,,. Now
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following Birkhoft’s theorem, the critical density for collapse, g.,, will be unaf-
fected in the presence a density perturbation A, since a collapsing overdensity

will not depend on the external spacetime. Combining this fact with equation

(C.1), relation (C.3) gives [157]

"(M _(1+5cr)@m_(l+A)@m_ 5cr_A
M= DO (Mg, — DD(@)o(M)’

(C.4)

The conditional halo mass function 7,(M, A) is now given by the universal pre-
scription (4.47)), but with the peak significance v.(M) in (C.4). Combining this
fact with the rigorous definition of the bias (5.28), gives the known PBS biases
for GR.

Let us now turn to the MG case. Following the discussion in Section it
is now clear how the density threshold will not be scale and redshift indepen-
dent anymore, but will depend on the comoving halo mass M, as well as the
environmental density 6,,,, that is, a function 6.,(M, 6..,). As a consequence, the

peak significance in MG will now become:

5cr(M, 5env) — ch(Ma 5env) - ém
DO)o(M)  DVY()o (M),

(C.5)

VeMG =

In the presence of a long-wavelength density perturbation A, g, will again

change according to (C.1), but also &,,, will now change as dictated by (C.2),

and so will 6., that depends on it, which will become 6..(M, 6.,,,) = 6cr(M, §eny +A).

eny

From the equivalent of (C.4), the MG peak significance will now become:

(1 +6.)0m = (1 + A)om _ 6er(M, 6eny + A) — A

Vemc(M) = DO (M)S,, — DO()a(M)

(C.6)

As in the GR case, the conditional halo mass function 7,(M,A) for MG is
now given by the universal prescription (4.47), but with the peak significance
V. uc(M) given by (C.6). Calculating, now, the first and second order derivatives
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that we need in (5.28), we will have, starting with the linear order:

diM, D) | _ Dyg| M, D)
dA o dA Ao av,. Ao
1 d [5cr(Ma 66111) + A) - A] dﬁh(M, 0) _ (C 7)
DO(z)or (M) dA oy Dewc '
[ — 1] dmy(,0)

DY) (M)  dveme
where we used the chain rule a few times and also the fact that v/,,.(M) =
vemug(M) at A = 0. The definition (5.28), combined with the result and
the universal prescription [#.47), gives:

[—d‘sff;g:f“") - 1] 1 d (VcMGf [VcMG])
DYR)a(M) vemcf [Vema] dveme

bri(M, Sy = , (C.8)

Similarly, the second order derivative will be:

d*i, (M, A)
dN?

_d diy,(M,A)
dA dA
A=0
I:dé(;y(M,éenv) _ 1

o) — 1| gy (M, 0)]

A=0
_d
T dA

DO@)o(M)  dveue

(C.9)

_ dzdcr(M’ 5env) 1 dﬁh(M7 0)
- dé? DY) (M)  dveye

eny

2
d6er(MSenv) _
[ d‘se/w - 1 ] dni (M’ O)

(DD (M) dViye

which will give the expression for the second order bias factor:

5y (M Seny
B (M, Sony) = S 1 d(wof Dewel)
MG =™ D) (M) Ve f [Vema] dveme
2
1 s

[D(l)(z)O'(M)]2 vema f [Vema) v’y
Equations (C.8) and (C.10) give the Lagrangian PBS biases of first and second

(C.10)

order in MG, for any universal mass function f[v.uc]. Applying these to the

particular ST form (4.50), we arrive at the relationships (4.78) and (4.79) in the
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main text. The derivatives of the form %

can be easily calculated numer-
ically, as soon as the function 6.,(M, d.,,) is known from integrating equation
(4.68). In MG models that still possess a scale and redshift independent barrier,
like the nDGP model (and possibly other models in the Vainshtein family), these
derivatives will vanish and we recover the standard GR expressions for the PBS

biases (4.53), but with a different §,.,.
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APPENDIX D
GSM FUNCTIONS IN MG

In this appendix, we give expressions for the necessary ingredients to construct
the Gaussian streaming model in LPT. That is, we find 1D integral expressions
for (5.44) and (5.49) in cosmologies beyond ACDM. Before displaying all these

equations, as an example we consider the “g-function” Ui(q):

’ d3k1d3k2 iki-q, ( ,ika-q, ika-q i
Uia) = - H<6L<q1)A> G ¢ (e = ot tide).. (D)

Up to 1-loop, (5.(k)Wika))e = Hf(k)(5.(k)W; (ko)) + 3H f(ka)(01(k) W (o)),
where for illustrative purposes we approximate Y™ (k) = nH f(k)¥™ (k). After

some straightforward manipulations one obtains (see, e.g., [46])

) dk k 7
Ui(q) = - fﬁk% [PL(k) + Rl(k)] Ji(kq) (D.2)

where the “k-function” R, is [120]

&°
Rk = 1570 [ SEk LV -pp)Putp) (D.3)

with L? the third order LPT kernel. In the rest of this appendix we will find all
the functions given by (5.44) and (5.49) without the use of the above approxima-

tion, which is not as accurate in MG models, as it is in ACDM.

D.1 LPT kernels

The Lagrangian displacement field is formally expanded as WYi(q,t) =
> P (q). In Fourier space, the nth order Lagrangian displacement is the

weighted convolution of n linear density fields,

® i &’k - - - d’k, ®
YPk,t)=— | ———pk-ky.,)L."(ky,...,K,;;0)0(ky,1)---6(k,,1). (D.4)
! n! (2m)3(=D !
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The first order kernel is L"(k) = k/k?, as can be seen from (5.16). Higher per-
turbative orders are obtained by solving iteratively (5.14) [15]. For L'® we have

_ 3k +ky);

(k - ky)?
"7 Ik, + ko|?

L,Q)(kl ko, 1)
kiks

ﬂ(k17k27 t) - B(k1’k27 t) (D'5)

where the A and B functions are obtained by solving second order differen-
tial equations, and are given in (2.19) of [17]; see also [15]. In ACDM we have
that functions A and B are equal and only time-dependent, while for EdS, or
more generally for ACDM models with 2 = Q,, these functions are exactly 1,
and hence the kernels become time independent. Since Alxcpm(z = 0) =~ 1.01,
this is usually approximated as 1, in what is called the static kernels approxima-
tion, yielding subpercent errors at quasilinear scales. In MG, the departure from
A, B = 1 is larger than the percent level; moreover, the A function carries the
non-linear terms responsible for screening mechanisms, such that the use of the
static kernels approximation in MG misses this important property of MG. By
isotropy we can write A, B(k,, ky, x = k; - k;) and perform a Legendre expansion
on the angle x. Such procedure shows that the monopole of these functions is
the dominant term, other multipoles give smaller contributions, and hence the
decomposition in is not as arbitrary as it may look at first sight. The case
of DGP, is even simpler, because 8 is only time dependent, and A has only a
monopole and a small quadrupole, the latter given exclusively by the screening

non-linear terms in the Klein-Gordon equation [16].

The expression for the third order kernel L\ is quite large and we do not
reproduce it here, but we refer the reader to ref. [15]. All these functions are
time-dependent, and for compactness we will omit to write it explicitly in the

following.
In LPT-RSD models one finds the time derivative of the Lagrangian displace-
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ment field. As was discussed in the main text, in ACDM, a good approximation
is given by ¥"(q) ~ nH f¥(q), which is no longer possible in MG since the linear
growth function D' is scale-dependent, as was discussed in the main text. A

general expression is

&l - &k,
(k) = —nfoH f W&)(k—kl...n)L{(”’(kl,--- J)o() - 6(k,), (D.6)

with k.., = k; +--- + k,,, and kernels

_ f(k1)+...+f(kn)L(n)(k k) + LLi(n)(kl,"' k)

l’lfb i 1s ’ l’lfb
C rf(kla n)’ (D7)

L, k,)

kl
2
1.

where we remind that f(k,7) = d1ln D'V(k,1)/dIna is the growth factor at a scale
k, and fy = f(k = 0,1) is the large-scale growth factor, usually coinciding with
that of ACDM. The last line in the above equation serves to define the scalar
kernels F,’; and a set of numbers C,; for convenience we choose C; = 1, C, = 3/7.
We can use a weaker version of the static approximation and neglect the second
term in the second equality of ; however, we find that L’ is about the same
order as the corrections introduced by MG to the EdS kernels L|ggs. Hence, to

be consistent we have to keep both terms in that equation.

Analogously as we introduced I’ functions, for the Lagrangian displace-
ments we define

Cluky,.... k) =k L ki, .., k,), (D.8)

and hence these I', functions are the kernels of the longitudinal component of
the Lagrangian displacement, k - Y (k). Since for 1-loop, 2-point statistics, the
transverse components project out, one can use the scalar I" instead of vector L

kernels without loss of generality.

200



The first order scalar kernels are I';(k) = 1 and F{ (k) = f(k)/fo. To second

order
(p, 'P2)2 7 D(z)(Pl’Pz)
T , =|A , - B R = — s D.9
2[py, P, (P> Py) P> Py) p%p% 3D.(p D (p2) (D.9)
; _ f(p) + f(p2) . g (P, Py’
L2[p1-Pol = Dalpy Pl =75 + 70 | AP Py) = BP0 P = 5 5
_d_pO(p

_ L 7awP" PPy (D.10)

"~ 2f3 Di(p)Ds(p2)

where A, B = A, B(p,, p,), and D® is the second order growth function defined
in [15]. The third order kernels are

Dg)s(Pp P, P3)

CsT5(py. Py 5l = DD PD B’ (D.11)
1 LilaDG)s( ’ s )
CiTIp,. py.ps] = = e P1P2Ps (D.12)

3fo D+(P1)D+(P2)D+(P3)'
with the (symmetric) third order growth function D}* as given in [15]. Actually,
we will not use the value of C; at all, so we can let it free. But by defining

C, = 3/7 we make the notation simpler in the following sections.

We notice that the approximation of static kernels, usually taken in ACDM

and exact for EdS, corresponds to
| AR (ACDM), (D.13)

n

and therefore, the functions presented in the rest of this appendix can be re-

casted in their well-known, ACDM counterparts by omitting the “ f” labels.

D.2 Kk functions

The Q,(k) and R, (k) scalar functions, introduced first in [120, [119], are the build-

ing blocks of LPT statistics. These are constructed out of N-point functions of
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linear density fields, Lagrangian displacements and their derivatives, as for ex-
ample (5, (k;)¥™ (k,)¥™(k3)), with (n) and (m) denoting perturbative orders; see
[120,119]. We do not write here the definitions of these polyspectra, but we refer
the reader to the above referenced works and to [191), [17] for MG. Here we ex-

tend those definitions to include time derivatives of Lagrangian displacements.

The only k-functions involving third order Lagrangian displacements are

&p 21

Ri(k) = #l—ocsrg(k,—p,p>PL<p>PL<k>, (D.14)
d&p 21

R{(k) = (zﬂ’;l—ocgrg(k, —p, P)PL(P)PL(K). (D.15)

Expressions involving just one time derivative, and that it is operating on one

Lagrangian displacement to second order are denoted with a label “f”:

ojw= [ (‘21;’)’3 Lalp. k - pIr[p. k - pIP.(k - pDPL(P) (D.16)
ol = [ S BB Priip - pipuic- pOPup) (017)
0l(k) = (‘zljf; kp’f Iy[p.k — pIP(k - p)PL(p), (D.18)
ol - [ (‘zljf; Iip.k - pIP.(k - pDP(p). (D.19)
0/(k) = (‘21;’)’3 (lc P)I;Jkkip;;(k "D riip k- plPL(k — phPu(p).  (D20)
Ri(k) = (‘zljf; K« 'Ilel;_(l;l; Pk, -plPk)PL(p), (D.21)
R} (k) = (621;‘1)73 kliflf ;If ) Ip. KIPLOP(p), (D.22)
RI(k) = (‘zljf; (e p)I;ZTka_plilg(k Pl PP, (D.23)

The usual, “undotted”, Q and R functions are obtained by replacing I’} by I, in
the above equations. Functions R;, Q; and R, are equal to R, Q; and R, + R,

respectively for EdS kernels. In ref.[191] these are named as [R;]mc, [Q1]lmc and

[Ri + Ry ]mc-
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Now, the “fx” k-functions contain one derivative in a linear field, and no

derivatives in the other fields. These are given by

0" (k) = (‘zljf; ((k'p)l;szkz_pIil'z(k_P)Fz[p,k 2 b= pbPu)
(D.24)
0L () = (‘2111)’3 k- Pz)ﬂlz ' “;2‘ Praipk-pl L Pk - phrup, (D25
0 (k) = f = )3 k- pll L Pk = pOPL(p) (D.26)
RL () = (;z;,; ke ;’zll; _(l;l_z Plr, ik, -p1” ](f’ PP, (D27)
RL ) = (ij; S = Ltk ~pl L PP, (D.28)
Rl () = (‘;’)’3 (e P)I;ZTkkz_pI))lz(k “Pr ik, -pi ](f’ PP p). (D29)

While the “ff” k-functions —that contain two time derivatives, one in a linear
tield and the other in a second order field— are obtained by replacing I', — Fé in
the above equations. The exception to this rule is Q,, where a label “ f f” denotes

that the two second order Lagrangian displacements are differentiated,

L .
0}/ (k) = f (2753 I/[p.k - pIl’[p. k - p]P.(k - p)PL(p). (D.30)

Also, there are functions that contain two derivatives, and both in linear dis-

placement fields, denoted with an “f * f*” label, these are

e d’p (k-pk-£k°p)-(k—-p) f(lk D f(p)
Sl oy — p P P p _ JUK=PpDjp
Q0,7 (k) = 2} k= pP [[p. k % % Pr(k — pDPL(p),
(D.31)
&’p (k-p)k-(k-p) f(lk D f(p)
fxf _ p P p _ JUK=PpDjp
Q," (k)= 2 plk—pP Llp. k- pl—/—— % % Pr(k = pDPL(p).

(D.32)

The g-functions of (5.44) and (5.49) can be recasted as 1D integrations of the

above Q and R functions, which we will do in the upcoming section. The main
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differences with these functions and the corresponding in ACDM, are the use
of the kernels I', differing in the percent level in MG and standard cosmologies,
and more importantly, the appereance of factors f(k)/fy that can be as large as

~ 1.1.

D.3 q functions

Several g dependent functions should be calculated before computing the cor-

relation function, the pairwise velocity and the pairwise velocity dispersion.

These are the “U”, “A” and “W” functions defined in (5.44) and (5.49)

The U,(q) vector functions can be written as

U«q) = U(q)qi, (D.33)
with . L 5
U@ =5 f a’kk[%h(k) + ;R{(k) Ji(kg),
) 3
0% =55 [ dkkofka (D.34)

) 6 )
U'(qg) = _ﬁfdkkR{ﬂ(k)]l(kQ)-
In ACDM R/, 0/ ~ R,Q and f(k) = f,, hence we obtain the standard results

U=U"Y+30%, 0% =20% and U'" = 2U""; see [198].
The A functions are decomposed as

A = X6, + Y(@q:a;,  Aij(Q) = X(@)6i; + Y(9)aiq;, (D.35)
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with

X@) = [t %Pm 520+ 5 E0Rw + —Rf<k>H1 %q)]
o) = [ dk »@h(k) —9Qf(k>+25—1]$1e 0+ Rf(k>] jo(kg),

%)= [t (f](é") P+ 30 ) + Eof;f)R&k) E—%‘”]

P = [ (f;f)) PL) + 300 )+ 170f]€f)Rf<k> ok, (D.36)

and the A'° functions as
AQ = X", + Y aia;,  A(q =X"qs;+ V" Paiq;,  (D.37)
with

53| 2QR] 2R, + R" ~ RI") + 3R] + R[") jo(kq)

) 1 o0
Xio(q) = pf dk
0

. . ik
—3QR! + 4R, + 4R/, + 40! + Rl + 2RI + 2R/ + 2Q§*)Jlliqq> ,
Violq) = — mdk3 2R} + 4R} + 4R, + 40!
10((]) - P 28 + + 1+2 + Q5
0
+ R+ 2R + 2R + 2Q§'*] j2(kq),
P T R RO 17
Xi0(q) = 2 dk% 2(R;” —Ry") + 3R} jo(kq)
0
3R/ + 2R 4 2RI 420 Jl(kCI)
- 3( + T ok, + Q )——
y ! AX3nif oplf L oR! 120/
Tio(a) = — a3 ~ [R +2R + 2R +20! ] (k). (D.38)
0
Now, the W functions have the form
e = W0 WD 4 WD, = WD W WD, (D39)

where the dot over a number indicates that the Lagrangian displacement of that

order should be differentiated. Except for the undotted case, these cannot be
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decomposed as W, = V§udx + T§i4,;qr, because in general W, # W y,). How-

ever, we do have W;; = W;x and W, = Wi. These symmetries allow us to

decompose
Wi = V(@)§udjun + T(9)3:q jGxs (D.40)
Win(q) = Vl(Q)(Qiajk + Qj5ki> + Va(@)qu6i; + T(@)q:id 14 (D.41)
Wii(@) = Vi(@)qi6 jc + Va(@)(@;00 + Gudis) + T(@)a (D.42)

with V(¢g) and T'(¢) given in refs. [191} 17] for MG, and

. dk 3 X . k
T(q) = —f > 7k[2Q2 +20, + Q, + 0 +2f; )R2 +4Rf
+ 2R} + f;())R, +2R] + RI" | js(kg),
. dk 3 \ (9]
Vi(g) = f 270 k[4Qf +40Q)" +20] -30]" + HA—Re +8R]
+4R]" + 2@1%, 6R] — 3R | (kq) — lT'(q),
Jo 5
. . dk 3 . [k ,
Va(g) = Vi(g) - f STk 20/ - 0" + %R, —2R] | ji(kq), (D.43)

and

T(q) = —fdk ) [ fo+2Qf*f*+4fo+Qf*f*+8f( )Rf+8Rff

14k Jo
IO SV P J
Jo fo Jo
Vl(q):f;ﬂ;ék + Ol 200 —2pf 4 4T )Rf 4R!T

B e L) o prr KD e 1.,

R +2—=R) -8R} + —=R!"|ji(kq) — =T(q),

I % T Jiltkg) = 5T(q)

: : dk 3 ” .
@ =i~ [ 4 14’<l 20{/ - o[ ~arf! + L2 0R] + R ik). (D44)

which complete our search for 1D integral expressions for the functions defined

in (5.44) and (5.49).
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We end this section by emphasizing that the ACDM standard results are re-

covered by making the substitutions Q, R*/*/*/*/f = Q R.

D.4 Tidal bias

In this subsection we introduce tidal bias following [193]. This is achieved by
adding s* = s;;s;; as an argument to the Lagrangian biasing function F [see

(5.21)], with the shear tensor
89, 1
sij(q) = ? - géij 6((1) (D45)

Almost all expressions related to tidal bias contain only linear fields, such
that in the integrals of Appendix D of [193], they only need the substitution
P, — (f(k)/ )P, for dotted functions and P, — (f(k)/f)*P. for double-dotted

functions . The only new, substantially different function, is

3 dk
VI = (2@ =3 [ 350000 ka) (D46)

with

2
&p (k-p)-p) 1
Qp(k) = f 27 Ik -p,p) “Pk-pP 3 Pr(lk = pHPL(p). (DA47)

This does not reduce to the result of [193] for ACDM. Instead, it differs by a 1/2

. v/10 _ 1y,10[That work]
factor: V;” =3V, .
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APPENDIX E
DIRECT LAGRANGIAN APPROACH IN MG

In this Appendix section, we explain how the Direct Lagrangian approach to
RSD, laid out in section will be implemented in MG theories and point
out the differences with respect to the GR case. In particular, starting with the
simpler GR case, in section we explained how the LPT field evolves as
Y o D'(a), giving ¥ = nfyHP™, which allows us to map the LPT field to

redshift space, order by order, through
P = (6, + nfo2iz) P, (E.1)

where we made use of (5.31). Equation (E.I) then allows us to easily “Directly”
map each of the Lagrangian correlators (5.26) to redshift space. Focusing on
the function U;(q) = U(q)g;, as an example, and expanding order by order as

U(g) = U (q) + UV(g) + .., we get
U™ = (65 + nfoiz;) U, (E2)
where U™ denotes the redshift space version of U™ (g).

The above derivation does not hold in MG theories however, because of the
scale-dependent growth factors that are introduced, which means that ¥® #
nfHY™. In this case, and as explained in detail in the previous appendix sec-

tion D} ¥ is instead given by (D.6), combined with (D.7), which leads to the

mapping
() (1)
CT N T e T T Y H Gy '

From the definitions (5.26)), we will now get
U™ = U + forig, UV, (E.4)
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where U is given in

D.34).

In the GR limit, U(q) = U"V(q) + 3U®(g) and

(E.4) reduces back to the GR expression (E.2). The rest of the correlators (5.26)

can be similarly mapped to their redshift space expressions, following the same

procedure, combined with the “dot” functions presented in appendix @

209



BIBLIOGRAPHY

[1] B. P. Abbott et al. Gravitational Waves and Gamma-rays from a Bi-
nary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J.,
848(2):L13, 2017.

[2] B.P. Abbott et al. Multi-messenger Observations of a Binary Neutron Star
Merger. Astrophys. J., 848(2):L12, 2017.

[3] B.P. Abbott et al. GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101, 2017.

[4] T. Abbott et al. The dark energy survey. 2005.
[5] Paul A. Abell et al. LSST Science Book, Version 2.0. 2009.

[6] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters.
Astron. Astrophys., 594:A13, 2016.

[7] P.A.R. Ade et al. Planck 2013 results. XVI. Cosmological parameters. 2013.

[8] Shadab Alam et al. The clustering of galaxies in the completed SDSS-
IIT Baryon Oscillation Spectroscopic Survey: cosmological analysis of the
DR12 galaxy sample. Mon. Not. Roy. Astron. Soc., 470(3):2617-2652, 2017.

[9] David Alonso. CUTE solutions for two-point correlation functions from
large cosmological datasets. arXiv e-prints, page arXiv:1210.1833, October
2012.

[10] Raul Angulo, C. M. Baugh, C. S. Frenk, and C. G. Lacey. The detectability
of baryonic acoustic oscillations in future galaxy surveys. Mon. Not. Roy.
Astron. Soc., 383:755, 2008.

[11] Joaquin Armijo, Yan-Chuan Cai, Nelson Padilla, Baojiu Li, and John A.
Peacock. Testing modified gravity using a marked correlation function.
Mon. Not. Roy. Astron. Soc., 478(3):3627-3632, 2018.

[12] Pablo Arnalte-Mur, Wojciech A. Hellwing, and Peder Norberg. Real- and
redshift-space halo clustering in f(R) cosmologies. Monthly Notices of the
Royal Astronomical Society, 467(2):1569-1585, 01 2017.

210



[13] Christian Arnold, Pablo Fosalba, Volker Springel, Ewald Puchwein, and
Linda Blot. The modified gravity lightcone simulation project I: Statistics
of matter and halo distributions. 2018.

[14] Alejandro Aviles. Renormalization of Lagrangian bias via spectral param-
eters. Phys. Rev., D98(8):083541, 2018.

[15] Alejandro Aviles and Jorge L. Cervantes-Cota. Lagrangian perturbation
theory for modified gravity. Phys. Rev., D96(12):123526, 2017.

[16] Alejandro Aviles, Jorge L. Cervantes-Cota, and David F. Mota. Screen-
ings in Modified Gravity: a perturbative approach. Astron. Astrophys.,
622:A62,2019.

[17] Alejandro Aviles, Mario Alberto Rodriguez-Meza, Josue De-Santiago, and
Jorge L. Cervantes-Cota. Nonlinear evolution of initially biased tracers in
modified gravity. JCAP, 1811(11):013, 2018.

[18] Eugeny Babichev and Cdric Deffayet. An introduction to the Vainshtein
mechanism. Class. Quant. Grav., 30:184001, 2013.

[19] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki. Strong
constraints on cosmological gravity from GW170817 and GRB 170817A.
Phys. Rev. Lett., 119(25):251301, 2017.

[20] J. M. Bardeen, ]J. R. Bond, N. Kaiser, and A. S. Szalay. The statistics of
peaks of Gaussian random fields. Ap], 304:15-61, May 1986.

[21] Alexandre Barreira, Sownak Bose, and Baojiu Li. Speeding up N-body
simulations of modified gravity: Vainshtein screening models. JCAP,
1512(12):059, 2015.

[22] Alexandre Barreira, Baojiu Li, Carlton M. Baugh, and Silvia Pascoli.
Spherical collapse in Galileon gravity: fifth force solutions, halo mass
function and halo bias. JCAP, 1311:056, 2013.

[23] Alexandre Barreira, Baojiu Li, Wojciech A. Hellwing, Lucas Lombriser,
Carlton M. Baugh, and Silvia Pascoli. Halo model and halo properties in
Galileon gravity cosmologies. JCAP, 1404:029, 2014.

[24] Alexandre Barreira, Ariel G. Sdnchez, and Fabian Schmidt. Validating es-

211



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

timates of the growth rate of structure with modified gravity simulations.
Phys. Rev. D, 94:084022, Oct 2016.

P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu. The ROCKSTAR Phase-
space Temporal Halo Finder and the Velocity Offsets of Cluster Cores.
The Astrophysical Journal, 762:109, January 2013.

C. Beisbart, M. Kerscher, and K. Mecke. Mark Correlations: Relating Phys-
ical Properties to Spatial Distributions. In K. Mecke and D. Stoyan, edi-
tors, Morphology of Condensed Matter, volume 600 of Lecture Notes in
Physics, Berlin Springer Verlag, pages 358-390, 2002.

Claus Beisbart and Martin Kerscher. Luminosity- and morphology-
dependent clustering of galaxies. Astrophys. J., 545:6, 2000.

Emilio Bellini and Miguel Zumalacarregui. Nonlinear evolution of the
baryon acoustic oscillation scale in alternative theories of gravity. Phys.
Rev. D, 92:063522, Sep 2015.

Andreas A. Berlind and David H. Weinberg. The halo occupation distribu-
tion: Toward an empirical determination of the relation between galaxies
and mass. The Astrophysical Journal, 575(2):587, 2002.

F. Bernardeau, S. Colombi, E. Gaztanaga, and R. Scoccimarro. Large scale
structure of the universe and cosmological perturbation theory. Phys.
Rept., 367:1-248, 2002.

Davide Bianchi, Matteo Chiesa, and Luigi Guzzo. Improving the mod-
elling of redshift-space distortions ? I. A bivariate Gaussian description
for the galaxy pairwise velocity... Mon. Not. Roy. Astron. Soc., 446:75-84,
2015.

Davide Bianchi, Will Percival, and Julien Bel. Improving the modelling
of redshift-space distortions? II. A pairwise velocity model covering large
and small scales. Mon. Not. Roy. Astron. Soc., 463(4):3783-3798, 2016.

J. R. Bond, S. Cole, G. Efstathiou, and N. Kaiser. Excursion set mass func-
tions for hierarchical Gaussian fluctuations. The Astrophysical Journal,
379:440-460, October 1991.

Benjamin Bose and Kazuya Koyama. A Perturbative Approach to the

212



Redshift Space Power Spectrum: Beyond the Standard Model. JCAP,
1608(08):032, 2016.

[35] Benjamin Bose and Kazuya Koyama. A Perturbative Approach to the
Redshift Space Correlation Function: Beyond the Standard Model. JCAP,
1708(08):029, 2017.

[36] Benjamin Bose and Atsushi Taruya. The one-loop matter bispectrum as a
probe of gravity and dark energy. JCAP, 1810(10):019, 2018.

[37] Sownak Bose, Baojiu Li, Alexandre Barreira, Jian-hua He, Wojciech A.
Hellwing, Kazuya Koyama, Claudio Llinares, and Gong-Bo Zhao. Speed-
ing up N-body simulations of modified gravity: Chameleon screening
models. JCAP, 1702(02):050, 2017.

[38] E R. Bouchet, S. Colombi, E. Hivon, and R. Juszkiewicz. Perturbative
Lagrangian approach to gravitational instability. ~Astron. Astrophys.,
296:575, 1995.

[39] P. Brax, A.-C. Davis, B. Li, H. A. Winther, and G.-B. Zhao. Systematic
simulations of modified gravity: symmetron and dilaton models. JCAP,
10:002, October 2012.

[40] Philippe Brax, Anne-C. Davis, Baojiu Li, Hans A. Winther, and Gong-Bo
Zhao. Systematic simulations of modified gravity: chameleon models.
JCAP, 1304:029, 2013.

[41] Philippe Brax, Anne-Christine Davis, Baojiu Li, and Hans A. Winther.
A Unified Description of Screened Modified Gravity. Phys. Rev,,
D86:044015, 2012.

[42] Philippe Brax and Patrick Valageas. Impact on the power spectrum of
screening in modified gravity scenarios. Phys. Rev. D, 88:023527, Jul 2013.

[43] Philippe Brax, Carsten van de Bruck, Anne-Christine Davis, and Dou-
glas J. Shaw. f(R) Gravity and Chameleon Theories. Phys. Rev.,
D78:104021, 2008.

[44] T. Buchert. A class of solutions in Newtonian cosmology and the pancake
theory. Astron. Astrophys., 223:9-24, October 1989.

213



[45] Clare Burrage and Jeremy Sakstein. Tests of Chameleon Gravity. Living
Rev. Rel., 21(1):1, 2018.

[46] ]. Carlson, B. Reid, and M. White. Convolution Lagrangian perturbation
theory for biased tracers. MNRAS, 429:1674-1685, February 2013.

[47] ]. Carlson, M. White, and N. Padmanabhan. Critical look at cosmological
perturbation theory techniques. Phys. Rev. D, 80(4):043531, August 2009.

[48] Sean M. Carroll, Vikram Duvvuri, Mark Trodden, and Michael S. Turner.
Is cosmic speed - up due to new gravitational physics?  Phys. Rev,,
D70:043528, 2004.

[49] ]. Carron. Information Escaping the Correlation Hierarchy of the Conver-
gence Field in the Study of Cosmological Parameters. Physical Review
Letters, 108(7):071301, February 2012.

[50] Marius Cautun, Enrique Paillas, Yan-Chuan Cai, Sownak Bose, Joaquin
Armijo, Baojiu Li, and Nelson Padilla. The SantiagoHarvardEdinburgh-
Durham void comparison I. SHEDding light on chameleon gravity tests.
Mon. Not. Roy. Astron. Soc., 476(3):3195-3217, 2018.

[51] Asantha Cooray and Ravi K. Sheth. Halo models of large scale structure.
Phys. Rept., 372:1-129, 2002.

[52] Edmund J. Copeland, M. Sami, and Shinji Tsujikawa. Dynamics of dark
energy. Int. J. Mod. Phys., D15:1753-1936, 2006.

[53] J. Coupon, M. Kilbinger, H. J. McCracken, O. Ilbert, S. Arnouts, Y. Mellier,
U. Abbas, S. de la Torre, Y. Goranova, P. Hudelot, J.-P. Kneib, and O. Le
Fevre. Galaxy clustering in the CFHTLS-Wide: the changing relationship
between galaxies and haloes since z ~ 1.2*. Astronomy and Astrophysics,
542:A5, June 2012.

[54] Paolo Creminelli and Filippo Vernizzi. Dark Energy after GW170817 and
GRB170817A. Phys. Rev. Lett., 119(25):251302, 2017.

[55] Anne-Christine Davis, Baojiu Li, David F. Mota, and Hans A. Winther.
Structure Formation in the Symmetron Model. Astrophys. J., 748:61, 2012.

[56] M. Davis and P. J. E. Peebles. A survey of galaxy redshifts. V - The

214



two-point position and velocity correlations. The Astrophysical Journal,
267:465-482, April 1983.

[57] Antonio De Felice and Shinji Tsujikawa. f(R) theories. Living Rev. Rel.,,
13:3, 2010.

[58] C. Deffayet, Xian Gao, D. A. Steer, and G. Zahariade. From k-essence to
generalized galileons. Phys. Rev. D, 84:064039, Sep 2011.

[59] Vincent Desjacques, Donghui Jeong, and Fabian Schmidt. Large-Scale
Galaxy Bias. Phys. Rept., 733:1-193, 2018.

[60] G. R. Dvali, Gregory Gabadadze, and Massimo Porrati. 4-D gravity on a
brane in 5-D Minkowski space. Phys. Lett., B485:208-214, 2000.

[61] Gia Dvali, Gian F. Giudice, Cesar Gomez, and Alex Kehagias. UV-
Completion by Classicalization. JHEP, 08:108, 2011.

[62] G. Efstathiou, C. S. Frenk, S. D. M. White, and M. Davis. Gravitational
clustering from scale-free initial conditions. MNRAS, 235:715-748, De-
cember 1988.

[63] Daniel J. Eisenstein et al. Detection of the baryon acoustic peak
in the large-scale correlation function of SDSS luminous red galaxies.
Astrophys.]., 633:560-574, 2005.

[64] R. C. Elandt-Johnson and N. L. Johnson.
Survival Distributions, in Survival Models and Data Analysis (p.72).
John Wiley & Sons, Inc., Hoboken, NJ, USA., 1999.

[65] Jose Mara Ezquiaga and Miguel Zumalacrregui. Dark Energy Af-
ter GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett.,
119(25):251304, 2017.

[66] Matteo Fasiello and Zvonimir Vlah. Screening in perturbative approaches
to LSS. Phys. Lett., B773:236-241, 2017.

[67] K. B. Fisher. On the Validity of the Streaming Model for the
Redshift-Space Correlation Function in the Linear Regime.  The
Astrophysical Journal, eprint = astro-ph/9412081, keywords =
COSMOLOGY: LARGE-SCALE STRUCTURE OF UNIVERSE, COSMOLOGY: THEORY,

year = 1995, month = aug, volume = 448,

215



pages = 494, doi = 10.1086 /175980, adsurl =
https:/ /ui.adsabs.harvard.edu/abs/1995Ap]...448..494F, adsnote =
Provided by the SAO/NASA Astrophysics Data System.

[68] A. Goldstein et al. An Ordinary Short Gamma-Ray Burst with Extraordi-
nary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J.,
848(2):L14, 2017.

[69] Stefan Gottloeber, Martin Kerscher, Andrey V. Kravtsov, Andreas Fal-
tenbacher, Anatoly Klypin, and Volker Mueller. Spatial distribution of
galactic halos and their merger histories. Astron. Astrophys., 387:778,
2002.

[70] A.]. S. Hamilton. Measuring Omega and the real correlation function
from the redshift correlation function.

[71] A. ]J. S. Hamilton. Linear redshift distortions: A Review. In
Ringberg Workshop on Large Scale Structure Ringberg, Germany, September 23-28, 1996
1997.

[72] A.].S. Hamilton, C. D. Rimes, and R. Scoccimarro. On measuring the co-
variance matrix of the non-linear power spectrum from simulations. Mon.
Not. Roy. Astron. Soc., 371:1188-1204, September 2006.

[73] Wojciech A. Hellwing, Kazuya Koyama, Benjamin Bose, and Gong-Bo
Zhao. Revealing modified gravity signals in matter and halo hierarchi-
cal clustering. Phys. Rev., D96(2):023515, 2017.

[74] Csar Hernandez-Aguayo, Carlton M. Baugh, and Baojiu Li. Marked clus-
tering statistics in f(R) gravity cosmologies. Mon. Not. Roy. Astron. Soc.,
479(4):4824-4835, 2018.

[75] Csar Hernandez-Aguayo, Jiamin Hou, Baojiu Li, Carlton M. Baugh, and
Ariel G. Sanchez. Large-scale redshift space distortions in modified grav-
ity theories. Mon. Not. Roy. Astron. Soc., 485(2):2194-2213, 2019.

[76] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, ]. Dunk-
ley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith,
J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S.
Tucker, E. Wollack, and E. L. Wright. Nine-year wilkinson microwave
anisotropy probe (wmap) observations: Cosmological parameter results.
The Astrophysical Journal Supplement Series, 208(2):19, 2013.

216



[77] Kurt Hinterbichler and Justin Khoury. Screening long-range forces
through local symmetry restoration. Phys. Rev. Lett., 104:231301, Jun 2010.

[78] E. Hivon, E. R. Bouchet, S. Colombi, and R. Juszkiewicz. Redshift distor-
tions of clustering: A Lagrangian approach. Astron. Astrophys., 298:643—
660, 1995.

[79] Kai Hoffmann, Julien Bel, and Enrique Gaztanaga. Comparing halo bias
from abundance and clustering. Mon. Not. Roy. Astron. Soc., 450(2):1674—
1692, 2015.

[80] Gregory Walter Horndeski. Second-order scalar-tensor field equations in
a four-dimensional space. International Journal of Theoretical Physics,
10(6):363-384, 1974.

[81] Wayne Hu and Ignacy Sawicki. Models of f(R) Cosmic Acceleration that
Evade Solar-System Tests. Phys. Rev., D76:064004, 2007.

[82] M. Icaza-Lizaola et al. The clustering of the SDSS-IV extended Baryon Os-
cillation Spectroscopic Survey DR14 LRG sample: structure growth rate

measurement from the anisotropic LRG correlation function in the red-
shift range 0.6 j z ; 1.0. 2019.

[83] Wolfram Research, Inc. Mathematica, Version 11.3. Champaign, IL, 2018.
[84] Mustapha Ishak. Testing General Relativity in Cosmology. 2018.

[85] E. Jennings, C. M. Baugh, B. Li, G.-B. Zhao, and K. Koyama. Redshift-
space distortions in f(R) gravity. MNRAS, 425:2128-2143, September 2012.

[86] N. Kaiser. On the spatial correlations of Abell clusters. The Astrophysical
Journal, 284:1.9-1.12, September 1984.

[87] Nick Kaiser. Clustering in real space and in redshift space. Monthly
Notices of the Royal Astronomical Society, 227(1):1-21, 1987.

[88] Nick Kaiser. Clustering in real space and in redshift space. Monthly
Notices of the Royal Astronomical Society, 227(1):1-21, 07 1987.

[89] Eyal A. Kazin, Jun Koda, Chris Blake, and Nikhil Padmanabhan. Im-
proved WiggleZ Dark Energy Survey Distance Measurements to z = 1
with Reconstruction of the Baryonic Acoustic Feature. 2014.

217



[90] Justin Khoury. Theories of Dark Energy with Screening Mechanisms.
2010.

[91] Justin Khoury. Les Houches Lectures on Physics Beyond the Standard
Model of Cosmology. 2013.

[92] Justin Khoury and Amanda Weltman. Chameleon cosmology. Phys. Rev.
D, 69:044026, Feb 2004.

[93] Justin Khoury and Amanda Weltman. Chameleon fields: Awaiting sur-
prises for tests of gravity in space. Phys. Rev. Lett., 93:171104, Oct 2004.

[94] Justin Khoury and Mark Wyman. N-Body Simulations of DGP and De-
gravitation Theories. Phys. Rev., D80:064023, 2009.

[95] Anatoly Klypin and Jon Holtzman. Particle mesh code for cosmological
simulations. 1997.

[96] Kazuya Koyama. Ghosts in the self-accelerating universe. Class. Quant.
Grav., 24(24):R231-R253, 2007.

[97] Kazuya Koyama. Cosmological Tests of Modified Gravity. Rept. Prog.
Phys., 79(4):046902, 2016.

[98] Kazuya Koyama, Atsushi Taruya, and Takashi Hiramatsu. Nonlinear evo-
lution of the matter power spectrum in modified theories of gravity. Phys.
Rev. D, 79:123512, Jun 2009.

[99] Andrey V. Kravtsov, Andreas A. Berlind, Risa H. Wechsler, Anatoly A.
Klypin, Stefan Gottlber, Brandon Allgood, and Joel R. Primack. The

dark side of the halo occupation distribution. The Astrophysical Journal,
609(1):35, 2004.

[100] J. Kwan, G. F. Lewis, and E. V. Linder. Mapping Growth and Gravity with
Robust Redshift Space Distortions. The Astrophysical Journal, 748:78,
April 2012.

[101] T.Y. Lam and R. K. Sheth. Perturbation theory and excursion set estimates
of the probability distribution function of dark matter, and a method for
reconstructing the initial distribution function. Mon. Not. Roy. Astron.
Soc., 386:407, 2008.

218



[102] Tsz Yan Lam and Baojiu Li. Excursion set theory for modified gravity:
correlated steps, mass functions and halo bias. Monthly Notices of the
Royal Astronomical Society, 426(4):3260-3270, 2012.

[103] Stephen D.Landy and Alexander S. Szalay. An inversion method for mea-
suring beta in large redshift surveys. Astrophys.J., 579:76-82, 2002.

[104] Istvan Laszlo and Rachel Bean. Nonlinear growth in modified gravity
theories of dark energy. Phys. Rev., D77:024048, 2008.

[105] R. Laureijs et al. Euclid Definition Study Report. 2011.

[106] Michael Levi et al. The DESI Experiment, a whitepaper for Snowmass
2013. 2013.

[107] Antony Lewis, Anthony Challinor, and Anthony Lasenby. Efficient com-
putation of CMB anisotropies in closed FRW models. Astrophys. J.,
538:473-476, 2000.

[108] Baojiu Li and John D. Barrow. N-Body Simulations for Coupled Scalar
Field Cosmology. Phys. Rev., D83:024007, 2011.

[109] Baojiu Li and George Efstathiou. An extended excursion set approach to
structure formation in chameleon models. Monthly Notices of the Royal
Astronomical Society, 421(2):1431-1442, 2012.

[110] Baojiu Li and Tsz Yan Lam. Excursion set theory for modified gravity:
Eulerian versus lagrangian environments. Monthly Notices of the Royal
Astronomical Society, 425(1):730-739, 2012.

[111] Baojiu Li, Gong-Bo Zhao, and Kazuya Koyama. Exploring Vainshtein
mechanism on adaptively refined meshes. JCAP, 1305:023, 2013.

[112] Baojiu Li, Gong-Bo Zhao, Romain Teyssier, and Kazuya Koyama. Ecos-
mog : an efficient code for simulating modified gravity. Journal of
Cosmology and Astroparticle Physics, 2012(01):051, 2012.

[113] Baojiu Li and Hongsheng Zhao. Structure formation by a fifth force: n-
body versus linear simulations. Phys. Rev. D, 80:044027, Aug 2009.

[114] Claudio Llinares and Nuala McCullagh. Weighted density fields as im-
proved probes of modified gravity models. 2017.

219



[115] Lucas Lombriser, Baojiu Li, Kazuya Koyama, and Gong-Bo Zhao. Mod-
eling halo mass functions in chameleon f(R) gravity. Phys. Rev,,
D87(12):123511, 2013.

[116] Lucas Lombriser, Fergus Simpson, and Alexander Mead. Unscreen-
ing Modified Gravity in the Matter Power Spectrum. Phys. Rev. Lett.,
114(25):251101, 2015.

[117] Chung-Pei Ma and James N. Fry. Deriving the nonlinear cosmological
g Y- & &
power spectrum and bispectrum from analytic dark matter halo profiles
and mass functions. Astrophys. J., 543:503-513, 2000.

[118] M. Manera, Ravi K. Sheth, and R. Scoccimarro. Large-scale bias and the
inaccuracy of the peak-background split. Monthly Notices of the Royal
Astronomical Society, 402:589-602, February 2010.

[119] Takahiko Matsubara. Nonlinear perturbation theory with halo bias
and redshift-space distortions via the Lagrangian picture. Phys. Rev,
D78:083519, 2008. [Erratum: Phys. Rev.D78,109901(2008)].

[120] Takahiko Matsubara. Resumming Cosmological Perturbations via the La-
grangian Picture: One-loop Results in Real Space and in Redshift Space.
Phys. Rev., D77:063530, 2008.

[121] Takahiko Matsubara. Nonlinear perturbation theory integrated with
nonlocal bias, redshift-space distortions, and primordial non-gaussianity.
Phys. Rev. D, 83:083518, Apr 2011.

[122] Takahiko Matsubara. Recursive Solutions of Lagrangian Perturbation
Theory. Phys. Rev., D92(2):023534, 2015.

[123] P. McDonald and A. Roy. Clustering of dark matter tracers: generalizing
bias for the coming era of precision LSS. JCAP, 8:020, August 2009.

[124] H.J. Mo, Y. P. Jing, and S. D. M. White. High-order correlations of peaks
and halos: A Step toward understanding galaxy biasing. Mon. Not. Roy.
Astron. Soc., 284:189, 1997.

[125] H.]J. Mo and Simon D. M. White. An Analytic model for the spatial clus-
tering of dark matter halos. Mon. Not. Roy. Astron. Soc., 282:347, 1996.

220



[126] Steven Murray, Chris Power, and Aaron Robotham. HMFcalc: An Online
Tool for Calculating Dark Matter Halo Mass Functions. 2013.

[127] M. C. Neyrinck, I. Szapudi, N. McCullagh, A. Szalay, B. Falck, and
J. Wang. Density-dependent clustering: I. Pulling back the curtains on
motions of the BAO peak. ArXiv e-prints, October 2016.

[128] M. C. Neyrinck, I. Szapudi, and A. S. Szalay. Rejuvenating the Mat-
ter Power Spectrum: Restoring Information with a Logarithmic Density
Mapping. Astrophysical Journal, Letters, 698:L.90-L93, June 2009.

[129] Mark C. Neyrinck and Istvan Szapudi. Information content in the halo-
model dark-matter power spectrum II: Multiple cosmological parameters.
Mon. Not. Roy. Astron. Soc., 375:L51-L55, 2007.

[130] Keith A. Olive and Maxim Pospelov. Environmental dependence of
masses and coupling constants. Phys. Rev., D77:043524, 2008.

[131] J. A. Peacock. Errors on the measurement of ? via cosmological dipoles.
Monthly Notices of the Royal Astronomical Society, 258(3):581-586, 10
1992.

[132] J. A. Peacock and S. J. Dodds. Reconstructing the linear power spectrum
of cosmological mass fluctuations. Mon. Not. Roy. Astron. Soc., 267:1020-
1034, 1994.

[133] J. A. Peacock and R. E. Smith. Halo occupation numbers and galaxy bias.
Mon. Not. Roy. Astron. Soc., 318:1144, 2000.

[134] J. A. Peacock and M. J. West. The power spectrum of Abell cluster corre-
lations. MNRAS, 259:494-504, December 1992.

[135] P.]J. E. Peebles. The large-scale structure of the universe. 1980.

[136] Will J. Percival et al. Measuring the Baryon Acoustic Oscillation scale
using the SDSS and 2dFGRS. Mon. Not. Roy. Astron. Soc., 381:1053-1066,
2007.

[137] Will]. Percival et al. Baryon Acoustic Oscillations in the Sloan Digital Sky
Survey Data Release 7 Galaxy Sample. 2009.

221



[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

S. Perlmutter et al. Measurements of Omega and Lambda from 42 high
redshift supernovae. Astrophys. J., 517:565-586, 1999.

Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ash-
down, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett,
and et al. Planck 2015 results. XIIL. Cosmological parameters. Astronomy
and Astrophysics, 594:A13, September 2016.

W. H. Press and P. Schechter. Formation of Galaxies and Clusters of
Galaxies by Self-Similar Gravitational Condensation. The Astrophysical
Journal, 187:425-438, February 1974.

Ewald Puchwein, Marco Baldi, and Volker Springel. Modified-gravity-
gadget: a new code for cosmological hydrodynamical simulations of
modified gravity models. Monthly Notices of the Royal Astronomical
Society, 436(1):348-360, 2013.

Thomas R. Quinn, Neal Katz, Joachim Stadel, and George Lake. Time
stepping N body simulations. Submitted to: Astrophys. J., 1997.

Bharat Ratra and P. J. E. Peebles. Cosmological consequences of a rolling
homogeneous scalar field. Phys. Rev. D, 37:3406-3427, Jun 1988.

Beth A. Reid, Lado Samushia, Martin White, Will J. Percival, Marc Man-
era, Nikhil Padmanabhan, Ashley J. Ross, Ariel G. Sanchez, Stephen Bai-
ley, Dmitry Bizyaev, Adam S. Bolton, Howard Brewington, J. Brinkmann,
Joel R. Brownstein, Antonio J. Cuesta, Daniel J. Eisenstein, James E. Gunn,
Klaus Honscheid, Elena Malanushenko, Viktor Malanushenko, Claudia
Maraston, Cameron K. McBride, Demitri Muna, Robert C. Nichol, Daniel
Oravetz, Kaike Pan, Roland de Putter, N. A. Roe, Nicholas P. Ross,
David J. Schlegel, Donald P. Schneider, Hee-Jong Seo, Alaina Shelden,
Erin S. Sheldon, Audrey Simmons, Ramin A. Skibba, Stephanie Snedden,
Molly E. C. Swanson, Daniel Thomas, Jeremy Tinker, Rita Tojeiro, Licia
Verde, David A. Wake, Benjamin A. Weaver, David H. Weinberg, Idit Ze-
havi, and Gong-Bo Zhao. The clustering of galaxies in the SDSS-III Baryon
Oscillation Spectroscopic Survey: measurements of the growth of struc-
ture and expansion rate at z = 0.57 from anisotropic clustering. MNRAS,
426(4):2719-2737, Nov 2012.

Beth A. Reid and Martin White. Towards an accurate model of the
redshift-space clustering of haloes in the quasi-linear regime. Monthly
Notices of the Royal Astronomical Society, 417(3):1913-1927, 2011.

222



[146] A. Repp and L. Szapudi. Precision prediction of the log power spectrum.
Mon. Not. Roy. Astron. Soc., 464:L.21-125, January 2017.

[147] Adam G. Riess et al. Type la supernova discoveries at z ; 1 from the
Hubble Space Telescope: Evidence for past deceleration and constraints
on dark energy evolution. Astrophys. J., 607:665-687, 2004.

[148] Christopher D. Rimes and Andrew J. S. Hamilton. Information content
of the non-linear matter power spectrum. Mon. Not. Roy. Astron. Soc.,
360:L82-L86, 2005.

[149] Christopher D. Rimes and Andrew J. S. Hamilton. Information content of
the non-linear power spectrum: the effect of beat-coupling to large scales.
Mon. Not. Roy. Astron. Soc., 371:1205-1215, 2006.

[150] Jeremy Sakstein and Bhuvnesh Jain. Implications of the Neutron Star
Merger GW170817 for Cosmological Scalar-Tensor Theories. Phys. Rev.
Lett., 119(25):251303, 2017.

[151] L. Samushia, W. J. Percival, and A. Raccanelli. Interpreting large-scale
redshift-space distortion measurements. Monthly Notices of the Royal
Astronomical Society, 420(3):2102-2119, 02 2012.

[152] Lado Samushia, Beth A. Reid, Martin White, Will J. Percival, Antonio J.
Cuesta, Lucas Lombriser, Marc Manera, Robert C. Nichol, Donald P.
Schneider, Dmitry Bizyaev, Howard Brewington, Elena Malanushenko,
Viktor Malanushenko, Daniel Oravetz, Kaike Pan, Audrey Simmons,
Alaina Shelden, Stephanie Snedden, Jeremy L. Tinker, Benjamin A.
Weaver, Donald G. York, and Gong-Bo Zhao. The clustering of galax-
ies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing
deviations from A and general relativity using anisotropic clustering of
galaxies. MNRAS, 429(2):1514-1528, Feb 2013.

[153] Lado Samushia, Beth A. Reid, Martin White, Will J. Percival, Antonio J.
Cuesta, Gong-Bo Zhao, Ashley J. Ross, Marc Manera, Eric Aubourg, Flo-
rian Beutler, Jon Brinkmann, Joel R. Brownstein, Kyle S. Dawson, Daniel J.
Eisenstein, Shirley Ho, Klaus Honscheid, Claudia Maraston, Francesco
Montesano, Robert C. Nichol, Natalie A. Roe, Nicholas P. Ross, Ariel G.
Sanchez, David ]. Schlegel, Donald P. Schneider, Alina Streblyanska,
Daniel Thomas, Jeremy L. Tinker, David A. Wake, Benjamin A. Weaver,
and Idit Zehavi. The clustering of galaxies in the SDSS-III Baryon Oscil-
lation Spectroscopic Survey: measuring growth rate and geometry with
anisotropic clustering. MNRAS, 439(4):3504-3519, Apr 2014.

223



[154] Siddharth Satpathy, Rupert A. C. Croft, Shirley Ho, and Baojiu Li. Mea-
surement of marked correlation functions in SDSS-III Baryon Oscillation
Spectroscopic Survey using LOWZ galaxies in Data Release 12. Mon. Not.
Roy. Astron. Soc., 484(2):2148-2165, 2019.

[155] V. Savchenko et al. INTEGRAL Detection of the First Prompt Gamma-
Ray Signal Coincident with the Gravitational-wave Event GW170817.
Astrophys. J., 848(2):L15, 2017.

[156] F. Schmidt, W. Hu, and M. Lima. Spherical collapse and the halo model
in braneworld gravity. Phys. Rev. D, 81(6):063005, March 2010.

[157] Fabian Schmidt, Donghui Jeong, and Vincent Desjacques.  Peak-
background split, renormalization, and galaxy clustering. Phys. Rev. D,
88:023515, Jul 2013.

[158] Roman Scoccimarro. Transients from initial conditions: a perturbative
analysis. Mon. Not. Roy. Astron. Soc., 299:1097, 1998.

[159] Roman Scoccimarro. Redshift-space distortions, pairwise velocities and
nonlinearities. Phys. Rev., D70:083007, 2004.

[160] Romén Scoccimarro. Redshift-space distortions, pairwise velocities, and
nonlinearities. Phys. Rev. D, 70:083007, Oct 2004.

[161] Roman Scoccimarro, Ravi K. Sheth, Lam Hui, and Bhuvnesh Jain. How
many galaxies fit in a halo? Constraints on galaxy formation efficiency
from spatial clustering. Astrophys. J., 546:20-34, 2001.

[162] Uro § Seljak, Nico Hamaus, and Vincent Desjacques. How to suppress the
shot noise in galaxy surveys. Phys. Rev. Lett., 103:091303, Aug 2009.

[163] Ravi K. Sheth, Andrew ]. Connolly, and Ramin Skibba. Marked correla-
tions in galaxy formation models. Submitted to: Mon. Not. Roy. Astron.
Soc., 2005.

[164] Ravi K. Sheth and Gerard Lemson. Biasing and the distribution of dark
matter haloes. Mon. Not. Roy. Astron. Soc., 304:767, 1999.

[165] RaviK. Sheth, H.]. Mo, and Giuseppe Tormen. Ellipsoidal collapse and an
improved model for the number and spatial distribution of dark matter
haloes. Mon. Not. Roy. Astron. Soc., 323:1, 2001.

224



[166] Ravi K. Sheth and Giuseppe Tormen. Large scale bias and the peak back-
ground split. Mon. Not. Roy. Astron. Soc., 308:119, 1999.

[167] Ravi K. Sheth and Giuseppe Tormen. On the environmental dependence
of halo formation. Mon. Not. Roy. Astron. Soc., 350:1385, 2004.

[168] F. Simpson, J. B. James, A. F. Heavens, and C. Heymans. Clipping the Cos-
mos: The Bias and Bispectrum of Large Scale Structure. Physical Review
Letters, 107(27):271301, December 2011.

[169] Fergus Simpson, Alan F. Heavens, and Catherine Heymans. Clipping the
cosmos. II. Cosmological information from nonlinear scales. Phys. Rev.,
D88(8):083510, 2013.

[170] Ramin Skibba, Ravi K. Sheth, Andrew ]. Connolly, and Ryan Scranton.
The luminosity-weighted or ‘marked” correlation function. Mon. Not.
Roy. Astron. Soc., 369:68-76, 2006.

[171] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, E. R.
Pearce, P. A. Thomas, G. Efstathiou, and H. M. P. Couchmann. Stable clus-

tering, the halo model and nonlinear cosmological power spectra. Mon.
Not. Roy. Astron. Soc., 341:1311, 2003.

[172] D. Spergel, N. Gehrels, ]J. Breckinridge, M. Donahue, A. Dressler, et al.
Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope
Assets WFIRST-AFTA Final Report. 2013.

[173] D. N. Spergel et al. First year Wilkinson Microwave Anisotropy
Probe (WMAP) observations: Determination of cosmological parameters.
Astrophys. J. Suppl., 148:175-194, 2003.

[174] V. Springel. The cosmological simulation code GADGET-2. MNRAS,
364:1105-1134, December 2005.

[175] V. Springel, S. D. M. White, G. Tormen, and G. Kauffmann. Populating a
cluster of galaxies - I. Results at [formmu2]z=0. Monthly Notices of the

Royal Astronomical Society, 328:726—750, December 2001.

[176] Hans F. Stabenau and Bhuvnesh Jain. N-Body Simulations of Alternate
Gravity Models. Phys. Rev., D74:084007, 2006.

225



[177] Ryuichi Takahashi, Naoki Yoshida, Masahiro Takada, Takahiko Mat-
subara, Naoshi Sugiyama, Issha Kayo, Atsushi J. Nishizawa, Takahiro
Nishimichi, Shun Saito, and Atsushi Taruya. Simulations of Baryon
Acoustic Oscillations II: Covariance matrix of the matter power spectrum.
Astrophys. J., 700:479-490, 2009.

[178] Atsushi Taruya and Takashi Hiramatsu. A Closure Theory for Non-linear
Evolution of Cosmological Power Spectra. Astrophys. J., 674:617, 2008.

[179] Atsushi Taruya, Kazuya Koyama, Takashi Hiramatsu, and Akira Oka. Be-
yond consistency test of gravity with redshift-space distortions at quasi-
linear scales. Phys. Rev., D89(4):043509, 2014.

[180] Atsushi Taruya, Takahiro Nishimichi, Francis Bernardeau, Takashi Hi-
ramatsu, and Kazuya Koyama. Regularized cosmological power spec-

trum and correlation function in modified gravity models. Phys. Rev. D,
90:123515, Dec 2014.

[181] Svetlin Tassev. Lagrangian or Eulerian; Real or Fourier? Not All Ap-
proaches to Large-Scale Structure Are Created Equal. JCAP, 1406:008,
2014.

[182] Svetlin Tassev, Matias Zaldarriaga, and Daniel Eisenstein. Solving Large
Scale Structure in Ten Easy Steps with COLA. JCAP, 1306:036, 2013.

[183] A.N. Taylor and A.]J. S. Hamilton. Nonlinear cosmological power spectra
in real and redshift space. Mon. Not. Roy. Astron. Soc., 282:767, 1996.

[184] Max Tegmark, Andy Taylor, and Alan Heavens. Karhunen-Loeve eigen-
value problems in cosmology: How should we tackle large data sets?

Astrophys. J., 480:22, 1997.

[185] Romain Teyssier. Cosmological hydrodynamics with adaptive mesh re-
finement: a new high resolution code called ramses. Astron. Astrophys.,
385:337-364, 2002.

[186] Cora Uhlemann, Michael Kopp, and Thomas Haugg. Edgeworth stream-
ing model for redshift space distortions. Phys. Rev., D92(6):063004, 2015.

[187] A.IL Vainshtein. To the problem of nonvanishing gravitation mass. Physics
Letters B, 39(3):393 — 394, 1972.

226



[188] Wessel Valkenburg and Bin Hu. Initial conditions for cosmological N-
body simulations of the scalar sector of theories of Newtonian, Relativistic
and Modified Gravity. JCAP, 1509(09):054, 2015.

[189] Georgios Valogiannis and Rachel Bean. Efficient simulations of large scale
structure in modified gravity cosmologies with comoving Lagrangian ac-
celeration. Phys. Rev., D95(10):103515, 2017.

[190] Georgios Valogiannis and Rachel Bean. Beyond ¢: Tailoring marked statis-
tics to reveal modified gravity. Phys. Rev., D97(2):023535, 2018.

[191] Georgios Valogiannis and Rachel Bean. Convolution Lagrangian pertur-
bation theory for biased tracers beyond general relativity. Phys. Rev.,
D99(6):063526, 2019.

[192] Georgios Valogiannis, Rachel Bean, and Alejandro Aviles. An accurate
perturbative approach to redshift space clustering of biased tracers in
modified gravity. JCAP, 2001(01):055, 2020.

[193] Zvonimir Vlah, Emanuele Castorina, and Martin White. The Gaussian
streaming model and convolution Lagrangian effective field theory. JCAP,
1612(12):007, 2016.

[194] Zvonimir Vlah, Uro Seljak, and Tobias Baldauf. Lagrangian perturbation
theory at one loop order: successes, failures, and improvements. Phys.
Rev., D91:023508, 2015.

[195] Zvonimir Vlah and Martin White. Exploring redshift-space distortions in
large-scale structure. JCAP, 1903(03):007, 2019.

[196] Zvonimir Vlah, Martin White, and Alejandro Aviles. A Lagrangian effec-
tive field theory. JCAP, 1509(09):014, 2015.

[197] Junpu Wang, Lam Hui, and Justin Khoury. No-Go Theorems for General-
ized Chameleon Field Theories. Phys. Rev. Lett., 109:241301, 2012.

[198] Lile Wang, Beth Reid, and Martin White. An analytic model for redshift-
space distortions. Mon. Not. Roy. Astron. Soc., 437(1):588-599, 2014.

[199] Xin Wang, Mark Neyrinck, Istvan Szapudi, Alex Szalay, Xuelei Chen,
Julien Lesgourgues, Antonio Riotto, and Martin Sloth. Perturbation The-
ory of the Cosmological Log-Density Field. Astrophys.]., 735:32, 2011.

227



[200] Y. Wang, C.-H. Chuang, and C. M. Hirata. Towards more realistic fore-
casting of dark energy constraints from galaxy redshift surveys. MNRAS,
430:2446-2453, April 2013.

[201] Steven Weinberg. The Cosmological Constant Problem. Rev. Mod. Phys.,
61:1-23, 1989.

[202] Christof Wetterich. Cosmology and the fate of dilatation symmetry.
Nuclear Physics B, 302(4):668-696, 1988.

[203] Martin White. The Zel’dovich approximation. Mon. Not. Roy. Astron.
Soc., 439(4):3630-3640, 2014.

[204] Martin White. A marked correlation function for constraining modified
gravity models. JCAP, 1611(11):057, 2016.

[205] Martin White and Nikhil Padmanabhan. Breaking Halo Occupation De-
generacies with Marked Statistics. Mon. Not. Roy. Astron. Soc., 395:2381,
20009.

[206] Clifford M. Will. The Confrontation between general relativity and exper-
iment. Living Rev. Rel., 9:3, 2006.

[207] Hans A. Winther and Pedro G. Ferreira. Fast route to nonlinear clustering
statistics in modified gravity theories. Phys. Rev., D91(12):123507, 2015.

[208] Hans A. Winther, Kazuya Koyama, Marc Manera, Bill S. Wright, and
Gong-Bo Zhao. COLA with scale-dependent growth: applications to
screened modified gravity models. 2017.

[209] M. Wolk, J. Carron, and I. Szapudi. On the total cosmological information
in galaxy clustering: an analytical approach. Mon. Not. Roy. Astron. Soc.,
454(1):560-568, 2015.

[210] Jaiyul Yoo and Uro Seljak. Wide Angle Effects in Future Galaxy Surveys.
Mon. Not. Roy. Astron. Soc., 447(2):1789-1805, 2015.

[211] Pauline Zarrouk et al. The clustering of the SDSS-IV extended Baryon Os-
cillation Spectroscopic Survey DR14 quasar sample: measurement of the

growth rate of structure from the anisotropic correlation function between
redshift 0.8 and 2.2. Mon. Not. Roy. Astron. Soc., 477(2):1639-1663, 2018.

228



[212] Ya. B. Zeldovich. Gravitational instability: An Approximate theory for
large density perturbations. Astron. Astrophys., 5:84-89, 1970.

[213] Gong-Bo Zhao, Baojiu Li, and Kazuya Koyama. N-body Simulations
for f(R) Gravity using a Self-adaptive Particle-Mesh Code. Phys. Rev.,
D83:044007, 2011.

[214] Zheng Zheng, Andreas A. Berlind, David H. Weinberg, Andrew J. Benson,
Carlton M. Baugh, Shaun Cole, Romeel Dav, Carlos S. Frenk, Neal Katz,
and Cedric G. Lacey. Theoretical models of the halo occupation distribu-

tion: Separating central and satellite galaxies. The Astrophysical Journal,
633(2):791, 2005.

229



	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	The problem of cosmic acceleration
	The motivation for modifying gravity

	Efficient simulations of large scale structure in modified gravity cosmologies with COLA
	Introduction
	Formalism
	Modified gravity and screening models
	Simulating non-linear clustering

	Analysis/Results
	Modified gravity results

	Conclusions
	Acknowledgments

	Beyond : tailoring marked statistics to reveal modified gravity.
	Introduction
	Formalism
	Modified gravity models
	Density transformations

	 Results
	Conclusions
	Acknowledgments

	Convolution Lagrangian perturbation theory for biased tracers beyond general relativity
	Introduction
	Formalism
	Modified gravity models
	Convolution Lagrangian Perturbation Theory for biased tracers in MG

	Results
	Lagrangian Perturbation Theory for Biased Tracers in MG
	Comparison with simulations

	Conclusions
	Acknowledgments

	An accurate perturbative approach to redshift space clustering of biased tracers in modified gravity
	Introduction
	Modified Gravity Scenarios and Simulation Tools
	Modified Gravity Scenarios
	N-body Simulations

	Redshift-Space Correlation Function For Biased Tracers In Modified Gravity
	Lagrangian Perturbation Theory For Dark Matter In Modified Gravity
	Lagrangian Biased Tracers In Modified Gravity
	Direct Lagrangian Approach to RSD in Modified Gravity
	The Gaussian Streaming Model In Modified Gravity
	Velocity Moments in Modified Gravity

	Results
	Halo Pairwise Velocity Statistics
	Halo Redshift-Space 2-point Correlation Function

	Conclusions
	Acknowledgments

	Conclusions
	Lagrangian perturbation theory in Modified Gravity
	One loop corrections for biased statistics in MG
	Polyspectra and k-functions in MG
	Lagrangian correlators and q-functions in MG
	SPT and LRT Power spectra

	PBS biases in MG
	GSM functions in MG
	LPT kernels
	k functions
	q functions
	Tidal bias

	Direct Lagrangian approach in MG
	Bibliography

