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Chapter 1

Summary

This is a thesis for the degree of Doctor of Philosophy submitted to the
Scientific Council of the Weizmann Institute of Science. It is submitted in
the Published Papers format and based on three publications [1-3]. These
projects study some aspects of dualities between string theories and of the
AdS/CFT correspondence.

The structure of this thesis is as follows: Chapter 3 is a general introduc-
tion to the role dualities play in modern high energy physics with respect to
the publications in this thesis. The first section 3.1 is a brief historical intro-
duction. The next three sections 3.2-3.4 expand on the main ideas behind
the three papers [1-3] respectively, and put these ideas in the context of the
general theme of this work. Finally, Part II includes reproductions of the the
three papers [1-3].
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Prof. N. Itzhaki



Part 1

Introduction






Chapter 3

Introduction

3.1 Brief History and General Introduction

Understanding strong coupling phenomena has been a central challenge of
quantum field theory since its birth. In the field of particle physics, the
problem of strong coupling arises most urgently in the study of the low energy
regime of quantum chromodynamics. Many methods to attack this problem
have been developed over the years with various degrees of success. Some
qualitative methods such as non-standard perturbative expansion, simple
truncations of an exact equation (applied to Schwinger-Dyson equations or to
renormalization group equations), and some numerical methods (usually on
a lattice) have proven to be potent in addressing some specific problems, yet
to date even the most basic questions of spectrum and scattering amplitudes
lie beyond the reach of analytical and numerical methods.

In string theory, the problem of strong coupling has an additional concep-
tual aspect: since string theory is only defined as a perturbative expansion, it
is not clear at all whether the theory makes any sense beyond weak coupling.

The idea of duality between quantum field theories has origins that go
as early as the 1960s, when the duality between the Sine-Gordon and the
Thirring model was suggested [4, 5] and later proved [6]. Another milestone
worth mentioning in this context is the duality conjectured by Montonen-
Olive [7], which was the first of many examples known today of dualities
between supersymmetric gauge theories in four dimensions (some reviews on
supersymmetric field theory dualities are [8-16]). The idea in both of these
examples and in general is that the strong coupling regime of a strongly

11



12 CHAPTER 3. INTRODUCTION

coupled field theory can be described in terms of a weakly coupled field
theory through some complicated nonlocal mapping (that more often than
not is not known explicitly). Thus, dualities between field theories allow us
to analyze strong coupling phenomena via translating between the strongly
coupled model and the weakly coupled one.

Dualities play a more fundamental role in Superstring Theory (some re-
views on string dualities are [17-21]). In the early days of Superstring Theory
it was known that there are exactly five consistent theories in 10 dimensions:
type ITA, type IIB, type I, Heterotic Egx Eg and Heterotic SO(32) [22]. Each
of the theories can be compactified on a manifold and is also parameter-
ized by its string coupling. This set of parameters (the coupling and the
parameters of the compact manifold) are known as moduli. These moduli
are the vacuum expectation values of various fields. Dualities in Superstring
Theory is the idea that a point in the moduli space of one string theory can
be described equivalently by a point in the moduli space of another string
theory or by a different point of the moduli space of the same theory. These
dualities typically mix up the perturbation expansions in the moduli and are
thus useful for studying the non-perturbative structure of the theory. Some
examples of dualities were known since the early days of the theory (see in
[23]), e.g. it was known that there is a T-duality between types ITA and
IIB and between the two heterotic theories. However, the discoveries of the
early 1990s leading up to the so called “Second Superstring Revolution” [22]
radically changed the way we think of the theory today.

A central property of Superstring Theories is that they all include non
perturbative soliton-like objects known as branes. The growing understand-
ing of the role these branes play in non-perturbative string theory has led to
the discoveries that all five types of Superstring Theories are in fact dual to
each other [24-26]. Furthermore, these works found another limit of string
theory, where the low energy dynamics are that of eleven dimensional su-
pergravity. This motivated a new perception of quantum gravity, which is
now widely accepted. In this new perception there is one mysterious theory
known as M-theory, which perhaps admits a matrix model description in
some cases [27], and the various known string theories are special limits on
the enormous moduli space of this theory.

Yet another advancement due to the new understanding of branes and
non perturbative strings is the conjecture of the AdS/CFT correspondence
[28-30]. This conjecture is the first example of a duality between a gravitat-
ing string theory and a non gravitating field theory. The idea of holography,
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i.e. that a theory of gravity can be described by a theory without gravity
in one less dimension, was suggested earlier [31, 32] based on the propor-
tionality of entropy to the surface area of black holes [33]. However, the
explicit examples of AdS/CFT correspondences are the first that allow us to
explore the mechanisms of the mapping between gravity and gauge theories.
Furthermore, this correspondence provides another opportunity for studying
strongly coupled gauge theories (such as QCD) via mapping them to weakly
coupled string theories.

This thesis includes three published papers [1-3]. The subject of these
papers are suggestions of new dualities between string theories, new examples
of AdS/CFT correspondences and tests of new and old conjectured dualities.
In what follows we give a more specific introduction to the subjects discussed
in these papers. It is hoped that this work contributes to this very exciting
developments in the study of dualities.

3.2 The non-AdS/non-CFT Correspondence
Introduction to [1]

As mentioned above the AdS/CFT correspondence is the remarkable idea
that a gravitational string theory is precisely equivalent to a non-gravitational
field theory. In general, it relates a theory of quantum gravity in d + 1 di-
mensional anti-de Sitter (AdS) space (times some compact manifold) to a
d dimensional conformal field theory (CFT). The simplest example is the
duality between type IIB string theory on AdSs; x S® and the N = 4 super-
symmetric Yang-Mills (YM) theory in four dimensions with a gauge group
SU(N).

The parameters of string theory in this background are the string cou-
pling constant g5 and the radius of curvature R (of both the AdS and the
sphere) measured in string length ;. The parameters of the YM theory are
the coupling constant gyy and the number of colors N. The two sets of
parameters are related by

drg, = g%M, (3.1)
(R/l5)4 = QSQKMN =\

To leading order in 1/N, we keep only planner diagrams in the field theory,
which can be described by a perturbation expansion in A. On the other hand,
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for small g; we keep only the lowest genus in the string sigma model, and
the theory is an expansion in the space-time curvature I,/R = A\~'/4. Thus,
this is an example of a strong-weak duality.

Unfortunately, the NV = 4 theory (and any CFT in general) is quite
different from QCD. The problem is not the different matter content, but the
fact that most of the interesting phenomena of QCD (e.g. confinement, chiral
symmetry breaking, the formation of a mass gap, bound states spectrum)
are manifestly not scale invariant. However, there are reasons to believe that
a string theory that is dual to QCD (or at least to a gauge theory with
similar features) may be found, and that features of QCD-like theories may
be studied using string theory.! The first step towards realizing this goal is
to break conformal invariance, and this requires breaking at least part of the
supersymmetry.

One popular method to achieve this is to deform the CFT in a way that
breaks the symmetry, but is also controllable and corresponds to a known
deformation on the AdS side. The AdS/CFT correspondence matches the
SO(4,2) group of isometries on AdSs to the conformal group in d = 4. Each
gauge invariant local (single trace) operator in the CFT corresponds to a
specific field in AdS. The conformal dimension of the operator A; is related
to the mass of the field m; via

Thus, matching deformations is easiest for chiral operators, whose conformal
dimension is protected (basically, for non-chiral operator the correspondence
is known explicitly only in very rare cases).

The N = 4 theory includes a gauge vector A, four fermions A, and six
scalar fields ¢°. If one could “get rid” of the fermions and scalars, one would
remain with pure YM theory, which shares many interesting characteristics
with QCD. The naive way to achieve this goal would be to deform the original
CFT by adding mass terms

AL = Tr(MZ¢'¢" + (maprats + c.C.)), (3.3)

J

so that the low energy theory would be pure YM. The problem with the
deformation (3.3) is that the scalar part is not a chiral operator (unless M}
is traceless, in which case the theory would not be stable and the gauge sym-
metry would be broken spontaneously). This means that for large g3,V the

LA review of the advancement toward this goal is [34].
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operator acquires large anomalous dimension and the deformation becomes
irrelevant.

We are left with the possibility of adding masses for the fermions only.
The first paper [1] studies a special case, where we add an equal mass to
all the fermions. This deformation is of interest since it breaks conformal
invariance and supersymmetry completely (hence, this theory is sometimes
referred to as A/ = 0*) and dynamically generates a potential for the six real
scalars, ¢', in the theory.

In the paper, we have shown that the theory resulting is stable (pertur-
batively in the 't Hooft coupling), and that there are some indications that
(¢) = 0 is the vacuum of the theory. On the field theory side we calculated
the effective potential generated for the scalars by a direct quantum field
theory calculation, and using the fact that the effective potential is known
for myg — 0. We also studied this deformation on the AdS side in the
strong coupling limit (when the supergravity approximation is valid). The
corresponding supergravity computation is done by probing the deformed
AdSs x S5 background with a brane probe. Despite being different limits of
the theory, we found qualitative agreement between the two calculations.

3.3 Strings on AdS; and 0A Matrix Models
Introduction to [2]

One of the earliest dualities conjectures in string theory is the duality be-
tween two dimensional bosonic string theory and matrix models (in the dou-
ble scaling limit). This correspondence, which was suggested some twenty
years ago (see [35, 36] for a thorough review), was recently given a new inter-
pretation [37-39] that views the matrix model as the effective field theory on
DO-branes that exist in the string theory, construing the correspondence as
an open-closed duality (similarly to the construction of the AdS/CFT cor-
respondence). Based on this understanding, a similar correspondence was
conjectured for type 0 superstrings in two dimensions [40, 41].

Two dimensional superstring theory are described by N’ = 1 worldsheet
field theory coupled to worldsheet supergravity. The non chiral GSO projec-
tion gives the two type 0 theories. Since there are no NS-R or R-NS sectors in
the theory, the type 0 theories have no fermions and are not supersymmetric.
The two NS-NS sectors include a graviton, a dilaton and a tachyon. In type
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0A the RR sectors include two 1-forms and in type 0B a 0-form and a pair of
2-forms. However, in two dimensions there are no transverse string oscilla-
tions and longitudinal oscillations are unphysical except at special values of
the momentum. Thus, the tachyon is the only dynamical NS-NS sector field.
The space time equations of motion are solved by a linear dilaton background

G;w = Nuv; ¢ = 2z, (34)

where x is the spatial coordinate.

Type 0 superstrings on this background are conjectured [40, 41] to be
dual to a ¢ = 1 matrix model. In analogy to the bosonic case, the conjecture
is that the field theory on N DO-branes (with N — o0) in this background
is a dual description of the full string theory. It is believed that the matrix
model that gives the 0A theory is that of a U(N) 4 xU(N)p gauge theory with
a complex matrix m in the bifundamental. The two U(N) groups originate
from DO and anti-DO0 branes. After preforming the standard manipulation of
diagonalizing the matrix (cf. [42]), the potential for the eigenvalues is

1
V) =g\

The motivation behind the second paper [2] is to study the AdS/CFT
correspondence in the context of two dimensional string theory. A conjec-
ture for this correspondence was suggested in [43], however we suggested a
different picture and presented some evidence to support our assertions. The
reasons to believe that the AdS/CFT correspondence can be studied in this
context come from both the space-time and the matrix model points of view:

e On the space-time side, it has been suggested that type 0OA string theory
should have an AdS, solution with RR flux. This is based on the fact
that the space-time effective action has an extremal black hole solution
[44-46] whose near-horizon limit is AdSs. There are two good reasons
not to trust this solution: it is highly curved in part of the space-
time and it requires turning on both of the 1-forms, which implies that
one needs to add strings to the background and take their effect into
account [47]. Still, one may hope that even after taking all corrections
into account, because of the large symmetry, there would still be a limit
where space-time is AdS,.
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e On the matrix model side, one can turn on RR flux by adjusting the
potential for the matrix or the shape of the matrix. In either options,
the end result in terms of the eigenvalues is changing the potential to

In the region of small A the potential is dominated by the last term
and the quantum mechanical system has conformal invariance (see [48]
for a discussion of conformal invariance in quantum mechanics).

It should be emphasized that this background must include nonzero RR
flux, thus, it is also an opportunity to study a simple example of strings on
background with RR flux - a poorly understood subject in string theory.

In the paper [2] we studied the conformal limit of the 0A matrix model
in order to find the properties of this conjectured AdSy background. We
found that the spectrum of this theory is equal to that of a free fermion
field on AdS,, with a mass proportional to the RR flux ¢q. This fermion
originates from the eigenvalues of the matrix model which correspond to DO-
anti-D0-brane pairs, so this spectrum suggests that the only excitations in
this AdS, background are such uncharged D-brane pairs, and that there are
no closed string excitations in this background. From the point of view of
0A backgrounds with flux which asymptote to a linear dilaton region, this
implies that the closed string excitations cannot penetrate into the strongly
coupled region which is dual to the conformal limit of the matrix model. This
view is quite different than what was suggested before [43]. A more recent
paper [49] that studied this system from a different perspective agreed with
our results.

It would be interesting to try and verify the picture we proposed directly
in string theory. An explicit computation would be to quantize the worldsheet
theory and show that there are no physical excitations (except perhaps at
special values of the momenta). The difficulty lies in the limited knowledge
on quantizing strings on RR backgrounds, so this remains an open question
at this point.
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3.4 9d N =1 Backgrounds of M/String The-
ory
Introduction to [3]

One of the most exciting discoveries of the second superstring revolution
was that the strongly coupled limit of each 10 dimensional theory can be
described equivalently by a weakly coupled string theory or by 11 dimensional
supergravity. This means that for 10 dimensional strings (where the only
parameter is the string coupling) there is a perturbative description in each
corner of the moduli space.

For theories with 32 supercharges, it was well known that this remains
true in 9 noncompact dimensions. For example, consider type ITA on R? x S*.
The moduli here are the string coupling g, and the radius of the circle Ry.
The ITA description is valid as long as gs < 1 and R > [,. For small
radius, we can switch to the T-dual IIB picture, where the string coupling
and g,ls/Rg and the radius is [2/Ry. The IIB description is valid as long as
gs < Ryg/ly and Ry < ls. Another region of the moduli space is reached
by starting from the ITA and increasing the string coupling. This leads to
11d supergravity (M theory) on a torus of radii are (Ry,gsls) with Planck
length [, = gi / 3. Thus, this M theory on a torus description is valid for g, <
(Ry/l,)% and g, > 1. Finally, we can now reduce the theory on the other circle
of the torus,? to find another ITIA description with coupling gs (Ry/1,)%/2,
string length gi/ 2(ls /Ry)'?1, and on a circle of radius g,/,. This is a valid
description for g; > (Ro/ls)* and g5 > (I;/Ry). The missing part of the
moduli space,(Ry/ls) < gs < (ls/Ry), is filled by another IIB description
which is the T-dual of the last ITA and S-dual to the previous IIB. The
parameters of this new IIB are the coupling Rg/(lsgs) and the radius (?/ Ry
(the string length remains g2/%(L,/Re)"/2l,). Thus, as demonstrated in figure
3.1, we have covered the entire moduli space, were all limits have a weakly
coupled string or M theory description. It is also true that this exhausts all
the theories with 32 supercharges in nine dimensions (N = 2).

The next natural step is to study the moduli space of theories with 16
supercharges (N = 1), which also give exact backgrounds of string and M

2This is actually superfluous, since the torus has a symmetry for exchanging the two
radii, but we carry on this calculation anyhow in order to demonstrate how the various
limits are covered.
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type IIA

M/T

type IIB

type IIB type IIA

0 1
RgllS

Figure 3.1: The moduli space of nine dimensional M and string theory with
32 supercharges. The parameters are the string coupling and the radius of
the circle in the ITA description of the lower right corner. The upper-left half
of the graph, which mirrors the lower-right half, is just a manifestation of
the symmetry of exchanging the

theory. This was the first objective of the third paper [3] . The moduli space
of such nine dimensional backgrounds with rank 18 (including type I and
heterotic strings on a circle and M theory on a cylinder) has been extensively
studied, and all its corners are understood (these is reviewed in subsection
2.1 of the paper); however it seems that no similar study has been done for
backgrounds with lower rank (rank 10 or rank 2). These backgrounds include
the compactification of M theory on a Klein bottle and on a Mébius strip.?
In the paper we studied the moduli space of these backgrounds in detail. We
encountered two surprises: we showed that the moduli space of backgrounds
of rank 2 has two disconnected components, and that both for rank 2 and
for rank 10 there is a region of the moduli space which had not previously
been explored, and whose description requires interesting non-perturbative
corrections to some orientifold planes in type ITA string theory.

3Some of these backgrounds were studied in [50].
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Orientifold planes are important non-dynamical objects in string theory.
In perturbative string theory they are arise by dividing by a parity reversal
symmetry that also exchanges the orientation, i.e.

X"(z,2) ~ =X™(Z, 2).

These objects are necessary ingredients of string theory, as can be deduced
by studying how unoriented string theories transform under T-duality (see in
[51]). One can also derive the charges of orientifolds under the various space-
time fields. For examples, an eight-dimensional orientifold plane (denoted as
an O8 planes) is a source for the dilaton and has exactly —8 times the charge
of a D8-brane.

In the rank 18 case discussed above, some parts of the moduli space are
described by a space time bounded between 2 orientifold planes and contain-
ing 16 D-branes, in a manner that cancels the overall tadpole for the dilaton.
The branes can be moved around between the orientifolds to obtain different
physics. An interesting thing happens when the branes are configured such
that an O8-plane is at a point in space-time where the string coupling di-
verges: in this case a special mechanism enhances the gauge symmetry (for
example, from SO(16) to Eg [52-54]). In fact, orientifolds exhibit interesting
phenomena at strong coupling in general (some examples of O6, O7 and O8
planes at strong coupling are discussed in [26, 52, 55, 56]). In [3] we argued
that the missing part of the moduli space of theories with rank 2 and 10
can be understood by conjecturing the existence of a new type of orientifold
plane which is neutral with respect to the dilaton. This new object can only
exist in infinite coupling, and thus has no description in terms of perturbative
string theory.

The second objective of [3] was to study the matrix model description of
the rank 2 and 10 backgrounds. In the context of string theory, M(atrix)
Theory is the idea that M theory can be described (at least in some cases)
completely by a matrix model [27]. There is special motivation for finding
the matrix model description of the N = 1 backgrounds. The theories we
discussed (with rank n) have non-trivial duality groups of the form SO(n —
1,1,7Z). In their stringy descriptions these are simply the T-duality groups
[57]. However, from the M theory point of view these dualities are quite
non-trivial.

T-duality groups in space-time often map to interesting S-duality groups
in the M(atrix) theory gauge theories. In the case of 32 supercharges, the
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modular invariance of the torus maps to the SL(2,Z) S-duality of N' = 4
Super Yang-Mills theory in four dimensions [58]. It is thus interesting to
study the manifestation of duality groups for the rank 2 and 10 cases in the
M(atrix) theory description of these backgrounds.

In the paper we derived the M(atrix) theory for some of these back-
grounds. By constructing the matrix description of these backgrounds and
preforming a T-duality twice, we got to a 2+1 super Yang-Mills theory, where
space-time is a cylinder (times time) and where the gauge coupling monoton-
ically varies between the boundaries of the cylinder. In particular, at some
finite critical length (which corresponds to the self duality of the relevant
M theory) the gauge coupling diverges and the field theory ceases to make
sense. The duality group of the M theory relates a cylinder with subcritical
length to one with supercritical length, so the dual theory is not well defined.
The paper concluded with this result and left further investigations into what
happens ‘beyond infinite coupling’ to future work.
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Chapter 4

Note on Papers

This note aims to delineate my part in each of the projects described above
as required by the regulations of the Feinberg Graduate School. The
research on all three papers was done under the supervision of my advisor
Professor Ofer Aharony. The last two papers ([2] and [3]) were written
together with Prof. Aharony and the part each of us played in the project is
probably best described as the standard relationship between a student and
his advisor. The first and last papers ([1] and [3]) were written together
with Mr. Dori Reichmann and with Mr. Zohar Komargodski respectively,
both students in the High Energy Theory Group at the Weizmann Institute.
The research towards these projects in all its stages was done jointly with
equal contribution from each of the students in each collaboration.
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1. Introduction

The AdS/CFT correspondence relates String Theory on d 4+ 1 dimensional anti-de Sitter
(AdS) space (times some compact manifold) to a d-dimensional conformal field theory
(CFT) (see [il, B, ] and the review [H]). In particular, it is conjectured that Type IIB
String Theory on AdSs x S is equivalent to N = 4 supersymmetric Yang-Mills (SYM)
theory with gauge group SU(N). In the regime where g%MN is large, supergravity is a
good approximation to the full string theory. In this regime, the identification of partition
functions in the two theories allows one to construct supergravity solutions that are dual
to deformations of the N’ =4 SYM theory.

Perhaps the main motivation for the study of such deformed theories is the prospect
of finding a string theory dual to a field theory that is similar to QCD. This will allow
the study of strong coupling phenomena of QCD-like theories via the understanding of
weakly coupled supergravity (three possible paths to this goal were reviewed in [[j]). Other
motivations for studying such deformations are learning about strong coupling phenomena
on both sides of the correspondence (by studying the weakly coupled dual perturbatively)
and gaining insight into how the correspondence works by understanding how various
phenomena are realized in the two dual descriptions. Eventually, one would hope to go
beyond the supergravity approximation and find the string dual to QCD.

The N' = 4 SYM theory includes four adjoint fermions v, and six adjoint scalars ¢’
all massless. If somehow these fields would acquire masses, then at energies much lower
than these masses one would remain with pure Yang-Mills theory, which is quite similar
to QCD!. One way to do this is to add mass terms to all of these fields, i.e. adding
to the SYM lagrangian the term O = M2 Tr(¢'¢") 4+ mgp Tr(¥aby) + c.c.. The problem
with this is that the scalar part is not a chiral operator, thus, this deformation cannot
be studied in the supergravity approximation. Alternatively, one may try to add the
chiral operator (M?);; Tr(¢'¢’) with (M?);; = 0, but then some of the scalars would have
negative mass-squares, leading to instabilities. A way around this is to introduce masses
only for the fermions, breaking some (or all) of the supersymmetry. In this paper we focus
on introducing an equal mass m for all four fermions. Such a deformation breaks the
supersymmetry completely, hence we denote the theory one ends up with as N/ = 0* Yang-
Mills theory. After the deformation, the scalar mass term isn’t protected, so one expects
that the scalars acquire mass quantum mechanically. From dimensional considerations, the
acquired mass squared must be proportional to m?. If it happens that the induced mass
squared matrix is strictly positive, then <<;5’> = 0 will be a (perturbatively) stable vacuum of
the theory, and at the IR (well below m?) the theory becomes pure Yang-Mills with SU(N)
gauge group. More generally, for this scenario to work, it is an essential requirement that
there is a stable vacuum at a value of the scalars for which a non-Abelian gauge group
remains unbroken. Thus, this paper studies the viability of the A" = 0* theory as a way to
learn about pure YM theory (or theories similar to it).

!This statement is only true for small g2\, N. At large g2\, one finds that Ay is of the same order
of magnitude as the masses of the fields we are trying to get rid of, thus, there is no separation of scales in
this case.



In this paper we study the A/ = 0* theory and compare the results to those obtained
on the supergravity side of the correspondence. In section J we study the scalar effec-
tive potential and find that it has a perturbatively stable vacuum. We also analyze the
flow of the scalar mass-squared and find some indications that it becomes positive at low
energies, implying that <¢’> = 0 is indeed a stable vacuum. In section ] we review the
analogue computation preformed on the deformed AdS by brane probing the supergravity
background (the results described were obtained in [f), and compare it with the weak
coupling computation.

2. The Deformed N =4 SYM

The N/ =4 SYM lagrangian (with 6 = 0) is given by

1 1 — ) )
L=——Tr { — —FWF’W —wp® P, — DﬂgbZD”qS’—l—
gYM

— . - 1 i AT i 4d
+ Z Tr < quz)a 2k 17 Q/Jb] + ZBtI;szZ)a’)% [¢2k7 ¢b]) + §[¢ 7¢J][¢ 7¢J]} (21)
where 1, are the four Majorana fermions of the theory in Dirac notation. The 4x4 Yukawa
coupling matrices B and C* ~, satisfy the algebra
[Ck, Cl] — 2€klm0m, [Bk, Bl] — 2€klmBm’ [Ck,Bl] — 0’
{C’k,Cl} = —26", {Bk,Bl} = —26M.

The exact form of the B and C matrices we use may be read from (R.§) below. The full
SO(6) g is hidden in this notation, since the fermions transform non trivially.
We deform the N’ =4 SYM theory by adding the operator

Op =

Zwa cos [ + i7y5 sin ) ¥, (2.2)
2gYM
This deformation breaks the global symmetry SU(4)g —SO(4) ~SO(3)xSO(3) x Zs. The
six scalars break into two groups of three that transform under the SO(3)xSO(3) as (3,,1)
and (1,3,). An SO(6)p transformation that rotates between the two triplets with an angle
53 leaves all terms in the original lagrangian invariant, but changes (R.3) by 8 — 8+ 3.

In the following we calculate the one-loop corrections to the scalar effective potential
in a specific direction, ¢* = x6>'T, where Ty is the SU(N) generator

T = ;diag(l,l,...,l,l—N)
2N(N —1)
Notice that studying the scalar potential in a different direction in the ¢'-¢? plane is
equivalent to studying the potential in the ¢! direction with a different angle 3 in the
deformation. On the supergravity side of the correspondence the above choice describes
putting N — 1 branes at the origin and probing with one brane away from the others. The
supergravity side is discussed in the next section.



2.1 The Effective Potential

In the supersymmetric theory (m = 0) the effective potential is flat in this specific direction
to all orders in perturbation theory. Thus, in order to find the 1-loop effective potential,
we calculate the contribution from diagrams with fermion loops:

\\\ L
l” hEN

and then subtract the same result with m = 0, in order to take the bosonic loops contri-
bution into account. Using a procedure similar to that of Coleman and Weinberg [, the
contribution from the massive fermions at one-loop is

S 4 m(cg —isgy®) 1"
Vo, B) = —iy_ % Te(T28)x 2" (—1)" Tr(cfn)/ (;ﬂ’; T { [WC“ +m(cs — ispy )} }
n=1

k2 — m2

With c¢g = cos 3, sg = sin 3, T is the adjoint representation matrix of the generator 77
and C is the Yukawa coupling matrix defined in (B.1). They satisfy

Nn

e -~

Tr(C?") = 4(—1)" Tr(Tiq)*" =
where we have taken the large N limit?.

In order to calculate Tr [’yuk‘“ + m(cg — isﬁ’y‘r’)]%, consider the general term in the
trinomial expansion: it has s; factors of mcg, so factors of ¥ and s3 factors of —im’y535.
Let us denote the number of Fs to the left most v° as [;, the number of ks from the left
most 7° to the next 7% as Iy, and so on till lg,11, e.g.

(—1)l2tlatFleg g (k2)52/2 gy 55 € 2

5 5 5 —
Telft--- K- Ky kJ7 k;ﬁ_{o otherwise

I lo lsg lsg41

Thus, the combinatorial problem may be defined as follows: put so = 2¢2 balls in s34+ 1 =
2q3 + 1 cells. Find the difference between the number of configuration where the number
of balls in the first g3 cells is even and the configuration where the same quantity is odd.
This number is

B ()0 ) B ) ()

p=0

S, ) () =S (2) = (0

p=0

2We are taking the large N limit since we are interested in comparing our results to the string theory
results which are valid at large N. However, our one-loop computations in this section can be easily
performed also for finite N.



(we use generalized binomial coefficients). The second equality is a formula taken from [§].
We find,

[%k:“ +m(cg — Z85’75)]
N q2 + q3
2, 2\N—q2 ]{72 a2(_)43 ¢ 2q3
=2 EZZ (o o) (% ) () =2y e
Thus,

d*k
Vi(x, B) = —16Nz‘/W><

L n 2\ ( 2,2\
g Z 2. 2 <2q2 + 2q3> <Q2q4;qz> <X72) (=) tan* 5 ¢ ()k2 (_ﬁmz))zn

n=1¢2=0 ¢3=0

This sum may be reorganized

n n—q
Yy -y ¥ —Z%,oéqm SDILAEDSH DS
n=1¢2=0¢3=0  ¢2,¢3=0 n=max(1,q2+q3) g3=1n=qs3 q2=1g3=0n=q2+g3

Respectively, these three terms yield

Ve (X, ) = —16iNm4/ (3434{ ~log [(QQ - 2;:?1(;008%]_

B llog [(q2 —1)* —2(¢% - 1)2X? cosQﬂ—i—X‘l}_
3 (@ 1P~ o2
B llog [(q2 —1)%(¢* + 1+ X% —2¢%(1 + X?) — 2X? 00826)}} _
2 (> —1)*—2(¢> —1)2X2%cos 26 + X4

4 Y14+ XY —2¢2(1+ X2) —2X2cos 2
:81’Nm4/dqlo ¢ 1+ g (1+X7) cos ﬁ}
(¢* = 1)

where we have introduced the dimensionless quantities

1 k#
X__&7 q'u':—
2m m

As noted above, adding the bosonic loops contribution to the effective potential is the
same as subtracting the fermionic contribution with m = 0, so the effective potential (up
to counter-terms) is

8N / q +1—|—X4—2q2(1—|—X2)—2X20052[3}_
Ve (¢* — 1)

dlq (e = X?)?

AT

—8iNm / )t log [ 7 ] (2.3)
Rotating to Euclidean space (g = —iq4) and introducing the 't Hooft coupling g7 = g%MN ,

[q4(q4 + 14+ X* +2¢%(1 + X?) — 2X? cos Zﬁ)}
(¢% + X2)%(¢* + 1)2

(2.4)

d*q
2 _ 2.4
gYMV:aff — 8gtm / (2 )4 1



In general, one should introduce counter-terms into an effective potential for all relevant and
marginal operators consistent with the symmetry, this is how renormalization is reflected
in the Coleman-Weinberg formalism. The result we got in (P-4) has only a A% divergence
(as a function of a cutoff A), the log A? vanishes since the potential must vanish in the
original theory (m = 0). Thus, we only need to add a mass counter-term, which we choose
such that

1 d?V

M3 cos® 4+ M3sin® f = ———
Gt X

(2.5)

x=0
We have

g%'MV;ﬂ‘ _ M12 00826 + M22 sinzﬁX2+
m4 m2
2 Y + 14+ X +2¢%(1 + X2) — 2X 2% cos 2
N /dqq?’log[q (' +1+ X" +24°(1+ X?) cos 203)
2 (2 + 1)2(2 + X2)2

] +2(2+4cos 26) X% log A— X2 }
Performing the integration we find

g%'MV;ﬂ‘ B M12 cos® 3 + M22 sin?
I 2

m m 472

2
X2 4 It { —2X?% —12X?cos® B — Xtlog X'+
142X cos B+ X2

4X(1+ X2 1
+4X(1+ )COSBOg1—2XCOSB+X2

+(1+2X% 4+ 4X%cos® B+ X log (1- 2X?2 cos 23 —|—X4)} (2.6)

So far we have been treating the angle 3 as a parameter of the deformation (.3). However,
by a SO(6) rotation, the calculation preformed above with a specific § is equivalent to
deforming the A/ = 4 lagrangian by a standard mass term (putting 8 = 0 in (P.9)) and
studying the potential in a direction ¢! +i¢? = v2mXe*?. Thus (B.G) is the 1-loop effective
potential in the (¢1, ¢2) plane (which is related by the remaining R-symmetry to the other
scalar directions).

Let us analyze the effective potential we obtained without considering its range of
validity. For large X, g2y Vert & gim*?X?log X4, i.e. this flat direction is lifted to a stable
potential at one-loop. For small X,

Gt Vet _ M? cos? 3+ M3 sin26X2 B g_th4

4 4
o — 2 log X* +O(X") (2.7)

For M?, M3 > 0 the effective potential has a minimum at X = 0, this is a stable vacuum.
If M? <0 fori=1or2 (or both), X = 0 becomes a saddle point (maximum) and we find
a minimum for some X > 0. In the latter case both the gauge and the R-symmetry groups
are broken (notice that even if M? = M3 the potential isn’t radially symmetric although
the expansion (R.7) is, i.e. R-symmetry is completely broken).

There are two types of logarithms in this effective potential. The first, log X, diverges
at X = 0, and the other logarithms diverge at the four points X = 4e®* (notice that X is
defined to be real, so these points are not physical unless § = 0). The X = 0 divergence is
well expected since the N' = 0* theory is IR divergent. The other divergences are easy to



see by using Weyl notation for the fermions. The terms in the lagrangian that are quadratic

in the fermions may be written im Tr(AgpALo?\y)+c.c. (the Tr is over the gauge group),
where

et Xt +iX? X3 +iX* — X5 +iX6

A= g2 X1 4+iXx? s X5+'2'X6 X3 —ix4

YW X3 +4xt XP4+4iX6 ef X1 —iX?

— X5 +iX0 X3 —ix? X! —iX? eth
and X' = ¢'/m. By turning off all the scalars except X' and X?, and treating X' +iX?
as a complex scalar, we see that the points (X! +iX?) = & et are exactly the values

(2.8)

where (2.§) has a zero eigenvalue (exactly one eigenvalue vanishes at each root). Therefore,
the divergences of the effective potential at these values correspond to values of the VEV
where one fermion becomes massless.

Higher loop corrections to this potential would be polynomials in g? log X and g? log(X —
r;) for r; = +e™P. At constant X # 0 equation (B.6) would be a good approximation to
the full potential as long as g; is small enough. Thus, although the potential near X = 0 is
not trustworthy, the existence and location (or lack of existence) of stable vacua for X > 0
are reliable for small enough g;.

2.2 Renormalization Group Flow

In the above we saw that the location of the stable vacuum of the theory depends on the
sign of the arbitrary mass renormalization parameters M7 and M3, introduced in (B-H). At
the UV the N' = 0* theory is expected to flow to the N' = 4 theory, hence, it makes sense
to define the scalar masses counter terms such that the scalar masses vanish at the UV and
then follow its sign as we flow to the IR. To do this we follow the standard procedure of
renormalization (in momentum space) in order to analyze the flow of M? to lowest order.

We calculate the scalar two-point function in the same direction (¢! = xd"'T}) as
before. The diagram with massive fermions is

A kvt +mles —isgys) (p+ k)uy” + m(cg —isgys)

B 9 1 8 875) P vy e} BY5) _

= Tr[(Cl) ]flmlflml Tr/ (27T)d ]{72 _ m2 + ie (p + k)2 _ m2 + 7€ -
igt P> +m2(4+2cos20)

- 2
295\ €

+O(°)

where p is the Wick rotated momentum and we have employed dimensional regularization
(e = 4—d). The singular part of the scalar two-point function vanishes in the original N' = 4
theory. Thus, to get the full scalar 2-point function (including the bosonic contributions),
we subtract the same with m = 0,

igt  m%(4+2cos2p) n

XX (m) (0) ng%M -

oY)



From this counter term, one finds the RG equations for the scalar masses,

OM? _6g§m2 oM3 _2gt2m2

R + o(g4) o - +o(g})
9 69?m2 4 2 29t2m2 4
= M} == log(u/mo) +olgl)  MF=—""5—log(p/po) + o(g})

Thus, if one sets the parameters at the cutoff 1y to be such that the theory at pg will be
N = 4 SYM deformed by the mass term (2.9), then the theory will flow such that the
scalars get a positive mass-squared. This remains valid as long as g7 log(u/p) remains
small. It is then reasonable to assume that the free parameters, MZ~2, introduced in (R.4)
should be positive, implying that X = 0 is a stable vacuum.

3. The Scalar Potential from AdS/CFT Correspondence

We briefly review the formalism used in [fj] to calculate the scalar potential from the AdS
side of the correspondence.

3.1 Deformed AdS

The AdS/CFT correspondence maps between A = 4 Super Yang-Mills deformed by a chiral
operator and type IIB Superstrings on a modified AdS5xS® string theory background,
which can be approximated by supergravity at large 't Hooft coupling. Deforming the
CFT by a scalar (and chiral) operator O with scaling dimension A is dual to turning on a
scalar field in the AdSsxS® with mass:

m? = A(A — 4) (3.1)

A consistent and relatively easy process to find the deformed supergravity background is
to find a corresponding AdS; N = 8 gauged supergravity background and rely on the
consistent truncation conjecture to lift the solutions to the full 10D Type IIB Supergravity.
The scalar field corresponding to the N'= 0* deformation (R.2) was identified in [J] as the
scalar generated by the lowest spherical harmonic of the 10, representation of the global
SO(6). The relevant equation of motion can be derived from the gauged supergravity
action:

S = / N (R - %auwu + V(A)) : (3.2)
V() = —; (1+cosh?A). (3.3)

We assume the following ansatz for the 5-d metric:
ds? = A gt dz,, + dr? w=0,1...4 (3.4)

Noticing that A must depend solely on r, the equation of motion reduces to:

N+ 44N = aa—‘; = —2cosh Asinh A (3.5)
64’2 = X2 —2V(\) = N? + 3 (1 + cosh? ) (3.6)



r—00

At large 7 the solution must be asymptotically AdSs, e.g. A(r) T—> r and A(r) T— 0.
The equation of motion can be solved to first order at this limit to find the asymptotic
behavior:

V) ~ -3 — gv L0 = A(r— 00) = Me " 4 Ke (3.7)

The exact equation of motion (B.J),(B.6) can be solved numerically (a full discussion of the
solutions for different boundary conditions (M, K) is given in [ff]). The parameters M and
KC correspond respectively to the coefficient of the deformation (R.3) in the CFT and the
VEV of this operator. It was shown in [f] that the numerical solutions of the equations of
motion are singular at finite r for all values of (M, K). Thus, supergravity breaks down
near this point and one should really find a full string background which should be non-
singular (as was suggested in [[[(] for the N' = 1* theory). Still, one expects that far
from the singularity the full background will be similar to the supergravity background, so
supergravity should be a good approximation for the computations performed there. The
parameter K is determined in principle by the behavior of the solution for small r, but
since the solution is singular, it remains undetermined in the supergravity approximation.

3.2 Brane Probe Potential

The scalar potential in the strongly coupled N/ = 0* theory can be calculated in the
deformed AdSsxS® background by the method of brane probing. Using the Born-Infeld
action for a D3-brane probe separated by a distance r from the center of the AdSs x S°,
it is easy to find the induced potential on the radial coordinate of the probe location. The
radial coordinate of the probe is mapped to the location of the VEV X, discussed in section
B The exact lifting of the solution to 10D and the probe potential calculation was done in
[). The result is
Vinone(x) = e [e(r) - 51
r
where A(r), A(r) are the solutions to (B.H),(B.6) and 73 is the D3-brane tension. The 10D
deformed AdS metric is divided to a part tangent to the D3-brane probe (ds%A) and a part
to it

(3.8)

dg%o — 51/2(13%’4 + g_% [0052 ag_in +sin? a &,.dQ% + £2d0z2]

€+ = cosh? \ + cos?(2a) sinh? A
¢2 = ¢,.6_ = cosh® \ — cos?(2a) sinh? \

In the above, the 6-dimensional space perpendicular to the D3-brane probe is parameterized
in terms of two S? spheres, a radial coordinate r and an angle . The two S? spheres are
realized by the two constraints

(Ui)2 =r’sina

(Ui)2 =r2cosa ,
j 1

3
=1 i

3
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Figure 1: The scalar effective potential in the deformed CFT with M = 0 and 8 = —n/4 (left)
and the probe potential in the deformed AdS with o = 0 (right)

Where the coordinates Ut ,U? maps to ¢!, ¢, ¢° and ¢?,¢*, ¢° of section B, up to re-
parametrization of the radial coordinate r. This re-parametrization between the radial
coordinate r (the distance of the D3-brane from the center of the AdS;) and the VEV X
(which is used in section []) is found by redefining the r field in the Born-Infeld action such
that it is normalized exactly as X in section f. This re-parametrization is given by

X(r) V2 (! (3.9)

_ 1 / " A
" omvamial o
The probe potential is maximal at « = 7/4 and has a period of 7. Comparing to the
behavior in 3 of the N' = 0* effective potential we find the identification o = 3 + 7 /4.

A numerical computation produces the probe potential shown in Figure 1 (right side).
The numerical computation fails at a small value of xg, and the graph is produced by
cutting the potential for y < xg. Due to the numerical difficulty the translation between y
and r is defined up to addition of a small constant value (which cannot be computed using
this approach). The solution of the equations of motion depends on boundary conditions
related to the asymptotic behavior of the field A. The numerical analysis was done for
(M, K) = (1,0). As discussed at the end of B.1, the value of K remains undetermined in
the supergravity analysis (one expects K, which corresponds to the gluino condensate in
the CFT, to be of order unity in units of m?). Fortunately, the qualitative behavior of the
potential does not seem to depend much on this number. Allowing other values for the
parameters (K > 0) does not change the qualitative features shown in figure 1.

4. Conclusions

We have calculated the effective potential of the AV = 0* theory and shown that 1-loop
corrections make the potential stable in specific directions that are flat at tree level (i.e. flat




in the unmodified N'= 4 SYM theory). Note that although the gauge symmetry and the
global R-symmetry restrict the general form of the potential, they do not fix it completely
and there remain unexplored directions which were flat in A" =4 SYM.

It is interesting that the scalar potential we found in the N' = 0* theory is qualitatively
similar to the probe potential in its supergravity dual, although their ranges of validity do
not coincide.

We have seen some indications that the vacuum of the N’ = 0* theory is at <<;5’> =0,
implying that both the gauge symmetry and the R-symmetry remain unbroken. The loca-
tion of the vacuum depends on the sign of the parameters M and M2 introduced in (R.4).
In subsection P.J we gave arguments why these parameters should be positive, but they
are not a proof, since they fail at low energies (where the theory becomes strongly coupled
and the perturbative description fails). The brane probe potential in the supergravity ap-
proximation also indicates the same conclusion (a stable symmetric vacuum). However, it
too fails in the interior of the AdS, implying the approximation breaks down and should
not be trusted for small X.

The failure of the supergravity approximation in the interior of the AdS is a hint for
stringy physics in this area. The true string vacuum dual to N" = 0* is likely to be described
by some extended brane configuration, analogous to the configurations found by Polchinski
and Strassler [[[0] for the string dual of the N' = 1* theory. Among its other advantages,
knowing the full string background should allow one to calculate the value of the parameter
K (introduced in (B.7)), thus picking the right solution asymptotically for a given M. It
is also interesting to see if the qualitative similarity between the effective potential in the
N = 0* theory and the probe potential in its supergravity dual, as depicted in Figure 1,
will abide outside the supergravity approximation.
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1. Introduction and Summary

Two dimensional non-critical string theories are useful toy models for studying var-
ious aspects of string theory (for reviews see [[l, B, B]). In particular, the two di-
mensional type 0 string theories are useful for this, since they are non-perturbatively
stable and they have a known matrix model dual [fl, . Since the type 0 theories
have Ramond-Ramond (RR) fields, they can be used to study RR backgrounds,
whose worldsheet description in string theory is still poorly understood.

The type OA theory has RR 2-form field strengths which are sourced by DO-
branes. It has been suggested that this theory should have an AdS, solution with
RR flux. This is based both on the fact that the space-time effective action has
an extremal black hole solution whose near-horizon limit is AdS,, and on the fact
that the matrix model for the OA theory with flux has a limit in which it is a
conformally invariant quantum mechanical system (which one expects to be dual
via the AdS/CFT correspondence to an AdS, background of string theory) [f, [i]-
If such a background exists, it is interesting to study it, both as a simple example
of a RR background (the large symmetry may help in finding a useful worldsheet



description of this background) and as an example of the correspondence between
AdS, backgrounds and conformal quantum mechanics, which is still not as well
understood as other examples of the AdS/CFT correspondence.

In this note we study the conformal limit of the 0A matrix model in order to find
the properties of this conjectured AdSs background. We find that the spectrum of
this theory is equal to that of a free fermion field on AdS,, with a mass proportional
to the RR flux ¢. This fermion originates from the eigenvalues of the matrix model
which correspond to DO-anti-D0-brane pairs, so this spectrum suggests that the only
excitations in this AdSs background are such uncharged D-brane-pairs, and that
there are no closed string excitations in this background. From the point of view of
0A backgrounds with flux which asymptote to a linear dilaton region, this implies
that the closed string excitations cannot penetrate into the strongly coupled region
which is dual to the conformal limit of the matrix model.

We begin in section ] by reviewing two dimensional type OA string theory, its
matrix model description, and its extremal black hole background. In section [
we analyze the conformal limit of the matrix model and compute its spectrum. In
section [l] we discuss the implications of this spectrum for the dual string theory on
AdSs,, and in section f| we discuss bosonizations of the fermionic system we find,
which may be useful for studying the conformal quantum mechanics with a non-zero
Fermi level. In the appendix we provide a detailed computation of the spectrum of
a spinor field on AdS,.

2. A Brief Review of Type 0A Superstrings

2.1 Type 0A Spacetime Effective Action

Two dimensional fermionic strings are described by A/ = 1 supersymmetric world-
sheet field theories coupled to worldsheet supergravity. The non chiral GSO pro-
jection gives the two type 0 theories. Because there are no NS-R or R-NS sectors
in the theory, the type 0 theories have no fermions and are not supersymmetric in
spacetime. The NS-NS sector includes a graviton, a dilaton and a tachyon. In two
dimensions, there are no transverse string oscillations, and longitudinal oscillations
are unphysical except at special values of the momentum. Thus, the tachyon is the
only physical NS-NS sector field. In type OA, the R-R sector contributes two 1-forms,
and the action is ] (with o/ = 2)

6—2<I>

sz/d2x¢——g[2

K2

1 1
<4+R+4(V<I>)2—i(VT)2+§T2+~-~)—

—me T(FWY?2 — T (FO))? 4. } . (2.0)



The equations of motion are solved by a linear dilaton solution
G,uz/ = Nuv, ¢ = T, (22)

where x is the spatial coordinate. A possible deformation is to turn on the tachyon
(whose mass is lifted to zero by the linear dilaton) T' = ue®.
The general equations of motion are

0=2R,, +4V,V,® — V,TV,T + 21x2e** g, (FM)2 — 4(FE)S(F®), 54
+ 22 (g, (FO))? — 4(FO)(FO)) ),

~— —~
: N
(O8]
&

1
0=—-2-V®+2(Vd)? - ZT2 mR2* 2 [e 2T (FM)2 4 2T(F)HY,

0=V2T —2V® - VT + T + drnr2e®[e 2T (FH)? — 2T (F)?),
0= V”(eszTFle)).

—~
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w
o

—~

DO ()
W ¢ w
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Equation (2:3d)) implies

Do (\/—geTH FEHO)
81(\/—€:F2TF(j:)01)

ie. /—geT?TFE)O ig constant. Thus, we see that the zero modes are the only

degrees of freedom of the vector field. Furthermore, due to the non trivial coupling

0=V, (ePTFO™) = §,(/—geTTFO™) = { , (24)

in front of (F*)?, a time independent field strength can only be turned on for the
vector field whose coupling e*?” does not vanish at infinity. For example, in the
linear dilaton background, the solutions of (R.4)) are

By =qtet™, Fy) =g e (2.5)

Suppose that 1 < 0. As z — oo, T — —oo and F() becomes singular, while F*)
is regular. Thus, turning on F(~) requires having D-branes as a source for this field,
while no such branes are needed for F(*). These D-branes carry RR 1-form charge, so
these are DO-branes (known as ZZ-branes). For positive p the situation is reversed.
Thus, both ¢* and ¢~ are quantized. For p = 0 it seems that we can turn on both
fields, however, as shown in [], this requires the insertion of g*¢~ strings that stretch

from x = —oo to the strongly coupled region. This leads to additional terms in the
effective action (B.1) (see also [[).

2.2 Matrix Model Description

In analogy to the bosonic case [[[(], it was conjectured in [, fi] that the field theory
on N such DO-branes (with N — o0) is a dual description of the full string theory.
It was argued there that the matrix model that gives the linear dilaton background



of the 0A theory is a U(N)4xU(N)p gauge theory with a complex matrix m in the
bifundamental representation. The two U(N) groups originate from D0 and anti-D0
branes.

There are two ways of introducing RR flux []. First, we can modify the gauge
group to U(N)4xU(N + ¢~ )p. This leads to ¢ # 0, ¢t = 0 and corresponds to
placing N + g~ ZZ-branes and N anti-ZZ-branes at x = +00. As long as the Fermi
level is below the barrier (1 < 0), we will have ¢~ charged ZZ-branes left over after
the open string tachyon condenses, so this is expected to correspond to the back-
ground with ¢~ units of F) flux and no F™) flux. When reducing this rectangular
matrix model to fermionic eigenvalue dynamics one finds that the potential for the

eigenvalues is [[[T]
M

Ly
V(A = —g)\ + e (2.6)
where M = (¢7)? — 1/4 and ) stands for the positive square roots of the eigenvalues
of m'm. X should be thought of as a radial coordinate, i.e. A € [0,0).

A second way to introduce flux, for ¢* # 0, ¢~ = 0, is to add a term of the form
S = So+ig*t /(TrA — Tr B)dt, (2.7)

where A and B are the gauge fields of the U(N)4 and U(N)p gauge groups respec-
tively. This has the effect of constraining the eigenvalues of m to move in a plane,
all with angular momentum ¢*. Surprisingly, the reduction to eigenvalues of mim
gives exactly the potential (2:q) with M = (¢%)* — 1/4.

We may try to turn on both ¢t and ¢~ at the same time. It was shown in [§
that this leads again to the same potential with M = (|¢™| + |¢~|)? — 1/4. Thus,
we see that from the point of view of the matrix model, the theory depends on
lg| = |¢7| + |¢~| alone. Due to this and supported by arguments from the target
space theory!, it was argued in [§] that physics depends only on |g|. This point will
be important in the next subsection where we discuss the two dimensional black hole
solution, which requires turning on both fluxes.

2.3 The Extremal Black Hole Solution

The equations of motion (2:34)-(2-3d) also admit a solution that is often referred to
as the 2d extremal black hole solution [{, [[3, 1]

2 1
ds® = [1 + % (q) e 5) 62@] (—dt? + da?), (2.8a)
F® = FO) = gdt A dz, (2.8b)
T = 0’ (2.8C)

!This is also important for consistency with T-duality to type 0B.



where &y = —log ¢ and ® is given implicitly by the ODE

1d® 7> 1
=1 (D - Dy — = ) e 2.9

2dr 8 ( 0 2) ‘ (2:9)
The boundary conditions are set such that at the asymptotic region x — —oo the

solution approaches the linear dilaton solution. In the x — +o0 region the solution
becomes AdSy with string coupling g, = 4/q :

ds? — é(—dﬁ +di?), FO=pO = gdt ANdz,  ®— . (2.10)
There are two major problems with this solution. The first is that the curvature
becomes large as x — +00, specifically, at the AdS, region of this solution R = —8
(in string units), so higher order corrections to (R.I]) are important and the solution
is invalid there. Note that unlike the linear dilaton background, this solution is not
an exact CFT. The second problem is that this solution requires turning on both
of the 0A vector fields, which, as we mentioned before, implies that one needs to
add strings to the background and take their effects into account. Furthermore, the
study of the background (¢*,¢7) = (¢7,0) shows that there is no entropy and no
classical absorption. Thus, if the physics indeed depends only on |g|, then a black
hole is not expected to exist.

It was suggested in [ that perhaps, despite these problems, a solution that
interpolates between a linear dilaton region and an AdS, region exists for the full
theory. If this is the case, then by the AdS/CFT correspondence [[4], the AdS; region
of the solution would be dual to a one dimensional CFT (or conformal quantum
mechanics (CQM)), and it was conjectured in [[] that this CQM is the conformal
limit of the 0A matrix model. In the next sections we will analyze this CQM to see
what the properties of such a solution must be.

3. The Conformal Limit of the Matrix Model

The 0A matrix model eigenvalues move in the potential (see Figure 1)

1, M
V) ==X+ o5 (3.1)

At large A the second term is negligible and the dynamics are as in the original ¢ = 0
linear dilaton background. At small A one can ignore the A\? term and remain with

Sz%/d)ﬁ()\z—%). (3.2)

This action was studied in detail in [[[J] as the simplest example of a (nontrivial)
conformal field theory in one dimensional space (only time). It is invariant under

the action



H=0

V(N

A

Figure 1: The potential for the eigenvalues of the matrix model describing 0A string
theory in a background with non-zero flux, with Fermi level p = 0.

the SL(2,R) group of transformations given by

_at+b

=i At) = N(#) = (ct +d) "'\ (2), (3.3)

t—t

with ad — bc = 1. The generators of these transformations are

M

o
Note that the AdS/CFT correspondence maps H to time evolution in the Poincaré
time coordinate of AdS,. It is important to emphasize that the AdS, vacuum is
supposed to be mapped to the solution with g = 0, since a finite Fermi sea would
break conformal invariance. The relation to SO(2,1) is made evident by taking the

1. 1 1 . .
H:§)\2+ K = §>\2, D:—Z(M+A>\). (3.4)

linear combinations

1/1 1/1
L01:S:— -K—rH y LOQID, L12:R:— —K+TH . (35)
2 \r 2 \r
(for any constant 7). Here L,, are rotations in the pv plane, thus, the operator
R is compact. It should also be noticed that the three operators are related by a
constraint in this system
3 ¢ -1

16 4 (36)

1 M



(this is why one seems to have three constants of motion in a two dimensional phase
space).
The essential observation of [[[J] is that by a reparametrization of time and field,
dt N A(t
Vu+ vt + wt?

u+ vt + wt?’
one may transform the action to a different action where the new corresponding

(3.7)

Hamiltonian (7-translation operator) is G = uH+vD+wkK. Specifically, by choosing
(u,v,w) = (r,0,77') one gets the transformation

~ Y

A1) = \/ﬁ)\(t), T = arctan(t/r). (3.8)
The transformed action is
1 o vy M

whose Hamiltonian is the compact operator R. The spectrum of R is found using
standard algebraic methods to be? [[[F]

1 1+
T =70+ n, T0:§(1+\/M+1/4):%- (3.10)

The relations of the R eigenstates to the H eigenstates is also given in [[[J], as well
as general methods of computing transition matrix elements exactly. Obviously, the
spectrum of H is continuous and D-transformations rescale the eigenvalues of H.
As usual in the AdS/CFT correspondence, time evolution by R is supposed to
be dual to time evolution of 0A string theory on AdS, in global coordinates [[f].
The SL(2,R) generators in the language of the new time parameter generate the

transformations
D 0T = 2sinT A=A (3.11a)
H T = %(1 + cosT) IA=0 (3.11b)
K 01 =r(1l —cosT) 0N = —rtan(7/2)A (3.11¢)

Indeed, this corresponds to the generators of the AdS, isometries near the boundary
(A.9). A more complete analysis of the relation between the isometries and different
parametrizations of AdS, is given in [Ig].

The original matrix model gives N non-interacting fermions moving in the full po-
tential (2.9). After taking the CQM limit, we expect some number of these fermions

2More accurately, 7o may also take the value (1 — /M + 1/4)/2 if M = 0. However, M = 0 is
not relevant for our study since it means that ¢ = +1/2, and ¢ is quantized in integer units.



to “live” in the small A region, leading in the large N limit to a second quantized
version of (B.Z). Note that the gauge-invariant operators in the matrix model are

given by
N

A =Tr [(mim)"] => A" (3.12)
i=1
and in the CQM their mass dimension is (—n) (recall that \; are the positive roots
of the eigenvalues of mim).

4. The AdS; Dual of the CQM

We have seen that the spectrum of the operator R in the CQM is r, = 79 +n
(see (B:I0)). Thus, since the eigenvalues are fermionic, the spectrum of R in the
second quantized CQM is given by stating for each level, r,,, whether it is occupied
or vacant. We would like to identify this with the spectrum of some global AdS,
solution of type OA string theory, which would be a corrected version of (£.10). In
fact, this is precisely the same as as the spectrum of a single free fermion field on
AdS,. Recall (as we review in the appendix) that the spectrum of a spinor field of
mass m in global AdS, (with radius of curvature r) is?®

1
E, = 5 + |mr| + n. (4.1)

The spectra match if we take a spinor on AdS, with mass mr = |q|/2. We suggest
(based on the origin of the eigenvalues) that the excitations of this spinor field are
brane-anti-brane pairs. Since these states account for the full spectrum of the CQM,
we suggest that all other fields (in particular the tachyon) have no physical excitations
in AdS,. We have reached this conclusion by analyzing the spectrum in global
coordinates, but of course it should apply to the Poincaré coordinates of AdS, as
well.

We expect that the matrix model with the original potential (R.6) and with
Fermi level = 0 should correspond to a flux background of OA which interpolates
between a weakly coupled linear dilaton region and a Poincaré patch of AdS, (as in
the extremal black hole solutions of section P.3). We can check if the absence of the
tachyon field in the AdS, region is consistent with this expectation. In the linear
dilaton region, tachyon excitations are mapped to excitations of the surface of the
Fermi sea in the matrix model. Before taking the “near horizon” limit the classical
trajectory of a fermion moving in the potential (£.) with energy E = (a/)~/2¢ has
a turning point at

Amax = (0/)1/4\/ VoM + €2 —¢ (4.2)

3The computation in the appendix is for a field in a fixed AdS, background. Of course, in our
case we expect to have a theory of gravity on AdSs, but, as in other two dimensional backgrounds,
the graviton-dilaton sector has no physical excitations and including it leads to the same results.




(where we have reinstalled o’). Since the quadratic term in (P.G) has a coefficient
1/(4a’), the conformal limit is achieved by taking o/ — co. We wish to consider what
happens to a state in the matrix model (£.§) corresponding to a tachyon excitation
(with a finite energy in string units) when we take this limit, so we keep ¢ fixed.
Clearly, the limit drives the turning point to infinity. Namely, a finite excitation of
the surface of the Fermi sea in the asymptotic region of the original matrix model
does not penetrate into the region that we are interested in. On the other hand,
fermions with very high excitation energies can penetrate into the CQM region, and
we identify them with the fermionic excitations on AdS, discussed above.

This result suggests that the string dual of this AdS, background, expected to be
a strongly coupled theory on the worldsheet, has the property that all closed string
states in the theory are non-physical (except for, perhaps, discrete states at special
momenta). We also predict that the brane-anti-brane excitations of this theory have
masses proportional to the RR flux. This suggests that perhaps the string coupling
of the dual is g5 ~ 1/q as in (2I0) [B, [1, but it is not clear how to define the string
coupling in the absence of string states.

Naively one may have expected that the theory on AdSs; should contain bosonic
fields which are dual to the gauge-invariant operators (B.12) of the matrix model, as
usual in the AdS/CFT correspondence. At first sight this seems to be inconsistent
with the fact that we find no bosonic fields in the bulk. Presumably, the operators
(B-12) are mapped to complicated combinations of the fermion field we found.

One of the general mysteries associated with AdSs backgrounds in string theory is
the fact that they can fragment into multiple copies of AdS, (related to the possibility
for extremal black holes to split) [[7]]. Here we find no sign of this phenomenon.
Presumably this is related to the fact that there are no transverse directions for the
D-branes to be separated in.

5. Remarks on Bosonization

Even though we found that the spectrum of the CQM can be identified with that of a
free fermion field on AdSs, it is interesting to ask if there could also be an alternative
bosonic description of the same theory, which could perhaps be interpreted as a
closed string dual description. The context in which it seems most likely that such
a description would exist is when we look at the CQM (B-2) with time evolution by
H, and turn on a finite positive Fermi level pu. This will clearly break the SL(2,R)
conformal symmetry (and hence the spacetime isometry on the string side), so it
should no longer be dual to an AdSs background (note that such a state has infinite
energy, so perhaps the corresponding background is not even asymptotically AdS,).
In such a configuration there are excitations of the surface of the Fermi sea with
arbitrarily low energies, and these could perhaps be mapped to the tachyon field, as
was the case in (£.6]) before taking the “near horizon” limit. Thus, it is interesting to



search for a possible alternative description of this state (except for filling the Fermi
sea of the brane-anti-brane excitations).

A method that has proven to be very fruitful for studying the matrix model in
the past is that of the “collective field formalism”. This method of bosonization,
achieved by studying the dynamics of the Fermi liquid in phase space, has led to the
computation of scattering amplitudes and other important quantities in the matrix
model (e.g. [B,[I§, [J]). However, there is an important difference between the CQM
and the standard linear dilaton matrix model: in the CQM for momentum p and
t — +oo we have A ~ pt, while in the linear dilaton case we have p ~ FA. Suppose
that at some finite time we construct a small pulse perturbing the shape of the Fermi
sea. The relation A\ ~ pt means that after (and before) a finite amount of time the
pulse will “break up”, or more explicitly, the pulse will no longer admit a description
in terms of the upper and lower surfaces of the Fermi liquid*. We can follow through
the steps of the collective field formalism in order to analyze propagation of pulses
along short time intervals or calculate some other quantities®, but the elementary
excitations of the bosonized version will not be asymptotic states.

This asymptotic behavior of the classical solutions is, of course, a consequence
of the fact that the potential is constant as A — 4o00. One may thus seek other
methods of bosonization that are suitable for systems with this property. However,
the resulting bosonic systems always seem to have non-local interactions (for instance,
this happens in the method presented in [B0]). We have not been able to find a bosonic
theory with local interactions, which could be interpreted as a bosonic field on some
spacetime dual to the CQM with finite p. It would be interesting to investigate this
further.
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A. Spinor Fields on AdS,

A.1 Definitions of AdS,

The metric on AdS; may be written in so called global coordinates as

2

ds? = CO; 5 (—dr® + d6?), (A1)

where 7 € R, 0 € [—7/2,7/2], and r is the AdS radius of curvature. This is (con-
formally) an infinite strip, the boundaries at § = £7/2 being each a line. Another
set of coordinates is the Poincaré coordinates (t € R and € R™T), where the line

element is given by
2
ds? = _(—df? + dz?). (A.2)

2
The relation between the coordinate sets is

7 cosf rsinT

= "7 = — A3
Y cosT —sinf’ (A.3)
or
2rt t2 — 2% +r?
tanT = m, tanf = T (A4)
The generators of isometries in the Poincaré coordinates are
H =0, D = i(t0, + 20,), K =i((t* + 230, + 2tz0,), (A.5)
and in global coordinates
rH =i[(1 — cosTsin#)0, + sin 7 cos 60, (A.6)
K/r =i[(1 + cos7sin0)0, — sin 7 cos 00y], (A.7)

D = i[—sin 7sin 00, + cos T cos 00y|.
Near the boundaries these become
rH =i(l FcosT)0;, K/r =1i(1=£cosT)0:, D = Fisin70;. (A.9)

A.2 Quantization of Spinor Fields on AdS, in Global Coordinates

Consider a spinor field on AdS, (in global coordinates). In this section we work with
signature (+, —). The vierbein is

yo= " g (A.10)

B cos@ *

(1 is a tensor index and «a is an index in the local inertial frame). The spin connection

1S _1

r,= 2E“b%”vuvb,, =0, tan 5", (A.11)

— 11 —



where

¥ = (162 _3/2) : (A.12)

The v matrices are chosen to be
7 = (r~'cosh)o?, v = (r~'cosf)ic?, (A.13)
so that the Dirac equation, (iv#V, —m)y = 0, may be written as

( imr sec ) 80—81—%tan9)¢:0.

A.14
Jo + 01 +%tan9 imr sec 0 ( )

Let ¢(0,7) = 77 cos/2 (e“?u(f), e=“’v(0)). Equation (A.14) becomes

d (u 0 —e 20N [y
— - : . Al
7 (v) imr sec 6 (e2w9 0 ) (v) (A.15)

This yields the second order equation
cos? Ou" + cos 0(2iw cos § — sin O)u’ — (mr)*u = 0. (A.16)
Substituting z = (1 +itan)/2, we have the hypergeometric equation
2(1—2)u” + (% +w —2)u + (mr)*u = 0. (A.17)

The Dirac norm is

w/2 /2 40
(Y Yur) = / dW—_gwiww/ = 7“2/

—7/2 _r/2 COS O

(v u 4+ v*v), (A.18)

so we shall require the solutions of (A7) to vanish at the boundaries (z — c0). We
will show that this requirement implies that

1
wl=lmr|+ 5 +n, n=012- (A.19)

Equation (A.17) has three (regular) singular points {0, 1, 00}. The pairs of exponents
at each point are, respectively,

{(0,1/2 = w), (0,1/2 + w), (mr, —mr)}. (A.20)

When the difference between two exponents at a given point is not an integer the
equation has two power-law solutions at that point (when this happens we shall call
this point “normal”). When the difference is an integer there is one power-law and
one log solution (when this happens we shall call the relevant point “special”). Thus,
we see that the proposed result ([A.19) implies that we have three distinct cases: (i)
2mr ¢ Z, in which case all three points are normal; (ii) mr € Z, in which case all
points are special; and (iii) mr+1/2 € Z, in which case z = oo is special and z = 0, 1
are normal.

- 12 —



(1) 2mr € Z

In this case there are two power-law solutions at z = co. According to the sign of
m, one of the solutions diverges at the boundary and the other one is

1
ui(2) = 2~ ™ E(|mr|, |mr| + 5~ W 2lmr| + 1;271). (A.21)

As 6 goes from —7m/2 to m/2, the path drawn by z7!(#) is a unit circle around
271 = 1. Along this circle the hypergeometric function has a pole at z=! = 0 (which
we have taken care of), but may also has a branch cut along 27! € [1,00). We must
make sure that the solution ([A.2]]) is continuous (single valued) along the circle. One
option is to take |mr| 4+ 1/2 —w = —n (n € N), so that the power expansion of the
hypergeometric function in ([A2]]) terminates after a finite amount of terms and the
function degenerates into a polynomial. In this case we can choose the branch-cut
to be (—00, 0], which makes z~™"I single valued, and so ([A.21)) is single valued.

When |mr| 4+ 1/2 — w is not a non-positive integer the hypergeometric function
will have a branch cut at [1,00) and we must try to cancel this discontinuity with
the discontinuity in z~™"I. For w + 1/2 ¢ Z, the solution at z = 0o is related to the
solutions at z = 1 through the identity

1
F(|lmr|, |mr|+ 5 w, 2lmr|+ 1,271 =
I'—+2 I'(1/2 1 1
(LA E(Y/2 ) 1
C(1+ [mr)T(1/2 + |mr| + w) 2 2
I(1+ 2|mr)I(—-1 — w)
L(fmr)E(jmr| + 5 — w)

—w;1— 27 H+

1 3
(1 — 2 YV P(1 + |mr|, jmr| + g twi g twi 1—2z7h).

(A.22)

The first of the two terms above has no branch singularity as 2! circles the point

z~! = 1. The second term has Aarg = 27(1/2 + w). Since A arg(z~""1) = 27|mr|
(notice we are moving 2z~ and not z), we must take w = —1/2 — |mr| — n (n € N),
in which case, the first term above vanishes and the second term cancels out with
the z~I"™"!. In conclusion, we need

w|=|mr|+1/2+n,  n=0,1,2- (A.23)

When w + 1/2 € Z the identity (A.29) is invalid and should be replaced by either

B L(1 + 2|mr|)
F 1 — k.2 127 =—
3 > (Imr] 4+ k) (1 + |mr|), i _1
x (z71 = 1)*log(1 Z nln%) (1—zH"4+G(1 -2

n=

(A.24a)
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or

(=DFC(1 + 2|mr|)
L(|mr| + 1)T(|mr| — k)

F(lmr|, 1+ |mr| 4+ k, 2lmr| + 1,271 = —

1 o (Imr| + k4 1)a(|mr))n “1yn -1
X (z 1)*log(1 ; 0+ h) (I—-27)"+G1 -2,
(A.24b)
for k = 0,1,2,..., where the function G(1 — 27!) is some known function that is

single valued as 27! circles 27! = 1. Due to the log(1 —z~!) these expressions change
by a number that isn’t just a phase, so there is no way to cancel it out with the phase
from z=™". Thus, for w + 1/2 = k € Z there is no way to construct a single-valued
solution, and we conclude that (A-23) is the only possibility for 2mr € Z.

(ii) 2mr € Z and m # 0

Let k/2 = |mr| # 0 (i.e. k=1,2...). In this case the second solution near z = 0o is

1 [e.e]
ug(2) = —(—2)*2F(k — 3 k—w,2k; 27 Y log(—2) + (—2) 7%/ Z cs2

IV o e LB o —1)

C(k/2)T(k/241/2 —w) ['(n—k/2)D(n—k/2+1/2—w)z"".

3M

(A.25)

This solution diverges and should not be considered, so we are left with the solu-
tion ([A2T]). For half-integer mr the argument of case (i) may be repeated, yield-
ing the same result (A.23). For integer mr, z~™ is single valued, so we need the
hypergeometric function to be single valued as well. We can do this by taking
w = |mr|+1/2+n (n € N) as before, in which case the hypergeometric function
degenerates into a polynomial. Equation (A.29) shows that the function is never
single valued if w+1/2 ¢ Z. By (A.24d) and ([A.24H), we can achieve a single valued
function forw+1/2=k=1+|mr|+nor —w —1/2=k = |mr|+n (n € N), in
which case the multi-valued term with the log vanishes. Together this reduces to the

previous result (A.23).
(iii) mr = 0
In this case it is most easy to observe that the original equation ([A.14) is solved by

) Aeiwe
— ,iwT 1/2 0 '
PY=e coS ( Be"we)

and the two chiral components decouple as expected. These solutions are only
o-function normalizable, as expected of massless fields. Again, requiring single-
valuedness leads to the condition ([A.23).
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A.3 The Dirac Equation in Poincaré Coordinates

We next consider fermions quantized on the Poincaré patch, in order to relate the
mass of the fermion with the weight of the corresponding operator in the CQM. The

vierbein is
r

V: - ;63
The spin connection is
1 1 1/2 0
L, = =S"V¥'V,V,, = =" : A2
) a ViV a:“(O —1/2) (A.26)
The v matrices are chosen to be
2’ = (z/r)o’, v = (z/r)io?, (A.27)

so that the Dirac equation, (iv#V, —m)y = 0, may be written as

imr (0o + 1) — 3 B
<$(80 —01) + % imr 2) ¥ =0. (A.28)

Let o(z,t) = e" @zl /2(e7oy(x), e“v(z)). We have

d (u 0 imre?@*\ [(u
e <U) B (—imre_%“x 0 ) <U) ’ (A.29)

This yields the second order equation
22" + 2(1 — 2iwz)u’ — (mr)?u = 0. (A.30)
In general, this is solved by
U= x_l/zei‘”(A+M1/2,mr(2iwm) + A_M 2, (2iwz))

where M, ,, is the Whittaker function. The A, terms behave near z = 0 as aEmr,
The boundary condition at infinity should thus be defined by

lim ) (¢, ) = /M0 (1)

with a finite 1y(t), where 1y(t) is identified with a source for an operator O in the
dual CFT, [ dtyo(t)O(t). Therefore, the corresponding operator O has conformal
(mass) dimension 1/2 — |mr|. By relating the spectrum of the CFT (see (B.10)) to
the spectrum of the spinor field in global coordinates, we find in section 4 that the
mass of the fermion should be |mr| = |q|/2, so the operator O has mass dimension

(1—lal)/2.
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and asymmetric orbifolds of type II strings on a circle) fit together, and what are
the weakly coupled descriptions in different regions of the moduli space. We argue
that there are two disconnected components in the moduli space of theories with
rank 2. We analyze in detail the limits of the M theory compactifications on a
Klein bottle and on a Mobius strip which naively give type IIA string theory with
an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently
describe these limits we conjecture that this orientifold non-perturbatively splits into
a D8-brane and an orientifold plane of charge (—1) which sits at infinite coupling.
We construct the M(atrix) theory for M theory on a Klein bottle (and the theories
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gauge coupling compactified on a cylinder with specific boundary conditions. We
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including the heterotic string on a circle.
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1. Introduction

In this paper we discuss in detail the structure of the moduli space of nine dimen-
sional N' = 1 supersymmetric backgrounds of M theory and string theory, and their
M(atrix) theory construction. There are two main motivations for this study :

e The global structure of the moduli space of (maximally supersymmetric) toroidal
compactifications of M /string theory has been studied extensively, and all of its
corners have been mapped out. Less is known about compactifications which
preserve only half of the supersymmetry (16 supercharges).! The moduli space

!Some of these backgrounds were studied in [ﬂ]



of such nine dimensional backgrounds with rank 18 (including heterotic strings
on a circle) has been extensively studied, and all its corners are understood;
however it seems that no similar study has been done for backgrounds with
lower rank (rank 10 or rank 2). These backgrounds include the compactifica-
tion of M theory on a Klein bottle and on a Md&bius strip. In this paper we
study the moduli space of these backgrounds in detail. We will encounter two
surprises : we will see that the moduli space of backgrounds of rank 2 has two
disconnected components,? and we will see that both for rank 2 and for rank
10 there is a region of the moduli space which has not previously been ex-
plored, and whose description requires interesting non-perturbative corrections
to some orientifold planes in type IIA string theory.

e The theories we discuss (with rank n) have non-trivial duality groups of the
form SO(n — 1,1,7Z). In their heterotic descriptions these are simply the T-
duality groups. However, from the M theory point of view these dualities are
quite non-trivial. In particular, it is interesting to study the manifestation of
these duality groups in the M(atrix) theory description of these backgrounds;
T-duality groups in space-time often map to interesting S-duality groups in
the M(atrix) theory gauge theories. In this paper we will derive the M(atrix)
theory for some of these backgrounds; the detailed discussion of the realization
of the duality in M(atrix) theory is postponed to future work.

We begin in section ] with a detailed discussion of the structure of the moduli
space of 9d N = 1 backgrounds. We review the structure of the moduli space of
rank 18 backgrounds, since this will have many similarities to the moduli spaces of
reduced rank, and we then discuss in detail all the corners of the moduli spaces of
reduced rank. In section [J we construct the M(atrix) theory for the backgrounds
corresponding to M theory on a cylinder (with a specific light-like Wilson line) and
on a Klein bottle. The case of the cylinder has been constructed before [, but we
clarify its derivation and the mapping of parameters from space-time to the M(atrix)
theory. Our construction for the Klein bottle is new. We end in section [ with
our conclusions and some open questions. Four appendices contain various technical
details.

2. The moduli space of nine dimensional N’ = 1 backgrounds

In this section we review the moduli space of compactifications of string/M theory to
nine dimensions which preserve N/ = 1 supersymmetry. On general grounds, if such a
compactification has a rank n gauge group in its nine dimensional low-energy effective
action, its moduli space takes the form SO(n—1,1,Z)\ SO(n—1,1)/SO(n—1) x R,

2This was independently discovered by A. Keurentjes [E]



with the first component involving n — 1 real scalars sitting in n — 1 vector multiplets
and the second component involving the scalar sitting (together with an additional
U(1) vector field) in the graviton multiplet. In different regions of this moduli space
there are different weakly coupled descriptions of the physics. We begin by reviewing
the n = 18 case which is well-known. We then discuss the cases of n = 2 and n = 10,
where we will encounter some surprises and some regions which have not previously
been analyzed.

2.1 A review of nine dimensional N/ = 1 theories with rank 18

In this subsection we review the different regions of the moduli space of nine di-
mensional compactifications of M theory and string theory with 16 supercharges
and a rank 18 group, including M theory on R? x S! x (S!/Z,), the two heterotic
strings compactified on a circle, the type I string on a circle and the type I string.
The results are mainly from [l and [fJ]. The full moduli space for these theories
is SO(17,1,Z)\ SO(17,1)/SO(17) x R. Naturally, different descriptions are valid in
different regions of this space. For simplicity, we shall restrict our discussion to the
subspaces of moduli space that have enhanced Fg x Eg and enhanced SO(32) gauge
symmetries at low energies. These subspaces take the form SO(1,1,Z)\ SO(1,1) xR,
so they are analogous to the rank 2 case, which is the main subject of this paper,
and we will see many similarities between these two cases. However, a reader that is
familiar with rank 18 compactifications is welcome to skip to the next subsection.

We define M theory on R? x St x (S'/Z,) by periodically identifying the coordi-
nates x° and z'° with periodicities 2r Ry and 27 Ry, and also identifying x'® ~ —x 19
and requiring that the M theory 3-form C),,, change sign under this reflection. This
space has two boundaries/orientifold planes, at x'° = 0 and at ' = 7R;y. The
orientifold breaks half of the eleven dimensional supersymmetry, leaving 16 super-
charges. This eleven dimensional orientifold is not anomaly-free: there is a gravita-
tional anomaly in the 10d theory obtained by reducing on z'° that comes from the
boundaries, and must be cancelled by additional massless modes that are restricted
to the fixed planes. As in the 10 dimensional case, part of the anomaly can be
cancelled by a generalized Green-Schwarz mechanism (using the C),;, 1) form), and
the remaining anomaly is cancelled by the addition of 496 vector multiplets. In ten
dimensions this restricts the gauge group to be either SO(32) or Eg x Eg. However,
in the 11d case the anomaly must be divided equally between the two fixed planes,
so there is []] an Eg gauge group living at each orientifold plane. When the two radii
are large (compared to the 11d Planck length), the low energy limit is described by
11d supergravity on the cylinder, coupled to two N/ = 1 Eg SYM theories on the two
boundaries.

In the limit where Ry is large and Ry, is small, one obtains [ the heterotic
Eg x FEjg string, with string coupling g, = R%Q and string length Rl_ol/ 2 (here and
henceforth we suppress numerical constants of order one, and measure all lengths in



11d Planck units). This is a valid description of the physics as long as Rjgp < 1 and
Ry > R)"* .

When we continue to shrink R; to make it smaller than Ry 2 we reach a point
where the 2° circle becomes small compared to the string scale. At this point we must
switch to the T-dual picture. Recall that the Fg X Eg heterotic string with no Wilson
lines is T-dual to itself, with an enhanced gauge symmetry at the self-dual radius.
Thus, the appropriate description in this regime is once again the heterotic Fg x Fg
string, compactified on a circle of radius Rj; Ry with string coupling gy = RigRy .
This description is valid for Rjp < Ry and Ry < Rl_ol/ ? In the low-energy effective
action, the Fg x Eg x U(1)? gauge group is enhanced to Eg x Fg x SU(2) x U(1)
along the line R3R;o = 1.

This description is valid for arbitrarily small Ry, so next we fix Rio and shrink
Ry. This has the effect of increasing the string coupling in the T-dual heterotic
picture. For Ry < Ry we open up an extra dimension (as above) and get another
region of moduli space that is also described by M theory on a cylinder. The length
of the dual cylinder is R%zRg_ ! the radius is Ry Ry’ and the Planck length of
this “other M theory” is (I,)mr = Ry Y 3Rl_ol/ % Thus, this description is valid for
Ry < Ry K R9_4/5.

We are left with the region of Ryp > Ry 5 and Ry < 1. This region is covered
by the backgrounds that we get by reducing M theory on the periodic direction of
the cylinder. This theory is known as type I’ strings [fl], and it may be viewed as
an orientifold of type ITA string theory, obtained by dividing by worldsheet parity
together with 2% — —29. The fixed points are now orientifold 8-planes (O8 planes)
of type O8~, which carry (—8) units of D8-brane charge. Tadpole cancellation then
requires that this background must include also 16 D8-branes.

Another way to obtain the same type I’ theory is as the T-dual of type I string
theory. This is helpful in understanding an important feature of this background [f].
In type I strings, there are two diagrams that contribute to the dilaton tadpole —
the disk and the projective plane — and these diagrams conspire to cancel, homoge-
neously throughout space-time. On the other hand, in type I’ string theory there are
two identical O8 planes at the boundaries, and 16 D8-branes that are free to move
between the boundaries. As a result tadpole cancellation does not occur locally in
this theory: the oriented disk diagram gets a contribution that is localized at the
D8-branes, while the unoriented projective plane diagram gets contributions local-
ized at the orientifold planes. Each D-brane cancels one-eighth of the contribution
of an orientifold plane, and there is generally a gradient for the dilaton, whose exact
form depends on the configuration of D8-branes.

The configuration of the branes between the orientifold planes also determines
the low-energy gauge group of the background. One possible configuration of D-
branes is to have 8 D8-branes on each O8 plane. In this case the dilaton is constant
and there is an SO(16) gauge group at each of the boundaries. In all other cases



the dilaton varies between the orientifold planes and the D-branes, and between
the D-branes, with a gradient proportional to the inverse string length and to the
local ten-form charge. This dilaton gradient causes the dilaton to diverge when the
distance between two such planes is of order g;lls (where gy is the string coupling
somewhere in the interval), imposing restrictions on the length of the interval and
on the distances between the orientifold planes and the D-branes.

The last piece of information on type I’ string theory that we need is that when
the string coupling becomes infinite on one of the orientifold planes, there may be
DO-branes that become massless there [[d, B, f]. If there are n D8-branes on this
orientifold plane, then these additional light degrees of freedom conspire to enhance
the SO(2n) gauge group to E, 1. Specifically, in order to get an Fg gauge group in
this theory, we need to put 7 D8-branes on an orientifold plane, and one D8-brane
away from it, precisely at a distance that will maintain the infinite string coupling
at the O8 plane. If we do this at both ends (schematically: (O8+47D8)-D8-D8-
(O8+7D8)) we get an Fg x Eg x U(1) x U(1) gauge group (in nine dimensions),
providing the vacuum of type I’ string theory that is dual to the heterotic Eg x Fg
string with no Wilson line turned on. The distance in string units between the two
single D8-branes will be denoted by x .

After this detour on the general properties of type I’ string theory, let us now
return to the compactification of M theory to this background. We can reach a type
I’ background in two ways: starting with the original M theory and reducing on z?,
or starting from the dual M theory and reducing on the periodic direction there.
Both constructions give us a type I’ theory in its Eg X Eg vacuum, with couplings:

gr = RS/2 (ls)r = 39_1/2 Ry = Ry (2.1)
gre = Ry'Ryy* (Is)r2 = Ry’ Rps = RY’Ry' (2.2)

Note that we need to be careful about what we mean by g/, since the string coupling
varies along the interval and diverges at the boundaries; what we will mean by g
(here and in other cases with a varying dilaton) is the string coupling somewhere in
the interior of the interval, and the differences between different points in the interval
are of higher order in g, so our expression is true in the weak g, limit (which is the
only limit where g is well-defined anyway). Naively, the first description is valid (ex-
cept near the orientifold planes where the string coupling diverges) whenever Ry < 1
and Rijg > Ry 2 and the second description is valid whenever Ry > Ry 4/
Rip > R§, but this would give an overlapping range of validity to the two differ-

and

ent descriptions (which would also overlap with some of our previous descriptions).
However, requiring that the distance between each D8 and the O8 should be such
that the orientifold plane is at infinite coupling, we find x;, in the two cases to be

1) a1 = (RR2—1)Ry*? (2.3)
2)  aps=(1— R2Ry)Ry' R (2.4)



Now, the regime of validity for each of the type I’ backgrounds (defined by (gs); < 1
and xp > 0) is distinct; the first description is valid when Ry < 1 and Rjy < Ry 2
and the second description is valid when Ry > Rq 5 and Rip > Ry 2. Furthermore,
at the line RyoR2 = 1, which was the line of enhanced symmetry in the heterotic
Eg x Ejg string theory, we have x;, = 0 for both backgrounds. On this line the two
D8-branes coincide, enhancing the U(1) x U(1) symmetry to SU(2) x U(1) exactly
as in the heterotic case. This implies that the two type I’ backgrounds are actually
related by an SU(2) gauge transformation, which is consistent with the fact that
21/ () = —xpa/(ly)pe. We see that the line RigR2 = 1 continues to be a line of
enhanced symmetry throughout the moduli space.

The backgrounds described thus far cover the whole moduli space of nine dimen-
sional N/ = 1 backgrounds with an Fg x Fg gauge group. The top graph in figure [l
displays how these backgrounds fill in all possible values of the radii of the M theory
we started with. Of course, the top part of this figure (above the dashed line) is
related by an SU(2) gauge transformation to the bottom part, so the true moduli
space is just half of this figure (above or below the dashed line).

Next, we turn to the subspace of the rank 18 backgrounds with an unbroken
SO(32) gauge symmetry.®> This subspace includes the type I’ background in its
SO(32) vacuum. This vacuum is obtained by having all 16 D8-branes sit at one of
the O8~ planes (so that it has the same charges as an O8" plane). The dilaton then
grows as we go from this O8~ plane to the other one. We denote the distance between
the orientifold planes as Ry (in string units) and the string coupling (defined, for
instance, near the O8~ plane with the branes) as g;,. The regime of validity of this
description is 1 < Ry < g5

For R;r < 1, we need to switch to the T-dual of this description, which is the
type I background with no Wilson lines. The string coupling in type Lis g; = g5/ Ry
and the radius of the compact circle is Ry = R},'. This description is thus valid for
gr < Rp < 1.

As we further decrease R; we increase the coupling of the type I string the-
ory, and eventually we should go over to the S-dual heterotic SO(32) string. The
parameters of this heterotic background are g, = Rp/gp and R, = 1/Rp, and
its string length is (I;), = (gr/Rp)"/?, implying that it is a valid description for
Ry < gr < R

On the line gy = RI_,1 we find Ry, = (l5),. This is a line of self T-duality and
enhanced SU(2) gauge symmetry in the heterotic SO(32) string. We can now move
to the T-dual picture, obtaining another heterotic SO(32) description. By going to
the strong coupling limit of the new heterotic background, we get another type I
background, and by another T-duality we get another regime described by the type

3 Actually we will only describe one connected component of this subspace, which will turn out
to be analogous to the rank 2 case. The other component has a discrete Wilson line that is only
felt by spinor representations of SO(32).
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Figure 1: The Eg x Eg and SO(32) subspaces of the moduli space of rank 18 compactifi-
cations of M theory and string theory. In the first graph the parameters are the period and
length of the cylinder in Planck units as defined for the upper right compactification of M
theory on a cylinder, and in the second they are the distance between the orientifold planes
in units of the string length, and the string coupling on the O8~ plane with the branes on
it, of the type I’ background appearing in the lower right corner. The dashed line in both
graphs is the line of enhanced SU(2) symmetry; the regions of the graphs below and above
this line are identified.

I’ background. These three types of backgrounds cover the whole SO(32) subspace
of the moduli space, as presented in the second graph of figure [I.

In the heterotic SO(32) description we found that along the line Ry = gl_,1 a
U(1) symmetry gets enhanced to SU(2), by the usual mechanism of a winding mode



becoming massless at the self-dual point. As in the previous example, the same
enhancement occurs on this line also in other regions of the moduli space. In the
type I’ description, this is the line where the O8 plane without the branes is at
infinite coupling. The half-D0-branes that live on the orientifold plane then become
massless at this line, and they are responsible for the symmetry enhancement (from
U(1) to Ey = SU(2)) in this description.

It is important to remember that the two branches depicted in figure [I] are just
specific subspaces of the moduli space of rank 18 theories and that the rest can be
reached by turning on Wilson lines in the heterotic or type I pictures, or equivalently
moving around D8-branes in the type I’ picture. Thus, the two plots in the figure
are just two slices of the full moduli space. This is important to emphasize since in
the next subsection a similar picture will arise, but in that case there are no Wilson
lines to be turned on, so the two branches are actually two disconnected components
of the 9d moduli space.

2.2 M theory on a Klein bottle and other rank 2 compactifications

We now wish to repeat the above analysis for M theory compactified on a Klein
bottle (first considered in [I0]) instead of a cylinder. One may start by asking if
M theory makes sense at all on a Klein bottle. We will see that the answer is yes,
and that this background arises as a strong coupling limit of consistent string theory
backgrounds.

Let us begin by considering type IIB string theory gauged by the symmetry
group Zs = {1, HyQl}, where 2 is worldsheet parity and Hy is a shift in the 9th
coordinate,

e {X“(z, 7) ~ XH(2, 2), [#9 25)

X%z,2) ~ X%z, 2) + 27 Ry.

This orientifold theory is derived by imposing Hg{2 = 1 on the spectrum of the I1B
theory compactified on a circle of radius 2Ry; this breaks half of the supersymmetry
(one of the gravitinos is projected out and the other one remains). In this case there
are no fixed planes, and one does not need to add D-branes to cancel any tadpole,
as explained in [[J]. We refer to this background as the Dabholkar-Park background
or the DP background.

We can compactify the DP background on an additional circle of radius Rg in
the 2® direction, and T-dualize in this direction. Because of the orientation reversal
in the original DP background, the resulting background is type ITA string theory
gauged by

XH(z,z) ~ XH(z, 2), w#8,9
X®(2,2) ~ —X"B(z, 2), (2.6)
X9z, %) ~ X%z, 2) + 21 Ry.



Thus, this describes a type ITA compactification on a Klein bottle (K2) of area
(27 Rg) x (27 Ry), where Rg = 12/ Rg, with an orientation reversal operation (see also
[[7]).* One can lift this theory to a background of M theory in the usual way by
taking the strong coupling limit (the supersymmetry of this background prohibits
a potential for the dilaton). The worldsheet parity is identified in M theory with
flipping the sign of all components of the 3-form field. Thus, as promised, M theory
on a Klein bottle naturally arises as a strong coupling limit of a string theory.

Consider now M theory compactified on a Klein bottle of radii K2(Ryo, Ry)
measured in Planck units, namely with the identification

(X1 X% ~ (=X XY + 27 Ry), (2.7)

including a reversal of the 3-form field, and also with X9 periodically identified with
radius Ryp. If we shrink Rjq we get a background that is described in detail in [[Z]
and [[J (additional related analysis can be found in [[4]). This background can be
defined as type IIA string theory with a gauging of the symmetry

(=) x (X% = X% + 27 Ry), (2.8)

where F7 is the space-time fermion number of the left-moving fields on the world-
sheet. We refer to this background as the asymmetric orbifold of type ITA or AOA.
The type IIA string coupling is g, ~ R%z, and [, ~ Rl_ol/ 2,

If we continue to shrink Ry, the circle becomes small (in string units) and we
need to change to the T-dual description. It was noticed in [[J] that the AOA back-
ground has an enhanced SU(2) symmetry point when Ry = I,/v/2, and in [[J] it
was demonstrated that (as implied by this enhanced symmetry) this background is
actually self-T-dual. In appendix [J we explicitly evaluate the partition function of
this model, showing that it is modular invariant and respects the T-duality. There-
fore, when we continue to shrink R;q we should switch to a T-dual AOA description,
which has (Rg)r ~ 1/RgRyo and (gs)7 ~ Ri9/R9. This dual AOA description can
in turn be lifted to a dual M theory on a Klein bottle. The regimes of validity of
these different descriptions are exactly the same (up to numerical constants of order
one) as those we found in the previous subsection, with M theory on the Klein bottle
replacing M theory on a cylinder, and the AOA background replacing the heterotic
FEs x Eg string.

Going back to M theory on a Klein bottle, what happens if we shrink Ry? Naively,
we get a theory that is an orientifold of ITA on an S'/Z,, with some boundary con-
ditions at the fixed planes. However, we have a Zy symmetry that exchanges the two
boundaries, and since there cannot be any tadpole for the RR 10-form, we can only

4The orientation reversal leads to various periodicity conditions for the p-form fields, that are
explained in detail in appendix B



have neutral orientifold planes (with respect to the 10-form charge) at the bound-
aries, unlike the standard O8~ planes (which carry (—8) units of charge) and O8"
planes (which carry +8 units of charge).® For now we conjecture that the reduction
in this direction leads to a background which we call the X-background, and that
the line of enhanced symmetry RjoR2 = 1 is also a line of enhanced symmetry in
the X-background. Thus, the two remaining regions of the moduli space are covered
by the X-background and its dual (obtained by reducing the dual M theory on the
periodic cycle). In §2.3 we shall propose a stringy description of this background.

The theories described above (starting with M theory on a Klein bottle) cover
a complete moduli space of the form SO(1,1,Z)\ SO(1,1) x R, as shown on the top
graph of figure Pl However, there are several additional string backgrounds with 16
supercharges and a rank 2 gauge symmetry that were not included so far, so they
must be in a separate component of the moduli space. The first is the DP background
described above. Next, there is the orientifold of type ITA on an interval S1/Z,, with
an O8~ plane on one end and an O8" plane on the other [IJ]. We refer to this
background as the O8* background, and denote the length of the interval in string
units by 7R4. No D-branes are required for tadpole cancellation here. However,
the dilaton does have a gradient (identical to that in the SO(32) background of
the type I’ string) that puts a limit on the maximum length of the interval, of the
form Ry < 1/g+ (where g4 is again defined as the string coupling somewhere in
the interval). This background was studied in [I5], where it was shown to be T-
dual to the DP background. An important feature of this background is that when
the distance between the orientifold planes is such that the coupling on the O8~
is infinite, there are half-D0-branes stuck on the orientifold that become massless.
Locally, this is exactly the same as in the type I’ SO(32) vacuum; in both cases the
fractional branes enhance the U(1)? symmetry to SU(2) x U(1).

Finally, one other background can be obtained by gauging type IIB string theory
by the symmetry (B.§). We call this background the Asymmetric Orbifold of type
IIB or AOB. Recalling the following property of I1IB strings

(-1t = 5Q8 (2.9)

(where S is the S-duality transformation of type IIB string theory) and applying
the adiabatic argument of [[[4], we see that this background is S-dual to the DP
background. Exactly like the AOA background, the AOB background is self-T-dual
[[3] and has an enhanced SU(2) symmetry when the radius of the circle is I,/v/2.
We can now describe the second component of the moduli space. Start with the
O8* background with string coupling g. and radius R. (measured in string units).

5Notice that this contradicts a suggestion occasionally found in the literature, that in this limit
we get a background defined by ITA on an S!/Zsy with an O8~ plane on one end and an O8* plane
on the other.
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Figure 2: The two disconnected components of the moduli space including the back-
grounds of subsection R.2. In the first graph the parameters are the periods of the Klein
bottle in Planck units as defined in (.7) for the upper right M theory description. In the
second graph, the parameters are the radius of the circle in string units and the string
coupling (in the middle of the interval) for the O8F background on the lower right corner.
The dashed line in both graphs is the line of enhanced SU(2) gauge symmetry, and the
backgrounds below the line are identified with the backgrounds above the line.

This is a valid description for g+ < 1/Ry and Ry > 1. As we decrease Ry, we
need to T-dualize, as in [[J], and we get the DP background with radius® 1/R.
and string coupling g+ /Ry. The DP description is valid as long as g+ < Ry < 1.
We can further decrease R4 to the point where the DP string coupling is too large.

SWe continue to ignore numerical constants of order one.
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At this point we turn to the S-dual picture, which is the asymmetric orbifold of
type I1IB (AOB). The string coupling is now R /g4, and the S-dual string length is
(g+/R+)"Y?, such that the radius 1/R. in string units is now (g+R+)~"/2. This is a
good description for g1 < 1/Ry and Ry < gy.

We continue next by increasing g+ to the point where the AOB radius becomes
small. Then we must use the self T-duality of this background to arrive at a dual
AOB description, with radius (g+R.)Y? (in units of its string length) and string
coupling gf/ 2Ri/ . This description is good for g+ > 1/Ry and g+ > R3. The
next step is to take the S-dual of the dual AOB background. This gives another
DP background with radius (in units of its string length) gi/ 4R;1/ * and coupling
gli/ 2R;3/ ?. This description is valid for g, > Rli/ P and gr < R3%. The last step is to
T-dualize the new DP background to a dual O8F background, with radius gf’/ 4R1i/ :
(in units of its string length) and coupling 9;1/ 4R;5/ *. This description is valid for
g+ K Ri/g and g+ > 1/R..

These six string theories cover the entire range of values of (g1, R+). The reader
should notice that the line of enhanced SU(2) symmetry in the O8* background,
Ry ~ 1/g+, smoothly goes into the line of enhanced SU(2) symmetry of the AOB
background [[J], as in the previous cases we discussed.

Figure P summarizes the structure of the moduli space. As promised, it has
two disconnected components in the nine dimensional sense. Note that the nine
dimensional low-energy effective action on the two components is identical, but the
massive spectrum is different. The components can be related by compactifying
on an additional circle and performing a T-duality, but they are not connected as
nine dimensional backgrounds. There is an obvious relation between each of these
components and one of the subspaces of the moduli space of rank 18 compactifications
discussed in the previous subsection and depicted in figure [l.

2.3 The X background demystified

In the previous subsection we left open the description of the limit of the Klein bottle
where Ry is small and R, is large. In this limit the Klein bottle geometrically looks
as in figure f (though the geometric description is not really valid at distances smaller
than the 11d Planck scale). This limit should correspond to some 10 dimensional
string theory; let us collect some features of this theory:

Figure 3: In the X region, the Klein bottle looks like a long tube between two cross-caps.
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e After reducing M theory on the small circle Ry, we expect to obtain a type ITA
string theory that lives on R®! x I where I is an interval. On each boundary
of the interval we should have an orientifold plane; however these orientifold
planes are non-standard because the orientifolding is accompanied by a half-
shift on the M theory circle. This half-shift modifies, among other things, the
properties of DO-branes near the orientifold. One can think of this shift as a
discrete RR flux characterizing the orientifold plane, which changes its charge
from the usual charge of (—8) to zero [Id]. We will denote such orientifold
planes by O8°.

e The fact that the orientifold carries no D8-brane charge is consistent with
tadpole cancellation of the 10-form field and the dilaton. Note that there is a
Zy symmetry exchanging the two ends of the interval, so the two orientifold
planes must carry the same charge (unlike the case in the O8* background
described in the previous subsection).

e Naively one expects that in the limit of small Ry the 10 dimensional string
theory can be made very weakly coupled, and the description should involve
the usual type ITA string theory, at least far from the boundaries of the interval
(where there may or may not be large quantum corrections). We will see that
there are some regions of the moduli space where this naive expectation fails.

e The discussion of the previous subsection suggests that we should have an
enhanced SU(2) gauge symmetry when the interval is of size R ~ 1/g; (in type
ITA string units). One may expect this enhanced symmetry to come from half-
DO-branes on the orientifold planes, as in some of the examples discussed in
the previous subsections. However, since we have a Z, symmetry relating the
two orientifolds, it is hard to imagine how the U(1)? group would be enhanced
to U(1) x SU(2) rather than to the more symmetric SU(2)2.

The last item above suggests some modification of the naive picture of this
background. The picture that we will suggest for the correct description of this
background is based on two facts :

e In our analogy between the rank 18 and the rank 2 theories, the X background
plays the same role as the type I’ Fg x Eg background. In this background
the two orientifold planes are always at infinite coupling, and the enhanced
SU(2) symmetry arises when two D8-branes in the middle of the interval come
together .

e In some cases, when a standard (O8~) orientifold plane of charge (—8) is at
infinite coupling, it can emit a D8-brane into the bulk, leaving behind an ori-
entifold plane of charge (—9) which has no perturbative description (and which
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always sits at infinite coupling). This phenomenon cannot be seen in pertur-
bation theory, but it can be deduced from an analysis of D4-brane probes [[].

Our suggestion is that each O8° plane non-perturbatively emits a D8-brane and
becomes an O8(~Y) plane which always sits at infinite coupling. The moduli space
and 10-form fluxes of this system are then identical to those of the Eg x Eg type I’
background, with the O8(~Y) plane playing the same role as the O8~ plane with 7
D8-branes on it. Now, the gauge symmetry is enhanced to SU(2) in a Zy-symmetric
manner, when the D8-branes meet in the middle of the interval, and this enhancement
is perturbative (it can happen at weak coupling). Denoting the string coupling in
the region between the two emitted D8-branes by g (it does not vary in the interval
between the D8-branes), the distance of each brane from the respective O8(~Y plane
is ~ 1/gs. Thus, when the branes meet, our interval indeed has a size proportional
to 1/gs as required.

We suggest that this is the correct description of O8" orientifold planes. Note
that such a large non-perturbative correction to the description of high-dimensional
orientifold planes is not surprising; already in the case of O7 planes it is known
[[7] that they non-perturbatively split into two 7-branes, and the corrections to O8
planes are expected to be even larger. Our suggestion implies non-trivial corrections
to compactifications of M theory involving crosscaps (similar corrections in M theory
should also occur in a compactification on a Md6bius strip, as will be discussed in the
next subsection). These corrections are similar to the ones that occur for M theory
on a cylinder with no Wilson lines. Note that when we are close to the enhanced
SU(2) point, the corrections to the naive M theory picture shown in figure fJ are not
just localized near the cross-caps as one may naively expect, but the string coupling
actually varies along the whole interval.

In order for this proposal to be consistent, there should be no massless fractional
DO-branes on the O8(=") planes, which would lead to more enhanced symmetries than
we need. Because of the shift in the M theory circle involved in the orientifolding,
the radius of the cross-cap is actually half of the radius of the M theory circle in
the bulk, which implies that only even momentum modes (in units of the minimal
momentum on a standard orientifold plane) are allowed there. Hence, there are no
half DO-branes in backgrounds with O8° orientifolds (or O8(= orientifolds).

2.4 M theory on a Mobius strip and other rank 10 compactifications

There is one additional disconnected component of the moduli space of nine dimen-
sional compactifications with A/ = 1 supersymmetry. Consider the heterotic Fg x Fg
string compactified to nine dimensions on a circle of radius Ry. One can consider an
orbifold of this theory generated by switching the two gauge groups together with
a half-period-shift of z°. This theory is known as the CHL string; as usual one
should add twisted sectors for the consistency of the orbifold (for more details see
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(8, [9]). This leads to a nine dimensional compactification with a rank 10 gauge
group. We will focus on the subspace of the moduli space of this theory in which the
FEys symmetry is unbroken.

An orbifold of the Eg x Eg heterotic string on a circle can also be viewed as an
orbifold of M theory compactified on a cylinder. Begin with M theory compactified
on the cylinder

¥~ a® 4+ 27Ry = [—gRlo, gRlo . (210)
The action on the heterotic string which we described above lifts in M theory to
)~ Ry, 20~ 2 (2.11)

Upon identifying points related by this transformation we obtain a Mobius strip,
with a cross-cap at ' = 0 and a boundary at 2! = mR¢/2, as depicted in figure [l
Thus, this component of the moduli space is generated by various limits of M theory
compactified on the Mobius strip [[T, B7]. Notice that anomaly cancellation as in [
tells us that the single boundary of the Mobius strip carries an Eg gauge symmetry,
which is consistent with the low-energy gauge symmetry of the CHL string.

So far we have good descriptions of the re- -
gions of moduli space where both Ry and Ry ///
are large, and when Ry is small (leading to the i
CHL string). It is natural to ask what string \
theory backgrounds are obtained when we re- AN

duce on the other direction, Riy > lp > Ry.
In this limit, the cross-cap and the boundary
(which is topologically R®! x S1) of figure
are very far from each other. The boundary

Figure 4: M theory on a Mobius strip
describes the strong coupling limit of
the CHL string.

becomes a usual O8~ plane of ITA string theory. Our previous description of Fg
symmetries in type ITA string theory implies that this O8~ plane has 7 D8-branes on
top of it, and there is an additional one displaced such that the system O8~+7DS is
at infinite string coupling. The cross-cap should behave exactly as in the case of the
Klein bottle, described in the previous subsection. Therefore, the naive O8° plane
emits an extra D8-brane and becomes an O8(~Y) plane at infinite string coupling.

When we approach the point RjgR3 ~ 1, we find that the two D8-branes in
the bulk come together, and enhance the U(1) x U(1) symmetry to SU(2) x U(1).
As in our previous examples, the same symmetry enhancement arises also for small
Ryp, where it arises at the self-dual radius of the perturbative CHL string (for an
exhaustive analysis of the momentum lattices in toroidal compactifications of CHL
strings see [21]). In fact, it is just the same as the SU(2) enhanced symmetry of the
Es x Eg string at the self dual radius (the gauge bosons are BPS and survive the
CHL projection). This is another consistency check on our proposal for the behavior
of the cross-cap in M theory.
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Figure 5: The moduli space of compactifications of M theory on a Mobius strip. The
parameters are the period and length of the strip in Planck units as defined for the upper
right M theory. The dashed line is the line of enhanced SU(2) symmetry.

We conclude that the moduli space of M theory on a Mdobius strip has a line of
enhanced SU(2) symmetry, and that all of its limits may be understood (with some
strongly coupled physics occurring in the ITA limit). This moduli space is depicted
in figure [, where the type ITA orientifold limit is denoted by (1/2)X. In fact, this
moduli space is identical in structure to the other moduli spaces we encountered in
our survey, arising from M theory on a cylinder and on a Klein bottle.

3. The M(atrix) theory description of M theory on a cylinder
and on a Klein bottle

In this section we describe the M(atrix) theory [BZ] which is the discrete light-cone
quantization (DLCQ) of some of the theories described in the previous section — M
theory compactified on a cylinder and on a Klein bottle. We begin by considering
the case of a cylinder [fJ], and then move on to the Klein bottle. We review in detail
the case of the cylinder because of the great similarity between these two compact-
ifications (as described in the previous section), which is useful in the construction
of the correct M(atrix) theory of the Klein bottle.

3.1 The M(atrix) theory of M theory on a cylinder

This subsection is based on [[J], with the addition of a systematic derivation of their
M(atrix) theory and of some small corrections to the identifications of parameters
presented in that paper.
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M(atrix) theory is the discrete light-cone quantization of M theory backgrounds
[B3]; it provides the Hamiltonian for these theories compactified on a light-like circle,
with N units of momentum around the circle. In general, such a DLCQ description
is very complicated. However, in some M theory backgrounds it simplifies, because a
light-like circle may be viewed [P4], 5| as a limit of a very small space-like circle, and
M theory on a very small space-like circle is often very weakly coupled. This leads
to a simple description of the DLCQ Hamiltonian, in which most of the degrees of
freedom of M theory decouple. In particular, this is the case for the M(atrix) theory
of M theory itself, which is given just by a maximally supersymmetric U(/N) quantum
mechanical gauge theory, and for the M(atrix) theory of M theory compactified on a
two-torus, which is given by the maximally supersymmetric U(/N) 2+ 1 dimensional
gauge theory, compactified on a dual torus.

The generic simplicity of M(atrix) theory is based on the fact that M theory
compactified on a small space-like circle becomes a weakly coupled type ITA string
theory. However, when boundaries are present in the M theory compactification, they
usually destroy this simplicity. For instance, as is evident from figure [I], if we take
M theory on S'/Zy and compactify it further on a very small space-like circle, we do
not obtain a weakly coupled background (but, rather, we obtain M theory on a dual
cylinder). Thus, generically the DLCQ of M theory backgrounds with boundaries is
very complicated. However, there is an extra degree of freedom one can use in the
DLCQ constructions, which is a Wilson line along the light-like circle; such a Wilson
line becomes irrelevant in the large N limit of M(atrix) theory in which it provides a
light-cone quantization of the original background (without the light-like circle), but
it can have large effects for finite values of N. In the case of M theory on S!/Z,, as we
discussed above, the theory compactified on an additional small circle is generally
strongly coupled (see [Bf] for a recent discussion), except when we have a Wilson
line breaking the Eg x Eg symmetry to SO(16) x SO(16). The moduli space of this
subspace of compactifications on a cylinder is drawn in figure fi; as can be seen in
this figure, the limit of a small space-like circle leads in this case to a weakly coupled
type I string theory (with a Wilson line breaking SO(32) to SO(16) x SO(16)). The
M(atrix) theory for M theory on an interval with this specific light-like Wilson line is
then again a simple theory [27, Y, B9, BU, Bl - the decoupled theory of N D1-branes
in this type I background, which is simply an SO(N) 1+ 1 dimensional N' = (0, 8)
supersymmetric gauge theory on a circle, coupled to 32 real left-moving fermions in
the fundamental representation (coming from the D1-D9 strings), half of which are
periodic and half of which are anti-periodic [[].

Now we can move on to the case we are interested in, which is the M(atrix)
theory of M theory on RY x S x (S'/Z,), with an arbitrary Wilson line W for
the By x Eg gauge group on the S'. To construct the M(atrix) theory we should
again consider the limit of this theory on a very small space-like circle [24, BJ], with
a particular scaling of the size of the cylinder as the size of this extra circle goes
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Figure 6: The subspace of the moduli space of M theory on a cylinder, where all back-
grounds include a Wilson line breaking the gauge group to SO(16) x SO(16). The param-
eters in the plot are the period Rg and length Rig of the cylinder in Planck units.

to zero. Again, in general this limit gives a strongly coupled theory, except in the
case where we have an additional Wilson line breaking the Fg X Eg gauge group to
SO(16) x SO(16) on the additional circle (the original Wilson line W' must commute
with this Wilson line in order to obtain a weakly coupled description).” In such a
case we obtain precisely the theory described in the previous paragraph, compactified
on an additional very small circle with a Wilson line W (which is the translation of
the original Wilson line from the Eg x FEg variables of the original M theory to the
SO(32) variables of the dual type I background). Since the additional circle is very
small we need to perform a T-duality on this circle. We then obtain a type I’ theory
of the type described in the previous section, still compactified on a circle with the
SO(16) x SO(16) Wilson line, and with the positions of the D8-branes determined
by the eigenvalues of the Wilson line W. The D1-branes we had before now become
D2-branes which are stretched both along the interval between the orientifold planes
and along the additional circle.

The usual derivation of M(atrix) theory [R4, B3] shows that the M(atrix) theory
is precisely the decoupled theory living on these D2-branes, in the limit that the
string mass scale goes to infinity keeping the Yang-Mills coupling constant on the
D2-branes, which is proportional to

g%M x gs/ls, (3.1)

"In principle we could also have a light-like Wilson line for the other two U(1) gauge fields
appearing in the low-energy nine dimensional effective action, but we will not discuss this here.
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fixed. The D2-brane lives on a cylinder, with a circle of radius R; (related to the
parameters of the original M theory background by R; = lg /RioR , where 1/R is
the energy scale associated with the light-like circle) and an interval of length 7R
(given by Ry = [3/RgR). In the standard case of toroidal compactifications, only
the disk contributions to the D2-brane action survive in this limit, giving a standard
supersymmetric Yang-Mills theory, with Yang-Mills coupling ¢%,, = R/RgR1o. How-
ever, in our case it turns out that some contributions to the D2-brane action from
Mobius strip diagrams also survive; this is evident from the fact that g, in the type
I’ background is generally not a constant, leading through (B.I) to a non-constant
Yang-Mills coupling. This was taken into account in [J], where the Lagrangian for
any distribution of D8-branes was obtained, and it was shown that the Mobius strip
contributions are crucial to cancel anomalies in the gauge theory.

There is one special case when the Mobius contributions are absent; this is the
case when the type I’ background has a constant dilaton, with eight D8-branes
on each orientifold plane. According to the discussion above, this case provides
the DLCQ description of M theory on a cylinder with a Wilson line breaking the
gauge symmetry to SO(16) x SO(16) (so that we are at some point on the moduli
space of figure ), and with an additional light-like Wilson line which breaks the
gauge symmetry in the same way. We begin by describing this special case. In
this case the theory on the D2-branes away from the orientifold planes is just the
standard maximally supersymmetric 2+ 1 dimensional U(N) Yang-Mills theory, with
a gauge coupling related to the parameters of the original M theory background by
g3y = R/RgRyy (which is the same relation as in toroidal compactifications). The
field content of this theory includes a gauge field A,,, seven scalar fields X7 and eight
Majorana fermions 14. The boundary conditions project the U(N) gauge group to
SO(N). In addition, the D2-D8 strings give rise to 8 complex chiral fermions in
the fundamental representation x; (k = 1,---,8) at the boundary 2> = 0 and 8
additional fermions x; (k = 1,---,8) at the other boundary z? = mR,. The action
is given by

2w R1 TRo 1 1 )
S = /dt/ dx' {/ do?——Tr < — =F,F" + (D, X7)*+
0 0 299\ 2
1

+ §[Xj> XZ] [Xj> XZ] + i@EA’yaDawA - Z’QEA’}/AB[XM wB]) +

8 8

iy (0 A o)Xk +i Y k(0 + iA—|m2=wR2)>~<k} , (32)

k=1 k=1

where D, is the covariant derivative for the adjoint representation, - = d; — 9, and
similarly for A_. Our conventions for fermions and spinor algebra are summarized
in appendix [Al. Due to the light-like Wilson line described above, the fermions yx
are periodic around the 2! circle, while the fermions Y}, are anti-periodic; this can
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alternatively be described by adding a term —= to the kinetic term of the y; in

47 R,
B-2).
The boundary conditions can be determined by consistency conditions for D2-
branes ending on an O8~ plane. For the bosonic fields, at both boundaries, the
boundary conditions take the form

X7 = (X7, B XT = — (9 X)T,
AO,I — _(AO,I)T’ 82140’1 — (82A0’1)T,
A2 = (AT, By A2 = — (8,427 (3.3)

These boundary conditions break the U(N) bulk gauge group to SO(N). The zero
modes along the interval are SO(N) gauge fields A%! and eight scalars in the symmet-
ric representation of SO(N) coming from A% and X7. For the fermions, the boundary
conditions take the form

PYa = —iy*)y, Dopa = it (3.4)

The zero modes for the right-moving fermions are in the adjoint representation of
SO(N), and those of the left-moving fermions are in the symmetric representation.
This leads to an anomaly in the low-energy 1 + 1 dimensional SO(/N) gauge theory,
which is precisely cancelled by the 16 additional chiral fermions in the fundamental
representation; this cancellation occurs locally at each boundary.

The bulk theory has eight 2 + 1 dimensional supersymmetries (16 real super-
charges), but the boundary conditions and the existence of the D2-D8 fermions break
this to a A/ = (0, 8) chiral supersymmetry (SUSY) in 1 + 1 dimensions. The super-
symmetry transformation rules are given by

v _
0cAy = 5@;%%,

0 X" = ——€aVup¥nB,

2
1 a i a_ i i i
detha = — 1 Fesy Pes — §DaXW YaBEB — Z[Xia X;[vipes, (3.5)

5€Xk:0, 5E>Zk:0

These transformation rules are consistent with the boundary conditions (B-3), (B-4)
only for

ea = iveq, (3.6)

and thus indeed the boundary conditions preserve only 8 of the original 16 super-
charges. Decomposing the fields by their 72 eigenvalues +i :

B €+ B w-i—
= () o=(2) 67
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it follows that the unbroken SUSY is for €.

In the more general case, as described above, we consider a similar background
but with the D8-branes at arbitrary positions in the bulk. One obvious change is then
that the chiral fermions y and x are no longer localized at the boundaries but rather
at the positions of the D8-branes. More significant changes are that the varying
dilaton leads to a varying gauge coupling constant, and the background 10-form
field in the type I’ background leads to a Chern-Simons term, which is piece-wise
constant along the interval. The most general Lagrangian was written in [J], where it
was also verified that it is supersymmetric and anomaly-free. The relation between
the positions of the D8-branes and the varying coupling and 10-form field, which
in the bulk string theory comes from the equations of motion, is reproduced in the
gauge theory by requiring that there is no anomaly in arbitrary 2 + 1 dimensional
gauge transformations.

For the purposes of comparison with the Klein bottle case that we will discuss in
the next subsection, it is useful to consider the special case where there is no Wilson
loop on the cylinder. This gives, in particular, the M(atrix) theory of the Eg x Eg
heterotic string compactified on a circle with no Wilson line. In this case we have a
configuration where all D8-branes are on the same orientifold plane, say the one at
2?2 = mRy. The action in this special case may be written in the form (now denoting
the scalar fields by Y* and the adjoint fermions by W 4)

2mR1 TRo 1
S:/dt/ d:cl[/ dz®— Tr< 2(2)F F™ + 2213 (2?)(D,Y7)? +
0 0 49ym

le/3 1.2 _
Oy,

Jeos(a, D54, +13A WAgA, ))

2B YY) 4 202 (@) T Dy +

4dz(z
2l ) 3 )

8 8
I S ACIE R N of NI z'A_|xzz,rR2>>zk} (38)
k=1

k=1

The varying coupling constant is given by

2
da?) =14 Pz Tl

= 5 ), (3.9)

and the coupling grows as we approach the O8~ plane with no D8-branes on it. Here
we arbitrarily defined gy to be the effective coupling constant at the middle of the
interval (other choices would modify the constant term in (B.9)). The linear term in
(B-9) is related to the background 10-form field. The effective Yang-Mills coupling
constant is

2
eff 2 gym 1
- . 3.10
(9930)° = 7 602 (22 — TR2/2) /7 1)y + 6(22/7 — Ra/2) (3.10)
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This description is valid as long as the Yang-Mills coupling constant does not diverge
anywhere, namely for ¢g&,, < 1/(3Ry). This is the same condition as the string
coupling not diverging in the type I’ string theory which we used for deriving this
action. The boundary conditions on the fields are essentially the same as before, but
there as some modifications in the boundary conditions which involve derivatives and
in the SUSY transformation laws. The same modifications will appear in the Klein
bottle case that we will discuss in the next subsection, and we will discuss them
explicitly there. The fermions y; are still periodic and the fermions y; anti-periodic
due to the light-like Wilson line.

Note that in the two special cases that we described, (B.2) and (B.§), the theory
is exactly free for N = 1 (as was the original BFSS M(atrix) theory), since the gauge
fields A vanish at both boundaries; however, this is not the case at more general
points on the moduli space. The usual argument that N =1 DLC(Q theories should
be free is that N = 1 is the minimal amount of possible light-like momentum, so
the theory must contain a single particle with this momentum and no interactions.
However, this is no longer true in the presence of generic light-like Wilson lines, which
modify the quantization of the light-like momentum for charged states.

3.2 The M(atrix) theory of the Klein bottle compactification

In this subsection we describe the M(atrix) theory of M theory on a Klein bottle,
and we will see that it is very similar to the case described in the previous subsec-
tion.® Again, to derive the M(atrix) theory we need to consider M theory on a Klein
bottle times a very small space-like circle. Now we do not need to add any Wilson
lines to get a weakly coupled theory; instead we directly obtain N DO0-branes in the
weakly coupled type IIA string theory on a Klein bottle that was mentioned in the
previous section, in the limit in which the Klein bottle has a very small size. We
then need to perform two T-dualities to go back to a finite-size compact manifold.
The relevant T-dualities were already described in section P-2; one T-duality (which
is straightforward) leads to the DP background, and the next leads to the O8*
background. Thus, the M(atrix) theory is the decoupled theory on 2N D2-branes
stretched between an O8~ plane and an O8" plane® (we obtain 2N D2-branes due to
the presence of DO-branes as well as their images on the original Klein bottle). This
theory is very similar to the theory (B.§) we wrote down in the previous subsection
for D2-branes stretched between an O8~ plane with no D8-branes and another O8~
plane with 16 D8-branes, since the dilaton and 10-form field are identical in both of
these configurations; the only difference is that the D2-D8 fermions are not present,
and the boundary conditions on the O8* plane are different from those on the O8~

8The M(atrix) theory of M theory on a Klein bottle was also discussed in [32, B3, B4] but our
results are different. Perhaps some of these other theories arise from different choices of light-like
Wilson lines.

9The spectrum of D-branes in the O8*% background was analyzed in [@]
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plane. In particular, they project the U(2N) gauge group to USp(2N) instead of
to SO(2N) (which is another way to see that the rank of the gauge group must be
even).

Another naive way to derive this M(atrix) theory would be to start from the
effective action of N DO0-branes on the Klein bottle, and to perform two Fourier
transforms of this action, along the lines of the original derivations of M(atrix) theory
compactifications [P2, Bg. This analysis is performed in appendix D}, it gives the
correct boundary conditions, but it only gives the terms in the action coming from
the disk and it does not include the effects related to the variation of z(z?*) which
come from Mobius strip diagrams, so it leads to an anomalous gauge theory.

The complete action for the M(atrix) theory of M theory on a Klein bottle is

1

49\2(1\/1

2mR1 TRo
S = /dt/ dxl/ dz® Tr <—z(:c2)FWF“” + 223 (2?)(D, YY)+
0 0
dzl/3(:c2)
dx?

PV (AL05A, + z’%AaAﬁAﬁ,)) (3.11)

Y, YV, Y 4 205 (0) T Da g +
4 dz(z?)
3 da?

WA, —
— 2i\I’A”Y,i43[Yi7 \IJB] —+

where, as in the previous subsection,

2(2?) =1+ %(1’2 _rh,

s 2
The boundary conditions could be derived from the open string theory of D2-branes
ending on orientifold planes, but they can also be derived directly in the gauge
theory by requiring the absence of boundary terms and consistency with the SUSY

). (3.12)

transformations which are described below. It will be convenient in this section to
think of the U(2N) matrices as made of four N x N blocks, and to use Pauli matrices
that are constant within these blocks. In this notation the scalars Y satisfy the

boundary conditions'®

2 =0: YI =o' (Yo, Y7 =~ (9, Yo, (3.13)
TRy : Y =g (Y o2, YT = —a2(0,Y) o2 (3.14)

.CL’2

The SUSY transformations of the action (B.11]) are

0Y" = —5@17231?37 (3.15)
[ ij 1 a i ai

Oetha = —ZZ_I/?’[Yi Yilviges — 121/3Faﬁ7 Pes — éDany VABEB, (3.16)

55Ao¢ = %Z_l/ggA’}/awA. (317)

ONote that our boundary conditions at 22 = 0 seem different from those of the previous subsec-
tion, but the two are simply related by multiplying all adjoint fields by o*.
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Unbroken SUSY transformations are those with e4 = iv%e4. Notice that the SUSY
transformations now include the function z(z?). We can use these transformations to
determine the boundary conditions for the fermions. The non-derivative boundary
conditions are the naive ones related to (B.13),(B.14), namely

22 =0 : ¢y = —ic'y Yot 22 =7Ry 1 g = —io?y* o’ (3.18)

The derivative boundary condition for the upper component of the spinor follows
immediately from (B-17),

22 =0 : Obf = —a' () o, 1 =Ry 1 Oy} = —0*(Oap}) 0.
(3.19)

For the lower component, we have to use (B-I8) to obtain

2 1 1 R T
2 =0 : 32¢A+§;¢A =0 (32¢A+§;¢A) o,

_ 12 _ 12
.:C2 - 7TR2 : 82¢A _'_ __wA == 0-2(82wA _'_ __FLPA)TO-2 (320)
— 3z 3z

The deviations from the naive boundary conditions are proportional to 2z which is
related to the varying string coupling.

Finally, we will also need to know the boundary conditions on A,. Note that

(B.17) implies (using €4 = —i€s7?)
1
0y = =52 P (y)ap oc 27 (y)eyt (3.21)

Thus, the boundary conditions on (z'/3A;) are the same as those we wrote above
for the scalar fields, with no additional terms. Finally, by further investigation of
(BI7) one can see that (2'/34, ;) satisfy boundary conditions of exactly the same
form (B.20) as ¢~

3.3 The AOA limit of the M(atrix) theory

As we described in the previous section, there is a limit of M theory on a Klein bottle,
corresponding to small Rjy, which gives a weakly coupled string theory — the theory
which we called the AOA background. In this limit we should be able to see that
the M(atrix) theory we constructed becomes a second quantized theory of strings in
this background.!* Recall that the standard M(atrix) theory for weakly coupled type
ITA strings is given by a maximally supersymmetric U(N) 1 4+ 1 dimensional gauge
theory; at low energies this flows to a sigma model on R%Y /Sy, which describes
free type IIA strings (written in Green-Schwarz light-cone gauge) [B7, BS, BY, [d].
The string interactions arise from a twist operator which is the leading, dimension 3,

1A similar limit for the theory described in section @ should lead to a second quantized theory
of Eg x Ejg heterotic strings, but we will not discuss this in detail here.
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correction to the sigma model action [BY]. Similarly, in our case we expect that in the
limit where we should obtain a weakly coupled string theory, the low-energy effective
action should be a symmetric product of the sigma model of the AOA strings, again
written in a Green-Schwarz light-cone gauge (in this gauge the sigma model action
is identical to that of AOB strings in a static gauge, just like in the type IIA case we
get the action of type IIB strings in a static gauge).

The mapping of parameters described in the previous subsection implies that
the limit of small Ryo corresponds to small Ry, compared to the other scales in the
gauge theory. Thus, in this limit we obtain the (strongly coupled limit of the) 14 1
dimensional theory of the zero modes along the interval. We will analyze this theory
in detail for the case of N = 1, in which the bulk gauge group is U(2); it is easy (by
a similar analysis to that of [BY]) to see that for higher values of N we obtain (at low
energies) the N’th symmetric product of the N = 1 theories (deformed by higher
dimensional operators giving the string interactions).

The zero modes for the scalars Y are easily determined by noting that the
boundary conditions (B-I3),(B-I4)) are satisfied by the identity matrix

Yi(taxlaxz)ab - Yi(taxl)ﬂaba (322)

where a, b are U(2) indices which we suppress henceforth. The matrices proportional
to the identity matrix are actually a completely decoupled sector of the theory (for
any value of V), with no interactions. The zero mode analysis for the fermions is
a little more involved. The subtlety here is that one should keep in mind that the
fermions are Majorana when deriving the equations of motion.'? To obtain the zero
modes we need to solve the equations

B30yt =0, 23055 + (23 =0, (3.23)

subject to the boundary conditions described in the previous subsection. For the
upper component of the spinor the solution is

vkt at, 2?) = ¢kt "),

which manifestly satisfies the equations of motion and the boundary conditions.
For the lower component ¢~ the equation of motion (B.23) guarantees that the

13

derivative boundary conditions (B.20)) are satisfied. In order to satisfy the non-

derivative boundary conditions (B.1§), we simply choose the direction in the gauge
group to be o3. Hence, the solution is

Py (t, ot 2?) = Py (t, xl)z_1/3(:z2)03 ) (3.24)

2The relevant part of the Lagrangian in components is £ O —z'/3(T 0y~ + = dptp™) +
(2/3y =yt

13The existence of this mode is guaranteed by the fact that it is actually the Goldstino for the 8
supercharges broken by the D2-branes.
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Similar zero modes arise for the Ay and A; component of the gauge field. These
lead to a U(1) gauge field in the low-energy effective action, but since there are no
charged fields, this does not lead to any physical states. Finally, there is a scalar
field coming from the zero mode of As,

Ay(t, 2t 2%) = As(t, 2) 2 3. (3.25)

This scalar is actually compact due to large gauge transformations, as we describe
below.

Of course, all these fields fill out N' = (0, 8) supersymmetry representations in
141 dimensions; the vector multiplet contains (Ag, A1, % ~), and the matter multiplet
contains (As, Y, ¢%). For a detailed description of this kind of SUSY see [P7]. For
general values of N we find both types of multiplet in the adjoint representation of
U(N), the same field content as in the M(atrix) theory of type IIA strings. The
low-energy spectrum turns out to be non-chiral (for any value of N), guaranteeing
that there are no anomalies.

In order to identify our theory with the AOA background we need to show that
the theory is invariant under the transformation (—1)* together with a half-shift on
the scalar field coming from Ay. Consider a U(2) gauge transformation of the form

g(z) = g, | (3.26)

Note that our theory is not invariant under generic U(2) gauge transformations since
these are broken by the boundary conditions. The transformation (B.26) preserves all
the boundary conditions. In order for it to leave the theory in the same topological
sector (the simplest way to verify this is to regard the cylinder as an orbifold of
the torus and use the usual classification of sectors on the torus) we require that
f(mR2) — f(0) = (2n + 1)m/2 for some integer n. In general the transformation
(B.26) mixes the zero mode (B.23) with other modes of As; however, all other modes
can be gauged away so this mixing is not really physical. We can work in a gauge
where all the non-zero modes are set to zero, and an appropriate choice of a large
gauge transformation which preserves this gauge is

232w /2 z' BN

22/3(wRy) — 22/3(0) Oaf(2*) = §z2/3(7TR2) —2R(0) (3.27)

The action of this transformation on the zero mode (B.2J) implies that we should
identify

flat) =

1 2 A 202,
3223 (1 Ry) — 22/3(0) 7 2213(nRy) — 22/3(0)

Ay(t, ') ~ Ay(t,zb) + (3.28)

In the low-energy effective action, the large gauge transformation (B.26) acts also on
the vector multiplet, implying that the identification (B-2§) is accompanied by

w_(t, $1) — —’w—(t, $1), A071(t, $1) — —A071(t, $1). (329)
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This establishes that our low-energy 1 + 1 dimensional sigma model is gauged by
((=)¥* x shift), as expected.

Next, we wish to compute the physical radius of the scalar arising from A, to
verify that it agrees with the physical radius we expect. Carrying out the dimensional
reduction explicitly (setting all other fields except the zero mode of Ay to zero) we

get
/d2/ de®*Try| —2(2®)F, F*™ + ... | =
49YM

= d*a / dr?(2M3(2%)0,A00" Ay + ...) =
gYM

TRo
R (0, A20" Ag) / da? 23 (2%) =
gYM 0
= / d22(0, A" As) (23 (w Ry) — 2/3(0)).  (3.30)
89ym

Thus, the physical, dimensionless radius of the scalar A, is

1 2031 T
. , /3 — A/3(0)) =
21 223(nRy) — 22/3(0) \/89%4 (24/3(mRg) — 2%/3(0))

1 1 4/3 4/3 _
= 0T~ 70 \/8 (243(mRy) — 24/3(0)) =

22/3(1Ry) + 22/3(0)
=\ & \/22/3 —h) (33
Recall that, as discussed in the previous section, the AOB sigma model has a self-

T-duality at a physical radius of (87)~/2. We see from (B.31]) that this corresponds
to z(0) = 0, which is exactly the case where the Yang-Mills coupling diverges at

one side of the interval (due to a diverging coupling on the O8~ plane in the O8*
background). As discussed in the previous section, at this point of diverging coupling
the O8* background has an enhanced SU(2) gauge symmetry in space-time, which
should correspond to an enhanced SU(2) global symmetry in our gauge theory; we
see that in the low-energy effective action this enhanced global symmetry is precisely
the one associated with the AOB sigma model at the self-dual radius.

In the M(atrix) theory interpretation of our gauge theory, the line z(0) = 0
precisely maps to the line of enhanced SU(2) symmetry of the compactification of M
theory on a Klein bottle. Note that our gauge theory only makes sense for z(0) > 0,
since otherwise we obtain negative kinetic terms for some fields. Thus, our M(atrix)
theory description only makes sense above the self-dual line in figure f. Of course,
the theories below the line are identified by a duality with the theories above the
line, so we do have a valid description for the full moduli space of Klein bottle
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compactifications. A similar analysis for the case of a cylinder (with no Wilson
lines) again shows that infinite gauge coupling is obtained precisely on the line of
enhanced SU(2) symmetry in space-time shown in figure [I.

4. Conclusions and open questions

In this paper we analyzed in detail the moduli space of nine dimensional compactifica-
tions of M theory with A" = 1 supersymmetry and their M(atrix) theory descriptions.
We found several surprises : the moduli space of theories with rank 2 turned out to
have two disconnected components, and in order to obtain a consistent description
of theories with cross-caps we had to conjecture a non-perturbative splitting of O8°
planes into a D8-brane and an infinitely coupled O8(~") plane. The M(atrix) theories
we found are 2+ 1 dimensional gauge theories on a cylinder, but generically they are
rather complicated theories with a varying gauge coupling. The only case where we
obtained a standard gauge theory is the case of M theory on a cylinder with a Wilson
line breaking the gauge theory to SO(16) x SO(16); the simplicity of the M(atrix)
theory in this case is related to the fact that (unlike all other backgrounds we dis-
cussed) this background does not have a subspace with enhanced gauge symmetry
in space-time. In all other cases, the manifold with enhanced gauge symmetry in
space-time is mapped in M(atrix) theory to having infinite gauge coupling on one
side of the interval.

There are several interesting directions for further research. We provided some
circumstantial evidence for our description of the X and 1/2X backgrounds, but it
would be nice to obtain more evidence for this. One way to obtain such evidence
would be to compactify these backgrounds on an additional circle; these backgrounds
then have an F theory description, with the O8" plane becoming an unresolvable Dg
singularity [[3]. One can then consider the nine dimensional limit of this background,
as discussed in [, £7], and hope to recover our picture with the D8-brane emitted
into the bulk. Another possible way to study the X background is by its M(atrix)
theory dual; this is given by the limit of the M(atrix) theory for the Klein bottle that
we constructed in section [ in which the circle is much smaller than the interval. It
would be nice to understand the dynamics of the theory in this limit in detail in order
to understand the X background better; it may be necessary for this to analyze the
regime of large N with energies of order 1/N, which is most directly related to the
space-time physics.

Another possible way to study these backgrounds is by brane probes, such as D2-
branes stretched between the two orientifold planes. These D2-branes are interesting
also for another reason, since (at least naively) they provide the M(atrix) theory for
some of the additional nine dimensional backgrounds that we did not discuss in the
previous section, with the M(atrix) theory for the DP background (and the other
backgrounds in the same moduli space) related to D2-branes in the X background,
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and the M(atrix) theory for M theory on a Mobius strip related to D2-branes in
the 1/2X background. It would be interesting to understand these theories better;
naively one obtains an anomaly from the D2-D8 fermions, and it is not clear how
this is cancelled.

Another natural question involves the realization of the non-perturbative duality
symmetries in the M(atrix) theory. In toroidal compactifications of M theory, such
dualities are related [[[J] to non-trivial dualities relating electric and magnetic fields in
the M(atrix) theory gauge theories. We mentioned above that at the enhanced SU(2)
symmetry points in space-time the M (atrix) theory is supposed to have a non-trivial
enhanced SU(2) global symmetry (which can also be seen by viewing this theory
as the theory of a D2-brane in a type I’ background with an enhanced symmetry);
the realization of this symmetry will be discussed in detail in [f4]. More generally,
there is a Zy duality symmetry relating the two sides of each graph in figures [I] and
B, which should map to a duality between two gauge theories in M(atrix) theory.
Unfortunately, so far we have only been able to find the M(atrix) description for
the large radius region of the moduli space (as described above), and we could not
yet find an independent (dual) description for the small radius region. It would be
interesting to investigate this further [4]; it requires continuing the moduli space of
backgrounds with O8~ planes beyond the point where the string coupling diverges
at one of the orientifold planes, but without changing to the dual variables.

Finally, it would be interesting to generalize our results concerning the clas-
sification of backgrounds with 16 supercharges to lower dimensions (for a partial
classification see []), and to see if there are any new components or unexplored
corners of the moduli space there (as we found in nine dimensions).
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A. Spinor conventions

We summarize our conventions for spinors in 2+ 1 dimensions. We choose the metric
to be mostly minus, 7’ = diag(1, —1, —1). The gamma matrices of SO(2, 1) satisfy
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{72, 4P} = 2n*? where a, 3 are vector indices of SO(2,1), and the spinor indices are
denoted by a,b = 1,2 (but are usually suppressed). A convenient basis for SO(2, 1)
gamma matrices is

) )

Our fermions lie in spinor representations of the global Spin(7)r symmetry. The
gamma matrices of Spin(7)g satisfy {7,747} = 26%, where i,j are vector indices
of Spin(7)g. We shall denote spinor indices of Spin(7)g by A, B. Finally, for a
Majorana fermion 1), we define ¢ = 1)7'~°,

B. Periodicities of p-form fields in some 9d compactifications

In this appendix we discuss the periodicities of the p-form fields in some of the
backgrounds described in section B.2. We being with the AOA background [[3, [3],
in which one gauges the following symmetry of type ITA string theory :

(=) x (X — X + 27 Ry). (B.1)
The NS-NS 2-form B, is periodic along the circle in the 9'th direction:
B, (27 + 27 Rg) = B, (2") (B.2)

and leads to a massless mode. On the other hand, the RR 3-form field A®) gets
a minus sign from (=), hence it has to be antiperiodic in the direction z°. In

components,

A®) (2% 4+ 27 Rg) = —A®) (2. (B.3)

pp pp
As discussed in section .9, the target space of the M theory lift of this background is
R¥! x K2, with 2! — —2'% under the involution. In eleven dimensions the involution
must take CMB) — —CMB) in order to be a symmetry of M theory. We can also

verify that this is consistent with the periodicities we wrote above. For Cﬁgié), taking
into account the coordinate transformation we get that
M(3 M(3
O (2% + 27 Ry, —2'°) = O/ (2%, 27°). (B.4)

Reducing this on z'® we find agreement with (B-Z). The other components are all
anti-periodic, in agreement with (B.3).

Next, we compactify this M theory on an additional circle R™! x K2 x S'. We
can reduce on this S* to obtain a different ITA theory, which is the one described by
(B-8). Now the fact that CM®) — —CM®) implies different periodicities in the type
ITA theory. For the NS-NS 2-form

B® _, _p® (B.5)
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which in components implies for instance

B®)(—2®,2° + 2w Ry) = B (a5, 2°). (B.6)

u8

Similarly, for the RR 3-form,
AB) A, (B.7)

These results can also be derived directly from the ITA perspective. We first note that
Q x (X® — —X?¥) is a symmetry of ITA because it changes the chirality of fermions
and the RR forms twice.!* Since Q flips its sign the B field has to be odd under
the involution, in agreement with (B-). We can check the consistency on the RR
sector in the Green-Schwarz formalism. In this formalism type ITA superstrings have
space-time fermions 67,(z) on the left and Og(2) on the right. The transformation
(R.6) that produces the Klein bottle acts on the space-time fermions as

01(2) — I'®0R(2),
Or(2) — T%0.(2).

B.8)

a/—\

The RR vertex operator is
V = 0r(2)'T,,..,00(2) + c.c.. (B.10)

Under the transformation the fermionic part becomes

01(2) T8y, T30R(Z) + cc. = —0r(2)T (T (Cpyo, )T (T8 0L (2)" + cc. =
= —0r(2)T¥T 1y, ) T30 (2) + oo = (1) ATGR ()T, T30, (2) + coc..
(B.11)

Thus, the 1-form transforms as a 1-form (changing sign only for the component
in the 8 direction) and the 3-form transforms as a pseudo-3-form (changing sign
for components not in the 8 direction). In other words, only the twisted 3-form

cohomology survives, and only the untwisted cohomology of 1-forms survives (see
[[H] for more details'®).

C. Modular invariance and T-duality in the AOA partition
function

In this appendix we compute the partition function of the AOA theory (defined in
section ) and verify that it is modular invariant and T-duality invariant. Throughout

4By super-conformal invariance of the worldsheet we get that the worldsheet fermions v and {/;
flip sign under this involution and hence change the chirality in the R sectors.

5Loosely speaking, the untwisted cohomology is the subset of the covering space cohomology
which contains only the forms which are even. The twisted cohomology contains the odd forms.
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this appendix we set [, = 1. The subtle point is that the definition of the theory

in

cludes special phases in the twisted sectors (which are required for the consistency

of the theory).

The sectors of the theory and their matter GSO projections (including (—1)")

are [[3:'°

A:

B:

NS — NS sector with n € Z, w € 2Z and GSO projection —/—.
NS — R sector with n € Z, w € 2Z and GSO projection —/+.

: R— NS sector with n € Z + %,w € 27Z and GSO projection —/—.
R — R sector with n € Z + %, w € 27 and GSO projection —/+.

R — NS sector with n € Z,w € 2Z + 1 and GSO projection +/—.

: R — R sector with n € Z,w € 2Z + 1 and GSO projection +/+.

: NS — NS sector with n € Z + %,w € 27 + 1 and GSO projection +/—.

H: NS — R sector with n € Z + %,w € 2Z + 1 and GSO projection +/+.

Let Z§ be a path integral on the torus over fermion fields ¢ with periodicities

Y(w +2m) = —e™ Y (w),
Y(w + 277) = —e™Pp(w). (C.1)

The fermionic partition sums are then (0, v, s, ¢ stand for the four possible combina-
tions of NS and R sectors with GSO projections)

xo= (207" + 20,
Xo = 5 [Z3(r)* — Z0(r)Y)
X = 5[ Zm + 2]
X = [ - ) (©2)

16Note that the conventions in [@] for right/left-moving sectors are different from the usual.
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The partition function on the torus that we obtain by summing over all the sectors

described above is :

2(7) = Vio [ T Znr) s = )

n2
X ()‘(U Z exp[— WTg(ﬁ + w?R?) + 2miTnw]

neZ,weZ

n2
+ Xo Z exp[ WTQ(@ + w?R?) + 27m7‘1nw}

n€Z+1/2,we2Z+1

2
— Xs Z exp [—WTQ(% + w’R?) + 2miTnw]

neZ,we27+1

2
— Xe Z exp[— 7T7'2(n— +w?R?) + 271'@7'17111)}> (C.3)

R2
n€Z+1/2,we’

where Z% is the partition sum for the 7 transverse bosons. After resummation we

get

d*t T R*m — 2wt |?

Z =1V} 7Z8 v Xs Xv -
(7) = Vio [ 5240 x)m%(x oxp [T =2

R%|m — (2 1)7]?

+ Xo exp [—W Im = (2w + 1)7] +7rz'm]
T2
_ [ 7TR2|m—(2w+1)T|2]
— Xs€XpP | —
T2

20 _ 2
— Xc€xp {—WR Im — 2w +7rz'm}). (C.4)

T2
From the modular transformations of Zg :

(e mi(302— (e
ZG(r+1) = D2 ze (),
25(~1/7) = 2.7, (C5)

we get the transformations of the x’s :

XU(T + 1) = 527”/3)(1}(7)7
Xo(T+1) = e_’”/?’x(](T),

XS/C(T +1) = €2m/3Xs/c(7_)>
Xo(=1/7) = 5 [Z3(r)* 5 Z3(r)")
Xosel—1/7) = [2%(r)* & Z3(r)"]. (o)
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Modular invariance of ([C.4)) under 7 — 7 + 1 is straightforward : the phase from
(xv—Xs) is cancelled by the phase coming from the left-moving sector (the phase of xq
gets another (—1) from the transformation of the sum over momenta and windings).
The modular invariance under 7 — —% follows from the fact that if we take m — —w
and w — m, the bosonic sums that multiply (Z0)* and (Z1)* do not change and the
bosonic sums that multiply (Z9)* and (Z2)* are switched.

If we look at the partition function (C-3), we see that it is invariant under T-
duality with R — ﬁ, n — 3, and w — 2n. Recall that in order to verify T-duality
one has to flip the GSO projection of the right-moving modes of the Ramond sector,
and then the partition function is manifestly invariant (as usual, to verify this one

needs to use Z] = 0).

D. Quantum mechanics of D0O-branes on the Klein bottle

In this appendix we take a naive approach to the derivation of M(atrix) theory for
M theory on a Klein bottle, by starting with DO-branes on a Klein bottle, imposing
the appropriate identifications on the Chan-Paton indices, and performing a Fourier
transform. Our DO-branes are moving in the background with the identification
(B:6), but we will rename the directions of the Klein bottle z' and x2, and denote
the periodicities of these variables by 27 R and 47 R). Our identifications of the
Chan-Paton indices will differ from those in [BJ] (which describe a non-commutative
version, as pointed out in [[Id]), but they are similar to those of [B4]. We construct
the identifications by simply moving strings with the transformation

(2", 2%) ~ (=2, 2% + 27 RY)) (D.1)

and then reversing their orientation. Figure [] is an example of how we obtain the
various relations.

For convenience, we should now have 2N DO0-branes in each fundamental domain
of the torus. Let X' stand for all the transverse Euclidean directions to the Klein
bottle (i = 3,---,9). We will write everything in components first and then try
to find a more elegant formalism. In general, the indices are Ay .44, ; Wwhere k and
[ are two dimensional vectors of integers (corresponding to the periodic images of
the DO0-branes), a and b are in {1,2} and i and j define an N x N matrix. The
identifications coming from the torus periodicities are the standard ones (see, e.g.,
[BA]). For our additional identifications, define k = (—ky, k), and then :

Xli,l;l,l;z‘,j - Xii,k;z,z;j,w
Xllcvl;2,2;i7j - X;,k;l,l;j,i - Xlz+e27l%+ez;1,1;j,i’
Xii125 = Xiyey it
X]i7l;271§i7j = Xl%l%-i—ezﬂ,l;j,i' (Dz)
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Figure 7: To demonstrate the identifications we propose, we show an explicit example
of how it works. In this figure, the middle cell in the lowest row is the (0,0) cell. We act
with the orientifold transformation to demonstrate the following equality X 0) (1,1):1,2;i,5 =
X(21,2),0,0);1,2:5 = X(0,0),(1,~2);1,2;5,; Where X is any of the orthogonal coordinates. The
dashed line separates each torus fundamental domain to two copies of the Klein bottle.
The filled circles are DO-branes (and the two colors correspond to two different DO-branes).

The two depicted strings are identified under the transformation.

These are completely geometric identifications, similar to the particular one exhibited
in figure []. The purpose of writing the second row as it is will become clear below.
One should also notice that there are no identifications on the orthogonal coordinates
besides (D.9) and the usual torus identifications.

On the A° matrices similar identifications hold up to an additional minus sign
because of the action on the vertex operator (which contains a normal derivative) :

Ag,l;l,l;i,j = _Agk;z,z;j,i’
Az,m,z;m‘ = _Alg,l};l,l;j,z‘ - _A?+e2,l%+ez;1,1;j,i’
2,1;1,2;2',1 - ?+eg,1%;1,2;j,i’
Ag,l;llﬂ',j = _Alg,ic-i-ez;ll;j,i' (D3>

The constraints on the coordinates X' and X? are also very easy to find by
following the fate of a string after the symmetry operation acts on it. The results

— 35 —



are summarized in the following list :

Xli,l;l,l;i,j = _Xiljf;zg;j,p
Xli,l;2,2;i7j = _Xil,fc;l,l;j,i - _Xi1+ez7l%+ez;l,1;j,i’
Xli,l;lvz;m - _Xil+e2,i%;1v2;m"
Xli,l;2,1;i,j = _X[1,1;+62;2,1;j,i’
Xﬁvl;l,l;m‘ = Xiz,l%;2,2;j,i — k2T R0, 5,
Xito2i; = Xl%l%;l,l;j,i + OLp27 Ry = X52+e271%+e2;1,1;j,i — Ouk2m 0, 5,
X205 = Xy ey bir 2
Xiiz;zl;i,j = Xl%fﬁ-eg;zl;j,i’ (D-4)

As was explained in section B.3, we know there exists a nice T-dual description
of this theory as the worldvolume of a D2-brane. It should be possible, therefore, to
rearrange the very inconvenient set of identifications on the infinite matrices that we
wrote above as a 2 + 1 dimensional gauge theory of finite matrices.

To see this, define

Miyraw = O jyr, eaTaat (D.5)
where we have defined
1
T=5 (o' —io?) = ((1) 8) . (D.6)
One can easily show that
(M_l)klvha/:a = 6k/,i+Ta’a/620i/,a' (D7)

Now, equations ([D.9),(D.3),(D:4) can be neatly rewritten in the following form :

Xi — M(Xi)TM_l,
A0 — _M(AO)TM—1’
X! = —M(XI)TM_I,
X% = M(XHT"M™" — 27 Ry61100.04 ;- (D.8)

Of course, these identifications are imposed together with the torus identifications.
The equivalence of (D.§) with (D.2),(D.3),(D.4) can be demonstrated by simple cal-
culations.
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Next, we rearrange the fields as Fourier components in the k,l indices :

Aabzy( ):

a b7l7]
a b,m

Vi=3.9 X!

bZ]

where Ry =12/R] and Ry = I?/2R), .

Z(Ao)o E;a,bsi € (

°171 v2T2
+
Rg

klzl kozo
§ 1 ’ 7 TRy )
XOkab,z,] ! 27,
k1w1 kozo
§ 2 ’ 7 TRy )
XOkab,z,j ! 27,
. kl 1 k2c02
Z I i(S+42)
XOkab,z,] 1 27,

The Lagrangian governing these fields is given

(D.9)

by a maximally supersymmetric (after including the fermions) Yang-Mills theory in

2 + 1 dimensions (16 real supercharges), which is the dimensional reduction of the

ten dimensional N =1 SYM theory. However, there are some inter-relations among

the fields which we now derive. For convenience we suppress the 7, 7 indices.

The

inter-relations comprise the following set of additional relations on the theory with

,9):
) =
t) =

16 supercharges (7 =3,---
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We see that our theory can be written on a cylinder of volume (27rR;) X

—e' (A (=2, 1)7,

iﬁ_i(A?;(—m))T,

(AL, ), (B-10)

—e iﬁ_i(Ai;(—m))T,
—€ R2 (A; 1( jv t>>T7

( i’, )) —27TR/252"]‘,
Rz(A%2( ivt))Tv

7,t) = €' (A3 (=, ).

(7TR2)

with orientifold planes at the boundaries. We can read the relevant boundary con-

ditions from ([D.10).

As the action appears to be an orbifold of the maximally

supersymmetric action we write it explicitly :

1 1
S=-5 / dtd*zTr (——FWF‘“’
QQYM T2 2

: 1 . ) : ;
+ (D, X7)? + §[X],X’] (X7, X' + fermions)
(D.11)
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The size of T? is (2 R;) X (2mRy). All the fields are periodic and in our case take
the form

X115 Xioii Ay 1 Ay

— y430,J 17277/7] J— 171727] 172727] Y g —

X—<X X : A= ) t,j=1,---,N.
2,1L50,5 “32,250,5 ]

We split the action :

27w Ry 0
§= 0y /dt/ dml/ da? Tr (—%FWF“’HL(DHXJ)2+%[X9,XZ][X’,XZ]) +
Iym 0 —7 Ry
2Ry TR2 1 i 1 . . . .
-~ / dt / da'! / dz® Tr (——FWF‘“’+ (D, X7)? + —[X],X’][XJ,X’])
209 0 0 2 2
(D.13)

Using (D.10) we can reexpress all the fields in the domain [—7 Ry, 0] as fields in
the domain [0, 7Ry]. The computation becomes very easy if one notices that the set
of equations (D.I0) is actually simple, Vj = 3,---,9 :

o3

iz
X (1) = e 57 0 (X9 (=i, 1)) o 3z

ixz iz
A (g 1) = —e 37 g1 (AN (g 1)) e Hr

.

A%(z,t) = e 2R Ugal(AQ(—i,t))Talemz — 21 Ryo®, (D.14)

where the relations are on the full 2N x 2N matrices. The sigma matrices are always
tensored with the unit matrix of dimension N x N. One can see that this gives a
nice Lagrangian, as most of the commutators are invariant, or change sign. One easy
way to proceed is to rewrite the above lagrangian with new fields in the following
way :

11'203 23020'3

X/ (z,t) = e 2 X (x,t)e iRz |
iz203

00 (g, 1) = s 400 (g, )™ s |
~, i120'3 zz o'
A(z,t) = e 1R A%(x,t)e *R2 + o R, (D.15)
This transformation is a U(2V) gauge transformation. Hence the Lagrangian of the
tilded fields is actually the same Lagrangian as ([D.13). We will still name those fields
in the usual notation omitting the tildes. The identification of the tilded fields' is
very suggestive:

X(z,t) = o' (X7 (=2,t)" 0,
A (g 1) = =1 (AD (=7 1) o,
Az t) =0 (A2( &) ot (D.16)

17 As mentioned, we won’t use the notation of the tildes anymore.
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Using this transformations we transform the [—mRy,0] interval of the action to
[0,7R,|, and we find that it precisely agrees with the original action for this in-
terval. The relative minus signs in the gauge fields exactly compensate for the minus
signs that arise because [AT, BT] = —([A4, B])T and because 0, — —d,. So, our final
result is

1 27FR1 7TR2 1 )
S = /dt/ dxl/ da® Tr ( — ~F,F* + (D, X7)*+
29vm 0 0 2

+ %[Xj,Xi] (X7, X + fermions). (D.17)

We will determine gyy soon, so we omitted the factor 2 for now.'® The boundary
conditions are interesting. Equations ([D-.I7) tell us that

X3zt 2? + 2Ry, t) = 0° X (2, 22, 1)
AP2(5L 02 L on Ry 1) = 0P AM2 (1) 22, 1)o®, (D.18)

Combined with equations (D.16) we obtain

X (x', —2? + 27 Ry, t) = 0*(X(z,1)) 02,
x

d
A% (at —2? + 27 Ry t) = —0?(AM (21, 2% 1) o
A%(zh, —2? + 21 Ry, t) = o* (A% (2t 2% ) o 2. (D.19)

The boundary conditions at the two orientifold planes are, hence, different.'® For
2? = 0 the matrices satisfy

X7 =o'(X)To!, KX’ = —c'(0,X7) o, (D.20)
AO(I) — _0_1(140(1))710_17 82A0(1) — Ul(agAO(l))TO'I, (D21)
A? =g (AHT o, A% = —01(0,A4%) o, (D.22)

so they are of the form

AQ,X]':C%I;T) Nt=N, s"=5 8"=8, 5t =5,

A° Al = M RT Mt =M, R" =—-R, R" = —-R, R" =R. (D.23)
R —M
Collecting all these facts together we get that the gauge group in the bulk is
U(2N) while on the 22 = 0 boundary the gauge group is SO(2N). On this boundary
the fields A%, X7 are in the symmetric representation of the gauge group.

8The Lagrangian ) on the cylinder defines what we mean by gy so there is no ambiguity.
9These are the anticipated O~ and O planes.

-39 —



The second boundary x? = 7R, is substantially different. We write the boundary
conditions there in a familiar form

o?X7o? = (XI)T, 020, X70% = —(0,X7)7, (D.24)
O_2AO,10_2 — _(AO,I)T’ 0'282140’1 2 — (82140,1)T7 (D25>
o A2(zt 1)o? = (A2(z), 1)), 020, A%0% = — (9, A%)T. (D.26)

Consequently, the gauge group at this boundary is USp(2N). The most general
matrices are of the form

AO,Al:(g_ZT) Mt=M, R"=R, RT =R, R* =R.  (D.27)

It is easy to verify that this precisely agrees with the action and boundary condi-
tions that we wrote down in the main text for the D2-brane between two orientifold
planes, if we only include the disk contributions to this action and not the Mobius
strip contributions.
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