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Abstract
This thesis presents the complete embedding of the bosonic section of gauged N = 8
supergravity into 11 dimensions. The fields of 11-dimensional supergravity are refor-
mulated in a non-linear way, such that their supersymmetry transformations can be
compared to the four-dimensional ones. In this way, non-linear relations between the
redefined higher-dimensional fields and the fields of N = 8 supergravity were already
found in the literature. This is the basis for finding direct uplift Ansätze for the bosonic
fields of 11-dimensional supergravity in terms of the four-dimensional ones.

This work gives the scalar Ansätze for the internal fields. First, the well known uplift
formulae for the inverse metric, the three-form potential with mixed index structure
and the six-form potential are summarized. Secondly, new embedding formulae for the
explicit internal metric, the full three-form potential and the warp factor are presented.
Additionally, two subsequent non-linear Ansätze for the full internal four-form field-
strength and the Freund-Rubin term are found. Finally, the vector uplift can simply be
found in terms of the obtained scalar fields.

The second part of this thesis uses the obtained embedding formulae in order to
construct group invariant solutions of 11-dimensional supergravity. In such cases, the
higher-dimensional fields can be written solely in terms of certain group invariant tensors
that are adapted to the particular geometry of the internal space. Two such examples
are discussed in detail. The first one is the well-known uplift of G2 gauged supergravity.
Furthermore, a new SO(3)×SO(3) invariant solution of 11-dimensional supergravity is
found. In particular, the consistency of both solutions is explicitly checked for a maxi-
mally symmetric spacetime.

The results may be generalized to other compactifications, e.g. the non-compact
CSO(p, q, r) gaugings or the reduction from type IIB supergravity to five dimensions.
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Zusammenfassung
Diese Doktorarbeit behandelt die bosonische Einbettung der geeichten N = 8 Super-
gravitation in elf Dimensionen. Die höherdimensionalen Felder müssen zuerst nichtli-
near umdefiniert werden, sodass ihre supersymmetrischen Transformationen mit denen
der vierdimensionalen Felder verglichen werden können. So wurden in der Literatur
nichtlineare Beziehungen zwischen den neu definierten elfdimensionalen Feldern und den
Feldern der N = 8 Supergravitation gefunden. Darauf basierend können nun direkte
Ansätze gefunden werden, die eine vierdimensionale in eine elfdimensionale Lösung der
Supergravitation einbetten.

Die Arbeit präsentiert alle Ansätze für die skalaren internen Felder. Zuerst werden die
schon bekannten Einbettungsformeln für die inverse Metrik, das Dreiform-Potential mit
gemischter Indexstruktur sowie das Sechsform-Potential zusammengefasst. Danach wer-
den neue Ansätze für die explizite interne Metrik, das vollständige Dreiform-Potential,
den Warp Faktor, die Vierform Feldstärke sowie den Freund-Rubin Faktor gefunden. Die
Einbettung der Vektorbosonen hängt dann nur von den skalaren Feldern ab.

Der zweite Teil der Arbeit benutzt die gefundenen Einbettungsformeln, um gruppen-
invariante Lösungen der elfdimensionalen Supergravitation zu finden. In solchen Fällen
hängen die höherdimensionalen Felder ausschließlich von speziellen gruppeninvarianten
Tensoren ab, die auf die jeweilige interne Geometrie angepasst sind. Als Beispiel wird
zuerst die schon bekannte Einbettung der G2 invarianten Supergravitation zusammenge-
fasst. Dann wird eine neue SO(3)×SO(3) invariante Lösung der elfdimensionalen Super-
gravitation gefunden. Schließlich wird die Konsistenz der gefundenen Lösungen für eine
maximal symmetrische Raumzeit überprüft.

Die Ergebnisse können auf andere Kompaktifizierungen verallgemeinert werden, z.B.
auf die nichtkompakten CSO(p, q, r) Eichungen oder auf die Reduzierung der Typ IIB
Supergravitation zu fünf Dimensionen.
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1. Introduction

1.1. General Relativity and the Standard Model of
Particle Physics

The four fundamental forces that are observed in nature are well described by two dif-
ferent physical theories — general relativity and the Standard Model of particle physics.
On the one hand, Einstein’s general relativity describes gravity as the result of curved
four-dimensional spacetime [1, 2, 3, 4]. This classical field theory is based on the Einstein-
Hilbert action, whose Euler-Lagrange equations (the ‘Einstein equations’) set restrictions
on the spacetime itself. Mathematically, these relations are second-order differential
equations for the metric, which is a symmetric 4 × 4 matrix that fully describes the
spacetime.

This theory of gravity passed several non-trivial tests during the past 100 years. For
example, solving the Einstein equations assuming spherical symmetry leads to the cel-
ebrated Schwarzschild metric [5], which specifies the spacetime around stars and black
holes. This precisely describes the movement of massive test particles and explains the
bending of light rays in a gravitational field. A further solution of the linearized Einstein
equations describes gravitational waves, which were only recently discovered [6]. Finally,
general relativity allows us to study cosmology: Assuming an isotropic and homogeneous
spacetime at very large scales, one finds the dynamics of the universe itself. In partic-
ular, this dynamics is determined by the Friedmann equations, which are the reduced
Einstein equations in that case [7, 8]. This model provides a possible explanation for the
observed expanding universe and also gives information about its size and age.

Unfortunately, general relativity does not explain all the observed gravitational effects.
For example, it leads to the wrong radial dependence of the rotational velocities of stars
within a galaxy. In order to solve this open problem, there are two common suggestions:
One is the modification of the gravitational laws themselves on large scales, described
for example by Tensor-Vector-Scalar (TeVeS) or f(R) theories [9, 10, 11]. Since none
of the existing modifications consistently describe all astronomical observations, another
idea is to assume ‘dark matter’ within galaxies. These are massive particles that affect
the gravitational interactions but are otherwise almost invisible. The search for such
particles is a current field of research but so far, none have been found. A second
problem of general relativity is related to the expansion of the universe. In principle,
the expansion requires a vacuum energy that acts against the gravitational collapse of
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1. Introduction

the universe, which is commonly known as dark energy. The notion of a vacuum energy
is also well known in particle physics, but the estimated values of both theories differ
by 120 orders of magnitudes. This discrepancy is one of the most puzzling problems in
physics.

On the other hand, the Standard Model of particle physics describes the electromag-
netic, weak and strong forces of nature [12, 13]. It is a ‘quantum’ field theory that
is based on a complicated action that includes all elementary particle fields (such as
quarks, leptons and gauge bosons). The main difference to a classical field theory is
in the description of interactions. A classical field configuration precisely satisfies the
Euler-Lagrange equations and therefore extremizes the associated action. In contrast,
all information that one can seek about a quantum field configuration is its probability
to be in a certain state. Mathematically, this probability is determined by the exponen-
tial of the action — the smaller the value of the action for a certain field configuration,
the higher is the corresponding probability. One may finally compute the physical ob-
servable expectation value for a quantum field. In particular, in the classical limit, this
field expectation value coincides with the classical field configuration that extremizes the
action.

There are only few restrictions to construct the most general action for the Standard
Model of particle physics. In principle, these rules determine the corresponding interac-
tion probabilities. For example, the action must be invariant under the Lorentz group
SO(1,3) and the ‘gauge group’ U(1)×SU(2)×SU(3). Here, the strong sector is described
by an SU(3) gauge group of ‘color’ and the corresponding interactions must be described
using non-perturbative methods. On the other hand, the gauge group U(1)×SU(2)
describes the electroweak sector, in which all calculations may be performed perturba-
tively using Feynman integrals and renormalization methods. However, Lorentz and
U(1)×SU(2) gauge invariance lead to a serious problem, namely that all particles must
be massless. The simplest solution was suggested by Higgs, Englert, Brout, Guralnik,
Hagen and Kibble in 1964 [14, 15, 16]. They proposed a mechanism that breaks the
U(1)×SU(2) symmetry group down to the U(1) gauge group of electromagnetism. This
provides the correct masses for the W and Z gauge bosons of the weak force, whereas the
photon of the electromagnetic force remains massless. Furthermore, leptons may acquire
a mass via the introduction of Yukawa couplings. This spontaneous symmetry breaking
only requires one additional scalar particle — the Higgs boson, which was finally found
four years ago at the Large Hadron Collider at CERN [17, 18].

Although tested in diverse experiments, the Standard Model can not explain all ob-
served electroweak and strong effects. The first one is related to the neutrino flavor
oscillations: Experiments in the 1960s measured the flux of solar neutrinos through the
earth. The number of detected electron neutrinos was far too small compared to the
expected number (based on the estimated nuclear fusion reactions in the sun). This is
called the ‘solar neutrino problem’. In 1968, Pontecorvo proposed that massive neutri-
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1. Introduction

nos could change their flavor when traveling over long distances [19]. Finally in 1998
and 2001, the Super-Kamiokande Observatory and the Sudbury Neutrino observatory
independently measured all solar neutrinos traveling through the earth and found that
the missing amount of electron neutrinos was compensated by the observed amount of
muon and tau neutrinos [20, 21]. This proved that neutrinos indeed oscillate in flavor
and are hence not all massless, which contradicts the prediction of the Standard Model.

A second serious puzzle is the ‘hierarchy problem’: Naturally, the quantum corrections
to the renormalized mass of the Higgs boson would make it far heavier than observed
in current detectors. Assuming that the Standard Model of particle physics is complete,
the only reason for the relatively small Higgs mass would be a precise ‘fine-tuning’ of the
‘bare Higgs mass’ — such that it exactly cancels the quantum corrections. Since this
seems to be very unnatural for physicists, it is strongly believed that physics beyond the
Standard Model does not require such a fine-tuning. The hierarchy problem was one
of the main motivations to study supersymmetry — a quantum field theory in which
each elementary particle has a supersymmetric partner with opposite spin statistics. In
this case, the quantum corrections to the Higgs mass coming from a certain particle and
its super-partner precisely cancel. Hence, the bare Higgs mass must not be unnaturally
fine-tuned. Unfortunately, no supersymmetric partner of an elementary particle has been
observed so far.

All in all, both theories can not describe the respective opposite regime: General
relativity is a classical field theory, and a quantum field theory including curved spacetime
would inevitably result in divergences that can not be renormalized. It is therefore only
natural to ask for a more fundamental theory that unifies all forces of nature. Such a
‘theory of everything’ could then solve the current open problems that exist within the
limits of both theories.

1.2. Kaluza-Klein Theory and Supergravity
One attempt to unify Einstein’s general relativity and the Standard Model of particle
physics is Kaluza-Klein theory. The original idea was to construct a pure D > 4 gravity
theory based on a D-dimensional Einstein-Hilbert action. However, our world is four-
dimensional, so, where are the extra dimensions? The answer is given by a mathematical
concept called dimensional reduction: The extra dimensions compactify on such a small
scale that one does not observe them in everyday’s life. The result is a four-dimensional
curved spacetime and the compactified dimensions lead to internal gauge symmetries.

Let us consider the initial example that inspired Kaluza and Klein to propose this
theory in the 1920s [22, 23]: They considered a five-dimensional theory of gravity with
an Einstein-Hilbert action for the five-dimensional metric. At each point p in spacetime,
the fifth axis now becomes isomorphic to a circle when gluing the five-dimensional points
(p, −∞) and (p, +∞) together. This procedure is called U(1) compactification, because

3



1. Introduction

the isometry group of a circle is U(1). The resulting theory is hence, general relativity
describing the spacetime together with an internal U(1) gauge symmetry of electromag-
netism. Under this compactification, the 15 degrees of freedom of the five-dimensional
metric (a symmetric 5×5 matrix) split as follows: 10 components describe the four-
dimensional spacetime metric (a symmetric 4×4 matrix), one four-vector describes the
photon and the remaining degree of freedom is contained in a real scalar field. Using
this decomposition, the five-dimensional Einstein-Hilbert action consistently reduces to
a four-dimensional Einstein-Hilbert term plus several other terms, which describe the
interactions between the photon and the scalar field. In particular, the Euler-Lagrange
equations reduce to the Einstein equations for the spacetime, the Maxwell equations
of electrodynamics and an additional relation for the scalar field. Unfortunately, this
procedure does not lead to the correct electromagnetic interactions that are observed in
particle detectors.

Later, physicists extended Kaluza-Klein theory to obtain larger gauge groups, e.g. to
find the Standard Model of particle physics in the compactified dimensions [24, 25, 26,
27, 28, 29]. In the general approach, the manifold MD of a D-dimensional gravity theory
spontaneously compactifies according to

MD = M4 × MD−4. (1.1)

Let us assume for a moment that a stable ground state solution is already known, i.e. a
complete set of D-dimensional fields Φ0(x, y) that fulfill the corresponding equations of
motion. Here, x and y denote the coordinates on M4 and MD−4 respectively. Further
solutions

Φ(x, y) = Φ0(x, y) +
∑

n

Φ(n)(x)Y (n)(y) (1.2)

can then be found by a linear expansion of the higher-dimensional fields around this
ground state. In particular, the expansion coefficients Φ(n)(x) represent the physical
fields of a four-dimensional theory and Y (n)(y) are the eigenfunctions of a mass oper-
ator that acts on the internal manifold MD−4. This gives a finite number of massless
Kaluza-Klein modes — the Yang Mills fields — and infinitely many massive states. Since
these massive modes would be too heavy to detect in current observations, one discards
them and restricts to the zero mass sector. This truncation of the theory is called the
‘low energy limit’ and must be consistent, i.e. the fields Φ(x, y) must still satisfy the
11-dimensional equations of motion. Only when this is the case, each four-dimensional
solution {Φ(n)(x)} finally corresponds to a solution {Φ(x, y)} of the D-dimensional grav-
ity theory. In particular, this method is a powerful tool to understand a complicated
four-dimensional theory in a higher-dimensional framework — the complexity is induced
by the reduction scheme.

The idea of relating gravity theories in different dimensions to each other finally led
to a more general attempt to unify general relativity and the Standard Model of particle
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1. Introduction

physics: Supergravity. In principle, the basic idea was to make supersymmetry local [30].
Later, a first consistent gravity theory with one supersymmetry was proposed in 1976 —
the so-called minimal supergravity in four dimensions [31]. In the following years, several
generalizations were suggested, e.g. N = 8 supergravity in four dimensions. It has the
maximal number of supersymmetries, assuming that there is no particle with spin higher
than two. It was first investigated by de Wit and Freedman in 1977 [32] but turned out
to be difficult to construct. A second example is 11-dimensional supergravity, which was
proposed by Cremmer and Julia only one year later [33]. In these years, the uniqueness of
the latter theory made it an adequate candidate for a ‘theory of everything’. Indeed, 11 is
the maximal dimension consistent with a single graviton of spin two [34] and the minimal
dimension to cover the Standard Model of particle physics under a compactification of
the extra dimensions [29]. Unfortunately, the corresponding reductions turned out to be
inconsistent.

In general, to establish a consistent Kaluza-Klein reduction from one supergravity the-
ory to another is even more complicated than in the non-supersymmetric case [35]. The
reason is the following: For the above linear expansion in Eq. (1.2), the supersymmetry
transformations in both theories must be related via

δΦ(x, y) =
∑

n

δΦ(n)(x)Y (n)(y). (1.3)

However, the supersymmetry transformations are non-linear in all fields. Hence, the
lhs is equal to a non-linear combination of the higher-dimensional fields, F̃ (Φ(x, y)). In
particular, when applying Eq. (1.2) on the lhs again, the y-dependent factor also becomes
non-linear in the eigenfunctions Y (n)(y). This is a contradiction to Eq. (1.3) and hence,
the linear expansion in Eq. (1.2) and its truncation can not be consistent. Therefore, the
only way out is a non-linear modification of Eq. (1.2), i.e. the higher-dimensional fields
must be redefined in a non-linear way, Φ(x, y) → F (Φ(x, y)), such that both,

F (Φ(x, y)) = F (Φ0(x, y)) +
∑

n

Φ(n)(x)Y (n)(y),

δF (Φ(x, y)) =
∑

n

δΦ(n)(x)Y (n)(y)
(1.4)

hold separately. If such a non-linear modification exists, the truncation is automatically
consistent, because the supersymmetry transformations close on-shell. In other words, if
{Φ(n)(x)} is a classical four-dimensional solution and the supersymmetry transformations
satisfy Eq. (1.4), then, the fields Φ(x, y) also satisfy the 11-dimensional equations of
motion.

The first investigated consistent compactification of 11-dimensional supergravity is
the reduction of the extra dimensions on a seven-torus. The resulting four-dimensional
theory is ungauged N = 8 supergravity [36]1. Here, the fermions transform under a local

1Note that only in this way, the (relatively complicated) N = 8 supergravity could finally be completed
using the scheme of dimensional reduction.
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SU(8) gauge group and the corresponding scalar and vector fields transform under a
global E7 group of ‘duality invariance’. In particular, the four-dimensional supersymme-
try transformations are manifestly SU(8) and E7 covariant. This is the basis to find the
redefinitions of the 11-dimensional fields, Φ(x, y) → F (Φ(x, y)). One requires that the
resulting supersymmetry transformations are also SU(8) and E7 covariant. In this way,
the complete torus reduction can consistently be found.

On the other hand, 11-dimensional supergravity may be reduced to maximally gauged
N = 8 supergravity [37], when the internal dimensions are compactified on a seven-
sphere [38, 39, 40, 41]. This can be done by gluing together all points at infinity of
the seven extra dimensions. Indeed, the internal space is then isomorphic to a seven-
sphere and the corresponding isometry group is SO(8) — the maximal gauge group
that is allowed in N = 8 supergravity. Furthermore, when deforming the seven-sphere
in a certain way, one finds other (non-maximal) gaugings, such as G2, SO(3)×SO(3)
or SU(3)×U(1)×U(1) invariant supergravity. Unfortunately, all these compact gaugings
break the global E7 group of duality invariance in N = 8 supergravity. However, using the
‘embedding tensor formalism’ [42], one may extend the electric vector fields by magnetic
duals, such that the supersymmetry transformations can still be written in an SU(8)
and E7 covariant way. Therefore, the 11-dimensional non-linear field redefinitions can
still be found using the guideline of SU(8) and E7 covariance. In particular, all these
Kaluza-Klein compactifications on a deformed seven-sphere are consistent.

Right after the development of supergravity up until now, there has been active re-
search in the embedding of gauged N = 8 supergravity into 11-dimensional supergravity
[41, 43, 44, 45, 46, 47]: One constructs a particular 11-dimensional solution, which
consistently reduces to a given solution of N = 8 supergravity under a Kaluza-Klein
compactification. The main task in establishing such a program is to find explicit up-
lift Ansätze for the 11-dimensional fields Φ(x, y) in terms of the four-dimensional ones
Φ(n)(x), starting from the non-linear relations in Eq. (1.4). In particular, the consis-
tency of the reduction implies that the constructed fields Φ(x, y) automatically satisfy
the higher-dimensional equations of motion as long as {Φ(n)(x)} is a solution of N = 8
supergravity. The embedding formalism can hence be seen as a tool to find new 11-
dimensional supergravity solutions.

1.3. Thesis Aim and Own Results
This thesis presents the full bosonic embedding of gauged N = 8 supergravity into
11 dimensions. A first formula for the inverse internal metric has already been found
in Ref. [43]. For certain gaugings, the resulting expression could then be inverted to
find the internal metric. Furthermore, the non-linear Ansätze for the internal form
potentials have been found in Refs. [45, 47, 48], which also required the explicit metric
expression. This thesis derives a new direct uplift Ansatz for the internal metric [49,
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50]. In particular, the inversion procedure becomes redundant and all scalar uplifts
complete in general. Finally, two more subsequent Ansätze for the internal ‘four-form
field-strength’ and the ‘Freund-Rubin term’ are found [48, 49, 50]. In particular, these are
required in order to explicitly check the consistency of certain group invariant solutions of
11-dimensional supergravity. The derived non-linear Ansätze for the scalar fields imply
simple embedding formulae for the higher-dimensional vectors. Hence, the complete
bosonic solution of 11-dimensional supergravity can be found.

Furthermore, assuming the spacetime of the compactification in Eq. (1.1) to be maxi-
mally symmetric yields even simpler solutions, namely the ‘Freund-Rubin solutions with
flux’. Here, also the vectors vanish and the presented Ansätze are already sufficient to
construct all required fields. However, this simplification is only consistent, when the
obtained 11-dimensional fields are evaluated at a stationary point of the scalar potential.
As special cases, this thesis presents the G2 and SO(3)×SO(3) invariant Freund-Rubin
solutions of 11-dimensional supergravity and explicitly checks that the obtained fields
satisfy the corresponding equations of motion. The derivation of the G2 invariant so-
lution is a summary of known results together with a new expression for the internal
six-form potential. The SO(3)×SO(3) invariant solution is completely new [51].

The outline of the manuscript is as follows: The first chapter introduces the gauged
N = 8 supergravity in four dimensions. It presents the fields and their supersymmetry
transformations as well as some E7 properties of the scalar fields of this theory. Chap-
ter 3 is devoted to the fields and supersymmetry transformations of 11-dimensional su-
pergravity. In particular, the non-linear SU(8) and E7 field reformulations are discussed
in detail. Chapter 4 then deals with the embedding of gauged N = 8 supergravity into 11
dimensions. Based on the consistent relation between the redefined fields and the four-
dimensional ones, it presents the explicit non-linear uplift Ansätze for the 11-dimensional
scalar fields.

The second part of this thesis starts with Chapter 5. It gives a general overview to the
application of the derived uplift Ansätze for certain gaugings of the N = 8 supergravity.
In particular, it shows how the higher-dimensional fields can be written in terms of certain
group invariant tensors, which brings the solution in a simpler, manageable form. This
forms the basis for the explicit examples in Chapters 6 and 7, which construct the G2
and SO(3)×SO(3) invariant Freund-Rubin solutions of 11-dimensional supergravity. In
particular, they also show explicitly that the obtained fields satisfy the reduced equations
of motion in that case. Chapter 8 finally concludes this thesis.

Appendix A gives some useful identities for the Γ matrices and Killing forms that
appear within the S7 reduction. A simplification for the C tensor that occurs in the
three-form Ansatz is presented in Appendix B. Finally, Appendix C derives all ‘S7 ten-
sor identities’, which are necessary to bring the SO(3)×SO(3) invariant solution of 11-
dimensional supergravity into a manageable form.
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2. N = 8 Supergravity
This first chapter is devoted to the N = 8 supergravity theory [32, 36, 37]. Of all super-
gravity theories, N = 8 is the maximal number of supersymmetries without introducing
spin fields higher than two. The local gauge group is SO(8)×SU(8) and the latter may
be extended to a global group of duality invariance. As it turns out, this global group is
well described by an exceptional E7 symmetry.

The first part of this section presents the fields of N = 8 supergravity and explains
the emergence of the duality symmetry in detail. Then, the second part gives the cor-
responding supersymmetry transformations, which are written in an SU(8) and E7 co-
variant way. Finally, Section 2.3 gives some general E7 properties that restrict the scalar
fields of N = 8 supergravity.

2.1. The Fields of N = 8 Supergravity
The field content is described by an irreducible N = 8 super-multiplet. This decomposes
into a spin 2 graviton, eight spin 3/2 Rarita-Schwinger spinors, 28 gauge bosons, 56
Majorana spin 1/2 fermions as well as 35 + 35 scalar and pseudo-scalar fields. In the
following, these fields are presented step by step.

First, the graviton is described by the metric of the four-dimensional spacetime, g̊µν(x),
in a local coordinate chart xµ. Using the Cartan formalism, one introduces a correspond-
ing vierbein e̊µ

α(x), such that
g̊µν = δαβ e̊µ

αe̊ν
β. (2.1)

Here, δαβ denotes the flat euclidean tangent space metric — the time coordinate is
imaginary. Spacetime and tangent space indices are denoted by Greek letters. In general,
the rule of thumb is: Letters from the middle of an alphabet always denote curved
spacetime indices and letters from the beginning are the corresponding tangent space
indices. The vierbein (or metric) is a singlet under the gauge group and as usual, it
defines the Riemann and Ricci curvature tensors R̊µ

νρσ(x), R̊µν(x) = R̊ρ
µρν(x) as well as

the Ricci scalar R̊(x) = gµν(x)R̊µν(x). Finally, the four-dimensional volume form is

dV =
√

|̊g|d4x,

where g̊ denotes the determinant of the metric. It is related to the determinant of the
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2. N = 8 Supergravity

vierbein via g̊ = e̊2. Thus, the corresponding Einstein-Hilbert action reads

S = −1
2

∫
e̊R̊ d4x, (2.2)

where the normalization factor is consistent with the conventions of Ref. [37].
Secondly, let us discuss the fermions. The eight Rarita-Schwinger spin 3/2 fields are

denoted by a spinor ϕµ
i(x)1. It belongs to the irreducible eight-dimensional representa-

tion of the chiral SU(8) gauge group. The corresponding SU(8) index i runs from 1 to
8 and can be raised or lowered by complex conjugation. An upper SU(8) index corre-
sponds to positive and a lower one to negative chirality. The four spinorial components
of ϕµ

i(x) are labeled by indices α̂, β̂, . . . = 1, . . . 4, which are most often suppressed,

ϕµ
i = (ϕµ)α̂

i.

The corresponding four-dimensional matrices γα = (γα)α̂β̂ satisfy the Clifford algebra

{γα, γβ} = 2δαβI4×4. (2.3)

They also define the fifth γ matrix as γ5 = γ0γ1γ2γ3.
The 56 spin 1/2 fermions are Majorana spinors χijk(x) with fully antisymmetric chiral

SU(8) indices [ijk]. They belong to the chiral 56 representation of SU(8). Again, the
spinorial index α̂ is suppressed,

χijk = χα̂
ijk,

and the SU(8) indices are raised and lowered by complex conjugation.
Furthermore, there are 70 scalar degrees of freedom in N = 8 supergravity. Mathemat-

ically, these scalar fields extend the local SU(8) gauge group to the group G of duality
invariance [37]. Since SU(8) is 63-dimensional, the group G must have 70 + 63 = 133
generators. This counting argument quite naturally led to the conjecture, that G is the
exceptional group E7 of Killing-Cartan [36], whose maximal compact subgroup is indeed,
SU(8). To be more precise, one must choose the non-compact version E7(7). Accordingly,
the scalars are parametrized by a 56-bein V(x), which belongs to the fundamental 56 rep-
resentation of E7(7). This 56-bein transforms under local SU(8) and global E7(7) rotations
as2

V(x) → U(x)V(x)E−1, U(x) ∈ SU(8), E ∈ E7(7).

Hence, the 133 scalar degrees of freedom in the 56-bein are not independent and fall into
equivalence classes of SU(8). The remainder are the 70 scalars of N = 8 supergravity,
which parametrize the coset space E7(7)/SU(8).

1In Refs. [36, 37], this spinor was denoted by ψµ
i.

2This is in full analogy to the vierbein e̊µ
α, which transforms under global GL(4,R) diffeomorphisms

from the left and under local SO(1,3) rotations from the right.

10



2. N = 8 Supergravity

There are two usual representations of the 56-bein. The first is via a decomposition
into 28×28 sub-matrices uij

IJ(x) and vij IJ(x),

V =
(

uij
IJ vij IJ

vij IJ uij
IJ

)
. (2.4)

Capital indices refer to the SL(8,R) decomposition of E7(7),

56 → 28 ⊕ 28, (2.5)

and lower case indices are antisymmetric bi-vector indices of the chiral SU(8). Hence,
the latter are raised and lowered via complex conjugation,

uij
IJ =

(
uij

IJ
)∗

, vij IJ = (vij IJ)∗ . (2.6)

A second parametrization is given in another gauge, [52]

V̂ =
(

V̂IJ
ij V̂IJ ij

V̂IJ ij V̂IJ
ij

)
, (2.7)

which is related to V via

V̂IJ
ij = i√

2
(
uij

IJ + vij IJ

)
, V̂IJ ij = − 1√

2
(
uij

IJ − vij IJ

)
, (2.8)

V̂IJ ij = − i√
2
(
uij

IJ + vij IJ
)

, V̂IJ
ij = − 1√

2
(
uij

IJ − vij IJ
)

. (2.9)

Again, capital indices in Eq. (2.7) refer to the SL(8,R) decomposition of the 56 rep-
resentation of E7(7). In this case, it is more convenient to write the 56-bein as a E7(7)
vector

V̂M
ij =

(
V̂IJ

ij, V̂IJ ij

)
.

The 56-dimensional index M belongs to the 56 representation of E7(7) and can be raised
and lowered with a certain symplectic form ΩMN . This is explained in full detail in
Section 2.3. Finally, one notes that the second row in Eq. (2.7) is the complex conjugate
of the first one. Written in an E7(7) covariant way, this means

V̂M ij =
(
V̂M

ij

)∗
=
(
V̂IJ ij, V̂IJ

ij
)

. (2.10)

With the above definition of the 56-bein, the scalar potential V (x) of N = 8 super-
gravity is given in terms of the ‘T tensor’

Ti
jkl(x) =

(
ukl

IJ + vkl IJ
) (

uim
JKujm

KI − vim JKvjm KI
)

(x), (2.11)

11



2. N = 8 Supergravity

which satisfies the convenient property(
upq

IJ + vpq IJ

) (
uij

IKvkl JK − vij IKukl
JK

)
= 4

3δ[i
[pTq]

jkl]. (2.12)

In particular, [37, 41]
V = 1

24g2A2 i
jklA2

i
jkl − 3

4g2Aij
1 A1ij, (2.13)

where g is a coupling constant and the A1 and A2 tensors are given by

Aij
1 = 4

21Tk
ikj, A2 i

jkl = −4
3Ti

[jkl]. (2.14)

Finally, the 28 gauge fields Aµ
IJ(x) belong to the adjoint 28 representation of the

SO(8) symmetry group3 and transform as a singlet under SU(8). This gauge group
breaks the global E7 group of duality invariance. However, the 28 ‘electric’ vector fields
can be extended by 28 ‘magnetic’ duals Aµ IJ(x) in the ‘embedding tensor formalism’ [42].
Only both, electric and magnetic vector fields together then constitute an irreducible 56
representation of E7(7),

Aµ
M =

(
Aµ

IJ , Aµ IJ

)
.

This represents the corresponding SL(8,R) decomposition given by Eq. (2.5).
The most general resulting Lagrangian is given in Refs. [32, 36, 37]. Here, it is not

required for the embedding of N = 8 supergravity into 11 dimensions.

2.2. Supersymmetry Transformations
With the above definitions of the fields, the corresponding supersymmetry transforma-
tions read [37, 41, 42]4

δϵ̊eµ
α = 1

2 ϵ̄iγαϕµ i + h.c., (2.15)

δϵuij
IJ = −

√
2Σijkl(ϵ)vkl IJ , δϵAµ

IJ = −1
2Xµ

ij(ϵ)
(
uij

IJ + vij IJ

)
+ h.c., (2.16)

δϵvij IJ = −
√

2Σijkl(ϵ)ukl
IJ , δϵAµ IJ = − i

2Xµ
ij(ϵ)

(
uij

IJ − vij IJ

)
+ h.c., (2.17)

with

Xµ
ij(ϵ) = 2

√
2ϵ̄iϕµ

j + ϵ̄kγ̊µχijk, (2.18)

Σijkl(ϵ) = ϵ[iχjkl] + 1
4!ϵijklmnpqϵ

mχnpq. (2.19)

3The antisymmetric bi-vector indices [IJ ] belong to SO(8).
4The conventions of Ref. [41] are used. The respective ϵ differs from the one in Ref. [37] by a factor of

1/2.
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2. N = 8 Supergravity

Here, Σijkl(ϵ) is complex selfdual, the second term in Eq. (2.19) is the complex Hodge dual
of the first term and the ϵ tensor is the corresponding totally anti-symmetric tensor with
chiral SU(8) indices. In all the above relations, the transformation parameter is a four-
spinor ϵi given in the fundamental 8 representation of the chiral SU(8) symmetry group.
It also carries a suppressed spinor index α̂, e.g. the first supersymmetry transformation
relation in Eq. (2.15) actually reads

δϵ̊eµ
α = (ϵ̄)α̂

i(γα)α̂β̂(ϕµ)β̂ i + h.c.

One may now write the above supersymmetry transformations for the scalar and vector
fields in a manifestly E7(7) covariant way,

δϵV = −
√

2
(

0 Σ(ϵ)
Σ∗(ϵ) 0

)
V , (2.20)

δϵV̂M
ij =

√
2Σijkl(ϵ)V̂M kl, (2.21)

δϵAµ
M = i√

2
Xµ

ij(ϵ)V̂M
ij + h.c., (2.22)

where the first equation is equivalent to

δϵ

(
uij

IJ vij IJ

vij IJ uij
IJ

)
= −

√
2
(

0 Σijkl

Σijkl 0

)(
ukl

IJ vkl IJ

vkl IJ ukl
IJ

)
. (2.23)

As a final remark, the supersymmetry transformation for the scalar potential is given
by [53]

δϵV =
√

2
24 g2Σijkl(ϵ)Qijkl + h.c., (2.24)

where the Q tensor is defined in terms of the T tensor,

Qijkl = 3
4A2 m

n[ijA2 n
kl]m − A1

m[iA2 m
jkl]. (2.25)

Note that the expression on the rhs of Eq. (2.24) must vanish at the stationary points
of V (x). In particular, since Σijkl(ϵ) is complex selfdual, Qijkl(x) must be complex
anti-selfdual at stationary points of the potential.

In Chapter 4, the supersymmetry transformations for the vierbein, the scalar and
vector fields in Eqs. (2.15, 2.21, 2.22) will be considered to the respective 11-dimensional
transformations. For the embedding of N = 8 supergravity into 11 dimensions, this
comparison forms the basis for finding the correct bosonic uplift relations between the
lower- and higher-dimensional fields. Since this thesis does not discuss the fermionic
uplift, the corresponding supersymmetry transformation laws for ϕµ

i and χijk [37, 41]
are not listed here.
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2. N = 8 Supergravity

2.3. Some E7 Properties of the Four-Dimensional Scalars
This section collects all important properties for the 56-beine V(x) and V̂(x) as well
as for the scalar fields uij

IJ(x) and vij IJ(x) presented above. The derivation of these
properties is based on the E7(7) group of duality transformations.

First, the inverse of the 56-bein V(x) is given by [37]

V−1 =
(

uij
IJ −vij IJ

−vij IJ uij
IJ

)
. (2.26)

In combination with Eq. (2.4), this gives the well-known identities for the scalar fields
[37]

uij
IJukl

IJ − vij IJvkl IJ = δij
kl, (2.27)

uij
IJvkl IJ − vij IJukl

IJ = 0, (2.28)
uij

IJuij
KL − vij IJvij KL = δIJ

KL, (2.29)
uij

IJvij KL − vij IJuij
KL = 0. (2.30)

In addition, the authors in Refs. [37, 41] also derived the following convenient proper-
ties,
(
uij

IMuKL
JM − vij IMvKL JM

) ⏐⏐⏐
[IJ ]

= 2
3δ[i

[k
(
uj]m

IMul]m
JM − vj]m IMvl]m JM

) ⏐⏐⏐⏐
[IJ ]

(2.31)(
uij

IJvKL KL − vij IJuKL
KL
) ⏐⏐⏐

[IJKL]+
= 2

3δ[i
[k
(
uj]m

IJvl]m KL − vj]m IJul]m
KL
) ⏐⏐⏐⏐

[IJKL]+

− 1
12δij

KL

(
umn

IJvmn KL − vmn IJumn
KL
) ⏐⏐⏐

[IJKL]+
,

(2.32)

where |[IJ ] denotes antisymmetrized indices [IJ ] and |[IJKL]+ represents the projection
onto the selfdual part.

Secondly, one obtains some properties for the 56 vector V̂M
ij. Its E7(7) index is raised

and lowered with the symplectic form ΩMN , whose components are also given in the
SL(8,R) decomposition (Eq. (2.5)),

ΩMN =
(
ΩIJ KL, ΩIJ

KL, ΩIJ
KL, ΩIJ KL

)
=
(
0, −δKL

IJ , δIJ
KL, 0

)
.

The inverse symplectic form is then easily obtained by requiring ΩMPΩPN = δM
N :

ΩMN =
(
ΩIJ KL, ΩIJ

KL, ΩIJ
KL, ΩIJ KL

)
=
(
0, δIJ

KL, −δKL
IJ , 0

)
.
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2. N = 8 Supergravity

Let us now lower the 56-dimensional index of the 56-bein,5

V̂M ij = ΩMN V̂N
ij =

(
−V̂IJ ij, V̂IJ

ij

)
. (2.33)

One finally shows that V̂ indeed fulfills the usual vielbein equations [54],

V̂M
ijV̂M

kl = iδij
kl, V̂M ijV̂M

kl = 0, V̂N
ijV̂M

ij − V̂M ijV̂N ij = iδM
N . (2.34)

These properties reflect the terminology of calling V̂ a 56-bein of E7(7).

5The SU(8) indices can again be raised via complex conjugation in the same manner as in Eq. (2.10).
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3. 11-Dimensional Supergravity
This chapter presents 11-dimensional supergravity — the highest dimensional supergrav-
ity theory, which was first introduced in 1978 [33, 34]. The corresponding field content
of the Lagrangian is a graviton described by the 11-dimensional metric, a Majorana spin
3/2 field and a three-form potential. The total number of bosonic and fermionic degrees
of freedom equal the respective numbers in N = 8 supergravity. This is crucial for the
compactification of 11-dimensional supergravity and the corresponding uplift, which are
described in the following Chapters.

The explicit identification of the 11-dimensional fields with the four-dimensional ones
within the framework of Kaluza-Klein theory requires a careful comparison of the respec-
tive supersymmetry transformations in both theories. This can only be achieved with a
non-linear redefinition of the 11-dimensional fields. Therefore, the general guideline is
SU(8) and E7(7) covariance: As is the case in N = 8 supergravity, the supersymmetry
transformations of all redefined fields must be manifestly SU(8) covariant. Furthermore,
one must bring the vector and scalar degrees of freedom each into a fundamental 56 rep-
resentation of E7(7) in order to relate them with the scalar 56-bein V(x) and the vectors
Aµ

M(x) of N = 8 supergravity.
The first part describes the Lagrangian of 11-dimensional supergravity and the asso-

ciated equations of motion. Section 3.2 introduces the dual fields that are required for
the non-linear SU(8) and E7(7) reformulations of the bosonic fields in Sections 3.3 and
3.4. Finally, Section 3.5 presents the supersymmetry transformations of the redefined
fields, which then look quite similar to the corresponding transformations in N = 8
supergravity.

3.1. The Lagrangian and the Equations of Motion
The 11-dimensional spacetime is described by a metric gMN(z) for a given coordinate
chart zM . Using the Cartan formalism, the metric gives rise to an elfbein EM

A(z),

gMN = δABEM
AEN

B, (3.1)

where δAB is the flat euclidean metric of the 11-dimensional tangent space (with tan-
gent space indices A, B, . . . and imaginary time). Furthermore, the metric defines the
Riemann and Ricci curvature tensors RM

NP Q(z), RMN(z) = RP
MP N(z) as well as the
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3. 11-Dimensional Supergravity

Ricci scalar R(z) = gMN(z)RMN(z) in the usual way. Finally, the volume form of the
11-dimensional spacetime is

dV =
√

|g| d11z,

where g = det (gMN) denotes the determinant of the metric. The latter is related to
the determinant of the elfbein E = det

(
EM

A
)

via |g| = E2. With these definitions, the
Einstein-Hilbert action for the spacetime reads

S = −1
2

∫
ER d11z. (3.2)

The normalization is consistent with the general action in Eq. (3.7).
The fermions in 11-dimensional supergravity are described by a Majorana spin 3/2

field. This can be either described by a spinor ΨA(z) on the tangent space or by a
spinor ΨM(z) = EM

A(z)ΨA(z) on the curved manifold. Both spinors contain the same
fermionic degrees of freedom and are simultaneously used below. For fixed indices A, M ,
these fields have 32 components. The corresponding 32×32 matrices Γ̃M(z) = EM

A(z)Γ̃A

satisfy the Clifford algebra (either on the tangent space or on the curved spacetime),{
Γ̃A, Γ̃B

}
= 2δAB I32×32,

{
Γ̃M , Γ̃N

}
= 2gMN I32×32. (3.3)

Note that tangent space indices A, B, . . ., are raised and lowered with the flat metric δAB

and the curved indices M, N with the spacetime metric gMN(z). It is also convenient to
define the 32×32 matrices

Γ̃A1···Ai
= Γ̃[A1 . . . Γ̃Ai], Γ̃M1···Mi

= Γ̃[M1 . . . Γ̃Mi]. (3.4)

In the following, antisymmetrized brackets are defined such that e.g.

Γ̃[ABC] = 1
3!
(
Γ̃ABC + Γ̃BCA + Γ̃CAB − Γ̃ACB − Γ̃BAC − Γ̃CBA

)
.

Using these antisymmetrized products of Γ matrices, an important fermionic four-form
is X(4)(z) with components1

XMNP Q = 4
√

2
(
Ψ̄RΓ̃MNP QRSΨS + 12Ψ̄[M Γ̃NP ΨQ]

)
, (3.5)

which is defined on the curved manifold. Here, Ψ̄M = Ψ†
M Γ̃0 denotes the respective

adjoint spinor.
Finally, 11-dimensional supergravity contains a fully antisymmetric three-form poten-

tial A(3)(z) with components AMNP . Such a potential defines a four-form field-strength

F(4)(z) = dA(3)(z) ⇔ FMNP Q = 4! ∂[MANP Q] (3.6)
1This definition differs from the one in Ref. [46] by a factor of 4

√
2.
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3. 11-Dimensional Supergravity

in the usual way [38]. The partial derivative is with respect to the z-coordinates, ∂M =
∂/∂zM .

The Lagrangian of 11-dimensional supergravity is given in terms of the elfbein, the Ma-
jorana spin-3/2 fermion and the three-form potential. Using the conventions of Ref. [55],
the corresponding action reads

S =
∫

d11z
[

− 1
2ER − 1

2EΨ̄M Γ̃MNP DNΨP − 1
48EFMNP QF MNP Q

− i

123
√

2
ϵM1···M11FM1···M4FM5···M8AM9···M11 − 1

24EFMNP QXMNP Q
]
. (3.7)

The first term denotes the Einstein-Hilbert action. The second and third terms represent
the kinetic energy for the fermions and the three-form respectively2. The fourth and fifth
terms represent the interactions — one for the gauge field itself (ϵM1···M11 is a tensor)
and one for the interaction between fermions and the gauge field.

The 11-dimensional field equations are the corresponding Euler-Lagrange equations
of the action in Eq. (3.7). First of all, the variation with respect to the 11-dimensional
metric leads to the Einstein equations, which relates the Ricci curvature tensor to the
field-strength,

RMN = 1
72gMNFP QRSF P QRS − 1

6FMP QRF P QR
N + fermionic terms. (3.8)

Note that this thesis is devoted to the bosonic uplift of N = 8 supergravity. Hence,
fermionic terms are not taken into account. Secondly, consider the variation of the action
in Eq. (3.7) with respect to the three-form potential. The corresponding equations of
motion are the Maxwell equations in 11 dimensions,

DM

(
F MNP Q + XMNP Q

)
=

√
2i

1152 ϵNP QR1...R8FR1...R4FR5...R8 . (3.9)

The fermionic term is retained in this case, as it is crucial for the definition of the dual
six-form potential in the next section. Of course, when testing the bosonic uplift relations
in Chapters 5, 6 and 7, the fermionic terms will be neglected in the same way as was
done to derive the bosonic Einstein equations in Eq. (3.8).

3.2. Dual Fields
This short section introduces a ‘dual six-form potential’ that is essential for the SU(8)
reformulation of the 11-dimensional fields in the next section. Such a six-form is obtained

2Here, DM is the covariant derivative. The definition of the action on the spinor ΨM is given in
Ref. [36].
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from the Maxwell equations above and its definition will also contain the fermionic four-
form X(4). Without fermions here, the supersymmetry transformations of some redefined
fields in the next section would not be SU(8) covariant. Thus, in the meantime it is crucial
to maintain the fermionic terms in the Maxwell equations.

Let us dualize Eq. (3.9):

8!D[M1

[
i

4!ϵM2···M8]NP QR

(
F NP QR + XNP QR

)]
= 7!√

2

(
8!

4! · 4!

)
F[M1···M4FM5···M8]. (3.10)

This equation can be written in terms of differential forms. First, the rhs includes the
usual definition of the wedge product and the lhs includes the usual definition of the
exterior derivative, which was already used in Eq. (3.6). Indeed, one may replace the
covariant derivative by the partial derivative because of the antisymmetrization. Finally,
one defines the Hodge duals for the four-forms on the lhs of Eq. (3.10):3

F(7)(z) = ⋆F(4)(z) ⇔ FM1···M7 = i

4!ϵM1···M11F M8···M11 (3.11)

with ⋆ denoting the Hodge star operator. Similarly, one defines the Hodge dual for the
fermionic four-form. Hence, Eq. (3.10) simplifies to

d
(
F(7) + ⋆X(4)

)
= 7!√

2
F(4) ∧ F(4).

Finally, using Eq. (3.6), the above equation reduces further to

d
(
F(7) + ⋆X(4) − 3

√
2A(3) ∧ F(4)

)
= 0.

In other words, there locally exists a six-form potential A(6)(z) with components AM1···M6 ,
which defines this seven-form,

F(7) = dA(6) + 3
√

2A(3) ∧ F(4) − ⋆X. (3.12)

The six-form is said to be the dual to the three-form potential and later, it is essential
for the SU(8) reformulation of the bosonic fields. Indeed, some of the scalar and vector
degrees of freedom are better described by components of the six-form rather than by
components of the three-form potential. As a final remark, the Lagrangian could also be
written in terms of the dual fields A(6)(z) and F(7)(z) instead of A(3)(z) and F(4)(z) [56].

3The i factor in this definition occurs due to the imaginary time convention.
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3.3. Non-Linear SU(8) Reformulation of the
11-Dimensional Fields

This section deals with the non-linear reformulation of the fields presented above — the
elfbein EM

A, the Majorana fermion ΨM and the three-form potential AMNP — such
that the resulting supersymmetry transformations can be compared to those of N = 8
supergravity. For the fermions, this can be achieved by requiring SU(8) covariance. For
the scalar and vector fields, this is not sufficient. One must also combine them each
into a fundamental 56 representation of E7(7). In particular, this requires to describe
certain bosonic degrees of freedom by some components of the dual six-form potential
AM1···M6 . The non-linear field redefinition splits into two parts: This section identifies
the various components of the elfbein and the form potentials with the actual scalar and
vector degrees of freedom of the theory. The following section then explains, how these
constitute fundamental 56 representations of E7(7).

The SU(8) and E7(7) reformulation is based on a 4 + 7 split. Indeed, this is most
convenient for the compactification of an 11-dimensional spacetime to four dimensions,

M11 → M4 × M7.

The set of coordinates zM splits into four spacetime (external) coordinates xµ and seven
internal coordinates ym (or in the tangent space: zA = (xα, ya)). In the following, capital
Roman letters denote 11-dimensional indices. These split into external (Greek letters)
and internal indices (lower case Roman letters). Again, letters from the middle of an
alphabet always denote curved spacetime indices and letters from the beginning are the
corresponding tangent space indices.

Let us describe how the fields behave under this formal coordinate split. The elfbein
takes the form

EM
A =

(
eµ

α Bµ
m em

a

0 em
a

)
(3.13)

by partially breaking the local SO(1,10) Lorentz invariance to SO(1,3)×SO(7). Here,
eµ

α(x, y) is proportional to the vierbein of the four-dimensional spacetime and em
a(x, y)

represents the siebenbein of the internal compact space. The latter defines the internal
metric,

gmn = δabem
aen

b, (3.14)
where δab is the flat euclidean metric on the internal tangent space. This metric (or
siebenbein em

a) describe 28 scalar degrees of freedom. In general, the upper off-diagonal
of the elfbein can not be gauged to zero. The seven vector fields are denoted as Bµ

m(x, y).
The first field redefinition concerns the vierbein eµ

α(x, y) as its supersymmetry trans-
formation is not manifestly SU(8) covariant [55]. Let us perform a Weyl rescaling ac-
cording to

eµ
α = ∆−1/2e̊µ

α, (3.15)
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where ∆(x, y) is called the warp factor. It is defined as

∆ =

√det (gmn)
det (̊gmn) = det (em

a)
det (̊em

a) , (3.16)

where e̊m
a(x, y) is any orthonormal frame on the internal space with corresponding metric

g̊mn(x, y). This Weyl rescaling has two convenient properties: On the one hand, the
supersymmetry transformation for e̊µ

α(x, y) is manifestly SU(8) covariant, see Eq. (3.41).
On the other hand, plugging the elfbein EM

A(x, y) into the action in Eq. (3.7) yields a
term that corresponds to the exact four-dimensional Einstein-Hilbert action in terms of
the spacetime g̊µν(x, y). Not accidently, the notation for the vierbein and the spacetime
metric coincides with the one in N = 8 supergravity — within the compactification of
11-dimensional supergravity in Chapter 4, these fields will be identified via

e̊µ
α(x, y) = e̊µ

α(x), g̊µν(x, y) = g̊µν(x).

Now however, one must still view e̊µ
α(x, y) as part of the elfbein above.

Let us now discuss the reformulation of the fermionic fields, before redefining the seven
vector fields Bµ

m and the internal siebenbein em
a. The Majorana field decomposes under

the 4 + 7 split as
ΨA →

(
Ψα, Ψa

)
, ΨM →

(
Ψµ, Ψm

)
,

where the suppressed spinorial indices run from 1 to 32. It is now more convenient
to replace each such spinor index by a pair of indices (α̂, Â), where α̂ = 1, . . . 4 and
Â = 1, . . . 8. Most often, these pairs of spinor indices are also suppressed,

Ψµ = (Ψµ)α̂,Â, Ψm = (Ψm)α̂,Â.

The next two steps are in order to bring these fermionic degrees of freedom into the
irreducible representations 8 and 56 of a chiral SU(8) group. Within the compactification
in Chapter 4, these will then be identified with the corresponding chiral fermions ϕµ

i(x)
and χijk(x) of N = 8 supergravity.

In a first step, one defines the chiral SU(8) group and its generators. The 11-dimensional
Γ matrices can be written as

Γ̃A →
(
Γ̃α = γα ⊗ I8×8, Γ̃a = γ5 ⊗ Γa

)
using the above index-split [36]. Here, the lower case γ matrices are the 4×4 matrices
already defined in Section 2.1. They carry suppressed indices α̂, β̂. Furthermore, the
capital Γ matrices denote the seven-dimensional 8 × 8 matrices with suppressed matrix
indices Â, B̂, hence Γa = (Γa)ÂB̂. These flat matrices belong to the internal tangent
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space and they define curved Γ matrices Γm = em
aΓa using the internal siebenbein. Both

kinds of Γ matrices fulfill the corresponding Clifford algebra

{Γa, Γb} = 2δabI8×8, {Γm, Γn} = 2gmnI8×8. (3.17)

Now, one enlarges the SO(7) tangent space for the Majorana fermions to SU(8). There-
fore, the antisymmetrized products of Γ matrices are

Γa1...ai
= Γ[a1 . . . Γai], Γm1...mi

= Γ[m1 . . . Γmi]. (3.18)

Some useful identities for these traceless 8×8 matrices are given in Appendix A. Most
importantly,

Γa, Γab, Γabc

are 63 independent matrices and hence, generate a chiral SU(8) group acting on the
Majorana spinors above.

In a second step, one rewrites the fermionic Majorana spinors into irreducible SU(8)
representations. Therefore, a Weyl rescaling of Ψα(x, y) and Ψa(x, y) results in [55]

ϕ′
µ = e̊µ

α∆−1/4(iγ5)−1/2
(

Ψα − 1
2γ5γαΓaΨa

)
, ϕ′

m = em
a∆−1/4(iγ5)−1/2Ψa. (3.19)

This may need some explanation: All spinors in the above equations (ϕ′
µ, ϕ′

a, Ψα, Ψa)
have 32 spinor components, labeled each by an index pair (α̂, Â) as explained above.
However, these indices are suppressed, e.g.

ϕ′
µ =

(
ϕ′

µ

)
α̂,Â

.

Then, the four-dimensional γ matrices act on the α̂ index of these spinors and the 8 × 8
Γ matrices act on the Â index. For example, the first of the above equations actually
reads (

ϕ′
µ

)
α̂,Â

= e̊µ
α∆−1/4

[
(iγ5)−1/2

]
α̂β̂

(
(Ψα)β̂,Â − 1

2(γ5)β̂γ̂(γα)γ̂δ̂(Γ
a)ÂB̂(Ψa)δ̂,B̂

)
.

One already notes that it is rather confusing to carry all these indices. So if possible, they
are suppressed in the following. The above primed spinors represent only an intermediate
step. Another projection onto their chiral components finally gives

(ϕµ)α̂
Â = 1

2(1 + γ5)α̂β̂

(
ϕ′

µ

)
β̂,Â

,

(ϕµ)α̂ Â = 1
2(1 − γ5)α̂β̂

(
ϕ′

µ

)
β̂,Â

,
(3.20)

χα̂
ÂB̂Ĉ = 3

4
√

2i(1 + γ5)α̂β̂Γm
[ÂB̂ (ϕ′

m)β̂,Ĉ] ,

χα̂ ÂB̂Ĉ = 3
4

√
2i(1 − γ5)α̂β̂Γm

[ÂB̂ (ϕ′
m)β̂,Ĉ] .

(3.21)
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Hence, the spinor (ϕµ)α̂
Â(x, y) belongs to the 8 and the trispinor χα̂

ÂB̂Ĉ(x, y) to the 56
representation of the chiral SU(8) group4. Note that these are highly non-linear in the
11-dimensional fields — they will be related to the corresponding fermions of N = 8
supergravity in Chapter 4.

Most expressions in this thesis do not carry the four-dimensional indices α̂, β̂. However,
the eight-dimensional indices Â, B̂ that label the chiral SU(8) group are continuously
used within the whole work. It is therefore more convenient to replace them by unhatted
indices

Â, B̂ → A, B.

Of course, this should not cause confusion with the 11-dimensional tangent space indices.
However, it will always be clear from the context whether A, B, . . . are SU(8)- or 11-
dimensional tangent space indices. Hence, within the remainder of this thesis,

(ϕµ)α̂
Â = ϕµ

A, χα̂
ÂB̂Ĉ = χABC .

The last part of this section is devoted to the non-linear SU(8) reformulation for the
bosonic degrees of freedom that are hidden in the elfbein and the form-potentials. Let
us first discuss the vector fields Bµ

m(x, y) and the siebenbein em
a(x, y). The vectors

already transform in a manifestly SU(8) covariant way. However, for later convenience,
they are rescaled according to

Bµ
m = −1

2Bµ
m. (3.22)

The scalar degrees of freedom of the internal siebenbein can be reformulated as well,

Vm
AB = −

√
2

8 ∆−1/2em
aΓa

AB = −
√

2
8 ∆−1/2Γm

AB. (3.23)

This reformulation was found by requiring SU(8) covariance of the corresponding super-
symmetry transformations. In the following and in the next section, these vector and
scalar fields both are extended to 56 vectors Bµ

M and VM
AB of an E7(7) symmetry5. This

is the key to relate them to the corresponding scalars and vectors of N = 8 supergravity
(which also form 56 representations of the E7(7) group of duality invariance).

The remaining components of Bµ
M(x, y) and VM

AB(x, y) are non-linear combinations
of the various components of the three-form potential under the 4 + 7 split,

AMNP =
(
Aµνρ, Aµνm, Aµmn, Amnp

)
.

First, the components Aµmn represent 21 vector fields and do not contain any scalar
degrees of freedom. Since its supersymmetry transformation is not manifestly SU(8)

4The chiral SU(8) indices Â, B̂, . . . are raised and lowered by complex conjugation.
5The normalizations in Eqs. (3.22, 3.23) as well as in the following redefinitions have been chosen

accordingly.
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covariant, it is more convenient to define the vector fields

Bµ mn = −3
√

2 (Aµ mn − Bµ
pAmnp) . (3.24)

They are a linear combination of the vectors Bµ
m and Aµmn, but non-linear in all 11-

dimensional fields.
Secondly, the components Aµνρ and Aµνm describe both, scalar and vector degrees of

freedom, all of which are also contained in the components of the dual six-form poten-
tial, Am1···m6 and Aµm1···m5 . The former represent seven scalar fields and the latter 21
vector degrees of freedom. Let us now discuss the vector fields. In order to make the
corresponding supersymmetry transformations manifestly SU(8) covariant, one defines

Bµ
mn = −3

√
2η̊mnp1···p5

(
Aµ p1···p5 − Bµ

qAq p1···p5 −
√

2
4 (Aµ p1p2 − Bµ

qAqp1p2) Ap3p4p5

)
.

(3.25)
Here, η̊m1···m7 is the seven-dimensional Levi-Cevita tensor density (hence, a number
±1, 0). Again, Bµ

mn combines several fields including the vectors Aµm1···m5 .
Finally, the remaining bosonic degrees of freedom of the three-form potential are de-

scribed by Amnp and Am1···m6 . Amnp represents 35 and Am1···m6 seven scalar fields. Again,
the corresponding supersymmetry transformations can be made SU(8) covariant by re-
defining

Vmn AB =
√

2
8 ∆−1/2

(
Γmn AB + 6

√
2AmnpΓp

AB

)
, (3.26)

Vmn
AB = −

√
2

8 · 1
5! η̊

mnp1···p5∆−1/2

⎡⎣Γp1···p5 AB + 60
√

2Ap1p2p3Γp4p5 AB (3.27)

− 6!
√

2
(

Aqp1···p5 −
√

2
4 Aqp1p2Ap3p4p5

)
Γq

AB

⎤⎦
in a non-linear way. Note that Vmn AB differs from the respective component in Ref. [54]
by a factor of −1. This is explained in the following section.

3.4. E7 Structures in the Bosonic 11-Dimensional Fields
This section shows how the vector and scalar fields presented above can be extended to
form E7(7) covariant objects. One first counts the number of vector degrees of freedom:
7 + 21 vector fields Bµ

m and Bµ mn as well as 21 dual vectors Bµ
mn. This suggests to

combine all of these into a fundamental 56 representation of E7(7) since its SL(8,R) and
GL(7,R) decompositions are given by

56 → 28 ⊕ 28 → 7 ⊕ 21 ⊕ 21 ⊕ 7. (3.28)
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Quite naturally, one defines the E7(7) vector Bµ
M(x, y) with 56 components, such that

under the above decomposition,

Bµ
M =

(
Bµ

MN, Bµ MN

)
=
(
Bµ

m, Bµ
mn, Bµ mn, Bµ m

)
.

More explicitly, the antisymmetric SL(8,R) indices M, N run from 1 to 8 and components
for M = 8 are abbreviated by

Bµ
m8 = −Bµ

8m = Bµ
m, Bµ m8 = −Bµ 8m = Bµ m.

However, there is a serious problem here. There are no more vector degrees of freedom
in 11-dimensional supergravity to link with the remaining seven vector fields Bµ m(x, y).
The usual solution is taking the dualization of gravity into account.

Dualizing gravity is formally possible at the linearized level6. Therefore, one approxi-
mates the 11-dimensional metric,

gMN = ηMN + hMN + O(h2). (3.29)

The dual field to hMN(x, y) is called ‘dual graviton’ — it is represented by a field
AM1···M8|N(x, y), which belongs to the (8,1) representation of GL(11,R)7. This field
decomposes into the various components under the 4 + 7 split and indeed, there is one
component that contains seven artificial vector degrees of freedom: Aµ m1···m7|n. Its su-
persymmetry transformations are not SU(8) covariant but a non-linear combination with
the various other vector and scalar fields transforms in a manifestly SU(8) covariant way.
With the correct normalization, this can then be identified with Bµ m,

Bµ m = −18η̊p1···p7

[
Aµ p1···p7,m + (3C̃0 − 1) (Aµ p1···p5 − Bµ

pAp p1···p5) Ap6p7m (3.30)

+ C̃0Ap1···p6 (Aµp7m − Bµ
pApp7m) +

√
2

12 (Aµp1p2 − Bµ
pApp1p2) Ap3p4p5Ap6p7m

]
.

Here C̃0 is an undetermined constant.
The scalar fields can be put into an irreducible 56 representation in the same way. As is

the case in N = 8 supergravity, the resulting object is a 56-bein VM
AB that decomposes

under the above SL(8,R) and GL(7,R) decompositions as

VM
AB =

(
VMN

AB, VMN AB

)
=
(
Vm

AB, Vmn
AB, Vmn AB, Vm AB

)
. (3.31)

As is the case for the vectors, the M = 8 components are abbreviated as

Vm8
AB = −V8m

AB = Vm
AB, Vm8 AB = −V8m AB = Vm AB.

6Restricting to the linearized level causes no inconsistency in Chapter 4, since the artificial vector
degrees of freedom arising from the dual graviton do not enter the obtained embedding formulae.
They are only required to formally find the E7 structures in the bosonic 11-dimensional fields.

7in Ref. [46], AM1···M8|N was denoted by hM1···M8|N .

26



3. 11-Dimensional Supergravity

Again, the last seven components are not yet defined but the counting argument that is
used in the vector case above does not apply here. Indeed, all the 70 = 28+7+35 scalar
degrees of freedom in 11-dimensional supergravity (hidden in em

a, Am1···m6 and Amnp)
are already assigned to the first 49 components of VM

AB. However, in this case, the
supersymmetry transformations of the vector fields Bµ m led to the definition of Vm AB.
In order that Eq. (3.42) holds, Vm AB must take the form [54]8

Vm AB =
√

2
8 · 1

7! η̊
p1···p7∆−1/2

⎡⎣(Γp1···p7Γm)AB + 126
√

2Amp1p2Γp3···p7 AB (3.32)

+ 3
√

2 · 7!
(

Amp1···p5 +
√

2
4 Amp1p2Ap3p4p5

)
Γp6p7 AB

+ 9!
2

(
Amp1···p5 +

√
2

12 Amp1p2Ap3p4p5

)
Ap6p7qΓq

AB

⎤⎦.

With the above definitions, the supersymmetry transformations for the irreducible 56
representations Bµ

M(x, y) and VM
AB(x, y) are manifestly SU(8) and E7(7) covariant, see

Eq. (3.42, 3.43).
The rest of this section justifies the identification of the 56 vector VM

AB as the 56-bein
of E7(7). The reasoning is similar to the case of the 56-bein V̂M

ij in N = 8 supergravity.
First of all, the 56 index M is raised and lowered with the symplectic form ΩMN , whose
components are given in the respective SL(8,R) decomposition (Eq. (2.5)),

ΩMN =
(
ΩMN PQ, ΩMN

PQ, ΩMN
PQ, ΩMN PQ

)
=
(
0, −δPQ

MN, δMN
PQ, 0

)
.

The inverse symplectic form is then simply

ΩMN =
(
ΩMN PQ, ΩMN

PQ, ΩMN
PQ, ΩMN PQ

)
=
(
0, δMN

PQ, −δPQ
MN, 0

)
,

such that one has again ΩMPΩPN = δM
N . Lowering the 56-dimensional index of the

56-bein VM
AB yields

VM AB = ΩMN VN
AB =

(
−VMN AB, VMN

AB

)
, (3.33)

and the chiral SU(8) indices of the 56-bein are again raised via complex conjugation,

VM AB =
(
VM

AB

)∗
, VM

AB = (VM AB)∗ . (3.34)

8As is the case for the definition of Vmn AB , the above equation for Vm AB differs from the respective
component in Ref. [54] by a factor of −1. The reason is that in contrast to our definition in Eq. (3.31),
the vielbein components in Ref. [54] constitute the 56 vector VM AB with lower E7(7) index. Hence,
our definitions are consistent with those of Ref. [54] since the index-raising inserts the corresponding
minus sign, (Eq. (3.33)).
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One finally shows that the 56-bein VM
AB fulfills the usual vielbein relations that are

already satisfied by the four-dimensional 56-bein (Eq. (2.34)),

VM
ABVM

CD = iδAB
CD, VM ABVM

CD = 0,

VN
ABVM

AB − VM ABVN AB = iδM
N .

(3.35)

Therefore, one uses some properties of the 8 × 8 Γ matrices that are presented in Ap-
pendix A.

3.5. Supersymmetry Transformations
Let us finally summarize the supersymmetry transformations for the various redefined
fields presented above. The detailed derivations were found in Refs. [46, 55], starting
from the general 11-dimensional supersymmetry transformations

δϵEM
A = 1

2 ϵ Γ̃AΨM , (3.36)

δϵAMNP = −
√

2
8 ϵ Γ̃[MNΨP ], (3.37)

δϵΨM =
[
DM +

√
2

288
(
Γ̃MNP QR − 8gMN Γ̃P QR

)
F NP QR

]
ϵ, (3.38)

δϵAM1···M6 = − 3
6!

√
2

ϵ Γ̃[M1···M5ΨM6] + 1
8ϵ Γ̃[M1M2ΨM3AM4M5M6], (3.39)

δϵAM1···M8|N ∝ ϵΓ̃M1···M8ΨN − ϵΓ̃N [M1···M7ΨM8] − C0ηN [M1ϵΓ̃M2···M7ΨM8]. (3.40)

Here, the supersymmetry transformation parameter is a spinor ϵ with 32 components
(also divided into an index pair (α̂, Â)). The first three transformations are the well
known supersymmetry transformations of 11-dimensional supergravity [33] written in the
conventions of Ref. [55]. From these, the corresponding supersymmetry transformation
for the dual six-form potential was found using Eq. (3.12) [46]. The transformation for
the dual gravity potential AM1···M8|N(x, y) can be found in the same way, using the correct
dualization procedure for the graviton field. Here, C0 is some undetermined constant.
For the details, the interested reader may consult Ref. [46] and references therein.

One finally obtains the corresponding supersymmetry transformations for the reformu-
lated fields. Therefore, one considers the above relations according to the 4 + 7 split and
rearranges the fields according to the non-linear reformulations of the previous section.
For example, the Weyl rescaled vierbein transforms as

δϵ̊eµ
α = 1

2 ϵ̄Aγαϕµ A + h.c., (3.41)
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which is manifestly SU(8) covariant [55]. One also notices the similarity to the corre-
sponding supersymmetry transformation of the vierbein in N = 8 supergravity. The
exact relations between the 11-dimensional and the four-dimensional fields will be given
in the next chapter.

In the following, the supersymmetry transformations are only listed for the fully re-
defined vector and scalar fields Bµ

M(x, y) and VM
AB(x, y) rather than for the pre-fields

according to the 4 + 7 split. However, all vector and scalar degrees of freedom constitute
these two 56-dimensional representations of E7(7). Hence, the following two equations
represent the supersymmetry transformations for all the bosonic fields of 11-dimensional
supergravity [41, 46, 47]:

δϵBµ
M = i

2VM
ABXµ

AB(ϵ) + h.c. (3.42)

δϵVM
AB =

√
2ΣABCD(ϵ)VM CD. (3.43)

Here, Xµ
AB(ϵ) and the self-dual four-form ΣABCD(ϵ) of SU(8) are quite similar to the

four-dimensional fields in Eqs. (2.18, 2.19),

Xµ
AB(ϵ) = 2

√
2ϵ̄Aϕµ

B + ϵ̄C e̊µ
αγαχABC , (3.44)

ΣABCD(ϵ) = ϵ[AχBCD] + 1
4!ϵABCDEF GHϵEχF GH . (3.45)

In Eq. (3.45), the second term is the Hodge dual of the first term and the ϵ tensor is the
corresponding totally anti-symmetric tensor with chiral SU(8) indices. As is the case for
the vierbein, the supersymmetry transformations for the redefined 11-dimensional vectors
and scalars are quite similar to those of the respective four-dimensional fields. Note that
this could only be achieved because of the non-linear structure of the redefinitions. The
next chapter will explicitly identify these bosonic fields(

Bµ
M, VM

AB

)
⇔
(
Aµ

M, V̂M
ij

)
.

As in the presentation of N = 8 supergravity, the fermionic supersymmetry transfor-
mations are not listed here, since they are not required for the bosonic uplift of N = 8
supergravity to 11 dimensions. A detailed description can be found in Ref. [55].
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4. The Embedding of Gauged N = 8
Supergravity into 11 Dimensions

This chapter presents the main part of this thesis: the embedding of gauged N = 8
supergravity into 11 dimensions, which is based on the compactification of the extra
dimensions on a seven-sphere,

M11 → M4 × S7. (4.1)

The previous chapter found the non-linear field redefinitions Φ(x, y) → F (Φ(x, y)), such
that the lower and higher-dimensional supersymmetry transformations can now be com-
pared (Eq. (1.4)). This gives a direct correspondence between the reformulated 11-
dimensional fields F (Φ(x, y)) and the four-dimensional ones Φ(n)(x). Based on these
relations, the second part of this chapter finally derives the complete non-linear uplift
Ansätze for the bosonic 11-dimensional fields

Φ(x, y) ⇔
(
Φ(n)(x), Y (n)(y)

)
. (4.2)

In particular, it shows the dependence of the eigenfunctions Y (n)(y) on the Killing spinors
and vectors of the seven-sphere.

First, Section 4.1 gives the known background of 11-dimensional supergravity — the
ground state solution {Φ0(x, y)}. It also introduces the required Killing spinors and
vectors that belong to the compactified round seven-sphere. Furthermore, Section 4.2
presents the explicit non-linear expansion to a general solution of 11-dimensional super-
gravity (Eq. (1.4)). Based on this, Section 4.3 derives all bosonic uplift Ansätze in the
form of Eq. (4.2).

Finally, Section 4.4 derives two subsequent Ansätze for the internal four-form field-
strength Fmnpq(x, y) and the Freund-Rubin term fFR(x, y) [48, 49, 50]. The field-strength
Ansatz has been found from Eq. (3.6) and the explicit Ansatz for the internal three-form
potential. On the other hand, the Freund-Rubin term1 has been found from the so-called
‘generalized vielbein postulate’ (GVP) for the 56-bein VM

AB in 11 dimensions. These
secondary Ansätze are used in the following chapters in order to explicitly check the
consistency of the obtained group invariant 11-dimensional Freund-Rubin solutions.

1The Freund-Rubin term is defined as the four-dimensional dual of the external field-strength Fµνρσ,
see Eq. (4.58).
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4.1. The Ground State Solution of the S7 Reduction
Let us describe the ground state solution {Φ0(x, y)} of 11-dimensional supergravity. The
background fields are

Φ0(x, y) =
(
EM

A(x, y)
⏐⏐⏐
BG

, ΨM(x, y)
⏐⏐⏐
BG

, AMNP (x, y)
⏐⏐⏐
BG

)
and in the following, the different components are discussed: The AdS4 spacetime is
described by the background vierbein e̊µ

α(x) and metric g̊µν(x). The internal background
siebenbein and metric are given by

em
a|BG = e̊m

a, gmn|BG = g̊mn, (4.3)

where e̊m
a(y) denotes the orthonormal frame for the corresponding S7 metric g̊mn(y).

The only other field of 11-dimensional supergravity that acquires any background value
is Aµνρ(x, y). In particular, it is related to the internal components Am1···m6(x, y) of the
dual six-form potential. One finds [47]

Am1···m6|BG = −3
√

2ζ̊m1···m6 , (4.4)

where the six-form ζ̊m1···m6(y) defines the background volume form η̊m1···m7 of the seven-
sphere,

7!D̊[m1 ζ̊m2···m7] = m7 η̊m1···m7 . (4.5)

Here, m7 is the inverse S7 radius and D̊m denotes the corresponding covariant derivative.
All other fields of 11-dimensional supergravity vanish within the background (fermions,
vector bosons and the scalars of the internal three-form potential).

The following section presents the expansion of these 11-dimensional fields around the
ground state solution above in the sense of Eq. (1.4). In general, the eigenfunctions
Y (n)(y) depend on the form of the reduction — in our case, they will depend on the
Killing spinors and vectors of the seven-sphere2, which are now introduced.

The eight Killing spinors ηI(y) are chosen to be orthonormal3,

η̄IηJ = δIJ , ηI η̄I = I8×8. (4.6)

They satisfy (
D̊m + i

2m7Γ̊m

)
ηI = 0, (4.7)

2Later, the 28 Killing vectors of the SO(8) isometry group of the seven-sphere will be related to the
28 electric vector bosons of maximally gauged N = 8 supergravity.

3Again, I, J, . . . are SO(8) indices, whereas the SU(8) indices A,B are suppressed, so ηI = ηI
A. Fur-

thermore, the charge conjugation matrix is set to the identity, which implies that η̄I = (ηI)†.
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where the Γ̊ matrices are the antisymmetric and purely imaginary (̊Γ† = Γ̊) generators
of the Clifford algebra in seven dimensions,{

Γ̊m, Γ̊n

}
= 2̊gmnI8×8. (4.8)

The Killing spinors also define a set of Killing vectors and their derivatives,

Km
IJ = iη̄I Γ̊mηJ , Kmn

IJ = η̄I Γ̊mnηJ , (4.9)

where the antisymmetrized products of Γ̊ matrices are defined as

Γ̊m1...mi
= Γ̊[m1 . . . Γ̊mi]. (4.10)

In particular, using Eqs. (4.7, 4.8, 4.10), one verifies that Kmn
IJ is indeed, proportional

to the derivative of Km
IJ ,

D̊nKm
IJ = m7Kmn

IJ , D̊pKmn
IJ = 2m7g̊p[mKn]

IJ . (4.11)

Note that curved seven-dimensional indices of the Killing vectors and their derivatives
are always raised and lowered with the background S7 metric g̊mn.

4.2. Non-Linear Expansion around the Ground State
This section derives the full non-linear expansion of all redefined 11-dimensional fields,

F (Φ(x, y)) =
(̊
eµ

α(x, y), ϕµ
A(x, y), χABC(x, y), Bµ

M(x, y), VM
AB(x, y)

)
,

around the ground state solution according to Eq. (1.4). This automatically yields the
correct relation to the four-dimensional fields

Φ(n)(x) =
(̊
eµ

α(x), ϕµ
i(x), χijk(x), Aµ

M(x), V̂M
ij(x)

)
.

These relations are then used in the next section to find the explicit uplift formulae for
the fields of N = 8 supergravity to 11 dimensions.

The simplest example is the relation between the vierbeine of N = 8 and 11-dimensional
supergravity: [41]

e̊µ
α(x, y) = e̊µ

α(x). (4.12)
This relation can be established consistently to all orders of the expansion in Eq. (1.4).

Secondly, the infinitesimal small fluctuations of the fermionic fields around the back-
ground are [41]

ϕµ
A(x, y) = ηA

i (y)ϕµ
i(x) + . . . ,

χABC(x, y) = ηA
i (y)ηB

j (y)ηC
k (y)χijk(x) + . . .

(4.13)
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

Here, the orthonormal Killing spinors ηA
i (y) transform curved SU(8) indices A, B, C into

flat SU(8) indices i, j, k. Note that also the transformation parameter ϵA(x, y) and the
related fermionic fields Xµ

AB(ϵ) and ΣABCD(ϵ) are expanded accordingly [41],

ϵA(x, y) = ηi
A(y)ϵi(x) + . . . , (4.14)

Xµ
AB(x, y) = ηA

i (y)ηB
j (y)Xµ

ij(x) + . . . , (4.15)
ΣABCD(x, y) = ηA

i (y)ηB
j (y)ηC

k (y)ηD
l (y)Σijkl(x) + . . . (4.16)

With these expansions, the supersymmetry transformations of the vierbeine in Eqs. (2.15,
3.41) are consistent with respect to Eq. (4.12). Since this thesis investigates the bosonic
uplift of N = 8 supergravity to 11 dimensions, it is not necessary to go into more details
here.

Let us now expand the vector fields Bµ
M(x, y) of 11-dimensional supergravity around

the background. The correct relation to all orders takes the form4

Bµ
M(x, y) = RM

N (y)Aµ
N (x), (4.17)

where the E7(7) rotation matrix RM
N (y) has been found in Refs. [45, 47, 49]. In principle,

it rotates the SO(8) indices of the four-dimensional gauge bosons into the internal seven-
dimensional indices of the 11-dimensional vector fields. More explicitly, the upper index
M of the transformation matrix RM

N (y) is decomposed under GL(7,R) (Eq. (3.28)),
whereas the lower index N is decomposed under SL(8,R) (Eq. (2.5)),

RM
N =

⎛⎜⎜⎜⎜⎝
Rm

IJ Rm IJ

Rmn
IJ Rmn IJ

Rmn IJ Rmn
IJ

Rm IJ Rm
IJ

⎞⎟⎟⎟⎟⎠ . (4.18)

The non-zero components are

Rm
IJ =

√
2

8 Km IJ , Rmn
IJ =

√
2

8
(
ζ̊mKn IJ − ζ̊nKm IJ − Kmn IJ

)
, (4.19)

Rmn
IJ = −

√
2

8 Kmn
IJ , Rm

IJ = −
√

2
8
(
ζ̊nKmn

IJ − Km
IJ
)

. (4.20)

They depend on the Killing vectors Km
IJ(y) and -forms Kmn

IJ(y) as well as on the
(seven-dimensional) dual volume potential ζ̊m(y) of the seven-sphere. The latter is de-
fined as

ζ̊n = 6 η̊nm1···m6 ζ̊m1···m6 , ζ̊m1···m6 = 1
6 · 6! η̊m1···m7 ζ̊m7 . (4.21)

4The last seven components of Bµ
M belong to the non-physical dual gravitons. Hence, Eq. (4.17) only

makes sense for the first 49 components.
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

Note the non-standard normalization of ζ̊m for later convenience.
Here is a simple example: The first seven components of Bµ

M(x, y) are proportional to
the vectors Bµ

m(x, y) that parametrize the upper off-diagonal of the elfbein (Eq. (3.13)).
With Eqs. (4.17, 4.19) one then finds the old Ansatz for the vector fields in Kaluza-Klein
theory [29], i.e.

Bµ
m(x, y) = −

√
2

4 Km IJ(y)Aµ
IJ(x). (4.22)

Finally, the correct expansion of the scalar 56-bein VM
AB(x, y) in 11 dimensions

can be found by considering the respective supersymmetry transformations of the vec-
tors (Eqs. (2.22, 3.42)) [45, 47]. The resulting relation between the reformulated 11-
dimensional and the four-dimensional scalars is quite similar to the vector relation,

VM
AB(x, y) =

√
2 RM

N (y) ηi
A(y) ηj

B(y) V̂N
ij(x). (4.23)

However, it contains the necessary rotations in order to rotate the curved SU(8) indices
A, B into flat ones i, j. For later convenience, one computes the components of

VM
ij(x, y) =

√
2RM

N (y)V̂N
ij(x) (4.24)

using Eqs. (4.19, 4.20). In particular,

Vm
ij =

√
2i

8 Km IJ
(
uij

IJ + vij IJ

)
, (4.25)

Vmn
ij =

√
2i

8
(
ζ̊mKn IJ − ζ̊nKm IJ − Kmn IJ

) (
uij

IJ + vij IJ

)
, (4.26)

Vmn ij =
√

2
8 Kmn

IJ
(
uij

IJ − vij IJ

)
, (4.27)

Vm ij =
√

2
8
(
ζ̊nKmn

IJ − Km
IJ
) (

uij
IJ − vij IJ

)
. (4.28)

Again, the signs are adapted in comparison to Refs. [48, 49], because the components
above constitute the 56-bein with an upper E7(7) index, V̂M

ij.

4.3. Bosonic Uplift Ansätze
Starting with the relations for the reformulated 11-dimensional fields in Eqs. (4.17,
4.23), one may now find explicit non-linear uplift formulae for the bosonic fields of
11-dimensional supergravity in terms of the four-dimensional fields:(

Bµ
m, Aµmn, Aµm1···m5 , Aµm1···m7|n

)
(x, y) ⇔

(
Aµ

IJ , Aµ IJ

)
(x),(

gmn, Amnp, Am1···m6

)
(x, y) ⇔

(
uij

IJ , vij IJ

)
(x).
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As it turns out, only the scalar uplift Ansätze are non-trivial. Indeed, let us assume for
a moment that they are already known. Then, the vector uplift relations can easily be
found in the following way: First, the vectors Bµ

m(x, y) are given in Eq. (4.22). Secondly,
the components 8 to 28 of the vector relation in Eq. (4.17) read

Bµ mn(x, y) = Rmn
IJ(y)Aµ IJ(x).

Using Eqs. (3.24, 4.20), one then finds an explicit Ansatz for the 21 vectors Aµ mn(x, y),
i.e.

Aµ mn(x, y) = 1
4!Kmn

IJ(y)Aµ IJ(x) + Bµ
p(x, y)Amnp(x, y). (4.29)

Indeed, if the scalar fields Amnp(x, y) are known, the rhs can be evaluated too. The
Ansätze for Aµm1···m5(x, y) and Aµm1···m7|n(x, y) can be derived in the same iterative way
(assuming the scalar Ansätze for gmn(x, y), Amnp(x, y) and Am1···m6(x, y) are already
known).

Let us now derive the necessary non-linear scalar uplift Ansätze. Therefore, the main
problem of comparing the vielbein components of 11-dimensional and N = 8 supergravity
is the occurrence of the SU(8) rotating Killing spinors in Eq. (4.23). However, these are
orthonormal and drop out in non-linear SU(8) invariant combinations of the vielbeine.

For example, consider the expression

Vm
ABVnAB = ηi

Aηj
BVm

ijη
A
k ηB

l Vn kl = Vm
ijVnij.

Indeed, the Killing spinors ηi
A(y) drop out. One now uses Eq. (3.23) on the lhs and

Eq. (4.25) on the rhs, which results in an uplift Ansatz for the inverse metric scaled with
the warp factor [43], i.e.

∆−1gmn(x, y) = 1
8Km IJ(y)Kn KL(y)

(
uij

IJ + vij IJ

) (
uij

KL + vij KL
)

(x). (4.30)

For the lhs, one used the Clifford algebra of the Γ matrices in Eq. (3.17). As expected,
this relation is non-linear in the four-dimensional fields, which will also be the case for
the following uplift Ansätze.

In a similar way, one relates

Vmn
ABVp

AB = Vmn
ijVp

ij,

which yields a non-linear uplift Ansatz for the internal three-form [45, 47]. Indeed, using
Eqs. (3.23, 3.26) on the lhs as well as Eqs. (4.25, 4.27) on the rhs, one finds

∆−1Amn
p(x, y) = −

√
2i

96 Kmn
IJ(y)Kp KL(y)

(
uij

IJ − vij IJ
) (

uij
KL + vij KL

)
(x). (4.31)
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In order to derive an uplift Ansatz for the internal six-form potential Am1···m6(x, y),
one introduces the (seven-dimensional) dual one-form

An = 6 ϵnm1···m6Am1···m6 . (4.32)

Similar to the dual volume potential on the round seven-sphere, ζ̊m(y), a non-standard
normalization is used for later convenience. The internal six-form potential is a tensor
and its (seven-dimensional) dual An(x, y) is constructed with the full ϵ tensor. However,
one can convert this ϵ tensor to the tensor density η̊ (= ±1, 0) using the internal seven-
bein em

a(x, y) and the definition of the warp factor in Eq. (3.16),

ϵm1···m7 = em1
a1 . . . em7

a7 η̊a1···a7 = ∆η̊m1···m7 . (4.33)

Eq. (4.32) then reads

An = 6
∆ η̊nm1···m6Am1···m6 ⇔ Am1···m6 = ∆

6 · 6! η̊m1···m7Am7 . (4.34)

Note that the indices of the six-form potential and its dual are raised and lowered with
the full internal metric.

Now, let us consider the relation

Vmn
ABVpAB = Vmn

ijVpij

and insert the various vielbein components in Eqs. (3.23, 3.27) and Eqs. (4.25, 4.26).
This gives an equation for An(x, y), i.e.

√
2

9
(
∆A[m + 3

√
2ζ̊ [m

)
gn]p = η̊mnq1···q5Ap

q1q2Aq3q4q5 + ∆
24Kmn IJKp KL (4.35)

×
(
uij

IJ + vij IJ

) (
uij

KL + vij KL
)

.

When contracting this relation with gnp, the first term on the rhs drops out because

A[mnpAqrs] = 0.

In particular,

∆Am + 3
√

2ζ̊m = ∆
8
√

2
gnp Kmn IJKp KL

(
uij

IJ + vij IJ

) (
uij

KL + vij KL
)

, (4.36)

and dualizing this expression using Eq. (4.21, 4.34) yields

Am1···m6 + 3
√

2ζ̊m1···m6 =
√

2
96 · 6! ϵnm1···m6 gpqK

np IJKq KL
(
uij

IJ + vij IJ

)(
uij

KL + vij KL
)

.

(4.37)
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The rhs of Eqs. (4.36, 4.37) further simplify using the uplift Ansatz for the inverse
metric in Eq. (4.30) and the definition of the Killing two-form in Eq. (4.9). They are
proportional to

D̊m log ∆ = ∆−1D̊m∆ = 1
2gpqD̊mgpq, (4.38)

which finally gives a simpler non-linear Ansatz for the six-form potential, i.e.

∆Am(x, y) + 3
√

2ζ̊m(y) = 9
√

2
4m7

D̊m log ∆(x, y), (4.39)

Am1···m6(x, y) + 3
√

2ζ̊m1···m6(y) =
√

2
16 · 5!m7

η̊m1···m7D̊m7 log ∆(x, y). (4.40)

This result has already been derived in Ref. [48]. In comparison to Eqs. (4.36, 4.37), the
Ansätze in Eqs. (4.39, 4.40) do not require the metric gmn but an explicit expression for
the warp factor.

The formula for the inverse metric in Eq. (4.30) has been used to construct sev-
eral gaugings of 11-dimensional supergravity, for example the G2, SO(3)×SO(3) and
SU(3)×U(1)×U(1) invariant solutions [43, 51, 57, 58]. In such cases, the explicit expres-
sion for ∆−1gmn(x, y) has been inverted to obtain the metric ∆gmn(x, y), and the warp
factor could be removed by explicitly taking the determinant (Eq. 3.16). In this way,
one could finally lower indices and derive the 11-dimensional scalar fields Amnp(x, y) and
Am1···m6(x, y).

Let us now derive a new direct uplift Ansatz for the metric gmn(x, y) [49, 50], which
also implies direct Ansätze for the form-potentials and the warp factor. First, consider
the relation

VmpABVp
CDVnq

[ABVqCD] = VmpijVp
klVnq

[ijVqkl].

One uses Eqs. (3.23, 3.26) on the lhs and simplifies all terms including a factor of Amnp

to
. . . AmnpΓn

[ABΓp
CD] . . . = 0. (4.41)

Such expressions vanish because an antisymmetric index pair [np] is contracted with a
symmetric index pair (np). Using Eq. (A.7), one then finds the metric on the lhs,

∆−2gmn = 16
3 Vmp ijVp

klVnq
[ijVq kl].

For the rhs, one uses Eqs. (4.25, 4.27) and obtains5

Vmp [ijVp
kl] = i

32Kmp
IJKp KL

(
u[ij

IJ − v[ij IJ

) (
ukl]

KL + vkl] KL

)
.

5This equation as well as Eqs. (4.42, 4.51) differ from the respective expressions in Ref. [49] by a sign.
This is due to the sign difference in the vielbein components. However, the resulting expressions (for
the metric and the four-form field-strength) in terms of the four-dimensional scalar fields uij

IJ(x)
and vij IJ(x) remain uneffected.
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These two equations together represent a useful metric Ansatz in terms of the Killing
forms and the four-dimensional scalar fields,

∆−2gmn = − 1
192Kmp

IJKp KLKnq
MNKq P Q

(
u[ij

IJ − v[ij IJ

)
×
(
ukl]

KL + vkl] KL

) (
uij

MN − vij MN
) (

ukl
P Q + vkl KL

)
.

However, one may simplify the resulting expression further: Using Eqs. (A.16, A.17)
in Appendix A yields

Vmp[ijVp
kl] = i

8 (Amijkl − Bmijkl) , (4.42)

where the convenient tensors Amijkl(x, y) and Bmijkl(x, y) are defined as

Amijkl(x, y) = 1
4Kmn

[IJ(y)KnKL](y)
(
uij

IJukl
KL − vij IJvkl KL

)
(x), (4.43)

Bmijkl(x, y) = Km
IJ(y)

(
uij

IKvkl JK − vij IKukl
JK
)

(x). (4.44)

By definition, these are totally antisymmetric in the SU(8) indices [ijkl] and depend on
all 11 coordinates (x, y). In terms of these tensors, the metric Ansatz finally reads

∆−2gmn = 1
12 (Amijkl − Bmijkl)

(
An

ijkl − Bn
ijkl
)

. (4.45)

Note that this Ansatz is quartic in the four-dimensional scalar fields uij
IJ(x) and vij IJ(x),

whereas the Ansätze for the inverse metric and the mixed three-form potential were only
quadratic.

Let us combine the Ansätze for the metric and its inverse in Eqs. (4.45, 4.30) to get
a new Ansatz for the warp factor ∆(x, y). This can be done because the new metric
Ansatz contains a proportionality factor of ∆−2. One finds

∆−3 = 1
28 · 4! Cij

klmnCij
klmn, (4.46)

where the C(x, y) tensor is defined as

Cpq
ijkl = KmIJ

(
upq

IJ + vpq IJ

) (
Am

ijkl − Bm
ijkl
)

. (4.47)

Similarly, one combines the Ansatz for the three-form with mixed index structure in
Eq. (4.31) and the metric Ansatz in Eq. (4.45) to obtain a new Ansatz for the full internal
three-form potential,

Amnp = −16
√

2
9 ∆3 Vmn

ABVpq
[CDVq EF ]Vr

ABVrs CDVs
EF .
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Using Eq. (4.41, A.11), one has

Vpq
[CDVq EF ] = 1

2
(
Vpq

CDVq EF + Vpq
EF Vq CD

)
,

and replacing the curved SU(8) indices by flat SU(8) indices yields

Amnp = −8
√

2
9 ∆3 Vmn

i1i2
(
Vpq

i3i4Vq i5i6 + Vpq
i5i6Vq i3i4

)
Vr

i1i2Vrs i3i4Vs
i5i6 . (4.48)

With a final look at Eqs. (4.25, 4.27), one finally finds

Amnp = −
√

2i

48 · 4!∆
3Kmn

IJ
(
uij

IJ − vij IJ
)

Cij
qrst (Ap qrst − Bp qrst) . (4.49)

The Ansätze for the warp factor and the full three-form potential in Eqs. (4.46, 4.49)
are derived by combining the Ansätze for ∆−1gmn(x, y), ∆−1Amn

p(x, y) and ∆−2gmn(x, y)
in Eqs. (4.30, 4.31, 4.45). Hence, they are sextic in the scalar fields uij

IJ(x) and vij IJ(x)
and not suitable for the construction of the group invariant solutions in the next chapters.
Therefore, it is more convenient to use Eqs. (4.30, 4.31, 4.45) to derive the explicit
expressions for the metric, its inverse and the three-form with mixed index structure.
In a second step, these can then be combined to obtain the warp factor and the full
three-form potential.

As a final remark, the three-form Ansatz is not manifestly antisymmetric, which may
be a hint that it can be simplified further using the E7(7) properties of the uij

IJ(x) and
vij IJ(x) tensors in Section 2.3 [37, 41]. One such simplification concerns the C tensor that
occurs in both the warp factor and the three-form potential. In particular, Appendix B
shows that one may extract a Kronecker-delta out of it. However, this is not sufficient
to show the explicit antisymmetry of Amnp(x, y).

4.4. Ansätze for the Internal Field-Strength and the
Freund-Rubin Term

The scalar Ansätze derived so far are sufficient to construct an 11-dimensional super-
gravity solution. In particular, they are used in the next three chapters to find the
explicit G2 and SO(3)×SO(3) invariant solutions. In order to check the consistency, it
will also be necessary to compute the internal four-form field-strength Fmnpq(x, y) and
the Freund-Rubin term fFR(x, y). Therefore, this section presents the corresponding
embedding formulae.

Let us start to find an Ansatz for Fmnpq(x, y) [49, 50]. It is given by the formula

Fmnpq = 4! D̊[mAnpq] (4.50)
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and the explicit three-form Ansatz in Eq. (4.48). In the resulting expression,

Fmnpq = −64
√

2
3 D̊[m

(
∆3 Vnp

i1i2
(
Vq]r

i3i4Vr i5i6 + Vq]r
i5i6Vr i3i4

)
Vs

i1i2Vst i3i4V t
i5i6

)
,

(4.51)
one needs to evaluate the derivative in general. First, one has

D̊m∆3 = 3∆3D̊m log ∆,

hence, one term in Fmnpq(x, y) will be proportional to A[mnpD̊q] log ∆. Secondly, the
covariant background derivative D̊m only acts on the y-dependent fields in the vielbein
components: the Killing forms and the dual volume potential ζ̊m(y). It does not act on
the four-dimensional scalars uij

IJ(x) and vij IJ(x). In general, for the S7 reduction, one
uses Eq. (4.25 – 4.28) as well as Eq. (4.11) to find

m−1
7 D̊mVn

ij = g̊mp

(
2ζ̊ [nVp]

ij − Vnp
ij

)
, (4.52)

m−1
7 D̊mVnp

ij = −2
(
δm

[n + ζ̊mζ̊ [n − m−1
7 D̊mζ̊ [n

)
Vp]

ij − 2̊gmq ζ̊
[nVp]q

ij, (4.53)

m−1
7 D̊mVnp ij = 2̊gm[n

(
−Vp] ij + ζ̊q Vp]q ij

)
, (4.54)

m−1
7 D̊mVn ij =

(
ζ̊mδn

p − g̊mnζ̊p
)

Vp ij −
(
δm

p + ζ̊mζ̊p − m−1
7 D̊mζ̊p

)
Vnp ij. (4.55)

Putting all this together, the resulting intermediate expression for Fmnpq becomes
rather long and is not listed here. However, it should be clear that it contains the
tensors g̊mn, ζ̊m as well as all four-dimensional vielbeine VM

ij. Let us perform some
simplifications: One starts with replacing the VM

ij’s by the 11-dimensional vielbein
components VM

AB since the SU(8) indices i, j, . . . are fully contracted in pairs. Using
Eqs. (3.23, 3.26, 3.27, 3.32) then introduces the 11-dimensional fields (e.g. Amnp and
Am1···m6) and the SU(8) Γ matrices. With Eqs. (A.1) for the traces of products of Γ
matrices, Eq. (4.51) reduces to

Fmnpq = −72A[mnpD̊q] log ∆ + 24√
2

m7 A[mnpg̊q]r
(
∆Ar + 3

√
2ζ̊r

)
+
[
4m7g̊mr1 η̊r1···r7 (gnr2gpr3gqr4 − 18Anpr2Aqr3r4) Ar5r6r7

]⏐⏐⏐⏐
[mnpq]

,

where |[mnpq] denotes antisymmetrized indices [mnpq]. Furthermore, one eliminates the
second term by Eq. (4.39),

Fmnpq = −18A[mnpD̊q] log ∆

+
[
4m7g̊mr1 η̊r1···r7

(
gnr2gpr3gqr4 − 18Anpr2Aqr3r4

)
Ar5r6r7

]⏐⏐⏐⏐
[mnpq]

,
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and the term η̊r1···r7Aqr3r4Ar5r6r7 can be replaced via Eq. (4.35). Together with Eq. (4.39),
this cancels the term proportional to D̊m log ∆. Finally, one turns the tensor density
η̊r1···r7 into the tensor ϵr1···r7 (Eq. (4.33)) and obtains

Fmnpq = m7∆g̊s[m

[
4ϵnpq]r1r2r3

sAr1r2r3 − 3gn|t|Apq]rK
rs IJ (4.56)

× Kt KL
(
uij

IJ + vij IJ

) (
uij

KL + vij KL
) ]

.

This formula appears to be more feasible for practical tests than previous expressions
found in Refs. [48, 50].

As a convenient consequence, it is not difficult to raise all indices with the inverse
metric gmn(x, y). Therefore, one must keep in mind that the indices of the Killing forms
and g̊mn(y) are raised with the background metric. All other tensors in Eq. (4.56) are
covariant, hence

F mnpq = m7∆g̊stg
t[m
(

4ϵnpq]r1r2r3sAr1r2r3 − 3Anp
rK

q] IJ (4.57)

× Krs KL
(
uij

IJ + vij IJ
) (

uij
KL + vij KL

) )
.

Note the power of the last step: So far, the field-strength with upper indices has always
been found by raising each lower index of Fmnpq(x, y) with the explicit expression for
the inverse metric gmn(x, y). In Ref. [51], this was one of the hardest tasks in verify-
ing the SO(3)×SO(3) invariant solution of 11-dimensional supergravity. In this thesis,
Chapters 5, 6 and 7 will make use of the simple Ansätze for Fmnpq(x, y) and F mnpq(x, y)
above in order to verify the G2 and SO(3)×SO(3) invariant solutions of 11-dimensional
supergravity.

The rest of this section presents a non-linear uplift Ansatz for the Freund-Rubin term
fFR(x, y) of 11-dimensional supergravity. It is defined as the four-dimensional dual to
the external four-form field-strength Fµνρσ(x, y). In other words,

Fµνρσ(x, y) = ifFR(x, y)η̊µνρσ, (4.58)

where η̊µνρσ denotes the four-dimensional Levi-Cevita tensor density [59]. In particular,
for a Freund-Rubin compactification, the Freund-Rubin term fFR(x, y) = fFR becomes a
constant. In the following, we repeat the main steps of Ref. [48] to derive an expression
for fFR(x, y) in terms of the four-dimensional fields and the Killing forms on the seven-
sphere.

The starting point is the generalized vielbein postulate for the 56-bein VM
AB(x, y) in

11-dimensions [46, 54, 48],

DmVN AB + Qm
C

[AVN B]C = Pm ABCDVN
CD, (4.59)
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with the following definitions: First, Dm denotes the covariant E7(7) derivative along the
first seven directions (the physical directions),

DmVN AB = ∂mVN AB − Γm N
PVP AB. (4.60)

Here, ΓmN
P(x, y) is the corresponding E7(7) generalized Christoffel connection [54]. Sec-

ondly, QA
m B(x, y) denotes the generalized SU(8) spin connection [55],

QA
mB = −1

2ωm abΓab
AB +

√
2

14 i∆2fFRΓm AB −
√

2
48 FmnpqΓnpq

AB . (4.61)

In particular, it depends on the SO(7) spin-connection ωm ab(y), the Freund-Rubin term
and the internal four-form field-strength. Let us not go further into details here, since
in the subsequent steps, the term in Eq. (4.59) that is proportional to the SU(8) spin
connection QA

m B(x, y) will drop out. Finally, the SU(8) tensor Pm ABCD(x, y) is the
‘generalized non-metricity’, which measures the failure of the 56-bein to be covariantly
constant under the generalized covariant derivative (including the SU(8) spin connec-
tion). Its components are

Pm ABCD =
√

2
56 i∆2fFRΓmn [ABΓn

CD] +
√

2
32 FmnpqΓn

[ABΓpq
CD] (4.62)

and also depend on the Freund-Rubin term and the internal four-form [55]. Note that
Pm ABCD(x, y) is totally antisymmetric in the SU(8) indices — the first term in Eq. (4.62)
is selfdual and the second one is anti-selfdual (see Eq. (A.4)).

The next step is to project out the non-metricity from the GVP in Eq. (4.59) using
the orthonormality of the 56-bein VM

AB(x, y) (Eq. (3.35)),

Pm ABCD = −iVM
CDDmVM AB, (4.63)

and to compare it with the definition in Eq. (4.62). More explicitly, another projection
onto the self-dual part yields

√
2

56 i∆2fFRVmp
ABVp CDΓnq[ABΓq

CD] = −iVmp
ABVp CDVM

CDDnVM AB.

On the lhs, the term proportional to the field-strength Fmnpq(x, y) drops out as it is
anti-selfdual and Vnp

[ABVp CD] is selfdual (see Eqs. (4.41, A.4)). With a slight look to
the derivation of the metric Ansatz in Section 4.3, one finds that the term on the lhs is
proportional to gmn(x, y). More explicitly,

3
√

2
28 fFR∆gmn = Vmp

ABVp CDVM
CDDnVM AB.
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Finally, the curved SU(8) indices are contracted in pairs and can therefore be replaced
by flat ones. From Eq. (4.63), it is also clear that the second part on the rhs is by con-
struction, totally antisymmetric in the flat SU(8) indices. Contracting with the inverse
metric then yields

fFR = 4
3
√

2
∆−1gmnVmp

ijVp klVM
[klDnVM ij].

Furthermore, using Eq. (4.42) and the concrete E7(7) connection components [48] gives

fFR = m7

42
√

2
∆−1gmn

(
Am

ijkl − Bm
ijkl
)

(3An ijkl + 4Bn ijkl) ,

which reduces to

fFR = m7√
2

[
∆−1

12 gmn
(
Am

ijkl − Bm
ijkl
)

(An ijkl + Bn ijkl) − ∆−3
]

, (4.64)

when subtracting the explicit metric Ansatz in Eq. (4.45).
In Refs. [44, 48], similar Ansätze have been used to find the explicit form of the Freund-

Rubin term for different group invariant solutions of 11-dimensional supergravity. It
turned out that in all these cases, fFR(x, y) consists of two parts. The first one is
proportional to the corresponding scalar potential V (x) of the four-dimensional theory
and does not depend on the internal coordinates. The second one is proportional to the
first variation of V (x), the proportionality factor being y-dependent. In particular, this
second part vanishes at stationary points of the scalar potential and the Freund-Rubin
term becomes independent of the internal coordinates [44].

These considerations led to the following conjecture for the Freund-Rubin term: [48]

fFR(x, y) = m7√
2g2

(
−V (x) + g2

24
(
Qijkl(x)Σ̂ijkl(x, y) + h.c.

))
. (4.65)

Here, the scalar potential V (x) and the Q tensor are given in Eqs. (2.13, 2.25) and the
complex-selfdual tensor Σ̂ijkl(x, y) is defined as

Σ̂ijkl(x, y) =
(
uij

IJukl
KL − vij IJvkl KL

)
(x)Km

[IJ(y)Km KL](y). (4.66)

Since Qijkl(x) is by construction complex anti-selfdual at stationary points, the above
conjecture reflects the observed properties of the Freund-Rubin term. Unfortunately,
Eq. (4.65) has not been proven in full generality yet. We proved the conjecture up to
quadratic order in the scalar expectation value and also showed that it explicitly holds
for the G2 invariant solution of 11-dimensional supergravity [48].

This thesis does not go into further details here. In Chapters 6 and 7, the Freund-
Rubin term will be explicitly computed for the G2 and SO(3)×SO(3) invariant solutions
of 11-dimensional supergravity using the uplift Ansatz in Eq. (4.64). As it turns out,
this is much more convenient than using the conjecture in Eq. (4.65).
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5. How To: Find a Group Invariant
Solution of 11-Dimensional
Supergravity

This chapter gives a general overview to the application of the derived scalar uplift
Ansätze for certain gaugings of the N = 8 supergravity. In such cases, the obtained
11-dimensional fields can be written in terms of certain group invariant tensors, which
are adapted to the corresponding deformed S7 geometry. These fields then constitute a
group invariant solution of 11-dimensional supergravity. Since this thesis does not give
the fermionic uplift Ansätze, the most general solution that one may construct here is
purely bosonic (by setting all fermions to zero).

A special case is the class of ‘Freund-Rubin solutions with flux’ [59]. These can be
found by restricting the spacetime M4 in Eq. (4.1) to be maximally symmetric (here,
AdS4). In such cases, all fermions and vector fields must vanish identically. The only non-
vanishing fields are the AdS4 spacetime metric g̊µν(x) and the scalar degrees of freedom
that are in the internal components of the metric and the form potentials gmn(x, y),
Amnp(y) and Am1···m6(y). In particular, the elfbein and the 11-dimensional four-form
field-strength are then given by

EM
A(x, y) =

⎛⎝∆−1/2(y)̊eµ
α(x) 0

0 em
a(y)

⎞⎠ , FMNP Q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fµνρσ = ifFRη̊µνρσ(x)

Fmnpq = Fmnpq(y)

0, otherwise

. (5.1)

This simplification is only consistent when the derived 11-dimensional fields are evaluated
at the group invariant stationary point of the scalar potential V (x) (Eq. (2.13)). In this
case, the Freund-Rubin term becomes a constant fFR(x, y) = fFR.

Note that for a Freund-Rubin solution with flux, all required uplift Ansätze are derived
in the previous Chapter. However, for a certain gauging of the N = 8 supergravity, they
may still be simplified. In particular, Section 5.1 now shows how the 11-dimensional
fields can be written solely in terms of certain group invariant tensors. In principle,
further consistency checks of the obtained solution are not required, since the uplift
formulae have been found by a careful analysis of the supersymmetry transformations in
both theories. However, for the readers convenience, Section 5.2 summarizes two kinds

45



5. How To: Find a Group Invariant Solution of 11-Dimensional Supergravity

of consistency checks that will be performed in the next chapters for the found G2 and
SO(3)×SO(3) invariant solutions of 11-dimensional supergravity.

5.1. Using the Uplift Formulae
This section gives the general guideline to derive a certain group invariant solution of
11-dimensional supergravity. Therefore, one starts with the uplift Ansätze derived in
the previous chapter, which are explicit relations between the following fields:1(

gmn, Amnp, Am1···m6 , ∆, Fmnpq, fFR,
)

(x, y)
⇔(

uij
IJ(x), vij IJ(x), Km

IJ(y), Kmn
IJ(y), ζ̊m(y)

)
.

Based on the group invariance, it is now possible to simplify these Ansätze. In gen-
eral, the larger the symmetry group, the more simplifications are possible. Let us now
summarize the steps that lead to these simplifications.

One first writes the uij
IJ(x) and vij IJ(x) tensors in terms of the scalar and pseudo-

scalar vacuum expectation value ϕIJKL(x). Therefore, the four-dimensional 56-bein in
Eq. (2.4) that encodes the four-dimensional scalars may be brought into unitary gauge,
such that

V = exp
(

0 ϕIJKL

ϕIJKL 0

)
. (5.2)

Here, the scalar vacuum expectation value is a complex, selfdual tensor field,

ϕIJKL = ϕ∗
IJKL = 1

24ϵIJKLMNP QϕMNP Q. (5.3)

In this gauge, there is no distinction between SU(8) indices ij . . . and SL(8,R) indices
IJ . . . — they are all SO(8) indices now. Comparing with the unitary gauge of the
56-bein in Eq. (2.4) yields the useful relations2

uIJ
KL =

∞∑
n=0

1
(2n)! [(ϕϕ∗)n]IJKL , vIJKL =

∞∑
n=0

1
(2n + 1)! [ϕ∗(ϕϕ∗)n]IJKL . (5.4)

1As discussed in Section 4.3, these formulae also imply the corresponding vector relations.
2Here and in the following, one uses the short-hand notation

AB = (AB)IJKL = AIJMNBMNKL.
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Taking this into account, the scalar uplift Ansätze can be written as(
gmn, Amnp, Am1···m6 , ∆, Fmnpq, fFR,

)
(x, y)

⇔(
ϕIJKL(x) Km

IJ(y), Kmn
IJ(y), ζ̊m(y)

)
.

Secondly, for a group invariant solution of 11-dimensional supergravity, the most gen-
eral form of the scalar vacuum expectation value must inherit the underlying symmetry.
Hence,

ϕIJKL(x) =
∑

r

λ(r)(x)Φ(r)
IJKL + i

∑
s

µ(s)(x)Ψ(s)
IJKL, (5.5)

where
{
Φ(r)

IJKL

}
and

{
Ψ(s)

IJKL

}
form a basis of group invariant real selfdual and real anti-

selfdual 4-forms3. The coordinates
{
λ(r)(x), µ(s)(x)

}
parametrize the scalar manifold

and take certain constant values at stationary points of the scalar potential V (x). Some
examples of invariant 4-forms are [51, 53]

Φ(0)
IJKL = C+

IJKL , Ψ(0)
IJKL = 0 for SO(7)+ symmetry,

Φ(0)
IJKL = 0 , Ψ(0)

IJKL = C−
IJKL for SO(7)− symmetry,

Φ(0)
IJKL = C+

IJKL , Ψ(0)
IJKL = C−

IJKL for G2 symmetry,

Φ(0)
IJKL = Y +

IJKL , Ψ(0)
IJKL = Y −

IJKL

Φ(1)
IJKL = Z+

IJKL , Ψ(1)
IJKL = Z−

IJKL

⎫⎪⎬⎪⎭ for SO(3)×SO(3) symmetry.

The explicit expressions for the SO(8) tensors C±
IJKL, Y ±

IJKL, Z±
IJKL will be given in the

next two chapters. With these considerations, the scalar uplift Ansätze are simplified to(
gmn, Amnp, Am1···m6 , ∆ Fmnpq, fFR,

)
(x, y)

⇔({
Φ(r)

IJKL

}
,
{
Ψ(s)

IJKL

}
,
{
λ(r)(x)

}
,
{
µ(s)(x)

}
, Km

IJ(y), Kmn
IJ(y), ζ̊m(y)

)
.

To work with a group invariant scalar field configuration (Eq. (5.5)) has another
convenient side effect: Higher-order products of

{
Φ(r)

IJKL

}
and

{
Ψ(s)

IJKL

}
, such as

Φ(r)Φ(r′), Φ(r)Ψ(s), Ψ(s)Ψ(s′), Φ(r)Ψ(s)Φ(r′) etc. (5.6)
3When dealing with real tensors, the position of the SO(8) indices I, J, ... does not matter.
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may be related to lower-order products. Consequently, one generates a list of group
invariant tensors in the following way: In the beginning, the list only contains the self-
dual and anti-selfdual tensors

{
Φ(r)

IJKL

}
and

{
Ψ(s)

IJKL

}
. Then, one iteratively constructs

products of its elements, which may reduce to previously defined expressions in the list.
If this is not the case, one defines them as new four-tensors (not necessarily selfdual or
anti-selfdual) and adds them to the list of group invariants. This procedure stops when
all products reproduce SO(8) objects already contained in the list. Exploiting all such
identities should then enable us to compute uIJ

KL(x) and vIJKL(x) in a closed form. In
other words, the sum in Eq. (5.4) becomes finite in terms of the elements in the list of
group invariant tensors. This procedure will become more clear using the examples in
Chapters 6 and 7.

The Ansätze may finally be brought into a form that is more adapted to the deformed
S7 geometry. Therefore, one uses the fact that the Killing forms introduced in Sec-
tion 4.1 generate an orthogonal basis of selfdual and anti-selfdual SO(8) tensors (see
Appendix A):

selfdual : Km
[IJKm KL], Kmn

[IJKn KL], Km
[IJKn

KL]

anti − selfdual : K[mn
[IJKp]

KL].
(5.7)

In this basis, the selfdual and anti-selfdual four-forms Φ(r)
IJKL and Ψ(s)

IJKL read

Φ(r)
IJKL = 1

6ξ(r)K [IJ
m Km KL] − 3

2ξ(r)
mnKm [IJKn KL] + 1

12ξ(r)
m Kmn [IJKn

KL] ,

Ψ(s)
IJKL =1

2S(s)
mnp Kmn [IJKp KL],

(5.8)

where the corresponding components ξ(r)
m (y), ξ(r)

mn(y), ξ(r)(y), S(s)
mnp(y) are tensors defined

on the round seven-sphere. Hence, its indices are raised and lowered with the background
metric g̊mn. Note that S(s)

mnp(y) is defined to be totally antisymmetric. The above relations
may be inverted to obtain explicit expressions for the S7 tensors. Therefore, one contracts
them with the orthogonal (anti-)selfdual basis four-forms in Eq. (5.7) and uses Eqs. (A.6
– A.9). This yields

ξ(r)
m = 1

16Φ(r)
IJKLKmn

IJKn KL , ξ(r)
mn = − 1

16Φ(r)
IJKLKm

IJKn
KL , ξ(r) = g̊mnξ(r)

mn (5.9)

for the scalars, and
S(s)

mnp = 1
16Ψ(s)

IJKLK[mn
IJKp]

KL (5.10)

for the pseudo-scalars. The consequence of the performed steps is a huge simplification:
All 11-dimensional fields can now be written solely in terms of the S7 tensors and prod-
ucts of Killing forms. However, the SO(8) indices are fully contracted and as explained
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in Appendix A, all these contractions of Killing forms reduce to combinations of the
invariant SO(7) tensors δn

m, g̊mn and η̊m1···m7 , e.g.

Km
IJKn

IJ = 8̊gmn, Km
IJKnp

IJ = 0, Kmn IJKpq
IJ = 16δmn

pq . (5.11)

In other words, the 11-dimensional fields are finally written only in terms of the S7

quantities (Eqs. (5.9, 5.10)):(
gmn, Amnp, Am1···m6 , ∆ Fmnpq, fFR,

)
(x, y)

⇔({
λ(r), µ(s)

}
(x),

{
ξ(r)

m , ξ(r)
mn, ξ(r), S(s)

mnp

}
(y),

{̊
gmn, η̊m1···m7 , ζ̊m

}
(y)
)

.

The resulting expressions may still involve certain contractions between the S7 quan-
tities ξ(r)

m (y), ξ(r)
mn(y), ξ(r)(y), S(s)

mnp(y). Depending on the symmetry group, these con-
tractions may further be simplified. Therefore, one inserts the explicit decomposition in
Eq. (5.8) into all relations between the group invariant tensors

{
Φ(r)

IJKL

}
,
{
Ψ(s)

IJKL

}
(see

Eq. (5.6)). This gives a complete list of identities between the S7 tensors, which can
be used to bring the resulting expressions for the 11-dimensional fields into a suitable
form. Without these relations, it would not be possible to perform the consistency checks
discussed in the next section.

Apart from these specific relations for the S7 tensors in Eqs. (5.9, 5.10), there are
some general relations that are valid for any underlying symmetry. First, the derivatives
of the S7 tensors can be computed using Eq. (4.11):

D̊mξ(r) = 2m7ξ
(r)
m , D̊mξ(r)

n = 6m7 ξ(r)
mn − 2m7 ξ(r)̊gmn,

D̊mξ(r)
np = 1

3m7

(
g̊npξ(r)

m − g̊m(nξ
(r)
p)

)
, D̊mS(s)

npq = 1
6m7η̊mnpq

rstS
(s)
rst.

(5.12)

Secondly, one finds the useful identities

Φ(r)
IJKLKm

KL = −2ξ(r)
mnKn IJ − 1

3ξ(r)
n Km

n IJ , (5.13)

Φ(r)
IJKLKmn

KL = 2
3ξ

(r)
[m Kn]

IJ +
(2

3ξ(r)̊gmpg̊nq − 4̊gp[mξ
(r)
n]q

)
Kpq IJ , (5.14)

Ψ(s)
IJKLKm

KL = S(s)
mnpKnp IJ , (5.15)

Ψ(s)
IJKLKmn

KL = 2S(s)
mnpKp IJ − 1

6 η̊mn
p1···p5S(s)

p1p2p3Kp4p5
IJ , (5.16)

which can be proved using the explicit decomposition in Eq. (5.8) and the identities in
Appendix A4. Eqs. (5.12 – 5.16) are valid for all r and s.

4Similar formulae may be found for all the SO(8) four-tensors that are contained in the list of group
invariants. However, this must be done separately for the specific cases and will be discussed in the
next two chapters.
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5.2. The Consistency Checks of the Solution
This section describes two kinds of consistency checks for the obtained group invari-
ant fields. These tests will be performed in the following two chapters for the G2 and
SO(3)×SO(3) invariant solutions of 11-dimensional supergravity. Within the discussed
bosonic uplift of N = 8 supergravity to 11 dimensions, all fermions are consistently set
to zero.

The first test verifies the duality relation in Eq. (3.12). Therefore, setting all fermions
to zero, one considers the seven internal components, i.e.

i

4! · 7!ϵm1···m7µνρσF µνρσ = D̊[m1Am2···m7] + 1
4!

√
2

A[m1···m3Fm4···m7].

With the particular decomposition of the ϵ tensor,

ϵm1···m7µνρσ = ∆−1η̊m1···m7 η̊µνρσ, (5.17)

one contracts the above duality relation with η̊m1···m7 and finds

i∆−1

4! η̊µνρσF µνρσ = η̊m1···m7

(
D̊m1Am2···m7 + 1

4!
√

2
Am1···m3Fm4···m7

)
.

Furthermore, using Eqs. (3.15, 4.58) on the lhs and Eq. (4.39) on the rhs finally results
in

fFR = −∆−3
(

1
6D̊n (∆An) + 1√

2 · 4!
η̊m1···m7Am1m2m3Fm4m5m6m7

)
. (5.18)

This relation must hold off-shell, i.e. it does not require the equations of motion to be
satisfied. Hence, Eq. (5.18) represents a very non-trivial consistency check for the uplift
Ansätze of the internal form potentials (Eqs. (4.39, 4.49)), the field-strength (Eq. (4.56))
and the Freund-Rubin term (Eq. (4.64)).

The second test is the verification of the equations of motion for the Freund-Rubin
compactification5. In this case, Eqs. (3.8, 3.9) simplify to

Rµν =
(

∆−1

72 FmnpqF
mnpq + 2

3f 2
FR∆3

)
∆gµν , (5.19)

Rmn =
(

∆−1

72 FmnpqF
mnpq − 1

3f 2
FR∆3

)
∆gmn − 1

6FmpqrFn
pqr, (5.20)

D̊q

(
∆−1F mnpq

)
=

√
2

24 fFRη̊mnpqrstFqrst. (5.21)

5The spacetime is maximally symmetric and all fields are evaluated at the group invariant stationary
point of the scalar potential.
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In order to verify these three equations, one must compute the following scalar fields:

gmn, Amnp, ∆, Fmnpq, F mnpq, fFR, Rµν , Rmn.

In particular, these can all be found using the scalar uplift Ansätze in Chapter 4, except
for the components of the Ricci tensor.

Therefore, the rest of this section now explicitly shows, how one computes the com-
ponents Rµν and Rmn on the lhs of Eqs. (5.19, 5.20). From Eq. (3.15), one has

gµν(x, y) = ∆−1(y)̊gµν(x), gµν(x, y) = ∆(y)̊gµν(x), (5.22)

and the various Christoffel symbols read

Γρ
µν = Γ̊ρ

µν , Γρ
mn = Γp

mν = 0, Γp
µν = 1

2gµνgpqD̊q log ∆,

Γρ
µn = −1

2δρ
µD̊n log ∆, Γp

mn = Γ̂p
mn + Γ̊p

mn.
(5.23)

Here, the connection components with a circle on top denote the background Christoffel
symbols (of AdS4 and the round seven-sphere). Moreover,

Γ̂p
mn = 1

2gpq
(
D̊mgnq + D̊ngmq − D̊qgmn

)
(5.24)

denotes a convenient tensor.
The relevant components of the eleven-dimensional Riemann tensor are

Rµ
νρσ = −∂ρΓµ

σν + ∂σΓµ
ρν − Γµ

ρMΓM
σν + Γµ

σNΓN
ρν

= R̊µ
νρσ + 1

2δ[ρ
µgσ]νgpqD̊p log ∆ D̊q log ∆, (5.25)

Rµ
mνn = −∂νΓµ

nm + ∂nΓµ
νm − Γµ

νpΓp
nm + Γµ

nρΓρ
νm

= 1
2δµ

ν

(
−D̊mD̊n log ∆ + Γ̂p

mnD̊p log ∆ + 1
2D̊m log ∆ D̊n log ∆)

)
, (5.26)

Rm
µnν = gmpgµρRρ

pνn, (5.27)

Rm
npq = R̊m

npq − D̊pΓ̂m
qn + D̊qΓ̂m

pn − Γ̂m
prΓ̂r

qn + Γ̂m
qrΓ̂r

pn. (5.28)

Here, R̊µ
νρσ and R̊m

npq denote the Riemann tensors of the background AdS4 space and
the round seven-sphere, respectively. The associated Ricci tensors in our conventions are

R̊µν = 3m2
4g̊µν , R̊mn = −6m2

7g̊mn, (5.29)

where m4 denotes the inverse AdS4 radius. It is related to the S7 radius via the scalar
potential at the stationary point V⋆ [51],

m2
4 = −2V⋆

3g2 m2
7. (5.30)
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It is now straightforward to obtain the expressions for the relevant components of the
Ricci tensor. In particular,

Rµν =
(

3m2
4 − 1

2D̊m

(
∆−1gmnD̊n log ∆

))
∆gµν , (5.31)

Rmn = −6m2
7g̊mn + Γ̃q

mpΓ̃p
qn − D̊pΓ̃p

mn (5.32)

− 9
4D̊m log ∆ D̊n log ∆ − 1

2D̊p

(
∆−1gpqD̊q log ∆

)
∆gmn,

where one defines the convenient tensor

Γ̃p
mn = 1

2∆−1gpq
(
D̊m∆gnq + D̊n∆gmq − D̊q∆gmn

)
. (5.33)

The following two Chapters construct the G2 and SO(3)×SO(3) invariant solutions of
11-dimensional supergravity. In particular, Eqs. (5.18 – 5.21) are explicitly verified for
these solutions.
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6. G2 Invariant Supergravity
This chapter repeats the construction of the G2 invariant solution of 11-dimensional
supergravity. The uplift Ansatz for the inverse internal metric was already known in the
early 1980s. In particular, the authors in Ref. [43] derived the explicit expression for
∆−1gmn within the G2 invariant solution of 11-dimensional supergravity. The obtained
matrix can be inverted to derive ∆gmn(x, y) and the warp factor can be removed by
explicitly taking the determinant. The three-form Ansatz was found 20 years later [45]
and was verified for the G2 invariant solution of 11-dimensional supergravity [60]. In
particular, the authors of the latter paper found the explicit expression for the internal
four-form field-strength using Eq. (4.50) and verified that the Freund-Rubin solution
satisfies the simplified equations of motions in Eqs. (5.19 – 5.21). Finally, the explicit
uplift Ansätze for the internal metric gmn(x, y) and field-strength Fmnpq(x, y) as well as
the Freund-Rubin term fFR(x, y) (Eqs. (4.45, 4.56, 4.64)) have been explicitly checked
for the G2 invariant solution of 11-dimensional supergravity [48, 49].

This chapter summarizes these results in three steps: The first part gives the de-
composition of the scalar fields uij

IJ(x) and vij IJ(x) into G2 invariant tensors. It also
introduces the explicit S7 quantities (Eqs. (5.9, 5.10)) and gives the corresponding iden-
tities. Section 6.2 then constructs the 11-dimensional fields using the explicit uplift
Ansätze derived in Chapter 4. Finally, Section 6.3 checks the consistency for the derived
Freund-Rubin solution as explained in Section 5.2.

6.1. G2 Invariant Tensors and Corresponding S7

Quantities
Let us now explicitly perform the steps that were discussed in Section 5.1. This includes
to give the explicit decomposition of the uij

IJ(x) and vij IJ(x) tensors into G2 invariant
objects and to find all corresponding identities that are required to derive the G2 invariant
solution of 11-dimensional supergravity.

First, there is only one selfdual and one anti-selfdual G2 invariant tensor, i.e.

Φ(0)
IJKL = C+

IJKL, Ψ(0)
IJKL = C−

IJKL. (6.1)

Together with a reparametrization of the scalar coordinates λ(0)(x) and µ(0)(x) into a
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scalar field λ(x) and a rotation angle α(x),

λ(0)(x) = λ(x)
2 cos α(x), µ(0)(x) = λ(x)

2 sin α(x),

one finds the explicit expression for the scalar vacuum expectation value ϕIJKL(x). In
particular, Eq. (5.5) reduces to

ϕIJKL = λ

2
(
C+

IJKL cos α + iC−
IJKL sin α

)
. (6.2)

Secondly, one constructs a list of G2 invariant four-tensors, which are not necessarily
selfdual or anti-selfdual. Therefore, the only relations for products of the C±

IJKL tensors
are [53] (

C±
)2

IJKL
= C±

IJMNC±
MNKL = 12δIJ

KL ± 4C±
IJKL. (6.3)

Since there is no such identity for the products C+C− and C−C+, they must define new
G2 invariants. Hence, our list of G2 invariant four-tensors reads

δIJ
KL, C±

IJKL, D±
IJKL = 1

2
(
C+

IJMNC−
MNKL ± C−

IJMNC+
MNKL

)
.

In principle, this list may be extended by cubic terms like C+C−C+ etc., but it turns
out that no further definitions are required for our purposes.

One now relates the four-dimensional scalars uij
IJ(x) and vij IJ(x) to the above G2

invariants. In particular, Eq. (5.4) simplifies using the explicit form of the vacuum
expectation value in Eq. (6.2) and the contraction identities in Eq. (6.3):

uIJ
KL = p3δIJ

KL + 1
2pq2 cos2 αC+

IJKL − 1
2pq2 sin2 αC−

IJKL − i

8pq2 sin 2αD−
IJKL, (6.4)

vIJKL = q3(cos3 α − i sin3 α)δIJ
KL + 1

2p2q cos αC+
IJKL (6.5)

+ i

2p2q sin αC−
IJKL − 1

8q3 sin 2α(sin α − i cos α)D+
IJKL,

where p(x) = cosh λ(x) and q(x) = sinh λ(x).
The explicit G2 invariant S7 quantities are abbreviated as1

ξ(0) = ξ, ξ(0)
m = ξm, ξ(0)

mn = ξmn, S(0)
mnp = Smnp,

1In Ref. [60], Smnp was denoted by S̊mnp.

54



6. G2 Invariant Supergravity

and Eqs. (5.8 – 5.10) read

C+
IJKL = ξ

6Km
[IJKm KL] − 3

2ξmnKm
[IJKn

KL] + 1
12ξmKmn

[IJKn KL],

C−
IJKL = 1

2SmnpKmn
[IJKp

KL],

(6.6)

ξm = 1
16C+

IJKLKIJ
mnKn KL , ξmn = − 1

16C+
IJKLKIJ

m KKL
n , ξ = g̊mnξmn,

Smnp = 1
16C−

IJKLK[mn
IJKp]

KL.
(6.7)

Furthermore, inserting Eq. (6.6) into the contraction relations in Eq. (6.3) yields the
useful specific identities [60]

ξmng̊mn = ξ, ξmξn = (9 − ξ2)̊gmn − 6(3 − ξ)ξmn, ξmξm = (21 + ξ)(3 − ξ), (6.8)

Sm[npSqr]s = 1
6 η̊npqr(m

tuSs)tu, S[mnpSq]rs = 1
4 η̊mnpq[r

tuSs]tu,

SmnrSpqr = 2δmn
pq + 1

6 η̊mn
pqrstS

rst.
(6.9)

Finally, the general identities in Eqs. (5.12 – 5.16) translate to

D̊mξ = 2m7ξm, D̊mξn = 6m7 ξmn − 2m7 ξg̊mn,

D̊mξnp = 1
3m7

(
g̊npξm − g̊m(nξp)

)
, D̊mSnpq = 1

6m7η̊mnpq
rstSrst,

(6.10)

and

CIJKL
+ Km

KL = −2ξmnKn IJ − 1
3ξnKmn

IJ , (6.11)

CIJKL
+ Kmn

KL = 2
3ξ[mKn]

IJ +
(2

3ξg̊mpg̊nq − 4̊gp[mξn]q

)
Kpq IJ , (6.12)

CIJKL
− Km

KL = SmnpKnp IJ , (6.13)

CIJKL
− Kmn

KL = 2SmnpKp IJ − 1
6 η̊mn

p1···p5Sp1p2p3Kp4p5
IJ . (6.14)

It is also convenient to compute the following single contractions of the specific G2
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invariant D± tensors with the Killing forms:

DIJKL
+ Km

KL =
(

ξ

3Smnp − ξm
qSnpq − 2Smnqξp

q + 1
36 η̊mnpqrstξ

qSrst

)
Knp IJ , (6.15)

DIJKL
+ Kmn

KL =
(2

3ξSmnp − 4ξ[m
qSn]pq − 2Smnqξp

q + 1
18 η̊mnpqrstξ

qSrst
)

Kp IJ

+ 1
3

(
ξ[mSn]pq − Smnpξq − ξ

3 η̊mnpqrstS
rst

+ η̊mnprstuξq
rSstu + η̊[m|pqrstuξn]

rSstu
)

Kpq IJ , (6.16)

DIJKL
− Km

KL = 2
3SmnpξnKp IJ

+
(

ξ

3Smnp + ξm
qSnpq − 2Smnqξp

q − 1
36 η̊mnpqrstξ

qSrst

)
Knp IJ , (6.17)

DIJKL
− Kmn

KL =
(

−2
3ξSmnp + 4ξ[m

qSn]pq − 2Smnqξp
q + 1

18 η̊mnpqrstξ
qSrst

)
Kp IJ

+ 1
3
(
−ξ[mSn]pq − Smnpξq + η̊mnprstuξq

rSstu − η̊[m|pqrstuξn]
rSstu

)
Kpq IJ .

(6.18)

These identities can be proved using the explicit definition of the D± tensors and the
relations in Eqs. (6.11 – 6.14).

6.2. Constructing the G2 Invariant Supergravity Solution

This section gives the explicit calculations to derive all 11-dimensional scalar fields in
terms of the G2 invariant S7 tensors in Eq. (6.7). These constitute the complete Freund-
Rubin solution with flux. All computations are performed with the computer algebra
program FORM [61, 62]. Therefore, the main steps to derive the solution are described in
detail but only some intermediate results are given.

Let us start with the uplift Ansatz for the inverse metric in Eq. (4.30). With the
explicit decomposition of the uij

IJ(x) and vij IJ(x) tensors into the G2 invariants in
Eqs. (6.4, 6.5) and the contraction identities in Eqs. (6.11 – 6.18), one finds that

Km KLuIJ
KL = umn

1 Kn
IJ + umnp

1 Knp
IJ , Km KLvIJ KL = vmn

1 Kn
IJ + vmnp

1 Knp
IJ . (6.19)
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Here, the explicit components are

umn
1 = p3g̊mn − pq2 cos2 α ξmn + i

12pq2 sin 2α Smnpξp,

umnp
1 = −1

6pq2 cos2 α g̊m[nξp] − 1
2pq2 sin2 αSmnp

+ i

8pq2 sin 2α

(
2Sm[n

qξ
p]q − ξm

qS
npq − ξ

3Smnp + 1
36 η̊mnpqrstξqSrst

)
,

vmn
1 = q3(cos3 α − i sin3 α)̊gmn − p2q cos α ξmn,

vmnp
1 = −1

6p2q cos α g̊m[nξp] + i

2p2q sin αSmnp + 1
8q3 sin 2α

× (sin α − i cos α)
(

2Sm[n
qξ

p]q + ξm
qS

npq − ξ

3Smnp − 1
36 η̊mnpqrstξqSrst

)
.

Using these relations together with Eqs. (5.11, 6.8, 6.9), the uplift Ansatz for the inverse
metric (Eq. (4.30)) finally reduces to

∆−1gmn =
(
c3 + v3s3

)
g̊mn − cvs(c + vs)ξmn, (6.20)

where c(x) = cosh 2λ(x), s(x) = sinh 2λ(x), and v(x) = cos α(x).

Secondly, ∆−1Amn
p may be computed analogously using the uplift Ansatz in Eq. (4.31).

Therefore, one needs to calculate

Kmn
KLuIJ

KL = u2 mnpKp IJ + u2 mn
pqKpq

IJ ,

Kmn
KLvIJ KL = v2 mnpKp IJ + v2 mn

pqKpq
IJ .

(6.21)

57



6. G2 Invariant Supergravity

The explicit components are

u2 mnp = 1
3pq2 cos2 α ξ[mg̊n]p − pq2 sin2 αSmnp

+ i

4pq2 sin 2α

(
Smn

qξpq − 2ξ[m
qSn]pq + ξ

3Smnp − 1
36 η̊mnpqrstξ

qSrst

)
,

u2 mn
pq =

(
ξ

3pq2 cos2 α + p3
)

δpq
mn − 2pq2 cos2 α ξ[m

[pδn]
q] + 1

12pq2 sin2 α η̊mn
pqrstSrst

+ i

24pq2 sin 2α
(
ξ[mSn]

pq − ξ[pSq]
mn − ξr[mη̊n]

pqrstuSstu − ξr
[qη̊mn

p]rstuSstu

)
,

v2 mnp = 1
3p2q cos α ξ[mg̊n]p + ip2q sin αSmnp + 1

4q3 sin 2α(sin α − i cos α)

×
(

Smn
qξpq + 2ξ[m

qSn]pq − ξ

3Smnp − 1
36 η̊mnpqrstξ

qSrst

)
,

v2 mn
pq =

(
ξ

3p2q cos α + q3(cos3 α − i sin3 α)
)

δpq
mn − 2p2q cos α ξ[m

[pδn]
q]

+
(

− i

12p2q sin α + ξ

72q3 sin 2α(sin α − i cos α)
)

η̊mn
pqrstSrst

− 1
12q3 sin 2α(sin α − i cos α)̊gprg̊qs

(
ξ[mSnrs] + η̊[mnr

tuvwξs]tSuvw

)
.

Again, these relations together with Eqs. (5.11, 6.8, 6.9) simplify the uplift Ansatz in
Eq. (4.31) to

∆−1Amn
p =

√
2v2s2 tan α

24

[
2(c − vs)ξq[mSn]

pq − (c + vs)Smnqξ
pq (6.22)

+ 1
36(c + vs)η̊mn

pqrstξqSrst −
(

c − vs

3 ξ − 2 c2

vs

)
Smn

p

]
.

Both, the inverse metric (Eq. (6.20)) and the internal three-form with mixed index
structure (Eq. (6.22)) agree with the formulae obtained in Ref. [60]. In that paper, the
metric ∆gmn was found by explicitly inverting the expression in Eq. (6.20) and the warp
factor was removed by taking the determinant. Finally, the full three-form potential
Amnp could be computed by lowering the remaining upper index of the expression in
Eq. (6.22) . This procedure might be simple for the G2 invariant solution but will be
rather complicated for the SO(3)×SO(3) case. Therefore, this thesis obtains the metric
via the direct uplift Ansatz in Eq. (4.45) [49].

The metric Ansatz in Eq. (4.45) requires the tensors Am ijkl and Bm ijkl (or better:
Am IJKL, Bm IJKL) defined in Eqs. (4.43, 4.44). In particular, using Eqs. (A.16, A.17)
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yields

AmIJKL = 1
8
(
Kmn

MNKnP Q + Kmn
P QKnMN

) (
uIJ

MNuKL
P Q − vIJ MNvKL P Q

)
, (6.23)

BmIJKL = 1
8
(
Kmn

P QKnMN − Kmn
MNKnP Q

) (
uIJ

MNvKL P Q − vIJ MNuKL
P Q
)

. (6.24)

Although this does not seem to be a simplification, one may now perform the same steps
as before: One uses the explicit decomposition of the scalar fields uij

IJ(x) and vij IJ(x)
in Eqs. (6.4, 6.5) and the contraction identities in Eqs. (6.11 – 6.18). Since the result is
antisymmetric in the SO(8) indices, one may write the Am IJKL and Bm IJKL tensors in
the basis provided by the Killing forms (Eq. (5.7)),

AmIJKL = 1
6 amKn

[IJKn KL] − 3
2 am

npKn
[IJKp

KL]

+ 1
12 am

nKnp
[IJKp KL] + 1

2 am
npqK[np

[IJKq]
KL], (6.25)

BmIJKL = 1
6 bmKn

[IJKn KL] − 3
2 bm

npKn
[IJKp

KL]

+ 1
12 bm

nKnp
[IJKp KL] + 1

2 bm
npqK[np

[IJKq]
KL]. (6.26)

The components can be found by contracting these relations with the basis (anti-)selfdual
forms in Eq. (5.7). In particular, using Eqs. (A.6 – A.9) in Appendix A yields

am = am
npg̊np, bm = bm

npg̊np,

am
n = 1

16Am IJKLKnp[IJKp
KL], bm

n = 1
16Bm IJKLKnp[IJKp

KL],

am
np = − 1

16Am IJKLKn [IJKp KL], bm
np = − 1

16Bm IJKLKn [IJKp KL],

am
npq = 1

16Am IJKLKnp[IJKq KL], bm
npq = 1

16Bm IJKLKnp[IJKq KL],
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where

am = −v2s2

24 (ξ + 9)ξm,

am
n =

(
3 − ξ

4 v2s2 + 3v2 + 3c − 3cv2
)

δm
n + v2s2

24

(
3 + ξ

3 − ξ

)
ξmξn,

am
np = −v2s2

144

(
12δm

(nξp) + (9 + ξ)ξmg̊np − 1
3 − ξ

ξmξnξp

)
,

am
npq = i tan α

48 v2(1 − c)
(

ξmSnpq + 3cSm
[npξq] − 3(1 + c)δm

[nSpq]rξr + cξrmη̊npqrstuSstu

+ 3ξr
[nη̊m

pq]rstuSstu + ξ

3(c − 1)η̊m
npqrstSrst

)
,

bm = −vs

4 (1 − v2 + c + cv2)ξm,

bm
n = vs

4
(
1 − v2 + c + cv2

)
(ξδm

n − 3ξm
n) + vs

8
(
1 − v2 − c + cv2

)
Sm

npξp,

bm
np = vs

24(1 − v2 + c + cv2)
(
δm

(nξp) − ξmg̊np
)

+ vs

4 (1 − v2 − c + cv2)Sqm
(nξp)q,

bm
npq = i tan α

48 v3s(1 − c)
(

− 3Sm
[npξq] + ξrmη̊npqrstuSstu

+ 3δm
[nSpq]rξr −

(
1 + 2c

v2(1 − c)

)
η̊m

npqrstSrst

)
.

Finally, one computes the metric via the uplift Ansatz in Eq. (4.45) using the explicit
expressions for the Am IJKL and Bm IJKL tensors in Eqs. (6.25, 6.26). The contractions
of the SO(8) indices requires Eqs. (A.6 – A.9) and the SO(7) indices m, n, . . . may be
contracted using the identities in Eqs. (6.8, 6.9). The resulting expression is

∆−2gmn = b0
[

(b0 + 3cvs) g̊mn + cvs ξmn

]
, (6.27)

where
b0(ξ) = c2 + v2s2 − 9 + ξ

6 cvs. (6.28)

Combining the explicit expressions for the metric and its inverse in Eqs. (6.27, 6.20)
and using the identities in Eqs. (6.8, 6.9) gives

∆−2gmp∆−1gpn = b2
0 (c + vs)3δn

m.

This is exactly the combination of the metric and its inverse that defines the warp factor
in Eq. (4.46). In particular, gmn and gmn are inverse for

∆−3 = b2
0 (c + vs)3. (6.29)
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The metric and the warp factor in Eqs. (6.27, 6.29) coincide with the results of Ref. [60].
In particular, the warp factor satisfies the definition in Eq. (3.16)2.

The explicit form of the metric now enables us to lower the remaining index of the
three-form potential in Eq. (6.22). In principle, this is equivalent to directly using the
uplift Ansatz in Eq. (4.49). One finds

Amnp =
√

2 tan α

72b0

vs

c + vs

(
9vs(c − vs)ξ[m

qSnp]q (6.30)

+ 1
12vs(c + vs)η̊mnpqrstξ

qSrst + (2c − vs)(3c − ξvs)Smnp

)
,

which is a slightly simplified version of the formula found in Ref. [60]3. Note that this
expression for the G2 invariant three-form potential is totally antisymmetric, which was
not manifest in the corresponding uplift Ansatz in Eq. (4.49).

The explicit form of the warp factor now enables us to compute the internal six-form
potential in Eqs. (4.39, 4.40). In particular, one finds

∆Am + 3
√

2ζ̊m = − 3
√

2
2m7b0

D̊mb0,

and uses the definition for b0(ξ) in Eq. (6.28) as well as the relation for the derivative in
Eq. (6.10). This finally results in

∆Am = cvs

b0
√

2
ξm − 3

√
2ζ̊m, Am1···m6 =

√
2cvs

12 · 6! · b0
η̊m1···m7ξm7 − 3

√
2ζ̊m1···m6 . (6.31)

The rest of this section is devoted to computing the internal four-form field-strength
and the Freund-Rubin term of the G2 invariant supergravity solution. First, the field-
strength Ansatz in Eq. (4.56) is more convenient in the form

Fmnpq =
[
4m7∆6g̊mr1

(
∆−2gnr2

) (
∆−2gpr3

) (
∆−2gqr4

)
η̊r1···r7Ar5r6r7 − 3m7∆3 (6.32)

×
(
∆−2gns

)
ApqrK

r
m

IJKs KL
(
uij

IJ + vij IJ

) (
uij

KL + vij KL
) ]⏐⏐⏐⏐

[mnpq]
,

such that one may use Eqs. (6.27, 6.29, 6.30) directly. The term involving the Killing
forms and the four-dimensional scalars simplifies with Eqs. (6.19, 6.21, 5.11) to

Kmn IJKp KL
(
uij

IJ + vij IJ

) (
uij

KL + vij KL
)

= 8
3cvs (c + vs) ξ[mg̊n]p + s2 sin2 α (6.33)

×
[
12 vs ξ[m

qS
np]q − 1

9vs η̊mnpqrstξqSrst −
(

8c + 4
3ξvs

)
Smnp

]
.

2The determinant of the metric can be computed using the second equation in Eq. (6.8) to replace
ξmn in Eq. (6.27) [60].

3The formula for Amnp above differs from the expression in Ref. [60] by a factor of 1/6, which is due to
our conventions. Appropriately, the definitions for the field-strength also differ by that factor, such
that the resulting expressions for Fmnpq agree.
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Putting all together and using the identities in Eqs. (6.8, 6.9) finally results in

Fmnpq =
√

2v2s2 tan α

3b0
m7

[(
2c − vs

c + vs
+ c2 − v2s2

b0

)
ξ[mSnpq] + c − vs

vs
(6.34)

× η̊mnpqrstS
rst + 1

6(3 − ξ)

(
2c − vs

c + vs
− (c − vs)2

b0

)
ξ[mη̊npq]rstuξrSstu

]
,

which matches exactly the expression found in Ref. [60].
A convenient form of the field-strength Ansatz for F mnpq in Eq. (4.57) is given by

F mnpq = ∆m7
(
∆−1grm

) [
4η̊r

npqstuAstu + 3∆3
(
∆−1gtn

) (
∆−1Ast

p
)

Kq IJ (6.35)

× Kr
s KL

(
uij

IJ + vij IJ
) (

uij
KL + vij KL

) ]⏐⏐⏐⏐
[mnpq]

,

such that Eqs. (6.20, 6.22, 6.29, 6.30, 6.33) may be used directly. Taking the identities
in Eqs. (6.8, 6.9) into account, one then finds

F mnpq =
√

2v2s2(c + vs)3∆ tan α

3 m7

[(
2c − vs

c + vs
+ c2 − v2s2

b0

)
ξ[mSnpq] + (c − vs)b0

vs(c + vs)2

× η̊mnpqrstSrst − 1
6(3 − ξ)

(
2c2 − 5cvs + v2s2

(c + vs)2 + (c − vs)2

b0

)
ξ[mη̊npq]rstuξrSstu

]
.

(6.36)
Finally, the Freund-Rubin term fFR(x, y) can be computed using the uplift Ansatz in

Eq. (4.64). Inserting the explicit expressions for the inverse metric (Eq. (6.20)), the warp
factor (Eq. (6.29)) and the Am ijkl and Bm ijkl tensors (Eqs. (6.25, 6.26)) finally results
in

fFR =
√

2m7(c + vs)3
[
(c2 − v2s2) − 2b0

(
2c2 − 3cvs + 2v2s2 − 3c − vs

c + vs

)]
. (6.37)

Here, one also used the identities in Eqs. (6.8, 6.9). Note that this formula coincides
with the expression obtained in Ref. [48].

The expressions in Eqs. (6.27, 6.29, 6.30, 6.31 6.34, 6.37) enable us to derive the vector
Ansätze as well. All together then represent a full bosonic solution of 11-dimensional
supergravity. Furthermore, if one restricts to the maximally symmetric spacetime AdS4,
one must evaluate the above Ansätze at the stationary point of the scalar potential
V (x) = V (α(x), λ(x)). The latter is [63]

V = 2g2(c + vs)3
((

2c2 − 3cvs + 2v2s2
)2

− 7
(
c2 − cvs + v2s2

) c − vs

c + vs

)
, (6.38)

and the corresponding G2 invariant stationary point is given by [64]

c2 = 3 + 2
√

3
5 , s2 = 2

√
3 − 2
5 , v2 = 3 −

√
3

4 . (6.39)

Hence, inserting these values into the above Ansätze yields the Freund-Rubin solution.
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6.3. Verifying the G2 Invariant Solution

This section finally verifies the G2 invariant supergravity solution that is described in
Section 6.2. Let us first test whether the internal form potentials and field-strength as
well as the Freund Rubin term satisfy Eq. (5.18). Therefore, one must compute

∆−3

6 D̊m (∆Am) = −
√

2m7(c + vs)3
(

2b0
(
c2 − 3cvs + v2s2

)
+
(
c2 − v2s2

)2
)

,

∆−3

4!
√

2
η̊m1···m7Am1···m3Fm4···m7 =

√
2m7(c + vs)3

(
c2 − v2s2 − 1

) (
6b0

c − vs

c + vs
+ c2 − v2s2

)
.

Inserting these expressions into the rhs of Eq. (5.18) yields the Freund-Rubin term that
was already computed in Eq. (6.37). Therefore, the corresponding uplift Ansätze are
consistent.

The second test is the verification of the equations of motion (Eqs. (5.19 – 5.21)) at
the G2 invariant stationary point of the scalar potential, which is given in Eq. (6.39).
Therefore, the value of the scalar potential at the stationary point and the inverse AdS4
radius (Eqs. (6.38, 5.30)) reduce to

V⋆ = −216
125

√
10 31/4g2, m2

4 = 144
125

√
10 31/4 m2

7. (6.40)

Furthermore, let us compute the Freund-Rubin term at the stationary point. Inserting
Eq. (6.39) into Eq. (6.37) results in

fFR

⏐⏐⏐
⋆

= 216
125

√
5 31/4 m7. (6.41)

In particular, it satisfies the conjecture in Eq. (4.65) — the y-dependence drops out
and fFR becomes a constant. Note that here and in the following, a subscript ⋆ always
denotes that the field is evaluated at the G2 invariant stationary point.
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Finally, one computes the following expressions at the stationary point:

∆gmn

⏐⏐⏐
⋆

= 5
108

√
10 33/4

15 − ξ
((33 − ξ)̊gmn + 6ξmn) ,

∆−3
⏐⏐⏐
⋆

= 3
1250

√
10 31/4 (15 − ξ)2, D̊m log ∆

⏐⏐⏐
⋆

= 4
3

m7

15 − ξ
ξm,

D̊m

(
∆−1gmnD̊n log ∆

) ⏐⏐⏐
⋆

= 144
25

√
10 31/4

(
21 − 26ξ + ξ2

(15 − ξ)2

)
m2

7,

D̊pΓ̃p
mn

⏐⏐⏐
⋆

= 12m2
7

(15 − ξ)3

[(
−783 + 675ξ − 45ξ2 + ξ3

)
g̊mn − 4

(
9 − 30ξ + ξ2

)
ξmn

]
,

Γ̃q
mpΓ̃p

qn

⏐⏐⏐
⋆

= −6(3 − ξ)m2
7

(15 − ξ)3

[(
261 − 18ξ + ξ2

)
g̊mn + 8(24 − ξ)ξmn

]
,

FmpqrFn
pqr
⏐⏐⏐
⋆

= 24
5

m2
7

(15 − ξ)2

((
1935 − 108ξ + ξ2

)
g̊mn + (270 − 6ξ) ξmn

)
,

∆−1FmnpqF
mnpq

⏐⏐⏐
⋆

= 5184
125

√
10 31/4

(
35 − ξ

15 − ξ

)
m2

7,

1
24 η̊mnpqrstFqrst

⏐⏐⏐
⋆

= 33/4m7

(15 − ξ)2

((
−81 + 36

√
3 + 3ξ

)
ξq

[mSnp]q +
(

17
12 − 1√

3
− 1

36ξ

)

×η̊mnpqrstξqSrst +
(

66 + 24
√

3 + 3ξ − 4
√

3ξ − 1
3ξ2

)
Smnp

)
,

D̊q

(
∆−1F mnpq

) ⏐⏐⏐
⋆

= 648
125

√
10 m2

7
(15 − ξ)2

((
−81 + 36

√
3 + 3ξ

)
ξq

[mSnp]q +
(

17
12 − 1√

3
− 1

36ξ

)

×η̊mnpqrstξqSrst +
(

66 + 24
√

3 + 3ξ − 4
√

3ξ − 1
3ξ2

)
Smnp

)
.

These are obtained using the identities in Eqs. (6.8, 6.9, 6.10). It is then straightforward
to verify the reduced equations of motion by inserting these expressions into Eqs. (5.19
– 5.21, 5.31, 5.32). The obtained Freund-Rubin solution is hence, verified.
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Supergravity

This chapter presents the embedding of SO(3)×SO(3) invariant supergravity into 11
dimensions. In principle, it can be obtained by repeating the steps of the previous two
chapters for an SO(3)×SO(3) invariant scalar field configuration. However, there are
more group invariant selfdual and anti-selfdual four-tensors satisfying various identities.
As a direct consequence, there are more group invariant S7 quantities that satisfy many
non-trivial identities, which are essential in order to simplify the obtained 11-dimensional
fields. Without these simplifications, it would be impossible to perform the consistency
checks for the obtained solution.

The first section presents the SO(3)×SO(3) invariant selfdual and anti-selfdual four-
tensors, which are required to express the vacuum expectation value as well as the
uij

IJ(x) and vijIJ(x) tensors in an appropriate way. It also gives the various relations
between them and defines the corresponding S7 quantities. The corresponding identities
for those S7 tensors are derived and collected in Appendix C.

Section 7.2 then constructs the 11-dimensional internal fields in terms of the four-
dimensional ones: the metric and its inverse, the warp factor, the form potentials, the
four-form field-strength and the Freund-Rubin factor. As it turns out, the intermediate
expressions become too long to write them down. Hence, only the final results are
presented, since the main guideline is the same as in the previous chapters. Finally,
Section 7.3 verifies the obtained Freund-Rubin solution.

7.1. SO(3)×SO(3) Invariant Tensors and Corresponding
S7 Quantities

Let us repeat the steps of Sections 5.1 and 6.1 for an SO(3)×SO(3) invariant scalar field
configuration. First, the selfdual and anti-selfdual SO(3)×SO(3) invariant tensors are

Φ(0)
IJKL = Y +

IJKL = 4!
(
δ1234

IJKL + δ5678
IJKL

)
, Ψ(0)

IJKL = Y −
IJKL = 4!

(
δ1235

IJKL + δ4678
IJKL

)
,

Φ(1)
IJKL = Z+

IJKL = 4!
(
δ1235

IJKL − δ4678
IJKL

)
, Ψ(1)

IJKL = Z−
IJKL = 4!

(
δ1234

IJKL − δ5678
IJKL

)
.

(7.1)

The two SO(3) subgroups act on the subspaces defined by I = 1, 2, 3 and I = 6, 7, 8
respectively. Note that this implies that there is another SO(3)×SO(3) invariant two-
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tensor,
FIJ = δ45

IJ . (7.2)
It corresponds to an additional U(1) rotation in the subspace that is not affected by the
SO(3)’s. Later, this tensor will be required to simplify some products of S7 quantities
in a convenient way.

The vacuum expectation value ϕIJKL(x) decomposes into the tensors defined in Eq. (7.1).
With

λ(0)(x) = λ(x)
2 cos α(x), µ(0)(x) = λ(x)

2 cos α(x),

λ(1)(x) = −λ(x)
2 sin α(x), µ(1)(x) = λ(x)

2 sin α(x),

one finds

ϕIJKL = λ

2
[
cos α

(
Y +

IJKL + iY −
IJKL

)
− sin α

(
Z+

IJKL − iZ−
IJKL

)]
. (7.3)

Let us now look for relations between the Y ± and Z± tensors. First, from Eq. (7.1)
there are the quadratic identities

Y +Y + = Z−Z−, Y −Y − = Z+Z+, (7.4)
Y +Z+ = Z−Y −, Y −Z− = Z+Y +, (7.5)
Y +Y − = Z−Z+, Y −Y + = Z+Z−, (7.6)
Z+Y − = Y −Z+, Y +Z− = Z−Y +. (7.7)

These do not help in simplifying the sums for uij
IJ(x) and vijIJ(x) in Eq. (5.4) but in

Appendix C, they will be useful to find convenient identities between the corresponding
S7 quantities. Furthermore, there are cubic identities between the SO(8) tensors defined
in Eq. (7.1). Indeed, (

Y +
)3

= 4Y +,
(
Z+

)3
= 4Z+, (7.8)(

Y −
)3

= 4Y −, Y +Y −Y + = 0, Y −Y +Y − = 0,

Y −Y +Y + + Y +Y +Y − = 4Y −, Y +Y −Y − + Y −Y −Y + = 4Y +,
(7.9)

(
Z−

)3
= 4Z−, Z+Z−Z+ = 0, Z−Z+Z− = 0,

Z−Z+Z+ + Z+Z+Z− = 4Z−, Z+Z−Z− + Z−Z−Z+ = 4Z+.
(7.10)

With these cubic relations, one may now construct a list of all group invariant four-
tensors that are required in order to simplify the uij

IJ(x) and vijIJ(x) tensors in Eq. (5.4).
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It turns out that this list only contains the selfdual and anti-selfdual tensors Y ± and Z±

as well as

Π = 1
8
(
Y + + iY −

) (
Y + − iY −

)
= 1

8
(
Z+ − iZ−

) (
Z+ + iZ−

)
. (7.11)

In particular, the latter satisfies the convenient properties

Π2 = Π, Π∗
IJKL = ΠKLIJ , (7.12)(

Y + − iY −
)

Π = Y + − iY −,
(
Z+ + iZ−

)
Π = Z+ + iZ−, (7.13)

ϕϕ∗ = 2λ2Π, ϕ∗Π = ϕ∗, (7.14)

which can be proved using the cubic identities in Eqs. (7.9, 7.10). Finally, Eq. (5.4)
reduces to

uIJ
KL = δKL

IJ + (c̃ − 1)ΠIJKL, (7.15)

vIJKL = s̃

2
√

2
[
cos α(Y + − iY −) − sin α(Z+ + iZ−)

]
IJKL

, (7.16)

where
c̃ = cosh(

√
2λ), s̃ = sinh(

√
2λ).

The explicit SO(3)×SO(3) invariant S7 quantities are denoted as

ξ(0) = ξ, ξ(0)
m = ξm, ξ(0)

mn = ξmn, S(0)
mnp = Smnp,

ξ(1) = ζ, ξ(1)
m = ζm, ξ(1)

mn = ζmn, S(1)
mnp = Tmnp,

and Eqs. (5.8 – 5.10) read

Y +
IJKL = ξ

6Km
[IJKm KL] − 3

2ξmnKm
[IJKn

KL] + 1
12ξmKmn

[IJKn KL],

Y −
IJKL = 1

2SmnpKmn
[IJKp

KL],

(7.17)

Z+
IJKL = ζ

6Km
[IJKm KL] − 3

2ζmnKm
[IJKn

KL] + 1
12ζmKmn

[IJKn KL],

Z−
IJKL = 1

2T mnpKmn
[IJKp

KL],

(7.18)

ξm = 1
16Y +

IJKLKIJ
mnKn KL , ξmn = − 1

16Y +
IJKLKIJ

m KKL
n , ξ = g̊mnξmn,

Smnp = 1
16Y −

IJKLK[mn
IJKp]

KL.
(7.19)

ζm = 1
16Z+

IJKLKIJ
mnKn KL , ζmn = − 1

16Z+
IJKLKIJ

m KKL
n , ζ = g̊mnζmn,

Tmnp = 1
16Z−

IJKLK[mn
IJKp]

KL.
(7.20)
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In addition, one may also decompose the FIJ tensor into the basis of antisymmetric
matrices provided by the Killing forms,

FIJ = 1
8FmKm IJ + 1

16FmnKmn IJ , Fm = FIJKm
IJ , Fmn = FIJKmn

IJ . (7.21)

The derivation of the various identities for these tensors is given in Appendix C. Fur-
thermore, the generic relations in Eqs. (5.12 – 5.16) translate to

D̊mξ = 2m7ξm, D̊mξn = 6m7 ξmn − 2m7 ξg̊mn,

D̊mξnp = 1
3m7

(
g̊npξm − g̊m(nξp)

)
, D̊mSnpq = 1

6m7η̊mnpq
rstSrst,

(7.22)

D̊mζ = 2m7ζm, D̊mζn = 6m7 ζmn − 2m7 ζg̊mn,

D̊mζnp = 1
3m7

(
g̊npζm − g̊m(nζp)

)
, D̊mTnpq = 1

6m7η̊mnpq
rstTrst,

(7.23)

D̊mFn = −m7Fmn, D̊pFmn = 2m7g̊p[mFn] (7.24)

and

Y IJKL
+ Km

KL = −2ξmnKn IJ − 1
3ξnKmn

IJ , (7.25)

Y IJKL
+ Kmn

KL = 2
3ξ[mKn]

IJ +
(2

3ξg̊mpg̊nq − 4̊gp[mξn]q

)
Kpq IJ , (7.26)

Y IJKL
− Km

KL = SmnpKnp IJ , (7.27)

Y IJKL
− Kmn

KL = 2SmnpKp IJ − 1
6 η̊mn

p1···p5Sp1p2p3Kp4p5
IJ , (7.28)

ZIJKL
+ Km

KL = −2ζmnKn IJ − 1
3ζnKmn

IJ , (7.29)

ZIJKL
+ Kmn

KL = 2
3ζ[mKn]

IJ +
(2

3ζg̊mpg̊nq − 4̊gp[mζn]q

)
Kpq IJ , (7.30)

ZIJKL
− Km

KL = TmnpKnp IJ , (7.31)

ZIJKL
− Kmn

KL = 2TmnpKp IJ − 1
6 η̊mn

p1···p5Tp1p2p3Kp4p5
IJ . (7.32)

Note that Eq. (7.24) can directly be obtained from the definition in Eq. (7.21) and
Eq. (4.11).

Finally, the corresponding contraction identities for the Π tensor read

ΠIJKLKm
KL = 1

36

[(
(18 − ξ2 − ζ2)̊gmn + 6ξξmn + 6ζζmn − ξmξn − ζmζn (7.33)

+ 3iSmnpξp − 3iTmnpζp
)
Kn IJ +

(
6ξmnξp + 6ζmnζp − ξg̊mnξp

− ζg̊mnζp − 3iξSmnp + 3iζTmnp + 18iSmn
qξpq − 18iTmn

qζpq

)
Knp IJ

]
,
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ΠIJKLKmn
KL = 1

18
[
ξξ[mg̊n]p + ζζ[mg̊n]p − 6ξ[mξn]p − 6ζ[mζn]p + 3iξSmnp − 3iζTmnp

− 18iξq
[mSn]pq + 18iζq

[mTn]pq

]
Kp IJ + 1

36
[
(18 + ξ2 + ζ2)δpq

mn

− 12ξξp
[mδq

n] − 12ζζp
[mδq

n] + 36ξp
mξq

n + 36ζp
mζq

n

]
Kpq

IJ

+ i

24
[
ξ[mSn]pq − ξ[pSq]mn − ζ[mTn]pq + ζ[pTq]mn − ξr

[mη̊n]pqrstuSstu

+ ξr
[pη̊q]mnrstuSstu + ζr

[mη̊n]pqrstuT stu − ζr
[pη̊q]mnrstuT stu

]
Kpq IJ . (7.34)

7.2. Constructing the SO(3)×SO(3) Invariant
Supergravity Solution

This section constructs the SO(3)×SO(3) invariant 11-dimensional supergravity. This
requires the contraction relations of the previous section as well as the S7 tensor identities
derived in Appendix C. Since the intermediate expressions (e.g. in Eqs. (7.33, 7.34))
become rather long, it is convenient to use the following trick in deriving the final 11-
dimensional fields: The uplift formulae in Eqs. (4.30, 4.31, 4.45, 4.64) always contain
double contractions between the uij

IJ(x) and vijIJ(x) tensors. Therefore, one may reduce
the order of S7 tensors in all Ansätze via

uMN
IJuMN

KL = δIJ
KL + s̃2Π∗

IJKL, vMNIJvMNKL = s̃2ΠIJKL, (7.35)

uMN
IJvMNKL = s̃c̃

2
√

2
[
cos α(Y + − iY −) − sin α(Z+ + iZ−)

]
IJKL

, (7.36)

vMNIJuMN
KL = s̃c̃

2
√

2
[
cos α(Y + + iY −) − sin α(Z+ − iZ−)

]
IJKL

. (7.37)

These relations can be proved using Eqs. (7.11 – 7.16). Then, one may simply find the
inverse internal metric by inserting Eqs. (7.35 – 7.37) into the Ansatz in Eq. (4.30), and
using the contraction identities in Eqs. (7.25 – 7.34) and Eq. (5.11). One finally finds

∆−1gmn =
[
c̃2 − s̃2

18(ξ2 + ζ2)
]

g̊mn − s̃2

18(ξmξn + ζmζn) + s̃

3 (X1ξ
mn + Z1ζ

mn) , (7.38)

where
X1(α) = ξs̃ − 3

√
2c̃ cos α, Z1(α) = ζs̃ + 3

√
2c̃ sin α. (7.39)

The result has been simplified using the S7 tensor identities in Appendix C.
In the same way, Eq. (4.31) reduces to

∆−1Amn
p = s̃

18
√

2
(
6s̃ξq[mSn]

pq − 6s̃ζq[mTn]
pq − X1Smn

p + Z1Tmn
p
)

. (7.40)
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For a convenient metric expression, one must use Eqs. (7.35 – 7.37) and Eq. (5.11)
twice as the corresponding Ansatz in Eq. (4.45) is quartic in the uij

IJ(x) and vijIJ(x)
tensors. Using the relations in Appendix C finally yields

∆−2gmn = 1
18(X 2

1 + Z2
1 )̊gmn − 1

3 s̃(X1ξmn + Z1ζmn) + s̃2

36fmfn, (7.41)

where
fm(α) =

√
2c̃ (sin α ξm + cos α ζm) + 3s̃Fm. (7.42)

One may now read off the warp factor. Indeed, ∆−2gmn(x, y) is inverse to the expres-
sion in Eq. (7.38),

∆−1gmp∆−2gpn = ∆−3δm
n , (7.43)

for
∆−3 = 1

36
(
X 2

2 + 2c̃2X2Z2 + Z2
2 + Y

)
. (7.44)

Here, one abbreviates

X2(α) =
√

2 cos α ξs̃ − 3c̃ , Z2(α) = −
√

2 sin α ζs̃ − 3c̃ ,

Y(α) = s̃4(cos2 α − sin2 α)(ξ2 − ζ2).
(7.45)

Note that Eq. (7.44) exactly coincides with the expression found in Ref. [51], where the
warp factor has been computed by taking the determinant of the metric expression in
Eq. (7.41).

The remaining upper index of the three-form potential in Eq. (7.40) may finally be
lowered with the metric,

∆−3Amnp = 1
18

√
2

[
−
(

s̃

2(1 + c̃2)X1 + s̃3c̃

6
√

2 ζ (sin α ξ + cos α ζ)
)

Smnp

+
(

s̃

2(1 + c̃2)Z1 − s̃3c̃

6
√

2 ξ (sin α ξ + cos α ζ)
)

Tmnp

+ s̃2

108 η̊mnpqrst (Z1ξ
q − X1ζ

q)
(
Z1S

rst + X1T
rst
)

− s̃3

12
(
X1ξ[m + Z1ζ[m

) (
Snp]qξ

q − Tnp]qζ
q
) ]

, (7.46)

and the dual six-form potential (Eq. (4.39)) can be computed using Eq. (7.22, 7.23),

∆Am = − s̃∆3

6
√

2

[ (
(1 + c̃2 cos 2α)X1 − c̃2 sin 2α Z1

)
ξm

+
(
−c̃2 sin 2α X1 + (1 − c̃2 cos 2α)Z1

)
ζm

]
− 3

√
2ζ̊m. (7.47)
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Both expressions have been simplified using the S7 tensor identities in Appendix C.
Finally, the six-form is obtained by dualizing the expression in Eq. (7.47),

Am1···m6 = − s̃∆3

36 · 6!
√

2
η̊m1···m7

[ (
(1 + c̃2 cos 2α)X1 − c̃2 sin 2α Z1

)
ξm7 (7.48)

+
(
−c̃2 sin 2α X1 + (1 − c̃2 cos 2α)Z1

)
ζm7

]
− 3

√
2ζ̊m1···m6 .

In order to find the four-form field-strength, one must first compute the expression
in Eq. (6.33) for the SO(3)×SO(3) invariant vacuum expectation value. Again, using
Eqs. (7.35 – 7.37) and Eq. (5.11) as well as the identities in Appendix C, one finally finds

Kmn IJKp KL
(
uij

IJ + vij IJ

) (
uij

KL + vij KL
)

= 8
9 s̃
[ (

ξs̃ + 3
√

2c̃ cos α
)

ξ[mg̊n]p

+
(
ζs̃ − 3

√
2c̃ sin α

)
ζ [mg̊n]p − 6s̃

(
ξ[mξn]p + ζ [mζn]p

) ]
. (7.49)

This can be used to derive the four-form via Eq. (6.32). The final simplified result is

Fmnpq = m7∆6

362

[
η̊mnpqrst

(
cSSrst + cT T rst + cUf rSstuξu

)
(7.50)

+ cV

(
Z1ξ[m − X1ζ[m

) (
Z1Snpq] + X1Tnpq

) ]
+ m7∆3

36
(
cXS ξ[mSnpq] + cXT ξ[mTnpq] + cZS ζ[mSnpq] + cZT ζ[mTnpq]

)
,

where one abbreviates

cS = 2sc cos α

3
(
X 2

1 + Z2
1

) (
(1 + c2 cos 2α)X 2

1 + (1 − c2 cos 2α)Z2
1 − 2c2 sin 2αX1Z1

)
+ 2

√
2s
(
−(1 + c2 cos 2α)X 3

1 − (1 + 3c2 cos 2α)X1Z2
1 + 2c2 sin 2αZ3

1

)
,

cT = 2sc sin α

3
(
X 2

1 + Z2
1

) (
(1 + c2 cos 2α)X 2

1 + (1 − c2 cos 2α)Z2
1 − 2c2 sin 2αX1Z1

)
+ 2

√
2s
(
(1 − c2 cos 2α)Z3

1 + (1 − 3c2 cos 2α)X 2
1 Z1 − 2c2 sin 2αX 3

1

)
,

cU = 2
√

2s3c2
(
Z2

1 sin 2α − 2X1Z1 cos 2α − X 2
1 sin 2α

)
,

cV = 16
√

2s2(c2 + 1)
(
cX2 + cZ2 + 3s2

)
,

cXS = −16s2c cos αX1 + 16s2c sin αZ1 + 24
√

2s2(1 + c2 cos 2α),

cXT = −16s2c sin αX1 − 16s2c cos αZ1 + 24
√

2s2c2 sin 2α),

cZS = −16s2c sin αX1 − 16s2c cos αZ1 − 24
√

2s2c2 sin 2α),

cZT = +16s2c cos αX1 − 16s2c sin αZ1 − 24
√

2s2(1 − c2 cos 2α).
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The expression for ∆−1F mnpq(x, y) has the same structure but contains even more terms.
Therefore, it is not displayed in full generality here, since it is only required in order to
verify the Freund-Rubin solution. Hence, it is computed in the next section at the
stationary point of the scalar potential, where it simplifies further.

Finally, one may compute the Freund-Rubin term using the Ansatz in Eq. (4.64). One
performs the same steps as for the derivation of the internal metric. The final result is

fFR = m7

[√
2

4
(
12 + 8s̃2 − s̃4

)
− s̃c̃

6
(
4 − s̃2

)
(ξ cos α − ζ sin α)

]
. (7.51)

In particular, it satisfies the conjecture in Eq. (4.65) [48].
The next section verifies the obtained solution in the case of a maximally symmetric

spacetime. Therefore, all fields must be evaluated at the stationary point of the scalar
potential [51]

V = g2

2 (s̃4 − 8s̃2 − 12), (7.52)

which is given by
c̃ =

√
5, s̃ = 2. (7.53)

Note that the stationary point does not depend on α. The reason is that a choice of
α corresponds to a particular gauge of the U(1) symmetry that is generated by the
two-tensor FIJ [51]. Hence, one may choose α arbitrarily. Here, a symmetric value of

α = −π

4 , sin α = − 1√
2

, cos α = 1√
2

(7.54)

is chosen, such that the α-dependent scalars X1,2(α), Z1,2(α) and Y(α) reduce to

Y = 0, X1 = X2 ≡ X = 2ξ − 3
√

5, Z1 = Z2 ≡ Z = 2ζ − 3
√

5 (7.55)

at the stationary point. These simplifications will be used in the next section in order
to verify the Freund-Rubin solution.

7.3. Verifying the SO(3)×SO(3) Invariant Solution
Let us finally verify the obtained SO(3)×SO(3) invariant solution of 11-dimensional
supergravity. Therefore, one may first check, whether the fields in Eqs. (7.44, 7.46, 7.47,
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7.50 7.51) satisfy the non-trivial relation in Eq. (5.18). Computing

∆−3

6 D̊m (∆Am) = m7
√

2(1 + c2)
(

c

6(X2 + Z2) − 1
1 + c2 − ∆3

36 s2
(
X 2

1 + Z2
1

))
,

∆−3

4!
√

2
η̊m1···m7Am1···m3Fm4···m7 = −m7

√
2(1 + c2)

×
(

s2c

4 + 4c2 (X2 + Z2) + s2

4 − ∆3

36 s2
(
X 2

1 + Z2
1

))
,

and inserting these expressions into the rhs of Eq. (5.18) indeed yields the Freund-Rubin
term that was computed in Eq. (7.51). Hence, the obtained 11-dimensional fields pass
this non-trivial consistency test.

The rest of this section verifies the obtained solution for a maximally symmetric space-
time. Therefore, one must evaluate all fields at the stationary point of the scalar poten-
tial. In the following, this is always denoted by a subscript ⋆1. The scalar potential in
Eq. (7.52) reduces to

V⋆ = −14g2, (7.56)

and the inverse AdS4 radius is given by Eq. (5.30),

m2
4 = 28

3 m2
7. (7.57)

Let us now verify that the obtained fields satisfy the Maxwell equations in Eq. (5.21).
Therefore, the Freund-Rubin parameter in Eq. (7.51) simplifies to

fFR

⏐⏐⏐
⋆

= 7
√

2m7. (7.58)

It satisfies the conjecture in Eq. (4.65). Furthermore, the seven-dimensional dual of the
four-form field-strength in Eq. (7.50) can be computed using the S7 tensor identities in
Appendix C. At the stationary point, the resulting expression reads

1
24 η̊mnpqrstFqrst

⏐⏐⏐
⋆

=
√

2m7∆6|⋆
362

[
d1(X , Z)

(√
5ζ [m −

√
5ξ[m + 6F [m

)
Snp]qξq (7.59)

+ η̊mnpqrst
(
d2(X , Z)ξqSrst + d3(X , Z)ξqTrst − d3(Z, X )ζqSrst

− d2(Z, X )ζqTrst

)
+ d4(X , Z)Smnp − d4(Z, X )T mnp

]
,

1The ⋆ also sets the parameter α to the value in Eq. (7.54)
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where

d1(X , Z) = 480
(
X 2 − Z2

)
,

d2(X , Z) = 4
(
X 2 + 10X Z + 49Z2

)
− 4

√
5

3
(
X 2 − Z2

)
(X + 11Z),

d3(X , Z) = −4
(
5X 2 + 2X Z + 5Z2

)
+ 4

√
5

3
(
X 3 + 21X 2Z + 3X Z2 − Z3

)
,

d4(X , Z) = −24(X + 2Z)
(
X 2 − 2X Z + 5Z2

)
+ 4

√
5
(
X 2 + Z2

) (
X 2 + 10X Z + Z2

)
,

and the warp factor is given by

∆−3
⏐⏐⏐
⋆

= 15 − 2
√

5(ξ + ζ) + ξ2 + 10ξζ + ζ2

9 . (7.60)

For the lhs of the Maxwell equations in Eq. (5.21), one must compute the four-form with
upper indices using Eq. (6.35) and the S7 tensor identities in Appendix C. In particular,
at the stationary point, one finds

∆−1F mnpq
⏐⏐⏐
⋆

=
√

2m7∆3|⋆
36

[
η̊mnpqrst

(
d5(X , Z)Srst − d5(Z, X )Trst (7.61)

+ d6(X , Z)ξrSstuξu − d6(Z, X )ζrTstuζu
)

+ d7(X , Z)ξ[mSnpq]

− d7(Z, X )ζ [mT npq] + d8(X , Z)ξ[mT npq] − d8(Z, X )ζ [mSnpq]
]
,

with

d5(X , Z) = −2
9

(
X 3 + 10X 2Z + X Z2 + 3

√
5

2
(
3X 2 + 16X Z + 17Z2

)
+ 63(X + 5Z)

)
,

d6(X , Z) = +2
9
(
−84X +

√
5
(
X 2 + 10X Z + Z2

))
,

d7(X , Z) = −8
9
(
3
(
X 2 + 10X Z − 27Z2

)
+

√
5
(
X 2Z + 10X Z2 + Z3

))
,

d8(X , Z) = −8
9
(
3
(
5X 2 + 22X Z + 5Z2

)
+

√
5
(
X 2Z + 10X Z2 + Z3

))
.

Finally, one may compute the derivative of the expression in Eq. (7.61) using the generic
identities in Eqs. (7.22 – 7.24). Simplifying the result using the S7 tensor identities in
Appendix C finally yields the rhs of the Maxwell equations in Eq. (5.21), which is given
by Eqs. (7.58, 7.59).
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Furthermore, in order to check whether the obtained 11-dimensional fields satisfy
Eq. (5.19), one must compute

D̊m log ∆
⏐⏐⏐
⋆

= 4m7∆3|⋆
27

[(
9
√

5 − ξ − 5ζ
)

ξm +
(
9
√

5 − 5ξ − ζ
)

ζm

]
,

(7.62)

D̊m

(
∆−1gmnD̊n log ∆

) ⏐⏐⏐
⋆

= −m2
7∆6|⋆
362

[
3360

(
5X 2 + 2X Z + 5Z2

)
(7.63)

+ 64
√

5(X + Z)
(
19X 2 − 50X Z + 19Z2

)
+ 8

3
(
91X 4 − 140X 3Z − 718X 2Z2 − 140X Z3 + 91Z4

) ]
,

∆−1FmnpqF
mnpq

⏐⏐⏐
⋆

= 16m2
7 ∆6|⋆
27

(
14X 4 + 35X 3Z + 178X 2Z2 + 35X Z3 + 14Z4

− 189(3X − Z)(3Z − X )
)
,

+ 3
√

5(X + Z)(19X 2 − 50X Z + 19Z2). (7.64)

Plugging these expressions into Eqs. (5.19, 5.31) then verifies the external Einstein equa-
tions.

Finally, one must verify the internal Einstein equations. Unfortunately, the required
terms like D̊pΓ̃p

mn

⏐⏐⏐
⋆

and Γ̃q
mpΓ̃p

qn

⏐⏐⏐
⋆

are too long to actually display them here. Only the
complete Ricci tensor becomes manageable, since a lot of terms cancel. As turns out, it
is even more convenient to raise one index in Eq. (5.20) with ∆−1gmn(x, y). Therefore,
the expressions for ∆−1Rm

n(x, y) and ∆−1FmpqrF
npqr(x, y) are computed here. Using

Eqs. (7.22 – 7.24) as well as the S7 tensor identities in Appendix C in the definition of
the internal Ricci tensor (Eq. (5.32)), one finally finds

∆−1Rm
n
⏐⏐⏐
⋆

= m2
7 ∆6|⋆
362

(
r0(X , Z)δn

m + r1(X , Z)ξm
n + r1(Z, X )ζm

n + r2(X , Z)Fm
n

+ r3(X , Z)ξmξn + r3(Z, X )ζmζn + r4(X , Z)FmF n

+ r5(X , Z)ξmζn + r5(Z, X )ζmξn + r6(X , Z)ξmF n

− r6(Z, X )ζmF n + r7(X , Z)Fmξn − r7(Z, X )Fmζn
)
, (7.65)
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where

r0(X , Z) = 2
√

5
3 (X + Z)

(
17X 4 − 80X 3Z − 66X 2Z2 − 80X Z3 + 17Z4

)
+ 40

3
(
13X 4 − 134X 3Z − 214X 2Z2 − 134X Z3 + 13Z4

)
+ 40

√
5(X + Z)

(
17X 2 − 58X Z + 17Z2

)
− 840(5X 2 + 2X Z + 5Z2),

r1(X , Z) = −10080
√

5(X 2 − Z2) − 96
(
41X 3 − 45X 2Z − 9X Z2 − 35Z3

)
− 8

√
5(X + Z)

(
17X 3 − 55X 2Z − 33X Z2 − 25Z3

)
,

r2(X , Z) = 10080(X 2 − Z2) + 96
√

5(X − Z)
(
7X 2 + 10X Z + 7Z2

)
+ 200(X − Z)(X + Z)3,

r3(X , Z) = 672
√

5(5X + 13Z) + 32(45X 2 − 160X Z + 79Z2)

+ 8
√

5
3

(
17X 3 + 43X 2Z − 149X Z2 + 17Z3

)
,

r4(X , Z) = −2016(X 2 + 10X Z + Z2) − 96
√

5(X + Z)(X 2 − 50X Z + Z2),

r5(X , Z) = −672
√

5(13X + 5Z) − 64(50X 2 − 33X Z − 5Z2)

− 8
√

5
3

(
81X 3 − 61X 2Z + 75X Z2 + 25Z3

)
,

r6(X , Z) = 336
√

5(X 2 + 10X Z + Z2) + 16
(
5X 3 − 188X 2Z − 175X Z2 − 38Z3

)
,

r7(X , Z) = −4032(5X + 13Z) − 48
√

5(35X 2 − 118X Z + 47Z2)

− 16
(
25X 3 + 116X 2Z − 75X Z2 + 66Z3

)
.

In the same way, one computes

∆−1FmpqrF
npqr

⏐⏐⏐
⋆

(7.66)

= −6∆−1Rm
n + 4 m2

7 ∆6|⋆
81

(
14X 4 + 35X 3Z + 178X 2Z2 + 35X Z3 + 14Z4

+ 3
√

5(X + Z)(19X 2 − 50X Z + 19Z2) + 63
4 (29X 2 − 190X Z + 29Z2)

)
δn

m

from Eqs. (7.50, 7.61). Together with Eqs. (7.58, 7.64), the internal Einstein equations
are finally verified.
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8. Conclusions
This thesis presents the complete bosonic embedding of gauged N = 8 supergravity into
11 dimensions. The higher-dimensional fields are redefined in a non-linear way, such that
their supersymmetry transformations are SU(8) and E7 covariant. Only these non-linear
reformulations can be related to the fields of N = 8 supergravity. This is the basis for
finding explicit embedding formulae for the 11-dimensional fields in terms of the four-
dimensional ones. As it turns out, the vector uplift Ansätze can simply be found when
the scalar Ansätze are known.

The first part summarizes all scalar embedding formulae. It presents the well known
Ansätze for the inverse metric [43], the internal three-form with mixed index structure
[45] and the internal six-form potential [47]. Furthermore, it derives new direct uplift for-
mulae for the metric, the warp factor and the full three-form potential [49, 50]. However,
the new Ansatz for the full internal three-form flux does not reveal its full antisymmetry.
This may be a hint that one can further simplify the expression for Amnp in Eq. (4.49)
using some E7 identities for the four-dimensional scalar fields.

The presented Ansätze are sufficient to construct a complete bosonic solution of 11-
dimensional supergravity in terms of the four-dimensional fields of N = 8 supergravity.
Such a solution may further be simplified by restricting the four-dimensional spacetime
to be maximally symmetric and evaluating the fields at a stationary point of the scalar
potential. Within the resulting Freund-Rubin solution, the 11-dimensional vector fields
must vanish and the given embedding formulae are complete. The consistency checks of
such solutions then require the calculation of the internal four-form field-strength and the
Freund-Rubin term. Here, the corresponding uplift Ansätze are also derived [48, 49, 50].

The second part of this thesis discusses group invariant solutions of 11-dimensional
supergravity. These are obtained when uplifting certain gaugings of N = 8 supergravity,
which are related to different deformations of the seven-sphere. In such cases, the embed-
ding formulae further simplify and the resulting 11-dimensional fields can be written in
terms of certain group invariant tensors that are adapted to the deformed seven-sphere.

In particular, the methods are used to embed two different gaugings of N = 8 su-
pergravity into 11 dimensions. The first example is the rederivation of the complete
G2 invariant Freund-Rubin solution [43, 48, 60]. Secondly, the full bosonic uplift of
SO(3)×SO(3) gauged supergravity is presented [51]. Finally, the consistency of these
solutions is explicitly verified.

In future, one may also find direct uplift Ansätze for the 11-dimensional Riemann
and Ricci tensor components, which are given by the second derivatives of the metric.
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Hence, one could find new simple expressions in full analogy to the derivation of the
field-strength Ansatz.

Furthermore, flow solutions are rarely investigated so far [58]. These are complete
group invariant solutions of 11-dimensional supergravity, in which the coordinates on the
scalar manifold λ(r)(x), µ(s)(x) flow from one stationary point to another in spacetime.
This must be consistent with the equations of motion, which reduce to certain differential
equations for λ(r)(x) and µ(s)(x). A first example could be a flow from the SO(7)+

invariant stationary point to the SO(7)− one (the common subgroup is G2). Both regions
have interesting features: the SO(7)+ invariant point is described by a vanishing three-
form potential and a non-trivial internal metric, whereas the SO(7)− invariant solution
comprises a non-trivial flux.

Finally, this thesis only discusses the compact gaugings of N = 8 supergravity, which
are derived via the S7 reduction of 11-dimensional supergravity. However, the methods
provided here could also be applied for other truncations. As a first example, one may
extend the theory to the non-compact CSO(p, q, r) gaugings [65, 66]. In this case, the
I, J, . . . indices of the Killing forms are raised and lowered with the CSO(p, q, r)-metric
ηIJ instead of the SO(8) metric δIJ . This effects the definition of the matrix RM

N in
Eqs. (4.18 – 4.20). In particular, the scalar embedding formulae will be slightly modified.
However, the subsequent Ansätze for the four-form field-strength and the Freund-Rubin
term will change more dramatically: Eqs. (4.52 – 4.55) do not hold if the I, J, . . . indices
of the Killing forms are raised and lowered with the full CSO(p, q, r) metric. Since the
Ansätze depend on those identities, it will take much more effort to derive adapted
Ansätze within the non-compact gaugings. Finally, the presented methods may also be
used for the reduction from type IIB supergravity to five dimensions [67, 68, 69].
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A. Useful Identities for Gamma
Matrices and Killing Forms

This Appendix summarizes some useful identities for the antisymmetrized products of
Γ and Γ̊ matrices that are defined in Eqs. (3.18, 4.10). In particular, these relations can
also be translated for the Killing forms that are defined in Eqs. (4.9).

First of all, Γ matrices with one and two indices are antisymmetric and Γ matrices
with three indices are symmetric. In particular, the two sets(

I8×8, Γm, Γmn, Γmnp

)
,

(
I8×8, Γ̊m, Γ̊mn, Γ̊mnp

)
each contain 1 + 7 + 21 + 35 = 64 independent matrices — they both span the vector
space of 8 × 8 matrices. In these bases,

Γm1...m7 = −iϵm1...m7I8×8, Γ̊m1...m7 = −i̊ηm1...m7I8×8,

Γm1...m6 = −iϵm1...m7Γm7 , Γ̊m1...m6 = −i̊ηm1...m7Γ̊m7 ,

Γm1...m5 = i

2ϵm1...m7Γm6m7 , Γ̊m1...m5 = i

2 η̊m1...m7Γ̊m6m7 ,

Γm1...m4 = i

3!ϵm1...m7Γm5···m7 , Γ̊m1...m4 = i

3! η̊m1...m7Γ̊m5···m7 .

Secondly, using the Clifford algebra in Eqs. (3.17, 4.8), the Γ matrices satisfy the useful
contraction relations

Tr (ΓmΓn) = 8gmn, Tr (ΓmΓnp) = 0, Tr (ΓmnΓpq) = −16δmn
pq , (A.1)

Tr
(
Γ̊mΓ̊n

)
= 8̊gmn, Tr

(
Γ̊mΓ̊np

)
= 0, Tr

(
Γ̊mnΓ̊pq

)
= −16δmn

pq . (A.2)

These can be translated to relations for the Killing forms in Eq. (4.9), using the or-
thonormality of the Killing spinors in Eq. (4.6):

Km
IJKn

IJ = 8̊gmn, Km
IJKnp

IJ = 0, Kmn IJKpq
IJ = 16δmn

pq . (A.3)

Similar identities can also be obtained for the traces of any products of Γ matrices or
Killing forms, e.g.

Tr (ΓmΓnΓpq) , Tr
(
Γ̊mnpΓ̊qΓ̊rsΓ̊t

)
, Km

IJKn
JKKpq KI .
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Indeed, using the Clifford algebra and the definition of the antisymmetrized products
of Γ matrices in Eqs. (3.17, 3.18, 4.8, 4.10), these expressions can be written solely in
terms of the respective metric and Levi-Cevita tensor. The explicit relations are not
listed here, as they are directly used within a FORM program.

Furthermore, the following bi-linears in the Γ matrices represent a basis of selfdual
and anti-selfdual SU(8) tensors on the deformed seven-sphere [55]:

selfdual : Γm [ABΓm
CD], Γmn [ABΓn

CD], Γm
[ABΓn

CD] ;
anti − selfdual : Γ[mn

[ABΓp]
CD].

(A.4)

The same holds for bi-linears in the Γ̊ matrices. Hence, the following combinations of
the Killing forms represent a basis of selfdual and anti-selfdual SO(8) tensors on the
deformed seven-sphere:

selfdual : Km
[IJKm KL], Kmn

[IJKn KL], Km
[IJKn

KL] ;
anti − selfdual : K[mn

[IJKp]
KL].

(A.5)

These two bases in Eqs. (A.4, A.5) are in some sense ‘orthogonal’, i.e. one has

Γm
[ABΓn

CD]Γp
ABΓq

CD = 16g(mngpq), Km
[IJKn

KL]Kp
IJKq

KL = 16̊g(mng̊pq), (A.6)

Γmp [ABΓp
CD]Γnq ABΓq

CD = −192gmn, Kmp
[IJKp KL]Knq

IJKq KL = 192̊gmn, (A.7)

Γ[mn
[ABΓp]

CD]Γ[qr ABΓs]CD = −32δmnp
qrs , K[qr

[IJKs]
KL]K [mn IJKp]KL = 32δmnp

qrs , (A.8)

whereas all other contractions, such as

Γm
[ABΓn

CD]Γpq ABΓq
CD = 0, Km

[IJKn
KL]Kpq

IJKq KL = 0 (A.9)

vanish identically.
Related to these bases are the following relations [55, 60]:

Γm ABΓm
CD + 2δAB

CD = Γm [ABΓm
CD], (A.10)

Γmn ABΓn
CD + Γmn CDΓn

AB = 2Γmn [ABΓn
CD], (A.11)

Γmn ABΓn
CD − Γmn CDΓn

AB = −4
(
δC[AΓm B]D − δD[AΓm B]C

)
, (A.12)

Γmn
[ABΓp

CD] = −1
3gp[mΓn]q

[ABΓq CD] + Γ[mn
[ABΓp]

CD], (A.13)

Γmn
[ABΓpq

CD] = −2gm[pΓq]
[ABΓn

CD] + 2gn[pΓq]
[ABΓm

CD]

+ 2
3gm[pgq]nΓr [ABΓr

CD] + Γ[mn
[ABΓpq]

CD], (A.14)
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as well as

Km
IJKm KL − 2δIJ

KL = Km
[IJKm KL], (A.15)

Kmn
IJKnKL + Kmn

KLKnIJ = 2Kmn
[IJKnKL], (A.16)

Kmn
IJKnKL − Kmn

KLKnIJ = −8δ[I
[KKm

J ]
L], (A.17)

Kmn
[IJKp

KL] = −1
3 g̊p[mKn]q

[IJKq KL] + K[mn
[IJKp]

KL], (A.18)

Kmn
[IJKpq

KL] = 2̊gm[pKq]
[IJKn

KL] − 2̊gn[pKq]
[IJKm

KL]

− 2
3 g̊m[pg̊q]nKr

[IJKr KL] + K[mn
[IJKpq]

KL]. (A.19)

Finally, it is convenient to define the selfdual tensor

KIJKL = Km
[IJKm KL], (A.20)

which satisfies the convenient identities [48]

KIJKP KLMNP = 6δIJK
LMN + 9δ[I

[LKJK]
MN ], (A.21)

K [IJKLKM ]NP Q = 1
5ϵIJKLMNP Q + 12K [IJK

[NδL
P δM ]

Q], (A.22)

Km IJKn KLKmn
MN = 8δ[I

[KδJ ][MδN ]
L] (A.23)

+ 4δ[M
[IKN ]

J ]KL + 4δ[K
[MKL]

N ]IJ − 4δ[I
[KKJ ]

L]MN .
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B. Factorization of the C Tensor
This appendix shows that one can extract a Kronecker-delta out of the C tensor defined
in Eq. (4.47) [49],

Cpq
ijkl(x, y) = 4

3δ[i
[p
(
C1 q]

jkl](x, y) + 2C2 q]
jkl](x, y) − 2Tq]

jkl](x)
)

, (B.1)

where

C1 p
ijk(x, y) = KIJKL(y)

(
ujk

IJ + vjk IJ
) (

uim
KMupm

LM − vim KMvpm LM

)
(x), (B.2)

C2 p
ijk(x, y) = KIJKL(y)

(
ujk

IM + vjk IM
) [ (

uim
[JKvpm LM ] − vim [JKupm

LM ]
)

(B.3)

− 1
8δi

p

(
umn

[JKvmn LM ] − vmn [JKumn
LM ]

) ]
(x).

The selfdual tensor KIJKL is defined as a certain combination of Killing vectors in
Eq. (A.20) and satisfies some useful relations given in Appendix A. The third term in
Eq. (B.1) represents the T tensor, which is defined in Eq. (2.11). Note that the only
difference between C1 p

ijk and the T tensor is the KIJKL factor in Eq. (B.2) instead of a
δIJ

KL factor in Eq. (2.11). This gives rise to interpret C1 and C2 as the y-dependent twins
of the T tensor.

In order to prove Eq. (B.1), one starts with Eq. (4.47) and replaces the tensors
Am

ijkl and Bm
ijkl with the respective expressions in Eqs. (4.43, 4.44). Secondly, us-

ing Eqs. (A.15, A.23) gives

Cpq
ijkl = −2KIJKL

(
upq

IM + vpq IM

) (
uij

[JKukl
LM ] − vij [JKvkl LM ]

)
− KIJKL

(
upq

KL + vpq KL

) (
uij

IMvkl JM − vij IMukl
JM

)
− 8

3δ[i
[pTq]

jkl], (B.4)

which can be rearranged,

Cpq
ijkl = 2KIJKL

(
u[ij

IJ + v[ij IJ
) (

ukl]
KMupq

LM − vkl] KMvpq LM

)
(B.5)

+ 4KIJKL
(
u[ij

IM + v[ij IM
) (

ukl]
[JKvpq LM ] − vkl] [JKupq

LM ]
)

− 8
3δ[i

[pTq]
jkl].

Finally, using Eqs. (2.31, 2.32) completes the proof of Eq. (B.1). In order to keep
the formulae short, this factorization of the Cpq

ijkl tensor is not inserted into the uplift
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Ansätze for the warp factor and the three-form in Eqs. (4.46, 4.49). However, one should
always keep in mind that these expressions can still be simplified via Eq. (B.1). For
example, this could be a first step in proving the explicit antisymmetry of the three-form
Ansatz.
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C. Useful Identities for the
SO(3)×SO(3) Invariant S7 Tensors

This section gives all identities for the S7 tensors defined in Eqs. (7.19 – 7.21), which
are required to simplify the obtained 11-dimensional SO(3)×SO(3) invariant fields. The
starting point to derive such identities are the relations between the SO(8) tensors Y ±

and Z± in Eqs. (7.4 – 7.8). All these relations can be contracted with the following
combinations of Killing forms

Km
IJKn

KL, Kmn
IJKp

KL, Km
IJKnp

KL, Kmn
IJKpq

KL.

The contraction with each of these terms gives another identity when using Eqs. (7.25 –
7.32) and the relations in Eq. (5.11).

The identities are listed in Tables C.1 – C.7. Each table represents identities that
are derived from a different relation between the SO(8) tensors. The only used cubic
identities are given in Eq. (7.8). The reason is that the identities that follow from
Eqs. (7.9, 7.10) can also be obtained from Eqs. (7.4 – 7.7).

Finally, one finds the useful relations involving the FIJ tensor from Eqs. (7.1, 7.2):

Y +
IKLMZ+

JKLM = Z−
IKLMY −

JKLM = 12FIJ , (C.1)

Y ±
IJKLF KL = Z±

IJKLF KL = 0, (C.2)

8Y ±
[IJK|M |F

M
L] = ±Z±

IJKL, 8Z±
[IJK|M |F

M
L] = ∓Y ±

IJKL. (C.3)

These can also be contracted with the Killing forms in order to derive useful identities for
the SO(3)×SO(3) invariant S7 tensors. Here, one must use the explicit decomposition
of the Y ± and Z± tensors in Eqs. (7.17, 7.18) as well as the contraction relations for the
Killing forms described in Appendix A.

Note that all derived identities are presented in a systematic way — the derivation of
later identities may require previous relations.
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C. Useful Identities for the SO(3) × SO(3) Invariant S7 Tensors

Table C.1.: Identities derived from Eq. (7.4) and Eq. (7.8).

(i) ξmnξmn = 3
2 + ξ2

6 , ξpξp = 9 − ξ2,

(ii) ζmnζmn = 3
2 + ζ2

6 , ζpζp = 9 − ζ2

(iii) SmnpSmnp = 6, ξmnξn = 0,

(iv) TmnpT mnp = 6 ζmnζn = 0

(v) ξmpξn
p =

(
1
4 − ξ2

36

)
g̊mn + ξ

3ξmn − 1
36ξmξn,

(vi) ζmpζn
p =

(
1
4 − ζ2

36

)
g̊mn + ζ

3ζmn − 1
36ζmζn

(vii) SmpqSn
pq =

(
1 − ζ2

9

)
g̊mn − 1

9ζmζn + 2ζ
3 ζmn,

(viii) T mpqT n
pq =

(
1 − ξ2

9

)
g̊mn − 1

9ξmξn + 2ξ
3 ξmn

(ix) η̊mnqrstuT qrsT tu
p = 8ξ[mξn]p − 4

3ξξ[mg̊n]p,

(x) η̊mnqrstuSqrsStu
p = 8ζ[mζn]p − 4

3ζζ[mg̊n]p

(xi) SmnrSpqr = 2ζ [m
[pζn]

q] +
(

1
2 − ζ2

18

)
δmn

pq − 1
9ζ [mζ[pδq]

n]

(xii) T mnrTpqr = 2ξ[m
[pξn]

q] +
(

1
2 − ξ2

18

)
δmn

pq − 1
9ξ[mξ[pδq]

n]
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C. Useful Identities for the SO(3) × SO(3) Invariant S7 Tensors

Table C.2.: Identities derived from Eq. (7.5) and Eq. (C.1).

(i) ξmζm = −ξζ, ξmnζmn = 1
6ξζ, SmnpT mnp = 0

(ii) η̊mnpqrstSnpqTrst = 18F m

(iii) ξmnζn = ξ
6ζm − ζ

6ξm + 3
2F m, ζmnξn = − ξ

6ζm + ζ
6ξm − 3

2F m

(iv) ξmpζn
p = − 1

36ξζg̊mn − 1
36ξmζn + 1

6 (ζξmn + ξζmn) + 1
4F mn

(v) Sm
pqT

npq = −1
9ξζg̊mn − 1

18 (ξmζn + ζmξn) + 1
3 (ζξmn + ξζmn) − 1

2F mn

(vi) η̊npqrstuSm
qrT stu = −4ξm[nζp] − 4ζm[nξp] + 2

3ζg̊m[nξp] + 2
3ξg̊m[nζp] − 6̊gm[nFp]

(vii) η̊npqrstuTm
qrSstu = −4ξm[nζp] − 4ζm[nξp] + 2

3ζg̊m[nξp] + 2
3ξg̊m[nζp] + 6̊gm[nFp]

(viii) SmnrTpqr + T mnrSpqr = −1
9ξζδmn

pq − 1
9ξ[mζ[pδ

n]
q] − 1

9ζ [mξ[pδ
n]
q] + 4ξ[m

[pζn]
q]

Table C.3.: Identities derived from Eq. (7.6) and Eq. (7.7).

(i) Smnpξp + Tmnpζp = 0, Smnpζp = Tmnpξp = 0

(ii) Sqmnζp
q = Sq[mnζp]

q = ζ
3Smnp − 1

36 η̊mnpqrstζ
qSrst

(iii) Tqmnξp
q = Tq[mnξp]

q = ξ
3Tmnp − 1

36 η̊mnpqrstξ
qT rst

(iv) 4ζqrTrmn − 1
9 η̊q

mnstuvζsT tuv = 8Ssq
[mξn]s − 4

3ξSq
mn

(v) 4ξqrSrmn − 1
9 η̊q

mnstuvξsStuv = 8T sq
[mζn]s − 4

3ζT q
mn

(vi) ξr
[mη̊n]pqrstuSstu − ζr

[pη̊q]mnrstuT stu =

ξ[mSn]pq − ζ[pTq]mn + 1
6 η̊mnpqrst(ζT rst − ξSrst)
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C. Useful Identities for the SO(3) × SO(3) Invariant S7 Tensors

Table C.4.: Identities derived from Eq. (C.2) and Eq. (C.3).

(i) SmnpFnp = 0, SmnpFp = 1
12 η̊mnpqrstSpqrFst

(ii) T mnpFnp = 0, T mnpFp = 1
12 η̊mnpqrstTpqrFst

(iii) Sq[mnF p]
q = 2

3T mnp + 1
18 η̊mnpqrstSqrsFt

(iv) T q[mnF p]
q = −2

3Smnp + 1
18 η̊mnpqrstTqrsFt

Table C.5.: F tensor identities derived by contractions of the equations (iii) and (iv) in
Table C.2 with ξm, ζm, Fm, ξmq, ζmq and Fmq.

(i) Fmξm = ζ, Fmζm = −ξ, Fmξmn = 1
6ζn + ξ

6F n, Fmζmn = −1
6ξn + ζ

6F n

(ii) Fmnξn = −ζm − ξFm, Fmpξp
n = ζ

6 g̊mn − 1
6Fmξn − ζmn + ξ

6Fmn

(iii) Fmnζn = ξm − ζFm, Fmpζp
n = − ξ

6 g̊mn − 1
6Fmζn + ξmn + ζ

6Fmn

(iv) F mFm = 1, F mnFn = 0, F mpFpn = F mFn − δm
n

Table C.6.: Subsequent identities derived by combining the equations (iv) and (v) in
Table C.3.

(i) ξsmSnp
s + ζsmTnp

s = ξs[mSnp]
s + ζs[mTnp]

s

(ii) ξs[mSnp]
s = 1

9(ζTmnp + 2ξSmnp) − 1
108 η̊mnpqrst(2ζqT rst + ξqSrst)

(iii) ζs[mTnp]
s = 1

9(ξSmnp + 2ζTmnp) − 1
108 η̊mnpqrst(2ξqSrst + ζqT rst)
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C. Useful Identities for the SO(3) × SO(3) Invariant S7 Tensors

Table C.7.: Identities derived by contractions of the equations (ii) and (iii) in Table C.3
with ξp, ζp and F p; and contractions of equations (iii) and (iv) in Table C.4
with ξm and ζm respectively.

(i) η̊mnpqrstξ
pζqSrst = 6ζSmnpξp + 54SmnpF p,

(ii) η̊mnpqrstζ
pξqT rst = 6ξTmnpζp − 54TmnpF p

(iii) η̊mnpqrstF
pζqSrst = 6Smnpξp + 6ζSmnpF p,

(iv) η̊mnpqrstF
pξqT rst = −6Tmnpζp + 6ξTmnpF p

(v) η̊mnpqrstF
pξqSrst = 6ξSmnpF p, η̊mnpqrstF

pζqT rst = 6ζTmnpF p
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