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Abstract

This thesis presents the complete embedding of the bosonic section of gauged N = 8
supergravity into 11 dimensions. The fields of 11-dimensional supergravity are refor-
mulated in a non-linear way, such that their supersymmetry transformations can be
compared to the four-dimensional ones. In this way, non-linear relations between the
redefined higher-dimensional fields and the fields of N = 8 supergravity were already
found in the literature. This is the basis for finding direct uplift Ansétze for the bosonic
fields of 11-dimensional supergravity in terms of the four-dimensional ones.

This work gives the scalar Ansétze for the internal fields. First, the well known uplift
formulae for the inverse metric, the three-form potential with mixed index structure
and the six-form potential are summarized. Secondly, new embedding formulae for the
explicit internal metric, the full three-form potential and the warp factor are presented.
Additionally, two subsequent non-linear Ansédtze for the full internal four-form field-
strength and the Freund-Rubin term are found. Finally, the vector uplift can simply be
found in terms of the obtained scalar fields.

The second part of this thesis uses the obtained embedding formulae in order to
construct group invariant solutions of 11-dimensional supergravity. In such cases, the
higher-dimensional fields can be written solely in terms of certain group invariant tensors
that are adapted to the particular geometry of the internal space. Two such examples
are discussed in detail. The first one is the well-known uplift of G, gauged supergravity.
Furthermore, a new SO(3)xSO(3) invariant solution of 11-dimensional supergravity is
found. In particular, the consistency of both solutions is explicitly checked for a maxi-
mally symmetric spacetime.

The results may be generalized to other compactifications, e.g. the non-compact
CSO(p, q,r) gaugings or the reduction from type IIB supergravity to five dimensions.
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Zusammenfassung

Diese Doktorarbeit behandelt die bosonische Einbettung der geeichten N = 8 Super-
gravitation in elf Dimensionen. Die hoherdimensionalen Felder miissen zuerst nichtli-
near umdefiniert werden, sodass ihre supersymmetrischen Transformationen mit denen
der vierdimensionalen Felder verglichen werden konnen. So wurden in der Literatur
nichtlineare Beziehungen zwischen den neu definierten elfdimensionalen Feldern und den
Feldern der N = 8 Supergravitation gefunden. Darauf basierend kénnen nun direkte
Ansétze gefunden werden, die eine vierdimensionale in eine elfdimensionale Losung der
Supergravitation einbetten.

Die Arbeit prasentiert alle Ansétze fiir die skalaren internen Felder. Zuerst werden die
schon bekannten Einbettungsformeln fiir die inverse Metrik, das Dreiform-Potential mit
gemischter Indexstruktur sowie das Sechsform-Potential zusammengefasst. Danach wer-
den neue Anséatze fir die explizite interne Metrik, das vollstandige Dreiform-Potential,
den Warp Faktor, die Vierform Feldstarke sowie den Freund-Rubin Faktor gefunden. Die
Einbettung der Vektorbosonen hangt dann nur von den skalaren Feldern ab.

Der zweite Teil der Arbeit benutzt die gefundenen Einbettungsformeln, um gruppen-
invariante Losungen der elfdimensionalen Supergravitation zu finden. In solchen Féllen
hingen die hoherdimensionalen Felder ausschlielich von speziellen gruppeninvarianten
Tensoren ab, die auf die jeweilige interne Geometrie angepasst sind. Als Beispiel wird
zuerst die schon bekannte Einbettung der G, invarianten Supergravitation zusammenge-
fasst. Dann wird eine neue SO(3)xSO(3) invariante Losung der elfdimensionalen Super-
gravitation gefunden. Schliefllich wird die Konsistenz der gefundenen Losungen fiir eine
maximal symmetrische Raumzeit tiberpriift.

Die Ergebnisse konnen auf andere Kompaktifizierungen verallgemeinert werden, z.B.
auf die nichtkompakten CSO(p, q,r) Eichungen oder auf die Reduzierung der Typ IIB
Supergravitation zu fiinf Dimensionen.
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1. Introduction

1.1. General Relativity and the Standard Model of
Particle Physics

The four fundamental forces that are observed in nature are well described by two dif-
ferent physical theories — general relativity and the Standard Model of particle physics.
On the one hand, Einstein’s general relativity describes gravity as the result of curved
four-dimensional spacetime [1, 2, 3, 4]. This classical field theory is based on the Einstein-
Hilbert action, whose Euler-Lagrange equations (the ‘Einstein equations’) set restrictions
on the spacetime itself. Mathematically, these relations are second-order differential
equations for the metric, which is a symmetric 4 x 4 matrix that fully describes the
spacetime.

This theory of gravity passed several non-trivial tests during the past 100 years. For
example, solving the Einstein equations assuming spherical symmetry leads to the cel-
ebrated Schwarzschild metric [5], which specifies the spacetime around stars and black
holes. This precisely describes the movement of massive test particles and explains the
bending of light rays in a gravitational field. A further solution of the linearized Einstein
equations describes gravitational waves, which were only recently discovered [6]. Finally,
general relativity allows us to study cosmology: Assuming an isotropic and homogeneous
spacetime at very large scales, one finds the dynamics of the universe itself. In partic-
ular, this dynamics is determined by the Friedmann equations, which are the reduced
Einstein equations in that case [7, 8]. This model provides a possible explanation for the
observed expanding universe and also gives information about its size and age.

Unfortunately, general relativity does not explain all the observed gravitational effects.
For example, it leads to the wrong radial dependence of the rotational velocities of stars
within a galaxy. In order to solve this open problem, there are two common suggestions:
One is the modification of the gravitational laws themselves on large scales, described
for example by Tensor-Vector-Scalar (TeVeS) or f(R) theories [9, 10, 11]. Since none
of the existing modifications consistently describe all astronomical observations, another
idea is to assume ‘dark matter’ within galaxies. These are massive particles that affect
the gravitational interactions but are otherwise almost invisible. The search for such
particles is a current field of research but so far, none have been found. A second
problem of general relativity is related to the expansion of the universe. In principle,
the expansion requires a vacuum energy that acts against the gravitational collapse of



1. Introduction

the universe, which is commonly known as dark energy. The notion of a vacuum energy
is also well known in particle physics, but the estimated values of both theories differ
by 120 orders of magnitudes. This discrepancy is one of the most puzzling problems in
physics.

On the other hand, the Standard Model of particle physics describes the electromag-
netic, weak and strong forces of nature [12, 13]. It is a ‘quantum’ field theory that
is based on a complicated action that includes all elementary particle fields (such as
quarks, leptons and gauge bosons). The main difference to a classical field theory is
in the description of interactions. A classical field configuration precisely satisfies the
Euler-Lagrange equations and therefore extremizes the associated action. In contrast,
all information that one can seek about a quantum field configuration is its probability
to be in a certain state. Mathematically, this probability is determined by the exponen-
tial of the action — the smaller the value of the action for a certain field configuration,
the higher is the corresponding probability. One may finally compute the physical ob-
servable expectation value for a quantum field. In particular, in the classical limit, this
field expectation value coincides with the classical field configuration that extremizes the
action.

There are only few restrictions to construct the most general action for the Standard
Model of particle physics. In principle, these rules determine the corresponding interac-
tion probabilities. For example, the action must be invariant under the Lorentz group
SO(1,3) and the ‘gauge group’ U(1)xSU(2)xSU(3). Here, the strong sector is described
by an SU(3) gauge group of ‘color’ and the corresponding interactions must be described
using non-perturbative methods. On the other hand, the gauge group U(1)xSU(2)
describes the electroweak sector, in which all calculations may be performed perturba-
tively using Feynman integrals and renormalization methods. However, Lorentz and
U(1)xSU(2) gauge invariance lead to a serious problem, namely that all particles must
be massless. The simplest solution was suggested by Higgs, Englert, Brout, Guralnik,
Hagen and Kibble in 1964 [14, 15, 16]. They proposed a mechanism that breaks the
U(1)xSU(2) symmetry group down to the U(1) gauge group of electromagnetism. This
provides the correct masses for the W and Z gauge bosons of the weak force, whereas the
photon of the electromagnetic force remains massless. Furthermore, leptons may acquire
a mass via the introduction of Yukawa couplings. This spontaneous symmetry breaking
only requires one additional scalar particle — the Higgs boson, which was finally found
four years ago at the Large Hadron Collider at CERN [17, 18].

Although tested in diverse experiments, the Standard Model can not explain all ob-
served electroweak and strong effects. The first one is related to the neutrino flavor
oscillations: Experiments in the 1960s measured the flux of solar neutrinos through the
earth. The number of detected electron neutrinos was far too small compared to the
expected number (based on the estimated nuclear fusion reactions in the sun). This is
called the ‘solar neutrino problem’ In 1968, Pontecorvo proposed that massive neutri-
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nos could change their flavor when traveling over long distances [19]. Finally in 1998
and 2001, the Super-Kamiokande Observatory and the Sudbury Neutrino observatory
independently measured all solar neutrinos traveling through the earth and found that
the missing amount of electron neutrinos was compensated by the observed amount of
muon and tau neutrinos [20, 21]. This proved that neutrinos indeed oscillate in flavor
and are hence not all massless, which contradicts the prediction of the Standard Model.

A second serious puzzle is the ‘hierarchy problem’: Naturally, the quantum corrections
to the renormalized mass of the Higgs boson would make it far heavier than observed
in current detectors. Assuming that the Standard Model of particle physics is complete,
the only reason for the relatively small Higgs mass would be a precise ‘fine-tuning’ of the
‘bare Higgs mass’ — such that it exactly cancels the quantum corrections. Since this
seems to be very unnatural for physicists, it is strongly believed that physics beyond the
Standard Model does not require such a fine-tuning. The hierarchy problem was one
of the main motivations to study supersymmetry — a quantum field theory in which
each elementary particle has a supersymmetric partner with opposite spin statistics. In
this case, the quantum corrections to the Higgs mass coming from a certain particle and
its super-partner precisely cancel. Hence, the bare Higgs mass must not be unnaturally
fine-tuned. Unfortunately, no supersymmetric partner of an elementary particle has been
observed so far.

All in all, both theories can not describe the respective opposite regime: General
relativity is a classical field theory, and a quantum field theory including curved spacetime
would inevitably result in divergences that can not be renormalized. It is therefore only
natural to ask for a more fundamental theory that unifies all forces of nature. Such a
‘theory of everything’ could then solve the current open problems that exist within the
limits of both theories.

1.2. Kaluza-Klein Theory and Supergravity

One attempt to unify Einstein’s general relativity and the Standard Model of particle
physics is Kaluza-Klein theory. The original idea was to construct a pure D > 4 gravity
theory based on a D-dimensional Einstein-Hilbert action. However, our world is four-
dimensional, so, where are the extra dimensions? The answer is given by a mathematical
concept called dimensional reduction: The extra dimensions compactify on such a small
scale that one does not observe them in everyday’s life. The result is a four-dimensional
curved spacetime and the compactified dimensions lead to internal gauge symmetries.
Let us consider the initial example that inspired Kaluza and Klein to propose this
theory in the 1920s [22, 23]: They considered a five-dimensional theory of gravity with
an Einstein-Hilbert action for the five-dimensional metric. At each point p in spacetime,
the fifth axis now becomes isomorphic to a circle when gluing the five-dimensional points
(p, —o0) and (p, +00) together. This procedure is called U(1) compactification, because



1. Introduction

the isometry group of a circle is U(1). The resulting theory is hence, general relativity
describing the spacetime together with an internal U(1) gauge symmetry of electromag-
netism. Under this compactification, the 15 degrees of freedom of the five-dimensional
metric (a symmetric 5x5 matrix) split as follows: 10 components describe the four-
dimensional spacetime metric (a symmetric 4x4 matrix), one four-vector describes the
photon and the remaining degree of freedom is contained in a real scalar field. Using
this decomposition, the five-dimensional Einstein-Hilbert action consistently reduces to
a four-dimensional Einstein-Hilbert term plus several other terms, which describe the
interactions between the photon and the scalar field. In particular, the Euler-Lagrange
equations reduce to the Einstein equations for the spacetime, the Maxwell equations
of electrodynamics and an additional relation for the scalar field. Unfortunately, this
procedure does not lead to the correct electromagnetic interactions that are observed in
particle detectors.

Later, physicists extended Kaluza-Klein theory to obtain larger gauge groups, e.g. to
find the Standard Model of particle physics in the compactified dimensions [24, 25, 26,
27, 28, 29]. In the general approach, the manifold Mp of a D-dimensional gravity theory
spontaneously compactifies according to

MD:M4><MD,4. (1.1)

Let us assume for a moment that a stable ground state solution is already known, i.e. a
complete set of D-dimensional fields ®(x,y) that fulfill the corresponding equations of
motion. Here, z and y denote the coordinates on My and M p_4 respectively. Further
solutions

O(z,y) = Po(z,y) + > 2" (2)Y ™ (y) (1.2)

can then be found by a linear expansion of the higher-dimensional fields around this
ground state. In particular, the expansion coefficients ®(™(z) represent the physical
fields of a four-dimensional theory and Y™ (y) are the eigenfunctions of a mass oper-
ator that acts on the internal manifold Mp_4. This gives a finite number of massless
Kaluza-Klein modes — the Yang Mills fields — and infinitely many massive states. Since
these massive modes would be too heavy to detect in current observations, one discards
them and restricts to the zero mass sector. This truncation of the theory is called the
‘low energy limit’ and must be consistent, i.e. the fields ®(x,y) must still satisfy the
11-dimensional equations of motion. Only when this is the case, each four-dimensional
solution {® (2)} finally corresponds to a solution {®(z,y)} of the D-dimensional grav-
ity theory. In particular, this method is a powerful tool to understand a complicated
four-dimensional theory in a higher-dimensional framework — the complexity is induced
by the reduction scheme.

The idea of relating gravity theories in different dimensions to each other finally led
to a more general attempt to unify general relativity and the Standard Model of particle
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physics: Supergravity. In principle, the basic idea was to make supersymmetry local [30].
Later, a first consistent gravity theory with one supersymmetry was proposed in 1976 —
the so-called minimal supergravity in four dimensions [31]. In the following years, several
generalizations were suggested, e.g. N = 8 supergravity in four dimensions. It has the
maximal number of supersymmetries, assuming that there is no particle with spin higher
than two. It was first investigated by de Wit and Freedman in 1977 [32] but turned out
to be difficult to construct. A second example is 11-dimensional supergravity, which was
proposed by Cremmer and Julia only one year later [33]. In these years, the uniqueness of
the latter theory made it an adequate candidate for a ‘theory of everything’. Indeed, 11 is
the maximal dimension consistent with a single graviton of spin two [34] and the minimal
dimension to cover the Standard Model of particle physics under a compactification of
the extra dimensions [29]. Unfortunately, the corresponding reductions turned out to be
tnconsistent.

In general, to establish a consistent Kaluza-Klein reduction from one supergravity the-
ory to another is even more complicated than in the non-supersymmetric case [35]. The
reason is the following: For the above linear expansion in Eq. (1.2), the supersymmetry
transformations in both theories must be related via

00 (x,y) = 300" ()Y " (y). (1.3)

However, the supersymmetry transformations are non-linear in all fields. Hence, the
Ihs is equal to a non-linear combination of the higher-dimensional fields, F(®(z,y)). In
particular, when applying Eq. (1.2) on the lhs again, the y-dependent factor also becomes
non-linear in the eigenfunctions Y™ (y). This is a contradiction to Eq. (1.3) and hence,
the linear expansion in Eq. (1.2) and its truncation can not be consistent. Therefore, the
only way out is a non-linear modification of Eq. (1.2), i.e. the higher-dimensional fields
must be redefined in a non-linear way, ®(z,y) — F(P(x,y)), such that both,

F(2(z,y)) = F(®o(x,y)) + > " ()Y " (y),

SE(@(a,y)) = 32600 ()Y ) (y) -
n

hold separately. If such a non-linear modification exists, the truncation is automatically
consistent, because the supersymmetry transformations close on-shell. In other words, if
{®()(x)} is a classical four-dimensional solution and the supersymmetry transformations
satisfy Eq. (1.4), then, the fields ®(z,y) also satisfy the 11-dimensional equations of
motion.

The first investigated consistent compactification of 11-dimensional supergravity is
the reduction of the extra dimensions on a seven-torus. The resulting four-dimensional
theory is ungauged N = 8 supergravity [36]'. Here, the fermions transform under a local

!Note that only in this way, the (relatively complicated) N = 8 supergravity could finally be completed
using the scheme of dimensional reduction.
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SU(8) gauge group and the corresponding scalar and vector fields transform under a
global E; group of ‘duality invariance’ In particular, the four-dimensional supersymme-
try transformations are manifestly SU(8) and E; covariant. This is the basis to find the
redefinitions of the 11-dimensional fields, ®(z,y) — F(®(z,y)). One requires that the
resulting supersymmetry transformations are also SU(8) and E; covariant. In this way,
the complete torus reduction can consistently be found.

On the other hand, 11-dimensional supergravity may be reduced to maximally gauged
N = 8 supergravity [37], when the internal dimensions are compactified on a seven-
sphere [38, 39, 40, 41]. This can be done by gluing together all points at infinity of
the seven extra dimensions. Indeed, the internal space is then isomorphic to a seven-
sphere and the corresponding isometry group is SO(8) — the maximal gauge group
that is allowed in N = 8 supergravity. Furthermore, when deforming the seven-sphere
in a certain way, one finds other (non-maximal) gaugings, such as Gg, SO(3)xSO(3)
or SU(3)xU(1)xU(1) invariant supergravity. Unfortunately, all these compact gaugings
break the global E; group of duality invariance in N = 8 supergravity. However, using the
‘embedding tensor formalism’ [42], one may extend the electric vector fields by magnetic
duals, such that the supersymmetry transformations can still be written in an SU(S8)
and E; covariant way. Therefore, the 11-dimensional non-linear field redefinitions can
still be found using the guideline of SU(8) and E; covariance. In particular, all these
Kaluza-Klein compactifications on a deformed seven-sphere are consistent.

Right after the development of supergravity up until now, there has been active re-
search in the embedding of gauged N = 8 supergravity into 11-dimensional supergravity
[41, 43, 44, 45, 46, 47]: One constructs a particular 11-dimensional solution, which
consistently reduces to a given solution of N = 8 supergravity under a Kaluza-Klein
compactification. The main task in establishing such a program is to find explicit up-
lift Ansdtze for the 11-dimensional fields ®(x,y) in terms of the four-dimensional ones
®™ (), starting from the non-linear relations in Eq. (1.4). In particular, the consis-
tency of the reduction implies that the constructed fields ®(z,y) automatically satisfy
the higher-dimensional equations of motion as long as {®™(z)} is a solution of N = 8
supergravity. The embedding formalism can hence be seen as a tool to find new 11-
dimensional supergravity solutions.

1.3. Thesis Aim and Own Results

This thesis presents the full bosonic embedding of gauged N = 8 supergravity into
11 dimensions. A first formula for the inverse internal metric has already been found
in Ref. [43]. For certain gaugings, the resulting expression could then be inverted to
find the internal metric. Furthermore, the non-linear Ansétze for the internal form
potentials have been found in Refs. [45, 47, 48], which also required the explicit metric
expression. This thesis derives a new direct uplift Ansatz for the internal metric [49,
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50]. In particular, the inversion procedure becomes redundant and all scalar uplifts
complete in general. Finally, two more subsequent Ansétze for the internal ‘four-form
field-strength’ and the ‘Freund-Rubin term’ are found [48, 49, 50]. In particular, these are
required in order to explicitly check the consistency of certain group invariant solutions of
11-dimensional supergravity. The derived non-linear Anséitze for the scalar fields imply
simple embedding formulae for the higher-dimensional vectors. Hence, the complete
bosonic solution of 11-dimensional supergravity can be found.

Furthermore, assuming the spacetime of the compactification in Eq. (1.1) to be maxi-
mally symmetric yields even simpler solutions, namely the ‘Freund-Rubin solutions with
flux’. Here, also the vectors vanish and the presented Ansétze are already sufficient to
construct all required fields. However, this simplification is only consistent, when the
obtained 11-dimensional fields are evaluated at a stationary point of the scalar potential.
As special cases, this thesis presents the Gy and SO(3)xSO(3) invariant Freund-Rubin
solutions of 11-dimensional supergravity and explicitly checks that the obtained fields
satisfy the corresponding equations of motion. The derivation of the Gy invariant so-
lution is a summary of known results together with a new expression for the internal
six-form potential. The SO(3)xSO(3) invariant solution is completely new [51].

The outline of the manuscript is as follows: The first chapter introduces the gauged
N = 8 supergravity in four dimensions. It presents the fields and their supersymmetry
transformations as well as some E; properties of the scalar fields of this theory. Chap-
ter 3 is devoted to the fields and supersymmetry transformations of 11-dimensional su-
pergravity. In particular, the non-linear SU(8) and E; field reformulations are discussed
in detail. Chapter 4 then deals with the embedding of gauged N = 8 supergravity into 11
dimensions. Based on the consistent relation between the redefined fields and the four-
dimensional ones, it presents the explicit non-linear uplift Ansétze for the 11-dimensional
scalar fields.

The second part of this thesis starts with Chapter 5. It gives a general overview to the
application of the derived uplift Ansétze for certain gaugings of the N = 8 supergravity.
In particular, it shows how the higher-dimensional fields can be written in terms of certain
group invariant tensors, which brings the solution in a simpler, manageable form. This
forms the basis for the explicit examples in Chapters 6 and 7, which construct the Go
and SO(3)xSO(3) invariant Freund-Rubin solutions of 11-dimensional supergravity. In
particular, they also show explicitly that the obtained fields satisfy the reduced equations
of motion in that case. Chapter 8 finally concludes this thesis.

Appendix A gives some useful identities for the I' matrices and Killing forms that
appear within the S7 reduction. A simplification for the C tensor that occurs in the
three-form Ansatz is presented in Appendix B. Finally, Appendix C derives all ‘S” ten-
sor identities’, which are necessary to bring the SO(3)xSO(3) invariant solution of 11-
dimensional supergravity into a manageable form.






2. N = 8 Supergravity

This first chapter is devoted to the N = 8 supergravity theory [32, 36, 37]. Of all super-
gravity theories, N = 8 is the maximal number of supersymmetries without introducing
spin fields higher than two. The local gauge group is SO(8)xSU(8) and the latter may
be extended to a global group of duality invariance. As it turns out, this global group is
well described by an exceptional E; symmetry.

The first part of this section presents the fields of N = 8 supergravity and explains
the emergence of the duality symmetry in detail. Then, the second part gives the cor-
responding supersymmetry transformations, which are written in an SU(8) and E; co-
variant way. Finally, Section 2.3 gives some general E; properties that restrict the scalar
fields of N = 8 supergravity.

2.1. The Fields of N = 8 Supergravity

The field content is described by an irreducible N = 8 super-multiplet. This decomposes
into a spin 2 graviton, eight spin 3/2 Rarita-Schwinger spinors, 28 gauge bosons, 56
Majorana spin 1/2 fermions as well as 35 + 35 scalar and pseudo-scalar fields. In the
following, these fields are presented step by step.

First, the graviton is described by the metric of the four-dimensional spacetime, g, (),
in a local coordinate chart x*#. Using the Cartan formalism, one introduces a correspond-
ing vierbein é,%(x), such that

éuu = 5a6éuaézxﬁ- (21)

Here, 0,5 denotes the flat euclidean tangent space metric — the time coordinate is
imaginary. Spacetime and tangent space indices are denoted by Greek letters. In general,
the rule of thumb is: Letters from the middle of an alphabet always denote curved
spacetime indices and letters from the beginning are the corresponding tangent space
indices. The vierbein (or metric) is a singlet under the gauge group and as usual, it
defines the Riemann and Ricci curvature tensors R,y (), Ry (2) = R?,,,(2) as well as
the Ricci scalar R(z) = g“”(x)}?uy(m). Finally, the four-dimensional volume form is

av = /|gld"z,

where § denotes the determinant of the metric. It is related to the determinant of the
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vierbein via § = é2. Thus, the corresponding Einstein-Hilbert action reads

S = —;/ SR d'z, (2.2)

where the normalization factor is consistent with the conventions of Ref. [37].

Secondly, let us discuss the fermions. The eight Rarita-Schwinger spin 3/2 fields are
denoted by a spinor ¢,‘(z)'. It belongs to the irreducible eight-dimensional representa-
tion of the chiral SU(8) gauge group. The corresponding SU(8) index i runs from 1 to
8 and can be raised or lowered by complex conjugation. An upper SU(8) index corre-
sponds to positive and a lower one to negative chirality. The four spinorial components
of ¢,'(x) are labeled by indices &, B ,...=1,...4, which are most often suppressed,

¢ui = (gbu)az
The corresponding four-dimensional matrices v, = (74) ap satisty the Clifford algebra

{Yas 8} = 20a8l4xa- (2.3)

They also define the fifth v matrix as v5 = Yv17273-

The 56 spin 1/2 fermions are Majorana spinors x*“*(z) with fully antisymmetric chiral
SU(8) indices [ijk]. They belong to the chiral 56 representation of SU(8). Again, the
spinorial index & is suppressed,

lek = Xdijka
and the SU(8) indices are raised and lowered by complex conjugation.

Furthermore, there are 70 scalar degrees of freedom in N = 8 supergravity. Mathemat-
ically, these scalar fields extend the local SU(8) gauge group to the group G of duality
invariance [37]. Since SU(8) is 63-dimensional, the group G must have 70 + 63 = 133
generators. This counting argument quite naturally led to the conjecture, that G is the
exceptional group E; of Killing-Cartan [36], whose maximal compact subgroup is indeed,
SU(8). To be more precise, one must choose the non-compact version E7(7y. Accordingly,
the scalars are parametrized by a 56-bein V(z), which belongs to the fundamental 56 rep-
resentation of E7(7y. This 56-bein transforms under local SU(8) and global E7(7) rotations
as’

V(z) = U(z)V(z)E™, U(z) € SU(8), E € Eq7p.

Hence, the 133 scalar degrees of freedom in the 56-bein are not independent and fall into
equivalence classes of SU(8). The remainder are the 70 scalars of N = 8 supergravity,
which parametrize the coset space Ez7)/SU(8).

Tn Refs. [36, 37], this spinor was denoted by v,,%.
2This is in full analogy to the vierbein é,, which transforms under global GL(4,R) diffeomorphisms
from the left and under local SO(1,3) rotations from the right.
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2. N = 8 Supergravity

There are two usual representations of the 56-bein. The first is via a decomposition
into 28 x28 sub-matrices u;;’/ (z) and v;; 1;(z),

wild
V= (Uijj'IJ uzjjjj> : (2.4)
Capital indices refer to the SL(8,R) decomposition of Er(7),

56 — 28 @ 28, (2.5)

and lower case indices are antisymmetric bi-vector indices of the chiral SU(8). Hence,
the latter are raised and lowered via complex conjugation,

ayy = (ug?)" 0 = (o) (2.6)
A second parametrization is given in another gauge, [52]
s VI Vi
V= (fﬂh‘j ]}Uzj ’ (2.7)
which is related to V via

]A}IJij = \;5 (UijIJ + vij IJ) ) ]>1Jij = —i (uijIJ — Ujj IJ) ) (2-8)

-5

NIJij _L ij ijIJ YR R OO * B/ I

% = ﬂ(u 1Jtv ), Vi = (u 1J—v ) (29)
Again, capital indices in Eq. (2.7) refer to the SL(8,R) decomposition of the 56 rep-
resentation of E;7y. In this case, it is more convenient to write the 56-bein as a Eq(7
vector

>

]A}Mij = (]A)Ijija ]A}IJij) :
The 56-dimensional index M belongs to the 56 representation of E7(7y and can be raised
and lowered with a certain symplectic form Qn. This is explained in full detail in

Section 2.3. Finally, one notes that the second row in Eq. (2.7) is the complex conjugate
of the first one. Written in an E;(7) covariant way, this means

)}Mij _ (ﬁMi])* _ (]}U@j’ ]}”ij) ] (2_10)

With the above definition of the 56-bein, the scalar potential V(z) of N = 8 super-
gravity is given in terms of the “T" tensor’

Tijkl(l,) _ (uklIJ + UklIJ) (uimJKujmKI i UimJvamKI) (1;)7 (2.11)

11



2. N = 8 Supergravity

which satisfies the convenient property

. . 4 .. .
(upq” + Upg IJ) (U”IKUM TE _ ¥ IKUMJK) = §5[Z[qu]Jkl]- (2-12)
In particular, [37, 41]
1 o 3,

V= QQQAQi]klAQijl - 192141]141@'7 (2-13)

where ¢ is a coupling constant and the A; and A, tensors are given by

g 4 . 4 ..

A = T, DL — L 2.14
1 21 k 2 3 ( )

Finally, the 28 gauge fields A,’/(z) belong to the adjoint 28 representation of the
SO(8) symmetry group® and transform as a singlet under SU(8). This gauge group
breaks the global E; group of duality invariance. However, the 28 ‘electric’ vector fields
can be extended by 28 ‘magnetic’ duals A, ;;(x) in the ‘embedding tensor formalism’ [42].
Only both, electric and magnetic vector fields together then constitute an irreducible 56
representation of 7y,

AM= (AL Aury) .

This represents the corresponding SL(8,R) decomposition given by Eq. (2.5).
The most general resulting Lagrangian is given in Refs. [32, 36, 37]. Here, it is not
required for the embedding of N = 8 supergravity into 11 dimensions.

2.2. Supersymmetry Transformations

With the above definitions of the fields, the corresponding supersymmetry transforma-
tions read [37, 41, 42]*

1 .
0c€," = ig‘fyo‘gﬁm + h.c., (2.15)
1 -
5€UijIJ = —\/iZijkl(e)vk”J, 5€AMIJ = —§qu (E) (UijIJ + Uij [J) + h.C., (216)

(Se’Uij IJ — —\/§Eijkl(e)uklu, (SGA#IJ = _§XN” (6) (uij” — Uiy ]]) + h.C., (217)

with
X, 9(e) = 2V2€ 6,7 + &, (2.18)
1
Yijri(€) = €uXyny + Ifijklmnpqngnpq- (2.19)

3The antisymmetric bi-vector indices [I.J] belong to SO(8).
4The conventions of Ref. [41] are used. The respective ¢ differs from the one in Ref. [37] by a factor of
1/2.
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2. N = 8 Supergravity

Here, ¥;;1(€) is complex selfdual, the second term in Eq. (2.19) is the complex Hodge dual
of the first term and the € tensor is the corresponding totally anti-symmetric tensor with
chiral SU(8) indices. In all the above relations, the transformation parameter is a four-
spinor €’ given in the fundamental 8 representation of the chiral SU(8) symmetry group.
It also carries a suppressed spinor index &, e.g. the first supersymmetry transformation
relation in Eq. (2.15) actually reads

55éua = (g)di(va)dﬁ(gbu)ﬁi + h.c.

One may now write the above supersymmetry transformations for the scalar and vector
fields in a manifestly E;(;) covariant way,

5V =—V2 ( y E(E)> v, (2.20)

X*e) 0
6€]>Mij = ﬂEijkl(e)f)M kl, (221)
S AM = X, 1(e)PM,; + hc., (2.22)

V2

where the first equation is equivalent to
I 7
Wi " Vij1g 0 ik (W' Vkirg
de (vfju u%[J) =2 <Eijkl 8 ) (UklIJ uklIJ> . (2.23)
As a final remark, the supersymmetry transformation for the scalar potential is given

by [53]
2 .
6V = \Q/A:fzijkl(e)cg”“ +h.c., (2.24)

where the () tensor is defined in terms of the T tensor,
g 3 3 ‘ .
kal _ ZAQ mn[zyjél2 nkl}m . jéllm[zfl2 m]kl]‘ (225)

Note that the expression on the rhs of Eq. (2.24) must vanish at the stationary points
of V(). In particular, since ;4 (€) is complex selfdual, Q“*(z) must be complex
anti-selfdual at stationary points of the potential.

In Chapter 4, the supersymmetry transformations for the vierbein, the scalar and
vector fields in Eqgs. (2.15, 2.21, 2.22) will be considered to the respective 11-dimensional
transformations. For the embedding of N = 8 supergravity into 11 dimensions, this
comparison forms the basis for finding the correct bosonic uplift relations between the
lower- and higher-dimensional fields. Since this thesis does not discuss the fermionic
uplift, the corresponding supersymmetry transformation laws for ¢,* and X9k (37, 41]
are not listed here.

13



2. N = 8 Supergravity

2.3. Some E; Properties of the Four-Dimensional Scalars

This section collects all important properties for the 56-beine V(x) and V(x) as well
as for the scalar fields u;;’/(z) and v;;;(x) presented above. The derivation of these
properties is based on the E7) group of duality transformations.

First, the inverse of the 56-bein V(z) is given by [37]

_ Uij — V4
yl = (_Ui;}]J uijJI§J> . (2.26)

In combination with Eq. (2.4), this gives the well-known identities for the scalar fields
[37]

Uij]JUkZIJ — Uij ]JUkHJ = (5]?1, (227)
uijIJvkllJ o ,UijIJuklIJ — 0’ (228)
uijuuinL — Uij ]Jl)ij KL == 5§(JL, (229)
u p vigrer — vijru e = 0. (2.30)

In addition, the authors in Refs. [37, 41] also derived the following convenient proper-
ties,

ij JM i IM _ 75[7, jlm JM _ 4lmIM
(U IMUKL v UKLJM) ‘[1 Jl 3 [k (U IMUm v Ul]mJM) ]
(2.31)
ij g lJ KL _ 2 jlm o dlmIJ KL
(U IJVUKLKL —V UKL )’[UKLH = 35 [k (U IJUim KL — U Upm ) LKL
1 ...
R Y] mn _,mnlJ KL
125KL (u I1JUmn KL v Umn ) ‘[IJKL}JH
(2.32)

where ;75 denotes antisymmetrized indices [IJ] and |[[ JKI)+ Tepresents the projection
onto the selfdual part.

Secondly, one obtains some properties for the 56 vector )>Mij. Its Er(7) index is raised
and lowered with the symplectic form Qun, whose components are also given in the
SL(8,R) decomposition (Eq. (2.5)),

Qv = (s, QAL iy, QUEL) = (0, —6KE, 08, 0).
The inverse symplectic form is then easily obtained by requiring Q"7 Qpy = 64

QMN:(QIJKL’ O per, Q5L QIJKL):(Oa 6 _5{?’ 0)_

14



2. N = 8 Supergravity

Let us now lower the 56-dimensional index of the 56-bein,’
Vi ij = QMNf}Nz‘j = (—f}IJij, 9”@') : (2.33)
One finally shows that V indeed fulfills the usual vielbein equations [54],
VA VMy =6, VgV Mu =0,  DOM; VMY =gl (2.34)

These properties reflect the terminology of calling V a 56-bein of E7(7).

®The SU(8) indices can again be raised via complex conjugation in the same manner as in Eq. (2.10).
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3. 11-Dimensional Supergravity

This chapter presents 11-dimensional supergravity — the highest dimensional supergrav-
ity theory, which was first introduced in 1978 [33, 34]. The corresponding field content
of the Lagrangian is a graviton described by the 11-dimensional metric, a Majorana spin
3/2 field and a three-form potential. The total number of bosonic and fermionic degrees
of freedom equal the respective numbers in N = 8 supergravity. This is crucial for the
compactification of 11-dimensional supergravity and the corresponding uplift, which are
described in the following Chapters.

The explicit identification of the 11-dimensional fields with the four-dimensional ones
within the framework of Kaluza-Klein theory requires a careful comparison of the respec-
tive supersymmetry transformations in both theories. This can only be achieved with a
non-linear redefinition of the 11-dimensional fields. Therefore, the general guideline is
SU(8) and Er(7) covariance: As is the case in N = 8 supergravity, the supersymmetry
transformations of all redefined fields must be manifestly SU(8) covariant. Furthermore,
one must bring the vector and scalar degrees of freedom each into a fundamental 56 rep-
resentation of Er(7y in order to relate them with the scalar 56-bein V(z) and the vectors
A,M(z) of N = 8 supergravity.

The first part describes the Lagrangian of 11-dimensional supergravity and the asso-
ciated equations of motion. Section 3.2 introduces the dual fields that are required for
the non-linear SU(8) and E7(7) reformulations of the bosonic fields in Sections 3.3 and
3.4. Finally, Section 3.5 presents the supersymmetry transformations of the redefined
fields, which then look quite similar to the corresponding transformations in N = 8
supergravity.

3.1. The Lagrangian and the Equations of Motion

The 11-dimensional spacetime is described by a metric gy n(2) for a given coordinate
chart zM. Using the Cartan formalism, the metric gives rise to an elfbein Fy“(z),

gun = SapEy " Ex”, (3.1)
where 045 is the flat euclidean metric of the 11-dimensional tangent space (with tan-

gent space indices A, B, ... and imaginary time). Furthermore, the metric defines the
Riemann and Ricci curvature tensors RM ypo(2), Ryn(2) = R ypn(2) as well as the
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3. 11-Dimensional Supergravity

Ricci scalar R(z) = ¢g™¥ (2)Ryn(2) in the usual way. Finally, the volume form of the
11-dimensional spacetime is
dv = y/lg|d"z,

where g = det (gpn) denotes the determinant of the metric. The latter is related to
the determinant of the elfbein E = det (EMA) via |g| = E?. With these definitions, the
Einstein-Hilbert action for the spacetime reads

_ 1 11
S = 2/ERd . (3.2)

The normalization is consistent with the general action in Eq. (3.7).

The fermions in 11-dimensional supergravity are described by a Majorana spin 3/2
field. This can be either described by a spinor W,4(z) on the tangent space or by a
spinor Wy (2) = By (2)¥4(2) on the curved manifold. Both spinors contain the same
fermionic degrees of freedom and are simultaneously used below. For fixed indices A, M,
these fields have 32 components. The corresponding 32x32 matrices 'y (2) = Ep(2)T4
satisfy the Clifford algebra (either on the tangent space or on the curved spacetime),

{fA, fB} = 25AB ]132><32, {fM, fN} - 2gMN H32><32' (33)

Note that tangent space indices A, B, ..., are raised and lowered with the flat metric d45
and the curved indices M, N with the spacetime metric gy (2). It is also convenient to
define the 32x32 matrices

Pavon = Toay o Taye Tarons = P - Far. (3.4)

In the following, antisymmetrized brackets are defined such that e.g.

N 1 - By ~ N 5 By
Liape) = 31 (FABC +I'pca+Tcap —Tacs — I'Bac — FCBA) -

Using these antisymmetrized products of I' matrices, an important fermionic four-form
is X(4)(z) with components'

XMNPQ — 40/3 (W MNPORS g 4 120 MPNPg@l) (3.5)

which is defined on the curved manifold. Here, W), = \I/wa‘o denotes the respective
adjoint spinor.

Finally, 11-dimensional supergravity contains a fully antisymmetric three-form poten-
tial A(3)(2) with components Ap;np. Such a potential defines a four-form field-strength

!This definition differs from the one in Ref. [46] by a factor of 41/2.
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3. 11-Dimensional Supergravity

in the usual way [38]. The partial derivative is with respect to the z-coordinates, 0y =
0/0zM.

The Lagrangian of 11-dimensional supergravity is given in terms of the elfbein, the Ma-
jorana spin-3/2 fermion and the three-form potential. Using the conventions of Ref. [55],
the corresponding action reads

1 1 1
S = / d”z[ — SER = SEUNTYNT Dy Up — < EFyypgF
i

1
EMlmMHFMl'~~M4FM5"~M8AM9~"M11 — fEFMNpQXMNPQ . (37)

1232 24

The first term denotes the Einstein-Hilbert action. The second and third terms represent
the kinetic energy for the fermions and the three-form respectively?. The fourth and fifth
terms represent the interactions — one for the gauge field itself (e is a tensor)
and one for the interaction between fermions and the gauge field.

The 11-dimensional field equations are the corresponding Euler-Lagrange equations
of the action in Eq. (3.7). First of all, the variation with respect to the 11-dimensional
metric leads to the Einstein equations, which relates the Ricci curvature tensor to the
field-strength,

1 1
RMN = EQMNFPQRsFPQRS — EFMPQRF]{;QR + fermionic terms. (38)
Note that this thesis is devoted to the bosonic uplift of N = 8 supergravity. Hence,
fermionic terms are not taken into account. Secondly, consider the variation of the action
in Eq. (3.7) with respect to the three-form potential. The corresponding equations of
motion are the Maxwell equations in 11 dimensions,

V/2i
DM (FMNPQ + XMNPQ) - 1152 6NPQRL”RSF}ﬁ...1‘%4171*25...1“38' (39)

The fermionic term is retained in this case, as it is crucial for the definition of the dual
six-form potential in the next section. Of course, when testing the bosonic uplift relations
in Chapters 5, 6 and 7, the fermionic terms will be neglected in the same way as was
done to derive the bosonic Einstein equations in Eq. (3.8).

3.2. Dual Fields

This short section introduces a ‘dual six-form potential’ that is essential for the SU(8)
reformulation of the 11-dimensional fields in the next section. Such a six-form is obtained

2Here, Dj; is the covariant derivative. The definition of the action on the spinor W,; is given in
Ref. [36].
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3. 11-Dimensional Supergravity

from the Maxwell equations above and its definition will also contain the fermionic four-
form X(4y. Without fermions here, the supersymmetry transformations of some redefined
fields in the next section would not be SU(8) covariant. Thus, in the meantime it is crucial
to maintain the fermionic terms in the Maxwell equations.

Let us dualize Eq. (3.9):

) 7! 8!
S!D[ — €My Mg NPQR <FNPQR+XNPQR)] = (4‘ 4‘> F[M1~~~M4FM5-~~M8]- (3.10)

4' V2

This equation can be written in terms of differential forms. First, the rhs includes the
usual definition of the wedge product and the lhs includes the usual definition of the
exterior derivative, which was already used in Eq. (3.6). Indeed, one may replace the
covariant derivative by the partial derivative because of the antisymmetrization. Finally,
one defines the Hodge duals for the four-forms on the lhs of Eq. (3.10):3

—€ppynay, MM (3.11)

F(7)(Z) = *F(4)(Z) <~ FM1-~M7 = 4‘

with x denoting the Hodge star operator. Similarly, one defines the Hodge dual for the
fermionic four-form. Hence, Eq. (3.10) simplifies to

7!
WF(ZL) A F(4).

Finally, using Eq. (3.6), the above equation reduces further to

d (F(7) + *X(4)) =

d(F()+*X4)—3\/_A /\F4)) 0.

In other words, there locally exists a six-form potential A)(2) with components Ay, ...z,
which defines this seven-form,

Fry = dAg) + 3v243 — %X (3.12)

The six-form is said to be the dual to the three-form potential and later, it is essential
for the SU(8) reformulation of the bosonic fields. Indeed, some of the scalar and vector
degrees of freedom are better described by components of the six-form rather than by
components of the three-form potential. As a final remark, the Lagrangian could also be
written in terms of the dual fields A)(2) and F7y(2) instead of A(3)(2) and Fi4)(2) [56].

3The ¢ factor in this definition occurs due to the imaginary time convention.
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3. 11-Dimensional Supergravity

3.3. Non-Linear SU(8) Reformulation of the
11-Dimensional Fields

This section deals with the non-linear reformulation of the fields presented above — the
elfbein Ej,4, the Majorana fermion W,; and the three-form potential Ay;yp — such
that the resulting supersymmetry transformations can be compared to those of N = 8
supergravity. For the fermions, this can be achieved by requiring SU(8) covariance. For
the scalar and vector fields, this is not sufficient. One must also combine them each
into a fundamental 56 representation of E(7). In particular, this requires to describe
certain bosonic degrees of freedom by some components of the dual six-form potential
Anpymg- The non-linear field redefinition splits into two parts: This section identifies
the various components of the elfbein and the form potentials with the actual scalar and
vector degrees of freedom of the theory. The following section then explains, how these
constitute fundamental 56 representations of E7).

The SU(8) and Er(7) reformulation is based on a 4 4 7 split. Indeed, this is most
convenient for the compactification of an 11-dimensional spacetime to four dimensions,

Mll — M4 X ./\/l7.

The set of coordinates z splits into four spacetime (external) coordinates z# and seven
internal coordinates ™ (or in the tangent space: 2 = (%, »?)). In the following, capital
Roman letters denote 11-dimensional indices. These split into external (Greek letters)
and internal indices (lower case Roman letters). Again, letters from the middle of an
alphabet always denote curved spacetime indices and letters from the beginning are the
corresponding tangent space indices.

Let us describe how the fields behave under this formal coordinate split. The elfbein

takes the form
Byt = (‘36 Buemim ) (3.13)

by partially breaking the local SO(1,10) Lorentz invariance to SO(1,3)xSO(7). Here,
e,“(z,y) is proportional to the vierbein of the four-dimensional spacetime and e,,,*(x, )
represents the siebenbein of the internal compact space. The latter defines the internal
metric,

Gmn = Oapemen’, (3.14)
where 4, is the flat euclidean metric on the internal tangent space. This metric (or
siebenbein e,,*) describe 28 scalar degrees of freedom. In general, the upper off-diagonal
of the elfbein can not be gauged to zero. The seven vector fields are denoted as B, (z, y).

The first field redefinition concerns the vierbein e,*(z,y) as its supersymmetry trans-
formation is not manifestly SU(8) covariant [55]. Let us perform a Weyl rescaling ac-

cording to
e, = A2, (3.15)
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3. 11-Dimensional Supergravity

where A(x,y) is called the warp factor. It is defined as

| det (gmn)  det(en®)
A= \ det (Gmn)  det (6,9)° (3.16)

where é,,*(x, y) is any orthonormal frame on the internal space with corresponding metric
Gmn(x,y). This Weyl rescaling has two convenient properties: On the one hand, the
supersymmetry transformation for é,%(x, y) is manifestly SU(8) covariant, see Eq. (3.41).
On the other hand, plugging the elfbein Ej;”(z,y) into the action in Eq. (3.7) yields a
term that corresponds to the ezact four-dimensional Einstein-Hilbert action in terms of
the spacetime §,,(z,y). Not accidently, the notation for the vierbein and the spacetime
metric coincides with the one in N = 8 supergravity — within the compactification of
11-dimensional supergravity in Chapter 4, these fields will be identified via

é“"‘(;(;,y) = éua(x)7 guu(xv y) = @uu(x)-

Now however, one must still view é,%(z, y) as part of the elfbein above.

Let us now discuss the reformulation of the fermionic fields, before redefining the seven
vector fields B, and the internal sicbenbein e,,*. The Majorana field decomposes under
the 4 + 7 split as

Uy (Vo W), Uy — (T, T,

where the suppressed spinorial indices run from 1 to 32. It is now more convenient
to replace each such spinor index by a pair of indices (&, A), where & = 1,...4 and
A =1,...8. Most often, these pairs of spinor indices are also suppressed,

The next two steps are in order to bring these fermionic degrees of freedom into the
irreducible representations 8 and 56 of a chiral SU(8) group. Within the compactification
in Chapter 4, these will then be identified with the corresponding chiral fermions ¢,’(x)
and Y¥*(x) of N = 8 supergravity.

In a first step, one defines the chiral SU(8) group and its generators. The 11-dimensional
I' matrices can be written as

fA%(fa:PYa@HSxBa f‘a:75®ra>

using the above index-split [36]. Here, the lower case v matrices are the 4x4 matrices
already defined in Section 2.1. They carry suppressed indices &, B Furthermore, the
capital I' matrices denote the seven-dimensional 8 x 8 matrices with suppressed matrix
indices A, B, hence I', = (') 45- These flat matrices belong to the internal tangent
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3. 11-Dimensional Supergravity

space and they define curved I' matrices I',,, = ¢,,*I', using the internal siebenbein. Both
kinds of I" matrices fulfill the corresponding Clifford algebra

{Fay Fb} - 26abﬂ8><87 {Fma Fn} = QanHSXS- (317)

Now, one enlarges the SO(7) tangent space for the Majorana fermions to SU(8). There-
fore, the antisymmetrized products of I' matrices are

Layoa; = Ulay - Ty, Uonyoomi = Uy -+ Ty (3.18)

Some useful identities for these traceless 8x8 matrices are given in Appendix A. Most

importantly,
Faa Faby I-‘abc

are 63 independent matrices and hence, generate a chiral SU(8) group acting on the
Majorana spinors above.

In a second step, one rewrites the fermionic Majorana spinors into irreducible SU(8)
representations. Therefore, a Weyl rescaling of ¥, (x,y) and ¥, (z,y) results in [55]

s aA—1/df N 1 “ an—1/d7 \—
¢, = €A VA ()72 (\I/a - 575%}‘ \I/a) , ¢ = e ATV (iys) V20, (3.19)

This may need some explanation: All spinors in the above equations ( ;L, L Ve, V)
have 32 spinor components, labeled each by an index pair (07,121) as explained above.

However, these indices are suppressed, e.g.
/ /
P = (¢u) aA’
Then, the four-dimensional v matrices act on the & index of these spinors and the 8 x 8
I' matrices act on the A index. For example, the first of the above equations actually
reads

(9h) 0= 807" [(195) 7]

1 a
((Wa)s.a = 505)35 00350 46(V)s ) -
One already notes that it is rather confusing to carry all these indices. So if possible, they
are suppressed in the following. The above primed spinors represent only an intermediate

step. Another projection onto their chiral components finally gives

af

(60 = 50+ 5)3 () 5 5

: (3.20)
((b,“)dA - 5(]‘ - 75)&3 <¢L)Bw’4 )
XaPC = i\@(l +%)as T a6 (Bm)g.cq s
(3.21)

3 .
Xa ABC = Z\@(l — V) apl " (i (D) pen -
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Hence, the spinor (gzﬁu)@A(x, y) belongs to the 8 and the trispinor x42%(z,y) to the 56
representation of the chiral SU(8) group?. Note that these are highly non-linear in the
11-dimensional fields — they will be related to the corresponding fermions of N = 8
supergravity in Chapter 4.

Most expressions in this thesis do not carry the four-dimensional indices &, B . However,
the eight-dimensional indices A, B that label the chiral SU(8) group are continuously
used within the whole work. It is therefore more convenient to replace them by unhatted
indices

A,B%A,B.

Of course, this should not cause confusion with the 11-dimensional tangent space indices.
However, it will always be clear from the context whether A, B, ... are SU(8)- or 11-
dimensional tangent space indices. Hence, within the remainder of this thesis,

(%)QA _ %A’ X&ABO _ XABC.

The last part of this section is devoted to the non-linear SU(8) reformulation for the
bosonic degrees of freedom that are hidden in the elfbein and the form-potentials. Let
us first discuss the vector fields B, (z,y) and the siebenbein e,,*(x,y). The vectors
already transform in a manifestly SU(8) covariant way. However, for later convenience,

they are rescaled according to

1
B," =3B (3.22)

The scalar degrees of freedom of the internal siebenbein can be reformulated as well,

V" up = —?A—l/%maraw = —\/8§A‘1/2F’”AB. (3.23)
This reformulation was found by requiring SU(8) covariance of the corresponding super-
symmetry transformations. In the following and in the next section, these vector and
scalar fields both are extended to 56 vectors B, and VM 4 of an E7(7) symmetry®. This
is the key to relate them to the corresponding scalars and vectors of N = 8 supergravity
(which also form 56 representations of the Er(7) group of duality invariance).

The remaining components of B,M(z,y) and VM 45(z,y) are non-linear combinations
of the various components of the three-form potential under the 4 4 7 split,

Aynp = (A,wp, Apm,  Apmns Amnp>.

First, the components A,,,, represent 21 vector fields and do not contain any scalar
degrees of freedom. Since its supersymmetry transformation is not manifestly SU(8)

4The chiral SU(8) indices fl, B ,... are raised and lowered by complex conjugation.
>The normalizations in Egs. (3.22, 3.23) as well as in the following redefinitions have been chosen
accordingly.
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covariant, it is more convenient to define the vector fields
Bumn = —3V2 (Apmn — BuP Ay - (3.24)

They are a linear combination of the vectors B,”™ and A,,,, but non-linear in all 11-
dimensional fields.

Secondly, the components A,,, and A, describe both, scalar and vector degrees of
freedom, all of which are also contained in the components of the dual six-form poten-
tial, Ay cmg and A .ams. The former represent seven scalar fields and the latter 21
vector degrees of freedom. Let us now discuss the vector fields. In order to make the
corresponding supersymmetry transformations manifestly SU(8) covariant, one defines

Bumn - _3\/§ﬁmnmmp5 (Aup1~-p5 - Bquqp1~~p5 - \jf (Aumm - Bquqmpg) Ap3p4p5
(3.25)
Here, ™™ is the seven-dimensional Levi-Cevita tensor density (hence, a number
+1,0). Again, B,™" combines several fields including the vectors A, ..ms-

Finally, the remaining bosonic degrees of freedom of the three-form potential are de-
scribed by A,y and Ay, ong. Amnp represents 35 and Ay, ..., seven scalar fields. Again,
the corresponding supersymmetry transformations can be made SU(8) covariant by re-
defining

2
Vinn AB = \é_A_l/2 (Pmn AB T+ GﬂAminiB) ) (326)

2 1
anAB _ _£ . 77°7mnp1~--p5A—1/2

8 5l Lpiops aB + 60\/514171172173 Lpips AB (3.27)

V2
- 6!\/5 <AQP1'"P5 - TAqmpz AP3P4P5 F?43

in a non-linear way. Note that V,,, ap differs from the respective component in Ref. [54]
by a factor of —1. This is explained in the following section.

3.4. E; Structures in the Bosonic 11-Dimensional Fields

This section shows how the vector and scalar fields presented above can be extended to
form E7(7y covariant objects. One first counts the number of vector degrees of freedom:
7 + 21 vector fields B,™ and B, as well as 21 dual vectors B,”". This suggests to
combine all of these into a fundamental 56 representation of E7() since its SL(8,R) and
GL(7,R) decompositions are given by

56 > 28 28 > 7T®21H21a7. (3.28)
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3. 11-Dimensional Supergravity

Quite naturally, one defines the Er7) vector BMM(x, y) with 56 components, such that
under the above decomposition,

BM= (B, Buw) = (B By, Bumn, Bum).

More explicitly, the antisymmetric SL(8,R) indices M, N run from 1 to 8 and components
for M = 8 are abbreviated by

BumS = —Busm = Bum7 B;,LmB = _B,uSm = B/Lm‘

However, there is a serious problem here. There are no more vector degrees of freedom
in 11-dimensional supergravity to link with the remaining seven vector fields B,,,,(z, y).
The usual solution is taking the dualization of gravity into account.

Dualizing gravity is formally possible at the linearized level®. Therefore, one approxi-
mates the 11-dimensional metric,

gun = MmN + har + O(h?). (3.29)

The dual field to hpyn(z,y) is called ‘dual graviton’” — it is represented by a field
Anpymsg v (2, y), which belongs to the (8,1) representation of GL(11,R)". This field
decomposes into the various components under the 4 + 7 split and indeed, there is one
component that contains seven artificial vector degrees of freedom: A, ..msn- Its su-
persymmetry transformations are not SU(8) covariant but a non-linear combination with
the various other vector and scalar fields transforms in a manifestly SU(8) covariant way.
With the correct normalization, this can then be identified with B, ,,,

Bﬂm = _1877171"‘1” Aupr"p?,m + (300 - 1) (Altp1"~p5 - BMpAPpl'“Z%) APGP?”” (330)

+ éOAPl-'-pG (Aumm - BﬂpApmm) + (AMPMDQ - BMpApplpz) Ap3p4p5 Ap6p7m .

—_
DO | po

Here C’O is an undetermined constant.

The scalar fields can be put into an irreducible 56 representation in the same way. As is
the case in N = 8 supergravity, the resulting object is a 56-bein VM 45 that decomposes
under the above SL(8,R) and GL(7,R) decompositions as

VMg = (VMNABa VMNAB) = (VmAB» V™ aB, VinAB, VmAB) : (3.31)
As is the case for the vectors, the M = 8 components are abbreviated as

8 8
V"™ up = —V"ap = V" 45, VmsaB = —VsmAB = Vm AB-

6Restricting to the linearized level causes no inconsistency in Chapter 4, since the artificial vector
degrees of freedom arising from the dual graviton do not enter the obtained embedding formulae.
They are only required to formally find the E; structures in the bosonic 11-dimensional fields.

7in Ref. [46], AJth-Mg\N was denoted by hJWl---Mg|N-
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3. 11-Dimensional Supergravity

Again, the last seven components are not yet defined but the counting argument that is
used in the vector case above does not apply here. Indeed, all the 70 = 28 4+ 7+ 35 scalar
degrees of freedom in 11-dimensional supergravity (hidden in e,,%, Ay .me and Appp)
are already assigned to the first 49 components of V™ 5. However, in this case, the
supersymmetry transformations of the vector fields B,,,, led to the definition of V,, 4.
In order that Eq. (3.42) holds, V,, ap must take the form [54]®

2 1
V. ap = £ . 7ﬁp1---p7A71/2

] 71 (Fpl"'P7Fm)AB + 126\/§Amp1p2rp3-"p7 AB (332)

V2
+3v2-7! <Amp1~--p5 + TAmmpzApsmps Lpepr AB

9! V2
+ 5 (Ampl“'ps + 12Amp1p2Ap3p4p5> Ap6p7qr?43] :

With the above definitions, the supersymmetry transformations for the irreducible 56
representations B, (z,y) and VM 45(z,y) are manifestly SU(8) and E(7) covariant, see
Eq. (3.42, 3.43).

The rest of this section justifies the identification of the 56 vector VM 45 as the 56-bein
of E7(7). The reasoning is similar to the case of the 56-bein 1>Mij in N = 8 supergravity.
First of all, the 56 index M is raised and lowered with the symplectic form Qnr, whose
components are given in the respective SL(8,R) decomposition (Eq. (2.5)),

QMN: (QMNPQa QMNPQ7 QMNPQ7 QMNPQ) - (O; _5511(37 5;%7 0>'
The inverse symplectic form is then simply
QMY = (P M QY Oeg) = (0, O, —di, 0),

such that one has again QM7Qpy = §3/. Lowering the 56-dimensional index of the
56-bein VM 45 vields

Vmag = QM/\/VNAB = (_VMNABy VMNAB) ; (3.33)
and the chiral SU(8) indices of the 56-bein are again raised via complex conjugation,

VMAD = (VM) Vu™P = (Vman)" (3.34)

8As is the case for the definition of Vi, 45, the above equation for V,, a5 differs from the respective
component in Ref. [54] by a factor of —1. The reason is that in contrast to our definition in Eq. (3.31),
the vielbein components in Ref. [54] constitute the 56 vector Vaq ap with lower Eq(7y index. Hence,
our definitions are consistent with those of Ref. [54] since the index-raising inserts the corresponding
minus sign, (Eq. (3.33)).
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3. 11-Dimensional Supergravity

One finally shows that the 56-bein VM 45 fulfills the usual vielbein relations that are
already satisfied by the four-dimensional 56-bein (Eq. (2.34)),
VuPVMep = i85, VmasVMep =0,

(3.35)
VNAPVM 4p = VAPV = 631

Therefore, one uses some properties of the 8 x 8 I' matrices that are presented in Ap-
pendix A.

3.5. Supersymmetry Transformations
Let us finally summarize the supersymmetry transformations for the various redefined

fields presented above. The detailed derivations were found in Refs. [46, 55|, starting
from the general 11-dimensional supersymmetry transformations

S Byt = ;efA\IfM, (3.36)

S Annp = —\f eTunTp, (3.37)
0V = [DM + Q\g (fMNPQR - 89MNfPQR) F NPQR] € (3.38)
OcAn . nts = —63@ e im0 Vs + ;ef‘[MlMQ\I/MSAM4M5M6], (3.39)
O Antyontg| v < T asyontg U — €0 N g2t Wosg] — Connian €0 et W sy - (3.40)

Here, the supersymmetry transformation parameter is a spinor ¢ with 32 components
(also divided into an index pair (@,fl)) The first three transformations are the well
known supersymmetry transformations of 11-dimensional supergravity [33] written in the
conventions of Ref. [55]. From these, the corresponding supersymmetry transformation
for the dual six-form potential was found using Eq. (3.12) [46]. The transformation for
the dual gravity potential Ay, ...a5 5 (%, y) can be found in the same way, using the correct
dualization procedure for the graviton field. Here, Cy is some undetermined constant.
For the details, the interested reader may consult Ref. [46] and references therein.

One finally obtains the corresponding supersymmetry transformations for the reformu-
lated fields. Therefore, one considers the above relations according to the 4 + 7 split and
rearranges the fields according to the non-linear reformulations of the previous section.
For example, the Weyl rescaled vierbein transforms as

1
0.6, = igAfya% A+he, (3.41)
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3. 11-Dimensional Supergravity

which is manifestly SU(8) covariant [55]. One also notices the similarity to the corre-
sponding supersymmetry transformation of the vierbein in N = 8 supergravity. The
exact relations between the 11-dimensional and the four-dimensional fields will be given
in the next chapter.

In the following, the supersymmetry transformations are only listed for the fully re-
defined vector and scalar fields B,M(z,y) and VM 45(z,y) rather than for the pre-fields
according to the 4+ 7 split. However, all vector and scalar degrees of freedom constitute
these two 56-dimensional representations of E;(7). Hence, the following two equations
represent the supersymmetry transformations for all the bosonic fields of 11-dimensional
supergravity [41, 46, 47]:

5 B,M = %VM 15X, 2B (e) + hec. (3.42)
5€VMAB = \/EZABCD(E)VM CD. (343)

Here, X,"B(¢) and the self-dual four-form ¥,pcp(e) of SU(8) are quite similar to the
four-dimensional fields in Egs. (2.18, 2.19),

X, P (€) = 2v2e 6,7 + €0éy rax ", (3.44)
1
Yapcp(€) = €axpep] + 5€ABCDEFGH€EXFGH- (3.45)

In Eq. (3.45), the second term is the Hodge dual of the first term and the € tensor is the
corresponding totally anti-symmetric tensor with chiral SU(8) indices. As is the case for
the vierbein, the supersymmetry transformations for the redefined 11-dimensional vectors
and scalars are quite similar to those of the respective four-dimensional fields. Note that
this could only be achieved because of the non-linear structure of the redefinitions. The
next chapter will explicitly identify these bosonic fields

(BMM7 VMAB) o (A#M’ )}Mij) .

As in the presentation of N = 8 supergravity, the fermionic supersymmetry transfor-
mations are not listed here, since they are not required for the bosonic uplift of N =8
supergravity to 11 dimensions. A detailed description can be found in Ref. [55].
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4. The Embedding of Gauged N =8
Supergravity into 11 Dimensions

This chapter presents the main part of this thesis: the embedding of gauged N = 8
supergravity into 11 dimensions, which is based on the compactification of the extra
dimensions on a seven-sphere,

M11 — M4 X 57. (41)

The previous chapter found the non-linear field redefinitions ®(z,y) — F(®(x,y)), such
that the lower and higher-dimensional supersymmetry transformations can now be com-
pared (Eq. (1.4)). This gives a direct correspondence between the reformulated 11-
dimensional fields F(®(x,y)) and the four-dimensional ones ®((z). Based on these
relations, the second part of this chapter finally derives the complete non-linear uplift
Ansdtze for the bosonic 11-dimensional fields

B(z,y) & (2 (x), Y (y)). (4.2)

In particular, it shows the dependence of the eigenfunctions Y ™ (y) on the Killing spinors
and vectors of the seven-sphere.

First, Section 4.1 gives the known background of 11-dimensional supergravity — the
ground state solution {®g(z,y)}. It also introduces the required Killing spinors and
vectors that belong to the compactified round seven-sphere. Furthermore, Section 4.2
presents the explicit non-linear expansion to a general solution of 11-dimensional super-
gravity (Eq. (1.4)). Based on this, Section 4.3 derives all bosonic uplift Ansétze in the
form of Eq. (4.2).

Finally, Section 4.4 derives two subsequent Ansétze for the internal four-form field-
strength Fp,p, (7, y) and the Freund-Rubin term frg (z, y) [48, 49, 50]. The field-strength
Ansatz has been found from Eq. (3.6) and the explicit Ansatz for the internal three-form
potential. On the other hand, the Freund-Rubin term! has been found from the so-called
‘generalized vielbein postulate’ (GVP) for the 56-bein VM 45 in 11 dimensions. These
secondary Ansatze are used in the following chapters in order to explicitly check the
consistency of the obtained group invariant 11-dimensional Freund-Rubin solutions.

!The Freund-Rubin term is defined as the four-dimensional dual of the external field-strength F},, o,
see Eq. (4.58).
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

4.1. The Ground State Solution of the S” Reduction

Let us describe the ground state solution {®q(z,y)} of 11-dimensional supergravity. The
background fields are

Do(2,y) = (EMA(x’y)‘BG’ \IIM(m7y)’BG7 AMNP(x’y)‘BG)

and in the following, the different components are discussed: The AdS, spacetime is
described by the background vierbein é,%(x) and metric g,, (). The internal background
siebenbein and metric are given by

6ma|BG = éma7 gmn|BG = .&mm (43)

where é,,%(y) denotes the orthonormal frame for the corresponding S7 metric G (y).
The only other field of 11-dimensional supergravity that acquires any background value
is A,,(z,y). In particular, it is related to the internal components A, ..ms (2, y) of the
dual six-form potential. One finds [47]

A ome|Ba = =3V 2, (4.4)

where the six-form fml...mﬁ (y) defines the background volume form 7™ of the seven-
sphere,

T Dy Congeomn] = 17 Ty o (4.5)

Here, my is the inverse S7 radius and D, denotes the corresponding covariant derivative.
All other fields of 11-dimensional supergravity vanish within the background (fermions,
vector bosons and the scalars of the internal three-form potential).

The following section presents the expansion of these 11-dimensional fields around the
ground state solution above in the sense of Eq. (1.4). In general, the eigenfunctions
Y™ (y) depend on the form of the reduction — in our case, they will depend on the
Killing spinors and vectors of the seven-sphere?, which are now introduced.

The eight Killing spinors n!(y) are chosen to be orthonormal?,

iy’ = 617, 7'’ = Tgvs. (4.6)

They satisfy .
([’)m + ;m7fm) — (4.7)

2Later, the 28 Killing vectors of the SO(8) isometry group of the seven-sphere will be related to the
28 electric vector bosons of maximally gauged N = 8 supergravity.

3Again, I, J,... are SO(8) indices, whereas the SU(8) indices A, B are suppressed, so 5! = n,. Fur-
thermore, the charge conjugation matrix is set to the identity, which implies that 77 = (n)T.
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

where the I" matrices are the antisymmetric and purely imaginary (FT = F) generators
of the Clifford algebra in seven dimensions,

(T T} = 20mnlss. (4.8)
The Killing spinors also define a set of Killing vectors and their derivatives,
KmIJ _ iﬁlfwan, KmnIJ _ ﬁjfmnﬁ‘], (4'9)
where the antisymmetrized products of ' matrices are defined as
Ui = Dy -+ Doy (4.10)

In particular, using Eqs. (4.7, 4.8, 4.10), one verifies that K,,,’” is indeed, proportional
to the derivative of K,,’’,

DoK' = mi K, Dy Ko™ = 2mi G Ko™ (4.11)

Note that curved seven-dimensional indices of the Killing vectors and their derivatives
are always raised and lowered with the background S7 metric G,.

4.2. Non-Linear Expansion around the Ground State

This section derives the full non-linear expansion of all redefined 11-dimensional fields,
F(CD(%?J)) = (éu(X(I?y)? (b,uA(ny)v XABC(ny)7 B#M(x7y>7 VMAB(%Z/)) 9

around the ground state solution according to Eq. (1.4). This automatically yields the
correct relation to the four-dimensional fields

q)(n)(x):(éua(x)> ¢Mi(x)> Xijk($)7 AMM('CE)’ ]}Mlj(x»

These relations are then used in the next section to find the explicit uplift formulae for
the fields of N = 8 supergravity to 11 dimensions.

The simplest example is the relation between the vierbeine of N = 8 and 11-dimensional
supergravity: [41]

82, y) = &, (). (4.12)

This relation can be established consistently to all orders of the expansion in Eq. (1.4).

Secondly, the infinitesimal small fluctuations of the fermionic fields around the back-
ground are [41]

CbuA(x»y) = Uf‘(y)%l(iv) +...,

) 413
X2 (@, y) = ()n? ()ng ()x7* () + ... (4.13)
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

Here, the orthonormal Killing spinors n/!(y) transform curved SU(8) indices A4, B, C' into
flat SU(8) indices i, j, k. Note that also the transformation parameter e4(x,y) and the
related fermionic fields X5 (¢) and ¥ 4pcp(€) are expanded accordingly [41],

ealr,y) =na(e(x) + ..., (4.14)
X, P (w,y) = 7724(9)77}3(@/) () + ..., (4.15)
Sasen(@,y) =0l @)ng Wnd @) Siulz) + ... (4.16)

With these expansions, the supersymmetry transformations of the vierbeine in Egs. (2.15,
3.41) are consistent with respect to Eq. (4.12). Since this thesis investigates the bosonic
uplift of N = 8 supergravity to 11 dimensions, it is not necessary to go into more details
here.

Let us now expand the vector fields B, (z,y) of 11-dimensional supergravity around
the background. The correct relation to all orders takes the form*

B.M(w,y) = RM v () AN (2), (4.17)

where the Er(7) rotation matrix RM(y) has been found in Refs. [45, 47, 49]. In principle,
it rotates the SO(8) indices of the four-dimensional gauge bosons into the internal seven-
dimensional indices of the 11-dimensional vector fields. More explicitly, the upper index
M of the transformation matrix R r(y) is decomposed under GL(7,R) (Eq. (3.28)),
whereas the lower index A is decomposed under SL(8,R) (Eq. (2.5)),

Rm[] RmIJ
Rmn RmnIJ
RMy = 1 4.18
N RmnIJ RmnIJ ( )
RmIJ 7e’mIJ
The non-zero COIIlpOIlel'ltS are
2 2 /o o
RmIJ — \g—KmIJ’ Rmn[J — \é_ (CmKnIJ _ CnKmIJ _ Kmnl]) ’ (419)
2 2 /.
RmnIJ = _\g—KmnIJa RmIJ = _\g_ (CnKmnIJ - KmIJ) . (420)

They depend on the Killing vectors K,,,’7(y) and -forms K,,,’/(y) as well as on the
(seven-dimensional) dual volume potential (" (y) of the seven-sphere. The latter is de-
fined as

‘n onmy---meg S 2 L., ‘m
C = 677 ! Gle---mga le---mg = ﬁnmlnwg T (421)

4The last seven components of B#M belong to the non-physical dual gravitons. Hence, Eq. (4.17) only
makes sense for the first 49 components.
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

Note the non-standard normalization of C ™ for later convenience.

Here is a simple example: The first seven components of B, (z,y) are proportional to
the vectors B,™(x,y) that parametrize the upper off-diagonal of the elfbein (Eq. (3.13)).
With Eqs. (4.17, 4.19) one then finds the old Ansatz for the vector fields in Kaluza-Klein

theory [29], i.e.
V2

B,"(r,y) = =K () A, (), (4.22)

Finally, the correct expansion of the scalar 56-bein VM, p(x,y) in 11 dimensions
can be found by considering the respective supersymmetry transformations of the vec-
tors (Eqgs. (2.22, 3.42)) [45, 47]. The resulting relation between the reformulated 11-
dimensional and the four-dimensional scalars is quite similar to the vector relation,

VMap(z,y) = V2RM v (y) 14 (y) s (y) Vo (). (4.23)

However, it contains the necessary rotations in order to rotate the curved SU(8) indices
A, B into flat ones 4, j. For later convenience, one computes the components of

VMi(w,y) = V2R v (y) V() (4.24)
using Egs. (4.19, 4.20). In particular,

V/2i

V= e K (w4 oy 1) (4.25)
pn = Y2 (Gmgents _ gngemts _gemi?) (19 ). (20
Vin i = f}(mn” (wig"” = vij 1), (4.27)

Vs = L2 (€Kt = K1) (1 = 1) (4.28)

Again, the signs are adapted in comparison to Refs. [48, 49], because the components
above constitute the 56-bein with an upper E7(;) index, VMij.

4.3. Bosonic Uplift Ansatze

Starting with the relations for the reformulated 11-dimensional fields in Egs. (4.17,
4.23), one may now find explicit non-linear uplift formulae for the bosonic fields of
11-dimensional supergravity in terms of the four-dimensional fields:

(B, Apmns Apmiomss Ameomzin) (1,9) & (AL Aury) (@),

(Grns Anps Ay ) (2,9) e (u", ) ().
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

As it turns out, only the scalar uplift Ansétze are non-trivial. Indeed, let us assume for
a moment that they are already known. Then, the vector uplift relations can easily be
found in the following way: First, the vectors B,™(x,y) are given in Eq. (4.22). Secondly,
the components 8 to 28 of the vector relation in Eq. (4.17) read

B,umn(xa y) = RmnIJ(y)AM IJ("L‘)'

Using Eqgs. (3.24, 4.20), one then finds an explicit Ansatz for the 21 vectors A, (2, y),
ie.

1
EKmnIJ(y)AMIJ(x) + B/tp(x7y)"4mnp(x7y)' (429)

Indeed, if the scalar fields A,,,,(z,y) are known, the rhs can be evaluated too. The
Ansétze for Ay m,..ms (€, y) and Ay, ..mqn (2, y) can be derived in the same iterative way
(assuming the scalar Ansétze for gm.(z,v), Amnp(z,y) and A, .. (2, y) are already
known).

Let us now derive the necessary non-linear scalar uplift Ansétze. Therefore, the main
problem of comparing the vielbein components of 11-dimensional and N = 8 supergravity
is the occurrence of the SU(8) rotating Killing spinors in Eq. (4.23). However, these are
orthonormal and drop out in non-linear SU(8) invariant combinations of the vielbeine.

For example, consider the expression

Apmn(T,9) =

VmAanAB _ nznijmUnl?nlenkl _ Vmijvnij.

Indeed, the Killing spinors n%(y) drop out. One now uses Eq. (3.23) on the lhs and
Eq. (4.25) on the rhs, which results in an uplift Ansatz for the inverse metric scaled with
the warp factor [43], i.e.

1 3 g
AT (2, y) = K" My) K" (y) (Uz‘jU + vij IJ) (U”KL + oV KL) (). (4.30)

For the lhs, one used the Clifford algebra of the I' matrices in Eq. (3.17). As expected,
this relation is non-linear in the four-dimensional fields, which will also be the case for
the following uplift Ansétze.

In a similar way, one relates

AB i
an VpAB = an ]Vpiﬁ

which yields a non-linear uplift Ansatz for the internal three-form [45, 47]. Indeed, using
Egs. (3.23, 3.26) on the lhs as well as Eqgs. (4.25, 4.27) on the rhs, one finds

A 1Amnp(.1', y) = —%Kmn”(y)KP KL(y) (u]U — J IJ) (UinL + ’Uij KL) (l’) (431)
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In order to derive an uplift Ansatz for the internal six-form potential A, ..mq(2,9),
one introduces the (seven-dimensional) dual one-form

AM = Genmame (4.32)

Similar to the dual volume potential on the round seven-sphere, 5m(y), a non-standard
normalization is used for later convenience. The internal six-form potential is a tensor
and its (seven-dimensional) dual A™(x,y) is constructed with the full € tensor. However,
one can convert this € tensor to the tensor density 7 (= +£1,0) using the internal seven-
bein e,,*(x,y) and the definition of the warp factor in Eq. (3.16),

€myomr = €my e € T ayar = ATy oy (4.33)
Eq. (4.32) then reads
n 6 °onmy-m A o m
A" = Z?’] GAml...mG = Am1~-m6 = mnmln’WA T (434)

Note that the indices of the six-form potential and its dual are raised and lowered with
the full internal metric.
Now, let us consider the relation

anAB VpAB — anij Vpij

and insert the various vielbein components in Eqs. (3.23, 3.27) and Eqgs. (4.25, 4.26).
This gives an equation for A™(z,vy), i.e.

V2

. A
g (AAM 43Vl gl = AR g, A, o K KPR (4.35)

24
x (uig™ +vig 1) (W + 0758
When contracting this relation with g, the first term on the rhs drops out because

ApnpAgrs) = 0.

In particular,

m mo_ A mnlJ g pKL 1J ij ij KL
AA™ 4 3v/2( = gz I KK (uig"” +vi1s) (Wi +075E), (4.36)

and dualizing this expression using Eq. (4.21, 4.34) yields

V2

Aml"'m6 ‘l— 3\/§gm1m6 — m

nplJ KL 1J i ij KL
€Enmi--mg gqu Pl K1 (Uij + Vij ]J) (U ]KL +v J ) .

(4.37)
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The rhs of Eqgs. (4.36, 4.37) further simplify using the uplift Ansatz for the inverse
metric in Eq. (4.30) and the definition of the Killing two-form in Eq. (4.9). They are
proportional to

o o 1 o
D™log A = AT'D"A = §gqumgpq, (4.38)
which finally gives a simpler non-linear Ansatz for the six-form potential, i.e.

v,

This result has already been derived in Ref. [48]. In comparison to Eqs. (4.36, 4.37), the
Ansétze in Egs. (4.39, 4.40) do not require the metric g,,, but an explicit expression for
the warp factor.

The formula for the inverse metric in Eq. (4.30) has been used to construct sev-
eral gaugings of 11-dimensional supergravity, for example the Gy, SO(3)xSO(3) and
SU(3)xU(1)xU(1) invariant solutions [43, 51, 57, 58]. In such cases, the explicit expres-
sion for A~1¢g™"(z,y) has been inverted to obtain the metric Ag,.,(x,y), and the warp
factor could be removed by explicitly taking the determinant (Eq. 3.16). In this way,
one could finally lower indices and derive the 11-dimensional scalar fields A,,,,(z, y) and
Ay (2,).

Let us now derive a new direct uplift Ansatz for the metric g, (z,y) [49, 50], which
also implies direct Ansétze for the form-potentials and the warp factor. First, consider
the relation

VmpABVpC’Dan[ABVqCD] = Vmpijvpklvnq[ijvqm]~

One uses Eqs. (3.23, 3.26) on the lhs and simplifies all terms including a factor of A,,,,,
to
o Al aBT epy .. = 0. (4.41)

Such expressions vanish because an antisymmetric index pair [np] is contracted with a
symmetric index pair (np). Using Eq. (A.7), one then finds the metric on the lhs,

16 s
A—zgmn _ gvmpijvpklynq[uvqkl].

For the rhs, one uses Eqs. (4.25, 4.27) and obtains®

i 1J KL 1J KL

Vip iV k) = 33Kmp K? (u[ij - U[z’j].]) (Uk;l] + Vg KL) .

>This equation as well as Eqs. (4.42, 4.51) differ from the respective expressions in Ref. [49] by a sign.
This is due to the sign difference in the vielbein components. However, the resulting expressions (for
the metric and the four-form field-strength) in terms of the four-dimensional scalar fields u;;’/ ()
and v;; 1 J(x) remain uneffected.
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

These two equations together represent a useful metric Ansatz in terms of the Killing
forms and the four-dimensional scalar fields,

_ 1
A2g, = KmpIJKp KLanMNKq PQ (UWIJ — v U)

192

X (Ukl]KL + vy KL) (uijMN — MN) (uklPQ + oM KL) '

However, one may simplify the resulting expression further: Using Eqs. (A.16, A.17)
in Appendix A yields

1
Viplii V ki) = 3 (Amijer — Bmijii) » (4.42)
where the convenient tensors A,k (2, y) and By (z,y) are defined as
1
Amz‘jkl(l‘, y) = ZKmn[U(y)KnKL](y) (UijIJUleL — Vij 1JVkL KL) (I)> (4-43)
Buiji(z,y) = Kn'7 (y) (Uz’jIKUkl JK — Uij IKuliK> (). (4.44)

By definition, these are totally antisymmetric in the SU(8) indices [ijkl] and depend on
all 11 coordinates (z,y). In terms of these tensors, the metric Ansatz finally reads

1A (Amijkl — Bmijkl) (Anwkl - Bnl]kl> . (445)

A_Q mn —
g 12

Note that this Ansatz is quartic in the four-dimensional scalar fields u;;’/ (z) and v;; r(z),
whereas the Ansétze for the inverse metric and the mixed three-form potential were only
quadratic.

Let us combine the Ansitze for the metric and its inverse in Eqgs. (4.45, 4.30) to get
a new Ansatz for the warp factor A(z,y). This can be done because the new metric
Ansatz contains a proportionality factor of A=2. One finds

1 .
A—3 — ~ klmn pij 4.4
28 . 4' C’Lj C klmn ( 6)
where the C(z,y) tensor is defined as
Cp /M = K™/ (upq” + Vpq [J) (Amiﬂ“l — Bmijkl) : (4.47)

Similarly, one combines the Ansatz for the three-form with mixed index structure in
Eq. (4.31) and the metric Ansatz in Eq. (4.45) to obtain a new Ansatz for the full internal
three-form potential,

16
Amnp \/_A3 V ABV C’quEF 1 ABVTSCDVSEF-
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

Using Eq. (4.41, A.11), one has
qu[CquEF} — ; (quCquEF + quEquCD) 7

and replacing the curved SU(8) indices by flat SU(8) indices yields

Apinp = ‘/_A3 Vi 2 (Vg * V1% 4 Yy BOVIB) VTV, Ve (4.48)

With a final look at Eqs. (4.25, 4.27), one finally finds

20 . g g
\/_'l AJK 1J ('U«”IJ — Y IJ) Cijqrst (qurst . qumt) ) (449)

Amnp - _48 A mn

The Ansétze for the warp factor and the full three-form potential in Eqs. (4.46, 4.49)
are derived by combining the Ansitze for A~ g™ (x,y), A7 A,,,”(z,y) and A2 g, (2, )
in Eqgs. (4.30, 4.31, 4.45). Hence, they are sextic in the scalar fields u;;/ () and vy 15 ()
and not suitable for the construction of the group invariant solutions in the next chapters.
Therefore, it is more convenient to use Eqs. (4.30, 4.31, 4.45) to derive the explicit
expressions for the metric, its inverse and the three-form with mixed index structure.
In a second step, these can then be combined to obtain the warp factor and the full
three-form potential.

As a final remark, the three-form Ansatz is not manifestly antisymmetric, which may
be a hint that it can be simplified further using the E;(7) properties of the ui;' (z) and
v;; 1.7(x) tensors in Section 2.3 [37, 41]. One such 51mphﬁcat10n concerns the C tensor that
occurs in both the warp factor and the three-form potential. In particular, Appendix B
shows that one may extract a Kronecker-delta out of it. However, this is not sufficient
to show the explicit antisymmetry of A, (x,y).

4.4. Ansatze for the Internal Field-Strength and the
Freund-Rubin Term

The scalar Ansétze derived so far are sufficient to construct an 11-dimensional super-
gravity solution. In particular, they are used in the next three chapters to find the
explicit Go and SO(3)xSO(3) invariant solutions. In order to check the consistency, it
will also be necessary to compute the internal four-form field-strength F,,,,,(z,y) and
the Freund-Rubin term fpr(x,y). Therefore, this section presents the corresponding
embedding formulae.

Let us start to find an Ansatz for F,,,,,,(z,y) [49, 50]. It is given by the formula

Frnpg = 4 D Appa (4.50)
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

and the explicit three-form Ansatz in Eq. (4.48). In the resulting expression,
64 . o o
anpq \/_ D[m (AS Vnpzlzg (Vq]rzgmvrzsze + Vq]rmzevrzgu) Vsilizvsti3i4vti5i6> 7
(4.51)

one needs to evaluate the derivative in general. First, one has
D A? = 3A%D,, log A,

hence, one term in Fj,,,,(x,y) will be proportional to A[mnpf)q] log A. Secondly, the
covariant background derivative D, only acts on the y-dependent fields in the vielbein
components: the Killing forms and the dual volume potential (" (y). It does not act on

the four-dimensional scalars u;;/(z) and v;;75(x). In general, for the S7 reduction, one
uses Eq. (4.25 — 4.28) as well as Eq. (4.11) to find

m;llo)mV”ij = §mp (28”1}[)}1‘]' — Vnpij) , (452)
m7 Dy V5 = =2 (6" 4 GuC™ = mr ' DynCl) VW5 = 2Gmgl V775, (4.53)
m;IDmVnpij = 2§°]m[n <_VP] ij ¢ Vp]qij> ) (4‘54)

M7 DonVaij = (Cn6n” = GunC”) Vi = (0m” + GnC” = m7 ' DinC”) Vi (4.55)

Putting all this together, the resulting intermediate expression for F,,,,, becomes
rather long and is not listed here. However, it should be clear that it contains the
tensors Gpmn, Cm as well as all four-dimensional vielbeine VM,;. Let us perform some
simplifications: One starts with replacing the V™;;’s by the 11-dimensional vielbein
components VM 45 since the SU(8) indices i, j, ... are fully contracted in pairs. Using
Egs. (3.23, 3.26, 3.27, 3.32) then introduces the 11-dimensional fields (e.g. Ay, and
Ay omg) and the SU(8) I' matrices. With Eqgs. (A.1) for the traces of products of I'
matrices, Eq. (4.51) reduces to

o 24 0 ) .
Finnpg = =12 Apunp D) log A + ok ApmnpJq)r (AA +3v2¢ )

+ {4m7§m7“1707“mr7 (gTLT2gP?"39qT4 - 18Ain2AqT3r4) Ar5r6r7]

[mnpq] ’

where |(mnpq denotes antisymmetrized indices [mnpq|. Furthermore, one eliminates the
second term by Eq. (4.39),

anpq = —18A[mnqu] log A

—|— |:4m7§m7’1 79]1"1~~~r7 (gnrzgpr?,gqm - 18Ain2Aqr3r4> Ar5r6T7:|

[mnpq] 7
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

and the term 7™ "7 Ayyyr, Arorer. can be replaced via Eq. (4.35). Together with Eq. (4.39),
this cancels the term proportional to D,,log A. Finally, one turns the tensor density
7™ into the tensor €77 (Eq. (4.33)) and obtains

Frinpg = M7 AGsim | A€npgrrars “A™" = 3G Apgr K1 (4.56)
X KtKL (uijIJ + Vij [J) (uinL -+ Uij KL) } .

This formula appears to be more feasible for practical tests than previous expressions
found in Refs. [48, 50].

As a convenient consequence, it is not difficult to raise all indices with the inverse
metric ¢"™"(x,y). Therefore, one must keep in mind that the indices of the Killing forms
and G, (y) are raised with the background metric. All other tensors in Eq. (4.56) are
covariant, hence

Frnpa m7A§5tgt[m <46npq}r1r2rssAr1T2r3 _ 3AinKq] 1J (4.57)
x KrsKE (uiju + vij”) (uinL + UinL) >

Note the power of the last step: So far, the field-strength with upper indices has always
been found by raising each lower index of F,,,,(z,y) with the explicit expression for
the inverse metric ¢""(x,y). In Ref. [51], this was one of the hardest tasks in verify-
ing the SO(3)xSO(3) invariant solution of 11-dimensional supergravity. In this thesis,
Chapters 5, 6 and 7 will make use of the simple Ansétze for F,,,p,(x, y) and F"(x,y)
above in order to verify the Gy and SO(3)xSO(3) invariant solutions of 11-dimensional
supergravity.

The rest of this section presents a non-linear uplift Ansatz for the Freund-Rubin term
frr (z,y) of 11-dimensional supergravity. It is defined as the four-dimensional dual to
the external four-form field-strength F),,,,(x,y). In other words,

F;wpa (*1'7 y) = ifFR(xa y)ﬁuupaa (458)

where 7),,,,, denotes the four-dimensional Levi-Cevita tensor density [59]. In particular,
for a Freund-Rubin compactification, the Freund-Rubin term fpg(z,y) = frr becomes a
constant. In the following, we repeat the main steps of Ref. [48] to derive an expression
for frr(x,y) in terms of the four-dimensional fields and the Killing forms on the seven-
sphere.

The starting point is the generalized vielbein postulate for the 56-bein VM 4p(z,y) in
11-dimensions [46, 54, 48],

D, Vv ap + QuCaVn e = Pmaep Vv, (4.59)
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4. The Embedding of Gauged N = 8 Supergravity into 11 Dimensions

with the following definitions: First, D,, denotes the covariant E;(7) derivative along the
first seven directions (the physical directions),

D,V a8 = OnVxas — Dn” Vp as. (4.60)

Here, T',n" (,y) is the corresponding Er(7) generalized Christoffel connection [54]. Sec-
ondly, Q2 ,(x,y) denotes the generalized SU(8) spin connection [55],

Qi = —;wmabFZbB + f I A*fpr D A — ﬁanpqrzfg. (4.61)
In particular, it depends on the SO(7) spin-connection wy, 4(y), the Freund-Rubin term
and the internal four-form field-strength. Let us not go further into details here, since
in the subsequent steps, the term in Eq. (4.59) that is proportional to the SU(8) spin
connection Q2 5(x,y) will drop out. Finally, the SU(8) tensor P,, apcp(x,y) is the
‘generalized non-metricity’, which measures the failure of the 56-bein to be covariantly
constant under the generalized covariant derivative (including the SU(8) spin connec-
tion). Its components are

PmaBcD = \;giAQfFRan Bl cp) + ganqun[ABquCD] (4.62)
and also depend on the Freund-Rubin term and the internal four-form [55]. Note that
P apep(z,y) is totally antisymmetric in the SU(8) indices — the first term in Eq. (4.62)
is selfdual and the second one is anti-selfdual (see Eq. (A.4)).

The next step is to project out the non-metricity from the GVP in Eq. (4.59) using
the orthonormality of the 56-bein VM 45(z,y) (Eq. (3.35)),

Prasep = —iVMepDmVaas, (4.63)

and to compare it with the definition in Eq. (4.62). More explicitly, another projection
onto the self-dual part yields

2
\5/6_ ‘A2fFRVmpABVpCDan[ABFqCD} = _ivmpABVpCDVMCDDnVM AB-
On the lhs, the term proportional to the field-strength F,,,,(z,y) drops out as it is
anti-selfdual and V,,*BVPCPl is selfdual (see Egs. (4.41, A.4)). With a slight look to
the derivation of the metric Ansatz in Section 4.3, one finds that the term on the lhs is
proportional to g, (x,y). More explicitly,

3v2

KfFRAgmn = VmpABVp CDVMCDDHVM AB-
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Finally, the curved SU(8) indices are contracted in pairs and can therefore be replaced
by flat ones. From Eq. (4.63), it is also clear that the second part on the rhs is by con-
struction, totally antisymmetric in the flat SU(8) indices. Contracting with the inverse
metric then yields

fFR _ 3\/_A 1gmnvmpljvpklvf\/l [le VM il

Furthermore, using Eq. (4.42) and the concrete E7(7) connection components [48] gives

frr = 42\/_A 1 gmn (Amijkl . Bmijkl) (3Anijkl + 4Bnijk‘l) ’

which reduces to
mry Ail
frr = 73 [ 7
when subtracting the explicit metric Ansatz in Eq. (4.45).

In Refs. [44, 48], similar Ansétze have been used to find the explicit form of the Freund-
Rubin term for different group invariant solutions of 11-dimensional supergravity. It
turned out that in all these cases, fpr(x,y) consists of two parts. The first one is
proportional to the corresponding scalar potential V(x) of the four-dimensional theory
and does not depend on the internal coordinates. The second one is proportional to the
first variation of V' (z), the proportionality factor being y-dependent. In particular, this
second part vanishes at stationary points of the scalar potential and the Freund-Rubin
term becomes independent of the internal coordinates [44].

These considerations led to the following conjecture for the Freund-Rubin term: [48]

gmn (Amijkl - Bmijkl) (Anijkl + Bnijkl) - A_S ) (464)

mr

frr(2,9) = WoT (—V(x) + gz (Qijkl(x)f]ijkl(x,y) + h.c.)> : (4.65)

Here, the scalar potential V(z) and the @ tensor are given in Eqgs. (2.13, 2.25) and the
complex-selfdual tensor ;. (z,y) is defined as

A

Zijkl(xvy) = (uijuuleL — Vij 1JVkI KL) (x)KmUJ(Z/)KmKL] (y)- (4.66)

Since QY*(z) is by construction complex anti-selfdual at stationary points, the above
conjecture reflects the observed properties of the Freund-Rubin term. Unfortunately,
Eq. (4.65) has not been proven in full generality yet. We proved the conjecture up to
quadratic order in the scalar expectation value and also showed that it explicitly holds
for the Gy invariant solution of 11-dimensional supergravity [48].

This thesis does not go into further details here. In Chapters 6 and 7, the Freund-
Rubin term will be explicitly computed for the Gy and SO(3)xSO(3) invariant solutions
of 11-dimensional supergravity using the uplift Ansatz in Eq. (4.64). As it turns out,
this is much more convenient than using the conjecture in Eq. (4.65).
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5. How To: Find a Group Invariant
Solution of 11-Dimensional
Supergravity

This chapter gives a general overview to the application of the derived scalar uplift
Ansétze for certain gaugings of the N = 8 supergravity. In such cases, the obtained
11-dimensional fields can be written in terms of certain group invariant tensors, which
are adapted to the corresponding deformed S” geometry. These fields then constitute a
group invariant solution of 11-dimensional supergravity. Since this thesis does not give
the fermionic uplift Ansétze, the most general solution that one may construct here is
purely bosonic (by setting all fermions to zero).

A special case is the class of ‘Freund-Rubin solutions with flux’ [59]. These can be
found by restricting the spacetime My in Eq. (4.1) to be maximally symmetric (here,
AdS,). In such cases, all fermions and vector fields must vanish identically. The only non-
vanishing fields are the AdS, spacetime metric g, (x) and the scalar degrees of freedom
that are in the internal components of the metric and the form potentials g,,,(x,y),
Apnp(y) and A,y e (y). In particular, the elfbein and the 11-dimensional four-form
field-strength are then given by

F;wpa = ifFRﬁuupa (33)
) y FMNPQ = anpq = anpq(y) . (51)

0, otherwise

A12(y)é, % (x
EMA(x,y):( W), @) 0

0 em® ()

This simplification is only consistent when the derived 11-dimensional fields are evaluated
at the group invariant stationary point of the scalar potential V' (z) (Eq. (2.13)). In this
case, the Freund-Rubin term becomes a constant fgr(z,y) = frr.

Note that for a Freund-Rubin solution with flux, all required uplift Ansatze are derived
in the previous Chapter. However, for a certain gauging of the N = 8 supergravity, they
may still be simplified. In particular, Section 5.1 now shows how the 11-dimensional
fields can be written solely in terms of certain group invariant tensors. In principle,
further consistency checks of the obtained solution are not required, since the uplift
formulae have been found by a careful analysis of the supersymmetry transformations in
both theories. However, for the readers convenience, Section 5.2 summarizes two kinds
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5. How To: Find a Group Invariant Solution of 11-Dimensional Supergravity

of consistency checks that will be performed in the next chapters for the found G, and
SO(3)xSO(3) invariant solutions of 11-dimensional supergravity.

5.1. Using the Uplift Formulae

This section gives the general guideline to derive a certain group invariant solution of
11-dimensional supergravity. Therefore, one starts with the uplift Ansétze derived in
the previous chapter, which are explicit relations between the following fields:!

(gmrw Amnp7 Aml---maa A7 anpqv fFRy) (Iay)
4

(uijIJ(x>7 UijIJ<x)a KmIJ(y), Kmn”(?/)a Cm(y))

Based on the group invariance, it is now possible to simplify these Ansitze. In gen-
eral, the larger the symmetry group, the more simplifications are possible. Let us now
summarize the steps that lead to these simplifications.

One first writes the u;;’/(x) and v;; () tensors in terms of the scalar and pseudo-
scalar vacuum expectation value ¢y i (x). Therefore, the four-dimensional 56-bein in
Eq. (2.4) that encodes the four-dimensional scalars may be brought into unitary gauge,
such that

V = exp <¢L9KL ¢16KL> : (5.2)

Here, the scalar vacuum expectation value is a complex, selfdual tensor field,

1
=1L = QEUKLMNPQQbMNPQ- (5-3)

GIIKL
In this gauge, there is no distinction between SU(8) indices ij ... and SL(8,R) indices
IJ... — they are all SO(8) indices now. Comparing with the unitary gauge of the
56-bein in Eq. (2.4) yields the useful relations?

KL = 1 *\ 1N IJKL = 1 * *\ 1N
uryo T = Z W [(60")" )15kt » ol = ;m (0" (60™)" |1 sk - (5.4)

L As discussed in Section 4.3, these formulae also imply the corresponding vector relations.
2Here and in the following, one uses the short-hand notation

AB=(AB)rsxkrL = ArsuNnBunkeL-
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Taking this into account, the scalar uplift Ansédtze can be written as

(gmny Amnp; Am1~~~m67 A) anp(I7 fFR7> (‘T7y)
=

(brxr(@) Kn™ (@), K@), ("))

Secondly, for a group invariant solution of 11-dimensional supergravity, the most gen-
eral form of the scalar vacuum expectation value must inherit the underlying symmetry.
Hence,

O () = S AD@) ey + i 30 1 (@) Ve (5.5)

r

where {@§?K L} and {\II(ISJ)K L} form a basis of group invariant real selfdual and real anti-

selfdual 4-forms®. The coordinates {)\(T) (z), ) (:l;)} parametrize the scalar manifold
and take certain constant values at stationary points of the scalar potential V' (z). Some
examples of invariant 4-forms are [51, 53]

<I>§?;)KL =Chxr » ‘Ifg(?KL = for SO(7)* symmetry,
<I>§?,)KL =0, \Ifﬁ‘f}m = CykL for SO(7)~ symmetry,
(I)%)KL = C_;FJKL ) \Dg(?KL =ClikL for Gy symmetry,

0 0 _
CDSJ)KL =YikL » \IJSJ)KL =YKL
for SO(3)xSO(3) symmetry.

1 1 _
(I)gj)KL = ZEKL ) \Ijgj)KL = ZIJKL

The explicit expressions for the SO(8) tensors C7yx;, Yiixr, 2k Will be given in the
next two chapters. With these considerations, the scalar uplift Ansétze are simplified to

(gmny Amngn Am1~~-m67 A anpqa fFRa) (.T,y)
<~

{7k} {¥ke}, DO@} (9@}, K@), Kw @), ("))

To work with a group invariant scalar field configuration (Eq. (5.5)) has another
convenient side effect: Higher-order products of {QD?:,)K L} and {\Ifgs}K L}, such as

(I)(T)q)(?"’)7 q)(r)\p(S), \If(s)\ll(sl), NP HT)  ote. (5.6)

3When dealing with real tensors, the position of the SO(8) indices I, J, ... does not matter.
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may be related to lower-order products. Consequently, one generates a list of group
invariant tensors in the following way: In the beginning, the list only contains the self-
dual and anti-selfdual tensors {@ﬁ’j}K L} and {\D%K L}. Then, one iteratively constructs
products of its elements, which may reduce to previously defined expressions in the list.
If this is not the case, one defines them as new four-tensors (not necessarily selfdual or
anti-selfdual) and adds them to the list of group invariants. This procedure stops when
all products reproduce SO(8) objects already contained in the list. Exploiting all such
identities should then enable us to compute u; ;%% (z) and vysrr(x) in a closed form. In
other words, the sum in Eq. (5.4) becomes finite in terms of the elements in the list of
group invariant tensors. This procedure will become more clear using the examples in
Chapters 6 and 7.

The Ansétze may finally be brought into a form that is more adapted to the deformed
S7 geometry. Therefore, one uses the fact that the Killing forms introduced in Sec-
tion 4.1 generate an orthogonal basis of selfdual and anti-selfdual SO(8) tensors (see
Appendix A):

selfdual : K,/ km&H g, WKL K, K, 5"

(5.7)
anti — selfdual : K, "7 K, .
In this basis, the selfdual and anti-selfdual four-forms ! J) i and ple h JK ; read
(Pg":])KL _ 1£(T)K[IJKmKL f(r KM IJKnKL] + igq(?:)Kmn [IJKnKL] 7
6 12 (5.8)

“I}%}KL _75(5 Kmn [IJKpKL]’

9~ mnp

where the corresponding components £ (y), £7) (y), €7 (y), S©) (y) are tensors defined

mn mn
on the round seven-sphere. Hence, its indices are raised and lowergd with the background
metric gp,,. Note that Smnp( ) is defined to be totally antisymmetric. The above relations
may be inverted to obtain explicit expressions for the S tensors. Therefore, one contracts
them with the orthogonal (anti-)selfdual basis four-forms in Eq. (5.7) and uses Egs. (A.6

—A.9). This yields

T 1 T n T 1 T r omn ¢(r
€ = g Ko K60 = e K K€ =g (59)
for the scalars, and
1
S”(szlp 16\II§J)KLK[mnIJK }KL (510)

for the pseudo-scalars. The consequence of the performed steps is a huge simplification:
All 11-dimensional fields can now be written solely in terms of the S” tensors and prod-
ucts of Killing forms. However, the SO(8) indices are fully contracted and as explained
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in Appendix A, all these contractions of Killing forms reduce to combinations of the
invariant SO(7) tensors 6%, Gmn and m,..m., €.8.

KKy = 80mn, KK =0, K™K, = 165" (5.11)

In other words, the 11-dimensional fields are finally written only in terms of the S”
quantities (Egs. (5.9, 5.10)):

(gmn, Amnpy Am1~~-m67 A anpqa fFRa) (:zr,y)
<~

({20, w9} @), {&0, €, €0, SO @) {Gmnr dmemr ("} ®))-

The resulting expressions may still involve certain contractions between the S7 quan-
tities €0 (y), £7) (), €M (y), S,(szlp(y). Depending on the symmetry group, these con-
tractions may further be simplified. Therefore, one inserts the expllclt decom osmon in

Eq. (5.8) into all relations between the group invariant tensors {CID TiK L} { TIK L} (see

Eq. (5.6)). This gives a complete list of identities between the S7 tensors, which can
be used to bring the resulting expressions for the 11-dimensional fields into a suitable
form. Without these relations, it would not be possible to perform the consistency checks
discussed in the next section.

Apart from these specific relations for the S7 tensors in Egs. (5.9, 5.10), there are
some general relations that are valid for any underlying symmetry. First, the derivatives
of the S tensors can be computed using Eq. (4.11):

S(r) = 2m7€7(7:)7 bmg(r) = 6m7 55:;2; - 2m7 S(r)gmna
. \ 1. ot s (5.12)
mf( " = m7 <gnp§ m(ngl()))>a D Snp)q = 6m777mnpq tsﬁs?f'
Secondly, one finds the useful identities
1
CD?:])KLKmKL S(r K" IJ 357(11")Kmn IJ7 (513)
r 2 2. e . . r
i Ko™ = S+ (€ hpioa — A5y ) K. (5.14)
\Ijgf])KLKmKL Sr(jnpKanJ (515)
s 1 o
\Ing)KLKmnKL - 2Sm2LprIJ gnm P p5Sp1p2p3KP4p51J’ (5]‘6>

which can be proved using the explicit decomposition in Eq. (5.8) and the identities in
Appendix A*. Egs. (5.12 — 5.16) are valid for all r and s.

4Similar formulae may be found for all the SO(8) four-tensors that are contained in the list of group
invariants. However, this must be done separately for the specific cases and will be discussed in the
next two chapters.
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5.2. The Consistency Checks of the Solution

This section describes two kinds of consistency checks for the obtained group invari-
ant fields. These tests will be performed in the following two chapters for the Gy and
SO(3)xSO(3) invariant solutions of 11-dimensional supergravity. Within the discussed
bosonic uplift of N = 8 supergravity to 11 dimensions, all fermions are consistently set
to zero.
The first test verifies the duality relation in Eq. (3.12). Therefore, setting all fermions
to zero, one considers the seven internal components, i.e.
i voo P 1
meml...mmung” = D[mlAWQ...m7] + MA[WI“‘WZSFWAL"‘"T?]‘

With the particular decomposition of the € tensor,

€my-mrpvpe = A_lﬁm1-~~m779/ul/pm (5.17)
one contracts the above duality relation with 7™ ™7 and finds

iAT! o Uvpo omy-my | T 1
TTMVPUF =n DmlAmZ'“m7 + mAml---mgFm4---m7 :

Furthermore, using Eqgs. (3.15, 4.58) on the lhs and Eq. (4.39) on the rhs finally results

m

frr = —A™3 (ébn (AA™) +

1
i A Fimonar ) (519
This relation must hold off-shell, i.e. it does not require the equations of motion to be
satisfied. Hence, Eq. (5.18) represents a very non-trivial consistency check for the uplift
Ansétze of the internal form potentials (Eqgs. (4.39, 4.49)), the field-strength (Eq. (4.56))
and the Freund-Rubin term (Eq. (4.64)).

The second test is the verification of the equations of motion for the Freund-Rubin
compactification®. In this case, Egs. (3.8, 3.9) simplify to

A1 2
R/w - ( 7*2 anqumnpq + 3f§RA3> Ag,“,, (5'19)
A_l mn 1 1 T
Ry = <72 mnqu i — BfEZ‘RA?’) Agmn - éFmquanq ) (5'20)
a — mn \/§ oINPT s
D, (A e pq) - ﬂfFRU P thrst' (5'21)

5The spacetime is maximally symmetric and all fields are evaluated at the group invariant stationary
point of the scalar potential.
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5. How To: Find a Group Invariant Solution of 11-Dimensional Supergravity

In order to verify these three equations, one must compute the following scalar fields:
Imns Amnp; Av anpqa anpq’ fFR; Rw/a Rmn

In particular, these can all be found using the scalar uplift Ansétze in Chapter 4, except
for the components of the Ricci tensor.

Therefore, the rest of this section now explicitly shows, how one computes the com-
ponents R, and R,,, on the lhs of Egs. (5.19, 5.20). From Eq. (3.15), one has

gu(@.y) = A W) (), 9" (@,y) = Ay)d™ (@), (5.22)

and the various Christoffel symbols read

o 1 o
Ffw = F/pw, re =TIt =0, Fﬂu = igm,gquq log A,

_ A o (5.23)
I, =50 DalogA,  Th, =10, +17,.

Here, the connection components with a circle on top denote the background Christoffel
symbols (of AdS, and the round seven-sphere). Moreover,

A

1 o o o
Fgm = §gpq (Dmgnq + Dngmq - Dqum) (524)

denotes a convenient tensor.
The relevant components of the eleven-dimensional Riemann tensor are

R*ype = —0,I%, + 0,T%, — by Tl 4+ Th T

o 1 o o
= R", . + 55[p“ggh,gqup log A D, log A, (5.25)
1 o o A o 1. o
= 55{,‘ <—DmDn logA+1I% D,log A + §Dm log A D, log A)> , (5.26)
Rmmw = gmpg,upRpme (527)
R™ g = R™pg — DI + DI — T L7 (5.28)

Here, ]o%“,,pa and ]-gimnpq denote the Riemann tensors of the background AdS, space and
the round seven-sphere, respectively. The associated Ricci tensors in our conventions are

éuy - 3mi§um émn = _Gmggmnv (529)

where m, denotes the inverse AdS, radius. It is related to the S” radius via the scalar
potential at the stationary point V, [51],

my = ——— mj3. (5.30)
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5. How To: Find a Group Invariant Solution of 11-Dimensional Supergravity

It is now straightforward to obtain the expressions for the relevant components of the
Ricci tensor. In particular,

1o o
Rp,y — (3m421 - §Dm (A_lgmnDn log A)) Agl“” (531>
R = —6m2G,mn + 19, T — D% (5.32)

— iDm log A D, log A — ;lo)p (A’lgpqlo)q log A) AGumn,
where one defines the convenient tensor
e = ;Algpq (bmAgnq + DyAgmg — lo?qumn> : (5.33)
The following two Chapters construct the Gy and SO(3)xSO(3) invariant solutions of

11-dimensional supergravity. In particular, Eqs. (5.18 — 5.21) are explicitly verified for
these solutions.
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This chapter repeats the construction of the G, invariant solution of 11-dimensional
supergravity. The uplift Ansatz for the inverse internal metric was already known in the
early 1980s. In particular, the authors in Ref. [43] derived the explicit expression for
A~1g™ within the G invariant solution of 11-dimensional supergravity. The obtained
matrix can be inverted to derive Ag,,,(x,y) and the warp factor can be removed by
explicitly taking the determinant. The three-form Ansatz was found 20 years later [45]
and was verified for the Gy invariant solution of 11-dimensional supergravity [60]. In
particular, the authors of the latter paper found the explicit expression for the internal
four-form field-strength using Eq. (4.50) and verified that the Freund-Rubin solution
satisfies the simplified equations of motions in Eqs. (5.19 — 5.21). Finally, the explicit
uplift Ansétze for the internal metric g, (z,y) and field-strength F),,,,,(z,y) as well as
the Freund-Rubin term fgr(z,y) (Eqgs. (4.45, 4.56, 4.64)) have been explicitly checked
for the Go invariant solution of 11-dimensional supergravity [48, 49].

This chapter summarizes these results in three steps: The first part gives the de-
composition of the scalar fields u;;’/(z) and v;;7;(x) into Gy invariant tensors. It also
introduces the explicit ST quantities (Egs. (5.9, 5.10)) and gives the corresponding iden-
tities. Section 6.2 then constructs the 11-dimensional fields using the explicit uplift
Anséatze derived in Chapter 4. Finally, Section 6.3 checks the consistency for the derived
Freund-Rubin solution as explained in Section 5.2.

6.1. G, Invariant Tensors and Corresponding S”
Quantities

Let us now explicitly perform the steps that were discussed in Section 5.1. This includes
to give the explicit decomposition of the u;;/’(x) and v;; () tensors into Gy invariant
objects and to find all corresponding identities that are required to derive the Gy invariant
solution of 11-dimensional supergravity.

First, there is only one selfdual and one anti-selfdual Gy invariant tensor, i.e.

0 0 _
q)gJ)KL = OEKL? \Ing)KL = VIJKL- (6-1)

Together with a reparametrization of the scalar coordinates A (z) and u(%)(z) into a
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6. Gy Invariant Supergravity

scalar field A\(x) and a rotation angle a(z),

AO(z) = )\(21') cos a(x), 1O (z) = )\g) sin a(x),

one finds the explicit expression for the scalar vacuum expectation value ¢k (x). In
particular, Eq. (5.5) reduces to

A o :

Prikr = 5 (C’IJ“JKLCOSQ+ZCIJKL81110¢) . (6.2)
Secondly, one constructs a list of Gy invariant four-tensors, which are not necessarily
selfdual or anti-selfdual. Therefore, the only relations for products of the C7;; tensors

are [53]
2
(Ci)UKL = CryunCiinkr = 120, £ 40Tk, (6.3)

Since there is no such identity for the products C*C~ and C~C™, they must define new
G invariants. Hence, our list of Gy invariant four-tensors reads

1
1J + + _ + — - +
5KL7 CIJKL7 DIJKL - 5 (CIJMN MNKL + IJMNCMNKL) :

In principle, this list may be extended by cubic terms like CTC~C™ etc., but it turns
out that no further definitions are required for our purposes.

One now relates the four-dimensional scalars u;;’/(z) and v;;7;(x) to the above G
invariants. In particular, Eq. (5.4) simplifies using the explicit form of the vacuum

expectation value in Eq. (6.2) and the contraction identities in Eq. (6.3):

1 1 ) _ i . _
UIJKL = p35§<JL + 5296}2 cos” QC;FJKL - EPQQ sin’ aClyxr — gpQQ sin 2aD7 5, (6-4)

1
VIJKL = q?’(cos3 a — isin® a)éfg]L + §p2q cosaCirr (6.5)

1 1
§p2q sinaCl i — §q3 sin 2a(sin o — i cos &) D} 51,

where p(x) = cosh A\(x) and ¢(z) = sinh A(z).

The explicit Gy invariant S7 quantities are abbreviated as'

0 =¢ =g, €O =tn, SO = Smum

n Ref. [60], Synp was denoted by gmnp.
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6. Gy Invariant Supergravity

and Egs. (5.8 — 5.10) read

3 1
Clikr = gKm[”K I e RS e K MR,
1 1Jgr KL (6.6)
C;JKL = §Smnmen[ Kp }7
1 1

C;rJKLKIJ KnKL ’ gmn — 16C;C]KLKIJKKL 5 — .&mnfmny ;
1 . (6.7)
Smnp = EOIJKLK [mn Ky Pl

Sm = 16

Furthermore, inserting Eq. (6.6) into the contraction relations in Eq. (6.3) yields the
useful specific identities [60]

Sm[npsqr}s _ éf]npqr(mtuss)tu, S[mnpsq]rs _ iﬁmnpq[rtuss]tu7

(6.9)
Smanpqr _ 25;7;71 + gflmnpq?"stSTSt'
Finally, the general identities in Eqs. (5.12 — 5.16) translate to
Dmf = 2m7§m7 jjmgn - 6m7 Smn - 2Tn? gémna

. 1 . . . 1T (6.10)

Dmgnp = §m7 <gnp§m - gm(nép))a DmSnpq = Em'?nmnpq Srsta

and
CIJKLK KL _2§mnKn1J anmnIJa (611)
CIJKLK KL= g[m n] <3€§mp§nq - 4§p[m€n}q> K™ IJ’ (612)
OIJKLK KL SmnpKanJ (6.13)
1

CiJKLKmnKL = QSmnpr Y N gﬁmnplml% Sp1p2p3 Kp4p51J' (614)

It is also convenient to compute the following single contractions of the specific Go
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6. Go Invariant Supergravity

invariant D tensors with the Killing forms:

1
D_I,'_JKLKmKL = (gSmnp — fmqsnpq - 2Srrmqé-pq + %ﬁmnpqrstgqsmt> KanJ7 (615)
2 1
DiJKLKmnKL = <3£Smnp - 4§[qun]pq - 2Smnq§pq + Bﬁmnpqrstgq‘smt) KpIJ
1 f o rs
+ g (g[msn]pq - Smnpfq - g mnpqrstS !

+ ﬁmnprstuquSStu + ﬁ[m|pqrstu§n] rsstu> K™ IJ; (6 16)

DiJKLKmKL — gsmnpgnKpIJ

1 o TS n
+ (gsmnp + fqunpq - 2Smnq5pq - %nmnpqrstgqs t) K pIJ’ (617)

2 L. rs
DiJKLKmnKL — (—3§Smnp + 4€[mq5n]pq — 28 ng&p? + Enmnpqrstgqs t) KPiJ

. i rgstu 2 r Qstu
+ g <_€[m5n]pq - Smnpé-q + nmnprstufq S t — n[m|pqrstu§n] S t ) qu IJ

(6.18)

These identities can be proved using the explicit definition of the D¥ tensors and the
relations in Egs. (6.11 — 6.14).

6.2. Constructing the G, Invariant Supergravity Solution

This section gives the explicit calculations to derive all 11-dimensional scalar fields in
terms of the Gy invariant S” tensors in Eq. (6.7). These constitute the complete Freund-
Rubin solution with flux. All computations are performed with the computer algebra
program FORM [61, 62]. Therefore, the main steps to derive the solution are described in
detail but only some intermediate results are given.

Let us start with the uplift Ansatz for the inverse metric in Eq. (4.30). With the
explicit decomposition of the u;;’/(z) and v;;77(x) tensors into the Gy invariants in
Egs. (6.4, 6.5) and the contraction identities in Eqs. (6.11 — 6.18), one finds that

m KL KL _ _ mn 1J mnp 1J m KL _.mn 1J mnp 1J
K Urg = Uy Kn +u1 Knp s K ViIgJKL = Uy Kn —|—U1 Knp (619)
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Here, the explicit components are

?

u™ = p*§"" — pg? cos® a £™" + 12pq2 sin 20 S™PE,
U™ — _1 2 2 emlnep] 1 2 2 gmnp
1= 6pq cos” a g""E 2pq sin” «v
i 2 1 m[n ¢plg m  Qnpq 6 mnp 1 ommnpqrst
+ gPd sin 2a | 25™ EPT — M ST — gS + 36 EgSrst |

V" = ¢3(cos® a — i sin® @) §™™ — p?qcos a €™,

1 ] 1
v = —6p2q cos o g er %pzq sin .S + gq?’ sin 2«
1
X (sina — i cos a) (25m["q§p]q +Em,S™ — gSm”p - %ﬁmnmqu&st) .

Using these relations together with Eqgs. (5.11, 6.8, 6.9), the uplift Ansatz for the inverse
metric (Eq. (4.30)) finally reduces to

ATl = (e +o7s") 5 = cvs(e 4+ vs)E™ (6.20)

where ¢(x) = cosh 2\(x), s(x) = sinh 2\(x), and v(z) = cos a(x).

Secondly, A1 A,,,,” may be computed analogously using the uplift Ansatz in Eq. (4.31).
Therefore, one needs to calculate

KL KL 1J 1J
Kmn Urg = Uz mnpr + ug mnqupq )

KL IJ IJ (6'21)
Kmn VIJKL = U2mnpr + Uanqupq .
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The explicit components are

U2mnp = gpqg cos” a Emdnlp — pg* sin® @Sy

1 . & 1, s
+ EPQQ sin 2« (Smnqépq - 2€[mqsn]pq + §Smnp - %nmnpqrstqu t) )

1
U2 mnpq = (gpq2 0052 a+ p3> (Sfr?n - 2pq2 COS2 o f[m [p5n] 4] + qu? Sin2 o ﬁmanTStSTst
+ ﬂpq sin 2« <§[m5n]pq — {LPS‘I]mn — gT[mﬁn]WstuSSm _ gr[‘lﬁmnp]rstusstu) ’

1 1
V9 mnp = gp q cos & & nlp + ip*q sin S,y + Zq?’ sin 2a/(sin @ — 7 cos @)

1, rs
X (Smnquq + 2£[mqsn}pq - gSmnp - %nmnpqrstgqs t> )

Vamn’? = <§p2q cos o + ¢*(cos® o — i sin 04)> 624 — 2p*qcos a g[mbﬂg q)

+ <_122p2q sin av + 7&2q3 sin 2a(sin o — 7 cos a)) BrnP S, o1

1
- EQ3 sin 20((SiIl a —1cos a)épr‘éqs (g[msnrs] + ﬁ[mnrtuvwgs]tsuvw) .

Again, these relations together with Eqs. (5.11, 6.8, 6.9) simplify the uplift Ansatz in
Eq. (4.31) to

V20252 tan o

ATA,P =
24

[2(0 — 05)Egm S’ — (¢ + v5) Spmng&" (6.22)

1 . pars c—uvs 2
+ %(C + US)nmnpq t&qsrst — ( 3 & — 21}3) Smnp‘| ]

Both, the inverse metric (Eq. (6.20)) and the internal three-form with mixed index
structure (Eq. (6.22)) agree with the formulae obtained in Ref. [60]. In that paper, the
metric Ag,,, was found by explicitly inverting the expression in Eq. (6.20) and the warp
factor was removed by taking the determinant. Finally, the full three-form potential
Apnp could be computed by lowering the remaining upper index of the expression in
Eq. (6.22) . This procedure might be simple for the Go invariant solution but will be
rather complicated for the SO(3)xSO(3) case. Therefore, this thesis obtains the metric
via the direct uplift Ansatz in Eq. (4.45) [49].

The metric Ansatz in Eq. (4.45) requires the tensors A, ;i and By, m (or better:
A ik, Bnrikr) defined in Eqgs. (4.43, 4.44). In particular, using Eqgs. (A.16, A.17)
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yields
1
AmIJKL - g (KmnMNKnPQ + KmnPQKnMN) (uUMNuKLPQ — Vi MNVUKIL PQ) s (623)
1
BmIJKL - g (KmnPQKnMN — KmnMNKnPQ) (U]JMNUKLPQ — ’U[JMNUKLPQ) . (624)

Although this does not seem to be a simplification, one may now perform the same steps
as before: One uses the explicit decomposition of the scalar fields u;;’/(z) and vy 15(x)
in Egs. (6.4, 6.5) and the contraction identities in Eqs. (6.11 — 6.18). Since the result is
antisymmetric in the SO(8) indices, one may write the A,, ;1 and By, 7k tensors in
the basis provided by the Killing forms (Eq. (5.7)),

1 3
Atk = G am K, K — 5 QP K, R KD

1 1
+ E CLmnKnp[IJKpKL] + 5 amnqu[np[IJKq]KL]> (625)

3

1
Burikr = = by K07 KM KL — 5 bmnpKn[IJKpKL]

6
1 1
+ E bmnKnp[IJKpKL] + 5 bmnqu[np[IJKq]KL]- (626)

The components can be found by contracting these relations with the basis (anti-)selfdual
forms in Eq. (5.7). In particular, using Eqgs. (A.6 — A.9) in Appendix A yields

Ay = amnp.&npa bm = bmnpgnpa
1 1
amn - 7AmIJKLKnp[]JKpKL}, bmn = me[JKLKnp[IJKpKL},
16 16
1 1
a,,"™ = _7AmIJKLKnUJKpKL]7 b, = _7BmIJKLKn[IJKpKL],
16 16
1 1
P9 = E'Am IJKLKnp[IJKq KL]’ b, = E mIJKLKnp[IJKq KL]’
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where
v2s?
Am = _7<€ + 9)57717
3
A" = ( 4§ 2% 4+ 3v% + 3¢ — 3cw >5 ”+7 <3+§>5m§n
0 = =0 (128,00 4 0+ Q6™ - L EuEE
144 ¢
t
amnpq Z 2181 a 2<1 - C) <€mSnpq _|_ BCSm[npfq] - 3<1 _|— c)ém [nSpq}Tgr _|_ chmﬁnquStuSStu
+ 3£T[nﬁmpq}rstusstu + g(c o 1)ﬁmnpqrst5mt)’
by — —Zs(l — 2+ e+ ),

b, = % (1 — v e+ cv2) (0" — 3&n") + % (1 —vi—c+ cvz> Sm"PEp,

by,"P = (1 — v 4 e+ cv?) ((5m(”§p) - fménp) + g(1 —v? — ¢+ cv?) S, P,
24 4
bmnpq — thga 38(1 _ C)( _ 3Sm[np€q] + ngf]nquStusstu

2c
5m[n pq)r - 1 e omnpqrst ” )
+ 3 S 5 ( + 02(1 — C)) n S, t

Finally, one computes the metric via the uplift Ansatz in Eq. (4.45) using the explicit
expressions for the A, ;sxr and By, sk tensors in Egs. (6.25, 6.26). The contractions
of the SO(8) indices requires Eqgs. (A.6 — A.9) and the SO(7) indices m,n,... may be
contracted using the identities in Eqgs. (6.8, 6.9). The resulting expression is

A2 Gy = bo| (bo + BcvS) fmm + VS S (6.27)

where

bo(€) = & +v?s® — S CUs. (6.28)

Combining the explicit expressions for the metric and its inverse in Eqs. (6.27, 6.20)
and using the identities in Eqgs. (6.8, 6.9) gives

A=2g,,, AL = B (c + vs)dn.

This is exactly the combination of the metric and its inverse that defines the warp factor
in Eq. (4.46). In particular, g,,, and ¢"" are inverse for

A7 =0 (¢ +vs)®. (6.29)
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The metric and the warp factor in Egs. (6.27, 6.29) coincide with the results of Ref. [60].
In particular, the warp factor satisfies the definition in Eq. (3.16).

The explicit form of the metric now enables us to lower the remaining index of the
three-form potential in Eq. (6.22). In principle, this is equivalent to directly using the
uplift Ansatz in Eq. (4.49). One finds

\/§ tana  wvs
72bp ¢+ vs

<9vs(c — 05)&m T Snplq (6.30)

Amnp -

1
+ ﬁvs(c + V8) TmnpgrstE1S™ + (2¢ — vs) (3¢ — fvs)Smnp),

which is a slightly simplified version of the formula found in Ref. [60]>. Note that this
expression for the G invariant three-form potential is totally antisymmetric, which was
not manifest in the corresponding uplift Ansatz in Eq. (4.49).

The explicit form of the warp factor now enables us to compute the internal six-form
potential in Eqgs. (4.39, 4.40). In particular, one finds

3v2

B 2m7b0

AA™ 4+ 320" = Dby,

and uses the definition for by(§) in Eq. (6.28) as well as the relation for the derivative in
Eq. (6.10). This finally results in

cUS \/§cvs . ; °
= — e & — 2Cmy e - 31
G 131 g €™ = 3V 2 (6:31)

The rest of this section is devoted to computing the internal four-form field-strength
and the Freund-Rubin term of the Gs invariant supergravity solution. First, the field-
strength Ansatz in Eq. (4.56) is more convenient in the form

anpq = |:4m7A6§mT1 (AiQQnTz) (A72gpr3) (A72gqr4) 7071"1...7”7Ar57"6r7 - 3m7A3 (632)

« (A_ans) quTKrmIJKsKL (uiju + Uz’jIJ) (uzjKL + 0 KL) ] ‘

AA™ £ —3V2A™, Ay =

[mnpq] 7

such that one may use Egs. (6.27, 6.29, 6.30) directly. The term involving the Killing
forms and the four-dimensional scalars simplifies with Eqgs. (6.19, 6.21, 5.11) to

g g 8
KmnlJ gpKL (uij” + Uz'j[J) (u”KL + ¥ KL) = govs (c4vs) MG + $?sin . (6.33)

1 4
x {12 vs £m, grela G 7 S <8c + 3§vs> Sm”p] :

2The determinant of the metric can be computed using the second equation in Eq. (6.8) to replace
Emn in Eq. (6.27) [60].

3The formula for A, above differs from the expression in Ref. [60] by a factor of 1/6, which is due to
our conventions. Appropriately, the definitions for the field-strength also differ by that factor, such
that the resulting expressions for Fi,,,, agree.
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Putting all together and using the identities in Eqgs. (6.8, 6.9) finally results in

V20282 tan 2c—vs A —v?s? c—vs
F,n mSn 6.34
T M\ e ¥ s + bo SimSnpa) + Vs (6.34)
1 2c—vs  (c—ws)?
X omn TS SrSt - m on rstu TSStu )
Thnnpgrst +6(3—§)<C+03 bo )5[ Tnpalrstud ]

which matches exactly the expression found in Ref. [60].
A convenient form of the field-strength Ansatz for F™"P in Eq. (4.57) is given by

F™9 = Amyz (A7'g™) [477 "t A+ BA% (A1) (AT AP) KO (6.35)
KSKL( _H)zgu) (uinL—Fv,-jKL)H[ },
mnpq

such that Egs. (6.20, 6.22, 6.29, 6.30, 6.33) may be used directly. Taking the identities
in Egs. (6.8, 6.9) into account, one then finds

i _ V20252(c 4+ vs)3Atan a - 2c — vs N 2 — 252 o (c—vs)by.
3 c+vs bO US(C+US)2
1 2¢% — bevs + 02 (¢ — vs)?
% mnpqrstSTS + [m onpq]rstu rSS e
! "B ( (c+vs)? b &) &St
(6.36)

Finally, the Freund-Rubin term fpgr(x,y) can be computed using the uplift Ansatz in
Eq. (4.64). Inserting the explicit expressions for the inverse metric (Eq. (6.20)), the warp
factor (Eq. (6.29)) and the A, ju and By, ;. tensors (Egs. (6.25, 6.26)) finally results
in

frr = V2mz(c 4 vs)® | (2 — v2s?) — 2b, ( ¢® — 3cvs + 2v%s* — 3212?)

(6.37)

Here, one also used the identities in Eqgs. (6.8, 6.9). Note that this formula coincides
with the expression obtained in Ref. [48].

The expressions in Egs. (6.27, 6.29, 6.30, 6.31 6.34, 6.37) enable us to derive the vector
Ansétze as well. All together then represent a full bosonic solution of 11-dimensional
supergravity. Furthermore, if one restricts to the maximally symmetric spacetime AdSy,
one must evaluate the above Ansétze at the stationary point of the scalar potential
V(z) = V(a(x),A(z)). The latter is [63]

2 3 2 2. 2\2 2 2 2\ C VS
V =2g%(c+ vs) <(20 3cvs + 207s ) 7<c cvs +v°s ) c—l—vs) : (6.38)
and the corresponding G, invariant stationary point is given by [64]
62:3+2\/§ 82:2\/3—2 02:3—\/§
5 5 4
Hence, inserting these values into the above Ansétze yields the Freund-Rubin solution.

(6.39)
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6.3. Verifying the G, Invariant Solution

This section finally verifies the G invariant supergravity solution that is described in
Section 6.2. Let us first test whether the internal form potentials and field-strength as
well as the Freund Rubin term satisfy Eq. (5.18). Therefore, one must compute

-3

A(jlo)m (AA™) = —v/2mz(c + vs)? <2b0 (02 — 3cvs + 0232) + (02 — 0232)2> :

A—3
41\/2

- c—vs
B A s oo = V2mg (¢ + vs)? (02 —v?s% — 1) (Gboc s +c* - v232> .

Inserting these expressions into the rhs of Eq. (5.18) yields the Freund-Rubin term that
was already computed in Eq. (6.37). Therefore, the corresponding uplift Ansétze are
consistent.

The second test is the verification of the equations of motion (Egs. (5.19 — 5.21)) at
the Gy invariant stationary point of the scalar potential, which is given in Eq. (6.39).
Therefore, the value of the scalar potential at the stationary point and the inverse AdSy
radius (Egs. (6.38, 5.30)) reduce to

216 144
V, = —ﬁ\/m 31442, m2 = E5\/10 34 m2, (6.40)

Furthermore, let us compute the Freund-Rubin term at the stationary point. Inserting
Eq. (6.39) into Eq. (6.37) results in

216
fFR‘* = ﬁ\/gi%l/zl mry. (6-41)

In particular, it satisfies the conjecture in Eq. (4.65) — the y-dependence drops out
and fpr becomes a constant. Note that here and in the following, a subscript * always
denotes that the field is evaluated at the Go invariant stationary point.
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Finally, one computes the following expressions at the stationary point:

33/4
* 108
4 m
A3 7\/ 0341 2 DnlogAl ==-—" ¢,
« 7 1250 (155 054, 315 ¢

_ o 144 21 — 26¢ + &2
1 _mn 1/4 2
D,, (A g"" D, log A) ’* = \/ 03 ( (15— )2 ) my,

o = 12m? 5 .3\ . )
Boltl, = 5 — 65 (783 + 675¢ — 456 + &%) G — 4 (9 — 306 + &%) & ,
re, | = —W [(261 = 18 + &) fin + 8(24 — )

24(157”20 ((1935 — 108 + €7 Gmn + (270 = 68) &),

pqr| _
Fmpqr Fn .

AT Fppg ™| = /103" [ =—
P . 125 5_¢)""

3%y monplg L (17 1 1
_ M((—81+36\/§+3§)gq SmPl 4 (12—\/3—%,5)

1
XFTTPTSUE S, (66 4 24/3 4 3¢ — 43¢ — 352) Sm”p),

mnpqrstF t
qrs

24

648 VI0m; ((—81 +36v/3 + 3¢) &Im s + (g — \}g - 316§>

D, (A~
a ( ) x 125 (15 —£)2

1
XHPISte S 4 (66 + 24V/3 + 3¢ — 43¢ — 352) Sm"p).

These are obtained using the identities in Eqs. (6.8, 6.9, 6.10). It is then straightforward
to verify the reduced equations of motion by inserting these expressions into Egs. (5.19
—5.21, 5.31, 5.32). The obtained Freund-Rubin solution is hence, verified.
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Supergravity

This chapter presents the embedding of SO(3)xSO(3) invariant supergravity into 11
dimensions. In principle, it can be obtained by repeating the steps of the previous two
chapters for an SO(3)xSO(3) invariant scalar field configuration. However, there are
more group invariant selfdual and anti-selfdual four-tensors satisfying various identities.
As a direct consequence, there are more group invariant S7 quantities that satisfy many
non-trivial identities, which are essential in order to simplify the obtained 11-dimensional
fields. Without these simplifications, it would be impossible to perform the consistency
checks for the obtained solution.

The first section presents the SO(3)xSO(3) invariant selfdual and anti-selfdual four-
tensors, which are required to express the vacuum expectation value as well as the
ui;'’ (z) and v;r;(x) tensors in an appropriate way. It also gives the various relations
between them and defines the corresponding S” quantities. The corresponding identities
for those S7 tensors are derived and collected in Appendix C.

Section 7.2 then constructs the 11-dimensional internal fields in terms of the four-
dimensional ones: the metric and its inverse, the warp factor, the form potentials, the
four-form field-strength and the Freund-Rubin factor. As it turns out, the intermediate
expressions become too long to write them down. Hence, only the final results are
presented, since the main guideline is the same as in the previous chapters. Finally,
Section 7.3 verifies the obtained Freund-Rubin solution.

7.1. SO(3)xS0O(3) Invariant Tensors and Corresponding
S” Quantities

Let us repeat the steps of Sections 5.1 and 6.1 for an SO(3)xSO(3) invariant scalar field
configuration. First, the selfdual and anti-selfdual SO(3)xSO(3) invariant tensors are

)
0 4 7 0 _ si67
O r = Vi, = 4! (5}%@ + 5?9[§L) s Uk =Yg, =4 ( dp7Kr + 131§L) ;

1 1 -
(I)(IJ)KL - Z?_JKL =4l (5}3%& - 54}%&) ’ \Ing)KL = Zrgr =4 (5}3%L - 5?%&) ‘

The two SO(3) subgroups act on the subspaces defined by I = 1,2,3 and I = 6,7,8
respectively. Note that this implies that there is another SO(3)xSO(3) invariant two-

(7.1)
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7. SO(3) x SO(3) Invariant Supergravity

tensor,
Fry =67, (7.2)

It corresponds to an additional U(1) rotation in the subspace that is not affected by the
SO(3)’s. Later, this tensor will be required to simplify some products of S7 quantities
in a convenient way.

The vacuum expectation value ¢ i1 (x) decomposes into the tensors defined in Eq. (7.1).
With

2O (z) = )\(;)cos a(z), O(z) = )\(Qx)cos a(z),
AD(z) = )\(Qx> sin a(x), D(z) = /\(Qx) sin a(x),
one finds
A
PrIKL = 5 [COS@ (}/ITIKL + Z'YL_]KL) —sina (Z;—JKL - Z.ZI_JKLH : (7.3)

Let us now look for relations between the Y+ and Z* tensors. First, from Eq. (7.1)
there are the quadratic identities

YtYt=2"2", Y'Y =27, (7.4)
YtZt=2z2Y", Y Z =2Z'YH, (7.5)
YtY- =22t Y Yt=2tZ, (7.6)
ZYYy- =Yz, Ytz =ZY" (7.7)

These do not help in simplifying the sums for u;;’/(x) and v;;r;(z) in Eq. (5.4) but in
Appendix C, they will be useful to find convenient identities between the corresponding
ST quantities. Furthermore, there are cubic identities between the SO(8) tensors defined
in Eq. (7.1). Indeed,

(Y)Y =avt,  (z) =4z", (7.8)
(v ) =1, YYYt=o Y YYo= 79
Y Y TY T A YY YT =4Y ", YYY YT 4 Y Y Y =4y '
(z7)' =427, z'zzv=0, 7272 =\, 10
AT AR AT AN Sy S ey Sy Sy '

With these cubic relations, one may now construct a list of all group invariant four-
tensors that are required in order to simplify the u;;’’(z) and v;;;; () tensors in Eq. (5.4).
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7. SO(3) x SO(3) Invariant Supergravity

It turns out that this list only contains the selfdual and anti-selfdual tensors Y+ and Z*
as well as

. 1 Jr . — Jr . — o ]- + . - Jr . —
Hfé(Y +iy ) (Y —zY)f§<Z —iz7) (2" +iz). (7.11)
In particular, the latter satisfies the convenient properties
=10, Ik = Ukrr, (7.12)
(Y —iy )m=v*—iv-, (z'+iz")U=2"+izZ", (7.13)
gt =21, ¢l = ¢*, (7.14)
)

which can be proved using the cubic identities in Eqgs. (7.9, 7.10). Finally, Eq. (5.4
reduces to

UIJKL = 55]11 —|— (5 — ].)H[JKL, (715)
KL 2\35 [cosa(Y* —iY™) —sina(Z* +iZ7)] (7.16)
where
& = cosh(vV2)), § = sinh(v/2\).
The explicit SO(3)xSO(3) invariant S quantities are denoted as
5(0) = 57 57(78) = £m7 57&?7)1 = Cmn» 57(7?,)11; = Smnpy
5(1) = C7 57(71) = Cma 51(»,17)7, = Cmna 57(717?74) = Tmnp7
and Egs. (5.8 — 5.10) read
Y+ :§K [IJKmKL]_§£mnK [IJK KL}_{_ing [IJKnKL]
IJKL 6 m 2 m n 12 mn ) (7 17)
1 .
YVL_]KL = 7Smnmen[IJK KL]
Z?_JKL— CK [IJKmKL anK [IJK KL] ichmn[IJKnKL}’
6 X 12 (7.18)
ZI_JKL - §Tmnmen[IJKpKL]7
1 1 .
Em = EET]KLKT{{LKTZKL v Emn = 16Y1JKLK”KKL §=9""Emn,
1 (7.19)
Smnp 16YIJKLK[mn YK ]KL-
Cm = ZIJKLKIJ KnKL Cmn = ZIJKLKUKKL , C=3"Cun,

16 16 (7.20)

1
ZfJKLK[mnIJK }KL

Tonnp = 16
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7. SO(3) x SO(3) Invariant Supergravity

In addition, one may also decompose the F7; tensor into the basis of antisymmetric
matrices provided by the Killing forms,

1 1
FIJ = gFmeIJ + TGanKmnIJ7 Fm = FIJKmIJ7 an = FIJKmnIJ- (721)

The derivation of the various identities for these tensors is given in Appendix C. Fur-
thermore, the generic relations in Eqgs. (5.12 — 5.16) translate to

bm£ = 2m7£m7 lo)mfn = 6my ’Smn —2my £§mn7
o 1 i i . 1. et (7.22)
Dmgnp - §m7 (gnpgm - gm(nfp))a DmSnpq = 6m7nmnpq Srst>
lo)mc = 2m7§m7 lo)an = 6my Cmn — 2my Cémm
. L/, . : 1 (7.23)
Danp = §m7 (gnp(m - gm(nCp)>a Danpq = ém'?nmnpq Trst>
Ean - _m7ana prmn = 2m7§p[an] (724)
and
n 1 n
yIKLE, KL _9¢ k1T _ 55 Ko™ (7.25)
2 2
YiJKLKmnKL = gg[mKn]IJ + <3£§mp§nq o 4§p[m£n]Q> quIJ’ (726)
YIIKLR, KL — g Kol (7.27)
|
YHELR R =28, KPT — énmnpl 7Sy paps Kpaps (7.28)
1
ZUKLE, KL _ _gc K17 — gCnKmnIJa (7.29)
2 2., .
ZJIFJKLKmnKL = gC[mKn]IJ + <3Cgmp9nq - 49p[mgn}q> K, (7.30)
ZiJKLKmKL — TmnpKanJ, (731)
1
ZiJKLKmnKL = 2TmnprIJ - éﬁmnplmpsTp1p2p3Kp4p51J' (732)
Note that Eq. (7.24) can directly be obtained from the definition in Eq. (7.21) and
Eq. (4.11).
Finally, the corresponding contraction identities for the II tensor read
1 .
H[JKLKmKL = 36 {((18 - 52 - CQ)gmn + 6£€mn + 6€Cmn - gmgn - Can (733)

+ 3iSmnp§p - 32Tmnpcp) K" 7 + (6£mn£p + 6CmnCp - g.émngp

- Cf]mncp o 3i€Sm"P + 3iCTmnP + 18ismnq£pq - 18iTmnqCpq>Knp”} )
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7. SO(3) x SO(3) Invariant Supergravity

1 . . . .
H[JKLKmnKL = E [gg[mgn]p + CC[mgn]p - 6€[m€n]p - 6C[m§n]p + 3Z€Smnp - 3ZCTmnp

1
— 183" Shjpg + 18icq[an}pq} KM+ 36 [(18 +&+ ot

1266718 — 12CCP 0%+ BOEP €% + 3607C 0] Ky

¢ r o stu
+ ﬂ [f[msn]pq - f[psq}mn - C[an}pq + C[qu]mn - 5 [mnn}pqrstus t

+ fr [pﬁq]mnrstuSStu + Cr [mﬁn}pqrstuTStu - Cr[pﬁq]mnrstuTstu} KP4 IJ' (734)

7.2. Constructing the SO(3) xSO(3) Invariant
Supergravity Solution

This section constructs the SO(3)xSO(3) invariant 11-dimensional supergravity. This
requires the contraction relations of the previous section as well as the S7 tensor identities
derived in Appendix C. Since the intermediate expressions (e.g. in Eqs. (7.33, 7.34))
become rather long, it is convenient to use the following trick in deriving the final 11-
dimensional fields: The uplift formulae in Eqs. (4.30, 4.31, 4.45, 4.64) always contain
double contractions between the u;;/(z) and v;1;(x) tensors. Therefore, one may reduce
the order of S7 tensors in all Ansitze via

upn UMY gop = 08+ B0 e omnr oMV = 1k, (7.35)
urn o MNEL = ¢ {cos aYT —iY ") —sina(Zt + iZ_)LJKL : (7.36)

2v2
5é

UMN[JUMNKL = Tﬂ [COS Oé(Y+ + ZY_) — sin Oé(Z+ — ZZ_)} (737)

IJKL'
These relations can be proved using Eqgs. (7.11 — 7.16). Then, one may simply find the
inverse internal metric by inserting Eqs. (7.35 — 7.37) into the Ansatz in Eq. (4.30), and
using the contraction identities in Eqs. (7.25 — 7.34) and Eq. (5.11). One finally finds

-1 mn __ |x2 §2 2 2 °omn 52 men m n s mn mn
ATt = [ e+ O g - f(ee e e zem) L (138)
where
Xi(a) = €5 — 3v/2¢cos a, Z(a) = (5 + 3V 2¢sina. (7.39)

The result has been simplified using the S” tensor identities in Appendix C.
In the same way, Eq. (4.31) reduces to

5

ATA P =
18/2

(6§£q[msn]pq - 6§Cq[an]pq - Xlsmnp + Zlenp) . (740)
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7. SO(3) x SO(3) Invariant Supergravity

For a convenient metric expression, one must use Eqs. (7.35 — 7.37) and Eq. (5.11)
twice as the corresponding Ansatz in Eq. (4.45) is quartic in the u;;’/(z) and v;7;(x)
tensors. Using the relations in Appendix C finally yields

1 1 52
18 3 36
where
fm(@) = V2E (sina &, + cosa () + 35F,,. (7.42)

One may now read off the warp factor. Indeed, A™2g,,,(z,y) is inverse to the expres-
sion in Eq. (7.38),
AT g™ AR, = AT (7.43)

for

1
A= o (A7 + 282,25 + 23+ V) . (7.44)

Here, one abbreviates
Xy(a) = V2cosa €5 — 3¢, Zy(a) = —V2sina (5 — 3¢,
V() = §*(cos? a — sin® a) (€2 — ¢?).

Note that Eq. (7.44) exactly coincides with the expression found in Ref. [51], where the
warp factor has been computed by taking the determinant of the metric expression in
Eq. (7.41).

The remaining upper index of the three-form potential in Eq. (7.40) may finally be
lowered with the metric,

(7.45)

~3~
A3 Ay = (14+ &)X + %\/5( (sina & + cosa() )Smnp

L [_ (3
18v/2 2
+ <§(1 + &2 — 526\/55 (sina & + cosa() )Tmnp

a2

" g s TS
e (B8 ) (354 )

53
BT (X1§[m + ZlC[m) (Snp}qfq — Tnp}ng> ] : (7.46)

and the dual six-form potential (Eq. (4.39)) can be computed using Eq. (7.22, 7.23),
SA3

AA™ = -2
6v/2

[ ((1 + & cos 2a)X) — & sin 2a Zl) g

+ (—62 sin2a X; + (1 — & cos 2a)Zl) (m] —3v20™. (7.47)
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Both expressions have been simplified using the S7 tensor identities in Appendix C.
Finally, the six-form is obtained by dualizing the expression in Eq. (7.47),

N
36 - Gly/2

Amyomg =

[ ((1 + & cos 2a)X) — & sin 2a Zl) gm (7.48)

+ (—52 sin 2a Xy + (1 — & cos 204)Zl> g"”] — 3V2, s

In order to find the four-form field-strength, one must first compute the expression
in Eq. (6.33) for the SO(3)xSO(3) invariant vacuum expectation value. Again, using
Egs. (7.35—-7.37) and Eq. (5.11) as well as the identities in Appendix C, one finally finds

Fmn 1 grp KL (uijIJ + Uz’jIJ) (uinL + Uz‘jKL) _ Sg[ <§§+ 3v/2¢ cos a) f[mén}p

+ (¢35 = 3v2esina) ¢y — 65 (gmgrie + ¢lm¢nir) ] (7.49)
This can be used to derive the four-form via Eq. (6.32). The final simplified result is
m7AS T
anpq = 3762 {nmnpqrst (CSSTSt + CTTTSt + CUfTSStu§u> (750)

+ e (Zi6m — XiGin) (20w + BTo)

mr A3
?7)6 (CXS f[msnpq] +cxr g[anpq} + Czs C[mSnpq] + czr C[anpq]) )
where one abbreviates
2
cs = w (Xf + Zf) ((1 + ? cos 20) X% 4 (1 — ¢ cos 2a) 22 — 2¢? sin 2aXlZl)

+2v/2s (—(1 + ¢? cos 2a) X7 — (1 + 3¢ cos 2a) X Z2 + 2¢% sin 2aZf’> :

9sesi
cr = w (Xlz + le) ((1 + ? cos 20) X? 4 (1 — ¢ cos 2a) 22 — 2¢? sin 2a/\f121)

+2v/2s ((1 — ?cos2a) 23 + (1 — 3c% cos 2a) X2 2y — 2¢? sin QaXlg) :
cu = 2V/253¢ (212 sin 2o — 2 Z; cos 2a — X sin 2a) )
oy = 16V25%(* + 1) (cXy + ¢2Z5 + 357) ,
cxs = —16s%ccos aX) + 16s%csinaZ, + 24\/582(1 + % cos 2ar),
cxr = —16s%csin aX, — 16s°ccos a2y + 24+/25%¢% sin 2a),
czs = —16s%csin aX; — 16s%ccos a2, — 24+/25%¢% sin 2a),

cyr = +165%ccos aX; — 16s*csin aZ; — 24\/552(1 — c?cos 2a).
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The expression for A~ F™4(z ) has the same structure but contains even more terms.
Therefore, it is not displayed in full generality here, since it is only required in order to
verify the Freund-Rubin solution. Hence, it is computed in the next section at the
stationary point of the scalar potential, where it simplifies further.

Finally, one may compute the Freund-Rubin term using the Ansatz in Eq. (4.64). One
performs the same steps as for the derivation of the internal metric. The final result is

frrR = M7 [\f (12 +835% — 54) - §6é (4 — 52) (Ecosa — (sina)| . (7.51)

In particular, it satisfies the conjecture in Eq. (4.65) [48].

The next section verifies the obtained solution in the case of a maximally symmetric
spacetime. Therefore, all fields must be evaluated at the stationary point of the scalar
potential [51]

92
V= 5(“‘ —83% — 12), (7.52)

which is given by

t=+5 =2 (7.53)
Note that the stationary point does not depend on «. The reason is that a choice of
a corresponds to a particular gauge of the U(1) symmetry that is generated by the

two-tensor Fy; [51]. Hence, one may choose « arbitrarily. Here, a symmetric value of

1 1
, sina = ——— cosa = — (7.54)

V2’ V2
is chosen, such that the a-dependent scalars X; 5(«), Z12(«r) and Y(«) reduce to
V=0, Xi=X%=X=2-3V5, Z=2=2=2-3V/5 (7.55)

at the stationary point. These simplifications will be used in the next section in order
to verify the Freund-Rubin solution.

7.3. Verifying the SO(3) xSO(3) Invariant Solution

Let us finally verify the obtained SO(3)xSO(3) invariant solution of 11-dimensional
supergravity. Therefore, one may first check, whether the fields in Eqs. (7.44, 7.46, 7.47,
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7.50 7.51) satisfy the non-trivial relation in Eq. (5.18). Computing

1 A3

A_3
6 1+ 36

6

-3

Don (AA™) = man/2(1 + 2) (g(Xz + 2, — s* (X2 + Zf)) ,

mﬁmlmm7"4my~m3FM4~~~m7 = _m7\/§(1 + 02)

sc 2 A L, 9
o R )]

and inserting these expressions into the rhs of Eq. (5.18) indeed yields the Freund-Rubin
term that was computed in Eq. (7.51). Hence, the obtained 11-dimensional fields pass
this non-trivial consistency test.

The rest of this section verifies the obtained solution for a maximally symmetric space-
time. Therefore, one must evaluate all fields at the stationary point of the scalar poten-
tial. In the following, this is always denoted by a subscript x!. The scalar potential in
Eq. (7.52) reduces to

V, = —14¢4°, (7.56)

and the inverse AdS, radius is given by Eq. (5.30),
mi = —m2. (7.57)

Let us now verify that the obtained fields satisfy the Maxwell equations in Eq. (5.21).
Therefore, the Freund-Rubin parameter in Eq. (7.51) simplifies to

fFR‘* = TV2my. (7.58)

It satisfies the conjecture in Eq. (4.65). Furthermore, the seven-dimensional dual of the
four-form field-strength in Eq. (7.50) can be computed using the S7 tensor identities in
Appendix C. At the stationary point, the resulting expression reads

\/§m7A6 |*
362

+ ﬁmnpqut (d2<X7 Z)éqsrst + d3(‘)(7 Z)qumt o d?’(Z’ X)CqSTSt

1
omnpqrst
=N qust .

24

[dl()(, 2) (VB¢ — V/Bem 4 6FIm) e, (7.59)

— dy(2, X)(Trat) + da(X, 2)S™ — dy(Z, X)T™™|,

IThe x also sets the parameter « to the value in Eq. (7.54)
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where

di (X, Z) = 480 (X2 - 22) :
45
R G

45
5

dy(X, Z) =4 (X + 10X Z + 492 - 2’) (X +112),

ds(X, Z) = —4 (bX? +2X Z +52%) + X5 421422 4+ 3x2% - 2°)
(X, Z) = —24(X +22) (X - 2XZ 4+ 52%) + 45 (X? + 27) (X2 + 10X Z + 2?)

and the warp factor is given by

£2 4+ 106¢C + (2

=15 -2V5(E+ Q) + )

(7.60)

For the lhs of the Maxwell equations in Eq. (5.21), one must compute the four-form with
upper indices using Eq. (6.35) and the S” tensor identities in Appendix C. In particular,
at the stationary point, one finds

AP,
At f”;g | [ s (ds (X, 2) Syt — d5(Z, X) Ty (7.61)
+ dG( )57" stug - dG(Z X)Cr stu( ) + d?(‘X7 Z)é—[msnpq]
4y (2, X)) 4 dg(X, 2)EmT gy (2, x)dmsnpqq ,
with
2
d5(X. 2) = 5 <X3 +10X%Z + X 22 4 3\/_ (347 +16XZ +1727) +63(X + 52))
2 2 2
do(¥, 2) = +5 (—84% + V5 (X2 + 10X 2 + 27)),
§ 2 . 2 2 2 3
dr(X, Z) = 9(3(2{ +10XZ - 272°) + V5 (X°2 + 10X 2% + 2°%))
ds(X, 2 (3 (5% + 2242 +52%) + V5 (X22 + 10X 2 + 2%)).

Finally, one may compute the derivative of the expression in Eq. (7.61) using the generic
identities in Eqs. (7.22 — 7.24). Simplifying the result using the S” tensor identities in
Appendix C finally yields the rhs of the Maxwell equations in Eq. (5.21), which is given
by Egs. (7.58, 7.59).
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Furthermore, in order to check whether the obtained 11-dimensional fields satisfy
Eq. (5.19), one must compute

lo)mlogAL: % [(9\@—5—5{)&14- (9\/5—5§—C) Cm]7

27
(7.62)
2 —1 _mn _ mzA%|, 2 2
Dy (A7 g™ Dy log A) | = - fer |30 (54 + 242 +527) (7.63)

+64V5(X + 2) (1942 — 50X Z + 192?)
8
+3 (912(4 — 140X3Z — T18X2 2% — 140X 23 + 9124) }

—1 mn 16m$A6]* 4 3 222 3 4
AT F g pq’*zT(lélX + 35 X°Z + 178X 2Z* + 35X Z° + 142

—189(3X — 2)(3Z — X)),
+3V5(X + Z)(19X% — 50X Z + 192?). (7.64)

Plugging these expressions into Eqs. (5.19, 5.31) then verifies the external Einstein equa-
tions.

Finally, one must verify the internal Einstein equations. Unfortunately, the required
terms like lo)pfﬁm‘* and fglpfgn‘* are too long to actually display them here. Only the
complete Ricci tensor becomes manageable, since a lot of terms cancel. As turns out, it
is even more convenient to raise one index in Eq. (5.20) with A™'¢g™"(x,y). Therefore,
the expressions for A™'R,,"(z,y) and A™1F,,,,-F™"(z,y) are computed here. Using
Eqs. (7.22 — 7.24) as well as the S7 tensor identities in Appendix C in the definition of

the internal Ricci tensor (Eq. (5.32)), one finally finds

2A6
ATIR,"| = m7362 L (TO(X, Z)6" 41 (X, 2)en" + (2, X) " + 1o(X, 2)F

+13(X, 2)6n" +13( 2, X) (" +ra(X, Z2)F B
+ 7“5<X, Z)&mcn + 7ﬂ5(2’77 X)Cmgn + TG(X7 Z)&an
—16(Z, X)GnF" + 12(X, 2)Fuf" — 17(2, X)FuC"),  (7.65)
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7. SO(3) x SO(3) Invariant Supergravity

where

2
ro(X, 2) = f(x + 2) (172(4 —80X%Z — 66X%2% — 80X Z® + 1734)

+ 4;(13/\?4 — 134X3Z — 214X 2% — 134X 2% + 1324)

+40V5(X + 2) (1TA% — 58X Z + 172%) — 840(5X° + 2X' Z + 527),
r (X, Z) = —10080v5(X? — 2?) — 96 (414* — 45X7Z — 9X 2* — 352%)

— 8VB(X + 2)(17X° — 55X2Z — 33X 2% — 252°),
ra(X, Z) = 10080(X? — 22) + 96v/5(X — 2) (7X% + 10X Z + 727)

+200(X — Z)(X + 2)?,
r3(X, Z) = 672v/5(5X + 132) + 32(45X2 — 160X Z 4 792?)

.8
f (172{3 +43X%Z — 149X 2% + 1723) :

ry (X, 2) = —2016()(2 + 10X Z + 2%) — 96V5(X + 2)(X? — 50X Z + 2?),
r5(X, Z) = —672v/5(13X 4 52) — 64(50X% — 33X Z — 52?)

8\/_ (81)(3 61X%Z + X 2% + 2523) :

re(X, 2) = 336\/5(2(2 + 10X Z + 2%) + 16 (5X° — 18847 Z — 175X 2% — 382%) |
r7(X, Z) = —4032(5X + 132) — 48V/5(35X2 — 118X Z + 472?)
— 16 (254% + 116X2Z — T5X 2% + 662°) .
In the same way, one computes

AT F g F™P7|

mpqr

(7.66)
4m2 A°|,

= —6A"'R," +
81

(142(4 + 3532 + 178X2% 22 + 35X 23 + 1424
63
+3VH(X + Z2) (1942 — 50X Z + 192%) + Z(29)(2 — 190X Z + 2922)> 5

from Egs. (7.50, 7.61). Together with Eqs. (7.58, 7.64), the internal Einstein equations
are finally verified.
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8. Conclusions

This thesis presents the complete bosonic embedding of gauged N = 8 supergravity into
11 dimensions. The higher-dimensional fields are redefined in a non-linear way, such that
their supersymmetry transformations are SU(8) and E; covariant. Only these non-linear
reformulations can be related to the fields of N = 8 supergravity. This is the basis for
finding explicit embedding formulae for the 11-dimensional fields in terms of the four-
dimensional ones. As it turns out, the vector uplift Ansétze can simply be found when
the scalar Ansatze are known.

The first part summarizes all scalar embedding formulae. It presents the well known
Ansitze for the inverse metric [43], the internal three-form with mixed index structure
[45] and the internal six-form potential [47]. Furthermore, it derives new direct uplift for-
mulae for the metric, the warp factor and the full three-form potential [49, 50]. However,
the new Ansatz for the full internal three-form flux does not reveal its full antisymmetry.
This may be a hint that one can further simplify the expression for A,,,, in Eq. (4.49)
using some E; identities for the four-dimensional scalar fields.

The presented Ansétze are sufficient to construct a complete bosonic solution of 11-
dimensional supergravity in terms of the four-dimensional fields of N = 8 supergravity.
Such a solution may further be simplified by restricting the four-dimensional spacetime
to be maximally symmetric and evaluating the fields at a stationary point of the scalar
potential. Within the resulting Freund-Rubin solution, the 11-dimensional vector fields
must vanish and the given embedding formulae are complete. The consistency checks of
such solutions then require the calculation of the internal four-form field-strength and the
Freund-Rubin term. Here, the corresponding uplift Ansétze are also derived [48, 49, 50].

The second part of this thesis discusses group invariant solutions of 11-dimensional
supergravity. These are obtained when uplifting certain gaugings of N = 8 supergravity,
which are related to different deformations of the seven-sphere. In such cases, the embed-
ding formulae further simplify and the resulting 11-dimensional fields can be written in
terms of certain group invariant tensors that are adapted to the deformed seven-sphere.

In particular, the methods are used to embed two different gaugings of N = 8 su-
pergravity into 11 dimensions. The first example is the rederivation of the complete
Gs invariant Freund-Rubin solution [43, 48, 60]. Secondly, the full bosonic uplift of
SO(3)xSO(3) gauged supergravity is presented [51]. Finally, the consistency of these
solutions is explicitly verified.

In future, one may also find direct uplift Ansétze for the 11-dimensional Riemann
and Ricci tensor components, which are given by the second derivatives of the metric.
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8. Conclusions

Hence, one could find new simple expressions in full analogy to the derivation of the
field-strength Ansatz.

Furthermore, flow solutions are rarely investigated so far [58]. These are complete
group invariant solutions of 11-dimensional supergravity, in which the coordinates on the
scalar manifold A" (z), u®)(z) flow from one stationary point to another in spacetime.
This must be consistent with the equations of motion, which reduce to certain differential
equations for A7) (z) and p®)(z). A first example could be a flow from the SO(7)*
invariant stationary point to the SO(7)~ one (the common subgroup is Gy). Both regions
have interesting features: the SO(7)" invariant point is described by a vanishing three-
form potential and a non-trivial internal metric, whereas the SO(7)~ invariant solution
comprises a non-trivial flux.

Finally, this thesis only discusses the compact gaugings of N = 8 supergravity, which
are derived via the S” reduction of 11-dimensional supergravity. However, the methods
provided here could also be applied for other truncations. As a first example, one may
extend the theory to the non-compact CSO(p, ¢, ) gaugings [65, 66]. In this case, the
I,J, ... indices of the Killing forms are raised and lowered with the CSO(p, ¢, r)-metric
n1s instead of the SO(8) metric d;;. This effects the definition of the matrix RM s in
Egs. (4.18 —4.20). In particular, the scalar embedding formulae will be slightly modified.
However, the subsequent Ansétze for the four-form field-strength and the Freund-Rubin
term will change more dramatically: Eqgs. (4.52 — 4.55) do not hold if the I, J, ... indices
of the Killing forms are raised and lowered with the full CSO(p, ¢,r) metric. Since the
Anséitze depend on those identities, it will take much more effort to derive adapted
Ansétze within the non-compact gaugings. Finally, the presented methods may also be
used for the reduction from type IIB supergravity to five dimensions [67, 68, 69].
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A. Useful Identities for Gamma
Matrices and Killing Forms

This Appendix summarizes some useful identities for the antisymmetrized products of
T and I" matrices that are defined in Egs. (3.18, 4.10). In particular, these relations can
also be translated for the Killing forms that are defined in Eqs. (4.9).

First of all, I matrices with one and two indices are antisymmetric and I' matrices
with three indices are symmetric. In particular, the two sets

(Tsxs: T Tos Tonp) s (sxss Do Do Do)

each contain 1 4+ 7 4 21 4+ 35 = 64 independent matrices — they both span the vector
space of 8 x 8 matrices. In these bases,

le...m7 = _Zeml...m7]18><87 Fm1...m7 = _anl...m7]18><8>
— my e My
Linymg = —%€mym, I Lingome = —Wmyma L0
T ! e T . [meme
mi...ms §Em1...m7 9 mi...ms §nm1...m7 )
T — i [msemr f\ _ i o f‘m5"'m7
mi...MmM4 3'€m1...m7 9 mi...mg 3|77m1...m7 .

Secondly, using the Clifford algebra in Egs. (3.17, 4.8), the I matrices satisfy the useful
contraction relations

Tr (I™T") = 8¢™™, Tr (I™T") =0,  Tr(I™"T,,) = —1667",  (A.1)
Tr (PT7) = 8™, Tr (PeT7) =0,  Tr (D™"T,) = —1660".  (A.2)

These can be translated to relations for the Killing forms in Eq. (4.9), using the or-
thonormality of the Killing spinors in Eq. (4.6):

K"Ky = 80mn,  KnKpp' =0, K™K, = 165" (A.3)

Similar identities can also be obtained for the traces of any products of I' matrices or
Killing forms, e.g.

Te (I"T"Tyg),  Tr (Do D01, KK R
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A. Useful Identities for Gamma Matrices and Killing Forms

Indeed, using the Clifford algebra and the definition of the antisymmetrized products
of I' matrices in Egs. (3.17, 3.18, 4.8, 4.10), these expressions can be written solely in
terms of the respective metric and Levi-Cevita tensor. The explicit relations are not
listed here, as they are directly used within a FORM program.

Furthermore, the following bi-linears in the I" matrices represent a basis of selfdual
and anti-selfdual SU(8) tensors on the deformed seven-sphere [55]:

selfdual - T'yagl™cp), Dinal™en)s " usl™epr; (A4)

anti — selfdual : T, op).

The same holds for bi-linears in the I' matrices. Hence, the following combinations of
the Killing forms represent a basis of selfdual and anti-selfdual SO(8) tensors on the
deformed seven-sphere:

selfdual : K, Km &L K1 KB K, K, KL

A5
anti — selfdual : K [mn[I JKp}KL}. (A-5)

These two bases in Eqgs. (A.4, A.5) are in some sense ‘orthogonal’, i.e. one has
I sl epl? apTep = 1697 g" 0, K KSR K = 163(mndpg), (A-6)
Lop BT colng Al "op = =192umn,  Kup!" KV UK KOSE = 192G, (A7)

Lt g opligr aplgep = =320, K, " KgFH K 1T KL = 395mme - (A.8)

qrs qrs
whereas all other contractions, such as
Tl cpTpgasl%p =0, K"K, YK, K15t =0 (A.9)

vanish identically.
Related to these bases are the following relations [55, 60]:

Lo asl™ep + 2068 = Lo (asl™en), (A.10)
LonaBl™op + Uinepl™ ap = 2L n a8l cpy, (A.11)
Lo al™ep = Umnepl™ap = —4 (5C[AFmB]D - 5D[AFmB}C) ; (A.12)

™" aplPep) = _;gp[mrn}q[ABPqCD} + Tl 5T o, (A.13)
I 4pTop) = =29 P19 4T o) + 26" PTY 4T oy
+ zgm[pgq]"ﬂ sl op) + Ty g TP oy, (A.14)
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as well as

KmIJKmKL - 255(1][/ — Km[IJKmKL],
Kmn[JKnKL + KmnKLKnIJ _ 2Kmn[IJKnKL],
KmnIJKTLKL o KmnKLKTL]J — _85[I[KKmJ}L]7

1] jra KL K[mn[IJ Kp]KL]’

1,
O =3 9pim Knlg

Kmn[IJquKL] — 2§m[qu] [[JKnKL] _ 2§n[qu] [IJKmKL]

3

Finally, it is convenient to define the selfdual tensor
KIIKL _ o 1) rm K]
- m 9
which satisfies the convenient identities [48]

KPR vinp = 60198y + 90U [ K75 ),

K[IJKLKM]NPQ — EEIJKLMNPQ + 12K[IJK[N5LP(5M}Q]7

KmIJKnKLKmnMN _ 86[I[K5J][M5N]L]

2
_ *ém[péq]nKr[IJKr KI] + K[mn[[Jqu]KL]-

(A.15)
(A.16)
(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
(A.22)
(A.23)

+ 45[M[IKN]J]KL + 45[K[MKL]N]IJ - 45[I[KKJ}L]MN-
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B. Factorization of the C Tensor

This appendix shows that one can extract a Kronecker-delta out of the C tensor defined
in Eq. (4.47) [49],

4

Cpqijkl (xv y) = 3

oy (Crg™ (0, y) + 22" (x, y) — 2T, (), (B.1)
where
Clpijkz(x’y) _ KIJKL(y) (ujkIJ + Ujk IJ) (uimKMumeM N ,UimKMUmeM> (m)’ (B.Q)

Cop M (z,y) = KK (y) (UjkIM + Ujk[M) {(Uim[JKUmeM} — " [JKUmeM]) (B.3)

— ;5; (um”[JKvmn v — ™" [‘]KuanM]) } (x).
The selfdual tensor K75l is defined as a certain combination of Killing vectors in
Eq. (A.20) and satisfies some useful relations given in Appendix A. The third term in
Eq. (B.1) represents the T tensor, which is defined in Eq. (2.11). Note that the only
difference between C,"* and the T tensor is the K’/KL factor in Eq. (B.2) instead of a
6L, factor in Eq. (2.11). This gives rise to interpret C; and Cy as the y-dependent twins
of the T tensor.
In order to prove Eq. (B.1), one starts with Eq. (4.47) and replaces the tensors
A% and B,,"* with the respective expressions in Eqs. (4.43, 4.44). Secondly, us-
ing Egs. (A.15, A.23) gives

Cpqz’jlcl Y L (uquM + Uy IM) (uij [JKuleM] Y [JKUkl LM])
. . 8 . )
_ KIJKL (uquL + quKL) (UUIMUM IM _id IMuk:lJM) B gé[z[qu]jk:l]’ (B.4)
which can be rearranged,

Cpqijkl — 9K TJKL (u[ijIJ + ol IJ) (ukl]KMquLM _ k] KMquLM) (B.5)

. . S . .
+ AKTIKL (U[”IM + ol IM) (ukl] (K Vpq LM] — okl [JKupqLM]) i ga[z[qu}jkl}.

Finally, using Eqs. (2.31, 2.32) completes the proof of Eq. (B.1). In order to keep
the formulae short, this factorization of the C,,”* tensor is not inserted into the uplift
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Ansétze for the warp factor and the three-form in Eqs. (4.46, 4.49). However, one should
always keep in mind that these expressions can still be simplified via Eq. (B.1). For
example, this could be a first step in proving the explicit antisymmetry of the three-form
Ansatz.
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C. Useful Identities for the
SO(3)xS0(3) Invariant S7 Tensors

This section gives all identities for the ST tensors defined in Eqs. (7.19 — 7.21), which
are required to simplify the obtained 11-dimensional SO(3)xSO(3) invariant fields. The
starting point to derive such identities are the relations between the SO(8) tensors Y=
and Z* in Eqgs. (7.4 — 7.8). All these relations can be contracted with the following
combinations of Killing forms

1J KL 1J KL 1J KL 1J KL
Km Kn ) Kmn Kp ) Km Knp ) Kmn qu .

The contraction with each of these terms gives another identity when using Eqgs. (7.25 —
7.32) and the relations in Eq. (5.11).

The identities are listed in Tables C.1 — C.7. Each table represents identities that
are derived from a different relation between the SO(8) tensors. The only used cubic
identities are given in Eq. (7.8). The reason is that the identities that follow from
Egs. (7.9, 7.10) can also be obtained from Eqs. (7.4 — 7.7).

Finally, one finds the useful relations involving the Fj; tensor from Eqs. (7.1, 7.2):

}/}JIF(LMZjKLM = ZfKLMYJ}(LM = 12k, (C-l)
}/}:F]KLFKL = Z?:JKLFKL =0, (0-2)
SY[IiJK\M|FML} - :tZ?.:]KLa 8Z[jI:JK|M|FML] = jFYfJKL- (C.3)

These can also be contracted with the Killing forms in order to derive useful identities for
the SO(3)xSO(3) invariant S” tensors. Here, one must use the explicit decomposition
of the Y* and Z* tensors in Egs. (7.17, 7.18) as well as the contraction relations for the
Killing forms described in Appendix A.

Note that all derived identities are presented in a systematic way — the derivation of
later identities may require previous relations.
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Table C.1.: Identities derived from Eq. (7.4) and Eq. (7.8).

(i) E" =35, €6 =9-¢

(i) (" =3+ G, (PG =9-¢

(i) SpnpS™P =6, £MnE, =0,

(iv) T T =6 ("G = 0

(v) gmeen, = (§ = §5) i+ §em - gemen,
(vi) gty = (5= §5) 4 S0 — ¢me
(vii) SIS, = (1= ) 47— GG+
(viii) e, = (1—£) gme — Lemen 4 Lemn
(ix) Tmngrsta Ty = 88mEnlp — 56Emnlp:
() ThmnarstnS™* Sy = 8CmCalp = 5CCimGnlp

3 mnr m n 2 mn m n
(xi) S Spgr = 2¢! s ]q] + (% - %8) Opg" = %C[ Cpdq) ]

11 mnr m n 2 mn m n
(xii) T g = 2¢l 123 ]Q] + (% - %) Opg" — %6[ §[p0q ]
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Table C.2.: Identities derived from Eq. (7.5) and Eq. (C.1).

(i € =—EC "G =6, Sunp TP =0

(i) et S Ty = 18F™

(ifi) EmGy = §Cm — S 3P, (g, = —5Cm + S — 3P

(iv) EmP("y = —5g€CY = ggECM 4 § (CE 4 ¢ + (P

(v) ST = —ECH™ — g (€7C" + CMEN) + § (CEM +EC) —

(Vi) ﬁnpqrstusmqusw = _4£m[n<p} - 4Cm[n£p] + %Cém[n&p} + géém[ngp] - 6§m[an]
(Vi) upgrstaTn™ S = —=4€ninCy) = i) + 3CGminés) + 589minGy) + 6Gmin F

(viii) ST T pgr + T Spgr = —%SC@%” o éf[mC[P(SZ}] o %C[mg[p(sg]} + 4€[m[p§n]q]

Table C.3.: Identities derived from Eq. (7.6) and Eq. (7.7).

(i) SmnpS? + TormpC? =0, SpnpC? = Trnmp€? = 0
(i) SqmnCp? = SqimnCp)? = %Smnp - ?%ﬁmnpqrstgqsm
(iii) Tomnép? = Tyimnbp)? = %Tmnp - ?lcsﬁmnpqrstqumt
(iv) ACT T — 51 mnstunC T = 85*4 1 Enls — 5€5%mn
(v) AT Spmn = 5T mnstun®S™ = 8T Cojs — 56T mn

(Vl) 57" [mﬁn]pqrstuSStu - Cr[pﬁq]mnrstuTStu =

f[msn]pq - g[qu]mn + %f]mnpqrst(CTrSt - gsrst)

86



C. Useful Identities for the SO(3) x SO(3) Invariant S” Tensors

Table C.4.: Identities derived from Eq. (C.2) and Eq. (C.3).

(1> Smonnp — 07 Smonp — %ﬁmnpqrstqur}j’st
(i)  T™PF,, =0, T™?PF,= LT, F,
(iii) Samn el = 2pmne 4 Lgmnparst S F

(iv) TR, = RSP T

Table C.5.: F' tensor identities derived by contractions of the equations (iii) and (iv) in
Table C.2 with &, Gy Fins Emgs Crg and Fug.

: m __ m __ mn _ 1/n [ nl) mn __ 1len ¢
(1) Fing Fn(™ = =§, F{" = gC +6F7 F,(m = —gg +6F

- I

(i) Fonl™ = ~Cn = EFy Fop&n = S$8mm — 2Fonn = Com + & Fonn
( ) ancn = fm - CFma Fmpcpn = _%gmn - %Fan + gmn + %an
(iv) F"F,=1, F"™F, =0, F"F,, =F"F, -

Table C.6.: Subsequent identities derived by combining the equations (iv) and (v) in
Table C.3.

(i) fsmSnpS + Csanps = £s[mSnp}S + Cs[anp}S

() EopmSun)® = §(CTomnp + 26 Smnp) = 105 hmmparst (209T7" + £157)

(111> Cs[anp}s = %(gsmnp + 2<Tmnp) - ﬁf]mnpqrst(QSqut + CqTTSt)
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Table C.7.: Identities derived by contractions of the equations (ii) and (iii) in Table C.3
with £P, (P and FP; and contractions of equations (iii) and (iv) in Table C.4
with &, and (,, respectively.

(i) Dmnpqrst€P (ST = 6CSymnp€P + 548 np FP,
(ii) mnpgrst CPEITTSE = 6€ T pCP — 54Ty FP
(iii) Mmnparst FTCIST = 6Smnp€? + 6CSmnp L™,
(iv) Dnpgrst FPEITT0 = —6T 3pCP + 6 T FP

(V) ﬁmnpqrstprqSTSt = 6£Smonpa ﬁmnpqrstchqTTSt = 6CTmonp
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