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Abstract. In line with a series of previous works, in this paper we discuss the inverse 5-decay
of accelerated protons p — n + e + v.. To make the calculation of the transition rate easier
to handle, we focus on an ideal “twin-process”, assuming the counterparts of lepton fields to
be scalars. The rate of p — n conversions is evaluated in both the laboratory and comoving
frames, showing that the two results perfectly agree due to the Unruh effect. In spite of the
minimal setting, we stress that this model is an attempt to wash technical difficulties out of the
analysis of the inverse S-decay. The future goal is to investigate the concerns recently raised in
literature about the compatibility of the two rates when neutrino mizing is taken into account.

1. Introduction

The analysis of the inverse S-decay [1, 2] has proved to be enlightening for solving a puzzling
question: is the Unruh effect [3] really mandatory for the consistency of quantum field theory
(QFT) in curved background? As it is reasonable to expect, the decay rate of an accelerated
particle in the laboratory and comoving frames must coincide. This outcome is prompted by
the requirement of general covariance for the underlying formalism, which is built so that scalar
quantities, such as the mean proper lifetime (i.e. the inverse of the decay rate) are invariant,
and thus equal in any reference frame. In Refs. [1, 2], it was shown that this equality does
indeed hold only when considering the inertial vacuum to be a thermal bath for the accelerated
observer due to the Unruh effect, solving in this way the aforementioned dilemma.

Just when the issue of the inverse 8-decay appeared to have been definitively settled, it hit
again the headlines, becoming even more appealing. Indeed, if on the one hand in Refs. [1, 2]
it was remarked that the decay properties of particles are not a frame-independent concept
(according to what discussed in Ref. [4]), on the other hand the analysis there proposed
completely overlooked flavor mizing of neutrinos, thus providing only a partial treatment of
the problem.

The ingredient of mixing in the context of the accelerated proton decay was firstly introduced
in Ref. [5] and later discussed in Refs. [6, 7, 8]. In Ref. [5], the authors highlighted a disagreement
between the rates in the inertial and comoving frames, concluding that the contradiction had
to be solved experimentally. On the other side, in Refs. [6, 7], such a paradox was overcome on
purely theoretical basis, although conflicting approaches were taken into account. In Ref. [§],
however, some criticism was exposed on the statements of Ref. [7], which was shown to fail to
pinpoint the peculiar aspects of mixing in the problem under consideration.
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Notwithstanding the clarification of the theoretical dichotomy, it is evident that the analysis
of Ref. [6] needs further improvement, since it applies only within a particular approximation. So
far, however, the non-triviality of calculations has prevented any development in this direction.

Aware of these technical difficulties, in the present paper we analyze a toy model' in which
the inverse [-decay is addressed treating the electron and neutrino as scalar fields. By use of
this minimalistic approach, we evaluate the rate of p — n conversions in both the laboratory
and comoving frames, showing that the agreement is not affected by our assumption at all. In
spite of the simplified setting, it should be emphasized that this model must be considered as a
first step toward a more subtle investigation of the decay of accelerated particles in the context
of flavor mixing. In this way, we hope to lay down the foundations for definitively clarifying the
ambiguities recently raised in literature [5, 7].

The paper is organized as follows: In Sec. II we review the standard quantization of the scalar
field in Minkowski and Rindler spacetimes. In Sec. III we discuss an inverse 5 decay-like process,
showing that the outcome mimics the realistic case of the decay of an accelerated proton. The
last Section is devoted to conclusions and outlook. Throughout the paper, we use natural units
h = c =1 and the metric with the conventional timelike signature.

2. Quantization of the complex scalar field in Minkowski and Rindler spacetimes
Before going into the details of calculations, it is worth reviewing the quantization of a complex
scalar field qg in Minkowski and Rindler spacetimes [9]. In 3 4+ 1 dimensions, the field expansion
for an inertial (Minkowski) observer reads

d(z) = Pk [
V(2 7)32 wy

where wy, = \/|k[2 4+ m2, m is the mass of the field and @y, (by,) are the annihilators for Minkowski
particles (antiparticles) with momentum k. The plane waves in Eq. (1) satisfy the KG equation

dke—ik-x + Bltezkm ’ (1)

(D + m2) ¢(x)=0. (2)

In order to analyze the quantization procedure in Rindler spacetime, it is useful to express
the coordinates appropriate to a uniformly accelerated (Rindler) observer in terms of the
Minkowski ones. Choosing to leave the coordinates x; = (x,y) unchanged, namely, allowing
the acceleration to have only the z component, we have

t = usinhv, 2z = ucoshv, x; = x|, (3)

where v € (—00,00) is the time of the Rindler observer and u € (0,00), x| € (—o00,00) its
spatial coordinates. In this way, the Minkowski metric becomes

g = diag (u*,—1,-1,-1) . (4)
We stress at this point that the world line of a Rindler observer with proper acceleration a is

obtained by requiring u = const = a~! [10]. The field expansion in the right Rindler wedge
(z > |t|) takes the form [1, 2, 10]

30) = [ o [@rfan o) + B o). o)

1 We refer to the simplified process described by this toy model as “twin process” for the standard inverse
[—decay.
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where w = (w, k) and w € (0,00) is the Rindler proper frequency. Here (BW) are the
annihilators for Rindler particles (antiparticles) with frequency w and transversal momentum

k| = (kg, ky). The modes ¢sviw)(x) are solutions of the KG equation in Rindler coordinates [10]:

w 1 Sinh% —i¥ 41k -x
(;ng)(x):ﬁvTe o tikL LK%(W% (6)

where | = /|k1[? +m? and K;,,(l u) is the modified Bessel function of the second kind. They
are normalized with respect to the scalar product in Rindler coordinates [10, 11].

3. Inverse (-decay: an ideal “twin-model”

Let us now apply the above formalism to the calculation of the inverse 5-decay rate. It is known
that, according to the Standard Model, protons are stable. However, this is true only in the
inertial case: for non-inertial protons, the accelerating field provides the rest energy difference
between initial and final states, giving rise to the following process in the laboratory frame:

p—ontet +u. (7)

In the original treatment of this decay, a semiclassical approximation is adopted in which the
proton and neutron are seen as the ground and excited states of the nucleon Hamiltonian [1],
while leptons are quantized in the usual way.

To make our analysis as transparent as possible, we can define in complete analogy with the
above situation an ideal “twin-process”, according to

g—e+a+b, (8)

where the two-level system emulating the relation between p and n is now composed by two
generic particles g and e, respectively?:

E[’g> = My ’9>7 ﬁ|6> = Me |6>, mg < Me, (9)

and a, b are the counterparts of the electron and neutrino, which we assume for simplicity to be
scalar fields. For small accelerations, one can show that the interaction action for the process
Eq. (8) is [11]

S = [dev=gQ (316 + ) u). (10)
where Q is the Hermitian monopole

Q = emche_mT 5(;1:)(5(y)5(u—a_1) , (11)
and A = |(g|g|e)| the effective coupling constant. Notice that the d-functions reflect the fact that

the particle g has a non-vanishing acceleration only along the z-axis.

From the point of view of the uniformly accelerated frame, the situation is significantly
different from the one described above, being in this case the particle g at rest. With reference
to the inverse 5-decay, it has been shown that the p — n conversion becomes allowed due to the
interaction of the proton with a flux of Rindler electrons and neutrinos popping out from the
Unruh thermal bath, according to the following three processes [1, 2]:

(i) pt+e — n+ure, (ii) pT+Ve = n+et, (iii) pT +e” + U = n. (12)

2 We remark that the labels g and e stand for ground and ezcited states, respectively.
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Similarly, in our model we can suppose that, owing to the Unruh effect, the decay g — e
occurs via the three following channels:

(i) g+a—e+b, (ii) g+b—e+a, (iii)) g+a+b—e. (13)

Thus, our concern is to check whether the inertial and comoving decay rates match under our
assumptions, in order for General Covariance to be preserved.

3.1. Inertial frame calculation
Starting from the interaction action Eq. (10), the tree-level transition amplitude for the process
Eq. (8) reads

Ain = (e|® (ad] S]0) @ |g) - (14)

Using the definition Eq. (11) of the Hermitian monopole, we obtain

Ain = )\/dtdz eAMTS (u—a™Y) (@b] ) ¢a |0) (15)

where Am = m, —my and 7 is the proper time. By means of the properties of the J-function,
Eq. (15) can be rewritten as
A = d AmT 4 (wa + wyp) sinh(a7t)/a — (kZ + kz) Cosh(aT)/a] ’ 16
in (27‘(‘ \/W / T 6 ( )
where we have used the field expansion Eq. (1). The differential transition rate is now defined
as

6. 2 +00
d°Pin, = |Am|2 _ A / dr ei[AmTl + (wa +wp) sinh(at1)/a — (kg + klf) Cosh(a‘rl)/a]
A3k, d3ky, 4(2m)wawp J_oo
+oo . .
% / dry e—z[AmTQ + (wa +wp) sinh(am2)/a — (kfl + klf) cosh(aTz)/a] ) (17)

To solve the integrals over proper time, we perform the transformation 7/ = s £¢ /2, so that
Eq. (17) becomes

d673m _ / / d¢ 6Z{Am§ +2a~ 1 sinh(a&/2) [(wa + wp) cosh(as) — (kz + kz) smh(as)]} )
A3k d3ky, 2(2m 6wawb
(18)
With the further boost-transformations along the z-axis, namely w/, = w, cosh(as) — kZ sinh(as)
and k2, = —w, sinh(as) + kZ cosh(as), a = {a, b}, the integral over s can be singled out, giving
the total proper time T of the two-level system made up of g and e.
Relabeling w!, = wa, k', = kZ, from Eq. (18) we now obtain
1 d%P;, _ 22 /+oc>dé ei[Am§ +2a~ (wa + wp) sinh(ag/2)] (19)
T d3k,d3ky, 2(27)Swqwy ’

which can be solved in terms of the modified Bessel function of the second kind [12]. By taking
into account the result of the above integral and the general definition of decay rate

P
I = — 20
T ’ < )
we are finally able to write the following integral expression for the inertial decay rate
)\2 R [ APk, [ Bk .
Lin = / / ° KZzAm/a <2 “a T Wb> : (21)
a

The plot of I';, versus the acceleratlon is shown in the figure below.
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Figure 1. Plot of the decay rate as a function of the proper acceleration, for m, = 0.5 MeV,
mp = 0.1eV, Am = 1MeV and A = 10712eV~!. For a — 0, one has I' — 0, which means that
the particle g would be stable in absence of acceleration, as expected.

3.2. Comoving frame calculation
We now turn to the calculation of the decay rate in the comoving frame. For simplicity, we only
deal with the process (i) in Eq. (13): similar considerations can be straightforwardly extended
to the other two transitions.

In line with Eq. (14), the tree-level transition amplitude for the process (i) can be written as

. A A .
A = (e| @ (b] Srla) ® |g) = a/dv du e Am7§ (u—a™t) (bl qbz Ga |a) . (22)

Using the Rindler expansion Eq. (5) for the fields ba and ¢y, we get

A4 /sinh (”:“) sinh (%“’b)
Aw =

la l
0 (wa — Wp — Am) Kiwa/a (a> Kiwb/a <£) 5 (23)

with [, defined as in the previous section for each of the two fields.

There is now a subtle point to be considered: as mentioned above, in the comoving frame
¢ interacts with a thermal bath of Rindler particles, giving rise to the processes Eq. (13).
Hence, we must take account of this effect including the proper bosonic thermal factor of
absorption/emission in the evaluation of the decay rate. For the process (i), we have

2m3a

dP; )
- ' a) |1 ) 24
dwadwyd? ko d?ky A np (wa) [L + 15 (w)] (24)
where np(w) is the Unruh thermal distribution for bosonic fields
1
np ((.U) = 627“")/7‘1—1 . (25)

By inserting Eqs. (23) and (25) into Eq. (24) and recalling that the total proper lifetime of the
two-level system is 1" = 279(0), it follows that

TAmM

1 d673(-) ANe Ta l Iy
- : — § (wg —wp — Am) K2 2 K? =] . 2
T dwadwyd®kad?ky 32m7a? (o = ws M) Kivufa < a ) ws/a <a> (26)
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The decay rate can thus be obtained using the definition Eq. (20)

ﬁAm

lq l
2 2 2 b
F(l) - 327‘(’7@2 / /d /d Ky sz/a ( >Kz(w Am)/a () : (27)

If we now repeat similar calculations for the processes (ii) and (ii7) and add up the three
contributions, we finally get the following integral expression for the total (tree-level) decay rate:

7I'A7TL
la l
— 2 2 b
Loce = F(z) + I‘(ii) + F(zm) 327‘1’7&2 / /d /d ky K zw/a < >Kz(w Am)/a <a> :

(28)
The plot of 'y as a function of the acceleration is identical to the one obtained in the inertial
frame3, as it can be seen from Fig. 1. Thus, the obtained result confirms the internal consistency
of our theoretical model, in spite of its minimal setting.

4. Conclusions

In this paper, we have introduced a toy model for the investigation of the inverse S-decay of
accelerated protons. To make the calculation of the transition rate as streamlined as possible, we
have treated the electron and neutrino as scalar fields. Retracing the original steps of Ref. [1],
we have shown that the General Covariance of QFT in curved background is preserved also
within our simplified framework, provided that the Unruh effect is taken into account.

Clearly, this is just a preliminary study: as a next step, we plan to examine our formalism
in the context of neutrino flavor mizing. Indeed, as discussed in Ref. [6], there is still an open
debate on how to accommodate mixing effects in the analysis of the inverse §-decay without
spoiling the agreement of the two rates, also in the light of a possible non-thermality of Unruh
radiation arising in that case [13]. In particular, to clarify the ambiguities recently raised in
literature [5, 7], the aim is to go beyond the approximation considered in Ref. [6], an effort
that has not been successful so far due to the complexity of calculations. Further study in this
direction is in progress [14].
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