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to My Parents
and to Ida

Tyger! Tyger! burning bright

In the forests of the night,

What immortal hand or eye

Could frame thy fearful symmetry?

—William Blake
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Introduction

The work done during my Ph.D. studies is mainly concerned with the investigation

of certain non perturbative phenomena in field theories. Two main such phenomena were

investigated. These are the fractional charge acquired by topological excitations when they

are coupled to fermions, and the strong coupling limit of gauge theories in two dimensions

using various bosonization schemes.

The fractional charge phenomenon was first discovered by Jackiw and Rebbi (1970).

They noticed that both a monopole or a soliton acquire a half integral charge when they are

coupled to fermions. It was rather shocking that a theory containing only integral fermion

charges, would predict fractional charges for some particles. This was particularly interest-

ing because such monopoles are a necessary consequence of the various grand unification

schemes. It was later observed (Goldstone et al. 1981) that for a massive fermion we may

get a transcendental fermion number. For

L = a. (2' fl - m -i9'15¢)¢'. where Moo} = —¢(—oo) = .,
we get for the vacuum charge:

q = 1arctang.
1r m

The above lagrangian is for the two dimensional system. In the 4—dimensional case,

one gets the same value for the charge. This peculiar equality was explained by us from two

difl‘erent points of view (Frishman et a1. 1983; 1984). In the first work a connection between
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fractional charge and anomalous commutators was found. Analogous expressions for the

anomalous commutators of the two theories led to similar results for the charges. Thus

some of the enigma was explained. Also an important connection between the anomaly and

the fractional charge was made, thus relating these two important aspects of field theory.

In the second paper (Frishman et al. 1984) the connection between two and four dimen-

sional theories was directly explored. It was proven that the j = L+ S +I = 0 sector of the

monopole theory is equivalent to the soliton theory, and that the j = 0 sector dominates the

whole contribution to the charge for a heavy monopole. We have also treated the resulting

“half fermions” separately showing that different fractional charges arise for them due to

different boundary conditions.

Chapter one consists of a review of the fractional charge phenomena, including our

results in the area.

In the subject of bosonization and gauge theories, two works have been done. In the first

work (Cohen et al. 1983) we have performed bosonization of QCDg in a theory with many

flavors, all in the fundamental representation of color SU(N) Bosonisation is a technique in

which a fermion theory is mapped into a bosonic one (Coleman 1976). Its importance follows

from the fact that in many cases the resulting theory is simpler. Also, the weak coupling

regime of the bosonic theory in many cases is mapped into the strong one of the fermionic

theory. Examples are the massive Schwinger model (Coleman et al. 1975, Coleman 1976),

and QCDg with one flavor (Baluni 1980, Steinhardt 1980).

Using the abelian bosonization we obtained the bosonic form of multi—flavor QCD (Co-

hen et al. 1983). The application of the abelian bosonization to gauge theories is described

in chapter two. It is shown that the bosonic hamiltonian contains a nonlocal term V(¢,°, an)

of high degree of complexity (it has integrals of 7r,- — Jrj). We then apply the strong coupling

limit of g —+ on in order to get the low lying spectrum. In view of the nonlocal interaction,

we also took the static approximation, 71' -+ 0. Then the states obtained are not in multiplets

of isospin. Hence we conclude that the static approximation is not justified.
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These problems were solved in the second paper (cner 1984), which is the subject

of the third chapter. Using Witten’s recently proposed non abelian bosonization (Witten

1984), a bosonic form of QC'Dg is obtained for two flavors. It is shown that the low lying

theory is a sigma model with a Wess—Zumino term the coefficient of which is the number

of colors. This result is closely analogous to current algebra theories proposed to describe

the QCD spectrum in four dimensions, based on semi—phenomenological grounds (Witten

1983). Unlike the four dimensional case, here, however, we are able to prove exactly this

result starting directly from the Q01) lagrangian.

In order to analyze the bosonic theory we have also to discuss the following two issues:

1) Regularization, normal—ordering and dimension of operators. This is needed in order to

get the scale of the resulting theory. 2) Semi—classical analysis, needed to get the spectrum

and masses of particles in the theory. These subjects are treated in two appendices.

We then find baryons with isospin Nc/2 or higher. There is also a baryonium family

with arbitrary integer isospin. Mass formulae are given for these particles.

As an interesting application of these methods we treat the multi-flavor Schwinger

model. We obtain the low lying lagrangian and are able to extend to an arbitrary number

of flavors, Coleman’s results for the two flavor case (Coleman 1976). It is proven that the

theory contains one multiplet in the adjoint and one iso—singlet. Semi-classical masses are

given for them, reasonably agreeing with Coleman’s exact results for the two flavors theory.

As a by—product we are able to show that an SU(2) Wess—Zumino theory with mass term is

equivalent to a non trivial sine gordon theory ([3 = \/ 221').



Chapter 1

Fractional Charge

151.1 Introduction

An interesting phenomenon was discovered in field theory by Jackiw and Rebbi (1976).

They have considered a fermion soliton system in two dimensions. It was found that the

the soliton acquired a fermionic charge equal to one half; namely, the soliton has a charge

of half a fermion! This phenomenon became known as fractional charge. The authors have

also shown that a monopole coupled to a fermion acquires the same half fermionic charge.

Later, Goldstone and Wilcaek (1981) have considered giving the fermion a mass. It was

then shown that the topological excitation (a soliton or a monopole) acquires a transcendental

charge! The values of the charges of the monopole and of the soliton were found to be given

by identical expressions.

This peculiar equality was explained by us from two diflerent points of view (Frishman,

cner and Yankiclowicz 1983, 1984). In the first work a connection between fractional

charge and anomalous commutators was found. Analogous expressions for the anomalous

commutators in the two theories led to similar results for the charges. Thus some of the

enigma was explained. Also, an important connection between the anomaly and the frac-

tional charge was established, thus relating these two important aspects of field theory.

In the second paper the connection between the four and the two dimensional theories

was investigated. It was shown that the J = L + S + I = 0 sector of the monopole theory

is equivalent to the soliton theory. This fact directly explains why their vacuum charges are

identical.
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The prospects for the phenomena of fractional charge to be realized in particle physics

are not very clear. The magnetic monopole, although predicted by grand unified theories, has

not yet been found. In condensed matter systems, however, this phenomenon is very likely

to arise in one—dimensional molecules like polyacetylen. (For a- discussion of experimental

and theoretical aspects of polyacetylen see A. Heeger 1981.)

51.2 The fractional charge

We shall follow the method of Jackiw and Rebbi to show that the soliton has a half

integral fermion number. This charge is seen to arise due to a zero mode of the fermion in

presence of the soliton.

For the sake of convenience let us take a kink solution. The lagrangian of the kink—

fermion system is then given by

l 1 .. , _
L=§(3uso)2-§(502-1)2+¢%fl¢+g¢¢so . (1.1)

The bosonic part of this lagrangian is known to have a classical solution which is the

kink solution of the 904 theory (Dashen et al. 1974b, Goldstone and Jackiw 1975, Polyakov

1974). The equation of motion is

(b — rp” = 2903 — 290 (1-2)

The kink is a time independent solution with the boundary condition 50(00) = —(p(—oo) = I.

The kink is stable, since it is the lowest energy solution in the sector of solutions obeying

that boundary condition, and because this sector is protected from decay by the finiteness

of energy demand. This property of the solution suggests that it describes the classical limit

of an actual particle. The kink solution is given by

50(3) = tanha: (1.3)

The quantization of the classical solution is needed for exhibiting that 'it describes a

real particle appearing in the spectrum of the corresponding field theory. This was done
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by several authors using different methods (Dashen et al. 1974b, Cahill 1974, Goldstone

and Jackiw 1975, Polyakov 1975a,b). The semi—classical quantization enables the compu-

tation of masses, quantum numbers and various matrix elements, in analogy to the WKB

approximation in quantum mechanics.

In order to treat the kink—fermion system, we apparently need to solve the quantum

field theory (1). This is a very diflicult task. Fortunately, we can use again semi—classical

methods as generalized to fermionic systems (Dashen et al. 1974b). It can then be seen that

in the leading semi—classical approximation one may ignore altogether the quantum nature

of the soliton, retaining only the fermion as a quantum field. This much simplified approach

is what we employ in the following.

Consider then a fermion in a classical external kink field. We shall show that the

fractional charge is due to a zero energy solution of the Dirac equation—a zero mode. The

equation of motion of it is

[—m $7 grime] w = at (1.4)
in which e is the energy; we use the representation fl = 01 and a1 = 02. In component

«mo
d2

(_fi§+ 92?} + 9(1 - 992))“ = 62a. (1-3)

notation 1!) is

We get after a little manipulation

and
d2

(755+ 92502 - 9(1 - 902)) v = 62"- (1'7)

The solution to this dilIerential equation is well known. Equations (6) and (7) are simply

the Schrodinger equation of a particle moving in the potential

V(:n) = 92902 i 9(1 — 902) = 92 tanh2 a: :l; g sech2 a: (1.8)
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Far from the origin V(:z:) is equal to 92. Hence there will be a continuum of energy levels

given by e(lc)2 = [02 + 92. Below 92 there are discrete energy levels, the energies of which

are exactly known (Morse and Feshbach 1953, Dashen et al. 1974b)

2 _ 2 _6,—2ng—n n—0,l,...<g (1.9)

The actual form of the wave function of this state is not necessary, in fact, for the purpose of

computing the fractional charge. All that is needed is the way the wave function transforms

under charge conjugation. The charge conjugation operator is 03. Then from (4) we easily

see that if $6 is a solution with energy 6, then 031% is a solution having the energy —e.

Hence all the states are paired as a fermion at energy 6 with an anti-fermion at energy —6.

The only possible exception to this rule is the states of zero energy—fermionic vacua. These

states can be their own anti-states, obeying 03100 = irfio.

.Intuitively, the states of nonzero energy can not contribute to the fractional charge,

since they cancel each other in pairs connected by charge conjugation. So only the fermion

number self conjugate states at zero energy are of importance. We have exactly one such

state in (8) obtained by taking 11. = 0. Its wave function is

7100 = V0 ((c0sl:J10‘“) (1.10)

This state is self charge conjugate, since we have 03% = —1/Jo.

We turn now to the second quantization formulation of our system. We have to expand

ll! in the wave functions, where the coefficients are creation and annihilation operators

‘II(:c, t) = bmbo + Z bra-“'tq'w) + dlek'trbIW) (1.11)
r21

Here 11),"? are the positive and negative energy solutions respectively, having the energy 333,.

(It includes the nonzero discrete spectrum and the continuum.) Now the charge operator is

given by

Q =.;./ mete—err?) = bjbo—%+ Z blbr—dldr (1-12)
r21
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The fermionic vacuum will be a state with only the kink in it. Denote this state by |kink —).

Then it obeys

bolkink—) = br|kink —) = drlkink --) = 0 (1.13)

Since no fermion mode is excited, this state will have all the properties of a free kink like

the mass, but the charge of it will be —1/2; from (12) and (11)

Q|kink—) = —%|kink —) (1.14)

The soliton has a half integral fermion number.

There will be another state with the same energy—the kink with the fermion zero mode

excited:

|kink +) = bl,|kink—) . (1.15)

The charge of this state is obtained by applying Q and using the anti-commutators relations

for b and d

1 .Qlkink+) = —2— Iklnk +) (1.16)

So we see that we have two degenerate states in the kink sector having as charge :I: %.

Notice that the only condition for having this result is the existence of a self charge

conjugate zero energy state. Hence the value of the fractional charge is a sort of an index.

We have chosen the kink solution (3) only for convenience. Suppose we had a general external

field 90(3) such that <p(oo) > 0 and cp(—oo) < 0. Then nothing would have been changed.

The only condition for the vacuum fermion number to be 1/2 is the existence of exactly one

self conjugate zero mode with 0 = —1. This would still be true. Solving (4) with 6 = 0 we

get
0

a: = 1.17M ) (exp(—f.;”<.o(y)dy)) ( )
This is the desired state and it is the only zero mode. Hence we see that the fractional

charge is a topological quantity, independent of the particular form of the solitonic field.

For example, we get the same value of half for the sine gordon soliton.
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Jackiw and Rebbi have treated also the case of a monopole coupled to a massless

isodoublet fermion. Again it was seen that the monopole acquires a half integral charge.

The proof is in total analogy with the two dimensional case. Again the states come in charge

conjugation pairs canceling each other’s charges, with the exception of one zero mode. The

zero mode, just as before, is fermion number sell' conjugate, with 0 = —1, and is responsible

for giving the monopole a fermionic charge.
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51.3 The Massive Fermion Case

Goldstone and Wilczek (1981) considered a soliton coupled to a massive fermion. Then

not only the fermion acquires a non integer fermion number, but the value of it turns out to

be an. arbitrary transcendental number. As a first case they considered the model (1), now

with a fermion mass term

LF = @(z‘ ,3 + cp +£Mr15)‘II (1.18)

where go(oo) = —tp(—oo) = V. In order to compute the fermion number these authors

switched on adiabatically the soliton field (,0 and then used perturbation theory. The result

which they found for the vacuum charge is

1 V__ t _. 1.19Q—Warc anM ( )

Notice that, again, the value of the charge is independent of the details of the external field.

Only the values of so at infinity enter into (19).

Here we shall ofier a different way of computing this charge. The computation will be

in analogy to the massless case carried out in section 2. The first step is to solve (18) with

a particular external field. For the sake of convenience we choose

we) — ...E’. (1 20)|1=| '

The equation of motion for 11) as derived from (18) is

. d .[—ml 3'; — fitp — zfiaM] 11(3) = 617(3) (1.21)

Also, in order to make our treatment more rigorous, we shall consider the system to be in

a box with periodic boundary conditions. Namely we assume

n (— E) = 11(9) (1.22)

L is the box length.
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The solutions of this equation are seen to be in three classes.

1) Positive energy solutions. Their energy is given by

an = W kg + V2 + m2, and Lion, =s 2mr (1.23)

They are given by

1 (/‘_EM cos(!cn|:t| + 6n) (1 24)

\/L — ”EM sin fcnzc

e—M -— s nlc a:
17.2.. = L e l n (1.25)

\/ HM cos(lcn|:c| — 6n)

1—."a.“

and

6", is defined by

1'6 (0", +1.1!1: = _.___._ 1.26
6 I’ll”, + iVl ( )

The solutions are normalized to have probability one. We denote these solutions

collectively as ”p where p = 1,2, . ..

2) Negative energy solutions. Their energy is 6,, = — «kg + V2 + M2. They can be

obtained by taking 17 -—> 0317 and M —r —M. This is simply a charge conjugation. We

denote them collectively as '17P where p = 1,2,...

3) The discrete solutions. For M = 0, those are the zero modes of section (2) now lifted

to the energy 6 = ill/I. These are

no = (TL—wile *Vlsl
for E = —M (1.27)

0

_ v 0 __
1’0 -- (m) (eu(l:c|—L/2)) for E —- M (1.28)

In order to compute the fractional charge, we shall employ

J0 =—;.[\1n‘,tp] (1.29)
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Ilere \I’r is the second quantized field defined in analogy to (10).

00

1143,12) = Z bps—icptnpm) + ciept 71,, (:5) (1.30)
p=0

b , d obey canonical anti—commutation relation. Then we can compute the density of the
P P

vacuum charge
00

pa) = (omens = g E 3,. (x) 3,. (z) — stew) (1.31)
p=0

Suppose now we were to integrate p(:r) over the box in order to get the vacuum charge. Then

we would get no fractional charge! (This is due to the orthonormality the wave functions.)

L/2f p(a;) = 0 (1.32)
—L/2

So apparently the vacuum. has no charge. This was first found for M = 0 by Bell and

Rajaraman (1982). In order to get the vacuum charge one has to be more careful. Let us

introduce a second scale 1, such that

———1——— << 1 < L (1.33)
\/V2+M§

We shall now compute the vacuum charge that is contained in the region (—%,%) and show

that, in fact, it gives the correct value for the charge (19)

1/2em = f I 2 mm (1.34)

The physical interpretation of this result needs some explanation. If we preformed an

experiment to measure the fractional charge, naturally we would do it in a small region

around the soliton center. Hence it is justified to compute the charge not for the entire box,

but for a small region around the soliton (given between -—é and fi). However, it could have

been claimed now that we are actually computing not the eigenvalue of the charge operator,

but an expectation value in a mixed state. As such it would not be of no surprising to

find the non integral value (19). It can be shown, however, that the fluctuations of the
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charge when l —+ 00 are decreasing to zero. (The walls of the box must then be made

“soIter”.) Thus our vacuum asymptotically becomes an eigenstate of the charge operator

with a fractional eigenvalue. For detailed computations of the fluctuations for M = 0, see

Bell and Rajaraman (1982) and also, Frishman and Horovitz (1982).

Let us now actually compute (34), using the wave functions (23—28). For the continuum

states we find from (31),

1 °° M
9(3) = 5 2': 7.1. 17}. + 7?. T13. — 71.1.11}. - min}. = Ezsinfiknhl) Bil-125n- (1-35)

It

Computing the integral (34) we then get

(30) = ;Len(:£flfM2) (1 — cos kn!) (1.39).

We can now take the box to infinity. Then L -—> co, and the sum becomes an integral.

00

em = f We) cut. ' (1.37)
—00

and
VM 1 — 3"“

Ne) = 3;;-W (1.38).

To evaluate this integral we deform the real line into the closed curve C (see fig. 1). We

now use the residue theorem for evaluating (37). The only pole of f (k) inside the contour

C is at It: = —z'u. There is also a branch line (“cut”) on (—1300, —i x/u2 + M2). The value of

the residue is given by

2m? Res fun) = — 1 (1 — 6"”) (1.39)
—:'u 2

Using then the residue theorem, the value of the integral is seen to be

00 _ —!cl

Q(.,=_1u_.—m)+n£f --__,F____73__:e__,_____.., (1.40,
2 7" WJIcJ-V‘i-MNW—Vz)

where the integral on the l.h.s of (40) represents the integral of f(k) along the branch line.

Now i can be safely taken to infinity, and we get for the continuum contribution to the
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1F

Fig 1

fractional charge:

. 1 VM °° die 1 1 M. - —— = ——+——arctan——. (1.41)£-+oo 2 7r IF+M3 (”c2 _ V2 _ M2612 _ V2) 2 7r V
The contribution from the discrete states is 1/2, since from (27—28) we can compute,

l 2/ 1 . (1.42)[Q
M

—
l

‘30 = “m (no(=v)no(w) - no (2:) so (20) dz =l—roo -1/2 ‘2-

Summing (41) and (42), we get the value of the fractional charge stated in (19).
Two remarks are in order:

1) The value of the charge is independent of the particular solution we have chosen, but
it depends only on the asymptotic values of it. Let’s say that 90(3) is some general
external field. Also replace the constant mass term M in (18) by arbitrary function
M(3:) Then the fractional charge is given by

Q = ( lim — lim )i-arctan M(m) (1.43)z—roo s—r—oo 27f 90(3)
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2)

This may be seen either from the perturbative computation of Goldstone and Wilczek

or from arguments given by Y. Frishman (1983). The latter showed that the fractional

charge depends only on the asymptotic values of the external fields, provided fermion

current conserving regularization can be found for any external field configuration.

We have two types of continuum states given by (24) and (25). It can be easily seen

from our computation that the contributions to the vacuum charge coming from each

of them are equal. Their respective vacuum charges account for exactly one half of

(41). So let us separate all our solutions into the two types:

symmetric )
1Type 1: m =( (1.44)

antisymmetric

antisymmetriC)
Type 2 : 712 = ( (1.45)

symmetric

The state (27) will contribute half to the fractional charge of the type 1 solutions and

nothing to the type 2. (for V < 0, it is the opposite). Hence the total charge of each

of them is,

l M 1
(31 = garctan7+z, (1.46)

1 M 1
2 = — ——-. .Q2 2Warctan V 4 (1 47)

Of course, jointly, the two types give the total fractional charge of the system: Q =

Q1 + (32. The importance of this two subsets of solutions will become apparent in the

next chapter. It will be shown that they correspond to Callan’s “half” fermions.

A simple way to get the fractional charge of (18) is made possible via the use of the so

called bosonization technique. This method will be described in detail in the next section.

For the time being it will su1[ice to mention that a fermion theory in two dimensions may

be translated into a bosonic one. For that purpose, one uses the following “dictionary”,

17):: M —> gum)? (1.48)
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17) 1,0 —r Mcos(2 JEx), (1.49)

«13q —. M sin(2 fix), (1.50)

— l
'1’ 7111/) —’ fifpuavx- (1.51)

(x is a canonical bosonic field.)

Then (18) may be translated into the purely bosonic theo'ry,

1 ._ _ _
LF = 5(6),“)2 + (pcos(2 \/1rx) + Msm(2 Jar x). (1.52)

We can write (52) as,

5—
:

LF = 5(6),“)2 + A(:c) cos(2 \/Ex—— 3(3)), (1.53)

where B(:c) = — arctan(rM(a:)/cp(:c)).

Now, the vacuum of the theory (53) is described by a certain classical solution of it,

obeying the boundary condition,

2 fixes) = 3(3), for a: —r 3:00. (1.54)

Then from (51) we can obtain the fractional charge of the vacuum using semi—classical

methods [or x:

-00

00Q ; 1170¢dx=f -‘/1—:61xd3=%(x(00)—x(-00)) (1.55)
and using (54) we again see,

1 M
Q — garctan—J. (1.56)

This is an example of the power of the bosonization technique in analyzing non—

pcrturbative phenomena. We shall see in chapter 2 more uses of this kind.

Goldstonc and Wilczek have also treated a monopole coupled to a massive fermion.

Again using their method of adiabatic computation, they obtained for the fractional charge

an expression identical to (19).
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In the next section we shall not only prove this result, but also explain why the charge

is the same for the two and four dimensional theories.

§1.4 The fractional charge of the magnetic monopole

In this section we shall consider a magnetic monopole coupled to a fermion. It was found

by Jackiw and Rebbi (1976) and later Goldstone and Wilczek (1981) that the monopole then

develops a fractional fermionic charge. The method of computing the charge that we shall

employ here, has the advantage of explaining why the monopole and the soliton develop the

same charges. Namely, we shall prove that the j = O sector of the monopole is actually

equivalent to the soliton theory (18). This section is based on the work of Frishman, Gepner

and Yankielowicz (1984).

The magnetic monopole was found by Dirac as a consistent extension to electromag-

netism. Some time ago ’t IIoolt (1970) and Polyakov (1976) showed that in a large class of

spontaneously broken gauge theories, there exists a classical solution, that when quantized,

becomes a particle carrying a magnetic charge. Thus the magnetic monopole became no

more a luxury but a particle predicted by certain theories, in particular by grand unification

schemes.

For simplicity we consider the original ’t I-loolt Polyakov monopole found in an SU(2)

theory spontaneously broken to U(1). The monopole of other gauge groups carry fractional

charges similarly. The lagrangian is then given by,

1 a -L = —74—F,;,,n + some“)2 + V0.0"). (1.57)

where (pa is the I-Iiggs field (a = 1, 2, 3) in the adjoint of 3U(2) Dp is the covariant derivative

given by,

1),, = 0,, + écAgT“, (1.58)

(T5 are generators of SU(2) taken here in the adjoint.)
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The lagrangian (57) has a classical solution protected from decay by a topological con-

servation law, i.e., the second homotopy group of SU(2)/U(1). This classical solution can

be seen to represent a particle carrying a magnetic charge, where the topological conserva-

tion law becomes the conservation of magnetic charge. (For a review on monopoles see for

example Coleman 1975.) The fields of the monopole solution obey

AW) = 0.

eAflx) = Eaijmj-A(rli (1.59)

7raw) = wash).
At large r the fields behave as A(r) = —1/r + 0[exp(—e)], and 90(00) = V. Also A(0) =

90(0) = 0-
We shall consider now a theory inlwhich a monopole is coupled to a fermion. The

fermion’s isospin is taken to be one half. The fermionic lagrangian is then

£1? = 17”" Dis - '7) (m + ia'rsTavoalv- (1.00)

The fractional charge of the monopole is (Goldstone and Wilczek):

q = «"1 arctan (fi), (1.61)

the same as for the two dimensional theory (18), now written slightly difl‘erently as

L1:- = {M M — 13("5'1'3'9’75WW- (1.62)
Ilere 90(00) = —¢p(—oo) = V.

We shall prove that (00) and (62) are equivalent theories. Thus we shall also explain

the identity of their respective vacuum charges.

In order to prove that assertion we shall treat the monopole fermion system using

methods originated by Goldstone and Jackiw (1970) and elaborated by Callan (1982 a,b). It

was shown by them that due to the spherical symmetry of the monopole solution (59), the
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lagrangian (60) conserves a peculiar quantum number which is the sum of isospin, spin and

angular momentum. We denote this quantum number by j, where j = L + S + I.

For m=0 the complete analysis of the classical equation of motion coming from (60)

was done by Jackiw and Rebbi. They found that a zero mode appears in the j = 0 partial

wave, hence giving rise to one half fractional charge as discussed in section 2. The higher

partial wave have also been analyzed and it was shown that no zero mode arises in them

and consequently they do not contribute to the fractional charge. This result can actually

be understood without explicitly solving the equation of motion of (60). For the higher

partial waves there is a centrifugal barrier, preventing the fermion from getting close to

the monopole. In the MW —> oo limit the monopole is pointlike and since the fractional

charge arises from the monopole—fermion interaction we expect the fractional charge to be

saturated by the j = 0 partial wave. This argument holds also when m is not zero. Hence

we can concentrate on the 3' = 0 sector and the treatment of (00) is simplified.

Following Callan we decompose the j = 0 Fermi fields as

. Xi
' a?) =( ). (1.63)

i; .

where the (i) refers to helicity. X is a 2X2 matrix where one index is spin and the other

is isospin. For 3' == 0, X may be written as

Xi: =(Vfirl_1(9i + Pd: 3 ' 'T')T2, (1-34)

where gi and pi are functions of r only. This is the most general form of a solution which

is j—symmetric. It was shown by Callan that g and p may be grouped into a two dimensional

9i
X:l:=( . )- (1-55)

i395:

Then it can be seen that the fields xi obey canonical anticommutation relations. Thus

Fermi fields,

we arrive at an effective two dimensional field theory for x by inserting (63-65) into the
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lagrangian (60). We then get the lagrangian (not the lagrangian density),

m I

11(3) = [0 dr { 2+ waaax+ + X- waaax" + m(2'c+ x" + 52— fl

+i (A - 3 (2+ ’15?“ + 52- 75x") + 599067.; vsx‘ + ic— 75x+) },
(1.66)

where the qu’s are the two dimensional ones: rm = 1'3, 71 = —in, '15 = m.

(A — 1/ r) vanishes exponentially rapidly outside the monopole core. Inside, it goes like

(—1/ r). Hence in the large 1|p limit, the term containing (A — 1/3') may be eliminated

altogether from the lagrangian (65), provided we impose the boundary condition T+X=l= = 0.

This condition ensures that xi will not have a non integrable singularity at r = 0 (Callan

(1982) and Besson (1981)).

It would be convenient now to make the transformation,

1
j;

which produces a flavor diagonal lagrangian,

61,2 = (X+ :I: X—): (1-67)

L(t) = [000 dr 2:: [52a ,1)”. — (—)"’ in, (m + igq5tp))\n] , (1.68)
n=1

with the boundary condition T+)\n(0) = 0 for n = l, 2.

The lagrangian (68) is a half line lagrangian of two flavors. We shall show that it is

actually equivalent to a full line lagrangian of a one flavor, which is our two dimensional

soliton lagrangian (62). One further transformation must be made:

2-1/2 Mm) + r75 mm” for :1: > 0
906) = (1.69)

2—1/2 ’To[>\2(-$) '" ’75M("‘c)i for 1’ < 0
The boundary condition r+)\,,(0) = 0 gurantees the continuity of p(:c) at :c = 0. It can be

seen that p is a canonical Fermi fleld. Inserting (69) into the lagrangian (68), we get

L(t)-——- f °° a [a [710-7477344075 as. (1.70)
"OO
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where 923 is defined as

(0(a) for a: > 0
if: = { (1.71)

—tp(—a:) for 1: < 0

The lagrangian (70) is identical to the two dimensional theory (62).

This does not yet guarantee that the monopole and the soliton have the same fractional

charge. We need to see what happens to the fermion number current through the trans-

formations we have preformed. The four dimensional fermion charge density for a j = 0

fermion may be seen to be

47rr2¢l¢ = XLX+ + XLX— = JillX-I—l + J'l—l [1-72)

We can also see that alter the transformation (67) and (69), 3'0 will obey,

313(1), w=r) + 3'06), =-r) = :I'o(x-. z=r) + J'o(X—. x=r) (1-73)

Hence, combining (73) and (72), we see that the four dimensional fermion number density is

identical to the that of the equivalent two dimensional theory as summed on in Also the

vacuum is translated into a vacuum all the way. Hence the fractional charges of (61) and

(59) are equal:

(1(2) = (1(4) = 9- (1-74)

We thus have shown that the two theories are equivalent and in such a way that that

their respective vacuum charges are identical. In fact this holds equally well for their charge

densities, as elucidated in eq. 73. This is, however, particular to the MW —+ 00 limit as

can be seen, for example, from the explicit expressions given by Goldstone and VVilczek.

The above discussion consists also of an independent proof for the value of the monopole’s

fermionic charge (eq. 61).

We shall now present a variation of this proof that also allows us to compute the

fractional charge of each of the two “half” fermions, )\. (By half fermions we mean fermions
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living on a hall' line.) This computation may also be interesting due to the importance of

the half—fermions in Callan’s work.

Suppose A; is a classical solution with energy 6. From (68) we have

(47501 — m'm — iamllké = sag, (L75)

and the boundary condition 1'... kg = 0. Define then

law) for a: > 0
E =,2 (1.76)

lrmkflx) for a: < 0

Then p505) is a solution of the equation of motion derived from (70). It is not the most

general solution, since it obeys 7+1); = 0. In fact, we can see that it corresponds exactly to

the type 2 solutions described in section 3 (eq. 45). Moreover, all the type 2 solutions may

be obtained using the transformation (76). The fractional charge of )x is then given by an

expression analogous to (42),

(12 ‘= lim r d2: ,1: [xglxg 4:156] = lingo / Tram—:— Z [p(“)*p("l—§(“Hs(“)]
"' nr—roo "'" 2 E>0 r—r =type 2

(1.77)

New p("’) are the negative energy solutions. Similarly we can make the transformation )‘i -+

75%? and use —ryo for a: < 0 in (76), and then the sum extends over the type 1 solutions.

Now, the fractional charge of each of the two types has been computed in section 3 (eq.

46—47). Hence we get

q1 =§l;arctan (E) + i ,
(1.78)

1 a t (9:!) I.
=-—— r a -— —-—Q2 27(- C 11 4,m

for the fractional charges of the two “half” fermions. Note that the diflerent boundary

conditions caused the charges to be diiIerent from one another, and not just half of the total

charge. In particular, for m = 0 we get q1 = éand (12 = 0. Again, this can be seen from

the general arguments of section 2. For m = 0, charge conjugation is a good symmetry,

also since the boundary conditions do not spoil it. Hence the fractional charge must come in
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halves related to the zero modes. In this case, M has a zero mode and )\2 does not. Hence

the result follows.

51.5 Fractional charge and anomalous comrnutators

We shall now investigate the connection between the fractional charge and the anomaly.

It will be shown with the help of a chiral rotation (advocated by Bardeen et al. (1983)), that

the value of the fractional charge may be directly obtained from anomalous commutators.

We shall treat both the monopole and the soliton cases. This section is based on the work

of Frishman, Gepner and Yankielowicz (1984).

We shall start by analyzing the soliton theory (62). Define a chiral angle by

990
= — 1079tan 0(a) m ( )

Then

m + £97590 = 0(3) exp(?3'759(1=)) (1-30)
It can be seen that making a chiral rotation on the lagrangian (62) with the angle 0(a) leaves

us with a lagrangian with no fractional charge. The operator that generates the chiral

rotation is

W) = exp [g—f J'oslx)0(1=)d2=), (1.81)
where 3),,5 = 17) 757mb is the fermion axial vector current. Then the effect of U(0) on 1!) is a

chiral rotation:

mevwrl = {exp [—giqsae)” to») (1.82)
Hence the lagrangian (62) transforms as

WWII-W) = W) = «7% M + «7; rmstmw — 9p «7) «p (1-83)
There is also a term coming from the jacobian of the transformation (an anomaly term) but

since it does not involve the fermion field we can ignore it.
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We have now to determine how the fermion number current transforms under chiral

rotation. Then it is seen that

. . 1U(0)Jo(1=)U(0) = 30(3) + £013) (134}

where we used the Schwinger term in two dimensions,

[jo(z).aa(u)1=-}a'(x—y) (1.85)
In order to get the fractional charge, we can compute the value of the transformed current

(84) in the presence of the transformed lagrangian (83).

We claim now that the fractional charge of (83) is zero—

] a. (:io(1=)) = o. (1.86)
The reason is that the fractional charge depends only on the asymptotic values of the

bosonic fields (see Frishman 1983). The theory (83) is asymptotically a free fermion theory

and hence (86) follows. That the theory (83) possesses no vacuum charge can be also seen

more explicitly by dimensional arguments (Bardeen et al. 1983).

We thus obtain for the fermionic charge,

as = f as [as + 5,0120] = ;;(o(oo) - «we», (1.87)
which gives the known value of the charge eq. 81.

Let us now turn to the magnetic monopole case. The treatment will be analogous to

the two dimensional case. The theory that we treat is given by (60), where the monopole

fields obey eq. 59. We then define a chiral rotation by

U(0) = exp (if 3350“ dsx), (1.88)

where the chiral angles 00, are defined by

m + imam = 906) 3757”“. (1-89)



25 Fractional Charge §I.o

The effect of 17(0) on 1,0 is a chiral rotation:

memocwwrl = exp[--;175r“a“(m)]¢(x) = some. (1.90)
The next step is to see how the fermionic lagrangian (59) gets transformed:

Uwuirvw)‘1 = LN) = «7) (i ,D — e ,Bw — 9 «2 pa», (1.91)

where B contains a vector and an axial vector parts,

3,, = s—laks 425—13,,3
(1.92)

dfl dfl
A]; gird g, Bk $51.63;:

Now for large r, B), is the same as the original potential 11),,

1 A3),, —+ Eek-ab 53b (1.93)

So the lagrangian (91) possesses no fractional charge, since it asymptotically corresponds

to a theory in which there is only a vector and scalar interactions.

Now, under the chiral rotation 3'0 transforms as

cmenswear (1.94)U(0)J'o U(0)”1 = in +

We have used here the anomalous commutators for an SU(2) theory (Adler 1970),

the, a gas, a = fieflzty, warm -—- u) (1.95)
Here h}: are the magnetic fields of Ag. Now, as before, the fermion number of the monopole

theory (59) can be obtained by computing the value of (94) for the theory (91). Then we get

QF = Eff—2- ] aha [Bremen (1.96)
As r —* 00 we have 0“(:c) —> 5: 6(00) and Hg'(:c) —+ Sta, 3:, /(cr2). Hence,

Qp = —c—.(47r) lim (r2)—L0(oo) = «'10(oo) = 7r—1 arctan(gV/m), (1.97)
471'2' r-+oo m‘2

and we, again, got the result for the fractional charge eq. (61).



Chapter 2

Bosonization and gauge theories in two dimensions

§2.1 Introduction

Bosonization has proved itself to be a very useful tool in the investigation of two dimen-

sional field theories. This technique enables one to map a fermionic theory into a bosonic

one. Then the analysis of the resulting bosonic theory is in many examples much simplified.

A very important characteristic is that, often enough, perturbative or semi—classical expan-

sion of the of the bosonic theory corresponds to the strong coUpling regime of the fermionic

theory. Ilence one can, that way, arrive at highly non—perturbative results with very little

cost. We have already seen one such “miracle” happen in section 1.3, where we got the

fractional charge of a soliton in a straightforward way. Another problem ,where bosoniza—

tion plays an important role, is the Callan-Rubakov elIect (Callan 1982ab, Rubakov 1982).

Although this elIect involves a monopole in four dimensions, the application of bosoniaation

to the j = 0 sector , which is basically a two dimensional system, is very useful.

In this chapter, we shall concentrate on the application of bosonization to gauge theories

in two dimensions. In some examples, bosonization completely solves the theory (e.g. the

Schwinger model). In others, we can immediately read the low lying theory.

We shall be mainly interested here in QCDg and massive QED2 with one or many

flavors. It will be shown how to derive the low lying spectrum of these theories. In this

chapter the “old” abelian bosonization is used, while we postpone to the next chapter the

application of Witten’s non abelian bosonization, which will resolve several serious problems

to be discussed here.
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§2.2 Abelian bosonization

In 1975 an interesting correspondence between two field theories was found by Cole-

man. The theories are the quantum sine—gordon model and the massive Thirring model.

This caused a great deal of surprise, since they were two apparently unconnected much in-

vestigated models. This correspondence forms the basis of the bosonization technique. The

lagrangians are

L=Wfl¢—§(M¢)2—mw, (2.1)
and

La: = $4M)? — MuNu cos M. (2.2)
We use here a normal ordering prescription with respect to an arbitrary mass is, denoted

by Np. To be more specific, separate the (6 field into positive and negative frequency parts

according to the mass p:

¢=¢—+¢+

e — %————l a‘ swam
¢+ =¢L

(k, p.) rm (2.3)

where w(lc, m) = (k2 + [t2)1/2 , and a(l’c, m), 0.106, m) are annihilation and creation operators

with the mass 11.. Then the vacuum [0”) is the state annihilated by all (10%, m),

“(’92 I‘lloul = 0 (2-4)

Our normal—ordering prescription then consists of arranging all the GM, 11) to the left of the

operator in question.

An important formula relating to this normal—ordering prescription was derived by

Coleman,
”2 102/3“

Nm exp 2% = (52-) Ne 0xP W (2.5)
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The theories (1) and (2) are equivalent by the following identification of the parameters:

1 _ _ ,6?
1 + g/ar 47r (2.3)

M2 =cm2

Most importantly, this discovery enables a mapping of any two dimensional Fermi theory

into a bosonic one. Then one can also use the correspondence of operators found by Coleman,

'4?) ’VMb = _ £Euyau¢z (2 7)

«E (1 i use» =cMnNueW,
to map any one—fermion model.

Shortly later Mandelstam discovered that this equivalence can be written in a more

explicit way. He did so by finding the bosonic operators that create the soliton out of the

vacuum. The soliton is then seen to be the basic fermion of the Thirring model. Denote by

$13 the upper and lower components of the fermion. Then they are given by

2a101(3)=(E)1/28"/86exp[—27rifi_1ff dc ir(c)—%z°fi¢(x)].

as) = —z‘(fl)”2 «er/“exp [mm-1 f 3 ds‘ ire) + 1mm]. (2.8)27r _oo 2

(The, integral is regularized by multiplying it with exp(—eg).)

It was shown by Mandelstam that with this definition, 1!) is a canonical Fermi field

obeying the field equations of the massive Thirring model when the (,6 field is taken to be

the sine—gordon quantum.

The extension of Mandelstam’s methods to more than one fermion flavor was done by

IIalpern (1975). He showed that eq. (8) holds for a system of fermions by simply taking one
bosonic field for every Fermi field, and by adding a so called Klein factor needed to ensure

the anti—symmetric commutation relations between difierent fermions:

.,, .- l/2 - . _ z . 1 .1p1(:c) = (g?) Iinexp [—2mfl 1[_oo dg 7r", (5*) —§zfi¢n(z) ,
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1 a:

11319:) = —i (-26%) ”Kn exp [—2mifl‘l /_ d; in. (g) — —;-e:fi¢,.(x) (2.9)

The Klein factors are defined by

K", = fl (—1)Nn', (2.10)
n’<n

where N”: is the number operator for the n’th Fermi field.

Using (9) one may bosonize any many—fermion theory. For example, the non diagonal

fermion bi-linears, not given in (7), may be easily computed to be

3W(1ivs)¢m=(%)aNpeXp[ix/E(f dc(«.—arm)i(¢n+¢m))]. (2.11)
“'00

where a are the remnant of the Klein factors:

1 forn=m

_ NaF3" = 11 ( 1) for n < m (2.12)
n<6<m

11 (—1)N‘+1 for n > m
lt>d>m

An expression for the non—diagonal currents can be likewise written.

We shall be applying this formulae in the sequel to obtain the bosonized version of

multi—flavor QCDg.

52.3 QEDZ with abelian bosonisation

In this section we shall describe the bosonization of electro—dynamics in two dimensions.

It will be shown how bosonisation can, in quite a straightforward manner, help us understand

this model. This section is based on the work of Coleman et al. (1975) and Coleman (1976).

The massive Schwinger model is quantum electro dynamics in two dimensional space

time. The lagrangian is

L = —iFWF’”’ +1.5(z' fl — e A— my!) (2.13)



52.3 QED2 with abelian bosonization 30

Where Ffly = GPA” "" ayAfl.

In order to bosonize this model it is convenient to cast the theory into a hamiltonian

form. For that purpose, we first need to impose a gauge condition. We shall choose the

gauge:

Then the equation of motion of A0 becomes a constraint to be imposed on the hamiltonian:

(9%110 = —cJ() = —e : 1,0110 : (2.15)

The solution of this equation is

110 = 431-2 — Fa: — G (216)

(F and G are some constants of integration.) The electric field is

F01 = earl + F (2.17)

F has a physical significance, as it represents a background electric field. It is convenient to

express F in terms of a 0—angle,

0 = 27rF/e. (2.18)

Then physics can be seen to be a periodic function of 0 with a period of 271'. The reason

for that is as follows; since F represents a c—number background electric field, it can be

imagined as if created by charges of iF sitting at positive and negative infinity. Then if

F > e, an electron positron pair will be created from the vacuum. The pair will then be

attracted to infinity, reducing the value of the background field by e, to an energetically

favorable state. I-Icnce, F will always be brought to a value between —e and e, and the

periodicity follows.

Now, the hamiltonian corresponding to the lagrangian (13) is

)I = 17) («57101 + m)(/) + $111)”, (2.19)
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Let us now use the bosonization formulae to translate (19) into a bosonic language. Using

(7), we can rewrite (17) as

_ 0
F01: r2011 “7—f- = 7(‘15 + ) (2.20)2 «E ‘

Inserting this constraint into the hamiltonian and also using bosonization for the free part,

we get

._1
_2

1 2 a 2e
N 2w 2 ‘/7r

which is the bosonic form of the massive Schwinger model.

Some very non trivial results can be immediately read from the bosonic hamiltonian

(21). First, let us assume that m = 0 (the Schwinger model). Then we see that making

the transformation ¢ —+ q!» — 0/ (2 V?) eliminates altogether the 6' dependance from the

hamiltonian and we are left with a free massive bose theory. This is the well known solution

of the Schwinger model. We can then also easily compute any expectation values we wish.

For example,

68

V?
where u. = c/ fl is the photon mass. This is a known result originally obtained with much

(it 71)) = (OuINu 0°S2fi¢|0ul = (2-22)

more labor by other methods (Casher et al. 1973).

Let us turn to the massive theory (m 75 0). Then the mass term can be regarded as

a small perturbation in a free massive boson theory, if m/e << 1. Then a non relativistic

aproximation can be used (Coleman 1975), showing a 6(x)—force coming from the mass term.

Coleman showed that for cos 0 < 0 there are no bound states; otherwise there is exactly one

nflbody weakly bound state.

We wish to disscuss now electro dynamics with two flavors:

L= Z ww—m—e Merriam” (2.23)
i=1,2

'-'.i
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I";/,
\

09 l

b)

Fig. 2a represents a typicai diagram involving the exchange of a heavy field. Fig. 26 is

a diagram with emission and absorption of a heavy field at the same vertex. Heavy particles

are represented by heavy lines.

In order to study the strong coupling limit of this theory, we need to write it in a bose form.

We use two Bose fields as explained in section 2. The electric charge density is

Jo ==¢i1h1+ ¢i¢2 = “'1/2318351 + 9‘52) {2-24)

Thus, similarly to the one flavor case, the hamiltonian takes the form

1 l 1 1
9’ = Nm Elli + 5113+ 50914351)2 + §(31¢2)2

2 2+om2 cos(2 VE¢1)+ cm2 cos(2 ¢E¢2l + §;(¢1 + (352 + "‘2 5;) ]
(2.25)

It is convenient to define

=2‘1/2( + +—q-=),¢+ 4’1 052 2W” (2.26)

«>- =2‘1/2(¢1 — o2),
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_ 2.27[1' 7r , l l

and the hamiltonian takes the form,

1 1 2 1 1)I = Nm {511.2, + ~2—(61¢+)2 + 3241+ E113 +§(01¢_)2

_.2cm2 cos [mm — $9] cos [2 ¢}¢_]}

(2.28)

The bosonic hamiltonian (28) is suitable for investigating the strong coupling limit when

e/m >> 1. Note that the manifest isospin invariance of the fermionic theory is concealed in

the bosonic language. The diagonal isospin current may be written as

3 1 .. 1 —- — m,
J". = Elb’nullil - 51.02 ’TML'2 = \/21r£ 0.45... (2.29)

The other two currents become the complex nonlocal expressions given in section 2.

In the strong coupling limit the ¢+ field represents a very heavy field, its mass is ap-

proximately p. The (15.. field remains in a much smaller energy scale. We shall not try to

analyze the high lying spectrum of the theory, distributed around )3, because of its complex-

ity. On the other hand, the analysis of the low lying spectrum is rather straightforward. In

that case we can simply insert the value of the (35+ field,

0= 2—,/:2?’ (2.30)(35+

into the hamiltonian (28), to obtain a low lying elfective hamiltonian. This can also be seen

diagrammatically. Suppose we limit ourselves to Green functions involving only the light

gt- field in external legs. Then all the diagrams containing an exchange of the heavy field

will be suppressed by powers of m/p (see fig 2a). The only exception to this rule involves

diagrams with emission and absorption of the heavy fields on the same vertex (fig. 2b).

Those diagrams would contain a factor of ln(m/p.). Hence we can eliminate the heavy field



§2.3 QEDQ with abclian bosonisation 34

altogether if we can get rid of diagrams like fig. 2b. This we do by simply setting the

normal—ordering scale of the theory to the heavy fields mass:

m = u = (g: (231)

We then get for the low lying hamiltonian

)1 = Nm E I13 + %((91¢_)2 + 2cm2/2pl/2 cosh/27r— ¢_)] (2.32)

The hamiltonian (32) apparently involves two mass scales m and p. This can however

be remedied with the help of the renormal—ordering formula (5). Then

1 2 1 2 r2 _'
N = Nm’ 511. + 5(31d)_) + m cosh/2n 4)...) , (2.33)

where

1 )2/3 . (2.34)m' = (2cmul/2 c0350

So we see that the low lying theory obeys the sine-gordon dynamics with ,6 = J2}. Unlike

the one flavor case, the influence of 0 is rather trivial—a change in the overall mass scale.

The original isospin invariance we had is now buried inside the dynamics of this sine-

gordon. The approximation we made by imposing the strong coupling limit cannot spoil it,

since the eliminated ¢+ field is an iso—singlet.

The spectrum of the sinc—gordon theory is exactly known (e.g., Coleman 1975). The

theory has, as stable particles, 3 soliton and an anti—soliton and a breather family. Denoting

the soliton mass by M, the breather mass is given by (Dashen et al. 1975b)

:2 2
Mr", = 2M sin ((636) for fi'2 = fig—27E (2.35)

andn= 1,2,... < 87r/fi’2.

Hence, for the value of )0 that we have here (3 = {2}), we get two breathers. The mass of

the lighter one is

M1 = 2M sin(ar/6) = M. (2.36)
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The diagonal isospin of this particle, 13, can be computed using the classical solution

and the expression for the charge eq. (29). Then we see that the soliton, anti—soliton and

the lightest breather have the same mass and an isospin of 13 = 1, —1,0 respectively. Hence

we conclude that they form an iso—triplet. The heavier breather has a mass of

"M2 = Vii M. (2.37)

and, since its I3 is zero, we conclude that it is an iso—singlet.

In conclusion, we see that we have an iso-triplet and an iso—singlet. The original

isospin symmetry, obscured by the bosonization, reappeared in the spectrum as a result of

the dynamics of the sine—gordon.

In the next chapter we shall return to this system using the non-abelian bosonization.

Then the isospin symmetry will be manifest also in the bose theory. We shall then be also

able to generalize this results to more than two flavors.

52.4 (20.02 with one flavor
I)

We wish to turn our attention to QCD in two dimensions. This will serve us as a toy

model to the real Q01) in four dimensions. We shall start by deriving the low lying theory

for the one—flavor case. In the next section the many flavor theory will be addressed. Our

treatment here of the one flavor case is based on the work of Baluni (1980) and Steinhardt

(1980) and is in close analogy to that of electro dynamics, done in section 3. We shall see

that the low lying spectrum of the theory obeys a sine gordon dynamics. Hence, we have

solitons and breathers accordingly. The soliton is shown to be a baryon and the breather—a

meson, interpreted as a stable bound state of baryons—a baryonium.

The model we consider is an SU(2) gauge theory with one fermion in the fundamental

representation. The hamiltonian is

N u o

)( = Z {flue}? + 1-I3£'71(6gt91—iA::)+ mag 133.114} (2.38)
s',j=1
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The canonical variables {E§,A§.} and {¢*",2,(),-} are constrained-by Gauss law as in

electro—dynamics,

aE" — '[A 1r:]"+1 ¢*‘¢-——1——6"¢*"¢ (239),- — 3 , ,- 5 a N ,- k -

We use here a matrix notation for the gauge fields defined by 2E; = (VEE‘i, where the )x“

are the Gell—Mann matrixes normalized as Trwxb) = 2565.

The hamiltonian (38) represents a many fermion system. So we apparently ought to use

the many—fermion formulation of section 2. In the one—flavor case, we can however avoid

this complication by choosing a special gauge. In this, so called, Baluni gauge, the fermionic

hamiltonian, alter the elimination of the gauge fields, involves only diagonal fermion bi—

linears. Hence the one fermion bosonization formulae may be used.

The Baluni gauge is

A’: = 0, E“? = o, for 2' 7a In (2.40)
3 I

Then Gauss law (39) can be written as

(916i = ¢E1fi1i¢i=xfit~f¢i (241)
2(2),- — e,)A£~' = fiwl" «p.- = ¢EJ§,, 1:75 k

where the e,-’s are defined by

__ . 1 Z: .

Inserting (41) into the hamiltonian enables us to eliminate the gauge fields from the

hamiltonian. Doing also a Ficrz transformation on the Fermi fields we see that the hamil-

tonian contains only diagonal fermion bi—linears,

If = No +1‘f1

N0 = 25(17):. 7101¢1 + mf’H/Je)
1-
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2 . 1 _, _. . _ . .N1 = LEM — m2 + —~/m Z w' (1 + 75W w’ (1 — 75)¢'/(6£ — 61') (2-43)87rN . . 2 . .M '75:

We can now easily bosonize the hamiltonian (43) using our correspondence formulae

(7). Defining a bosonic field gt,- for each fermion «p, we get from (7) and (41),

3165 = WW)“ 45' = 31¢; (2-44)

Integrating we get

6,- = 953' + 6,; (2.45)

The cg’s are constants of integration representing, as for QEDg, a background electric field.

Here, however, since our fermions are in the fundamental representation, the constants can

be set to zero (see Witten 1979).

Using then the bosonization formulae (7) for the fermion bi—linears, we finally get the

Bose version of QCDg with one flavor,

J! = NA{Z?1{H12+%(61¢5)2 + 2mA(1 — cos 2 \/rr 95,-)
I. H

2 2 'g 2 A 5111(4); - ¢jl+———Z(¢.- - e) +——-——,—87rN ,#1. 2 cl, — (,6,

(2.46)

Like the QEDg case, the analysis of the hamiltonian (46) is rather difficult. However,

deriving the strong coupling limit is quite straightforward. It is done in analogy to the

treatment of QED2 with two flavors (Steinhardt 1980). We first notice that the hamiltonian
(46) contains a mass term for all the fields except of the combination:

1x — W; «:55- (2.47)

The rest of the fields can be taken to form a unitary matrix together with (47). Denote

them by (bi, 13 = 1,2,. ..,N — 1. We can then read the mass of the 14!,- fields,

__ 9 '__1_ .
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We assume now the strong coupling limit, g/m >> 1, so the 11! fields become very heavy

and decouple from the light field x. In order to eliminate the heavy fields we employ a

similar argument to that used in section 3 for QEDg with two flavors. We then see that we

just have to set the 1/); fields to zero, and to set the normal—ordering scale A to the mass of

the heavy fields,

A ..-= Mg, (2.49)

We then get the low—lying theory,

JV = NA {éfli + %(31x)2 + 2mAN cos (2577;30} (2.50)

which is a sine gordon theory with ,6 = 2 fi/W.

As for QEDg we can show that the the theory (50) contains only one mass scale by

performing a renormal—ordering. Using eq. (5) we get

)( = Nm. E11; + as”)? + (m’)2 cos (2‘)? 3.5)] , (2.51)

with
l—l/N N/(2N-1)

m’: Nm i. , (2.52)
\/7r

which is the scale of the theory. The sine—gordon system predicts a soliton and a breather.

The soliton solution obeys x(—oo) = 0, x(oo) = 27r/fi. Then we can compute the quark

number current using (7),

1 ¢N
Jp. = 7;; Gfll/aI/ibi = ‘/;r: IE[war/X1 (2'53)

and the quark number,

q=/_°° dzc=/ $¥01d=%%=N (2-54)

So we see that the soliton has a quark number of N. Defining the baryon number of a

quark as l/N, we see that it has a baryon number one—the soliton is a baryon. Similarly

the anti—soliton is an anti—baryon.
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The theory (51) predicts also a family of stable breathers. The breather solution fl(m, t)

obeys fl(—oo, t) = Moo, t) = 0. Hence we can compute its baryon number using (53) and we

see that it is zero. The breather of the sine—gordon theory may be interpreted as a bound

state of soliton and an anti—soliton. Hence we see that the breather is a baryonium—a

baryon anti—baryon bound state. The mass of the baryonium can be obtained from (35),

_ I s 1/2
M35 = 2MB sin (: flNn-—_li) Njoo4 \/rr m(%) n (2.55)

and n = 1, 2, . . . , 2N — l. altogether there are 2N — 1 baryoniums.

52.5 QODg with many flavors

In this section we shall treat QCD2 with many flavors using the abelian bosonization.

The bosonized version of the theory will be obtained. It is shown that there is a basic differ-

ence between the one—flavor theory and the many—flavor case. An extra nonlocal interaction

arises which complicates the analysis. This section is based on the work of Cohen, Frishman

and cner (1982).

Our hamiltonian is a generalization of (38) to many flavors. Denote the flavor index by

Greek letters. Then,

N” .2 . - - . . . .) = Z 92 E; + Z 17"“ 71(6361—23Aflw’“ + ms; 11"“ «pm (2.53)
131' =1 :1

NC and N)- are the number of colors and flavors respectively.

The first step, which is the elimination of the gauge fields, is a simple extension of the

one—flavor treatment done in section 4. Choosing the Baluni gauge (40), Gauss law becomes

.. 3' _ .
3163' = VWZW 1!); =\/7TJ6

__ a k _ (2.57)
are. — em? = WE 10* w.- = «was. we k

a

where the c,-’s are defined as before (eq. 42). We now wish to insert (57) into the hamiltonian

(56) for eliminating the gauge fields. Now, however, unlike the one flavor case, we cannot
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use the Fierz transformation for getting only diagonal fermion bi—linears. We can have the

bi—linears diagonal in either color or flavor, but not in both. We choose the former. Thus,

we need to use Halpern’s formulae for many fermion bosonization. Substituting 3 bosonic

field duo, for every fermion 1/)“ we get in particular from (11),

_. - c _ ._
1063 (1 :1: ’75W’ai = {r-‘F Np eXP [t x/W (f ds‘ (Wei - War) :t (War + ¢ai))] , (2-53)

where the F’s are defined by (12).

Using this expression we arrive at the bosonic form of QCD2 with flavor,

N = No+N1

N0 = Nu 235110“)? + gems? + (g) mu(1 — 2 «was (2.59)
2 2

N1 = 53mm X (Zea.- —- a») -- (2c2 1,9 #2 Nu Z ‘2: Km
i,j a iaéj (1)9

X sin V} (f (arm- — 1m; + firm- — iraj) (if _ Mai + ‘f'fij “' ¢aj _ (flail) / lfiai _ film.)
—00

The important contrast to the one flavor result (46) lies in the second term of N1. This

cumbersome looking interaction term is further complicated by its nonlocality.

We shall now try to apply the strong coupling limit to the hamiltonian (59). We have

here a mass term for the fields 2a (1550, — gbja, which makes them very heavy. Hence, as

before, we can set these fields to zero provided that the normal—ordering scale is taken to

be the mass of these fields. So we set
——

9\/fi;‘\/ 1
= __ 1———. 2.60

Let us concentrate on the two flavor case. Then it is convenient to define the field

x? = 2"1/2(¢)1,; — rim), and x = 7%; (,bag. The interaction term then assumes the form,

I=EG2N 7* coma -_ — _ —1N(")+NU) «5" ’
7? G .....,4 X; Xj) ( ) COS 7l'

réj —oo
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where N(2') is the number of fields with color 1: and flavor 1.

The analysis is further complicated by the presence of momenta in the interaction.

Hence we resort to the static approximation which means taking 71' to be zero. Then the

interaction (61) will further force some fields to be zero. To see exactly which, we must find

the minimum of I and substitute the fields which give the minimum, into the hamiltonian.

We can write (61) as,

2

I = V0 + VI Zoos ¢2;(x: — x;) = v0 + 01 (2.62)
M

)3 W?
i

Hence the minimum is obtained when

Zeb/fix? = 0, (2.63)
3'

and the interaction term becomes zero under this condition. The mass term (the last term

of No in eq. (59)) also becomes zero, since

2 cos(2 fiibm') = 2: cos («EEX + fix?) = Re 3W 27'7c Z six/fix;— = 0 (2.54)
z',a s' D 3'No

Hence we are left with a massless hamiltonian for the fields solving (62). This is an

unacceptable result since those fields are not physical. Our result means that there are no

light particles in the spectrum. This is simply wrong.

Hence we conclude that the approximations we have carried are not justified. The

blame, we believe, is on the static approximation that was needed due to the nonlocal nature

of the interaction. This nonlocality is intimately connected with the isospin invariance.

namely, the isospin transformations which are manifest and simple in the fermionic theory,

become complex and nonlocal in the bosonic theory. Once we made the static approximation,

we broke by hand the isospin symmetry.

Thus we see that there is a need for an improved bosonization scheme, one in which

the isospin symmetry remains manifest and local. precisely these preperties are obeyed by



52.5 QCD2 with many flavors 4:2

the non—abelian bosonization discovered by Witten (1984). In the next chapter we address

this question again, showing that the low—lying theory of multi flavor QCD2 contains a rich

spectrum.



Chapter 3

Non Abelian Bosonization and Gauge Theories

53.1 Introduction

Recently, Witten has suggested a new bosonization procedure (1984) that consists of

an improvement over the usual bosonization (Coleman 1975) by being manifestly isospin

invariant. Here we shall return to the gauge models that were treated in chapter 2, applying

on them this technique. We shall see how the non abelian bosonization resolves the problems

previously encountered. This chapter is based on my work (Gepner 1984).

Recently, there was also quite an interest in QC’D elIective low energy theories in four

dimensions. It was suggested by Witten (1983) that bary‘ons can be solitons of such a theory.

The analogous problem in two dimensions is treated here. We start from the lagrangian of

QODg with many fermion flavors in the fundamental representation of color. Then we prove

that indeed such an effective theory is the outcome of the analysis and that it describes

baryons as solitons of that theory.

In order to analyze the resulting bosonic theory, we need to discuss two main issues.

First we need to perform renormal-ordering of operators, which is necessary for showing

that the theory has one mass—scale and for computing this mass scale. Hence we discuss

the regularization and the dimension of operators of this WZ non—linear sigma model. We

also need to preform a semi—classical quantization in order to get the isospin content and

approximate masses. We show that the representations that can possibly appear are all

those having a fixed set of quantum numbers determined by the classical solution. We show

also that those quantum numbers can be obtained from Witten’s expression for the currents.

Since these two issues are outside of our main course, they are treated in the appendices.
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We apply our methods to QED2 with mass as an interesting example. The case of two

flavors was previously discussed in section (2.3), using the old bosonization scheme, following

Coleman (1975). We reach an agreement with his results and this provides an important

check for our methods. In addition, we are able to generalize his results to more than two

flavors.

The abelian bosonization was shown in chapter 2 to be a very useful tool for analyzing

gauge models in two dimensions. In particular, the massive Schwinger model (section 1.3)

and QODg with one flavor (section 1.4) were treated and the spectrum of the theories was

found in the strong coupling limit.

On the other hand, bosonization has been less successful when more than one flavor

was included (Amati et al. 1981, Cohen et al. 1983). In section (2.5) QO'D2 with flavor was

bosonized, resulting in a non local hamiltonian. The isospin invariance was hidden inside a

complicated interaction and an attempt to analyze it using static approximation ended with

prod ucing unacceptable results. Here we shall address this problem again using Witten’s

non abelian bosonization scheme.

This chapter is organized in analogy to chapter 2. In Section 1 we discuss generalities

of the non abelian bosonization.

In section 2 we treat the multi—flavor massive Schwinger model and it is shown that

there are two low—lying multiplets. One is an iso—singlet, and the other is in the adjoint of

(EU(N) Their masses are given and for two flavors they reasonably agree with the results

of Coleman (section 2.3), who treated the two flavor case using the abelian bosonization. As

a side result we are able to show that an SU(2) WZ theory with mass term is equivalent to

a sine—gordon theory with )6 = \/2—7r.

In Section 3 QOD with many flavors is analyzed and we find the spectrum in the strong

coupling limit for two flavors. We show that the low lying theory is exactly described by a

WZ eflective lagrangian, analogous to the four dimensional one that was proposed to describe

(301).; on semi—phenomenological grounds (Witten 1983). Like the four dimensional case, the
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baryons appear as a soliton of the theory. The spectrum that we find in the low lying theory,

for two flavors, is closely parallel to the results 01' Steinhardt (1980), who investigated the

one flavor theory. Like him, we show that the spectrum consists of a baryon family (soliton)

and a baryonium family (breather). However, here, unlike the one flavor case, an interesting

isospin structure is revealed.

Using semi—classical methods, the isospin of the baryon was shown to be Nc/2—the

totally symmetric isospin representation. Namely, only the decuplet exists for SU(3)f , as

we expect in two dimensions from naive quark model arguments. In addition, we expect

iso—rotationally excited baryons, having isospin higher than Nc /2 by some integer.

A breather solution shown to exist in our theory, describes a baryonium—a baryon

anti—baryon state, (as the breather of the sine-gordon theory describes a soliton anti—soliton

state). The lowest baryonium is an iso—singlet. It is excited to give more particles, in two

ways. 1) ”radial” excitations, found by the Bohr—Sommerl‘eld quantization condition. They

have the same isospin but higher masses. 2) [so—rotational excitations. They give higher

isospin baryoniums, having an arbitrary integer isospin. The hierarchy of the baryoniums is,

in fact, analogous to the levels of the hydrogen atom, having a principal ”radial” quantum

number and isospin quantum numbers (angular momentum). Approximate masses were

given for these particles.

We postpone to the appendices two issues concerned with the analysis of the resulting

bosonic theories. In appendix A questions of regularization and renormal—ordering are ad-

dressed. In appendix B the semi classical quantization of the resulting bosonic lagrangians

is treated.

The importance of the work presented in this chapter may lie in various directions.

First, many of the methods developed in the appendices will enable further application

of non abelian bosonization for the investigation of two dimensional models. These can

also describe four dimensional phenomena, e.g. the Callan—Rubakov eflect (Callan 1982,

Rubakov 1931; 1982). We should mention that the study of two dimensional WZ theories
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is not yet completed, and our results may assist it; in particular—the equivalence we have

found between an SU(2) WZ theory and a sine—gordon theory.

The spectrum of QCDg, found by us, may be instructive concerning the validity of

composite models of quarks and leptons. It is vital for these models to find massless fermions

in a confined strongly interacting gauge theory. Exactly such fermions were found here. In

this context, it may be interesting to study how ’t Hooft consistency condition is satisfied

here, as it may teach us more about this important model building tool.

Finally, our results on QOD2 provide an important support for Wess—Zumino current

algebra theories as candidates to describe the dynamics of QCD. We have found a direct link

between these theories and QODg. It may encourage us to think that such a link exists in

four dimensions as well; or, at least, that these theories should be taken even more seriously,

than they had already been, for the purpose of understanding the strong interaction.

53.2 The non abelian bosonization

In section 2.6 we have treated Q0D2 with flavor using the abelian bosonization. We

than had to use IIalpern’s expressions for the fermion bi—linears. Those are cumbersome and

nonlocal and hence prevented us from analysing the strong coupling regime of the theory.

This is a general drawback of the abelian bosonization. The other intimately related problem

is the spoiling of the manifest isospin invariance. This invariance, which is a clear and simple

U(N) group for the fermion lagrangian, becomes complex and non local for the equivalent

bosonic theory.

This was seen in section (2.3) where QED2 with two flavors was treated. Luckily, in

the two—flavor case we did not need to use non diagonal fermion bi—linears. Still, the isospin

symmetry was buried inside the dynamics instead of being manifest. For more than two

flavors we again encounter the problem of nonlocal expressions.

Thus comes the need for an improved bosonization scheme, one in which a many fermion

theory would be mapped into a many boson theory that would have a manifest isospin
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symmetry and would be simple enough to be useful.

This problem was solved by Witten (1984). In the following we describe the bosonization

for Dirac fermions, instead of Majorana, since this is what we shall later need. Take a theory

of n Dirac fermions (massless and free)

L = “hi/71b]: (3-1)

The internal symmetry group of this lagrangian is G = 3U(NlL X SU(N)R X U(1)V

(We disregard the U(1)A-) Let us define a bosonic multiplet 9 that takes its values in U(N)

and transforms under 3U(N) X 5U(N) in the so called non linear realization and is a singlet

of U(1)V

g _+ AgB"1 A e ‘SU(N)L , B e SU(N)R (3.2)

Then Witten shows that the theory (1) is equivalent to a bosonic non linear sigma model

given by the lagrangian

1
“as 2r(aug)(aur1)+nr(g) (3.3)

with )s = fl and n = 1. I‘ is a two dimensional Wess—Zumino term

1 —fl—-13§-—139F=EE Bd3yc‘ikng 1 'g ,—:g —— (3.4)

B is an extension of our space time to a three dimensional ball whose boundary is space

time. {7 is an extension of g to that space. I‘ is a local lagrangian in the usual meaning since

the integrand can be locally written as a total divergence and then as a surface integral

using Gauss theorem.

Then the following dictionary of bosonization is given

.. . . in _
133 = «NEW. = 5;;(9 10+9)s5 (3-5)

z”_ it '__i_n .—1_,J_.’—¢_¢’_—— 2733—9 9 L, (3-3)
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Where we use the light cone variables, 0:1: = 00 j; 01; .15: = Jo j; J1.

A mass bi—linear is identified by

7.03.! $5 = Kaila U”)

K is a regularization dependant constant. For Majorana fermions one must take 9 in 0(N)

and a factor of half in (3)

We wish to emphasize one major dilIerence between the U(N) and the 0(N) bosoniza—

tions. This arises because U(N) is not a simple group. Hence the U(l) part should be treated

separately e.g. when we wish to compute various commutators as Witten does for 0(N).

Then one can repeat Witten’s computation of the commutators for the SU(N) part, and for

the U(l) part. use canonical commutators, and by that prove the equivalence of the Dirac

fermions theory and the U(N) WZ model. It is evident that one should then disregard the

U(1)A symmetry. Hence the Green functions of the bosonic theory would correspond to the

Green functions of the fermionic theory regularized as to conserve SU(N)L X SU(N)R X

U(1)V. This was originally discussed using path integral methods by Di—Vecchia et a1. and

Gonzales et a1. (1984). They show that the SU(N) vector part is not conserved in Green’s

functions involving two or more currents. It was argued by Y. Frishman (1984) that one

can still classify states using this symmetry, because than we need only to use the current

bracketed between the states in question.

We shall now return to the models treated in chapter 2. It will be shown how using

non—abelian bosonization cures the previously mentioned problems. The low lying spectrum

of this theories will be thus derived.

53.3 Electro Dynamics With Flavor

We shall return here to the electro dynamics model with flavor, using the non abelian
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bosonization. The lagrangian is

N
1 My — o

L=—ZFm/F + 2 :¢€(3fl_e/4_mlwi (3'8)
i=1

This model has a SU(N) symmetry. The case of N = 2 was treated in section (2.4) (Coleman

1975). Using the abelian bosonization scheme it was shown that the low lying spectrum of

the theory consists of one iso—singlet and one iso—triplet of particles. Their masses were also

given, and they obey

MI=0 = fiMI=1 (3.9)

We shall analyze the lagrangian (8) using the non abelian bosonization. We show that

for general N the spectrum contains one singlet particle and one particle multiplet in the

adjoint of 5U(N) We shall also give the semi—classical masses. In the case of N = 2 we

get an agreement with Coleman. This consists of an important check of our formalism.

In order to bosonize the lagrangian we must first cast it into a hamiltonian form and

eliminate the gauge fields. This is done exactly as in section (2.4). For the sake of convenience

we repeat the main steps. We choose the gauge A1 = 0, then the equation of motion for A0

becomes a constraint:

3o = 42: : 17;,- «p; := —cJo (3.10)
I'

The solution is

__ —2A0 -— —661 JO —- Fa: — G (3.11)

(F and G are some constants of integration). or

F01 = earlJo + F (3.12)

F is physical and should be interpreted as background electric field. The hamiltonian is

u = 2 1135037101 + mm +-;-F021 (3.13)



53.3 Electro Dynamics With Flavor 50

We are now ready to proceed with the non abelian bosonization. Taking g in U(N), we have

for J0

J0 = 3—0117; det g (3.14)
27r

Substituting that into (12) we get

isF01 = —ln det g + F (3.15)
2a

For convenience let us separate g into U(l) X 5U(N)

g = eiW/fi/Na a E SU(N) (3.10)

and go is a scalar field. Also define a 9-angle by 0 = 27rF/e. Then, substituting equation

(15) into the hamiltonian, we get the bosonized form1

__ 1 2 1 2 1 32N 0 2 tsp 41r/N)I—Ewp+§(31rp) +fifrcc(3)+'2"’7'r— (Shh/Ev") +mcpx/fiNfl(Re Tr e \/ s)

(3.17)
Let us now assume the strong coupling limit 6 > m. Then tp becomes a heavy field with

the mass

m, as e Viv (3.18)
\/7r

and mp 3> m. All the diagrams that involve an exchange of the heavy tp field (fig. 2a, in

page 32) would contain a propagator and hence would be smaller by powers of m/mp. The

only exception to that are diagrams in which the (,0 field is emitted and absorbed at the

same vertex (fig. 2b, in page 32). This diagrams would contain a factor of (Mm/mp).

“I It can be seen that the harniltonian that corresponds to the WZ theory (A.1) is given by

A2
J+J+ + J_J_) — m - Re Tr(g)

Then it is also seen that computing the classical energy for a diagonal classical solution can be done
either using this hamiltonian, or by naively inserting it into the lagrangian (A.l) and computing
as for an abelian group.
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Diagrams like fig. 3b can be eliminated by normal ordering with respect to the mass of

the heavy fields. Actually, since we are dealing with an interacting theory, normal—ordering

cannot be defined in the usual sense. For a discussion of the regularization and related

matters see appendix A. Hence we can eliminate go from the hamiltonian by setting (,0 =

0/2 JEN, and p. = mg. Then we get for the low lying hamiltonian,

)( == )(free(3) + mcux/I—V—NuRe cam/N1? s (3.19)

and [1. = 6 fl. This looks like U(N) fermion theory with mass and the extra constraint

dct(U) = 1. In order to get the mass scale of this theory we have to do renormal—ordering.

This is done using equations (A.27) and (A33)

then writing

mex/N pN,,(Re Tr s) = m2 Nm(Re Tr s) (3.21)

and solving for m we get:

m = (me \/1_V_ ul/N)N/N+l (3.22)

Then (19) can be written with only one mass scale m

u = Jame) + m2 \/2N,1.,(Re e‘G/NTr s) (3.23)

In the case of N = 2, which is the case that Coleman treats, we can further simplify (23).

This is because the trace of an SU(N) matrix is always real. Then we get

I! = N,,,,(s) + m’2Nm.Re Tr s (3.24)

and

_ 2/3
m' = (V2 me p1/2cosg) (3.25)
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Note, the important fact that the only way the 0 influences the two flavor theory, is by

changing the overall mass scale—0 can, in fact, be ignored. This is in radical contrast to the

one flavor theory (Coleman et al. 1975, Coleman 1976). We also expect 6 to be important

for more than two flavors.

For the same theory (8) with N = 2, we got in section (2.4) the following hamiltonian

for the low lying spectrum

)1 = $73 + %(31tp)2 + (m1)2Nm1cos («Eh») (3.26)

21 .—

m1 = (2cmp%cos§0)3 (3.27)

and now we see that the mass scale m1 and m’ coincide apart from a constant factor

, 1m1 = m 23 (3.28)

So we agree with Coleman about the mass scales.

Now we would like to know what particles are found in the lagrangian (23), and what

are their quantum numbers. This will be done using semi—classical methods. For a detailed

discussion of the semi—classical methods we use here see appendix B.

First we observe that all the particles must have zero quark number (mesons, if you

wish). From semi—classical arguments the quark number is

= {Em det(s) °° = 0 (3.29)
"'00

The next step is to carry out the semi—classical quantization. The first thing we need to

know is the classical minima of the hamiltonian (23). Say so minimizes V. Then we can

diagonalize so .

ta],
’0so = diag(e .., 65“") Z a,- = 27rr (3.30)

(r is some integer.) The condition for extremum then becomes— 3% = %l{- = 0; where V

is given by

V(a,-, )x) = Z: cos (a,- + 1%) + )\(a,- — 27W) (3.31)
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()x is a Lagrange multiplier). The global minimum is then found to be for 0:.- = 2am,- (the

mg’s are integers), for 0 between —7r and 7r. (If 0 is outside the range we can bring it in

by simultaneously shifting 0 ——> 0 — 27d: and s —+ s - e2i7rk/N , which leaves the hamiltonian

unchanged. This shows that physics is 27r—periodie in 0). Now, due to the constraint det(s) =

1, the simplest solitonic solution we can have is

3(3) = diag(eia(z), e-ialxl, 1, . . .1) (3.32)

and a(—-—oo) = 0; a(oo) = 27r.

Interestingly, for this particular solution, 0 is again irrelevant even for more than two

flavors. 0 can be absorbed in the overall mass scale m as in the two flavor case—define m’ =

77:. (cos 1%)N/(N+1). However, there are other classical solutions, for which the influence of 0

is far less trivial (for N > 3).

The quantum numbers of this state can be obtained using (B.7) (with n = 1). They

agree with the quantum numbers of a quark—antiquark state, §1q2. Hence the possible

representations coming from semi—classical quantization are in the adjoint of SU(N) or

higher representations that contains states with the adjoint quantum numbers. We believe

these higher representations to be unstable since here n = 1, and apart from different

groups, this is the free fermion case. (This can also be seen from Coleman’s work, where

there are no more stable particles for the sine—gordon theory he obtains.) There would be

a breather solution if in (32) we replace a(2:) by Mrs, t), which is a breather solution of the

sine—gordon. Then it is easily seen that this solution is a singlet. For N = 2 we get isospin

zero and one, in agreement with Coleman.

We would now like to obtain an estimate for the masses of these states. This is done

by simply computing the classical energy of those solutions. The result for the soliton mass

is (for any N)
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Computing the classical energy of the soliton of the theory (26), which for N = 2 is

equivalent to our theory (24), we get

(00‘) = .SLni = 2-1/0M 3.34Va; 8 ( )

This is a very reasonable agreement.

In order to get the mass of the breather we need to use Bohr—Sommerfeld quantization

formula, much in analogy to the treatment of the sine-gordon breather. (See, for example,

Coleman 1975.) We get (for any N)

M,,,,,,,,, = 234,337; (’18?) k = 1, 2,3 (3.35)

Since the I0 = 1 breather is supposed to be the I = 0 state of Coleman, we see that we have

MI=0
MI=1

= 2m (g) as 0.700 (3.30)

Comparing this with equation (9), we see that we have about half of the expected ratio. We

attribute this discrepancy to higher order quantum eiIects that we have not included in our

computation.

Finally, we would like to include the iso—rotational energy as a correction to the classical

masses. We shall do that in the case of N = 2. Then equation (B.6) gives us the iso—

rotational energy of the soliton if we take I = cg = 1. Computing the moment of. inertia

M we get

32 1—-3 ——- 3.37
3H2 Mg ( )

4 00

M = —-§/ 37111.20: dz =
)\ -00

Hence, the iso—rotational energy of the soliton is

1 37r2
EfiflO) = m = WM, R5 0.46M, (3.38)

Including this energy in the soliton mass (33) will give us a discrepancy of about 30% in

(34), which is reasonable. Also it will further decrease the mass ratio (36), worsening our

agreement with Coleman by about 30%.
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§3.4 (3002 with flavor

We now wish to discuss QC’D in two dimensions. The one flavor theory was treated

using the abelian bosonization in section (2.4). For one flavor, the low lying spectrum of

the theory was obtained and it was shown to include a baryon and baryoniums. Analyzing

the multi—flavor theory using these methods (section 2.5) ran into difiiculties due to the non

locality and complexity of the resulting bosonized hamiltonian. Also the manifest isospin

invariance was hidden in the bosonic language. These are exactly the problems that the non

abelian bosonization comes to solve.

Applying it here we shall obtain the low lying spectrum of QODQ with flavor. Our main

result is showing that a WZ type eflective lagrangian arises dynamically for QCD in two

dimensions. We shall further analyze the spectrum of this WZ lagrangian using the methods

described in the appendices. We show that a baryon exists as a soliton of this theory much

in the same way as was phenomenologically suggested for Q0D4 (Witten 1983).

The first step in the analysis is to choose a gauge and to eliminate the gauge fields.

This is done exactly as in section (2.5). For convenience we repeat it here. The hamiltonian

of QO'D2 with flavor is

No . NJ. . . . _ - '1
J! = Z {92(E;)2 + E ta'rmwgal —Ag)¢a,- +m1fia'1pajfigj (3.39)

a=1

(73,3' are color indices; on is a flavor index; N6 and Nf are the numbers of colors and flavors

respectively.)

We assume that all the fermions have the same mass. Matrix notation for the gauge

fields is also used

E} = $0“)a (3.40)
We have to supplement (39) with Gauss law as a constraint

. . . 1 . 1 .
M} = zlA. E];- + -2-(¢"‘“¢a; - ZNgaiviakvak) (3.41)

k
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(We assume no summation over repeated indices in this section.) As a gauge condition we

take Baluni’s gauge

112:0; Eg=o for £7“: (3.42)

Using Gauss low and the gauge condition we can eliminate the gauge fields. Then

316’; = fizwa‘ea. (3-43)
or

—i(€é — chi/1:? = V}: a¢lak¢ai for 1: 75 ’0 (3-44)

with the e’s defined by

2fiE§ = e,——l—Ze,, (3.45)
N, k

The next step is to bosonize the hamiltonian. We have in total Nc X Nf fermions so

we apparently need to take U(Nc X Nf). In fact we need a much smaller group, namely,

U(Nf)N°. Specifically, the only currents necessary are those that are diagonal in color. So

we choose NC matrices of U(Nf).

g,- E U(Nf) i= 1, 2,. . . , Nc (3.46)

Then

. . ‘8 _

(Li-lap = ¢Laz¢+fii = Ely,- 13+9iiafl (3-47)

(J1)... = wla‘m. = —-23;(a_g.- 9:1)... (3.48)
In order to translate (43) we need

2 WW..- = m) = 2—2" (.3131...) (3.49)
We can then write (43) as

013,- : €611}- ln 9,- (3.50)2./
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or

1i
'=—-=1‘r tn '+0' 3.5].e, 2 V“ 9: s ( )

The 05’s are constants of integration which express background color electric fields. How-

ever, unlike the ease of U(1), here they can be set to zero (Witten 1979).

From (44) we get
fade ,

A? = will—i“: for 13 75 k (3.52)
Tr In gggk

Inserting (52) into (39), making a Fierz transformation and, using the bosonization formula

for the fermion bi—linears, we arrive at

N = ”fr-6491') + ”£12,490 (3'53)

2 Tr g-n
E 3 _ 2 I

”int-(9") = —§-2—7-n (Tr Zn 9‘9]. 1) — ”AzfiT—Lq'l: E MCA. Nf Tr 9" (3.54)

is c n 9‘9: .-
This is the bosonized version of QCD2 with flavor.

To get the low lying spectrum, let us look on the strong coupling limit where g/m > 1.

Then define the potential V by

TI“ Gigi-1——————— 3.55Tr. m 9.9;1 ( )
'12

. _ 2
V(g€) = L,_—32:2_Nc (Tr In gggj 1) — «A2

3.:

It is convenient to separate 9,- from its U(1) part

a.- = sis/“7W...- u.- 6 sum.) e‘2~/"/N“°* e um (3.56)

Now V will take the more transparent form

2 ififi e‘Wr/NflW'PHIg-j
V -,u-= _ ._ - + __ 3.57(99: a) ét’SrrNcop' 991 2\/Nf ‘Pi—‘Pj ( )

where Kg,- = {Il'(u,-u;'1). It can be seen that K5,- is hermitian, Kl = K. For N; = 2,

ICE-,- is real as it is the trace of an SU(2) matrix. In order for the potential V to be free of
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singularity we need exactly this property of Kg. So from now on we shall concentrate on

the case of N)- = 2. Then we can write V as

921V; \/—7FA2 31:17. 2 W/Nf (905—995)

1'"! éarTV—c _ “—
h:

V = — If;- (3.58)
2\/Nf Sci—903°(«or - 90,-)2

The absolute minimum of this potential when varied on go; is at (p,— = 90,- for all i and 3'.

Then V becomes,
_ 2

V = —— (/71): SK}; (3'59)
2 ~/Nf is

Now we should minimize V with respect to the ui’s. Remembering then that Il'(u,-u.j_l) g

Nf, where equality holds only for u,- = uj, we get for the minimum of V,

u,- = 11,- = u

{ (3.60)
so.- = 905 = 90

Then we can insert (60) into the hamiltonian (54) and V drops out. The result is

N = NcNJ-redg) + Ncmc N; ANATI' g (3.61)

and, g E U(NC). The lagrangian corresponding to (01) is

L = %Il'(0pg)(0ug_l) + NcI‘ — Nam A N, NAT:- 9 (3.62)

By reasons similar to those in section 2 we also have to take A equal to the the mass of the

heavy fields. Their mass is given by

gN/Nf
. 3Mpm 27rNc (36)

Only then can we ignore a diagram like fig. 3b. We see that (62) is a WZ like effective low

energy lagrangian of the kind proposed for Q01) in four dimensions (Witten 1983). The

rest of this section will be devoted to the analysis of this lagrangian. We can rewrite (62)
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using our renormal—ordering prescription with one mass scale by computing the anomalous

dimension of 9. From (A23) we can can compute for the SU(N;) part

2_
A(u)= 201 _—__Nf__1 _02+n N;(Nc+Nf)

For the U(1) part we get from (A18)

A (crews/Now) = N 1N,
O

Summing up we get
NfZ—l 1

M9) = N,(N., + N,) + NcN,
Then solving,

2 / M Ap. NpTrg = NcmA N, NAT:- 9 = Nc‘ Nf (f) NuTr 9

(Eq. A.l7 was used), the mass scale of the theory, )1. is seen to be

,. ___ (mama-AW”)
Then the lagrangian (62) becomes

_ Na —1 2L — Emma,” )+ NcI‘ —- )1. NuRe Tr 9

We see that p is the only mass scale of the low lying theory.

(3.64)

(3.65)

(3.66)

(3.67)

(3.66)

(3.69)

From the semi—classical analysis of section 1 we know what to expect for the Spectrum

of this lagrangian. A soliton that appears in the theory is given by (B.1). Using (B.3) we

realize that it has a quark number equal Nc. Defining the baryon number of a quark as

l/Nc, we get for the soliton a baryon number one—the soliton is a baryon. Using (B.5) we

see that this baryon has an isospin NC/2. It is fully symmetric in the isospin wave function,

as we would expect from quark model arguments (see section 1). The soliton mass can be

obtained by computing the classical energy and the iso—rotational energy. The result is

1M3 = i—Mp V NC
\/7r

(3.70)
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This result becomes exact for NC large enough. There would also be a baryoniums family

given by the breather solution (B.29). These particles are mesons (no baryonic charge ) and

have isospin 0,1,2,... .

To get the masses of the breathers we can use the Bohr—Sommerfeld quantization for-

mula as in section 2. Then we get in fact the same result as for the sine gordon breather

(Coleman 1975),
2

Managua,” = 2Mosin (431;) = 2M,sin (£579 (3.71)

and It = 1,2,3,...,2Nc— 1.

It is surprising that we get here the same number of breathers and an identical mass formula

for them (except of the mass parameter) as Steinhardt who treated the one flavor case (see

section 2.4).

We can compute the iso—rotational energy of the soliton using (B.21) and (B26), and

by identifying cg = Nc/Z and n = NC. We get for the moment of inertia M

NC °° 4N3= _ = 3.7M 27r/_oo(1 cosa)d:c 7r2M, ( 2)

And the iso—rotational energy for the lowest soliton (I = No/2) is

Elma—LII 1—“=—IYi’—= "2 M 3732M((+) “9) 4M 1c ' (')
For NC = 3 we get Eli”) as 0.21M., or about 20% increase in the soliton mass. The

iso-rotational energy of the particles with higher isospin, coming from the iso—rotationally

excited soliton, is given by (B20). Part of this particles may be stable as they will be

energetically forbidden to decay.



Appendices

Appendix A: Regularization and Renormal—Ordering

We now wish to consider the questions relating to the regularization of our sigma

lagrangian with a mass term.

1
“a?women-1) +nrs) +§mmg + 9-1) (A1)

We assume that A2 = 11,,1 , but n is not necessarily 1. Let us .assume first that m is equal

to zero. For n = 1 this theory describes massless free fermions and thus it is conformally

invariant and the beta function must also vanish. It is also known that, for n 75 1, this theory

remains conformally invariant (Witten 1984), even though the theory does not describe

massless free fermions. The case m = 0, n # 1, describes a theory of n massless fermions

constrained to move together. But if m 75 0, then this is a non trivial theory, the spectrum

of which occupy us in appendix B.

For m = 0 we are interested in computing Green functions such as

G(311$21°H fin) = (9(31)9($2)-~ 9(zr)9($r+1)l--- 9(a)") (11-2)

by using perturbation theory. First, we define g = czp(i)\go“T“), where T“ are generators

of U(N), so that Tr(T‘" Tb) = 26“”. Now we can compute in perturbation theory the Green

functions and divert the infrared divergencies by assuming that 90“ has a small mass m and
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in the end let m go to zero. We expand the lagrangian in powers of )\ and get

L = Zéwwa)? + 002) (A3)
(I.

These higher orders in )\ we regard as a perturbation, and compute in the framework

of perturbation theory. This procedure is analogous to that used by Coleman (1975) for

computing

G($1,$2,. . . ’55“) = (: 351919051) : : e£fi2p(z2) : . . . :eiflnlp(3n) :) (14.4)

for a free massless scalar theory (namely, assuming a mass m and letting it go to zero in

the end of the computation).

Now, for m 75 0 we are interested in how 172. gets renormalized. An equivalent question

is how the operator 9 gets renormalized in the massless theory. We shall propose the

following renormalization prescription. Denote by |0m) the vacuum which is annihilated

by the negative frequency part of the fields 90“ decomposed according to the mass m

901 = / $0.264“ (14.5)
\/271‘ Vii/Cg .

And go‘iIOm) = 0, defines this state. Now we compute with momentum cutoff

(”mlgijlum) = Z (-3-) 561' (14-3)

(This is the form since 9 is naively dimensionless.) Define the regularized g by

(OmINm(9)|0ml = 1 (fl-7)

01'

Nm(9) = Z"1 (-23-) a (A.8)

The anomalous dimension of g is defined as usual by

A(g) = — ma—znw) (A.9)
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Thus we can use the usual renormalization group reasoning to get the dependance of Nm(g)

on m. Define

(oul(9)l0ul = flm mail) (A10)

Then we know that

mu, "MHZ (g) = (OplgIOp) (A.11)
and is independent of m. Thus applying mvofi on it we get

0 0 Ammflu, m, A) + min—2,1” z (E) _ 0 (Am)

Taking A -+ co and defining,

9 (it?) = A imoo f0!" m: A) (A°13)

we reach

m__. _—. A.14[am A] you/m) o ( )
The solution to this equation is

A9(u/m) = (f?) (A.15)
or

(OuInlou) = (if (A.16)
m

thus

pANpg = mAn (A.17)

This is the desired ”ronormal—order” formula, to be compared with Coleman’s formula for

scalar field.

. 2 4 .Nme’fl'P = (1%)” / 1rWe'd!" (A.18)



§3.4 Appendix A: Regularisation and Renormal—Ordering B4:

Here we have tacitly assumed that the operator 9 does not mix with other operators

upon regularization, or that the theory (A.1) is renormaliaable. For n 75 1 this is not obvious

but can be proved using the conformal invariance of the theory with m = 0 (Zamolodchikov

1984)

In what follows we shall need the anomalous dimension of g in order to preform renormal

ordering. For n = 1 and G = 5U(N) we know that the dimension is

A(g) = 1 — ‘11? (A.19)

This is because for g 6 SU(N) and 1,0 a Dirac fermion we have

view—,- = c 6ipV4fi/N9ej (44.20)

Using Coleman’s formula for the dimension of the scalar operator gives us

A(eiP\/4fl'/N) =fl._1_=_1_ (A_21)

and since go is decoupled from g the anomalous dimension is simply additive, and we get

(A19).

We can also quite easily compute the dimension of g for 1: large enough, by simply

computing the lowest order diagram for the vacuum expectation of g, which is given by

fig.3.

Fig. 3

3‘5

The result is

A(g) (A22)=fi
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Where 0'1 is defined by 01 -I = TaT“.

For SU(N) we have 01 = 2(N2 — 1)/N. While this value must be exact for n —+ 00, for

n = 1 it does not give the value expected from (A.19). A dimension that would be consistent

with both (A.22) and (A.19), could look like

(N2 — 1)/N A.
n+N ( 23)N9) =

In fact, it was shown by Al. Zamolodchikov (1984) that this value is exact, using the

conformal invariance of the theory. It was also shown by him that the general expression

for the dimension of g, for any group G, is

0'1 A.
02 + n ( 24)AU) =

02 is the second Casimir of the adjoint, 026a,; == fabcfdbc . (For 0(N) we need to take

n = 1/ 2 to get A(g) = 1, due to the extra factor of 1/ 2 that we have in the lagrangia‘n (3)

for Majorana fermions).

Now, in (A.19) both sides must be regularized. We use our previously defined renormal-

ization prescription (A.7). From dimensional arguments, the constant c appearing in (1120)

must be proportional to the renormalization mass. Then we get

$210,... = Km : efipVfl/N : Nm(g) (A25)

IIere K is a constant which can depend on N. Using the definition of normal-ordering

made above, we wish to determine this constant. For this purpose it is convenient to deter-

mine first the value of the following Green function of the massless theory.

(1: m
n, —> 0 m2Al0mlT nii($) ngkloilom) (11.26)G£k($) = 7

From renormalization group considerations similar to those we had before, we know that

G(x) behaves like

Gilda) = {Grimm—2A“) (11.27)
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Computing the constant K is not a simple task and we shall have to resort to perturbation

theory and some amount of guess work. Since we have here A2 = 47r/n, a perturbative

expansion in )\ is sensible when n is large enough. Obviously we are mainly interested in

the case n=1. The lowest order diagram for 0(3) is given by flg.4 .

Fig. 4

— — —® ®— — —
3s an

The value of which is

00(23) = —
'6 a . .

£1%)—'—J"5ln(mc:c) = — 02'3"“ In(mcz) (A28)

(c is a mathematical constant related to Euler constant.) The coeflicient looks like the lowest

order of

02
01 + n2A(9) = (A29)

Thus the full answer is likely to be

e—2A(a)ln(mcz) = (mam)—2A(9) (14.30)

01'

Gil: = (“mi—2A(a)5£k (44.31)

This argument is not fully rigorous even for a very large 11, since we have avoided the

question of interchanging the small m and the large n limits. The fermion equivalent to

G(x) for U(N) and n = 1 is

as) = (T = v.(1:”5)¢. = (x) = v. (1 if”) a = (0)) = 5'53— (A32)



37 Appendices §3A

Thus we get

K = c JN (A33)

Appendix B: Quantum Numbers and Semi—Classical Quantization

As mentioned earlier the lagrangian (A.1) describes a free massive fermion theory for

n = 1 and G = 0(N) or U(N) However, it becomes non trivial for n 75 1, or for different

groups. Then it describes an n fermion theory with non trivial interaction. In what follows

we need the spectrum of that theory. We suspect that this is an exactly integrable model,

but this is yet to be proved. (For U(1) this theory reduces to a non trivial (,6 # 2V?)

sine—gordon which is known as integrable.) So we are forced to make the analysis in the

framework of semi—classical quantization. This will give us the possible representations of

the particles of the theory for any n and G, and estimates for their masses which are exact

for 17. large enough. The first step is to pick up an anzats for a classical solution. We shall

start by limiting ourselves to U(N) Then a possible classical solution is

(3(a) = diag(c"la(z),1, 1, . . . , 1) (3.1)

(By “diag” we mean the diagonal matrix having these values in the diagonal.) 02(3) obeys

the classical sine--gordon equation

n I, a
_ 0 =0 8.247ft: +m sma ( )

The finite energy condition for the hamiltonian, derived from the lagrangian (Al), implies

that Tr(g) is maximal or that a(:c) ‘= 2am and m E Z . Because of our experience with the

sine—gordon equation, we choose a(—oo) = 0, a(oo) = 27r. We expect this to be a stable

particle, the soliton of this theory. It is simple to compute some of the quantum numbers

of this soliton using the expressions for the currents. The quark number current is

in , _
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So the quark number is

in m 0000 00

B = [#00 Bods: = fif—oo 61a? in g)d:c = filr in g _00 (BA)

Computing for (3(a) we got a quark number n for the soliton. Take U(2) for simplicity.

Then we can compute in a similar fashion the I3 of Q(:c).

T3 = f 00 Tr(03Q_101Q)dzc =3 (3.5)
—00

So the isospin of the soliton must be at least n/2.

I =g+ k k 2 0 integer (3.6)

The reason that I1, I2 can not be computed reliably this way, is that using the semi-classical

method we compute only expectation values of operators bracketed between the states in

question. So we can get the eigenvalues only for operators, for which the classical solution

corresponds to an eigenvector. This method can also be applied quite simply to other groups.

We see that the general rule is that only representations, which contain a state with the

appropriate set of quantum numbers, can appear. For U(N) we can get in this way all the

diagonal charges by simply computing

I“ = 1’11»- Tat(z) °° (3.7)
27F —00

T“ is diagonal. Then the possible representations that can appear when quantizing Q(z) are

those that contain a state with the set of quantum numbers I“.

Now we will approach this problem in a totally dilIerent way. We shall make a semi—

classical quantization of the zero modes. Our reason for this is two fold. First, this will

consist of a check of our formalism, and it will also give us semi—classical mass correc-

tions. We wish to carry out a semi—classical quantization around the solution (2(a) for the

lagrangian (AJ).

The usual procedure for semi—classical quantization is to define

a = x‘1(i)(:.’(=l=)/1(t)_1 (3-8)
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and to compute a lagrangian for A(t) by substituting (B.8) into the lagrangian (11.1). For

the sake of simplicity let us limit ourselves to the case of U(2) Then the soliton solution is

9(3) = diag (emit), 1) (3.9)

and, o:(—oo) = 0; 01(00) = 21r. We can now show that the lagrangian for A(t) describes

a particle moving on a two—sphere 32 with a monopole in the center of it. First, it is

immediately seen that the lagrangian must possess the following symmetries

11(1) —. A(t)B(t) ; 13(1) 6 H (3.10)

4(1) —+ 01-11(1) ; o e G’ (3.11)

The symmetry (B.10) arises because it leaves 9 unchanged in (3.8). It is a gauge like

symmetry and it means that A(t) takes its values in G/II , or in this case in SU(2)/U(1) R5

53 , a two sphere. The symmetry (B.11) is due to the U(2) vector symmetry of the lagrangian

(11.1), g -+ 090—1. It means that the lagrangian for A(t) has a global G symmetry. In the

U(2) case this is a particle moving on a two sphere with a spherical symmetry. We represent

A(t) 6 317(2) by

A(t) = ao(t) + £3 1 'a’ (t) (3.12)

and a3 + E12 = 1.

Then making the rotation A(t) —+ A(0)'1A(t), and considering t to be small, we can assume

that an m 1, a a: 0. Then we easily substitute (13.8) into (A.1). Computing for the kinetic

term is straightforward and gives

Trenaxata-l) = 2HA“A.QHA'1A, 9“] (813)

Then substituting A'1 A = El - 3‘ into (13.13), we get

L1 = é—Mm? + (1%) (13.14)
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with
n C0

M (1 — cosa)da: (3.15)= Er- -w

For the VVess—Zumino term it is convenient to use the polar coordinates form, available for

SU(2) (Witten 1984),

I‘ = if (122: ¢:(x)az'n21/)(w)s£n0(z)e””(6u¢)(c9y0) (3.16)

where (4150,95) are polar angles describing the three sphere which is SU(2), its Cartesian

coordinates are (ao,a1,a2,a3). Then Q would correspond to the curve (o:(z)/2, 1r/ 2,7r/ 2)

and 9 would be

or. 2:) 7r 7r
g—(T,—2——a2,-2—+ 01) (3.17)

(We need to keep only the first order in 0. since we assumed it is small.) Then we get for I‘

_ 1 2 7r - 2 10 1d_“ _ £93 __ f .I‘ — Ff d :c(§+ a1)sm (ct/2) e (2 dm)( dt ) — dtLg (3.18)

Where L2 is (up to total time derivatives)

1 . .
L2 = 1(6102 - a2 (11) (3-19)

Hence the full lagrangian is

1L:—2
. . 1 . .

111(03 + G3) + 1(61 (12 - 0.2 61) (3.20)

5—
;

L = 11105.? + 0.3) +3161 ('12 — (£2 {11) (3.21)E
where

n 00

M = —- (1 — casa)dz (3.22)
27r _00

The lagrangian (B.20) is mathematically identical to the lagrangian of a particle moving

on a plane with magnetic field perpendicular to the plane. We can now use the spherical
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symmetry to reconstruct the full lagrangian. we then see that the full equation of motion

(without assuming t is small) must be

c n .
Ma..- = 5633i 0.], (3.23)

This describes a free particle moving freely on the sphere with a mass M and a monopole

sitting at the origin (radial magnetic field) with a strength cg = ——n/ 2. Dirac quantization

condition is equivalent to n being an integer, which is a result of the quantization of the VVZ

term. The quantization of this quantum mechanical lagrangian involves monopole harmonies

(Coleman 1981). The correct isospin operator is

.. - a
I=mEi><Ei—ega (8.24)

which obeys the usual angular momentum algebra. We can also compute

13|0 = 0) = —c0 == 0) (3.25)

(This is analogous to our computation of I3 of (3(a) using Witten’s current formula.)

Thus the allowed values for the isospin I are

I = legl.ley|+1.-.- (8.26)
It can be seen that we get here a value for the monopole strength, 69, that is identical to

the value of 13 as computed using (B.5). This wduld be true for any classical solution that

we would choose. lience, we again see 11 that the allowed lSOSpln representations are those

that contain a state whose quantum numbers are the same as the ones given by equation

(3.7).

Tl] We can assume that our lagrangian for A is a WZ theory in a quotient space G/H in one
dimension, since it possesses the right symmetries. Then our rule ['or the allowed representations
can be soon also from the work of Itabinoviei et a1. (1084) where they treat such models in
odd dimensions. The semi—classical quantization was done in four dimensions for SU(3) by
Guadagnini (198 ).
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The iso—rotational energy for delinite isospin takes the form

, 1a), = EM‘ [1(1 + 1) — e292] (3.27)

Hence the mass of the soliton with isospin I is (to this approximation)

M, = M. + 13,1, (8.28)

AI, is the classical energy of the soliton. For n = 1 we know that the theory contains one

stable fermion of isospin 1/2, an elementary free fermion in the fundamental representation.

This is also seen from the analysis above. The higher isospin states are non elementary in

this case. We see that we have a family of particles with isospin starting with n/2. Which

of those particles is stable can only be answered by further analysis

We can interpret the lagrangian (A.1) as describing an effective low energy theory for

Q01) with n colors. In fact, in section 3 we prove that this is the result of the dynamics of

QO'Dg. Then the soliton has quark number n from equation (B.3), or baryon number one.

The soliton is a baryon. The fact that the lowest isospin for the soliton is 13/2 should not

surprise us. This can be seen by applying quark model arguments. Since the color wave

function is anti—symmetric, and the total wave function is anti—symmetric as well, the isospin

wave function must be totally symmetric. So we expect to find the totally symmetric isospin

representation which is I = n/ 2. (Unlike four dimensions we have no spin, so we do not get

the mixed symmetry representations.) In addition, we have higher isospin representations,

but none lower.

The most general classical abclian solution we could have chosen is

(3(a) = diag(cia1(”), aim”), . . . , and”) (3.29)

and a,-(—oo) = 0 ; (1,;(00) = 27rmi.

Most of these particles are not going to be stable, but will decay into others. To answer

rigorously which are the ones would require further analysis. By analogy with the sine-

gordon system, we believe in the stability of the following breather solution

(2(3) = diag(ew(”'t), 1, 1,. . .,1) (B30)



73 Appendices §3.4

where ,0(x,t) is the breather solution of the sine—gordon. This solution has a zero baryon

number and it represent a baryonium. Moreover, for this solution the ”monopole strength”,

cg, equals zero. 80 the allowed isospin values are I = 0, l, 2,. ...
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neon p19: 1u1nn nwu ,(Gepner ,1984 ) vnwn inun: Inns: n5u n15»:

Witten 715 5y na1nnu5 npu1nw nv5au u5n nvurva1r1aa wawnnwna .w15w

n11nnw n31n .nvnyu 7:9 av QCD2 5w n5a1112n n11xn nu 135:7p ,(1984)

uwpnn 1wu Wess-Zumino navu ny nnavo 511m n11nn n131na n1vanau: n5npnnn

,nvnnrn n1325u 5w nv511n5 nva15nu uvn nNT nux1n .nvyaxn nnon u1n 15w

-vun nv51pvw 11nn nvwnvn nvanua QCD 5w n11up9on nu 1un5 1y31n nwu

035a1on 1Ju 1u3 ,vwnvn-nyanun n1pn5 11avaa .(Witten ,1983) uvva151an1ag

. QCD 5w 1uvana5n 11nn nwwvwv pvv1wn: NNT nua n731n5

n111pnn 7nw: a: 5905 nvu5u: wau nva1r1an nnunn nu nnJ5 nan 5v

5» v1n: n1 .uvnwonswu 5w n71n7n1 v5n11: 11170 ,nvurvn51a1 (1 :n1unn

nw5 vwnan vo5p-vno n1nv: (2 .n5npnnn nvn1uvnn 5w n5pon nu 5np5 nan

.nvnsoa 1:0: n7591un n5u nvuw1n .nfiwn: nvpvp5nn 5w n10nn1 nunupsan n53p

nngwn u; nawv .1n17 1u Nc/2 1790-1rvu my a171: n7u31n 1JN vru

nwnnv: non n1uno1a .u1nw5: n50 179o-1r?u ny (Baryoniums) nvn1vn171: 5w

.n5u nvpvp5n 113»
D

n’nvon n311n 13:711w 511m: uv5sun 1Ju qgu n1ovw5 1vvnvn w1nvw3

nu nvnvu 5w u1nw53 190n5 uv5v53n 1:31 11nan n1fiupnon nu n75npn 1JN

n11nn 7: n31n.uvnvu 7:9 5w nnpnn 113v (Coleman ,1976) 1n51p 5d 15n1ux1n

.1790-1rvu 59 052350 u1nw 1nu pvp5n1 adjoint -n naxnn 1nu 0597051n n5van

5w n1pv11nn n1u21nn av nnvao nnunna ,n11av nuanva n1vo5p-vno n1on

n11nw n1u1n5 nv5awon 1Ju vu115 nu1na .nvnyo 5:9 5w nnpna Coleman

u5 Sine-Gordon n11n5 nvua5151pu um non navu av 81(2) 521 Wess—Zumino

. (B=/fi) n95u717‘w



ya1nn1 11a n111nn 113°1wpn (Frishman et. al. ,1984) vaun 1nxn:

,n15191a1nn n11nn 5w ~I=L+S+I=0 1: 11oponw na1n .n117u7 1pnn n111n1n

n2 135910 .nr 11upo1 151: bapnn 1yunnw 1:1 J1uvb1on n11nb vuab1v1pn

uvya1: 01:19 n1112w D7Jvunw 131n1n1 uvbapnnn "n731n19 13n"-: 119::

.D’J1Wfl flQUfl finann “N31n3 D113?

11N1n a; 1n: ,11nwn 1yunn nv91n 5w n11po 551: n11ny: 11wu1n p1gn

.nr nw113 1:527pw n1a1wn n1Nx1nn

1nnw n:1wn1:a.n111ay vnu 1w»: .5113 n111n1 n73113111: bu now:

190m nbvann n11n: QCD2 5w n13113111: 1Jyxn (Cohen et. a1. ,1983)

nvxrva1r1: .(color) yax SU(N) bu n111ovn naxn: n51: (flavors) n1iyu

n1nvwnn .(Coleman 1976) nva111: n11n5 ns1nn n7311n19 n11n n3 npvaau nvn

n1nnn ,1: 1n: .1n11 nu1ws nvn nbapnnn n11nn D121 n11pnaw nrn nya1a nbw

n11n: prnn n15 n91nn D131 uv1pna nva1r1an n11n: wbn 11m?! y1np 5w

. Coleman et. a1. ,1975) non my 1237119 511n an n1nna11 .nva11n1sn

.(Baluni,1930 ,Steinhardt .1980) “INN mm D? QCD2 131 ,(Coleman ,1976

my QCD bu n13111pn n112n nu 1:5:1p nvbann n131131r1aa w1n1w 11m

5113 n111nb n1bann nvxrvn111an w1n1wn .( Cohen et. a1. ,1933) nvnvo an:

.730“ 9193 1N1nn

n111n V(¢i,ni) 75915 N5 131x bvan 1:111nn 1nvn1ubvnnnw uva 13R

b1aan DR uvp11: 1JN 11x .(fli-TE 5w D1511011N bvan n1n) nn1aa n1131avo

-a nvxpn1uavxn n1wn .11n3n n11upgon nx bnpb nan by prn 11nvx y1np 5w

n1axna navn nvbapnnn uvaynn 11x .ne-o 7000a :117pn nu na 1a5 n75p1b

.7131n 1J7N vuuon a111pnw 1u3n .1190-111N 5w



nnwpn

bw 1pna 1p7ya npowy 75w unwupwwn 1mm: vnv 19R n11ayn

nn1 ,11pnn 1bN3 nwvvy n1ys1n vnw.rn1w n111n: n17ny19n Nb n1v91n

,n7317n195 nv1n13n on wax: n7731b191u uv1117y 7"v wanna wwnwn 1yunn

w1nvwn awry: uvwnvn 33w: 519: n111nn prn 11m?! y1np bw bwaan 1pn 1:1

.n131w nvxrva1r1a n1nvao:

.(1976) Jackiw and Rebbi ’"v nJ1wN15 nnban: 11nwn 1vunn ny91n

nvwn1xn an wax: nbw vxn 1yon 0793111105510 1n 5191:1nw :5 1mm an

,nvn17n19n 11ay nvnbw avavun p1 nbvann n11naw nvnwn v1 nan nr .117n195

nvb1swa1nw n1wn 1n1vn: 1772yn nr .nbw N5 1yun nvnw1an uvpvpbn wuxnv

1n1nn .(Gramhd UnificationJ'fivaan 11nvxn"n1nvaon nwpnnnn napon an aha:

non by: N1n 113n19n T3 nwpnnw (Goldstoneeand Wilczek,1981) fianon 1n1?

.vbunwaoawu va1vn19 190m bapb 1nva

113v

L=Wia-m-iggwm

vbuawaoawon 1yonn nu uvbnpn 1JN ,¢(m) a —¢(—m9 = v wax:

g ='11?arctg f1!

1n1n bapnn vwnvn-4—n nfipna .nvwnvn-wwn n11nn 11ay n1n nbynb 1nvawabn

n1a1w Dan n111p: vnwn 13717 by 1:01n at 111m 11,119 .1ynnn 11:» 11v

1yonn 17: flapn xxnn nawwnnn n11nv: .(Frishman et. a1.,1983 .1984)

nnwmmpn “113v D7VA15NJN DH'Iova ,unbmgxn n711ummpn 1735 "mama

nwaown 13 .nvayunn 113v n1n11 n1xx1nb 159:1n n1311x7nn vnw: nvvbn1nnn

,11awn 1yunn 17:5 nvbn1nnn 17: :1wn 1wp nnvxn DA 1n: ,nur nwvnn pbn

.n11wn n11n bu n721wn nvupeon 73w unw


