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Introduction

The work done during my Ph.D. studies is mainly concerned with the investigation
of certain non perturbative phenomena in field theories. Two main such phenomena were
investigated. These are the fractional charge acquired by topological excitations when they
are coupled to fermions, and the strong coupling limit of gauge theories in two dimensions
using various bosonization schemes.

The fractional charge phenomenon was first discovered by Jackiw and Rebbi (1978).
They noticed that both a monopole or a soliton acquire a half integral charge when they are
coupled to fermions. It was rather shocking that a theory containing only integral fermion
charges, would predict fractional charges for some particles. This was particularly interest-
ing because such monopoles are a necessary consequence of the various grand unification
schemes. It was later observed (Goldstone et al. 1981) that for a massive fermion we may

get a transcendental fermion number. For
L=9(G J—m—igudy, where §(c0) = —g(—o0) =,
we get for the vacuum charge:
q= larcl’.anﬂ.
T m

The above lagrangian is for the two dimensional system. In the 4-dimensional case,
one gebs the same value for the charge. This peculiar equality was explained by us from two

diflerent points of view (Irishman et al. 1983; 1984). In the first work a connection between
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fractional charge and anomalous commutators was found. Analogous expressions for the
anomalous commutators of the two theories led to similar results for the charges. Thus
some of the enigma was explained. Also an important connection between the anomaly and
the fractional charge was made, thus relating these two important aspects of field theory.

In the second paper (Frishinan et al. 1984) the connection between two and four dimen-
sional theories was directly explored. It was proven that the 7 = L+ 5 +1 = 0 sector of the
monopole theory is cquivalent to the soliton theory, and that the j = 0 sector dominates the
whole contribution to the charge for a heavy monopole. We have also treated the resulting
“half fermions” separately showing that different fractional charges arise for them due to
different boundary conditions.

Chapter one consists of a review of the fractional charge phenomena, including our
results in the area.

In the subject of bosonization and gauge theories, two works have been done. In the first
work (Cohen ct al. 1983) we have performed bosonization of @CDz in a theory with many
{lavors, all in the fundamental representation of color SU(IN). Bosonization is a technique in
which a fermion theory is mapped into a bosonic one (Coleman 1976). Its importance follows
from the fact that in many cases the resulting theory is simpler. Also, the weak coupling
regime of the bosonic theory in many cases is mapped into the strong one of the fermionic
theory. Examples are the massive Schwinger model (Coleman et al. 1975, Coleman 1976),

and QCDq with one flavor (Baluni 1980, Steinhardt 1980).

Using the abelian bosonization we obtained the bosonic form of multi-flavor @CD (Co-
hen ct al. 1983). The application of the abelian bosonization to gauge theories is described
in chapter two. It is shown that the bosonic hamiltonian contains a nonlocal term V(g;, ;)
of high degree of complexity (it has integrals of 7; — m;). We then apply the strong coupling
limit of g — oo in order to get the low lying spectrum. In view of the nonlocal interaction,
we also took the static approximalion, 7 — 0. Then the states obtained are not in multiplets

of isospin. Ilence we conclude thal the static approximation is not justified.



3 Introduction

These problems were solved in the second paper (Gepner 1984), which is the subject
of the third chapter. Using Witten’s recently proposed non abelian bosonization (Witten
1984), a bosonic form of @CDy is obtained for two flavors. It is shown that the low lying
theory is a sigma model with a Wess—Zumino term the coeflicient gf which is the number
of colors. This result is closely analogous to current algebra theories proposed to describe
the @QCD spectrum in four dimensions, based on semi-phenomenological grounds (Witten
1983). Unlike the four dimensional case, here, however, we are able to prove exactly this
result starting directly from the QCD lagrangian.

In order to analyze the bosonic theory we have also to discuss the following two issues:
1) Regularization, normal-ordering and dimension of operators. This is needed in order to
get the scale of the resulting theory. 2) Semi-classical analysis, needed to get the spectrum
and masses of particles in the theory. These subjects are treated in two appendices.

We then find baryons with isospin N¢/2 or higher. There is also a baryonium family
with arbitrary integer isospin. Mass formulae are given for these particles.

As an inleresting application of these methods we Lreat Lhe multi-flavor Schwinger
model. We oblain the low lying lagrangian and are able to extend to an arbitrary number
of flavors, Coleman’s results for the two flavor case (Coleman 1976). It is proven that the
theory contains one multiplet in the adjoint and one iso-singlet. Semi-classical masses are
given for them, reasonably agrecing with Coleman’s exact results for the two flavors theory.
As a by-product we are able to show that an SU(2) Wess—Zumino theory with mass term is

cquivalent to 2 non trivial sine gordon theory (8 = /2m).



Chapter 1

Fractional Charge

§1.1 Introduction

An interesting phenomenon was discovered in field theory by Jackiw and Rebbi (19786).
They have considered a fermion soliton system in two dimensions. It was found that the
the soliton acquired a fermionic charge equal to one half; namely, the soliton has a charge
of half a fermion! This phenomenon became known as [ractional charge. The authors have
also shown that a monopole coupled to a fermion acquires the same half fermionic charge.

Later, Goldstone and Wilczek (1981) have considered giving the fermion a mass. It was
then shown that the topological excitation (a soliton or a monopole) acquires a transcendental
charge! The valucs of the charges of the monopole and of the soliton were found to be given
by identical expressions.

This peculiar cquality was explained by us from two diflerent points of view (Frishman,
Gepuer and Yankiclowicz 1983, 1984). In the first work a connection between fractional
charge and anomalous commutators was found. Analogous expressions for the anomalous
commutators in the two theories led to similar results for the charges. Thus some of the
cnigma was explained. Also, an important connection between the anomaly and the frac-
tional charge was established, thus relating thése two important aspects of field theory.

In Lhe second paper the connection between the four and the two dimensional theories
was investigated. It was shown that the J =L+ 5 + I = 0 sector of the monopole theory
is cquivalent to the solilon theory. This fact directly explains why their vacuum charges are

idenlical.
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The prospects for the phenomena of fractional charge to be realized in particle physics
are not very clear. The magnetic monopole, although predicted by grand unified theories, has
not yet been found. In condensed matter systems, however, this phenomenon is very likely
to arise in one-dimensional molecules like polyacetylen. (For a discussion of experimental

and theoretical aspects of polyacetylen see A. Heeger 1981.)

§1.2 The fractional charge

We shall follow the method of Jackiw and Rebbi to show that the soliton has a half
integral fermion number. This charge is scen to arise due to a zero mode of the fermion in
presence of the soliton.

For the sake of convenience let us take a kink solution. The lagrangian of the kink-

fermion system is then given by
1 1 . -
L=30w) —5(" -~ 1"+ i Jo+gddp . (L.1)

The bosonic part of this lagrangian is known to have a classical solution which is the
kink solution of the p* theory (Dashen et al. 1974b, Goldstone and Jackiw 1975, Polyakov

1974). The equation of motion is
p—p" =20%—2p (1.2)

The kink is a time independent solution with the boundary condition p(co0) = —p(—o0) = 1.
The kink is stable, since it is the lowest energy solution in the sector of solutions obeying
that boundary condition, and because this sector is protected from decay by the finiteness
of cnergy demand. This property of the solution suggests that it describes the classical limit

of an actual particle. The kink solution is given by
©(z) = tanhz (1.3)

The quantization of the classical solution is necded for exhibiting that it describes a

real particle appearing in the spectrum of the corresponding field theory. This was done
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by scveral authors using different methods (Dashen et al. 1974b, Cahill 1974, Goldstone
and Jackiw 1975, Polyakov 1975a,b). The scmi-classical quantization enables the compu-
tation of masscs, quantum numbers and various matrix elements, in analogy to the WKB
approximation in quantum mechanics.

In order to treat the kink-fermion system, we apparently need to solve the quantum
field theory (1). This is a very diflicult task. Fortunately, we can use again semi—classical
methods as generalized to fermionic systems (Dashen et al. 1974b). It can then be scen that
in the leading scmi-classical approximalion one may ignore altogether the quantum nature
of the soliton, retaining only the fermion as a quantum field. This much simplified approach
is what we employ in the following.

Consider then a fermion in a classical external kink field. We shall show that the
fractional charge is duc to a zero energy solution of the Dirac equation—a zero mode. The

equation of motion of ¢ is
. d
[ia1 3~ a6t 6 = e, (1.4

in which ¢ is the encrgy; we use the representation § = o3 and @1 = o2. In component

-C)

notation % is

We get after a little manipulation

42
(_m+gz‘P2 +0(1—‘P2))u = ’u, (1.8)
and
> 4 9 2 2
(‘@7"‘9 P —0(1—90))":6”- (1.7)

The solution to this diferential equation is well known. Equations (6) and (7) are simply

the Schrodinger equalion of a particle moving in the potential

V(z) = 7202 1 g(1 — p2) = g2tanh®z £ ¢ sech? z (1.8)
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FFar from the origin V(z) is cqual to g2. Uence there will be a continuum of energy levels
given by «z(lc)2 = k2 + ¢2. Below g2 there are discrete encrgy levels, the energies of which

are exactly known (Morse and Feshbach 1953, Dashen et al. 1974b)

2

2 =2ng—n n=01..<g¢g (1.9)

The actual form of the wave function of this state is not necessary, in fact, for the purpose of
computing Lhe fractional charge. All that is needed is the way the wave function transforms
under charge conjugation. The charge conjugation operator is 3. Then from (4) we easily
sec that if 9¢ is a solution with energy ¢, then o39e is a solution having the energy —e.
Hence all the states are paired as a fermion at energy e with an anti-fermion at energy —e.
The only possible exception to this rule is the states of zero energy—fermionic vacua. These
states can be their own anti-states, obeying o39o = x¥o.

Intuitively, the states of nonzero energy can not contribute to the fractional charge,
since they cancel each other in pairs connected by charge conjugation. So only the fermion
number self conjugate states at zero energy are of importance. We have exactly one such

state in (8) obtained by taking n = 0. Its wave function is

o= ((coslfz)'g) (1.10)

This state is self charge conjugate, since we have o399 = —%9o.

We turn now to the second quantization formulalion of our system. We have to expand

¥ in the wave functions, where the coeflicients are creation and annihilation operators
W(z,t) = boto + 3 bre iyt (z) + dle’rtyr (2) (1.11)
r>1
Ilcre 9 arc the positive and negative energy solutions respectively, having the energy =+er.
(It includes the nonzero discrele spectrum and the continuum.) Now the charge operator is

given by

Q =%/ dx(@hp-\p\pf)=bgbo—%+ 3 oo, — dld, (1.12)
r>1



§1.2 The fractional charge 8

The fermionic vacuum will be a state with only the kink in it. Denote this state by |kink —).

Then it obeys
bo|kink —) = b, |kink —) = d|kink—) =0 (1.13)

Since no fermion mode is exciled, this state will have all the properties of a free kink like

the mass, but the charge of it will be —1/2; from (12) and (11)
Q|kink —) = —%|kink - (1.14)

'The soliton has a half integral fermion number.
There will be another state with the same energy—the kink with the fermion zero mode

exciled:
|kink +) = b} [kink —) ©(1.15)

The charge of this state is obtained by applying @ and using the anti-commutators relations

for b and d
Qlkink +) = %lkink +) (1.16)
So we sce that we have two dcgencrate states in the kink sector having as charge + %
Notice that the only condition for having this result is the existence of a self charge
conjugate zero energy state. Ilence the valuc of the fractional charge is a sort of an index.
We Lave chosen the kink solution (3) only for convenience. Suppose we had a general external
field o(z) such that p(c0) > 0 and p(—00) < 0. Then nothing would have been changed.
The only condition for the vacuum fermion number to be 1/2 is the existence of exactly one
self conjugate zero mode with ¢ = —1. This would still be true. Solving (4) with e = 0 we

getb

0
T) = 1.17
Yole) (exp (- fd”w(y)du)) (17

This is the desired state and it is the only zero mode. Hence we see that the fractional
charge is a topological quantity, independent of the particular form of the solitonic field.

For cxample, we get the same value of half for the sine gordon soliton.
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Jackiw and Rebbi have treated also the case of a monopole coupled to a massless
isodoublet fermion. Again it was seen that the monopole acquires a half integral charge.
The proof is in total analogy with the two dimensional case. Again the states come in charge
conjugation pairs canceling each other’s charges, with the exception of one zero mode. The
zero mode, just as before, is fermion number self conjugate, with ¢ = —1, and is responsible

for giving the monopole a fermionic charge.
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§1.3 The Massive Fermion Case

Goldstone and Wilczck (1981) considered a soliton coupled to a massive fermion. Then
not only the fermion acquires a non integer fermion number, but the value of it turns out to
be an.arbitrary transcendental number. As a first case they considered the model (1), now

with a fermion mass term
Lp=V( J+¢p+iMyp)V¥ (1.18)

where (00) = —g(—00) = v. In order to compute the fermion number these authors
switched on adiabatically the soliton field ¢ and then used perturbation theory. The result

which they found for the vacuum charge is

1 v
— t ) 1.19
Q Warc auM ( )

Notice that, again, the value of the charge is independent of the details of the external field.
Only the valucs of ¢ at infinity enter into (19).

Here we shall offer a different way of computing this charge. The computation will be
in analogy to the massless case carried out in section 2. The first step is to solve (18) with

a particular external ficld. For the sake of convenience we choose
ple) =via (1.20)
|| '
The equation of motion for 9 as derived from (18) is
. d .
—tey o= B —ifaM |n(z) = en(z) (1.21)

Also, in order to make our trcatment more rigorous, we shall consider the system to be in

a box with periodic boundary conditions. Namely we assume

(=) =

L is the box length.
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The solutions of this equation are seen to be in three classes.

1)  Positive encrgy solutions. Their energy is given by

en = \/ k% + v2 + m?, and Lkn, = 2nmw (1.23)

They are given by

vL\ = M gin by 2

g 1 —\/f—_eﬂsinicnz Los
M = —F= (1.25)
VL

""E‘M cos(kn |z| — 6n)

fe=M
1 =2 cos(kn || + 6n)
nl=— ¢ (1.24)

and

0p, is defiped by

i6n —_ IG", <4 v 1.26
¢ kn + 0] (1.26)

The solutions are normalized to have probability one. We denote these solutions
collectively as 7, where p =1,2,...

2)  Negative energy solutions. Their energy is €, = — \/m They can be
obtained by taking # — o3n and M — —M. This is simply a charge conjugation. We
denote them collectively as 7, where p=1,2,...

3)  The discrete solutions. For M == 0, those are the zero modes of section (2) now lifted

to the energy € = M. These are

v e—VIEI
n = (———1 — e—vL)( . ) fore=-M (1.27)
o = (———+ 0 M 1.28
g = (1 — c"’L) (e'/(lxl—Lﬂ)) fore = (1.28)

In order to compute the fractional charge, we shall employ

Jo = %[\pf, w] (1.29)
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Ilere ¥ is the second quantized field defined in analogy to (10).

co
Y(z,t) = 3 bpe~rtnp(z) + dhe’®r 7, (z) (1.30)
p=0

bp, dp obey canonical anti-commutation relation.) Then we can compute the density of the
Dy tp

vacuum charge

(o0}

pla) = (O1o(=)l0) = 5 3 7 ()T (2) = mp(2)m(2) (1.31)
p=0

Suppose now we were to integrate p(z) over the box in order to get the vacuum charge. Then
we would get no fractional charge! (This is due to the orthonormality the wave functions.)
L/2
/ o(z) =0 (1.32)
—L/2
So apparently the vacuum. has no charge. This was first found for M = 0 by Bell and
Rajaraman (1982). In order to get the vacuum charge one has to be more careful. Let us

introduce a second scale {, such that

1
14

We shall now compute the vacuum charge that is contained in the region (—%,%) and show
that, in fact, it gives the correct value for the charge (19)

12
Q= da)is (1.34)

The physical interpretation of this result needs some explanation. If we preformed an
experiment to measure the fractional charge, nalurally we would do it in a small region
around the soliton center. Hence it is justified to compute the charge not for the entire box,
but for a small region around the soliton (given between -—é and é) However, it could have
been claimed now that we are actually computing not the eigenvalue of the charge operator,
but an expectation valuc in a mixed state. As such it would not be of no surprising to

find the non integral value (19). It can be shown, however, that the fluctuations of the
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charge when [ — oo are decreasing to zcro. (The walls of the box must then be made
“gofter”.) Thus our vacuum asymptotically becomes an eigenstate of the charge operator
with a fractional eigenvalue. For detailed computations of the fluctuations for M = 0, see
Bell and Rajaraman (1982) and also, Frishman and Horovitz (1982).

Let us now actually compute (34), using the wave functions (23-28). For the continuum

states we find from (31),
1 (5]
oz) =73 ) nL gl + 7% 7% — ninm — Mattn = —E sin(2ky|zl) 8in 20n.- (1.35)

Computing the integral (34) we then get

Q) = Z - (ijMMz) (1 — cos knl) (1.36).

We can now take the box to infinity. Then L — 00, and the sum becomes an integral.

an=[_ rwd - (137)
and
_ ikl
1(k) = 521‘;[ ?(':'2_—31\72') (1.38).

To cvaluate this integral we deform the real line into the closed curve C (see fig. 1). We
now use the residue theorem for cvaluating (87). The only pole of f(k) inside the contour

G is at k = —iv. There is also a branch line (“cut”) on (—fco, =% V2 + M?). The value of
the residue is given by
omi Res f(k) = — Lo (1.39)
—iv 2
Using then the residue theorem, the value of the integral is seen to be

1—¢" el

Q(l)—"(l _w”__fmmw/cz 2 — M2 (k2 —v?)

dk,  (1.40)

where the integral on the Lh.s of (40) represents the integral of f(k) along the branch line.

Now [ can be safely taken to infinity, and we get for the continuum contribution to the
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f
ivVmeZ
%* Im
F-im
-1/ mEpe
Fig 1
fractional charge:
oo
lim Q) = — L+ YM dk = -1 loretan . (141
l~o0 2 = \/;a,,_—wf\/kz_,,z_M”kz_,,z) 2 v
The contribution from the discrete states is 1/2, since from (27-28) we can compute,
LS 1
Qo= im [ 5Cr0(ehno(s) —To (2) o (e) do = 1. (142)
—00J /3

Summing (41) and (42), we get the value of the fractional charge stated in (19).

Two remarks are in order:
1)  The value of the charge is independent of the particular solution we have chosen, but
it depends only on the asymptotic values of it. Let’s say that w(z) is some general
external fleld. Also replace the constant mass term M in (18) by arbitrary function

M(z). Then the fractional chafge is given by

—( im )L M(z)
0= (i~ tm, ) grorton 75 (143
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2)

This may be seen either from the perturbative computation of Goldstone and Wilczek
or from arguments given by Y. Frishman (1983). The latter showed that the fractional
charge depends only on the asyu.lptotic values of the external fields, provided fermion
current conserving regularization can be found for any external field configuration.

Ve have two types of continuum states given by (24) and (25). It can be easily scen
from our computation that the contributions to the vacuum charge coming from each
of them are equal. Their respective vacuum charges account for exactly one half of

(41). So let us scparate all our solutions into the two types:

symmetric
Type 1: 7 = ( . ' ), (1.44)
antisymmetric
antisymmetric
Type 2: e = ( ) (1.45)
symmetric ‘

The state (27) will contribute half to the fractional charge of the type 1 solutions and
nothing to the type 2. (for ¥ < 0, it is the opposite). Hence the total charge of each

of them is,
Q= %arctan%{——+%, (1.46)
M
Qo = 2iﬂarctanT— % (1.47)

Of course, jointly, the two types give the total fractional charge of the system: ¢ =
@1 + Q2. The importance of this two subsets of solutions will become apparent in the

next chapter. It will be shown that they correspond to Callan’s “half” fermions.

A simple way to get the fractional charge of (18) is made possible via the use of the so

called bosonization technique. This method will be described in detail in the next section.

For the time being it will suflicc to mention that a fermion theory in two dimensions may

be translated into a bosonic one. For that purpose, one uses the following “dictionary”,

i Jp - %(a,,x)Z, (1.48)
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D9 — M cos(2+/7x), (1.49)
i — Msin(2 /7 x), (1.50)

- 1

PP — '\/';flwaux‘ (1.51)

(x is a canonical bosonic field.)

Then (18) may be translated into the purely bosonic theory,
1 — ] _
Lp= E(a,,x)2 + pcos(2 /7 x) + Msin(2 /7 x). (1.52)
We can write (52) as,

Lr = =(Bux)? + Alz) cos(2 /7 x — B(z)), (1.53)

DD | b

where B(z) = — arctan(M (z)/9(z)).
Now, the vacuum of the theory (53) is described by a certain classical solution of it,

obeying the boundary condition,
2/7 x(z) = B(z), for £ — +oo0. (1.54)

Then from (51) we can obtain the {ractional charge of the vacuum using semi-classical

methods for x:

-0

o0
o= [ vt = [ Zooixiz= e -xt-o)  (59)
and using (54) we again see,
1 M
Q= ;arctan—u—. (1.56)
This is an example of the power of the bosonization technique in analyzing non-

perturbative phenomena. We shall see in chapter 2 more uses of this kind.

Goldstone and Wilezek have also treated a monopole coupled to a massive fermion.
Again using their method of adiabatic computation, they obtained for the fractional charge

an expression identical to (19).
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‘n
In the next section we shall not only prove this result, but also explain why the charge

is the same for the two and four dimensional theories.

§1.4 The fractional charge of the magnetic monopole

In this section we shall consider a magnetic monopole coupled to a fermion. It was found
by Jackiw and Rebbi (1976) and later Goldstone and Wilczek (1981) that the monopole then
develops a fractional fermionic charge. The method of computing the charge that we shall
employ here, has the advantage of explaining why the monopole and the soliton develop the
same charges. Namely, we shall provf? that the 5 = 0 sector of the monopole is actually
equivalent to the soliton theory (18). This section is based on the work of Frishman, Gepner
and Yankielowicz (1984).

The magnetic monopole was found by Dirac as a consistent extension to electromag-
nctism. Some time ago 't Ilooft (1976) and Polyakov (1970) showed that in a large class of
spontancously broken gauge theories, there exists a classical solution, that when quantized,
becomes a particle carrying a magnetic charge. Thus the magnetic monopole became no
more a luxury but a particle predicted by certain theories, in particular by grand unification
schemes.

For simplicity we consider the original 't Hooft Polyakov monopole found in an SU (2)
theory spontancously broken to U(1). The monopole of other gauge groups carry fractional

charges similarly. The lagrangian is then given by,
1., .
L=—3Fa T+ (Dpp®)? + V(p®). (1.57)

where % is the Higgs field (@ = 1,2, 3) in the adjoint of SU(2). D, is the covariant derivative
given by,

.Du = 0,,, + iCAzTa, (158)

(T® arc gencrators of SU(2) taken here in the adjoint.)
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The lagrangian (57) has 2 classical solution protected from decay by a topological con-
scrvation law, i.e., the second homotopy group of SU(2)/U(1). This classical solution can
be scen to represent a particle carrying a magnetic charge, where the topological conserva-
tion law becomes the conservation of magnetic charge. (For a review on monopoles see for

example Coleman 1975.) The fields of the monopole solution obey

Ap(z) =0,
eAf(z) = eq4j2;A(r), (1.59)

To(®) = z%p(r).
At large r the fields behave as A(r) = —1/r + Ofexp(—Mwr)], and p(oo0) = v. Also A(0) =
©(0) = 0.
We shall consider now a theory inlwhich a monopole is coupled to a fermion. The

fermion’s isospin is taken to Le one half. The fermionic lagrangian is then
Lp=19i DYp—p(m+igyT ). (1.60)
The [ractional charge of the monopole is (Goldstone and Wilczek):
q=n"larctan (%), (1.61)
the same as for the two dimensional theory (18), now written slightly differently as
Lp =91 F—p(m+igye)p. (1.62)

Ilere p(o0) = —p(—o0) = v.

We shall prove that (60) and (02) are equivalent theories. Thus we shall also explain
the identity of their respective vacuum charges.

In order to prove that asscrtion we shall treat the monopole fermion system using
methods originated by Goldstone and Jackiw (1976) and elaborated by Callan (1982 a,b). It

was shown by them that due to the spherical symmetry of the monopole solution (59), the
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lagrangian (60) conserves a peculiar quantum number which is the sum of isospin, spin and
angular momentum. We denote this quantum number by 7, where j = L+S+1.

For m=0 the complete analysis of the classical equation of motion coming from (60)
was done by Jackiw and Rebbi. They found that a zero mode appears in the j = 0 partial
wave, hence giving rise to one half {raclional charge as discussed in section 2. The higher
partial wave have also been analyzed and it was shown that no zero mode arises in them
and consequently they do not contribute to the fractional charge. This result can actually
be understood without explicitly solving the equation of motion of (60). For the higher
partial waves there is a centrifugal barrier, preventing the fermion from getting close to
the monopole. In the My — co limit the monopole is pointlike and since the fractional
charge arises from the monopole—fermion interaction we expect the fractional charge to be
saturated by the 7 = 0 partial wave. This argument holds also when m is not zero. Hence

we can concentrate on the 5 = 0 sector and the treatment of (00) is simplified.
Following Callan we decompose the 7 = 0 Fermi fields as
. X+
) = ( ), (1.63)
:I:X;}; .

where the (&) refers to helicity. X is a 2X2 matrix where one index is spin and the other

is isospin. For § = 0, X may be writlen as
X = (V8rr) g+ +ps 3P, (1.64)

where ¢+ and py4 are functions of r only. This is the most general form of a solution which
is j-symmelric. It was shown by Callan that g and p may be grouped into a two dimensional

Fermi fields,

9+
w=(, ) (L55)
Fips

Then it ean be scon that the ficlds x4 obey canonical anticommutation relations. Thus

we arrive ab an cffective bwo dimensional ficld theory for x by inserting (63-65) into the
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lagrangian (60). We then get the lagrangian (not the lagrangian density),
w .
L{t) = / . dr { X4 170%™t + X 17a0%X ™ + Mty X~ + X=X

+ (A - %) (Xt WX T+ X= 16X 7) + i90(%4 Y6X ™ + X 6% ™) } :
(1.06)
where the «,’s are the two dimensional ones: 9 = 13, 711 = —1i71, 16 = T2.

(A —1/r) vanishes exponentially rapidly outside the monopole core. Inside, it goes like
(=1/r). Ience in the large My limit, the term containing (A — 1/r) may be eliminated
altogether from the lagrangian (65), provided we impose the boundary condition 74 x4+ = 0.
This condition cnsurcs that x4 will not have a non integrable singularity at r =0 (Callan

(1982) and Besson (1981)).

It would be convenicnt now to make the transformation,

1
12 =7 (X+ £ x-) (1.67)
which produces a {lavor diagonal lagrangian,
©0 2 _ _
L) = f Cdr 3 (ai Pa () Sa (i igrsel, (L.68)

n=1
with the boundary condition 742 (0) = 0 for n =1, 2.
The lagrangian (08) is a half line lagrangian of two flavors. We shall show that it is
actually equivalent to a full line lagrangian of a one flavor, which is our two dimensional

solilon lagrangian (62). One [urther transformation must be made:

2712 () + 75 M (2)] forz >0
p(z) = (1.69)
2712 qo\a(—2) = ysh1(—2)]  forz <0

The boundary condition 74Xy, (0) = 0 gurantees the continuity of p(z) at £ = 0. It can be

scen that p is a canonical Fermi ficld. Inserting (69) into the lagrangian (68), we get

= [ dalpi pp—plm+ion o)l (1.70)

—00
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where § is defined as

©(z) forz >0
b= { (1.71)

—p(~z) forz<0
The lagrangian (70) is identical to the two dimensional theory (62).
This does not, yet guarantce that the monopole and the soliton have the same fractional
charge. We necd to sce what happens to the fermion number current through the trans-
formations we have preformed. The four dimensional fermion charge density for a 7 = 0

fermion may be seen to be

ety = xhxr + xbx— = jolxa) +so(x-) (1.72)

We can also sce that alter the transformation (67) and (89), jo will obey,
jO(py :C=r) + Jb(p) :B=—r) = j()(X—: .'.B=r) + jO(X—I ;‘c=r) (173)

Hence, combining (73) and (72), we sce that the four dimensional fermion number density is
identical to the that of the equivalent two dimensional theory as summed on +r. Also the
vacuum is translated into a vacuum all the way. Hence the fractional charges of (61) and

(59) are equal:
q(2) =q(4) =1¢. (1.74)

We thus have shown that the two theories are equivalent and in such a way that that
their respective vacuum charges are identical. In fact this holds equally well for their charge
densitics, as clucidated in cq. 73. This is, however, particular to the My — oo limit as
can be scen, for example, from the cxplicit expressions given by Goldstone and Wilczek.
The above discussion consists also of an independent proof for the value of the monopole’s
fermionic charge (cq. 61).

We shall now present a variation of this prool thal also allows us to compute the

fractional charge of cach of the two “half” fermions, \. (By half fermions we mean fermions
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living on a half line.) This computation may also be interesting due to the importance of

the half-fermions in Callan’s work.

Suppose \§ is a classical solution with energy e. From (68) we have
(—iv501 — my — 19 )G = €N, (1.75)

and the boundary condition 742§ == 0. Define then

(1.76)

5(z) forz > 0
£
-

ToN5(z) forz <0
Then p§(z) is a solution of the equation of motion derived from (70). It is not the most
gencral solution, since it obeys 74p§ = 0. In fact, we can see that it corresponds exactly to
the type 2 solutions described in scction 3 (eq. 45). Moreover, all the type 2 solutions may
be obtained using the transformation (76). The fractional charge of X is then given by an
expression analogous to (42),
g2 = lim r dz ‘12 [)\§f>\§ — )\2—61)\2—61 = lim r dz _21_ E [p(n)ip(n) — p(mt 5ln))
r=eod —r e>0 r=00J —r n=type 2

(1.77)
Here p{™ are the negative energy solutions. Similarly we can make the transformation \{ —+
v5X§ and use —yp for z < 0 in (70), and then the sum extends over the type 1 solutions.
Now, the fractional charge of each of Lhe two types has been computed in section 3 (eq.

406-47). Hence we got

1 v
q = o arctan (g;) +

)

(1.78)

| | -

— L eriua{T)

@2 =gparean,) v
for the fractional charges of the two “half” fermions. Note that the different boundary
conditions caused the charges to be diflerent from one another, and not just half of the total
charge. In particular, for m = 0 we get q1 = %and gz = 0. Again, this can be seen from
the general arguments of section 2. For m = 0, charge conjugation is a good symmetry,

also since the boundary conditions do not spoil it. Hence the fractional charge must come in
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hialves related to the zero modes. In this case, A has a zero mode and hg does not. llence

the result follows.

§1.5 I'raclional charge and anomalous cominutators

We shall now investigate the connection between the fractional charge and the anomaly.
It will be shown with the help of a chiral rotation (advocaled by Bardeen et al. (1983)), that
the value of the fractional charge may be directly obtained from anomalous commutators.
We sholl treat both the monopole and the soliton cases. This section is based on the work

of Irishman, Gepner and Yankiclowicz (1984).

We shall start by analyzing the soliton theory (62). Define a chiral angle by
g¥
== 1.79
tan 0(z) - (1.79)
Then

m + 19750 = p(z) exp(iy50(z)) (1.80)

It can be scen that making a chiral rotation on the lagrangian (62) with the angle (<) leaves
us with a lagrangian with no fractional charge. The operator that generates the chiral

rotation is

U(0) = cxp [% / Jos(z)0(z) dz] ) (1.81)
where Ju5 = 9 Y57u4 is the fermion axial vector current. Then the effect of U(f) on ¢ is a

chiral rotation:
UOWEUO = {oxp |~ S250(0) } 42 (1.52)
Hence the lagrangian (62) translorms as
UO)~ILU(0) = L(0) = i 29 + D vurs(040) — gp P (1.83)

There is also a termn coming from the jacobian of the transformation (an anomaly term) but

since it does not involve the fermion field we can ignore it.
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We have now to determine how the fermion number current transforms under chiral

rotation. Then it is seen that
UOi(@U(0) = jo(®) + 5-'(2) (1.84)
where we used the Schwinger term in two dimensions,
fo(e), dos(4)] = =6z 1) (1.85)

In order to get the fractional charge, we can compute the value of the transformed current

(84) in the presence of the transformed lagrangian (83).

We claim now that the fractional charge of (83) is zero—

[ 4=titen =o (1.80)

The reason is that the fractional charge dcpends only on the asymptotic values of the
bosonic fields (sce Frishman 1983). The theory (83) is asymptotically a free fermion theory
and hence (86) follows. That the theory (83) possesses no vacuum charge can be also seen

more explicitly by dimensional arguments (Bardeen et al. 1983).

We thus obtain for the fermionic charge,

ar = [ da inle) + 5= (a)| = 55 0100) = o—e0), (1.87)

which gives the known value of the charge eq. 61.
Let us now turn to the magnetic monopole case. The treatment will be analogous to
the two dimensional case. The theory that we treat is given by (60), where the monopole

fields obey eq. 59. We then define a chiral rotation by
U(0) = exp(i / 0% d*c), (1.88)
where the chiral angles ¢, are defined by

m + igyspe = p(z) €150 (1.89)
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The eflect of U(0) on 4 is a chiral rotation:
U(OW(=)U(0)" = exp [—%%r“m’(z)} ¥(z) = S(2)¢(2)- (1.90)
The next step is to see how the fermionic lagrangian (59) gets transformed:
UO)LFUO) ™ = Lp(0) =%(G D —e By — g9 oy, (1.91)
where B contains a vector and an axial vector parts,

By = 571ALS — Zs-laks

(1.92)
Akq:cf%ra . Bkd=er%r"'B,‘§
Now for large r, By is the same as the original potential Ag,
By~ chap (1.93)

So the lagrangian (91) possesses no fractional charge, since it asymptotically corresponds

to a theory in which there is only a veetor and scalar interactions.
Now, under the chiral rotation 5 trapnsforms as

e

U(0)U(0)™ = jo + 2

We have uscd here the anomalous commutators for an SU(2) theory (Adler 1970),

Or [Hj (2)0(=)] (1.94)

(e, ) 3850, 8] = g eHEE (1, 908%(3 — ) (1.95)

Here Af are the magnetic ficlds of Af. Now, as before, the fermion number of the monopole
theory (59) can be obtained by computing the value of (94) for the theory (91). Then we get

[

Qr =13 d*z 0y [H(2)0(c)] (1.96)
As r — oo we have 0%(z) — & 0(co0) and Hf(z) — Zq &r /(er?). Hence,
Qr = % (47) lim (r%)—5 0(c0) = 7~10(c0) = 7L arctan(gw/m),  (1.97)
47? r—co er?

and we, again, get the result for the fractional charge eq. (61).



Chapter 2

Bosonization and gauge theories in two dimensions

§2.1 Introduction

Bosonization has proved itself to be a very useful tool in the investigation of two dimen-
sional field theories. This technique enables one to map a fermionic theory into a bosonic
one. Then the analysis of the resulting bosonic theory is in many examples much simplified.
A very important characteristic is that, often enough, perturbative or semi-classical expan-
sion of the of the bosonic theory corresponds to the strong coupling regime of the fermionic
theory. Hence one can, that way, arrive at highly non-perturbative results with very little
cost. We have already scen one such “miracle” happen in section 1.3, where we got the
fractional charge of a soliton in a straightforward way. Another problem ,where bosoniza-
tion plays an important réle, is the Callan-Rubakov eflect (Callan 1982ab, Rubakov 1982).
Although this cffect involves a monopole in four dimensions, the application of bosonization
to the j = 0 scctor , which is basically a two dimensional system, is very useful.

In this chopter, we shall concentrate on the application of bosonization to gauge theories
in two dimensions. In some examples, bosonization completely solves the theory (e.g. the
Schwinger model). In others, we can immediately read the low lying theory.

We shall be mainly interested here in @CDg and massive @EDg with one or many
flavors. It will be shown how to derive the low lying spectrum of these theories. In this
chapter the “old” abelian bosonization is uscd, while we postpone to the next chapter the
application of Wittcn’s non abelian bosonization, which will resolve several serious problems

to be discussed here.
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§2.2 Abeclian bosonization

In 1975 an interesting corrcspondence between two field theories was found by Cole-
man. The theorics are the quantum sine-gordon model and the massive Thirring model.
This caused a great deal of surprise, since they were two apparently unconnected much in-
vestigated models. This correspondence forms the basis of the bosonization technique. The

lagrangians are
L=i Jp—5Hnd) ~m, (2.1)
and

Lsa = 5(3p$)® — MpDNy cos fp. (2.2)

N =

We use here 2 normal ordering prescription with respect to an arbitrary mass y, denoted
by Ny. To be more specific, separate the ¢ field into positive and negative frequency parts

according to the mass p:

b= +¢+

b= Lok p)eike (2.3)

I AEZ Ve (Y
p4 =¢!

where w(k, m) = (k% + 42)Y2 | and a(k,m), at(k, m) are annihilation and creation operators

with the mass g. Then the vacuum [0,) is the state annihilated by all a(k, m),

a(k, 1)[0u) = 0 (2.4)

Our normal-ordering prescription then consists of arranging all the a(k, ) to the left of the
operator in question.
An important formula relating to this normal-ordering prescription was derived by

Coleman,

p2\P2/87
Nmoxpp=(L3) " Nuospps 25)
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The theorics (1) and (2) are equivalent by the following identification of the paramcters:

LI
14+g/7 4rm (2.6)
M? =c¢m?

Most importantly, this discovery enables 2 mapping of any two dimensional Fermi theory

into a bosonic one. Then one can also use the correspondence of operators found by Coleman,

Py = - %euuau‘ﬁ; 2.
, 2,

P (14 15} =cMpNye'??,
to map any one-fermion model.

Shortly later Mandelstam discovered that this equivalence can be written in a more
explicit way. Ile did so by finding the bosonic operators that create the soliton out of the
vacuum. The soliton is then seen to be the basic fermion of the Thirring model. Denote by
11,2 the upper and lower components of the fermion. Then they are given by

wile) = ()% eulte exp [—2m’ﬂ“ [ aio- %z’ﬂm)],

A

ale) = =i (Z2)"* en/teexp [—m'ﬂ‘l / _; ds 7(5) + %iﬂsb(x)J - (2.8)
(The integral is regularized by multiplying it with exp(—e¢).)

It was shown by Mandelstam that with this definition, 4% is a canonical Fermi field
obeying the ficld equations of the massive Thirring model when the ¢ field is taken to be
the sine-gordon quantum.

The cxtension of Mandelstam’s methods to more than one fermion flavor was done by
Halpern (1975). Ile showed that eq. (8) holds for a system of fermions by simply taking one
bosonic field for every Fermi field, and by adding a so called Klein factor needed to ensure

the anti-symmetric commutation relations between different fermions:

iy 1 z
Pi(e) = (-;%) /2 I, exp [—2m’ﬂ_l /_oo d¢ my (¢) —%iﬂqﬁn(z) ,
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$(e) = —i (g%)l’ ? K exp [—2m’ﬂ_1 / T doa (5) — 3in(z)| (2.9)

The Klein faclors are defined by
Ky= ][ (=1, (2.10)
a'<n
where N, is the number operator for the n’th Fermi field.
Using (9) one may bosonize any many—fermion theory. For example, the non diagonal
fermion bi-linears, not given in (7), may be easily computed to be

z

5 20)9™ = (L) FamNuoxo v ([ dsrn=mm) 2 g om)|, 10

—0Q

where Fyp are the remnant of the Klein factors:

1 forn=m
—1)Ne forn<m
F':'n = n<p;m( ) (2'12)
H (—1)Ne+l forn > m
n>§>m

An expression for the non-diagonal currents can be likewise written.
We shall be applying Lhis formulae in the sequel to obtain the bosonized version of

multi~flavor QCDsy.

§2.3 QED, with abelian bosonization
In this section we shall describe the bosonization of electro-dynamics in two dimensions.
It will be shown how bosonization can, in quite a straightforward manner, help us understand
this model. This scction is based on the work of Coleman et al. (1976) and Coleman (1976).
The massive Schwinger model is quanlum electro dynamics in two dimensional space

time. The lagrangian is

L= —%F,,,,F‘“’ +9(E F—ec A—m)p (2.13)
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WhCI‘e F"” == (9,,,Ay - 3,/11”,.
In order to bosonize this model it is convenient to cast the theory into a hamiltonian
form. For that purpose, we first need to impose a gauge condition. We shall choose the

gauge:
Ay =0 (2.14)
Then the equation of motion of Ag becomes a constraint to be imposed on the hamiltonian:
92Ag = —eJp = —e: ply: (2.15)
The solution of this equation is
Ay =—ed]?~Fz -G (2.16)
(F and G are some constants of integration.) The electric field is
Fop = ¢d7  + F (2.17)

I has a physical significance, as it represents a background electric field. It is convenient to

express I in terms of a f—angle,
0 = 2nF[e. (2.18)

Then physics can be seen to be 2 periodic function of # with a period of 2x. The reason
for hat is as follows; since I represents a c-number background electric field, it can be
imagined as if created by charges of + I sitling at positive and negative infinity. Then if
F > e, an electron positron pair will be created {rom the vacuum. The pair will then be
attracted to infinity, reducing the value of the background field by ¢, to an energetically
favorable state. Hence, I will always be brought to a value between —e and e, and the

periodicity follows.

Now, the hamiltonian corresponding to the lagrangian (13) is

N = P (in101 + m)p + %Fg'l (2.19)
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Let us now use the bosonization formulae to translate (19) into a bosonic language. Using

(7), we can rewrite (17) as

el e

0
01 = €% 2r /7 ¢ 2n ( )
Inserting this constraint into the hamiltonian and also using bosonization for the free part,
we get
1., 1 2 e2 0 \?
=_1 b = _ N, — —_ 2.2
n 5 ¢+2(31¢) mep ,,,cos¢+27r(¢+2\/ﬂ_) ) (2.21)

which is the bosonic form of the massive Schwinger model.

Some very non trivial results can be immecdiately read from the bosonic hamiltonian
(21). Tirst, let us assume that m = 0 (the Schwinger model). Then we see that making
the transformation ¢ — ¢ — 0/(2+/7) eliminates altogether the ¢ dependance from the
hamiltonian and we arc left with a freec massive bose theory. This is the well known solution
of the Schwinger model. We can then also easily compute any expectation values we wish.

For example,

ec
VT

where po = ¢/ /7 is the photon mass. This is a known result originally obtained with much

(9 9) = (0p| Ny cos 2 /7 §|0,) = (2.22)

more labor by other methods (Casher et al. 1973).

Let us Lurn to the massive theory (m 5% 0). Then the mass term can be regarded as
a small perturbation in a frec massive boson theory, if m/e < 1. Then a non relativistic
aproximation can be used (Coleman 1975), showing a é(z)-force coming from the mass term.
Coleman showed that for cos@ < 0 there are no bound states; otherwise there is exactly one
n-body weakly bound state.

We wish to disscuss now electro dynamics with two flavors:

L= 3 %G F—m—c AW~ Fu ™ (2.23)

i=1,2
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q)

b)

I'ig. 2a rcpresents a typical diagram involving the ezchange of a heavy field. Fig. 2b 1s

a diogram with emission and absorption of a heavy field at the same veriez. Heavy particles

are represented by heavy lines.

In order to study the strong coupling limit of this theory, we need to write it in a bose form.

We use two Bose ficlds as cxplained in section 2. The electric charge density is
Jo=: 9! bpp = x=1/%9 2.24
0=:9jP1+YPp2=n 1($1 + ¢2) (2.24)
Thus, similarly to the one flavor case, the hamiltonian takes the form

1
N =N |0 45 H2+ (01¢1) (61¢2)2

2
+em? cos(2 /T éy1) + em? cos(2 /7 d2) + - (¢1 + ¢2 + Ko/_’)(z ] .
2

It is convenient to define

p+ =27 1/2(¢1+¢2+—)

Zym (2.26)

p— =272 (41— ¢2),
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and,
— 9.97
B T’ ( )

and the hamiltonian takes the form,
1 2
¥ = Ny, {Eni +%(al¢+)2 + g+ %ni +%(al¢_)2

—2cm? cos [\/57?45.,. - %0] cos [2/m o] }
(2.28)
The bosonic hamiltonian (28) is suitable for investigating the strong coupling limit when
e/m > 1. Note that the manifest isospin invariance of the fermionic theory is concealed in

the bosonic language. The diagonal isospin current may be written as
3 1. 1- 0 MV
Ju =3P b1 —5 % Tute = V20, 4. (2.29)

The other two currents become the complex nonlocal expressions given in section 2.

In the strong coupling limit the ¢+ ficld represents a very heavy field, its mass is ap-
proximately p#. The ¢— field remains in a much smaller energy scale. We shall not try to
analyze the high lying spectrum of the theory, distributed around g, because of its complex-
ity. On the other hand, the analysis of the low lying spectrum is rather straightforward. In
that case we can simply insert the value of the ¢4 field,

0

= (2.30)

P+

into the hamiltonian (28), to obtain a low lying effective hamiltonian. This can also be seen
diagrammatically. Suppose we limit oursclves to Green functions involving only the light
¢— field in external legs. Then all the diagrams containing an exchange of the heavy field
will be suppressed by powers of m/u (sce fig 2a). The only exception to this rule involves
diagrams with emission and absorption of the heavy fields on the same verlex (fig. 2b).

Those diagrams would contain a factor of In{m/u). llence we can eliminate the heavy field
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altogether if we can get rid of diagrams like fig. 9b. This we do by simply setting the

normal-ordering scale of the theory to the heavy fields mass:

m=p= \/2;6 (2.31)

We then get for the low lying hamiltonian
) =Nm [%112_ + %(014,_)2 + 2em?/2p1/2 cos(¢EE¢_)] (2.32)

The hamiltonian (32) apparently involves two mass gcales m and p. This can however

be remedied with the help of the renormal-ordering formula (5). Then
1 1 —
N = N {El'lz_ + 5(614)_)2 +m'? cos(v/2m d;_)} ) (2.33)

where

2/3
m! = (2cmp.1/2 cos%ﬂ) : (2.34)

So we see that the low lying theory obeys the sine-gordon dynamics~ with g = v/2x. Unlike
the one flavor case, the influence of ¢ is rather trivial—a change in the overall mass scale.
The original isospin invariance we had is now buried inside the dynamics of this sine-
gordon. The approximalion we made by imposing the strong coupling limit cannot spoil it,
since the eliminated ¢+ field is an iso-singlet.
The spectrum of the sinc-gordon theory is exactly known (e.g., Coleman 1975). The
theory has, as stable particles, a soliton and an anti-soliton and a breather family. Denoting

the soliton mass by M, the breather mass is given by (Dashen et al. 1975b)

12 2
M, = 2M sin (%) for f% = '1_-'[;37/'87 (2.35)

andn=1,2,... < 81r/,6’2.
Hence, for the value of § that we have here (B = \/_2_1;), we get two breathers. The mass of

the lighter one is

M) = 2M sin(r/0) = M. (2.36)
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The diagonal isospin of this partiicle, I3, can be computed using the classical solution
and the expression for the charge eq. (29). Then we see that the soliton, anti-soliton and
the lightest breather have the same mass and an isospin of I3 = 1, —1,0 respectively. Hence

we conclude that they form an iso-triplet. The heavier breather has a mass of
My =+V3M. (2.37)

and, since its I3 is zero, we conclude that it is an iso-singlet.

In conclusion, we see that we have an iso-triplet and an iso-singlet. The original
isospin symmetry, obscured by the bosonization, reappeared in the spectrum as a result of
the dynamics of the sine-gordon.

In the next chapter we shall return to this system using the non-abelian bosonization.
Then the isospin symmetry will be manifest also in the bose theory. We shall then be also

able to generalize this results to morc than two flavors.

§2.4 QCDy with one flavor

o

We wish to turn our attention to @QCD in two dimensions. This will serve us as a toy
model to the real QCD in four dimensions. We shall start by deriving the low lying theory
for the one-flavor case. In the next section the many flavor theory will be addressed. Our
treatment here of the one flavor case is based on the work of Baluni (1980) and Steinhardt
(1980) and is in close analogy to that of electro dynamics, done in section 3. We shall see
that the low lying spectrum of the theory obeys a sine gordon dynamics. Hence, we have
solitons and breathers accordingly. The soliton is shown to be a baryon and the breather—a
meson, interpreted as a stable bound state of baryons—a baryonium.

The model we consider is an SU(2) gauge theory with one fermion in the fundamental

representation. The hamiltonian is

N . .
A=Y {eP(ED? + P m(sioy —ial) + ms] 9 ]} (2.38)

Lt
i,j=1
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The canonical variables {E},A;'-} and {¢*',9;} are constrained.by Gauss law as in

electro-dynamics,
omt = i, B + Lyt g, — Loiptty (2.39
i=waA bty i TN k -39)
We use hcre a matrix notation for the gauge fields defined by 2E;: = ()\“)';:E‘i, where the \®

are the Gell-Mann matrixes normalized as Tr(\*Ab) = 2§95,

The hamiltonian (38) represents a many fermion system. So we apparently ought to use
the many—fermion formulation of section 2. In the one-flavor case, we can however avoid
this complication by choosing a special gauge. In this, so called, Baluni gauge, the fermionic
hamiltonian, alter the climination of the gauge fields, involves only diagonal fermion bi-

linears. IHence the one fermion bosonization formulae may be used.

The Baluni gauge is

Ai=0, Ef=0, forisk (2.40)

] 3

Then Gauss law (39) can be written as

dye; = Vot v = ya J§
(2.41)

e — e Al = VA gy =vmal, ik

where the ¢;’s are defined by
. 1 )
2\/7rE,?=—(e,-—1—v-Zk:ek), i=12,...,N. (2.42)

Inscrting (41) into the hamiltonian enables us to eliminate the gauge fields from the
hamiltonian. Doing also a Ficrz transformation on the Fermi fields we see that the hamil-

tonian contains only diagonal fermion bi-linears,

N = o+ M1

No= Zi@i 710191 + m P; ;)
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)(1_8IFNZ 43 \/’”E'/’ (1+76)%7 &7 (1= 96)0 /(e — ¢5) (2.43)
il

We can now casily bosonize the hamiltonian (43) using our correspondence formulae

(7). Delining a bosonic field ¢; for each fermion 4; we get from (7) and (41),
d1e; = ap!' 9y = d14; (2.14)

Integrating we get
e; = ¢; + ¢ (2.45)

The ¢;’s are constants of integration representing, as for @Q ED3, a background electric field.
Here, however, since our fermions are in the fundamental representation, the constants can
be set to zero (see Witten 1979).

Using then the bosonization formulae (7) for the fermion bi-linears, we finally get the

Bose version of @CDy with one flavor,
N =N, { E%H? + %(algb,-)z + 2mA(l — cos 2 /7 ¢;)
l. I
g2 (- 6 + A2 sin(¢; — ¢j)}
8xN 2 ! 2 ¢i—¢;

(2.46)
Like the @ EDg case, the analysis of the hamiltonian (40) is rather diflicuit. However,
deriving the strong coupling limit is quite straightforward. It is done in analogy to the

treatment of QD9 with two flavors (Steinhardt 1980). We first notice that the hamiltonian

(40) contains a mass term for all the fields except of the combination:
X= _E s (2.47)

The rest of the ficlds can be taken to form a unitary matrix together with (47). Denote

them by 9;, 7 =1,2,..., N — 1. We can then read the mass of the ¢; fields,

1
1—— 2.48
T2 \/7r N (2.48)
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We assume now the strong coupling limit, g/m > 1, so the ¢ fields become very heavy
and decouple from the light field x. In order to eliminate the heavy fields we employ a
similar argument to that used in section 3 for @Dg with two flavors. We then see that we
just have to set the 1; ficlds to zcro, and to set the normal-ordering scale A to the mass of

the heavy fields,
A= My (2.49)

We then get the low-lying theory,

¥ =Ny {%n;’; + %(alx)2 + 2mAN cos (2\‘%")} (2.50)

which is a sine gordon theory with § =2 \/;/W
As for QEDg we can show that the the theory (50) contains only one mass scale by

performing a renormal-ordering. Using eq. (5) we get

) = Ny [%nf; +2(@1x)? + (m)? cos (27‘%1 x)] , (2.51)
with
1-1/NN/(2N-1)
m! = [Nm (L_) ] , (2.52)
VT

which is the scale of the theory. The sine-gordon system predicts a soliton and a breather.
The soliton solution obeys x(—co) = 0, x(co) = 2r/d. Then we can compute the quark

number current using (7),

1 vN
Jy, =] 77—; E,' :fuuauﬁbi = T/—ﬂ':e’anXI (2'53)
and the quark number,
o0 vN or N
q /_oo ) Jr 1X NG (2.54)

So we see that the soliton has a quark number of IV. Defining the baryon number of a
quark as 1/, we sce that it has a baryon number one—the soliton is a baryon. Similarly

the anti-soliton is an anti-baryon.
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The theory (51) predicts also a family of stable breathers. The breather solution f(z, t)
obeys f(—o0,t) = f(co,t) = 0. Ilence we can compute its baryon number using (53) and we
see that it is zero. The breather of the sine-gordon theory may be interpreted as a bound
state of soliton and an anti-soliton. Ilence we see that the breather is a baryonium—a

baryon anti-baryon bound state. The mass of the baryonium can be obtained from (35),

4/ \[m (g)m n (2.55)

and n = 1,2,...,2N — 1. altogcther there are 2N — 1 baryoniums.

. T n
Mﬂﬁ = 2MB s1n (E ETV—— l) N::oo

§2.6 QCD,; with many flavors

In this scction we shall treat @CDg with many flavors using the abelian bosonization.
The bosonized version of the theory will be obtained. It is shown that there is a basic differ-
ence between the one-flavor theory and the many-flavor case. An extra nonlocal interaction
arises which complicales the analysis. This section is based on the work of Cohen, Frishman
and Gepner (1982).

Our hamiltonian is a generalization of (38) to many flavors. Denote the flavor index by

Greek letters. Then,

Nc . . . . . e .
W= P E® + 397 60y —iA)pi® + mo} 37 g (2.50)
'.)j=1 «@

N¢ and Ny arce the number of colors and flavors respectively.
The {irst step, which is the climination of the gauge fields, is a simple extension of the
one-flavor treatment done in section 4. Choosing the Baluni gauge (40), Gauss law becomes
— § R
die; = /m > 9t 9y = /r J§
o B (2.57)

ilei—e)Af =/r ) U i =vmig, ik
a

where the e;’s are defined as before (eq. 42). We now wish to insert (57) into the hamiltonian

(50) for eliminating the gauge ficlds. Now, however, unlike the one flavor case, we cannot
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use the Fierz transformation for getting only diagonal fermion bi-linears. We can have the
bi-linears diagonal in either color or flavor, but not in both. We choose the former. Thus,
we need to usc Halpern’s formulae for many fermion bosonization. Substituting a bosonic

field ¢;, for every fermion $¢% we get in particular from (11),
= Bi cio, .-
P (1 v5)¥ai = —F Ny exp [t e (/ dg (mpi — mai) £ (63 + %.‘))} ) (2.58)

where the I"’s are defined by (12).

Using this expression we arrive at the bosonic form of @CD3 with flavor,

N o=+ ¥

Yo = Ny 35 (lai)? + S @19a)? + (2) mu(l ~ cos2 V7 dai) (2.59)

2 2
)(1 = S:—Nch, E (E(d’as - ¢aj)) - (262\_:9"2 NI" E ZKaﬂ,lj

ij \ a i#j of

X sin /7 (_/ ’ (Mo — Tpi + Tpj — Taj) d¢ — (Bai + G095 — baj — ¢pj)) / Y ($ai — $aj)

—c0
The important contrast to the one flavor resuit (46) lies in the second term of ;. This
cumbersome looking interaction term is further complicated by its nonlocality.
We shall now try to apply the strong coupling limit to the hamiltonian (59). We have
here a mass term for the fields Y, ¢iq — ¢ja, Which makes them very heavy. Hence, as
before, we can sct Lhese fields to zero provided that the normal-ordering scale is taken to

be the mass of thesc fields. So we set

9V 1
b= \/1 7 (2.60)

Let us concentrate on the two flavor case. Then it is convenient to define the field

X; = 2_1/2(¢)1,- — gg), and x = —\/%Z ¢ai- The interaction term then assumes the form,

=gy 3 (cosv2m(xy —x7) - _1NO+NG) o5 vax [
. G .., X; = X;) (-1) cos V2w

i o
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where N(¢) is the number of fields with color ¢ and flavor 1.

The analysis is further complicated by the presence of momenta in the interaction.
Hence we resort to the static approximation which means taking = to be zero. Then the
interaction (61) will further force some fields to be zero. To see exactly which, we must find

the minimum of I and substitute the fields which give the minimum, into the hamiltonian.

We can write (61) as,

2
I=Vo+ Vi cosv/ar(x; —x7)=vo+u1|D_ eFVRTXT (2.62)
t,] 1
Hence the minimum is obtained when
3 VI =, (2.63)
§

and the interaction term becomes zero under this condition. The mass term (the last term

of Mp in eq. (59)) also becomes zero, since

Ne

D cos(2 /T dag) = ) cos (\/35 X +V2r x,-‘) = Re?V2m/Nex 3 VXD =0 (2.64)
0 £ R £

Hence we are left with a massless hamiltonian for the fields solving (62). This is an
unacceptable result since those fields are not physical. Our result means that there are no
light particles in the spectrum. This is simply wrong.

Hence we conclude that the approximations we have carried are not justified. The
blame, we believe, is on the static approximation that was needed duc to the nonlocal nature
of the interaction. This nonlocality is inlimately connected with the isospin invariance.
namely, the isospin transformations which are manifest and simple in the fermionic theory,
become complex and nonlocal in the bosonic theory. Once we made the static approximation,
we broke by hand the isospin symmetry.

Thus we see that there is a need for an improved bosonization scheme, one in which

the isospin symmetry remains manifest and local. precisely these properties are obeyed by
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the non-abelian bosonization discovered by Witten (1984). In the next chapter we address

this question again, showing that the low-lying theory of multi flavor @CD2 contains a rich

speclrum.



Chapter 8

Non Abelian. Bosonization and Gauge Theories

§3.1 Introduction

Recently, Witten has suggested a new bosonization procedure (1984) that consists of
an improvement over the usual bosonization (Coleman 1975) by being manifestly isospin
invariant. Ilere we shall return to the gauge models that were treated in chapter 2, applying
on them this technique. We shall see how the non abelian bosonization resolves the problems

previously encountered. This chapter is based on my work (Gepner 1984).

Recently, there was also quite an interest in QCD eflective low energy theories in four
dimensions. It was suggested by Witten (1983) that baryons can be solitons of such a theory.
The analogous problem in two dimensions is treated here. We start from the lagrangian of
QCDs with many fermion flavors in the fundamental representation of color. Then we prove
that indeed such an clective theory is the outcome of the analysis and that it describes

baryons as solitons of that theory.

In order to analyze the resulting bosonic theory, we need to discuss two main issues.
First we necd to perform renormal-ordering ol operators, which is necessary for showing
that the theory has one mass-scale and for computing this mass scale. Hence we discuss
the regularization and the dimension of operators of this WZ non-linear sigma model. We
also need to preform a semi-classical quantization in order to get the isospin content and
approximatc masses. We show that the representations that can possibly appear are all
those having a fixed sct of quantum numbers delcrmined by the classical solution. We show
also that those quantum numbers can be obtaincd from Witten’s expression for the currents.

Since these two issues are outside of our main course, they are trealed in the appendices.
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We apply our methods to @ EDg with mass as an interesting example. The case of two
flavors was previously discussed in section (2.3), using the old bosonization scheme, following
Coleman (1975). We reach an agreement with his results and this provides an important
check for our methods. In addition, we are able to generalize his results to more than two
flavors.

The abelian bosonization was shown in chapter 2 to be a very useful tool for analyzing
gauge models in two dimensions. In particular, the massive Schwinger model (section 1.3)
and QCD3 with onc flavor (section 1.4) were treated and the spectrum of the theories was
found in the strong coupling limit.

On the other hand, bosonization has been less successful when more than one flavor
was included (Amati et al. 1981, Cohen et al. 1983). In section (2.5) QCDg with flavor was
bosonized, resulting in a non local hamiltonian. The isospin invariance was hidden inside a
complicated interaclion and an attempt to analyze it using static approximation ended with
producing unscceptable results. Here we shall address this problem again using Witten’s
non abelian bosonization scheme.

This chapter is organized in analogy to chapter 2. In Scction 1 we discuss generalities
of the non abelian bosonization.

In scction 2 we treat the multi-flavor massive Schwinger model and it is shown that
there are two low-lying multiplets. One is an iso-singlet, and the other is in the adjoint of
SU(N). Their masscs are given and for two flavors they reasonably agree with the results
of Coleman (scetion 2.3), who treated the two flavor case using the abelian bosonization. As
a side result we are able to show that an SU(2) WZ theory with mass term is equivalent to
a sine-gordon theory with f = /2.

In Section 3 QCD with many flavors is analyzed and we find the spectrum in the strong
coupling limit for two flavors. We show that the low lying theory is exactly described by a
WZ effective lagrangian, analogous to the four dimensional one that was proposed to describe

QCD4 on semi-phenomenological grounds (Witten 1983). Like the four dimensional case, the
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baryons appear as a soliton of the theory. The spectrum that we find in the low lying theory,
for two flavors, i closcly parallel to the results of Steinhardt (1980), who investigated the
one flavor theory. Like him, we show that the spectrum consists of a baryon family (soliton)
and a baryonium family (breather). However, here, unlike the one flavor case, an interesting
isospin structure is revealed.

Using semi-classical methods, the isospin of the baryon was shown to be N./2—the
totally symmetric isospin representation. Namely, only the decuplet exists for SU(3)y, as
we expeet in two dimensions from naive quark model arguments. In addition, we expect
iso—rotationally excited baryons, having isospin higher than N./2 by some integer.

A breather solution shown to exist in our theory, describes a baryoniun—a baryon
anti-baryon state, (as the breather of the sine-gordon theory describes a soliton anti-soliton
state). The lowest baryonium is an iso-singlet. It is excited to give more particles, in two
ways. 1) "radial” cxcitations, found by the Bohr-Sommerfeld quantization condition. They
have the same isospin but higher masses. 2) Iso-rotational excitations. They give higher
isospin baryoniums, having an arbitrary integer isospin. The hicrarchy of the baryoniums is,
in fact, analogous to the levels of the hydrogen atom, having a principal "radial” quantum
number and isospin quantum numbers (angular momentum). Approximate masses were
given for thecse particles.

We postponc to the appendices two issues concerned with the analysis of the resulting
bosonic theories. In appendix A questions of regularization and renormal-ordering are ad-
dressed. In appendix B the semi classical quantization of the resulting bosonic lagrangians
is treated.

The importance of the work presented in this chapter may lie in various directions.
First, many of the methods developed in the appendices will enable further application
of non abelian bosonization for the investigation of two dimensional models. Those can
also describe four dimensional phenomena, e.g. the Callan-Rubakov eflect (Callan 1982,

Rubakov 1981; 1982). We should mention that the study of two dimensional WZ theories
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is not yet complected, and our results may assist it; in particular—the equivalence we have
found between an SU(2) WZ theory and a sine-gordon theory.

The spectrum of QCDg, found by us, may be instruclive concerning the validity of
compositc models of quarks and leptons. It is vital for these models to find massless fermions
in a confined strongly intcracting gauge theory. Exactly such fermions were found here. In
this context, it may be interesting to study how ’t Hooft consistency condition is satisfied
here, as it may teach us more about this important model building tool.

Finally, our results on QCDgy provide an important support for Wess—Zumino current
algebra theorics as candidates to describe the dynamics of @ CD. We have found a direct link
between these theorics and @CDg. It may encourage us to think that such a link exists in
four dimcnsions as well; or, at least, that these theories should be taken even more seriously,

than they had alrcady been, for the purpose of understanding the strong interaction.

§3.2 The non abelian bosonization

In section 2.6 we have treated @CDg with flavor using the abelian bosonization. We
than had to usc Ialpern’s expressions for the fermion bi-linears. Those are cumbersome and
nonlocal and hence prevented us from a’nalysing the strong coupling regime of the theory.
This is a general drawback of the abelian bosonization. The other intimately related problem
is the spoiling of the manifest isospin invariance. This invariance, which is 2 clear and simple
U(N) group for the fermion lagrangian, becomes complex and non local for the equivalent
bosonic theory.

This was seen in section (2.3) where @ EDy with two flavors was treated. Luckily, in
the two-{lavor case we did not need to use non diagonal fermion bi-linears. Still, the isospin
syminetry was buried inside the dynamics instead of being manifest. For more than two

flavors we again encounter the problem of norlocal expressions.

Thus comes the nced for an improved bosonization scheme, one in which a many fermion

theory would be mapped into 2 many boson theory that would have a manifest isospin
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symmectry and would be simple cnough to be useful.
This problem was solved by Witten (1984). In the following we describe the bosonization
for Dirac fermions, instead of Majorana, since this is what we shall later need. Take a theory

of n Dirac fermions (massless and free)
L=1gi Jbe (3.1)

The internal symmetry group of this lagrangian is G = SU(N)L, X SU(N)r X U(l)y
(We disregard the U(1)4.) Let us define a bosonic multiplet g that takes its values in U(NV)
and transforms under SU(IN) X SU(N) in the so called non linear realization and is 2 singlet

of U(l)y
g—AgB~! A€ SU(N),, B€SUN)r (3.2)

Then Witten shows that the theory (1) is equivalent to a bosonic non linear sigma model
given by the lagrangian

1

L=%z

Tr(09)(ug™") + nL'(g) (33)
with X = \/% and n = 1. T is a two dimensional Wess-Zumino term

1 3 iikn 107 107 __10F
=— d°y* " Iy — — — 3.4
12r/ B y g dy; g doy; J Sy (3.4)

B is an extension of our space time to a three dimensional ball whose boundary is space
time. 7 is an extcnsion of g to that space. I is a local lagrangian in the usual meaning since
the integrand can be locally written as a total divergence and then as a surface integral
using Gauss theorem.

Then the following dictionary of bosonization is given

7 =l = (0704 0)y (3.5)
N . . mn _
TG =gyl =209 07"y (3.6)

2
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Where we use the light cone variables, 04 = d¢ 4 d1; J+ = Jo &+ Jy.

A mass bi-linear is identified by
1ok = Kou (3.7

K is a regularization dependant constant. For Majorana fermions one must take g in O(IV)
and a factor of half in (3).

We wish to emphasize one major difference between the U(NN) and the O(N) bosoniza-
tions. This ariscs because U(IV) is not a simple group. Hence the U(1) part should be treated
separately ¢.g. when we wish to compute various commutators as Witten does for O(IV )-
Then one can repeat Witten’s computation of the commutators for the SU(IV) part, and for
the U(1) part'use canonical commutators, and by that prove the equivalence of the Dirac
fermions theory and the U(IN) WZ model. It is evident that one should then disregard the
U(1)4 symmetry. Hence the Green functions of the bosonic theory would correspond to the
Green functions of the fermionic theory regularized as to conserve SU(N) X SU(N)g X
U(1)y. This was originally discussed using path integral methods by Di-Vecchia et al. and
Gonzales et al. (1984). They show that the SU(IN) vector part is not conserved in Green’s
functions involving two or more currents. It was argued by Y. Frishman (1984) that one
can still classily states using this symmetry, because than we need only to use the current
bracketed between the states in question.

We shall now rcturn to the models treated in chapter 2. It will be shown how using
non-abelian bosonization cures the previously mentioned problems. The low lying spectrum

of this theorics will be thus derived.

§3.3 Electro Dynamics With Flavor

We shall return here Lo the electro dynamics model with flavor, using the non abelian
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bosonization. The lagrangian is
1 i
L=_ZFWFW+Z¢'-(iﬁ—eA—m)¢.- (3.8)
t=1

This model has a SU(IV) symmectry. The case of N = 2 was treated in section (2.4) (Coleman
1975). Using the abelian bosonization scheme it was shown that the low lying spectrum of
the theory consists of one iso-singlet and one iso-triplet of particles. Their masses were also

given, and they obey
Mi—o = V3 M—, (3.9)
We shall analyze the lagrangian (8) using the non abelian bosonization. We show that
for general IV the spectrum contains one singlet particle and one particle multiplet in the

adjoint of SU(N). We shall also give the semi-classical masses. In the case of N = 2 we
get an agreement with Coleman. This consists of an important check of our formalism.

In order to bosonize the lagrangian we must first cast it into a hamiltonian form and
climinate the gauge fields. This is done exactly as in section (2.4). For the sake of convenience
we repeat the main steps. We choose the gauge A; = 0, then the equation of motion for Ay

becomes a constraint:
8249 = —eE 1P i = —edp (3.10)
i
The solution is
Ap = —ed72Jy - Fz -G (3.11)
(" and @ are some constants of integration). or
For =ed7 g+ F (3.12)

I is physical and should be interpreted as background electric field. The hamiltonian is
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We arc now ready to proceed with the non abelian bosonization. Taking g in U(IN), we have

for Jp
Jo = —yin det g (3.14)
2r
Substituting that into (12) we get
ie
Iy = ﬂ-ln det g + I (3.15)
For convenience let us separate g into U(1) X SU(NV)
g = eteVAr/N, 8 € SU(N) (3.10)

and ¢ is a scalar field. Also define a §-angle by ¢ = 2xF /e. Then, substituting equation

(15) into the hamiltonian, we get the bosonized form1

1, 1., g 12N 0\ ipy/En/N
N =gmp+5010)° + Upreelo) + 53— (qo—wm +mcu\/1—V—N,,,(ReTre V' s)
(3.17)

Let us now assume the strong coupling limit ¢ 3> m. Then @ becomes a heavy field with

the mass

evVN
my R 7 (3.18)
and my 3> m. All the diagrams that involve an exchange of the heavy o fleld (fig. 2a, in
page 32) would contain a propagator and hence would be smaller by powers of m/my. The

only exception to that are diagrams in which the ¢ field is emitted and absorbed at the

same vertex (fig. 2b, in page 32). This diagrams would contain a factor of In(m/my).

T It can be scen that the hamiltonian that corresponds to the WZ theory (A.1) is given by

>\2

E(J+J+ +J-J-)—m - Re Tr(g)

=
Then it is also seen that computing the classical energy for a diagonal classical solution can be done
cither using this hamiltonian, or by naively inserting it into the lagrangian (A.1) and computing
23 [or an abclian group.
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Diagrams like fig. 3b can be eliminated by normal ordering with respect to the mass of
the heavy ficlds. Actually, since we are dealing with an interacting theory, normal-ordering
connot be defined in the usual scnse. For a discussion of the regularization and related
matters see appendix A. Ilence we can eliminate ¢ from the hamiltonian by setting o =

0/2+/ N , and p = my,. Then we get for the low lying hamiltonian,
N = Nfree(s) + mcu\/ﬁNuRe /N7y 4 (3.19)

and s = e+/2. This looks like U(N) fermion theory with mass and the extra constraint
det(U) = 1. In order to get the mass scale of this theory we have to do renormal-ordering.

This is done using equations (A.27) and (A.33)
pl=NN s = m!~% NpRe Tr o (3.20)

then writing
me

Wi pNy(Ite Tr 8) = M2 Np(Re Tr a) (3.21)

and solving for 7 we get:

n = (me \/TV_MI/N)N/NH (3.22)

Then (19) can be written with only one mass scale m
N = Htree(s) + M2 V2 Nin(Re e/N Ty 5) (3.23)

In the case of IV = 2, which is the case that Coleman treats, we can further simplify (23).

This is because the trace of an SU(NN) matrix is always real. Then we get

N = Hjpee(8) + m> Ny e Tr 8 (3.24)

and

B 2/3
m' = (\/2 me pl/zcoag) (3.25)
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Note, the important fact that the only way the ¢ influcnces the two {lavor theory, is by
changing the overall mass scale—0 can, in fact, be ignored. This is in radical contrast to the
one flavor theory (Coleman et al. 1975, Coleman 1976). We also expect § to be important
for more than two {lavors.

For the same theory (8) with N = 2, we got in section (2.4) the following hamiltonian

for the low lying spectrum

N= %wz + %(()ﬂp)z + (m1)? N, cos (V27 ) (3.26)

2
1 2
my = (2cm;i217coa 3 0)3 (3.27)
and now we sec that the mass scale m; and m/ coincide apart from a constant factor
my = m'23 (3.28)

So we agree with Coleman about the mass scales.

Now we would like Lo know what particles are found in the lagrangian (23), and what
are their quantum numbers. This will be done using semi-classical methods. Ior a detailed

discussion of the scmi-classical methods we use here see appendix B.
First we obscrve that all the particles must have zero quark number (mesons, if you
wish). From semi-classical arguments the quark number is

) oo
= E;ln det(s) T 0 (3.29)

The next step is to carry out the semi-classical quantization. The first thing we need to
know is the classical minima of the hamiltonian (23). Say 49 minimizes V. Then we can
diagonalize sg .

sg = diag(e*®!, ..., en) Z o = 271 (3.30)
(r is some integer.) The condition for extremum then becomes— —gaz‘ = %"{— = 0; where V'

is given by

V(egN) = Z cos (a,- + %) + Moy — 27r) (3.31)
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(\ is a Lagrange multiplier). The global minimum is then found to be for a; = 2wm; (the
m;'s are integers), for 0 between —m and . (If @ is outside the range we can bring it in
by simultancously shilting 0 — ¢ — 27k and 8 — 3 - e2imk/N , which leaves the hamiltonian
unchanged. This shows that physics is 2r—periodic in #). Now, due to the constraint def(s) =

1, the simplest solitonic solution we can have is
s(z) = diag(e**(?), e~te(2) 1,...1) (3.32)

and a(—o0) = 0; a(oo0) = 2.

Interestingly, for this particular solution, 0 is again irrelevant even for more than two
flavors. 0 can be absorbed in the overall mass scale i as in the two flavor case—define m/ =
m (cos ]%)N/(NH). However, there are other classical solutions, for which the influence of ¢
is far less trivial (for N > 3).

The quantur numbers of this state can be obtained using (B.7) (with n = 1). They
agree with the quantum numbers of a quark-antiquark state, 7y g2. Hence the possible
representations coming from semi-classical quantization are in the adjoint of SU(N) or
higher represcntations that contains states with the adjéiut quantum numbers. We believe
those higher representations to be unstable since here n = 1, and apart from different
groups, this is the free fermion case. (This can also be scen from Coleman’s work, where
there are no more stable particles for the sine-gordon theory he obtains.) There would be
a breather solution if in (32) we replace a(z) by f(z,t), which is a breather solution of the
sine-gordon. Then it is casily seen that this solution is a singlet. For N = 2 we get isospin
zero and one, in agreement with Coleman.

We would now like to obtain an estimate for the masses of these states. This is done
by simply compuling the classical energy of those solutions. The result for the soliton mass

is (for any V)
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Computing the classical emergy of the soliton of the theory (26), which for N = 2 is

cquivalent to our theory (24), we get

(Col) __ 8m1 _ o—1/0y, 3.34
\/ﬂ' 8 ( )

This is a very reasonable agreement.

In order to get the mass of the breather we need to use Bohr-Sommerfeld quantization
formula, much in analogy to the treatment of the sine-gordon breather. (See, for example,

Coleman 1975.) We get (for any N)
. (lkm
Miyreather = 2M,y0in (-8_) k=1,2,3 (3.35)

Since the £ = 1 breather is supposed to be the I = 0 state of Coleman, we see that we have

Mg
M,

— 2ain (%) ~ 0.700 (3.36)

Comparing this with equation (9), we sec that we have about half of the expected ratio. We
attribute this discrecpancy to higher order quantum effects that we have not included in our
computalion.

Finally, we would like to include the iso-rotational energy as a correction to the classical
masses. We shall do that in the case of N = 2. Then equation (B.0) gives us the iso-

rotational energy of the soliton if we take I = eg = 1. Computing the moment of inertia

M we get
4 o 32 1
M =—; in? =0 . 3.37
)\2-/_00 sin‘e dz 32 I, (3.37)
Hence, the iso-rotational cnergy of the soliton is
By = L= M, 3.38
(iv0) = 327 = gg Mo ~ 0400, (8.28)

Including this energy in the soliton mass (33) will give us a discrepancy of about 30% in
(34), which is rcasonable. Also it will further decrease the mass ratio (30), worsening our

agrecment with Coleman by about 30%.
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§3.4 QCD, with flavor

We now wish to discuss QCD in two dimensions. The one flavor theory was treated
using the abelian bosonization in section (2.4). For ome flavor, the low lying spectrum of
the theory was obtained and it was shown to include a baryon and baryoniums. Analyzing
the multi-flavor theory using these methods (section 2.5) ran into difficulties due to the non
locality and complexily of Lhe resulting bosonized hamiltonian. Also the manifest isospin
invariance was hidden in the bosonic language. These are exactly the problems that the non
abelian bosonizalion comes to solve.
Applying it here we shall obtain the low lying spectrum of @CDg with flavor. Our main
result is showing that a WZ type effcctive lagrangian arises dynamically for QCD in two
dimensions. We shall further analyze the spectrum of this WZ lagrangian using the methods
described in the appendices. We show that a baryon exists as a soliton of this theory much
in the same way as was phenomenologically suggested for QCD4 (Witten 1983).
The first step in the analysis is to choose a gauge and to eliminate the gauge fields.
This is done exactly as in section (2.5). For convenience we repeat it here. The hamiltonian
of QCDg with flavor is
N, N . o 1

=73 {.qz(E;-)2 + Zl P 41(66] 01 — ALYz + mP™ Pa;] J (3.39)
a—
(4,7 are color indices; « is a flavor index; N, and Ny are the numbers of colors and flavors
respectively.)

We assume that all the fermions have the same mass. Matrix notation for the gauge

ficlds is also used

B = %(x“);'.E“ (3.40)

We have to supplement (39) with Gauss law as a constraint

. , , 1 N 1 .
alE;' = ’L[A, E]; + §(¢faz¢aj - ZN:6;¢1ak¢ak) (3.41)
k
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(We assume no summation over repeated indices in this section.) As a gauge condition we

take Baluni’s gauge
Ai=0; Ei=0  for ik (3.42)

Using Gauss low and the gauge condition we can ecliminate the gauge fields. Then

Dre; = /1 Y Pl (3.43)
a
—i(e;— ep) A = /Ty oty for ik (3.44)
with the e¢’s defined by
; 1
2/rEi = e,--mzk: ek (3.45)

The next step is to bosonize the hamiltonian. We have in total N. X N; fermions so
we apparently need to take U(Ne X Ny). In fact we need a much smaller group, namely,
UN f)N°. Specifically, the only currents neccssary are those that are diagonal in color. So

we choose N matrices of U(INy).

GEUN,) i=12,...,N, (3.48)

Then
()ap = Wi = 5070400 (3.47)
(1) = ¥1¥0_pi = —-;;(3—9.' 9 ag (3.48)

In order to translate (43) we need
. , i _
D 1%y = Tr(Jg) = g 1r (g 1314;) (3.49)
a

We can then write (43) as

dre; = —z—EGITr In g; (3.50)

2/
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or
)
€ = m]" in g5 + C" (3.51)

The Cy’s are constants of integration which express background color electric fields. How-

ever, unlike the case of U(1), here they can be set to zero (Witten 1979).

From (44) we get

"/)tak'lbai

Ai-‘ =2 =
Tr In gig;

for ik (3.52)

Inserting (52) into (39), making a Fierz transformation and, using the bosonization formula

for the fermion bi-linears, we arrive at

= Nfrce(ﬂl') + Hine(95) (3-58)

2 Tr g-g'.-l
() = __ ¢ ._—12_ 2 tJ4 Ty ¢ (3.54
Hint(9¢) g 3272N, (Ir in 9i9; ) —mA v In g'_g;-I + Z:mCA Ny Trg; (3.54)

This is the bosonized version of Q@CDqg with flavor.

To get the low lying spectrum, let us look on the strong coupling limit where g/m > 1.

Then define the potential V' by

».9 Ty g.g,-l
, g -1,2 2 tYj
Vige) = ———(Tr In gy97") — A  ————3 3.55
It is convenient to separate g; from its U(1) part
g =e2VTNreiy,  yiesUWN,) VTN e (3.50)
Now V will take the more transparent form
2 . a2 J2/T/Ni(ei—ei) ..
g°N iyTA% e K
Vipnu) =Sl pi—piff 40— @)
iyj BFNC 2 JNf (pi p]

where I{;; = fﬂ'(u,-u;.'l). It can be seen that K;; is hermitian, Kt = K. For Ny = 2,

IC;; is real as it is the trace of an SU(2) matrix. In order for the potential V to be free of
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singularity we need exactly this property of K;;. So from now on we shall concentrate on

the case of Ny = 2. Then we can write V as

9Ny

\/;A2 sin 2 7I'/Nf (go,-—tpj)
il g?ch T
t,J

V= A Sl
2+/Ny Pi— Pj

K;; (3.58)

(i — ©;)°

The absolute minimum of this potential when varied on p; is at 3 = ©; for all ¢ and j.

Then V becomes,

VA2
V==-Y"2_N"K 3.59
2‘/N!-Z.i: ! 459

Now we should minimize V with respect to the u;’s. Remembering then that ﬂ(u,-u}l) <

Ny, where equality holds only for u; = uj;, we get for the minimum of V,
U =U; = ¢
{ (3.60)
pi=Pj=¢p

Then we can insert (60) into the hamiltonian (54) and V' drops out. The result is
H = NeHjree(g) + Neme \/ Ny ANpTY ¢ (3.61)

and, g € U(N,). The lagrangian corresponding to (61) is

L= g_;ﬂ(aug)(apy‘l) + NeI' — Nem A /Ny NpTv ¢ (3.62)

By reasons similar to those in section 2 we also have to take A equal to the the mass of the

heavy fields. Their mass is given by

g,/Nf
.63
M, ~ N, (3.63)

Only then can we ignore a diagram like fig. 3b. We see that (62) is a WZ like effective low
encrgy lagrangian of the kind proposed for @QCD in four dimensions (Witten 1983). The

rest of this section will be devoted to the analysis of this lagrangian. We can rewrite (62)
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using our renormal-ordering prescription with one mass scale by computing the anomalous

dimension of g. From (A.23) we can can compute for the SU(Ny) part

2 N'? -1

AW = G n = Ny (Ne+ Ny)

For the U(1) part we get from (A.18)

ip\/arf NN — _ 1
A (“ ) NN,
Summing up we get
Nf2 -1 1
9) = +
Ny(Ne+ Nyg)  NeNy

A(
Then solving,
A
p2N,Trg = NemA /Ny NATr g = Neml /Ny (%) NuTr g

(Eq. A.17 was used), the mass scale of the theory, p is seen to be

= (\/ITINcmAl_A)I/(Z—A)

Then the lagrangian (62) bccomes

N, -
L= 8—1:(0”g)(6,,g Y4+ NL ~p?NyRe Tr g

We see that u is the only mass scale of the low lying theory.

(3.04)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

From the semi-classical analysis of section 1 we know what to expect for the spectrum

of this lagrangian. A soliton that appears in the theory is given by (B.1). Using (B.3) we

realize that it has a quark number equal N,. Defining the baryon number of a quark as

1/N¢, we get for the soliton a baryon number one—the soliton is a baryon. Using (B.5) we

sec that this baryon has an isospin N, /2. It is fully symmetric in the isospin wave function,

as we would expect from quark modcl arguments (sce section 1). The soliton mass can be

obtaincd by computing the classical cnergy and the iso-rotational energy. The result is

M, = i_,u. vV N,
VT

(3.70)
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This result becomes exact for N, large enough. There would also be a baryoniums family
given by the breather solution (B.29). These particles are mesons (no baryonic charge ) and
have isospin 0,1,2,... .

To get the masses of the breathers we can use the Bohr-Sommerfeld quantization for-
mula as in seclion 2. Then we gel in fact the same result as for the sine gordon breather

(Coleman 1975),

. (B . ( 7k
Mpreather) = 2M,sin (?IT) = 2M,sin (ZIVC) (3.71)

and k=1,2,3,...,2N,— 1.
It is surprising that we get here the same number of breathers and an identical mass formula
for them (except of the mass parameter) as Steinhardt who treated the one flavor case (see
section 2.4).

We can compute the iso-rotational energy of the soliton using (B.21) and (B.26), and

by identilying eg = N,/2 and n = N,. We get for the moment of inertia M

Ne [ 4N?
— _ — 7
M o /_oo(l cosc)dz I, (3.72)

And the iso-rotational energy for the lowest soliton (I = N,/2) is

. | N 2
B = s U +1) - %) = pp = (lch) Me o

For N, = 3 we pet E(199) 5 0.21M,, or about 20% increase in the soliton mass. The
iso-rotational cnergy of the particles with higher isospin, coming from the iso-rotationally
exciled soliton, is given by (B.26). Part of this particles may be stable as they will be

energetically forbidden to decay.



Appendices

Appendix A: Regularization and Renormal-Ordering

We now wish to consider the questions relating to the regularization of our sigma

lagrangian with a2 mass term.

1

L=z

Tr(0ug)(Bug™) + n(g) + g m - Tr(g + 97 (A1)

We assume that \2 = 47” , but n is not necessarily 1. Let us.assume first that m is equal
to zero. For n = 1 this theory describes massless frce fermions and thus it is conformally
invariant and the beta function must also vanish. It is also known that, for n 7 1, this theory
remains conformally invariant (Witten 1984), even though the theory does not describe
massless free fermions. The case m = 0, n 5% 1, describes a theory of n massless fermions
constrained to move together. But if m 3£ 0, then this is a non trivial theory, the spectrum

ol which occupy us in appendix B.

For m = 0 we are interested in computing Green functions such as

G(z1,22, ..+ ,70) = (g(z1)9(22) - - . 9(zr)a(zr1)t ... g(n)!) (A.2)

by using perturbation theory. First, we define ¢ = ezp(i\p®1'*), where T'® are generators
of U(N), so that Tr(T*T*) = 26*®. Now we can compute in perturbation theory the Green

functions and divert the infrared divergencies by assuming that ¢® has a small mass m and
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in the end let m go to zcro. We expand the lagrangian in powers of A and get

1
=Y = (0up?)? + O\ A3
L= D 5(0u" +00%) (43
Those higher orders in A we regard as a perturbation, and compute in the framework

of perturbation theory. This procedure is analogous to that used by Coleman (1975) for

computing
G(ml, xz, e ’xn) —_ (: eiplp(xl) [ eiﬂzP(’;z) L. o eiﬂ"p(z") :) (.A..4)

for a frec massless scalar theory (namely, assuming a mass m and letting it go to zero in
the end of the computation).

Now, for m 5~ 0 we are interested in how m gets renormalized. An equivalent question
is how the operator g gets renormalized in the massless theory. We shall propose the
following renormalization prescription. Denote by |0m) the vacuum which is annihilated
by the negative frequency part of the ficlds ¢ decomposed according to the mass m

Pt = / Vﬁ‘%ﬁage—‘“ . (A.5)

And % |0y,) = 0, defines this state. Now we compute with momentum cutoff
A
(Omlgis10m) = 2 () 8 (A.9)
(This is the form since g is naively dimensionless.) Define the regularized g by
{Om|Nm(9)I0m) =1 (A7)

or

A

Npl(g) =271 (-"—L) g (A.8)

The anomalous dimension of ¢ is defined as usual by

A(g) = —m iz (4.9)
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Thus we can use the usual renormalization group reasoning to get the dependance of Ny,(g)

on m. Define

(04| Nim(9)104) = f (1, m, A) (4.10)
Then we know that

1, m, )7 (=) = (0ulg100) (a1

and is independent of m. Thus applying mvom on it we get

i) (i) A
n’bmf(ﬂ, m, A.) -+ m%ln Z (E) =0 (A.12)

Taking A —+ co and defining,

0(B)=, "™ m,0) (A.13)
we reach
[ ] stu/m) =0 (414
The solution to this equation is
ol m) = (£)* (A.15)
or
(OuiNmgl0) = (£)° (4.10)
thus
pANug = mANmg (4.17)

This is the desired *renormal-order” formula, to be compared with Coleman’s formula for

scalar feld.

, 2/4 ,
Nt = (ﬁ)ﬂ / " N ette (4.18)
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Ilcre we have tacitly assumed that the operator g does not mix with other operators
upou regularization, or that the theory (A.1) is renormalizable. For n 7% 1 this is not obvious
but can be proved using the conformal invariance of the theory with m = 0 (Zamolodchikov
1984).

In what follows we shall nced the anomalous dimension of g in order to preform renormal

ordering. For n =1 and G = SU(N) we know that the dimension is

Ag)=1- (A.19)

This is because for g € SU(N) and ¢ a Dirac fermion we have
WLy =celeVin/Ng, (4.20)
Using Coleman’s formula for the dimension of the scalar operator gives us

A (e;p¢_4w/w) A 11 (A.21)

and since ¢ is decoupled from g the anomalous dimension is simply additive, and we get
(A.19).

We can also quite casily compute the dimension of g for n large enough, by simply
computing the lowest order diagram for the vacuum expectation of g, which is given by

fig.3.

Fig. 8
34

The result is

Alg) = - (A22)
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Where Cy is defined by Cy - [ = TT°,

For SU(N) we have Oy = 2(N? — 1)/N. While this value must be exact for n — oo, for
n = 1 it docs not give the value expected from (A.19). A dimension that would be consistent
with both (A.22) and (A.19), could look like

(N2 -1)/N

— (4.23)

Afg) =

In fact, it was shown by Al Zamolodchikov (1984) that this value is exact, using the
conformal invariance of the theory. It was also shown by him that the general expression

for the dimension of g, for any group G, is

Cy

= A.
Co+n (4.24)

A(g)

Cg is the sccond Casimir of the adjoint, C28z4 = fascSave - (For O(N) we need to take
n =1/2 to get A(g) = 1, due to the extra factor of 1/2 that we have in the lagrangian (3)
for Majorana fermions).

Now, in (A.19) both sides must be regularized. We use our previously defined renormal-
ization prescription (A.7). From dimensional arguments, the constant ¢ appearing in (A.20)

must be proportional to the renormalization mass. Then we get
pilel = IKom : FeVAIN  Nip(g) (A.25)

Ilcre K is a constant which can depend on N. Using the definition of normal-ordering
made above, we wish to determine this constant. For this purpose it is convenient to deter-

mine first the value of the following Green function of the massless theory.

lim

Gu(e) = " A 0m|T Nemgis(z) Nmg 4 (0)]0m) (4.20)

n — 0
From renormalization group considerations similar to those we had before, we know that
G(x) behaves like

Ginlz) = kbgez=2000) (A.27)
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Computing the constant I is not a simple task and we shall have to resort to perturbation
theory and some amount of gucss work. Since we have here A2 = 4r/n, a perturbative
cxpansion in X is scnsible when 7 is large enough. Obviously we are mainly interested in

the case n=1. The lowest order diagram for G(z) is given by fig.4 .

Iig. 4

The value of which is

aTay, ,
(1 T )lfc ln(mc:c) —_—— 026tk
n n

Go(z) = — In(mez) ‘ (A.28)

(c is a mathematical constant related to Buler constant.) The coeflicient looks like the lowest

order of
2A(g) = cloi - (A.29)
Thus the full answer is likely to be
g~ 2Al)nmez) — (p00)=24(0) (A4.30)
or
Gt = (cz) 28005, (4.31)

This argument is not fully rigorous even for a very large n, since we have avoided the
question of interchanging the small m and the large n limits. The fermion equivalent to

G(x) for U(IN) and n = 1 is

66 = (T 5( ) gy @) 3 (L5 wer 0) =2 asy
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Thus we get

K =c¢vN (A.33)

Appendix B: Quantum Numbers and Semi-Classical Quantization

As mentioned earlier the lagrangian (A.1) describes a free massive fermion theory for
n =1 and G = O(N) or U(N). However, it becomes non trivial for n 7 1, or for different
groups. Then it describes an n fermion theory with non trivial interaction. In what follows
we need the specbrum of that theory. We suspect that this is an exactly integrable model,
but this is yet to be proved. (For U(1) this theory reduces to a non trivial (3 # 2/)
sinc-gordon which is known as integrable.) So we are forced to make the analysis in the
framework of semi-classical quantization. This will give us the possible representations of
the particles of the theory for any n and G, and estimates for their masses which are exact
for n large cnough. The first step is to pick up an anzats for a classical solution. We shall

start by limiting ourselves to U(N). Then a possible classical solution is
Q(z) = diag (c"'a(x), 1,1,...,1) (B.1)

(By “diag” we mean the diagonal mabrix having these values in the diagonal .) a(z) obeys

the classical sine~gordon equation

%a" +m-stne =10 (B.2)

The finite crergy condition for the hamiltonian, derived from the lagrangian (A.1), implies
that Tr(g) is maximal or that a(z) = 2wm and m € Z . Because of our experience with the
sinc—gordon cquation, we choose a(—oc0) = 0, a(oo) = 27. We expect this to be a stable
perticle, the soliton of this theory. It is simple to compute some of the quantum numbers

of this soliton using the expressions for the currents. The quark number current is

in vy -
B, =ﬂeu,,'_lr(g 19,9) (B.3)
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So the quark number is

« (B.4)

oo in [ in .,
B = /—WBde —ﬁ‘/—wal(ﬂ' In g)dz —ﬁlr Ing C
Computing for ()(x) we get a quark number n for the soliton, Take U(2) for simplicity.

Then we can compute in a similar fashion the I3 of Q(z).

I = f * Tr(03Q~101Q)ds =g (B.5)

—c0

So the isospin of the soliton must be at least n/2.

I =g:+ k k>0 integer (B.8)

The reason that Iy, I3 can not be computed reliably this way, is that using the semi-classical
method we compute only expectalion values of operators bracketed between the states in
quostion. So we can geb the eigenvalues only for operators, for which the classical solution
corresponds to an eigenvector. This method can also be applied quite simply to other groups.
We sce that the gencral rule is that only representations, which contain a state with the
appropriate set of quantum numbers, can appear. For U(IV) we can get in this way all the

diagonal charges by simply computing
° =27 TInQ(z) | ™ (B.7)
2 —c0

T is diagonal. Then the possible representalions that can appear when quantizing @(z) are
those that contain a state with the set of quantum numbers I%.

Now we will approach this problem in a totally different way. We shall make a semi-
classical quantization of the zero modes. Our reason [or this is two fold. First, this will
consist of a check of our formalism, and it will also give us semi-classical mass correc-
tions. We wish to carry out a scmi-classical quantization around the solution @(z) for the
lagrongian (A.1).

'The usual procedure lor semi-classical quantization is to define

g = A(t)Q(z)A(t)" (B.8)



69 Appendices §3.4

and to compute a lagrangisn for A(t) by substituting (13.8) into the lagrangian (A.1). For

the sake of simplicily let us limit oursclves to the case of U(2). Then the soliton solution is
Q(z) = diag (eia(”), 1) (B.9)

and, a(—oco0) = 0; a(co) = 2r. We can now show that the lagrangian for A(t) describes
a particle moving on o two-sphere 52 with a monopole in the center of it. First, it is

immediately seen that the lagrangian must possess the following symmetries

At) — AB)B() ; Bt)eH (B.10)

At)—C-At) ;C€EQG (B.11)

The symmetry (B.10) arises because it leaves g unchanged in (B.8). It is a gauge like
symmetry aund it means that A(t) takes its values in G/I , or in this case in SU(2)/U(1) =
52, atwosphere. The symmetry (B.11) is due to the U(2) veebor symmetry of the lagrangian
(A1), g — CyC~!. It means that the lagrangian for A(t) has a global G symmetry. In the
U(2) cose this is a particle moving on a two sphere with a spherical symmetry. We represent

A(t) € 5U(2) by
Alt) = ao(t) +i7 - d(t) (B.12)

and ag +d2 =1.
Then making the rotation A(t) — A(0)~1A(t), and considering t to be small, we can assume
that ag &~ 1, @ & 0. Then we casily substitute (B.8) into (A.1). Computing for the kinetic

term is straightforward and gives
Tr(9ug)(0us™") = T[A™" 4, Q471 4,Q7] (B.13)

Then substituting A~1 A=1-# into (B.13), we get

L= %M(aﬁ + a3) (B.14)
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with

n co
M (1 — cosa)dz (B.15)

For the Wess-Zumino term it is convenient to use the polar coordinates form, available for

SU(2) (Witten 1984),
r=1 f &2z §(z)sin®(2)sind(2)e™ (8u%)(80) (B.18)

where (9,0, $) are polar angles describing the three sphere which is SU(2), its Cartesian
coordinates are (ag, a1,ag,as). Then @ would correspond to the curve (e(z)/2,7/2,7/2)

and g would be
a(z) T T
g—-(—é—,—2——a2,5+ (l]_) (317)
(We nced to keep only the first order in a since we assumed it is small.) Then we get for I’

r=- f 85 (5 + a1 ) oin(a/2) - 17 (%Z—:) (-22) = f dtly  (B.18)

Where Lg is (up to total time derivatives)

1 . .
Ly = Z(al ag — ag ay) (B.19)
Ilence the full lagrangian is
1 .o a1 . .
L= EJW(‘H + ag) + Z(al ag — ag a;) (B.20)
1 ] ] n . .
L=—2-lb[(a1 +a2)+z(a,1 ag — ag ay) (B.21)
where
n (=]
=g _oo(l — cosa)dz (B.22)

The lagrangian (B.20) is mathematically identical to the lagrangian of a particle moving

on a plane with magnetic field perpendicular to the plane. We can now use the spherical
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symmetry to reconstruct the full lagrangian. We then see that the full equation of motion

(wilhout assuming t is small) must be

. n .
Ma; = Ee,‘jkaj tg (B.23)

This describes a free particle moving freely on the sphere with a mass M and a monopole
sitting at the origin (radial magnetic field) with a sbrength eg = —n/2. Dirac quantization
condition is cquivalent to n being an integer, which is a result of the quantization of the WZ
term. The quantization of this quantumn mechanical lagrangian involves monopole harmonics

(Coleman 1981). The correct isospin operator is
5 . d
I=mZi><Zi—egz (B.24)
which obeys the usual angular momentum algebra. We can also compute
I3]0 = 0) = —eg|0 = 0) (B.25)

(This is analogous to our computation of I3 of () using Witten'’s current formula.)

Thus the allowed values for the isospin I are
I==legl,leg| +1,... (B.20)

It can be scen that we get here a value for the monopole strength, eg, that is identical to
the value of I3 as computed using (B.5). This would be true for any classical solution that
we would choose. llence, we again seeTT that the allowed isospin representations are those
that contain a state whose quantum numbers are the same as the ones given by equation

(B.7).

17 We can assume that our lagrangian for A is o WZ theory in a quotient space G/H in one
dimension, since it posscsses the right symmetrics. Then our rule for the allowed representations
can be scen also from the work of Itabinovici ct al. (1984) where they treat such models in
odd dimensions. The semi-classical quantization was done in four dimensions for SU(3) by
Guadagnini (1984).
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The iso-rotational encrgy for delinite isospin takes the form
1
M

Hence the mass of the soliton with isospin I is (to this approximation)

Bl = [I(I + 1) - ¢%¢?%] (B.27)

My = M, + E}, (B.28)

M, is the classical cnergy of the soliton. For n = 1 we know that the theory contains one
stable fermion of isospin 1/2, an elcmentary free fermion in the fundamental representation.
This is also seen from the analysis above. The higher isospin states are non elementary in
this case. We see that we have a family of particles with isospin starting with n/2. Which
of thosc particles is stable can only be answered by further analysis

We can interpret the lagrangian (A.1) as describing an effective low energy theory for
QCD with n colors. In fact, in scction 3 we prove that this is the result of the dynamics of
QCDo. Then the soliton has quark number n from equation (B.3), or baryon number one.
The soliton is a-baryon. The fact that the lowest isospin for the soliton is n/2 should not
surprise us. This can be scen by applying quark modecl arguments. Since the color wave
function is anti-symmetric, and the total wave function is anti-symmetric as well, the isospin
wave function must be totally symmetric. So we expect to find the totally symmetric isospin
representation which is I = n/2. (Unlike four dimensions we have no spin, so we do not get
the wixed symmetry representations.) In addition, we have higher isospin representations,

but none lower.
The most general classical abelian solution we could have chosen is
Q(z) = diag (cial(”), gazle) ei""(")) (B.29)
and a;(—00) = 0; o;(c0) = 2mm;.
Most of these particles are not going to be stable, but will decay into others. To answer

rigorously which are the ones would require further analysis. By analogy with the sine-

gordon system, we believe in the slability of the following breather solution

Q(z) = diag (#=9,1,1,...,1) (B.30)
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where §(z,£) is the breather solution of the sine-gordon. This solution has a zero baryon
number and it represent a baryonium. Moreover, for this solution the " monopole strength”,

¢g, equals zero. So the allowed isospin values are I = 0,1,2,...
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98013 P93 WINN WK , (Gepner ,1984 ) ?3vh nNKA 1INBI nbx meya
Witten  27° 5Y nN319NKRY AY¥INY R?HIR ROD NINT721TII2 1I9nAvAa b
AMINAY hoth LDMNYL 719 0y QCD2 by nr397Ya0 ANI¥N DR 13930 ,(1984)
DTpRn TWR Wess-Zumino 927X DY ANA?O YTIn NNIAD NIDINI N17ATINI nbapnnn
,0789TA N9aa5R 5S¢ 025TIn% m2a1%38 R DRT ARYIN ,D?YANA 190D RIA 159
-2¥n 0251p%w 710 ©2TAH AY2IRA QCD S¥ DIIWPSOA DR RNV IY¥IN DN
0953700 131X XD , 7TBIN-AYIINA Apnd Tiar3a L (Witten ,1983) 0?22121amM290

. QCD 5w IR?27a5%1 710n D17?79? PrIITR3 ORY ARNAN ns>wng

mMTIPI0 Pnwa oa 0% Tr¥LRI YIR N?721TIAN ANINR DR nnad nan Sy
5y PINA AT .0YLVI0IR YU OYTIHIMY ORI MT0 ,N73T9%120 (1 pRan
pwb Yihan 205p-7no MIN?a (2 .hbapnnn ArY7INeDR 5 A5Ppon IR baph nan

,07N803 73v3a D0?5910n AYN DINYII .N7IN2 07PPYNA YY h10ART DYIVPOBA nbap

nnovn 0a NaYY M2 IR Ne/2 1790-1T7R DY 0711793 DIR¥IN 1IR TR
N13N73 oM NINNDII .X1AYHD D50 1790-17°K bY (Baryoniums) 0701721772 Y¥

5% O2RIpon 13y
2
07RYLA  A2190 9212119 971N BYosun IR qgn morey 17230 YInrwd

nR DYNYV Sv K1EYS 190n5 0297550 531 TININ DIWPOOA NX D253pn 1IN

A7I00 29 RN .0onYo 239 52 avpnn 1ay (Coleman ,1976) 1nY1p ¢ 1YMIRXAN
.1700-1T78 59 053270 KIW TR PpYNY adjoint =R NANAA TAR LITLIIN NI7ID
by NIP?ITHA NIRYINA OY N7720 ANNAAA ,D0713Y NI1IN?3 N1?205P-21n0 NIOND

RYINY NIRIMG 827527101 13X IRITH T¥IND ,D70YL 720 Y0 Apnd Coleman

X5 Sine—Gordon N910% N7LA%17IPR KA hon 932K OY SU2) ¥ Wess-Zumino

. (B=V2T ) PRI



YAINAT 170 Mann 123 wph (Frishman et. al. ,1984) 3w "nRna
051013 mn ann v J aL+S+I=0 13 MMLPOAY N3 N1 PN MmN
DA 139970 AT T10P01 1915 Haphn yunae 191 31029300 ANINY T03517IPR
DYY213 07319 02992 D23YLRY 137K 0%%3pnna "0737178 3¥n'-1 7932

.0721¥N NsYn TRANND ARXIND 071y

91870 B3 109 ,712vn 1YvER MYSIR v 177p0 29315 ATraya 1URIN PIsh

AT RYII 12227°P9 12190 NIRYIDA

1N2Y A2IWRIT LNITIAY YRR O1UYY L5175 M7 ATYTIAITIA SY howa
990n AY79mia A7Ina QCD2 v n*¥T23171a 13y¥a (Cohen et. al. ,1983)
n787731713 .(color) yax SU(N) v n»mio7n haxna u21> (flavors) nviyu
marwnn . (Coleman 1976) N?31TIa N7INY N9InNn N731?7579 A7 N3 AP?IOL KA
RINDA , 12 103 .INT? ADIYD XA NYAPARA ATNA BT DTPBAY ATH DY) AYY
n990a PTAR ATY A9YmM 0739 029Pna N731T1aR A7I03 BN TInYY Y1ap v
, Coleman et. al. ,1975) fon DY 9317119 5T 0Q NIRNAIT .N?37170980

.(Baluni, 1980 ,Steinhardt ,1980) Tnx oyv oy QCD2 191 ,(Coleman ,1976

oy QCD 59 n»337T1an AMI¥R R 1a%a%p nvbarn AYRTYIITIA VIRY TN
5y73 17105 hrbann A2¥T7117133 wInrwn L ( Cohen et, al. ,1983) D7ayv fnd

7200 P92 WINn

nanm V(¢i,ni) I5p1Y 85 927K 57om 2217120 IN?I10Y7NNAY DIRM 1IN

99220 OX DYIPTIA 1IN TR '("1'15 by @759a037% 2791 XIA) ANNAA D120
-x57 NY¥PRILIYRA DIYH .TIBIN DITLPOOR X Hapd nan %Y TR TIn'X Yiap S
N1A¥N2 017K B253pNNA 023¥MA TR .- 700D 2177PA AR DA 13NpY nYOpIY

LR8I 117X 70VOA 2ATIPAY IROD L 1790-1TOR 59



anTpn

¥ pNa RTYA DPOYY 1YY VMILPITA TYHRa YNIYY WK ATIAYA

0NY L 19PN IYRI NIYIPTY MIYSIN TN ,.MTY DININA D1PAyIsh KD Mysin
,07217099% 0YTINI¥D 0N UKD 0271191910 827177V MY ¥I730 TNAVR YLVPRA
YINYYA NITY2 02TNIN 23W3 Y195 N1INA PTR TINY PIap 59 Y13aan ph 1

LN127% AYXT?31T12 DIN?O0A

.(1976) Jackiw and Rebbi *'"'y n2I19XI5 An%any Tvawvn 1yvna nysin
02NN BN WKRD DYY ¥R Iyon R7UD17 107510 IR 51911109 a5 v on
»07210990 M2y 8ndv brayvn P NY7OBA ANINAY BYATR YT AYh AT L 1170995
0751512199 DIYA TNIPNA 1723Yyn AT 050 KY Jyon DINYIIN DIPIPOA INYD
nn . (Grand Unification)'M?330 T1N?RA"NIN?I00 hepannh Napodn bh n5RI
fon Ypa X10 1170790 T3 N9pnaw (Goldstone and Wilczek,1981) 9anoa anie

. 7503730390 712179 q9v0n Saph Inva

TMay
b=PEd-m-1 250 ¥y

79037203900 1YORA DR BY9aPN 1IN, B(w) = —p(=) = v WK

g = % arctg ﬁ!
1NIR 23PN YN R=4=h NIPNRI L NPTRINS1TA QMDA 113Y KIN AYYRd IN?39a50
1379 van MITIPI Phwn 12772 LY 301 AT T 11TNIR L IYLRA ay 1w
1Yon 172 WA KR¥DI A2IWURIN ATaya ,(Frishman et, al., 1983 ,1984)
0?771001RTIPN I12Y BYAIORIN 0?2073 ,0775013I80 BYII0LINIPA 17aY Trawvh
172070 75 .022y0nn 13Y DINYT NIRXIND 157210 D1?TIRAAA NYa BY?5nYaRD

, 1avn yvan 123% A25MIaRN 173 219N WP ANY¥R DA YD L,ORT ATPMa pon

+N1TYA 1D %Y 07310 DYLPOOXR IV DAY



