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Deutsche Zusammenfassung

Die starke Wechselwirkung stellt eine der fundamentalen Kräfte im Standardmodell der
Teilchenphysik dar und ist verantwortlich für die Bindung von Quarks zu Hadronen. Das
Verständnis der starken Wechselwirkung ist dabei entscheidend für die Erklärung der Struk-
tur hadronischer Materie. Bei Experimenten mit Hochenergiebeschleunigern wurde in den
letzten Jahrzehnten ein ganzer Zoo von Hadronen gefunden. Dennoch bleiben viele Fragen
bezüglich ihrer Erklärung o!en, die weitere experimentelle und theoretische Fortschritte
erfordern.
Die Quantenchromodynamik (QCD) als Theorie der starken Wechselwirkung sagt verschie-
dene Hadronenzustände voraus, von denen exotische Hadronen im Mittelpunkt theoreti-
scher Untersuchungen stehen. Zu diesen exotischen Hadronen gehören schwere hybride Me-
sonen. Sie bestehen aus einem schweren Quark-Antiquark-Paar, das an ein angeregtes Gluo-
nenfeld gekoppelt ist. Schwere hybride Mesonen wurden bisher noch nicht experimentell be-
stätigt, da ihre eindeutige Identifizierung in Experimenten nach wie vor schwierig ist, nicht
zuletzt wegen ihrer möglichen Vermischung mit gewöhnlichen Quarkonium-Zuständen. Ein
genaueres theoretisches Verständnis dieser Zustände und ihrer Eigenschaften ist daher ent-
scheidend für die Interpretation experimenteller Ergebnisse und die gezielte Suche nach
diesen exotischen Teilchen.
Der Fokus der vorliegenden Arbeit liegt auf der Untersuchung hybrider Mesonen im Rah-
men der Born-Oppenheimer e!ektiven Feldtheorie (BOEFT). Dazu wird in dieser Arbeit
die Gitterfeldtheorie verwendet, die eine nicht-störungstheoretische Methode zur Berech-
nung der QCD bietet. Mit dieser werden hybride Potentiale berechnet, welche die vollstän-
dige Dynamik des hybriden Mesons bis zu einer bestimmten Ordnung der Entwicklung der
BOEFT in der inversen Quarkmasse 1/mQ beschreiben. Die Potentiale gehen in gekoppelte
Schrödingergleichungen ein und beeinflussen so die Berechnung der Massenspektren von
hybriden Mesonen. In dieser Arbeit erweitern und verfeinern wir Ergebnisse für hybride
Potentiale in der führenden und nachsthöheren Ordnung der BOEFT unter Verwendung
reiner SU(3)-Gittereichtheorie. Die Resultate liefern wichtige Einblicke in die starke Wech-
selwirkung und erlauben genauere Vorhersagen von hybriden Mesonen und ebnen so den
Weg für deren Identifizierung im experimentellen Spektrum.
In dieser Arbeit verwenden wir SU(3)-Gittereichtheorie und vier Gitterensembles mit feinen
Gitterabständen im Bereich von 0.040 fm . . . 0.093 fm. Durch die Berechnung von Wilson-
loops mit optimierten, hybriden Gitteroperatoren erhalten wir präzise Daten und Para-
metrisierungen für die niedrigsten hybriden statischen Potentiale !u und ”→

u sowie das
normale statische Potential ”+

g . Dabei werden die a-abhängige Selbstenergie und Gitter-
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diskretisierungsfehler in führender Ordnung in der Störungstheorie und in a2 entfernt. Zu-
sätzlich untersuchen wir mögliche systematische Fehlerquellen wie topologisches Einfrieren,
das endliche Gittervolumen und Glueball-Zerfälle und schließen diese aus. Die Resultate
für die hybriden statischen Potentiale werden durch gitterfeldtheoretische Ergebnisse für
Gluelumps ergänzt, die deren Grenzfall bei verschwindendem Quark-Antiquark-Abstand
darstellen. Wir bestimmen die Massen von Gluelump-Zuständen mit Gesamtdrehimpuls
bis zu J = 3 und führen Kontinuumsextrapolationen von Gluelump-Massendi!erenzen aus.
Zudem diskutieren wir die Umrechnung der Gitter-Gluelump-Massen in das Renormalon
Subtraction-Schema, da die umgerechneten Massen eine zentrale Rolle für die Bestimmung
hybrider Mesonenmassen innerhalb der BOEFT spielen. Darüber hinaus untersuchen wir
die spinabhängigen Korrekturen in der nächsthöheren Ordnung ((1/mQ)1) der BOEFT.
Wir präsentieren die ersten gitterfeldtheoretischen Ergebnisse für die vier unbekannten
Potentiale V sa

11 (r), V sb

10 (r), die für die Hyperfeinaufspaltung in Spektren schwerer hybri-
der Mesonen relevant sind, sowie V mix

!→
u
(r) und V mix

”u
(r), welche die Vermischung schwe-

rer hybrider Mesonen mit gewöhnlichem Quarkonium beschreiben. Wir drücken diese Po-
tentiale durch Matrixelemente aus, die wir aus einer SU(3)-Gittereichtheorieberechnung
von Wilsonloops mit einer chromomagnetischen Feldeinfügung extrahieren. Hierfür ver-
wenden wir die Gradientflow-Methode, um eine Renormierung der Matrixelemente zu er-
leichtern und das statistische Rauschen erheblich zu reduzieren. Unsere Ergebnisse bei ei-
nem einzelnen Gitterabstand von a = 0.060 fm zeigen, dass eine kombinierte Kontinuums-
und Gradientflowzeit-Extrapolation mit den verwendeten Methoden möglich ist. Diese ist
für zukünftige Untersuchungen notwendig, um die Hyperfeinaufspaltung in den Spektren
schwerer hybrider Mesonen sowie deren Vermischung mit gewöhnlichem Quarkonium zu-
verlässig in der BOEFT vorherzusagen. Zusammen mit den hybriden statischen Potentialen
und den Gluelump-Massen ermöglichen diese Ergebnisse ein besseres Verständnis schwerer
hybrider Mesonen und ihrer Massenspektren.
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1 Introduction

The strong interaction is one of the fundamental interactions described in the Standard
Model for particle physics. The strong force is mediated by gluons and acts between quarks,
which Gell-Mann and Zweig postulated in the 1960s [1, 2] as the fundamental elements of
matter. The quarks are fermions with spin 1/2 and come in six di!erent flavors, which
have significantly di!erent masses: up (u), down (d), strange (s), charm (c), bottom (b)
and top (t).
The theory describing the strong interaction is Quantum Chromodynamics (QCD). QCD
is formulated as an SU(3) gauge theory with the associated conserved charge being the
color charge, which is carried by quarks and gluons. Due to the color charge of the gluons,
a self-interaction is induced, which is reflected by the non-abelian nature of the SU(3)
gauge theory for QCD. Self-interaction causes the running of the QCD coupling, implying
that the interaction becomes weak at short distances (high energies) and strong at large
distances (low energies). This explains an important phenomenon of the strong interaction
known as confinement, which means that free quarks have never been observed. The quarks
are bound into color-neutral hadrons. According to the quark model, these are classified
into mesons and baryons. Mesons are integer-spin hadrons conventionally composed of a
quark and an antiquark, while baryons are half-integer spin hadrons composed of three
quarks. Typical examples of mesons are pions, which are bound states of light up and
down quarks/antiquarks, with a mass of → 140MeV 1 [3]. Prominent examples of baryons
include the proton (uud) and the neutron (udd).
A zoo of hadrons has been detected in high-energy experiments over the last decades.
These hadrons could successfully be explained by conventional hadrons for a long time.
However, Belle discovered the exotic X(3872) (also known as εc1(3872) [3]) state in the
charmonium sector in 2003 [4], which does not fit into the quark model. Many more exotic
states, the so-called XYZ-states, were discovered in the last two decades in high-energy
collider experiments such as BESIII, Belle, BaBar, CLEO and the LHCb experiment. For
a review see e.g. Refs. [3, 5–9]. The experimental e!ort to explore XYZ states in the
quarkonium sector is matched by a high theoretical e!ort to explain their nature and
predict further states. The exotic states may be attributed to other variations of color-
neutral states allowed in QCD. These include multiquark composites such as tetraquarks
and pentaquarks as well as states in which also gluons serve as constituents. Examples of
the latter are glueballs, solely made from gluons, and hybrid mesons, which are composed
of a quark-antiquark pair coupled to an excited gluon field. Due to the constituent gluons

1We use natural units, i.e. ⊋ = c = 1.
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CHAPTER 1. INTRODUCTION

contributing to the overall quantum numbers, exotic quantum numbers that are impossible
for conventional hadrons are also realizable.
Heavy hybrid mesons, which are composed of a heavy quark-antiquark pair (either heavy
c or b quarks) confined by an excited gluon field, have not yet been established experi-
mentally [3]. The unambiguous identification of experimental states requires a complete
theoretical understanding of the properties of heavy hybrid mesons, particularly their mix-
ing with ordinary quarkonium. The theoretical investigation of hadron spectra in QCD
necessitates non-perturbative methods due to the strong coupling of QCD in the low-energy
regime. Lattice QCD, first suggested by Wilson in 1974 [10], is such a non-perturbative,
first-principles approach to QCD. By discretizing the theory on a four-dimensional Euclid-
ian spacetime lattice of finite size T↑L3, lattice QCD, in principle, allows for the numerical
calculation of hadron spectra using stochastic algorithms on high-performance computers.
Direct lattice QCD calculations of heavy hybrid mesons are challenging and computa-
tionally expensive, thus, only a few full lattice QCD studies exist [11–13]. However, the
heavy quark mass and the non-relativistic velocity of the heavy quarks within heavy hy-
brid mesons allow us to study them in a non-relativistic e!ective field theory framework,
which incorporates essential input from lattice QCD. The Born-Oppenheimer E!ective
Field Theory (BOEFT) is a systematically improvable framework for studying various
types of heavy exotic hadrons [14–20] and has recently been significantly advanced [19,20].
The BOEFT enables the prediction of heavy hybrid meson spectra for both charmonium
hybrids and bottomonium hybrids using a few hybrid potentials, which arise at each order
in an expansion of the theory in terms of the inverse heavy quark mass 1/mQ. The po-
tentials encode the full dynamics of the system at a given order and, once known, provide
important insights into the strong interaction. Moreover, having precise knowledge of the
potentials is crucial for predicting accurate heavy hybrid meson spectra [15,17,18,21–23].
Lattice QCD o!ers an ideal method to determine the essential hybrid potentials, which
can be calculated from Wilson loop-like correlation functions on the lattice.
In this work, we investigate the hybrid meson potentials at the leading and next-to-leading
order of the Born-Oppenheimer E!ective Field Theory using pure SU(3) lattice gauge the-
ory. The main goal of this work is to improve and extend the range of precise lattice field
theory results for investigating the lowest heavy hybrid mesons within the BOEFT frame-
work. We investigate the small-r region of the lowest hybrid static potentials !u and ”→

u

by performing lattice gauge theory computations of Wilson loop-like correlation functions
with optimized hybrid lattice operators at four di!erent small lattice spacings. We combine
di!erent ensembles to explore and remove lattice discretization errors, achieving final re-
sults consistent with the continuum limit. Thus, we improve upon previous investigations
of hybrid static potentials in Refs. [24–51]. In addition, we complement these hybrid static
potential results with SU(3) lattice gauge theory results for gluelumps, which represent
the limit of vanishing quark-antiquark separation. We calculate up-to-date results for the
continuum limit of 19 gluelump mass splittings and the renormalized mass of the lowest

2



CHAPTER 1. INTRODUCTION

gluelump associated with the lowest hybrid mesons in the Renormalon Subtraction (RS)
scheme. We aim at a higher precision of gluelump masses entering the heavy hybrid meson
spectra predictions through more accurate lattice gluelump results compared to previous
studies in Refs. [44, 52]. Furthermore, we explore the lattice gauge theory calculation of
heavy quark spin-dependent corrections at the next-to-leading order in the heavy quark
mass expansion in the BOEFT. These hybrid potentials at order (1/mQ)1 have not yet
been computed with lattice QCD, even though they are associated with spin-splitting in the
heavy hybrid meson spectra and give insights into the mixing with ordinary quarkonia. We
aim to provide the first lattice field theory results of hybrid spin-dependent potentials re-
lated to heavy quark spin e!ects and hybrid-quarkonium mixing of the lowest heavy hybrid
mesons. Thus, we pave the way for refinements of heavy hybrid meson mass predictions
as previously performed in Refs. [15, 17,18,23].
This thesis is structured in the following way: Chapter 2 introduces relevant concepts
of lattice gauge theory calculations. The Born-Oppenheimer E!ective Field Theory for
heavy hybrid mesons up to order (1/mQ)1 in the heavy quark mass expansion is described
in Chapter 3. In Chapter 4, we present our SU(3) lattice gauge theory results of the two
lowest hybrid static potentials !u and ”→

u . In this chapter, we also present the details
of the lattice gauge link ensembles employed throughout the thesis. We determine accu-
rate parametrizations by eliminating discretization errors and other possible systematic
errors. In Chapter 5, we extract the complete spectrum of SU(3) lattice gluelump states
and extrapolate gluelump mass splittings to the continuum limit. Besides discussing the
assignment of continuum spin to lattice gluelump results, we convert the lattice gluelump
mass to the Renormalon Subtraction scheme. Chapter 6 provides the first lattice field the-
ory determination of hybrid spin-dependent potentials at order (1/mQ)1 in the BOEFT.
We compute the four unknown potentials V sa

11 (r), V sb

10 (r), which are relevant for the hy-
perfine splitting in heavy hybrid meson spectra, as well as V mix

!→
u
(r) and V mix

”u
(r), which

describe the mixing of heavy hybrid mesons with ordinary quarkonium. We explore the
calculation of these potentials on the lattice using gradient flow and a single lattice spacing.
This thesis ends with concluding remarks and an outlook in Chapter 7.
The research presented in Chapters 4-6 was primarily carried out by the author. Major
parts of this work have been previously published in Refs. [53–58], and some sections may
contain minor verbatim passages from these references. Any contributions from others are
explicitly acknowledged in the text.
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2 Lattice gauge theory

Lattice Quantum Chromodynamics (Lattice QCD) is a numerical first-principles approach
to studying the strong interaction described by the theory of Quantum Chromodynamics
(QCD). Through the discretization of spacetime and the path integral formalism, lat-
tice QCD allows for numerical computations of quantum field theoretic observables with
stochastic algorithms. This method is particularly useful for studying hadron energies in
QCD since perturbative methods fail here due to the large coupling in the low-energy
regime. In this chapter, we introduce important concepts based on standard textbooks
such as [59–61], which are relevant to the lattice field theory calculations performed in this
work.

2.1 Path integral formalism

In lattice field theory, the continuous spacetime is replaced with a four-dimensional hyper-
cubic lattice. The discrete lattice sites are separated by a finite lattice spacing a, forming
a grid of size T ↑L3. Classical field variables describe the degrees of freedom on the lattice
with typically periodic boundary conditions. In this work, we consider pure SU(3) gauge
theory, omitting fermionic degrees of freedom. The di!erence to the full theory of QCD
with dynamical quarks is expected to be negligible in the gluonic observables studied in this
work. Additionally, neglecting fermions allows for a more rigorous computation of observ-
ables with the methods of choice compared to their use in full QCD with dynamcial quarks.
We discuss this approximation further in the context of systematic errors in Section 2.6.
Moreover, quenched calculations, which ignore fermionic degrees of freedom, significantly
reduce computational costs by avoiding the computationally expensive calculations related
to the fermionic contribution.
The path integral sums all possible configurations of the gauge field Aµ weighted with the
gauge action S[A], introducing the quantization of SU(3) gauge theory in the path integral
formalism. In this formalism, the expectation value of an observable O is expressed as

↓O↔ =
1

Z

)︄
DAµO(Aµ) e

→SE [A] , (2.1)

with the partition function
Z =

)︄
dAµ e

→SE [A] . (2.2)

To facilitate numerical calculations using stochastic methods, one adopts Euclidean time

4



CHAPTER 2. LATTICE GAUGE THEORY

instead of Minkowski time (eiSM ↗ e→SE ), which allows interpreting the exponential factor
as a probability distribution.
The Euclidean gauge action is given by

SE =

)︄
d4x

1

4g2
F b

µω(x)Fb,µω(x) , (2.3)

where Fµω is the field strength tensor. The trace over the color indices b ensures gauge
invariance.
On the lattice, instead of the gauge field Aµ(n), we use variables Uµ(n) ↘ SU(3), which
represent the parallel transporters of the gauge field between neighboring lattice sites n

and n+ µ̂, the lattice links. They are related to the gauge field via

Uµ(n) = exp(iaAµ(n)), (2.4)

where a denotes the spacing between two neighboring lattice sites. The simplest and most
commonly used discretization of the action in terms of lattice link variables is the Wilson
plaquette action [62], given by

S = ϑ
[︄

n↑#

[︄

µ<ω

1

2N
ReTr [1≃ Pµω(n)] , (2.5)

where Pµω(n) is the smallest closed loop of link variables, known as the plaquette

Pµω(n) = Uµ(n)Uω(n+ µ̂)U→µ(n+ µ̂+ ϖ̂)U→ω(n+ ϖ̂). (2.6)

The parameter ϑ is related to the bare coupling as ϑ = 6
g2

and, thus, the lattice spacing a.
As the lattice spacing a ↗ 0, the Wilson plaquette action resembles the continuum Yang-
Mills action (2.3) with a discretization error of O

]︄
a2
⌊︄
. The important gauge invariance of

the underlying theory is maintained.

2.2 Statistical analysis

2.2.1 Generation of gauge link ensembles

The path integral in lattice gauge theory is evaluated using statistical methods, which
requires the generation of many lattice gauge field configurations. These configurations
are distributed according to the Boltzmann weight e→S . When the number of gauge field
configurations N is su"ciently large, the expectation value of an observable O can be
approximated as

↓O↔ →
1

N

[︄

Un

O [Un] , (2.7)

where O [Un] denotes the observable measurement on the gauge field configuration Un and
the sum is taken over the whole ensemble of gauge field configurations.

5



CHAPTER 2. LATTICE GAUGE THEORY

Monte Carlo algorithms are used to generate these gauge field configurations. The process
relies on Markov chains, where each updated gauge field configuration depends on the
previous state. A Monte Carlo heat bath algorithm [63] is employed in this work to generate
equilibrium ensembles of gauge field configurations. We combine it with an overrelaxation
algorithm, which e"ciently improves the step size in the Markov chain.
Thermalization is required to ensure the generated configurations form a statistically rep-
resentative ensemble. The initial updates before reaching equilibrium are discarded and
intermediate configurations are skipped to eliminate autocorrelation e!ects. Similarly, the
number of intermediate overrelaxation steps can be tuned to reduce autocorrelations fur-
ther. Evaluating simple observables, such as the plaquette, on each configuration allows
to check thermalization and to estimate the autocorrelation time, which varies depending
on the lattice setup. Once equilibrium is reached, the ensemble provides a valid statistical
representation of the gauge theory, allowing for precise numerical evaluation of physical
observables.

2.2.2 Statistical uncertainties

Given the limited number of gauge link configurations for statistical analysis, statistical
methods introduce estimable errors. The jackknife and bootstrap methods are standard
techniques for estimating the error of derived quantities and they will be introduced here
shortly. This work uses the jackknife method for individual gauge link ensembles, while
combined data sets employ both methods. The detailed strategy is explained in Ap-
pendix A.
The jackknife and bootstrap methods are typically performed on bin mean values, where
the complete data sample is divided into small subsets. Binning minimizes correlations
between measurements.

The jackknife method

Reduced jackknife samples are constructed from the full set of bin averages {Xn} by
deleting one bin at a time

X jacknife

i
=

1

N ≃ 1

⌋︄
N[︄

n=1

Xn ≃Xi

⌈︄
. (2.8)

The quantity of interest Q is then estimated on each reduced jackknife sample and its error
estimate is given by

ϱQ =

⌉︄{︄{︄}︄N ≃ 1

N

N[︄

i=1

]︄
Qi ≃ Q̄

⌊︄2
, (2.9)

where Q̄ denotes the observable on the full sample and Qi is the result on the i-th jackknife
sample.
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Figure 2.1: Wilson loop W (r, T ).

The bootstrap method

N randomly picked values from the complete set of data bin averages {Xn} create a
bootstrap sample, where data bin averages can be picked repeatedly. The quantity of
interest Q is then computed for each of the K bootstrap samples and its error is estimated
by

ϱQ =

⌉︄{︄{︄}︄ 1

K

K[︄

k=1

]︄
Qk ≃ Q̄

⌊︄2
, (2.10)

where Q̄ denotes the result on the full sample and Qk is the result on the k-th bootstrap
sample. K should be su"ciently large to avoid biased results.

2.3 Wilson loops

Wilson loops are the simplest gauge-invariant quantities constructed from a closed rect-
angular loop of lattice gauge links. In this thesis, Wilson loops with temporal extension
T and spatial extension r play a crucial role, as they are directly related to the energy of
a flux tube coupled to a static quark-antiquark pair. This connection can be understood
from the temporal correlation function of a quark-antiquark pair linked to a flux tube in
the static limit, i.e. the limit of infinitely heavy quark mass mQ ↗ ⇐.
A gauge-invariant operator that generates a quark-antiquark pair coupled to a flux tube
is given by

O = Q̄(≃r/2; t)Uz(≃r/2,+r/2; t)Q(+r/2; t) , (2.11)

where Q(+r/2; t) and Q̄(≃r/2; t) are operators creating a quark and an antiquark, respec-
tively, separated by a distance r along the z-axis. Uz(≃r/2,+r/2; t) represents a gauge
link path connecting the quark and the antiquark at spatial positions r/2 and ≃r/2 in a
gauge-invariant way. The temporal correlation function describing the propagation of this
state can be related to its energy levels by inserting the time evolution operator e→hT and
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a set of normalized energy eigenstates |n↔ to the Hamiltonian h, which results in

↓#|O†(r, T/2)O(r,≃T/2)|#↔ =
[︄

n

|↓n| O|#↔|2 e→En(r)T . (2.12)

This spectral decomposition shows that in the limit T ↗ ⇐, the exponential decay of the
correlation function is dominated by the lowest energy E0(r), corresponding to the ground-
state energy. The prefactor ↓n| O|#↔ denotes the overlap of the trial state generated by O

from the vacuum |#↔ to the energy eigenstate ↓n|.
Within the path integral formalism, the quark degrees of freedom in the correlation function
can be integrated out, leading to a propagator that can be evaluated analytically [60]. In
the static limit, where the quark mass is taken to be infinitely heavy, the correlation
function simplifies to the well-known Wilson loop

W (r, T ) =
⟨︄
Tr [Uz(≃r/2,+r/2;≃T/2)Ut(r/2;≃T/2, T/2)

↑ U †

z (≃r/2,+r/2;+T/2)U †

t
(≃r/2;≃T/2, T/2) ]

⟩︄
, (2.13)

which is sketched in Figure 2.1. It is given by the expectation value of the trace of a closed
loop of gauge links with size r↑T . We can extract the ground-state energy of the flux tube
in the presence of a static quark-antiquark pair from its asymptotic behavior according to
Eq. (2.12), which is the static potential V (r).

2.4 Improving the signal

In lattice field theory, short-distance fluctuations in the gauge fields show up as statistical
noise in the observable of interest. They cancel each other when averaging over a large
number of gauge field configurations. However, the relevant large T behavior of the cor-
relation function is often challenging to extract with a limited number of configurations
since the signal of the correlator decreases with e→E0T for large temporal distances while
the statistical noise increases. Di!erent methods were developed to improve the signal-to-
noise ratio in lattice field theory calculations. Some methods aim to improve the overlap
of the operator with the state of interest. The larger the overlap, the better the observable
can be extracted at finite times. Other methods aim to increase statistics to dampen the
noise in the correlator measurements. The methods are all based on averaging products of
links. As long as the method is local, the large T behavior of correlation functions is not
modified. In the following section, we will briefly introduce the methods we have applied
throughout this work to improve the signal-to-noise ratio.

2.4.1 APE smearing

The APE-smearing method [64] takes a single link and adds its neighboring staples with
a weight factor ςAPE. This is performed iteratively, replacing the link UNAPE→1

µ in the
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NAPE-th step by

UNAPE

µ (n) =ProjSU(3)

/︄
UNAPE→1
µ (n)

+ςAPE

[︄

±ω

µ ↓=ω

UNAPE→1
ω (n)UNAPE→1

µ (n+ ϖ̂)UNAPE→1
µ (n+ ϖ̂ + µ̂)UNAPE→1

ω

†
(n+ µ̂)

\︄
.

(2.14)

For SU(3), the smeared gauge link needs to be projected back to gauge group SU(3).
We use APE smearing for operator optimization purposes throughout this work. The spa-
tial operator extension is easily modified with a fine resolution by choosing an appropriate
weight factor ςAPE and level of smearing steps NAPE. When the lattice spacing is reduced,
the size of operators built from elementary loops on the lattice decreases while the physical
wave function keeps its extension. Adjusting the number of APE smearing steps to the
lattice spacing can keep the size of the lattice operator constant.

2.4.2 HYP2 smearing

The HYP (hypercubic) smearing procedure [65–67] creates fat links from links inside a
hypercube around the original link. The HYP-smeared link is defined via

UHYP

µ (n) = ProjSU(3)

/︄
(1≃ ς1)Uµ(n) +

ς1

6

[︄

±ω

µ ↓=ω

Ũω;µ(n)Ũµ;ω(n+ ϖ̂)Ũω;µ
†
(n+ µ̂)

\︄
. (2.15)

Ũµ;ω denotes a decorated link constructed from its neighboring staples without those ex-
tending in ϖ-direction

Ũµ;ω(n) = ProjSU(3)

/︄
(1≃ς2)Uµ(n)+

ς2

4

[︄

±ε

ε ↓=ωµ

Ūε;ωµ(n)Ūµ;εω(n+ φ̂)Ūε;ωµ
†
(n+ µ̂)

\︄
(2.16)

and Ūε;ωµ(n) is built from an original link with a modified APE smearing step

Ũµ;ω(n) = ProjSU(3)

/︄
(1≃ ς3)Uµ(n) +

ς3

2

[︄

±ϑ

ϑ ↓=εωµ

Uϑ(n)Uµ(n+ ↼̂)Uϑ
†(n+ µ̂)

\︄
. (2.17)

HYP2 smearing relates to a specific combination of weight factors, i.e. (ς1,ς2,ς3) =

(1.0, 1.0, 0.5) [67]. Using HYP2-smeared temporal gauge links significantly reduces the
self-energy of static quarks, reducing statistical errors.

2.4.3 Gradient flow

The gradient flow is a modern method introduced in Ref. [68] that we employ for the
e"cient calculation of hybrid spin-dependent potentials (see Chapter 6). The gradient
flow is a continuous smearing procedure that has some additional features. The defining
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equations for the flowed gauge link Vtf are

V̇ tf (x, µ) = ≃g20(↽x,µS(Vtf ))Vtf (x, µ) (2.18)

Vtf (x, µ)|t=0 = U(x, µ). (2.19)

tf denotes an extra dimension, the flow time. The so-called Wilson flow is obtained using
the Wilson plaquette action S on the lattice. The above flow equations drive the gauge
fields along the flow time toward the classical solution with minimal action. Numerical
integration methods are used to calculate the solution of the di!erential equation, e.g. a
third-order Runge Kutta method. This method has an integration error of O

]︄
⇀3
⌊︄
, where

⇀ denotes the stepsize. In Ref. [69], optimized algorithms for e"cient integration of the
gradient flow are discussed. Other smoothing methods like APE, HYP and stout smearing
can be perturbatively related by analytic expressions to the gradient flow smearing (see
e.g. Refs. [68, 70]).
Furthermore, the gradient flow serves as a renormalization scheme for the correlators con-
sidered in this thesis. Refs. [71,72] applied the gradient flow as a smoothing and renormal-
ization procedure for related correlators, which contain chromomagnetic field insertions.
Renormalized quantities are obtained by multiplying Wilson loop correlators with chro-
momagnetic insertions with the necessary matching coe"cient cF (tf , µ), which is known
for the conversion from gradient flow as a renormalization scheme with scale tf to the
MS scheme with the renormalization scale µ to one-loop order in perturbation theory and
in the limit of small flow times [73, 74]. Remaining dependences on the scale tf in the
correlator, which are not canceled by cF (tf ) make a small-flow time-extrapolation nec-
essary. The extrapolation is not trivial and is being investigated currently for related
correlators [71,72,74–76]. It is convenient to perform this extrapolation after a continuum
limit extrapolation of flowed observables with color field insertions because the gradient
flow drastically reduces uncertainties due to a significantly weaker a-dependence in the
observable. For this to be true, the gauge field must be smeared over a sphere of radius
rf =

/︂
8tf ⇒ 1.0 a. Moreover, to avoid discretization e!ects from overlapping gauge links

in the Wilson loop, the minimal separation of operators in temporal and spatial directions
should exceed 2rf .

2.4.4 Multilevel algorithm

The multilevel algorithm [77] significantly reduces statistical errors by averaging temporal
links over multiple sublattice configurations. This algorithm is employed in Chapters 4
and 5 to compute hybrid static potentials and gluelump masses e"ciently.
The multilevel algorithm begins with an ensemble of thermalized gauge link configura-
tions. It divides each of the lattice configurations into nts timeslices with thicknesses
p1, p2, . . . , pnts

. If more than one level of the algorithm is applied, the timeslices are fur-
ther subdivided for each level. A standard heat bath algorithm generates nm independent
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sublattice configurations for each timeslice. In order to minimize autocorrelations, these
configurations are separated by nu heat bath sweeps, in which only the interior links of the
time slice are updated while spatial links on the boundaries remain fixed.
With the multilevel algorithm, temporal transporters appearing in observables are replaced
by [Pk], which represents the average over nm sublattice configurations of the product

Pk = {T(x+ (dk ≃ pk)a0̂, rĵ)T(x+ (dk ≃ pk + 1)a0̂, rĵ) . . .T(x+ (dk ≃ 1)a0̂, rĵ)} . (2.20)

This product of two-link operators T connects the boundaries of the k-th time slice, span-
ning from t/a = dk→1 to t/a = dk with dk =

\︂
k

j=1 pj . The two-link operators are defined
via T(x, rĵ)ϖϱςφ = U↔

0 (x)ϖϱU0(x+ rĵ)ςφ (ĵ denotes the spatial unit vector in j-direction).
Consequently, a Wilson loop is computed from

W (r, T ) =
⎛
Uz(≃r/2,+r/2;x0))ϖς{[Pk][Pk+1] . . . [Pk+nt→1]}ϖϱςφ

⎞
Uz(≃r/2,+r/2;x0 + T ))

⎡↔

ϱφ

⎤
,

(2.21)

where nt denotes the number of timeslices contributing to the temporal extent of the Wil-
son loop,

\︂
nt
j=1 pk+j = T/a, with dk→1 = x0. The spatial transporters are located at the

boundaries of the timeslices at the top level, which may constrain the allowed temporal
extents of the Wilson loop. As in conventional computations without the multilevel al-
gorithm, translational and rotational symmetries are exploited. Finally, the expectation
value is obtained by averaging the Wilson loop over the whole ensemble of full gauge link
configurations.
For a detailed technical discussion of the multilevel algorithm, see Section 3.2 of Ref. [78].

2.5 Renormalization and scale setting

In QCD, renormalization describes the procedure of relating the bare parameters of the La-
grangian, such as the coupling constant, to their physically measurable counterparts. Since
bare parameters are not directly observable, they are redefined to ensure that computed
physical quantities, like hadron masses, remain finite and well-defined. Renormalization
addresses divergences that arise in quantum field theory due to contributions from very
high momenta, i.e. ultraviolet (UV) divergencies.
In lattice QCD, introducing a finite lattice volume with lattice spacing a regulates these
divergences by imposing a momentum cuto! $ ⇑ 1/a. However, to obtain physically
meaningful results from the regulated, dimensionless lattice quantities given in units of
the lattice spacing, one must determine the lattice spacing a in physical units and re-
move the dependence on the regulator by taking the continuum limit a ↗ 0. A proper
renormalization process ensures that physical observables remain finite.
Qualitatively, renormalization demands the equality of bare and renormalized quantities
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at a characteristic energy scale. This condition is implied at a fixed order in a perturbative
renormalization scheme. For example, the renormalized coupling gR at a characteristic
energy scale µE is related to the bare coupling g via a multiplicative renormalization
factor

gR(µE) = Zg(µE ,$)g($) . (2.22)

As the regulator is removed by sending the momentum cuto! $ ↗ ⇐, the bare coupling
diverges, but the renormalization factor compensates for this divergence, yielding a finite
renormalized coupling that depends only on the energy scale. The energy scale dependence
is described by the renormalization group equation, determined by the ϑ-function

µE

↽ςs

↽µE

= ϑren(ςs) , (2.23)

where ςs is the normalized coupling constant. The QCD ϑ-function causes the coupling
to decrease at high energies, meaning that the interaction becomes weaker and the quarks
become free, which is known as asymptotic freedom. At low energies, the coupling becomes
strong, making perturbative methods unreliable and requiring non-perturbative approaches
like lattice QCD.
In pure lattice gauge theory, the bare coupling g is connected to the lattice spacing a.
Setting the scale a in lattice gauge theory is an example of renormalizing the bare coupling.
There are several methods to set the scale, a common one is to relate a to the Sommer
scale r0. The Sommer scale is defined in terms of the force between a static quark and
antiquark, F (r) = ↽rV (r), via

r2F (r)|r=rc = c , (2.24)

with c = 1.65 and r1.65 = r0 being the common choice for rc [79]. From a parametrization
of the ordinary static potential ”+

g , aV (r) = aV0 ≃ ς/r + a2ϱr, in the region of r0 the
lattice spacing a can be determined via

a = r0

⎣
a2ϱ

1.65 + ς
. (2.25)

Throughout this work, we use r0 = 0.5 fm to convert lattice results to physical units, which
is a simple and common choice for r0 but larger than the physical value for QCD [80].

2.6 Possible systematic errors

Although lattice QCD is a first-principles approach to QCD, it introduces systematic e!ects
that must be carefully considered and suscessively eliminated. In this section, we discuss
several typical sources of systematic errors, including autocorrelations, topological freezing,
finite lattice volume e!ects and discretization errors, for which we develop strategies to
avoid these issues in the following chapters.
Additionally, our calculations omit light dynamical quarks, which introduces systematic
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di!erences compared to full QCD calculations. However, these di!erences are expected to
be small. For instance, lattice computations of hybrid static potentials with and without
dynamical quarks from Ref. [38] show no statistically significant di!erence. Furthermore,
due to the necessity of resolving several multiparticle states with the same quantum num-
bers below the state of interest, rigorous methods such as the Lüscher method [81] are
computationally demanding in full lattice QCD calculations, particularly for heavy exotic
hadrons. Ignoring these e!ects could introduce more significant systematic errors than
those coming from the quenched approximation. The possible multiparticle states in pure
gauge theory that may appear below heavy hybrid mesons are discussed in Section 4.4.3.

2.6.1 Autocorrelations

When simulating QCD on the lattice, the computations are based on Monte Carlo Markov
chain algorithms generating a series of gauge field configurations. Understanding the time
scales of the system is essential for two main reasons. First, the distribution of gauge field
configurations must be sampled correctly by the simulation. The observable estimates
will be biased if the ensemble of gauge field configurations is not representative. Second,
knowing the time scales is necessary for accurately estimating statistical errors, notably
when measurements are correlated. For reliable results, simulation runs must be longer
than the autocorrelation times in the system.
The autocorrelation between two observables measured at di!erent times in the Monte
Carlo (MC) series is defined as

%ϖϱ(t) = ↓Oϖ(t)Oϱ(0)↔ ≃ ↓Oϖ(t)↔↓Oϱ(0)↔ , (2.26)

where t denotes the separation in the Monte Carlo series. For a function F of the observ-
ables, the normalized autocorrelation function is given by

φF (t) =
%F (t)

%F (0)
, (2.27)

where

%F (t) =
[︄

ϖ,ϱ

↽F

↽ ↓Oϖ↔
%ϖϱ(t)

↽F

↽ ↓Oϱ↔
. (2.28)

The integrated autocorrelation time ⇁int, which characterizes the dynamics of the Monte
Carlo simulation which is relevant for the observable F , is given by an infinite sum over
the autocorrelation function

⇁int(F ) =
1

2
+

↗[︄

t=1

φF (t). (2.29)

If measurements are correlated, the statistical error of the observable receives a correction
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factor given by the integrated autocorrelation time

(↽F̄ )2 =
ϱ2
F

N
2 ⇁int(F ). (2.30)

However, determining autocorrelation times is challenging, as they depend on various sim-
ulation details, such as the discretization of the theory, the algorithms used, the choice of
observables and the lattice spacing.
The dependence of the autocorrelation time on the lattice spacing a is characterized by
the dynamical critical exponent z

⇁int(F ) ⇓ a→z. (2.31)

This exponent has been studied, e.g. in Ref. [82]. Notably, for the topological charge,
the critical dynamical exponent is z → 5 and the increase in autocorrelation time with
decreasing lattice spacing is much more severe than for an ordinary Wilson loop, which
has z → 0.6. Therefore, the large autocorrelation times for the topological charge related to
the critical slowing down of the algorithm are addressed in detail in a separate discussion
below.
In practice, we aim to eliminate correlations in the calculation of observables. We avoid
using close configurations in the MC series by leaving out a su"cient number of sweeps Nsep

between subsequent gauge field configurations. The value of Nsep depends on the simulation
details and the observable under consideration. The values of Nsep used in this work (see
Table 4.3) are expected to be much larger than the autocorrelation time of the Wilson
loop-like observables, ensuring reliable measurements. Furthermore, we run independent,
parallel Monte Carlo simulations to generate more gauge link configurations, which are
mainly uncorrelated. Finally, we further reduce correlations by binning measurements
into groups larger than the autocorrelation time, using the bin averages in the subsequent
statistical analysis.

2.6.2 Topological freezing

Topology classifies equivalent objects, such as gauge field configurations, under continuous
transformations. In lattice gauge theory, the field space is divided into topological sectors
characterized by the topological charge Q. These sectors are separated by an infinite action
barrier in the continuum [83]. However, on the lattice, the barrier is finite, allowing for a
change of sectors in Monte Carlo algorithms.
As the lattice spacing a decreases, the probability of tunneling between topological sectors
becomes smaller due to an increasing barrier. For small lattice spacings a<

↘ 0.05 fm [82],
it becomes increasingly di"cult for the algorithm to change the topological sector. This
phenomenon is known as topological slowing down, meaning that the simulation remains
trapped in a single sector for extended periods of the Monte Carlo simulation, increasing
autocorrelation times. As a result, the gauge field distribution ⇓ e→S and the topological
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charge are poorly sampled. At very fine lattice spacings, the algorithm may remain confined
to one sector, a phenomenon known as topological freezing, which introduces a bias in
observables. When a simulation is trapped in a single topological sector, observables
receive an additional dependence on the finite lattice volume proportional to powers of the
inverse spacetime volume 1/V (see e. g. Refs. [84–86]). Several strategies exist to avoid
these corrections, like introducing open boundary conditions in one direction or relating
the observables at fixed topology to the physical counterparts [86].
The topological charge is quantized on a lattice with periodic boundary conditions in all
four directions for the gauge field, which is equivalent to a torus. The topological charge on
such a torus is restricted to integer-valued topological sectors. Tunneling events between
topological sectors are associated with non-trivial configurations, which are interpreted as
instantons in the instanton picture [83]. Instantons can propagate freely around the lattice
with periodic boundary conditions, but their net number is conserved. The net number
gives the integer topological charge, n+ ≃ n→ = Q ↘ Z, where n+ and n→ are the numbers
of instantons and anti-instantons, respectively.
Omitting the distinction between instantons and anti-instantons, the probability of finding
a configuration with charge Q can be approximated by a normal distribution. It reads

p(Q) =
1

⇔

2↪ϱ2
exp

⎦
≃

Q2

2ϱ2

⎢
(2.32)

with ϱ2 =
⎥
Q2

⎧
containing all relevant information about the distribution. The param-

eter is related to the topological susceptibility εtop, which quantifies topological charge
fluctuations in a given spacetime volume V

εtop =

⎥
Q2

⎧

V
. (2.33)

The literature value for the topological susceptibility is ⫅̸ (200MeV)4 [87].
In the following, we introduce the field-theoretic definition of the topological charge, which
is later used to assess whether the gauge link ensembles used in this work are a!ected by
topological freezing. For a review of di!erent definitions of the topological charge, see e. g.
Ref. [70].
On the lattice, the continuum expression

Q =

)︄
d4x q(x), (2.34)

with the field-theoretic definition of the topological charge density

q(x) =
1

32↪2
⇀µωε↼ Tr (FµωFε↼) , (2.35)
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is replaced by a discretized sum over all lattice sites,

Q = a4
[︄

x

qL(x) . (2.36)

Here, qL(x) represents a valid lattice discretization of the topological charge density, whose
choice a!ects lattice artifacts in the total topological charge Q.
The simplest discretization of q uses the plaquette, Pµω(x), the smallest closed loop on the
lattice,

qL(x) =
1

32↪2
⇀µωε↼ Tr

]︄
Cµω(x)Cε↼(x)

⌊︄
, (2.37)

where
Cµω(x) =

1

2

⎞
Pµω(x)≃ P †

µω(x)
⎡
. (2.38)

An improved discretization replaces Pµω(x) with the clover-leaf

P clov

µω (x) =
1

4
[Pµω(x) + Pω→µ(x) + P→µ→ω(x) + P→ωµ(x)] . (2.39)

This version reduces lattice artifacts to O
]︄
a2
⌊︄
. Due to the lattice artifacts and ultraviolet

(UV) fluctuations, the lattice topological charge deviates from their integer values. In order
to suppress these fluctuations, smoothing procedures must be applied before computing
the topological charge.
A common smoothing technique is APE-smearing, which can also be related to other
methods, such as gradient flow or cooling (see Ref. [70]). It needs to be applied to all
four dimensions. The number of smearing steps NAPE should be large enough to suppress
UV fluctuations but small enough to preserve the topological structure of the gauge field.
NAPE must be tuned for each lattice spacing.
Since the lattice spacings in this work are relatively small, we explicitly check the Monte
Carlo history of the topological charge and verify proper sampling of its distribution in
Section 4.4.1 to exclude bias due to topological freezing.

2.6.3 Finite volume e!ects

Lattice observables depend on the lattice spacing a and the discretized spacetime volume
in which they are computed. To properly connect to the continuum, one must take the
limit a ↗ 0 while ensuring that the volume V is large enough for finite-volume e!ects to
be negligible within statistical uncertainties.
If the lattice volume is too small, two e!ects can cause a shift in the energy levels. Particles
propagating around the lattice interact with their periodic copies and induce a negative
energy shift proportional to exp(≃mL) [88], where m is the mass of the particle. For
asymptotically large lattice extents L, the e!ect is dominated by the lightest particle of
the theory. In pure gauge theory, the lightest particle is the relatively heavy glueball (the
lightest glueball with quantum numbers JPC = 0++ has a mass of m0++ = 1730(50)MeV
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Figure 2.2: Lattice volume dependence of SU(2) lattice results for the static potentials.
Details on the used gauge field ensembles can be found in Appendix B.

[89]). Due to its large mass, this e!ect is less severe than in full QCD with light quarks,
where the lightest particles are the much lighter pions.
Furthermore, the lattice must be large enough to accommodate the particle’s wave function.
If the volume is too small, the wave function becomes compressed, resulting in a squeezed
wavelength and a positive shift in the energy levels.
For an exemplary computation of the ordinary and hybrid static potentials, which we
performed in SU(2) lattice gauge theory, a sizeable lattice volume dependence can be
observed in the di!erence of the lowest hybrid and the ordinary static potential for L <

1.0 fm, shown in Figure 2.2. The volume e!ects are negligible for lattice volumes L3
↖

(1.0 fm)3 in both the ordinary and the hybrid static potentials with the precision achieved in
conventional computations. For smaller lattice volumes, the ordinary static potential values
experience a small negative shift, probably caused by the traveling of a glueball, whereas
we observe a relatively large positive shift for the hybrid static potentials originating in
the squeezed wavelength.

2.6.4 Discretization e!ects

Lattice calculations introduce discretization errors due to the finite lattice spacing a. Unlike
in the continuum, where rotational symmetry is exact, the rotational symmetry is violated
on the lattice since only rotations by multiples of 90 degrees are allowed. As a result,
lattice observables di!er from their continuum counterparts, requiring careful corrections
for accurate results.
Di!erent discretizations of the Yang-Mills theory and observables lead to varying dis-
cretization errors. For instance, the Wilson plaquette action has O

]︄
a2
⌊︄

errors, but all
formulations should converge to the same continuum result as a ↗ 0.
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Several strategies exist to reduce discretization errors. One approach is to employ improved
actions such as the Symanzik improved gauge action [90], where additional operators are
added to cancel leading lattice discretization errors compared to the Wilson plaquette
action. Another strategy for discretization errors is a tree-level improvement applicable to
observables like the static force or static potentials. This method involves matching the
tree-level lattice propagator to its continuum counterpart. The latter method is particularly
relevant for our parametrization of hybrid static potentials (see Chapter 4) and will be
discussed in detail in the following.
In leading-order perturbation theory, the continuum static potential is given by a one-gluon
exchange and, thus, is proportional to 1/r. The lattice counterpart is determined by the
Green’s function of the Wilson plaquette gauge action and Eichten-Hill static action

⎦
1

r

⎢

lat

= 4↪G(r/a, 0, 0), (2.40)

where the Green’s function is

G(R) =
1

(2↪)3

)︄
↽

→↽

d3k

⎫3
j=1 cos(kjRj)

4
\︂3

j=1 sin
2(kj/2)

. (2.41)

For the HYP2 static action [66, 67, 91], where HYP2 smeared temporal links replace un-
smeared links, the Greens function (2.41) is modified by an additional factor,

GHYP(R) =
1

(2↪)3

)︄
↽

→↽

d3k

⎫3
j=1 cos(kjRj)↑

⎞
1≃ (ς1/6)

\︂3
i=1 4 sin

2(ki)#i0

⎡2

4
\︂3

j=1 sin
2(kj/2)

, (2.42)

where #µω is [65]

#µω = 1+ς2(1 + ς3)≃
ς2

4
(1 + 2ς3)

⎦ 3[︄

j=1

4 sin2(pj/2)≃ 4 sin2(pµ/2)≃ 4 sin2(pω/2)

⎢

+
ς2ς3

4

⎩

ϑ ↓=µ,ω

4 sin2(pµ/2) . (2.43)

The Green’s function for the Eichten-Hill static action can be e"ciently computed using a
recursion relation [92,93]. In contrast, for the HYP2 static action, the integral is evaluated
using standard Monte Carlo integration techniques.
The di!erence between the continuum and lattice tree-level static potential can be used
to quantify the discretization error. Notably, the HYP2 action shows more significant
discretization errors at small quark-antiquark separations r/a compared to the Eichten-
Hill static action.
Two common methods exist to correct the static potential for the discretization error
quantified at the tree level of perturbation theory. They are referred to by r-method and
V -method, respectively. Both methods were studied in the context of a bachelor thesis [94]
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and extensively discussed and compared in Ref. [56]. Here, SU(2) lattice field theory
data for the ordinary static potential at on- and o!-axis separations with two di!erent
discretizations of the static action, the HYP2 static action and the standard Eichten-Hill
static action, were investigated.
Initially introduced for the static force [79] and later applied to the static potential [93],
the r-method shifts lattice data points computed at r to an improved separation rimpr

defined via (4↪rimpr)→1 = G(r/a)/a, where G(r/a) is the tree-level lattice propagator,
dependent on the static action discretization. However, applying the r-method to the static
potential introduces an overcorrection, which can be parametrized as &̄

lat
= ϱ(r ≃ rimpr),

where ϱ denotes a fit parameter closely related to the string tension. This overcorrection
arises because one-gluon exchange primarily a!ects the ς/r term in a Cornell potential
V0 ≃ ς/r + ϱr, describing the ordinary static potential, while the linear term ϱr remains
unchanged. The r-method without correcting for this overcorrection is commonly used due
to its simplicity. However, the overcorrection term should be subtracted after improving
the separation r, even though it complicates the procedure.
Therefore, the alternative V -method [65, 95] is better suited for the static potential. It
corrects the lattice static potential by subtracting the di!erence between the lattice static
potential at the tree level, which is proportional to G(r/a)/a, and the continuum static
potential at the tree level, which is proportional to 1/r,

V e

!+
g
(r) ↗ V e

!+
g
(r)≃&V lat,e

!+
g

(r) = V e

!+
g
(r)≃ ς≃

⎦
1

r
≃

Ge(r/a)

a

⎢
. (2.44)

Here, ς≃ is determined by a fit to the unimproved data (see Section 4.3) and is related to
the strong coupling constant. Improved data can be defined through V e

!+
g
(r)≃&V lat,e

!+
g

(r).
Similarly, hybrid static potentials can be improved by subtracting
&V lat,e

hybrid
(r) = ≃(1/8)&V lat,e

!+
g

(r) from the lattice data points. The prefactor originates
in the repulsive behavior of hybrid static potentials and, in leading-order perturbation
theory, they are suppressed by a factor 1/8 relative to the ordinary static potential.
The benefit of applying tree-level improvement when combining lattice field theory results
obtained at di!erent lattice spacings and with di!erent static actions is demonstrated in
Figure 2.3, where we compare unimproved and improved data points for the ”+

g potential
from our five ensembles (see Table 4.3). The two plots show that most improved data points
are consistent with a single curve, while unimproved data points from di!erent ensembles
exhibit substantial discrepancies for r <

↘ 0.4 fm.
Given the current statistical precision of lattice static potential computations, tree-level
improvement is essential. As shown in Section 4.3, the lattice potential data improved
using the V -method can be consistently described by a smooth curve, restoring rotational
symmetry within statistical errors.
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Figure 2.3: Comparison of unimproved (left) and improved (right) lattice data points for
the ”+

g static potential from our five ensembles A, B, C, D and AHYP2 (see
Table 4.3). We subtract V!+

g
(r) + Ce with V!+

g
(r) being the Cornell potential

and parameters obtained by a fit to data points with r ⇒ 0.2 fm (indicated by
the vertical dashed line), see Section 4.3.
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3 Heavy hybrid mesons in an e!ective

field theory framework

Heavy hybrid mesons, also called quarkonium hybrids, are composed of a heavy quark
and a heavy antiquark coupled to an excited gluonic field. Due to the large mass of the
heavy quarks (mQ), the quark-antiquark pair motion can be treated non-relativistically,
while the gluons, the system’s light degrees of freedom, move much faster. The distinct
scale separation enables the e!ective description of heavy hybrid mesons using the Born-
Oppenheimer approximation, which was first applied in molecular physics [96], where one
can exploit a similar hierarchy of scales. In hybrid mesons, the heavy quark-antiquark
pair is considered static on the timescale of the excited gluons, allowing the gluonic field
to be treated adiabatically. This approximation is especially applicable to hybrid mesons
consisting of heavy charm or bottom quarks (mc = 1628MeV and mb = 4977MeV from
quark models [97]). The Born-Oppenheimer approximation has been applied to heavy
hybrid mesons, e.g. in Refs. [36, 40, 98,99].
Recent advancements have extended this approximation into a systematic e!ective field
theory framework for exotic hadrons such as heavy hybrid mesons, but also tetraquarks,
doubly heavy baryons and pentaquarks [14–16, 18–20, 100], now known as the Born-Op-
penheimer E!ective Field Theory (BOEFT). E!ective field theories are powerful tools in
physics. They allow us to describe complex systems by focusing only on the relevant
degrees of freedom at a particular energy scale. The scale $QCD plays a crucial role as
it separates the perturbative from non-perturbative e!ects in Quantum Chromodynamics
(QCD). For systems involving heavy quarks, however, the quark mass mQ is much larger
than $QCD → 300MeV [101]. The heavy quark mass and the non-relativistic velocity en-
able the separation of scales: mQ ↖ mQv ↖ mQv2, where v is the relative velocity between
the heavy quark and antiquark (in the rest frame of the meson v2 → 0.1 for b̄b, v2 → 0.3 for
c̄c systems [20]), mQv is related to the inverse size of the system and mQv2 is the scale of
the binding energy. This hierarchy enables the factorization of scales such that one arrives
at a series of e!ective field theories. Non-relativistic QCD (NRQCD) is obtained from
QCD by an expansion in terms of the inverse heavy quark mass 1/mQ. Moreover, BOEFT
exploits the scale hierarchy mQv2 ↙ $QCD, meaning that the gluonic binding energy can
be treated adiabatically. Further factorization in the case of small quark-antiquark separa-
tions (1/r → mQv ↖ $QCD) leads to weakly-coupled potential NRQCD (pNRQCD) [100].
The e!ective field theory describes the system up to some matching coe"cients that relate
it to the previous e!ective field theory in the series. NRQCD is matched to QCD and
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BOEFT is matched to NRQCD after successively integrating out scales. Some of these
matching coe"cients, the potentials, involve non-perturbative terms and require input
from lattice field theory. Thus, e!ective field theory and lattice gauge theory complement
each other in enhancing the knowledge about exotic hadrons.
This chapter explains relevant aspects of the BOEFT description of heavy hybrid mesons,
mainly based on Refs. [15, 19, 20]. The introduction shall motivate the lattice field theory
calculations presented in the following chapters. For a detailed, comprehensive presenta-
tion, see Refs. [14, 18–20] and references therein.

3.1 Lagrangian and potentials

The BOEFT, as formulated in Refs. [19, 20], is capable of describing all sorts of general
exotic hadrons consisting of two heavy quarks such as hybrid quarkonium, tetraquarks,
double heavy baryons and pentaquarks. The BOEFT Lagrangian is organized in an ex-
pansion in the inverse heavy quark mass, 1/mQ, which is rooted in integrating out the
energy scale of the heavy quarks.
The general BOEFT Lagrangian describing heavy hybrid mesons reads [19]

L =’†

⇀PC

n
↑
A

↑

[i↽t ≃ h⇀PC ]n
↑
A

↑;nA’⇀PC
nA (3.1)

with the Hamiltonian given as an expansion in powers of 1/mQ

[h⇀PC (r)]n
↑
A

↑;nA = ≃
&r
mQ

↩n
↑
n↩A

↑
A + V (0)n↑

A
↑;nA

⇀PC (r) +
1

mQ

V (1)n↑
A

↑;nA
⇀PC (r,p) +O

⎭
1

m2
Q

⎨
.

(3.2)

The Lagrangian is specific to hybrid mesons composed of a quark-antiquark pair and an
excited gluon field characterized by the gluonic spin ω, parity P and charge conjugation
behavior C. The hybrid fields ’⇀PC ∝ ’⇀PC

nA live both in the gluon spin space and the
heavy quark spin space. The first index n corresponds to the 2ω + 1 components of the
gluon spin. The second index A = 1, 2, 3, 4 corresponds to the heavy quark pair spin. The
spin of 1/2 of each quark can either couple to heavy quark pair spin 0 (singlet) or 1 (triplet)
and the heavy quark spin operator is defined as 2S

QQ̄
= ωQI2Q̄ + ω

Q̄
I2Q. The trace over

spin indices is implicit in the Lagrangian.
The Lagrangian can be systematically extended to describe several sorts of heavy hadrons
and their mixing. In the following, we give details on the leading order, order (1/mQ)0,
and next-to-leading order, order (1/mQ)1, potentials for hybrid mesons.

3.1.1 Order (1/mQ)0

The Lagrangian at leading order in the heavy quark mass expansion includes, besides the
kinetic term, all terms proportional to (1/mQ)0. The leading order potential in Eq. (3.2)
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is given by V (0)
⇀PC (r). V (0)

⇀PC ∝ V (0)n↑
A

↑;nA
⇀PC = ↩A

↑
AV (0)n↑

n

⇀PC is a 12 ↑ 12 matrix, while ↩A
↑
A

indicates that at order (1/mQ)0 the spin of the heavy quarks is irrelevant. The leading
order potential matrix V (0)n↑

n

⇀PC can be organized in terms of specific configurations of the
gluonic field.
In the full rotation group, the gluon field is characterized by the orbital angular momentum
ω, the behavior under parity transformation P and the behavior under charge conjugation
C. The non-vanishing separation of the quark and antiquark to which the gluons are
coupled breaks the full rotational symmetry to a cylindrical symmetry. The representations
of this symmetry group, the dihedral group D↗h, are conventionally characterized by $⇁

ϑ:

• $ = ”(= 0),!(= 1),&(= 2), . . . denotes the total angular momentum with respect to
the quark-antiquark separation axis, i.e. a non-negative integer (w.l.o.g. we separate
the static quark and antiquark along the z-axis).

• ↼ = g(= +), u(= ≃) describes the even (g) or odd (u) behavior under the combined
parity and charge conjugation transformation P ′ C.

• ⇀ = +,≃ is the eigenvalue of a reflection Px along an axis perpendicular to the quark-
antiquark separation axis (for definiteness, we use the x-axis). For $ ⇒ 1, hybrid
potentials are degenerate with respect to ⇀ and ⇀ is typically omitted. However, states
with di!erent ⇀ are not equal and need to be di!erentiated.

Each representation ωPC of the full rotation group corresponds to certain subduced repre-
sentations $⇁

ϑ of the subgroup. $ = |▷| can take values 0, . . . ,ω and ↼ and ⇀ are restricted
by P and C. When the distance between quark and antiquark in a hybrid meson is sent to
zero, the full rotational symmetry of the gluons is restored. In the limit of vanishing sep-
aration, the quark-antiquark pair represents an adjoint color source coupled to the gluon
field, corresponding to a gluelump state (see Chapter 5). The gluelump with the lowest
mass is associated to the gluonic quantum numbers ωPC = 1+→. The subduced represen-
tations for these quantum numbers are !±

u and ”→
u , which are the quantum numbers of

the lowest hybrid static potentials (see Chapter 4).
The representations of the subgroup could be characterized alternatively by ▷ϑ, where ▷ de-
notes the gluon spin projection along the quark-antiquark separation axis
▷ = ≃ω, . . . , 0, . . . ,ω. For |▷| = $ ⇒ 1, hybrid static potentials are degenerate with
respect to the sign of ▷. This labeling is also common in the literature (e.g. Ref. [19]).
However, in this work, we will primarily use the notation $⇁

ϑ to label the representations,
as is standard in lattice field theory.
Consequently, the leading order potential V (0)

⇀PC (r) can be decomposed as

V (0)n↑
n

⇀PC (r) =
[︄

$ω
ε

V$ω
ε
(r)Pn

↑
n

⇀$ . (3.3)

P⇀$ω
ε

is a (2ω+ 1)↑ (2ω+ 1) projection matrix that projects onto a representation $⇁
ϑ of
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the dihedral group D↗h. The projection matrices for ωPC = 1+→ can be represented by

P1! = P10 = er ∞ er , P1” = P11 = 1≃ er ∞ er , (3.4)

where er denotes the unit vector along the quark-antiquark separation axis. P1! relates
the components of the spin-1 gluon fields parallel to the separation axis of the quark-
antiquark pair to the static potential V!→

u
(r), while P1” relates the gluon spin components

of the gluon field which are orthogonal to the separation axis to the static potential V”u(r).
V$ω

ε
(r) describes the static energy of the gluon field in the configuration $⇁

ϑ as a function
of the absolute separation distance r of the quark and antiquark. The lattice calculation
and parametrization of the lowest hybrid static potentials V”u(r) and V!→

u
(r) is the main

focus of Chapter 4.
The static potentials V$ω

ε
(r) are those matching coe"cients of the BOEFT appearing at

leading order in the inverse heavy quark mass expansion.

Weakly-coupled pNRQCD exploits an additional multipole expansion in r for short dis-
tances, which yields a prediction for the hybrid static potentials for small separations
r ↙ 1/$QCD [14, 100],

V pNRQCD

$ω
ε

(r) = Vo(r) + $H + b$ω
ε
r2 +O

]︄
r3
⌊︄
. (3.5)

Vo(r) denotes the perturbative octet potential. At leading order in perturbation the-
ory, it is a repulsive Coulombic potential Vo(r) = ςs/(6r), where ςs denotes the strong
coupling constant at a reasonable scale. The perturbative octet potential is known up
to next-to-next-to-next-to-leading order in ςs (see e.g. Ref. [102]). $H denotes a constant
corresponding to the gluelump mass associated with the quantum number sector. Both the
gluelump mass and the next-to-leading order term in the multipole expansion proportional
to r2 denote non-perturbative quantities. Their determination requires non-perturbative
methods such as lattice gauge theory. The lattice calculation and continuum extrapolation
of gluelump masses is the main focus of Chapter 5.

3.1.2 Order (1/mQ)1

Corrections to the leading order arise as additional terms in the heavy quark mass expan-
sion of the Hamiltonians and as supplementary terms in the Lagrangian,

L =
[︄

⇀

’†

⇀PC

n
↑
A

↑
⎬
i↽t ≃

⎦
≃

&r
mQ

+ V (0)
⇀PC (r) +

1

mQ

V (1)
⇀PC (r,p)

⎢⎪
n
↑
A

↑;nA

’⇀PC
nA + L

O(1/mQ) .

(3.6)

For ordinary quarkonium (ωPC = 0++), the potential V (1)
0++(r,p) does not depend on

the heavy quark spin S
QQ̄

. Spin-dependent potentials for ordinary quarkonium only ap-
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pear beyond order (1/mQ)2. Some of them have been studied in the literature (see e.g.
Refs. [103–106]).
In contrast, for heavy hybrid mesons, spin-dependent e!ects start to show up at a lower
order, specifically at (1/mQ)1. This makes these e!ects especially important for hybrid
mesons. The next-to-leading order potential for hybrid mesons can be divided into spin-
dependent and spin-independent contributions,

V (1)
⇀PC (r,p) = V (1),SD

⇀PC (r) + V (1),SI

⇀PC (r,p) . (3.7)

The spin-independent corrections are not considered in this work because matching ex-
pressions are mostly not available for heavy hybrid mesons (only the angular momentum-
dependent potential V l

$$↑ has been derived, see Ref. [19] for details, and matching equations
for spin-independent potentials have been obtained in weakly-coupled pNRQCD only for
short r, see Ref. [18] for details). Even when spin-independent terms are neglected, compu-
tations of heavy hybrid meson masses (as outlined in the next section) remain relevant, as
spin-dependent terms determine the spin splittings in the spectra of heavy hybrid mesons.

Hybrid spin-dependent potentials

The spin-dependent part of the hybrid potential at order (1/mQ)1 was derived in Refs. [17–
19]

[V (1)SD
⇀PC (r)]n

↑
A;nA =

[︄

$$↑

P
n
↑
k

⇀$

/︄
V sa

⇀PC$$↑(r)(S
i

QQ̄
)A

↑
A
·

⎞
P

ir

10 · (S
r

⇀)
kj

⎡

+V sb

⇀PC$$↑(r)(S
i

QQ̄
)A

↑
A
·

⎞
P

ir

11 · (S
r

⇀)
kj

⎡\︄
P

jn

⇀$↑ . (3.8)

S⇀ denotes the spin operator of the gluons with spin ω, which couples to the heavy quark
pair spin S

QQ̄
. The hybrid spin-dependent potentials V sa

⇀PC$$↑(r) and V sb

⇀PC$$↑(r) are
matching coe"cients of the BOEFT at next-to-leading order. These r-dependent coef-
ficients require determination with non-perturbative methods such as lattice field theory.
A matching calculation between NRQCD and BOEFT correlators provides expressions for
these coe"cients in terms of generalized Wilson loops. We provide a detailed discussion
of the matching expressions and their lattice calculation in Chapter 6. For small separa-
tions (r ↙ 1/$QCD), pNRQCD exploits an additional multipole expansion which yields a
prediction for the hybrid spin-dependent potentials. For the potentials V sa

11 (r) and V sb

10 (r)

related to the lowest hybrid mesons with gluon spin ωPC = 1+→, it reads [18, 19]

V sa

11 (r) = V np (0)
SK

+ V np (1)
SK

r2 + · · · (3.9)

V sb

10 (r) = V np (0)
SK

+ (V np (0)
SKb

+ V np (1)
SK

)r2 + · · · . (3.10)

V np (1)
SK

, V np (1)
SK

V np (1)
SK

are unknown non-perturbative coe"cients. Ref. [18] derived expres-
sions for these coe"cients in terms of gluelump-like correlators with chromomagnetic inser-
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tions, which could also be evaluated with lattice field theory. These predictions, however,
are limited to short distances.

Hybrid-quarkonium mixing potentials

In addition, interactions between hybrid mesons and ordinary quarkonium states with the
same quantum numbers are possible due to the coupling between gluon spin and heavy
quark spin. This hybrid-quarkonium mixing is also suppressed by a factor of 1/mQ and
is incorporated in the Lagrangian as an additional term L

O(1/mQ), which was derived in
Ref. [15]. For the mixing between ordinary quarkonium and the lowest hybrid mesons
related to gluon spin ω = 1, the hybrid-quarkonium mixing Lagrangian reads

Lmixing = 2V n
↑
n

mix

⎞
’n

↑
†

0++’
n0
1+→ +’0†

0++’
nn

↑

1+→ + H.c.
⎡
. (3.11)

The mixing term in the Lagrangian has no apparent 1/mQ factor due to local field re-
definitions [15]. Nevertheless, it is of order (1/mQ)1 because of its dependence on the
heavy-quark spin.
In this notation, ’A†

0++ denotes the ordinary quarkonium field and it has four components,
where A = 0 refers to heavy quark-antiquark spin S

QQ̄
= 0 and A = j with j = 1, 2, 3 to

the eigenstates of the three Cartesian x-, y- and z-components of the heavy quark spin-1
operator. ’nA

1+→represents the hybrid meson field, where the first index corresponds to the
gluon spin components and the second is associated with the heavy quark spin components
similar to the ordinary quarkonium field. Note that the notation in Ref. [15] di!ers from
that used here, which aligns with the notation in Refs. [19,23]. The correspondence between
both notations is explained in Appendix C.
Regardless of the Lagrangian formulation, the potential matrix V n

↑
n

mix
can be decomposed

in terms of the irreducible representations of D↗h

V n
↑
n

mix (r) =
[︄

$ω
ε=!→

u ,”u

V mix

$ω
ε

(r)Pn
↑
n

1$ (3.12)

= V mix

!→
u
(r)

⎞
er ∞ er

⎡
n
↑
n

+ V mix

”u
(r)

⎞
1≃ er ∞ er

⎡
n
↑
n

. (3.13)

The mixing potentials V mix

”u
(r) and V mix

!→
u
(r) are matching coe"cients of the BOEFT at

next-to-leading order, which require determination via lattice field theory. These coe"-
cients can be expressed in terms of generalized Wilson loops after matching calculations
between NRQCD and BOEFT correlators [15]. The Wilson loop expressions and their
calculation with lattice field theory will be discussed in detail in Chapter 6. At short
distances, pNRQCD predicts that the potentials V mix

!→
u
(r) and V mix

”u
(r) are degenerate for

small separations [15].
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3.2 Schrödinger-like equations

The Born-Oppenheimer E!ective Field Theory originates in the Born-Oppenheimer ap-
proximation, first introduced in Ref. [96] and successfully applied to diatomic molecules.
Its extension to hybrid mesons, which exhibit a similar hierarchy of energy scales, was
pioneered in Refs. [29, 36,107] and is comprehensively discussed in Ref. [99].
In the following, we outline the Born-Oppenheimer approximation as applied to hybrid
mesons and present the corresponding radial Schrödinger equations. We then discuss
refined formulations based on the Born-Oppenheimer E!ective Field Theory framework [14,
15, 23], which incorporates systematic corrections and, thereby, improves the theoretical
prediction of the hybrid meson spectrum.

3.2.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation exploits the existence of slow and fast degrees of
freedom, typically arising in systems where particle masses di!er by orders of magnitude,
leading to separate timescales. Its application to hybrid mesons relies on several assump-
tions. The heavy quarks are treated as static on the timescale of gluon dynamics and
their spin is neglected. Under this assumption, the gluonic energy levels are determined
in the presence of static color sources, yielding the so-called static potentials. Secondly, it
is assumed that the gluonic field adjusts instantaneously to variations in the heavy quark
positions while remaining in its configuration. This is the adiabatic approximation. These
assumptions hold well for heavy quarks, as corrections are of order 1/mQ. Subsequently,
within the single-channel approximation, contributions from other quantum number sec-
tors $⇁

ϑ are neglected, which is justified as long as the static potentials do not cross with
other static potentials.
The simplest Schrödinger equation is the one for ordinary quarkonium, where a heavy
quark-antiquark pair binds within an interaction potential given by the ordinary static
potential ”+

g ⎬
≃

&r

mQ

+ V!+
g
(r)

⎪
’(r) = E!+

g
’(r) . (3.14)

Here, ’(r) represents the wave function of the quarkonium system. The kinetic term
consists of a radial derivative and a centrifugal term proportional to the orbital angular
momentum operator of the heavy quark-antiquark pair

&r

mQ

=
1

mQ

⎦
d

dr

⎢2

≃

L2
QQ̄

mQr2
. (3.15)

For ordinary quarkonium, the quark-antiquark orbital angular momentum L
QQ̄

coincides
with the total orbital angular momentum L.
Applying a separation ansatz, ’(r) = (1/r)P!+

g ;L,n(r)YLM (◁,0), where YLM are spherical
harmonics, the equation reduces to a radial Schrödinger equation for the heavy quark-
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antiquark relative coordinate in the static potential V!+
g
(r)

⎦
≃

1

mQ

⎦
d

dr

⎢2

+
L(L+ 1)

mQr2
+ V!+

g
(r)

⎢
P!+

g ;L,n(r) = E!+
g ;L,nP!+

g ;L,n(r) . (3.16)

For hybrid mesons, the wave function has 2ω + 1 components due to the corresponding
gluon spin ω. It can be expanded in terms of static eigenstates. As opposed to the case of
ordinary quarkonium, the centrifugal term of the derivative, the orbital angular momentum
operator L

QQ̄
, acts non-trivially on the static eigenstates, which introduces mixing between

channels corresponding to the same gluon spin ω. For details, see e.g. Refs. [14,108]. Under
the single-channel approximation, the radial Schrödinger equation for hybrid mesons with
a static potential V$ω

ε
(r) takes the form

⎦
≃1

m

d2

dr2
+

L(L+ 1)≃ 2$2 + ω(ω+ 1)

mr2
+ V$ω

ε
(r)

⎢
P$ω

ε ;L,n(r) = E$ω
ε ;L,nP$ω

ε ;L,n(r). (3.17)

Here, L is the total orbital angular momentum, given by L = L
QQ̄

+ ε. The term
L(L+1)≃ 2$2+ω(ω+1) arises from the expectation value of the quark-antiquark orbital
angular momentum operator in the gluonic static eigenstates $⇁

ϑ (for details see Ref. [99]).
This one-dimensional, non-relativistic Schrödinger equation for the radial quark-antiquark
wavefunction has been used in Refs. [29, 36, 51, 55, 99, 107] to compute energy levels of
heavy hybrid mesons. Since the heavy quark spin is neglected, the resulting energy levels
correspond to heavy-quark spin multiplets. The quantum numbers JPC of hybrid mesons
within these spin multiplets can be determined via

J =

⏐
⎝⎠

⎝⎜

L if S = 0

1 if S = 1 and L = 0

{L≃ 1, L, L+ 1} if S = 1 and L ⇒ 1

(3.18)

P = ⇀(≃1)$+L+1 (3.19)

C = ↼⇀(≃1)$+L+S (3.20)

as discussed in [99].

3.2.2 Coupled-channel Schrödinger equations including heavy quark spin
e!ects

The Born-Oppenheimer E!ective Field Theory systematically extends the Born-Oppen-
heimer approximation by incorporating corrections in inverse powers of the heavy quark
mass, such as heavy quark spin e!ects. These corrections are included through Schrödinger-
like multi-channel equations, which are derived from the equations of motion using the
Lagrangian at a given order in the heavy quark mass expansion.
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At leading order, the general Schrödinger-like equation takes the form
⎬
≃

&r

mQ

↩n
↑
n + V (0)n↑

n

⇀PC (r)

⎪
’n

⇀PC (r) = E’n
↑

⇀PC (r) . (3.21)

For ordinary quarkonium with ω = 0, this is a single-component matrix equation and the
resulting radial Schrödinger equation reduces to the one obtained in the Born-Oppenheimer
approximation for the ”+

g potential (3.16).
The situation is more complex for the lowest hybrid mesons, where the gluon spin is
ω = 1. The wave function consists of three components corresponding to the gluonic
configurations !u and ”→

u . Without the single-channel approximation, this leads to a
system of 3 ↑ 3 coupled Schrödinger-like equations [14, 15]. Such coupled equations are
obtained by expanding the hybrid wave function in terms of eigenstates of the total orbital
angular momentum L = L

QQ̄
+ ε, following Ref. [15]

#(r) =
1

r
P+
0 (r)Y

LQQ̄=1
00

+
1

r

↗[︄

L=1

L[︄

M=→L

[P+
L
(r)Y

LQQ̄=L+1
LM

+ P 0
L(r)Y

LQQ̄=L

LM
+ P→

L
(r)Y

LQQ̄=|L→1|
LM

] . (3.22)

Here, PLQQ̄

L
(r) are the radial wave functions for the heavy quark-antiquark pair, with the

upper index indicating L
QQ̄

, where L
QQ̄

= L,L ± 1 are represented by 0,±1. Y
LQQ̄

LM
are

vector spherical harmonics, defined as

Y
iLQQ̄

LM
=

[︄

µ=0,±1

C(L
QQ̄

1L;M ≃ µµ)Y M→µ

LQQ̄
εi

µ, (3.23)

where Y M

LQQ̄
are standard spherical harmonics, C(L1L2L;M1M2) are Clebsch-Gordan co-

e"cients and ϑ±1 = ∈
1
⇐
2
(1,±i, 0)T and ϑ0 = (0, 0, 1)T are the gluon spin functions.

In the basis introduced above, the coupled-channel radial Schrödinger equations for L ∋= 0

are
⌋︄
≃

1

mQ

↽2

↽r2
+

⎭ (L→1)L
mQr2

0

0 (L+1)(L+2)
mQr2

⎨
+V!→

u
(r)+

(V”u(r)≃ V!→
u
(r))

⎟

⟨︂
L+1
2L+1

⇔
(L+1)L
2L+1⇔

(L+1)L
2L+1

L

2L+1

⟩︂

⨆︁

⨆︂

∮︁
⎭
P→

L
(r)

P+
L
(r)

⎨
=ELLQQ̄

⎭
P→

L
(r)

P+
L
(r)

⎨
(3.24)

⎦
≃

1

mQ

↽2

↽r2
+
L(L+ 1)

mQr2
+V”u(r)

⎢
P 0
L(r)=ELLQQ̄

P 0
L(r) , (3.25)
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and for L = 0

⎦
≃

1

mQ

↽2

↽r2
+

2

mQr2
+ V!→

u
(r)

⎢
P+
0 (r) = E01P

+
0 (r) . (3.26)

These coupled equations are equivalent to those formulated in an alternative basis in
Ref. [14].
By applying the single-channel approximation to the leading-order hybrid Schrödinger-like
equations and using the gluonic eigenstates as the basis, one recovers the hybrid single-
channel Schrödinger equations of the Born-Oppenheimer approximation (3.17). Masses of
heavy quark spin multiplets have been computed from the leading-order coupled-channel
Schrödinger equations in Refs. [14, 15].
While the leading-order equations are independent of the heavy quark-antiquark pair spin,
the next-to-leading-order spin-dependent potential, V (1),SD

1+→ (Eq. (6.1)), arising at order
(1/mQ)1, induces the hyperfine splitting in the heavy hybrid meson spectrum. The in-
clusion of the next-to-leading-order potential matrix leads to coupled channel Schrödinger
equations with a matrix structure of size 3↑3, 7↑7 and 9↑9 for total angular momentum
of the heavy hybrid meson J = 0, J = 1 and J > 1, respectively, where J = L + S

QQ̄
.

These complicated equations have been derived in Ref. [23], where explicit equations can
be found.
The hybrid-quarkonium mixing potential Vmix (Eq. (6.2)), also appearing at order (1/mQ)1,
couples ordinary quarkonium and heavy hybrid mesons. Schrödinger-like equations incor-
porating Vmix but neglecting the spin-dependent potential V (1),SD

1+→ were derived in Ref. [15].
The resulting coupled channel Schrödinger equations are of size 2↑ 2, 4↑ 4 and 6↑ 6. An
illustrative example of such a coupled-channel Schrödinger equation, which demonstrates
the mixing of ordinary quarkonium and heavy hybrid mesons, is

⎦
≃

1

mQ

d2

dr2
+

J(J + 1)

mQr2
+

⎦
V!+

g
2V mix

”u

2V mix

”u
V”u

⎢⎢⎭
S0
1JM (r)

P 0
0JM (r)

⎨
= E

⎭
S0
1JM (r)

P 0
0JM (r)

⎨
(3.27)

for total angular momentum J ∋= 0, where M is the third component of J . Here, the mixing
potential V mix

”u
, appearing in the o!-diagonal elements of the potential matrix, couples the

radial wave functions S0
1JM and P 0

0JM . S0
1JM represents quarkonium with S

QQ̄
= 1, while

P 0
0JM represents a heavy hybrid meson with S

QQ̄
= 0. The upper index denotes L

QQ̄
,

where L
QQ̄

= L,L± 1 is represented by 0,±1.
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4 Hybrid static potentials !u and ”→

u

Static potentials describe the energy of the gluonic field in the presence of a static quark-
antiquark pair as a function of its separation. In ordinary quarkonium, the gluonic field
is in a trivial, non-excited configuration and its energy is described by the ordinary static
potential. In hybrid mesons, however, the gluonic field is excited and the field configuration
is characterized by quantum numbers $⇁

ϑ di!erent from the quantum numbers ”+
g of the

ordinary static potential. The hybrid static potential describes the energy of the excited
gluonic field. This chapter focuses on the two lowest hybrid static potentials, !u and ”→

u ,
which play a crucial role within the Born-Oppenheimer E!ective Field Theory (BOEFT)
as they provide the leading-order contribution in the heavy quark mass expansion of the
BOEFT Lagrangian for the lowest heavy hybrid mesons (see Chapter 3).
The leading order of the heavy quark mass expansion, order (1/mQ)0, where the po-
tentials are solely given by the static potentials, corresponds to the well-known Born-
Oppenheimer approximation, which has been used for a long time to study heavy hybrid
mesons [14,15,17,18,29,30,36,51,98,99]. Perturbation theory determines the static poten-
tials at very short quark-antiquark separations and QCD e!ective string theory can describe
them at large separations [109, 110], but non-perturbative methods such as lattice gauge
theory are required to determine the potentials in a broader separation range from first prin-
ciples. Lattice results for hybrid static potentials were computed in Refs. [24–51,111,112].
Frequently used lattice results cover quark-antiquark separations of r >

↘ 0.16 fm [40,44,51],
where the lattice results are considered trustworthy. To make a connection to perturbation
theory, lattice data at much smaller separations is needed.
In this chapter, we present our investigations of hybrid static potentials, which were pre-
viously published in Refs. [53–56]. We extend lattice field theory results for the two lowest
hybrid static potentials !u and ”→

u to smaller quark-antiquark separations by using several
rather fine lattice spacings. We discuss the lattice calculation of Wilson loop correlation
functions with suitable hybrid operators, present details on the four gauge link ensembles
generated for this work and discuss the use of the multilevel algorithm for statistical error
reduction. Hybrid static potentials are extracted from plateau fits of e!ective potentials
for all four lattice ensembles, reaching separations of r = 0.04 fm. We determine accurate
parametrizations for the hybrid static potentials !u and ”→

u by quantifying and eliminating
discretization errors. The parametrizations provide a continuum limit description and can
be directly used in Schrödinger equations solved for the masses of heavy hybrid mesons.
We investigate the e!ects of our improvements for heavy hybrid meson masses computed
in the Born-Oppenheimer approximation. Moreover, we discuss and exclude systematic
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errors from topology, the finite lattice volume and glueball decay.

4.1 Lattice computation

In this section, we outline the computational setup and methodology employed for the
lattice determination of hybrid static potentials. We use methods introduced in Ref. [51]
and extend the results from this reference to finer lattice spacings to obtain hybrid static
potentials at shorter separation distances. Our study utilizes newly generated gauge link
ensembles, which are also applied in subsequent chapters for the computation of gluelump
masses (Chapter 5) and hybrid spin-dependent potentials (Chapter 6).

4.1.1 Wilson loop correlation functions

In this work, we focus primarily on the two lowest hybrid static potentials, !u and ”→
u , both

of which correspond to gluon quantum numbers ωPC = 1+→. Additionally, we compute
the ordinary static potential with quantum numbers ”+

g to control discretization e!ects.
The static potential V$ω

ε
(r), as the ground-state gluonic energy in the specific quantum

number sector $⇁
ϑ, can be obtained from the large-time limit of a Wilson loop-like correla-

tion function,
lim
T⇒↗

W$ω
ε
(r, T ) ⇓ exp

⎞
≃V$ω

ε
(r)T

⎡
, (4.1)

which follows from the spectral decomposition. The Wilson loop-like correlation function
is defined as

W$ω
ε
(r, T ) = ↓#|(Olattice

$ω
ε

)†(r, T/2)Olattice

$ω
ε

(r,≃T/2)|#↔

=
⟨︄
Tr

⎞
aS;$ω

ε
(≃r/2,+r/2;≃T/2)U(+r/2;≃T/2, T/2)

⎞
aS;$ω

ε
(≃r/2,+r/2;T/2)

⎡†

U(≃r/2;T/2,≃T/2)
⎡⟩︄

U

, (4.2)

where O
lattice

$ω
ε

denotes the operator generating a (hybrid) trial state with definite quantum
numbers $⇁

ϑ,

O
lattice

$ω
ε

= Q̄(≃r/2)aS;$ω
ε
(≃r/2,+r/2)Q(+r/2) . (4.3)

The static quark and antiquark, Q and Q̄, are separated along the z-axis without loss of
generality in the following analysis. Thus, we use a simplified notation r/2 ∝ (0, 0, r/2).
U(+r/2;≃T/2, T/2) represents the temporal gauge link connecting times ≃T/2 and T/2

and ↓. . . ↔U denotes the ensemble average over gauge link configurations.
The creation operator aS;$ω

ε
for $⇁

ϑ is a sum of properly transformed spatial insertions
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S(r1, r2), defined as

aS;$ω
ε
(≃r/2,+r/2) =

1

4

⎞
1 + ↼(P ′ C) + ⇀Px + ↼⇀(P ′ C)Px

⎡

↑

3[︄

k=0

1

2

⎦
exp

⎦
+i↪$k

2

⎢
+ exp

⎦
≃i↪$k

2

⎢⎢
R

⎦
↪k

2

⎢⎞
U(≃r/2, r1)S(r1, r2)U(r2,+r/2)

⎡
.

(4.4)

U(r1, r2) is a spatial gauge link connecting lattice sites r1 and r2. R
]︄
↽k

2

⌊︄
denotes a rotation

around the quark-antiquark separation axis by discrete multiples of ↪/2. Due to the
restriction to discrete rotations on the discretized spacetime volume, the lattice hybrid
trial states, which correspond to lattice representations % ↘ D4h, do not have definite
continuum angular momentum $. They receive contributions from an infinite number of
continuum angular momentum. However, we assume that the ground states generated with
aS;$ω

ε
correspond to the lowest continuum angular momentum of this infinite set, which

would be given by $. Px and P ′ C represent a parity transformation and a combined
parity and charge conjugation transformation of the gauge link paths, respectively.
In Ref. [51], optimized insertion paths S were identified to enhance the ground-state overlap
in each of the considered quantum number sectors $⇁

ϑ. Optimized operators are crucial
for reducing excited-state contamination and obtaining precise and reliable potentials from
Wilson loop correlators at large but finite temporal extents.
We employ one operator for each quantum number $⇁

ϑ ↘
∮︂
”+
g ,!

+
u ,”

→
u

⨀︁
. For ”+

g , S is a
straight path of spatial gauge links. We select S = SIII,1 for !+

u and S = SIV,2 for ”→
u ,

as defined in Ref. [51] or in Tables 4.1 and 4.2. The spatial extent of these operators
was optimized in Ref. [51] for a lattice spacing of a = 0.093 fm. We increase the operator
extents Ex and Ey (see Tables 4.1 and 4.2) consistently when reducing the lattice spacing
to maintain their physical length, ensuring a rather large overlap with the ground state.
We validated this scaling in a SU(2) exploratory study of the hybrid operators at di!erent
lattice spacings [53].
Note that the definition of creation operators (4.4) di!ers slightly from the one given in
Ref. [51]. Eq. (4.4) ensures exclusively real weight factors simplifying lattice calculations.
This definition was also used in calculations in Ref. [51]. It is important to note that the use
of solely real weights as in Eq. (4.4) alters the exact operator structure while still generating
a state with quantum numbers $⇁

ϑ. Because of this, a
S;”+

u
is not related to a

S;”→
u

by a
simple ↪/2 rotation around the separation axis, despite their identical insertion S and the
fact that the static potentials are degenerate, V”+

u
= V”→

u
= V”u . The choice of operator

structure may introduce relative phases between operators. However, this is relevant only
if we are interested in matrix elements between di!erent hybrid operators. These are
associated with hybrid spin-dependent potentials, which are investigated in Chapter 6.
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UEx
x

U
Ey
y

UEx
�x

U
Ey

�y

UEz
z

USIII,1U = UEx
x U

Ey
y UEz

z U
Ey
→y

UEx
→x

r/a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12

Ex 1 1 1 1 1 1 1 1 1 1 1

Ey 3 3 3 3 3 3 3 3 3 3 3

Table 4.1: Optimized creation operator for !+
u [51].

UEx
x

U
Ey
y

UEx
�x

U
Ey

�y

UEx
x

U
Ey
y

UEx
�x

U
Ey

�y

U
Ez,1
z

U
Ez,1
z

U
Ez,2
z

USIV,2U = U
Ez,1
z UEx

x U
Ey
y UEx

→x
U

Ey
→y

U
Ez,2
z

↑UEx
x U

Ey
y UEx

→x
U

Ey
→y

U
Ez,1
z

r/a 2 3 4 5 6 7 8 9 10 11 12

Ez,1 0 0 0 1 1 2 2 3 3 4 4

Ez,2 2 3 4 3 4 3 4 3 4 3 4

Ex 3 3 3 3 3 3 3 3 3 3 3

Ey 3 3 3 3 3 3 3 3 3 3 3

Table 4.2: Optimized creation operator for ”→
u [51].

4.1.2 Gauge link ensembles

We employ four SU(3) gauge link ensembles with fine lattice spacings to investigate the
short-distance regime of hybrid static potentials. We generated the gauge link ensembles
with the standard Wilson plaquette action and a heat bath algorithm implemented in
the CL2QCD software package [63]. Each ensemble was produced with Nsim independent
Monte Carlo simulations, each consisting of Ntotal updates. Each update includes a heat
bath sweep followed by Nor overrelaxation sweeps to minimize correlations between consec-
utive gauge link configurations. After discarding the initial Ntherm thermalization updates,
correlation functions were measured using gauge link configurations separated by Nsep up-
dates. The total number of gauge link configurations used for measurements is given by
Nmeas = Nsim

(Ntotal→Ntherm)
Nsep

. The ensemble-specific parameters are listed in Table 4.3.
The four gauge link ensembles have gauge couplings ϑ = 6.594 , 6.451 , 6.284 , 6.000. The
gauge couplings are related to lattice spacings a via a parametrization of ln(a/r0) provided
in Ref. [93], where the Sommer scale r0 and a related scale rc were determined. In order
to introduce physical units, we set r0 = 0.5 fm, which is a simple and common choice
in pure gauge theory but is slightly larger than QCD results [80]. The lattice volume
L3

↑ T for all ensembles is approximately (1.2 fm)3 ↑ 2.4 fm in physical units. Due to
technical constraints in the CL2QCD software, both spatial and temporal lattice extents
must have an even number of lattice sites, so the ratio T/L is not exactly the same across
ensembles. Additionally, some configurations from ensembles C and D were reused from a
previous study [78]. Nevertheless, the volumes are su"ciently large to neglect finite volume
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corrections, as discussed in Section 4.4.2.
To eliminate autocorrelations, the Nmeas gauge link configurations were grouped into
smaller bins. Statistical errors for individual ensemble results were determined using the
jackknife method. For analyses involving data from multiple ensembles, we developed a
consistent error analysis strategy described in detail in Appendix A. This approach uti-
lizes the bootstrap method when combining data from ensembles with di!erent numbers
of jackknife-reduced samples. The same strategy is applied in subsequent chapters. The
computations in this chapter were performed using NA = 320, NB = NC = ND = 160

jackknife reduced samples. In the parametrizations of hybrid static potentials, we in-
corporate an additional ensemble from Ref. [51] with NA

HYP2

= 5000 jackknife reduced
samples. The ensemble details are further discussed in Section 4.3. Ultimately, we employ
K = 10000 bootstrap samples for the final analysis.

ensemble ϑ a in fm [93] (L/a)3 ↑ T/a Nsim Ntotal Nor Ntherm Nsep Nmeas

A 6.000 0.093 123 ↑ 26 2 60000 4 20000 50 1600

B 6.284 0.060 203 ↑ 40 2 60000 12 20000 100 800

C 6.451 0.048 263 ↑ 50 4 80000 15 40000 200 800

D 6.594 0.040 303 ↑ 60 4 80000 15 40000 200 800

Table 4.3: Gauge link ensembles.

4.1.3 Computational details

We utilize the multilevel algorithm to enhance computational e"ciency for Wilson loop-
like correlation functions [77]. The implementation of the multilevel algorithm has already
been carried out in the context of Ref. [78]. For a detailed explanation of the algorithm
and its technical aspects, we refer to Section 2.4.4 and Refs. [55, 78]. In our calculation,
we choose a single level of partitioning with a uniform pattern, where each time-slice has
a thickness of 2, i.e. p1 = p2 = · · · = pnts

= 2. This choice simplifies the algorithm and
maximizes e"ciency by fully exploiting translational invariance in the temporal direction.
Additionally, we set the number of sublattice configurations nm to 400, each separated by
nu = 30 updates.
Furthermore, APE smearing is applied to the spatial gauge links to adjust the size of the
operators and improve the signal quality. We use a smearing coe"cient of ςAPE = 0.5, a
commonly chosen value in lattice gauge theory. The number of APE smearing steps was
increased as the lattice spacing decreased, based on a study in SU(2) that investigated the
dependence of the e!ective potential for both the ordinary and the lowest hybrid static
potential on the number of smearing levels. The chosen smearing levels, summarized in
Table 4.4, are consistently applied across all static potential quantum numbers.
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a in fm 0.093 0.060 0.048 0.040

NAPE for SU(3) 20 50 75 100

Table 4.4: Smearing parameter NAPE for various lattice spacings for gauge group SU(3).

4.2 Numerical results

We aim to compute lattice field theory results for static potentials V e

$ω
ε
(r) with quantum

numbers $⇁
ϑ = ”+

g (the ordinary static potential) and $⇁
ϑ = !u,”→

u (the two lowest hybrid
static potentials) for all four lattice ensembles e ↘ {A,B,C,D} listed in Table 4.3. We
extract the potential values from the large-time behavior of e!ective potentials, which we
define as

V e

e!;$ω
ε
(r, T ) =

1

2a
ln

⎭
W e

$ω
ε
(r, T )

W e

$ω
ε
(r, T + 2a)

⎨
, (4.5)

where W e

$ω
ε
(r, T ) denotes the Wilson loop correlation function (4.2) on ensemble e. We

exploit rotational and translational symmetry for calculating W e

$ω
ε
(r, T ). The calculated

temporal extents T are multiples of 2a, which is a constraint originating in the partitioning
for the multilevel algorithm. In the large T limit, the e!ective potential approaches a
plateau,

lim
T⇒↗

V e

e!;$ω
ε
(r, T ) = V e

$ω
ε
(r) , (4.6)

which corresponds to the lattice static potential value V e

$ω
ε

at quark-antiquark separation
r.
The plateaus in the e!ective potentials are extracted through uncorrelated ε2 minimizing
fits of constants in the range T ≃

min
△ T △ T ≃

max. We employ a fit algorithm inspired by the
one used in Ref. [51] to ensure a systematic and consistent extraction of static potentials
for each combination of quantum numbers $⇁

ϑ and quark-antiquark separation r. The fit
procedure is described as follows:

1. A lower bound Tmin is defined as the smallest T where the di!erence between the
consecutive values aV e

e!;$ω
ε
(r, T ≃ 2a) and aV e

e!;$ω
ε
(r, T ) is within 1ϱ.

2. An upper bound Tmax is defined as the largest T for which the Wilson loop W e

$ω
ε
(r, T+

2a) is computed, i.e. Tmax = 12a, 20a, 22a, 22a for ensembles A,B,C,D, respectively.

3. Fits are performed for all intervals T ≃

min
△ T △ T ≃

max satisfying:

T ≃

min ⇒ Tmin , T ≃

max △ Tmax and T ≃

max ≃ T ≃

min ⇒ 6 a . (4.7)

4. The fit yielding the longest plateau with ε2
red

△ 1 is chosen as the final result for
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aV e

$ω
ε
(r). The reduced ε2 is computed as

ε2
red

=
2a

T ≃
max ≃ T ≃

min

[︄

T=T
↑
min

,T
↑
min

+2a,...,T ↑
max

⎞
aV e

e!;$ω
ε
(r, T )≃ aV e

$ω
ε
(r)

⎡2

⎞
aϱ[V e

e!;$ω
ε
](r, T )

⎡2 , (4.8)

where aϱ[V e

e!;$ω
ε
](r, T ) represents the statistical uncertainty of aV e

e!;$ω
ε
(r, T ).

To confirm the reliability of our results, we numerically validated that the extracted po-
tential results aV e

$ω
ε
(r) are stable within statistical errors when the fit range is manually

changed to T ≃

min
+ 2a △ T △ T ≃

max. Figure 4.1 presents exemplary e!ective potentials
aV e

e!;$ω
ε
(r = 4a, T ) for $⇁

ϑ = ”+
g and $⇁

ϑ = !u,”→
u and the four di!erent ensembles. The

horizontal gray bands indicate the fitted plateau and its statistical error.
The resulting static potentials V e

$ω
ε
(r) for $⇁

ϑ = ”+
g ,!u,”→

u and separations r ⇒ 1a

are shown in Figure 4.2 and collected in Table E.1. Due to the self-energy of static
quarks, which depends on the lattice spacing a, potentials computed on di!erent ensem-
bles are shifted relative to one another. To enable a meaningful comparison of results
across di!erent ensembles in Figure 4.2, we normalize the static potentials by setting
V e

!+
g
(r = 0.5r0) = 0 for e ↘ {A, B, C, D} to compensate for the ensemble-dependent

self-energy of the static quarks. V e

!+
g
(r = 0.5r0) is computed via a simple interpolation of

V e

!+
g
(r) via the Cornell potential.

In the continuum limit, results from all ensembles should coincide. However, at the current
level of statistical precision, discretization e!ects lead to noticeable deviations between
di!erent lattice ensembles for the same physical quark-antiquark separations of the ordinary
as well as hybrid static potentials. This e!ect is illustrated in Figure 4.3 for the ordinary
static potential. Here, we show the deviation of V e

!+
g
(r) ≃ V e

!+
g
(r = 0.5r0) from a simple

Cornell potential fit V!+
g
(r). The fact that data points from di!erent ensembles do not

lie on top of each other particularly at small r/a illustrates the presence of discretization
e!ects. In Section 4.3, we will discuss how to systematically reduce discretization e!ects
by correcting for discretization errors at tree level and partially proportional to a2. This
approach will allow us to find a parametrization of the static potentials consistent with
the continuum limit, which can then directly be used as input for Born-Oppenheimer
predictions of heavy hybrid meson masses as previously done in Refs. [14,15,17,18,29,30,
36,51,98,99].
Unlike previous lattice studies of hybrid static potentials [27–30, 32, 40, 44, 45, 51], which
used lattice spacings a>

↘ 0.07 fm, our analysis employs four ensembles with lattice spacings
as small as 0.04 fm. Thus, much smaller quark-antiquark separations can be reached.
Furthermore, we are able to quantify discretization errors and will eliminate these from
the lattice results to a large extent in the next section.
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Figure 4.1: Exemplary plots of e!ective potentials aV e

e!;$ω
ε
(r, t) with $⇁

ϑ = ”+
g ,!u,”→

u for
r = 4a (Top left: ensemble A; Top right: ensemble B; Bottom left: ensemble
C; Bottom right: ensemble D).

4.3 Parametrization

In this section, we aim to obtain continuum-extrapolated results and parametrizations of
the ordinary static potential V!+

g
(r) and the two lowest hybrid static potentials, V”u(r)

and V!→
u
(r), based on the lattice field theory results computed in the previous section.

A direct approach to achieving continuum results would involve extrapolating individual
data points V e(r) at fixed r to a = 0. The resulting extrapolated lattice data points could
then be parametrized using a continuous function. However, since our ensembles have very
di!erent lattice spacings, the resolution of V e(r) in r varies across ensembles. Fixing r for
the extrapolation in a would require interpolation between data points at neighboring r,
introducing possible systematic errors due to interpolation choices. To mitigate this issue,
we adopt an alternative approach. This method quantifies lattice discretization errors at
tree level in perturbation theory and partially at order a2, accounts for the a-dependent
self-energy and eliminates them from the parametrization. We describe this approach in
the following.
First, we add lattice data from Ref. [51] to our set of lattice data to extend the range
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Figure 4.2: SU(3) lattice field theory results for the ordinary static potential ”+
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hybrid static potentials !u and ”→
u from the four ensembles e ↘ {A, B, C, D}.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Σg+

V
e Λ

ηε
(r
)-
V
e Σ
g+
(0
.5
r 0
)
-V

Σ g
+
(r
)
[G
eV
]

r [fm]

A

B

C

D

Figure 4.3: Visualization of lattice discretization errors in the lattice data for ”+
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of available quark-antiquark separations to 0.19 fm<
↘ r <

↘ 1.12 fm. This additional dataset,
labeled AHYP2, was obtained on a lattice volume of (L/a)3 ↑ T/a = 243 ↑ 48 with a
lattice spacing of a = 0.093 fm, matching that of our ensemble A (see Table 4.3). The
results were computed in Ref. [51] using HYP2-smeared temporal links, which significantly
reduce the self-energy and lead to smaller statistical errors, though at the cost of increased
discretization e!ects at small r/a. Consequently, our dataset consists of lattice results from
five ensembles, e ↘ {A,B,C,D,AHYP2

}, including separations 0.04 fm △ r △ 1.12 fm.
We now derive the parametrizations used to fit our lattice data. We begin with the ordinary
static potential ”+

g . It is known that the Cornell ansatz

V!+
g
(r) = ≃

ς

r
+ ϱr (4.9)

describes the ordinary static potential for r >
↘ 0.2 fm in the continuum (see e.g. Ref. [113]).

The parameters ς and ϱ related to the strong coupling constant and the string tension,
respectively, are determined via a fit to our lattice data. To match the lattice results,
the fit function must account for the self-energy of the static quark-antiquark pair, which
appears as an unphysical o!set in the static potentials. Since the self-energy depends on
the discretization of the static action and the lattice spacing a, an ensemble-dependent
constant term Ce is included in the fit.
As observed in Figure 4.3, the lattice results for the static potentials from the five en-
sembles are not consistent with a single curve. These deviations are attributed to lattice
artifacts, which can be estimated by comparing the lattice Green’s function to its contin-
uum counterpart at tree level in perturbation theory, as discussed in Section 2.6.4. We use
the so-called V -method (see Section 2.6.4 and Refs. [56, 65]) to account for discretization
e!ects at tree-level by incorporating an additional correction term

&V lat,e

!+
g

(r) = ς≃

⎦
1

r
≃

Ge(r/a)

a

⎢
, (4.10)

where ς≃ is a fit parameter related to the strong coupling constant and Ge is the lattice
propagator as defined in Section 2.6.4. Since the lattice propagator depends on the dis-
cretization of the static action used to generate the ensemble, it di!ers between ensembles
with and without HYP2-smearing.
Consequently, the final 8-parameter fit function describing our lattice data for ”+

g is given
by

V fit,e

!+
g

(r) = V!+
g
(r) + Ce +&V lat,e

!+
g

(r) (4.11)

= ≃
ς

r
+ ϱr + Ce + ς≃

⎦
1

r
≃

Ge(r/a)

a

⎢
. (4.12)

Similarly, based on a prediction of pNRQCD for the hybrid static potentials [14] (see
Chapter 3), a physical meaningful description of the hybrid static potentials !u and ”→

u
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already proposed in Ref. [51] is given by

V”u(r) =
A1

r
+A2 +A3r

2 (4.13)

V!→
u
(r) =

A1

r
+A2 +A3r

2 +
B1r2

1 +B2r +B3r2
. (4.14)

This ansatz captures the degeneracy of !u and ”→
u at r ↗ 0 and their repulsive behavior at

short distances expected from the perturbative octet potential. Inspired by the multipole
expansion of pNRQCD, quadratic corrections in r are incorporated with di!erent param-
eters for !u and ”→

u . In Ref. [51], it was found that ”→
u is best described for intermediate

separations through an additional term with parameters B1, B2 and B3. For even larger
r than the separations considered in this work, one expects a linear string-like behavior in
the hybrid static potentials [112,114].
Self-energy and tree-level lattice artifacts a!ect both hybrid and ordinary static potentials.
As discussed in Section 2.6.4, discretization artifacts at tree level in hybrid static potentials
are similar to those in the ordinary static potential up to a factor of ≃1/8. Thus, we include
the correction term

&V lat,e

hybrid
(r) = ≃

1

8
&V lat,e

!+
g

(r) = ≃
ς≃

8

⎦
1

r
≃

Ge(r/a)

a

⎢
, (4.15)

into the fit function. The self-energy constant Ce is also incorporated. Since the ”+
g lattice

data has smaller statistical errors due to its lower energy, we determine the parameters Ce

and ς≃ in the fit to the ordinary static potential.
Moreover, each parameter exhibits a dependence on the lattice spacing. Within the current
precision, the lattice spacing dependence is most noticeable in A2 due to a small ensemble
dependent o!set particularly prominent at large a in the lattice data, see Figure 4.2. To
account for this, we introduce an additional term A≃e

2,$ω
ε
a2. The new parameter di!ers

for the !u and ”→
u hybrid static potentials and varies based on whether HYP2-smeared

temporal links are used. However, it remains the same across di!erent lattice spacings.
Thus, we have A≃A

2,”u
= A≃B

2,”u
= A≃C

2,”u
= A≃D

2,”u
and A≃A

2,!→
u
= A≃B

2,!→
u
= A≃C

2,!→
u
= A≃D

2,!→
u
.

Finally, the fit functions describing the lattice data of the hybrid static potentials !u and
”→
u are given by

V fit,e

”u
(r) = V”u(r) + Ce +&V lat,e

hybrid
(r) +A≃e

2,”u
a2 (4.16)

V fit,e

!→
u

(r) = V!→
u
(r) + Ce +&V lat,e

hybrid
(r) +A≃e

2,!→
u
a2 , (4.17)

which includes 10 fit parameters.
The parametrization strategy is as follows: First, we perform an 8-parameter uncorre-
lated ε2-minimizing fit of V fit,e

!+
g

(r) (4.12) using all lattice data points V e

!+
g
(r) from the

five ensembles e ↘ {A,B,C,D,AHYP2
} with 0.2 fm △ r. The primary purpose of this fit

is to accurately determine the parameters Ce and ς≃. The resulting parameters can be
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ς [GeV fm] ϱ [GeV/fm] ς→ [GeV fm] ε2
red

0.0571(4) 1.064(4) 0.0735(23) 0.7

A1 [GeV fm] A2 [GeV] A3 [GeV fm2] B1 [GeV fm2] B2 [fm↑1] B3 [fm↑2] ε2
red

Fit 1 0.0124(9) 1.135(8) 0.372(7) 1.56(15) 1.2(3) 2.1(2) 1.2
Fit 2 0.0147(18) 1.126(11) 0.381(7) 1.57(17) 1.0(4) 2.3(2) 0.8
Fit 3 0.0065(16) 1.190(14) ≃0.092(91) 1.15(4) - - 0.5

Fit 1 Fit 2 Fit 3
ensemble Ce [GeV] A→e

2,!u
A→e

2,”→
u

A→e
2,!u

A→e
2,”→

u
A→e

2,!u
A→e

2,”→
u

[GeV/fm2]

A 1.398(2) 3.1(7) 6.7(8) 3.0(9) 6.5(9) 3.4(8) 5.7(9)
B 2.059(2)
C 2.472(2)
D 2.862(2)

AHYP2 0.340(2) 1.0(7) 5.0(5) 0.9(9) 4.7(9) 1.6(7) 4.4(6)

Table 4.5: Resulting fit parameters. Fit 1 and Fit 2 correspond to the parametrizations
(4.13) and (4.14) and fit ranges 2a △ r and 3a △ r, respectively. Fit 3 cor-
responds to the parametrizations (4.13) and (4.14) with B2 = B3 = 0 and fit
range 2a △ r △ 0.3 fm, where A3,”u = A3 and A3,!→

u
= A3 +B1.

found in Table 4.5. ς = 0.289(2) = 0.0571(4)GeV fm and ϱ = 1.064(4)GeV/fm are in
reasonable agreement with results from the literature [115]. In a second step, we perform
a 10-parameter uncorrelated ε2 minimizing fit of V fit,e

”u
(r) (4.16) and V fit,e

!→
u

(r) (4.17) si-
multaneously to both hybrid static potentials V e

”u
(r) and V e

!→
u
(r) from all five ensembles

e ↘ {A,B,C,D,AHYP2
}. The resulting parameters can also be found in Table 4.5. Finally,

we can define improved lattice data points via

Ṽ
e

!+
g
(r) = V e

!+
g
(r)≃ Ce

≃&V lat,e

!+
g

(r), (4.18)

Ṽ
e

$ω
ε
(r) = V e

$ω
ε
(r)≃ Ce

≃&V lat,e

hybrid
(r)≃A≃e

2,$ω
ε
a2 , (4.19)

where the discretization errors and the self-energy are subtracted. The improved lattice
data is collected in Table E.2. We present the parametrizations alongside the improved
data points in Figure 4.4.
The main result for the parametrizations is obtained from a fit to separations r ⇒ 2a

(Fit 1). The inclusion of data at r = 2a is crucial for constraining the short-range behavior
(r <

↘ 0.15 fm), while the long-range behavior remains stable even when restricting the data to
r ⇒ 3a (Fit 2). However, data at r = 1a is excluded, as it may be a!ected by discretization
errors that cannot be fully corrected through tree-level improvement.
At small separations, the lattice results clearly exhibit the repulsive behavior predicted by
perturbation theory and indicate the expected degeneracy. To further investigate the short-
distance behavior, we additionally restrict the fit to 2a △ r △ 0.3 fm and set B2 = B3 = 0
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(4.9),(4.13) and (4.14) as functions of the quark-antiquark separation r in
fm. The colors green, blue, yellow and red indicate di!erent lattice spacings
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$ω
ε
(r = 0.24 fm)≃Ce,

e = A,B,C,D for $⇁
ϑ = ”+

g (top) and $⇁
ϑ = !u (bottom). The results are

consistent with the parametrizations (4.9) and (4.13) with parameters corre-
sponding to Fit 1 as listed in Table 4.5 (the black points).

(Fit 3) to align with the pNRQCD prediction. The pNRQCD parameter proportional to r2

in the multipole expansion, corresponds to A3 in Eq. (4.13) for !u and A3+B1 in Eq. (4.14)
for ”→

u . This fit results in a significantly smaller coe"cient for the repulsive 1/r term,
A1 = 0.0065(16)GeV fm (see Table 4.5), in agreement with Refs. [14,15]. Although the data
points at r = 1a should be treated with caution, they align well with the parametrization
of Fit 3.
In Ref. [116] the lattice data for !u from Ref. [40] was parametrized using a similar fit
function as Eq. (4.13) yielding A1 = 0.022GeV fm, which is also larger than our results for
A1 from Fit 1. Our value for A1 agrees with the results from Refs. [14, 15]. Specifically,
in Ref. [15], the 1/r-coe"cient was fixed to ς/8 following the perturbative prediction.
ς was determined by fitting a Cornell potential similar to Eq. (4.9) to ”+

g lattice data
from Ref. [40] in the range 0.2 fm △ r △ 2.4 fm. The resulting 1/r-coe"cient for the
hybrid potentials, 0.012GeV fm, aligns with our fit results for the parameter A1 for Fit 1
and Fit 2. Ref. [14] determined the 1/r-coe"cient to be → 0.01GeV fm based on the
perturbative octet potential computed in the Renormalon Subtraction scheme up to ς3

s.
This value is within the range of our fit results for A1.
The parametrization strategy e!ectively removes discretization errors and self-energy con-
tributions, producing a result equivalent to a continuum extrapolation, which is confirmed
by Figure 4.5. Here, we present data points V e

$ω
ε
(r) ≃ Ce, where only the ensemble de-

pendent self-energy is subtracted, at an exemplary separation r = 0.24 fm as a function of
the squared lattice spacing a2. Note that we only have lattice data at this specific r for
ensembles B, C and D such that we need an interpolating function for data points V A

$ω
ε
(r)

close to r = 0.24 fm. The data points show a linear behavior in a2 and when extrapolated
to a = 0 coincide with the parametrization V$ω

ε
(r = 0.24 fm) (shown at a = 0 in Figure
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4.5). The agreement confirms that our strategy to account for discretization errors to a
large extent in the parametrizations (4.12), (4.16) and (4.17) is successful and superior to
a naive continuum limit. In Refs. [56,94] it was also shown that tree-level improvement via
the subtraction of &V lat,e

!+
g

(r) is preferable to the introduction of an improved separation
r ↗ rimpr (see the discussion in Section 2.6.4).

4.4 Exclusion of systematic e!ects

In addition to discretization errors addressed in the previous section, we aim to exclude
other possible sources of systematic errors from our precise hybrid static potential data
and parametrizations. This section focuses on excluding systematic e!ects arising from
topological freezing, the finite lattice volume and glueball decay. This discussion was
previously published in Refs. [53–55,117].

4.4.1 Topological freezing

To exclude volume e!ects in our results and avoid unreliable error analysis due to topo-
logical freezing and long autocorrelation times in the sets of gauge link configurations, we
investigate the topological charge and the topological susceptibility.
We compute the topological charge history for the four lattice ensembles e ↘ {A,B,C,D}

used in this work, employing the field strength definition of the lattice topological charge
with the clover-leaf discretization (see Section 2.6.2). For this purpose, we apply four-
dimensional APE smearing, similar to the three-dimensional version used for static poten-
tial operators (see Section 2.4.1), with a smearing parameter of ςAPE = 0.3. The number
of smearing iterations is adapted to each lattice spacing to ensure that the topological
charge Q stabilizes across multiple smearing steps for most gauge link configurations. Fig-
ure 4.6a illustrates the Monte Carlo histories of the topological charge for a subset of gauge
configurations from ensembles B (a = 0.06 fm) and D (a = 0.04 fm). For a = 0.06 fm, the
topological charge fluctuates frequently, indicating no issue with topological freezing. How-
ever, for a = 0.04 fm, the autocorrelation time of Q is significantly longer, consistent with
expectations for smaller lattice spacings (see e.g. Ref. [82]). Despite this, there are su"cient
changes in Q to ensure that our statistical error analysis, which involves four independent
simulation runs and appropriate binning, yields reliable uncertainties for the observables.
Figure 4.6b presents normalized and symmetrized histograms of the topological charge
distribution for ensembles B and D. Both distributions align well with a Gaussian shape,
as expected for large, finite spacetime volumes. From their squared widths,

⎥
Q2

⎧
, we

estimate the corresponding topological susceptibilities via εtop =
⎥
Q2

⎧
/V , which provides

insight into whether the topological charge sectors are adequately sampled. The results
for all four ensembles agree with literature values [118], further indicating that topological
freezing does not a!ect our computations.
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Figure 4.6: (a) Monte Carlo histories of the topological charge for ensemble B (a = 0.06 fm)
and D (a = 0.04 fm) for two independent simulation runs. (b) Normalized
and symmetrized histograms reflecting the topological charge distribution for
ensemble B and ensemble D.

4.4.2 Finite volume corrections

The gauge link ensembles employed in the calculation have a finite spacetime volume of
L3

→ (1.2 fm)3. Given the relatively small volume, it is curcial to verify that finite volume
corrections do not significantly impact these results. Previous studies in SU(2) (see Section
2.6.3) have shown that for L ↙ 1.0 fm, static potential results are systematically shifted. In
the case of ordinary static potentials, glueball interactions across the periodic lattice induce
a slight negative shift. For the larger hybrid states, however, wave function squeezing
inside the finite lattice volume is expected to become the dominant e!ect in small lattice
volumes, leading to a significant positive shift in the static potential. For our SU(3) gauge
link ensembles, we compared lattice data for the di!erence between static potentials at
a fixed separation, (V”u(0.25 fm) ≃ V!+

g
(0.25 fm)), from ensemble A with lattice spacing

a = 0.093 fm with results from a similar computation performed with a larger spatial lattice
extent, i.e. L = 2.4 fm. As shown in Figure 4.7, no statistically significant deviations were
observed. The figure also presents data points from the other ensembles, reinforcing this
conclusion. Overall, our analyses indicate that finite volume corrections at the chosen
spacetime volume L3

↑T → (1.2 fm)3↑2.4 fm are negligible compared to current statistical
uncertainties.
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4.4.3 Glueball decay

For each hybrid state, we compute a single operator. We assume that its ground-state
overlap with the hybrid state with quantum numbers $⇁

ϑ is su"ciently large for the ex-
tracted e!ective potential plateau to correspond to the ground-state energy of the hybrid
static potential. However, in principle, this operator may also overlap with other states
sharing the same quantum numbers, such as the scattering state of a glueball and the ”+

g

ground-state flux tube.
Given the energy gap of → 1000MeV between hybrid and ordinary quarkonium, several
multiparticle states are lighter than the hybrid ground states. In pure gauge theory, such
scattering states are limited to multiparticle states involving a non-excited flux tube and
relatively heavy glueballs. In contrast, including dynamical light quarks introduces ad-
ditional multiparticle states involving quarkonium and pions with ”→

u and !±
u quantum

numbers, which are lighter than the ground states |0,”→
u ↔ and |0,!±

u ↔ in the pure SU(3)
gauge theory. Resolving these states in a lattice QCD computation would be highly chal-
lenging. Conversely, neglecting their e!ects also introduces systematic errors, which might
be larger than those arising from a calculation, where light dynamical quarks are ignored
but a rigorouos ground state extraction is possible. In the following section, we discuss
cases in pure SU(3) gauge theory where the extracted ground state may be contaminated
by scattering states.
The hybrid flux tube can decay into a glueball and the ”+

g ground state when the energy
di!erence to the ordinary static potential is su"ciently large. This occurs at small sepa-
rations r where the ordinary static potential is attractive while the hybrid static potential
is repulsive. This is illustrated in Figure 4.8, where we plot the lightest glueball mass
(m0++ = 1.73(5)GeV [89]) plus the ”+

g ground state as a function of separation alongside
hybrid static potentials up to $ = 2 from Ref. [51]. The critical separation r

$ω
ε

crit
is defined
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as the point where this energy intersects with the hybrid static potentials, which marks
the threshold below which a decay is energetically allowed. The critical separations have
been previously discussed in Refs. [53, 55, 117] and are listed in Table 4.6.
However, such decays may be restricted due to quantum number constraints. A thorough
and general analysis of selection rules for both hybrid states and tetraquarks is provided in
Ref. [108]. Here, we specifically examine hybrid static potentials characterized by quantum
numbers $⇁

ϑ and assess whether transitions to the ”+
g ground state accompanied by a

JPC = 0++ glueball are possible.
Since the glueball under consideration has total angular momentum J = 0, its angular
momentum projection along the z-axis must also be zero, i.e., Jz = 0. Consequently,
the glueball’s orbital angular momentum component along the quark-antiquark separation
axis (the z-direction) must satisfy Lz = $. The quantum number ↼ does not restrict
the glueball, as its distribution along the z-direction can be either symmetric (↼ = g) or
antisymmetric (↼ = u).
In contrast, the quantum number ⇀ introduces an important restriction. The 0++ glueball
is symmetric under a Px transformation. When Lz = $ = ” = 0, its orbital angular
momentum wave function is also symmetric, meaning that scattering states with ⇀ = ≃

are impossible. As a result, decays involving a 0++ glueball are forbidden for ”→
u and

”→
g . For cases where Lz = $ > 0, the glueball’s wave function can either be symmetric or

antisymmetric such that transitions are allowed for all other hybrid flux tubes.
Decays involving heavier glueballs with quantum numbers JPC

∋= 0++ are possible in
certain cases, particularly when the glueball wave functions are antisymmetric with respect
to Px. However, these decays are only energetically viable at much smaller separations than
those listed in Table 4.6, making them irrelevant to our analysis.
In Sections 4.2 and 4.3, we have presented and utilized lattice results for separations down
to r = 0.04 fm. Since the critical separation for !u is r”u

crit
= 0.11 fm, results for this

state at smaller separations might, in principle, be a!ected by mixing with a ”+
g plus

glueball scattering state. However, as shown in Figure 4.4, the !u hybrid static potential
exhibits the expected upward curvature. Furthermore, at small separations, the !u and
”→
u hybrid static potentials converge, consistent with the anticipated degeneracy in the

limit r ↗ 0. These observations indicate that any possible contamination in the !u hybrid
static potential is negligible compared to the statistical uncertainties.

$ω
ε !u !g &g &u ”+

g
→

”+
u ”↑

u ”↑
g

r
#ω

ε

crit
[fm] 0.11 0.23 0.28 0.58 0.19 0.46 0.11 0.3

Table 4.6: Maximal separation r
$ω
ε

crit
, where a decay of a $⇁

ϑ hybrid flux tube into the ”+
g

ground state and a 0++ glueball is energetically possible. For ”→
u and ”→

g , such
decays are excluded because of quantum numbers.
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Figure 4.8: Threshold energy for decays of hybrid flux tubes into the ”+
g ground state and

a 0++ glueball (dashed line) and hybrid static potentials for various quantum
numbers $⇁

ϑ. Static potentials are taken from Ref. [51], the 0++ glueball mass
from Ref. [89].

4.5 Hybrid meson masses in the Born-Oppenheimer
approximation

The primary objective of this chapter is to obtain precise hybrid static potential data and
parametrizations, which provide valuable insight into the gluonic energy in the presence
of a static quark-antiquark pair. This was addressed in the previous sections. However,
the ultimate aim is a comparison of theoretical mass predictions with experiments. Hybrid
meson masses can be obtained by solving Schrödinger-like equations, which, as outlined
in Section 3.2, can be systematically derived within BOEFT at di!erent orders in the
heavy-quark mass expansion. At leading order, this approach corresponds to the Born-
Oppenheimer approximation [96], initially used for diatomic molecules, where the motion
of the heavy quark and antiquark in a hybrid meson is treated within the static energy
of the excited gluon field. The hybrid potentials play a crucial role as input for these
di!erential equations, ultimately solved for the heavy hybrid meson spectrum.
In this section, we investigate how our improved hybrid static potential results impact
the prediction of heavy hybrid meson masses. Specifically, we solve the leading-order
Schrödinger equations within the BOEFT framework, employing the common simplifying
Born-Oppenheimer approximation. The Born-Oppenheimer approximation has been ex-
tensively used in the literature [29, 36, 99, 107]. While this provides an initial estimate of
the mass spectrum, a more precise determination requires corrections beyond leading or-
der. These refinements involve coupled channels and higher-order potentials in the 1/mQ

expansion, including spin-dependent contributions, which will be computed in Chapter 6.
More advanced Schrödinger-like equations incorporating mixing and spin e!ects have been
solved recently in Refs. [14, 15, 17, 18, 23]. Our analysis in this section highlights the im-
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portance of accurate lattice data for reliable heavy hybrid meson mass calculations.
To compute the masses of heavy hybrid mesons containing either bb̄ or cc̄ quark pairs, we use
the BOEFT at leading order in 1/mQ, adopting the single-channel approximation, which
neglects the mixing between di!erent static potential sectors. This follows the approach of
a previous work [51], where hybrid meson masses were obtained using a parametrization
based on the hybrid static potential lattice data from ensemble AHYP2 (for details on this
ensemble see Section 4.3). By following the same methodology, we can directly assess the
impact of our improved hybrid static potential results on mass predictions.
At leading order in the BOEFT and within the single-channel approximation, the radial
Schrödinger equation is given by
⎦
≃

1

2µ

d2

dr2
+

L(L+ 1)≃ 2$2 + ω(ω+ 1)

2µr2
+ V$ω

ε
(r)

⎢
u$ω

ε ;L,n(r) = E$ω
ε ;L,nu$ω

ε ;L,n(r),

(4.20)

where µ = m
Q̄
mQ/(mQ̄

+ mQ) is the reduced mass of the heavy Q̄Q pair. The to-
tal angular momentum excluding the heavy quark pair spin S

Q̄Q
is denoted by L, with

L ↘ {$,$ + 1, . . .}. So the total angular momentum of the meson is J = L + S
Q̄Q

.
ω represents the gluon spin quantum number of the associated gluelump, which cor-
responds to the r ↗ 0 limit of the specific hybrid static potential $⇁

ϑ. For !u and
”→
u , it is given by ω = 1. The wave function of the relative coordinate of the Q̄Q

pair is 1$ω
ε ;L,n,mL(r,2,3) = (u$ω

ε ;L,n(r)/r)YL,mL(2,3). The static potential V$ω
ε
(r) cor-

responds to one of our parametrizations (4.9), (4.13) or (4.14) with parameters listed as
Fit 1 in Table 4.5. We use quark model values for the charm and bottom quark masses,
mc = 1628MeV and mb = 4977MeV [97].
We numerically solve the Schrödinger equation using standard methods, specifically a
fourth-order Runge-Kutta shooting method combined with Newton’s root-finding method.
To eliminate the unphysical o!set inherent in the energy levels, we subtract the lowest en-
ergy level computed with the ordinary static potential, E$ω

ε=!+
g ;n=1,L=0, and add the asso-

ciated spin-averaged mass of the lightest quarkonium from experiment, m = (mϑc(1S),exp+

3mJ/%(1S),exp)/4 = 3.069(1)GeV for c̄c or m = (mϑb(1S),exp+3m&(1S),exp)/4 = 9.445(1)GeV
for b̄b [119], i.e.

m$ω
ε ;L,n = E$ω

ε ;L,n ≃ E$ω
ε=!+

g ;n=1,L=0 +m. (4.21)

Alternatively, the renormalized mass of the associated gluelump can also be utilized to
determine the absolute value of the static potentials and, consequently, the energy levels.
Ref. [14] employed the gluelump mass in the Renormalon Subtraction (RS) scheme at a
scale of 1GeV, specifically $RS

B
(ϖf = 2.5/r0 → 1GeV). In Chapter 5, we will provide an

updated estimate of this quantity based on more precise lattice data.
The computed energy levels m$ω

ε ;L,n correspond to spin multiplets of heavy hybrid mesons,
with associated quantum numbers JPC are discussed in Section 3.2. The final mass results
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are listed in Table 4.7 and can be directly compared to Ref. [51].
We find that the obtained mass values are lower by O(10 . . . 45 MeV) than those from
our previous results in Ref. [51]. These deviations are comparable in magnitude to the
term A≃e

2,$ω
ε
a2, which is, evaluated for e = AHYP2, 43(4)MeV for $⇁

ϑ = ”→
u and 9(6)MeV

for $⇁
ϑ = !u. This term represents parts of the lattice discretization errors, which we

systematically assessed through static potential data at multiple lattice spacings in the
previous sections.
A significant portion of the remaining discrepancies in the masses can likely be attributed to
the parameter ς in the parametrization of V!+

g
(r) (4.9). The improvements in parametriza-

tions and the removal of lattice discretization errors lead to a slightly larger value of ς

compared to the previous study.
These findings highlight that the improved lattice data and parametrizations presented here
are an important step toward more precise Born-Oppenheimer predictions of heavy hybrid
meson masses. Future studies could refine the Born-Oppenheimer calculations performed
in Refs. [14, 15, 17, 18] by incorporating not only our updated static potential results, but
also the gluelump results of Chapter 5 and the order hybrid spin-dependent potentials at
order (1/mQ)1 calculated in Chapter 6.

$⇁
ϑ L n m$ω

ε ;L,n in GeV for QQ̄ = cc̄ m$ω
ε ;L,n in GeV for QQ̄ = bb̄

!u

1 1 4.175 (6) 10.682 (6)
1 2 4.550 (8) 10.895 (6)
2 1 4.360 (7) 10.785 (6)
3 1 4.546 (8) 10.890 (7)

”→
u

0 1 4.439 (5) 10.876 (5)
0 2 4.878 (5) 11.153 (5)
1 1 4.574 (5) 10.960 (5)
1 2 5.001 (6) 11.228 (5)
2 1 4.762 (5) 11.078 (5)
3 1 4.964 (5) 11.205 (5)

Table 4.7: Predictions for heavy hybrid meson masses.

4.6 Summary

In this chapter, we presented precise lattice field theory results for the hybrid static po-
tentials !u and ”→

u and the ordinary static potential ”+
g . Our study significantly ex-

tended the available range of lattice data for hybrid static potentials, reaching quark-
antiquark separations as small as 0.04 fm compared to the previous limit of 0.07 fm. Our
approach, using significantly smaller lattice spacings, as small as 0.04 fm, than e.g. in
Refs. [27, 30, 32, 40, 44, 45, 51, 89, 120], provides unprecedented resolution at short quark-
antiquark separations and allowed for a more detailed analysis of systematic uncertainties.
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Through exploratory studies at very small lattice spacings in SU(2) lattice gauge the-
ory [53, 56], we investigated the possible sources of systematic errors, such as topological
freezing, finite lattice volume e!ects, possible glueball decays and lattice discretization er-
rors. All these findings were applied and extended to our SU(3) gauge link ensembles to
exclude systematic errors. Hybrid static potential data at four di!erent lattice spacings
were extracted from reliable plateaus in the e!ective potentials. We incorporated a fifth
gauge link ensemble from Ref. [51] using a HYP2 static action in order to extend the sep-
aration range to larger r values and reliably quantify discretization errors at the tree level
and those proportional to a2.
The final result of these investigations is a precise parametrization of the hybrid static po-
tentials !u and ”→

u over the range 0.08 fm △ r △ 1.2 fm (see Table 4.5) along with improved
hybrid static potential data (see Table E.2) consistent with a continuum limit. We further
demonstrated the impact of these refinements by evaluating their e!ect on the calculation
of heavy hybrid meson masses within a simple Born-Oppenheimer approximation.
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5 Gluelumps

A gluelump is a color-neutral state composed of a static adjoint color charge bound to
gluons. A static quark-antiquark pair e!ectively constitutes a color source in the ad-
joint (octet) representation in the limit of vanishing relative separation. Consequently,
a gluelump can be regarded as the short-distance limit of a heavy hybrid meson, which
consists of a heavy quark-antiquark pair coupled to an excited gluonic field. Although not
directly observed in nature, gluelumps play a significant role in various Quantum Chromo-
dynamics (QCD) calculations.
In weakly-coupled potential Non-Relativistic QCD (pNRQCD), gluelumps constitute non-
perturbative coe"cients that define the potentials required to solve Schrödinger-like equa-
tions for heavy hybrid meson masses (see Chapter 3). Beyond the Standard Model,
gluelumps are considered as additional bound states, where the color charge may also
be in higher representations than the octet (see e.g. Ref. [121]).
Gluelumps have been explored using various models and approximations of QCD, including
the bag model, potential models and the variational approach in Coulomb gauge QCD (see
e.g., Refs. [122–126]). However, the resulting gluelump spectra depend significantly on
the model applied. In contrast, lattice gauge theory provides a first-principles approach.
However, only a limited number of lattice computations of gluelump spectra exist in the
literature. In Ref. [52], the masses of ten gluelump states were determined within SU(3)
gauge theory, with five gluelump mass splittings extrapolated to the continuum. A more
recent lattice study is a full lattice QCD study in Ref. [127], where they examined the
gluelump spectrum and determined the masses of twenty gluelump states in the color octet
representation, as well as an even larger number in higher color representations. As a result
of the inclusion of dynamical quarks, mixings with static adjoint mesons, states composed
of a static adjoint color charge and a light quark-antiquark pair, are possible. Such mixings
might introduce systematic errors. Consequently, despite its technical advancements, Ref.
[127] cannot be directly compared to Ref. [52] or serve as a replacement for it. We note that
a more recent preliminary calculation of gluelump masses in full QCD has been performed
in Ref. [128].
In lattice gauge theory, gluelump masses are divergent in the limit a ↗ 0 due to the
inherent self-energy of the static adjoint color charge. Thus, only mass splittings to a
reference mass can be extrapolated to the continuum limit. In general, absolute gluelump
masses depend on the chosen regularization scheme and the specific value of the regulator.
Ref. [44] converted the lightest lattice gluelump mass from Ref. [52], conventionally used as
a reference, into the Renormalon Subtraction (RS) scheme, which is frequently employed
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in perturbative calculations. The results from Refs. [44,52] have since been widely utilized,
both for comparison with model predictions and for computing heavy hybrid meson spectra
in the Born-Oppenheimer E!ective Field Theory (BOEFT) [14]. However, the precision
of such applications is constrained not only by perturbative uncertainties but also by the
relatively outdated lattice data from Ref. [52], which was generated over two decades ago.
In this chapter, we aim to improve the lattice results for the gluelump spectrum in the color
octet representation. We present a lattice calculation of gluelump correlators using chair-
shaped operators on four SU(3) lattice ensembles with fine lattice spacings, performed
in the context of a master’s thesis [129]. Using these results, we extract the complete
spectrum of gluelump states formed by a static color charge in the octet representation
coupled to gluons and extrapolate gluelump mass splittings to the continuum limit. A
detailed analysis is conducted to estimate systematic uncertainties associated with lattice
discretization e!ects and the large-time behavior of correlators. Finally, we perform a
renormalization and convert our result for the reference gluelump mass, m

T
+→
1

, to the
Renormalon Subtraction (RS) scheme investigating the e!ect of our improved lattice results
on the renormalized gluelump mass. This work has been published previously in Ref. [57].

5.1 Connection to hybrid static potentials

Hybrid static potentials and gluelumps have both been explored in various studies as part
of investigations of hybrid mesons, see Refs. [14, 17,18,44,98, 99].
The relationship between gluelumps and hybrid static potentials is established in pN-
RQCD [14,100], where the hybrid static potentials are expressed as

V$ω
ε
(r) = $H + Vo(r) +O

]︄
r2
⌊︄
, (5.1)

at leading order in a multipole expansion. Here, $H represents the gluelump mass associ-
ated with the hybrid static potential $⇁

ϑ. Extracting the gluelump mass from a fit to lattice
data for the static potential is challenging, as the data includes the self-energy of the static
quarks. An adjoint self-energy is also present in direct lattice results for gluelump masses.
Thus, determining the absolute value of $H requires a careful renormalization procedure
in both cases, which we discuss later for direct lattice gluelump calculations.
The connection between gluelumps and hybrid static potentials is also evident from a
group-theoretical perspective. The symmetry group of gluelumps is the full rotational
group and their representations are classified by JPC , where J represents the total angular
momentum, P and C denote parity and charge conjugation behavior, respectively. The
total angular momentum of the gluelump J corresponds to the spin of the gluons ω (see
Chapter 3). In hybrid mesons, the quark-antiquark separation axis reduces the full rota-
tional symmetry of the gluons to the cylindrical symmetry group D↗h, which characterizes
hybrid static potentials labeled by $⇁

ϑ (see Chapter 3). Thus, the full rotational symme-
try representations ωPC decompose into multiple representations $⇁

ϑ of its subgroup. As
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r ↗ 0, the rotational symmetry is restored, which implies the formation of multiplets of
hybrid static potentials, related to specific gluelumps with JPC = ωPC .
In general, the hybrid static potential representations $⇁

ϑ contribute to an infinite num-
ber of gluelump representations JPC . By assuming that the lowest energy state within a
representation $⇁

ϑ corresponds to the lowest gluelump state and that the first excitation
$⇁
ϑ

≃ corresponds to the second lowest gluelump state, one can establish a correspondence
between hybrid static potentials, their excitations and gluelump states. For hybrid static
potentials up to angular momentum $ = 2, these degeneracies are summarized in Ta-
ble 5.1. These degeneracies are supported by Ref. [100], where the symmetry properties of

JPC $⇁
ϑ

1+→ !u, ”→
u

1→→ !g, ”+≃
g

2→→ !≃
g, ”

→
g , &g

2+→ !≃
u, ”

+
u , &u

Table 5.1: Correspondence between gluelump quantum numbers JPC and hybrid static
potential quantum numbers $⇁

ϑ in the limit r ↗ 0.

gluonic operators for hybrid static states were analyzed in the short-distance limit. For this
analysis, it was assumed that higher-dimensional operators in a given $⇁

ϑ representation
generate the first excited states in this sector.
Using these degeneracies alongside perturbative expressions for the static potentials, one
can use lattice data for the lowest hybrid static potentials and the ordinary static potential
to extract the lowest gluelump mass in the RS scheme. This approach was employed
in Ref. [44]. This reference also explored an alternative method based on direct lattice
computations of the lowest gluelump mass. In this chapter, we adopt the latter approach,
computing gluelump masses directly from gluonic correlators on the lattice and converting
them to the RS scheme, as outlined in the following sections.

5.2 Lattice computation

In the following, we summarize lattice gluelump quantum numbers, operators and correla-
tion functions needed for the lattice determination of gluelump masses. We also describe
the lattice setups and computational details of the lattice calculation performed in the
context of a master’s thesis [129]. The subsequent analysis of this lattice data, which is
discussed in the following sections, was performed in the context of this work and published
in Ref. [57].

55



CHAPTER 5. GLUELUMPS

5.2.1 Gluelump correlation functions

Gluelumps in the continuum are characterized by their continuum quantum numbers JPC .
On the lattice, rotations are restricted to multiples of 90⇑, reducing the symmetry group to
the full cubic group Oh. Consequently, gluelumps on the lattice are classified according to
the irreducible representations of Oh, which includes four one-dimensional representations,
A±

1 , A±

2 , two two-dimensional representations, E± and four three-dimensional representa-
tions, T±

1 , T±

2 . In Section 5.3.5, we discuss the assignment of continuum spin to the lattice
representations.
The temporal correlation function for a gluelump in one of the twenty lattice representa-
tions R

PC is defined as

CRPC (t2 ≃ t1) = Ha

RPC (rQ; t1)G
ab(rQ; t1, t2)H

b†

RPC (rQ; t2). (5.2)

rQ denotes the spatial position of the static adjoint quark. Due to translational invariance,
the correlation function is independent of rQ. This allows averaging the right-hand side
of Eq. (5.2) over all possible quark positions to enhance statistical precision. We omit the
spatial coordinate rQ in the notation for simplicity.
G denotes the static quark propagator in the adjoint representation. It is given by a product
of adjoint temporal gauge links (represented in SU(3) gauge theory by 8↑8 matrices, where
rows and columns are labeled by upper indices a, b, c, . . . = 1, . . . , 8) connecting time t1

and time t2,

Gab(t1, t2) = U (8),ac
t

(t1)U
(8),cd
t

(t1 + a)U (8),de
t

(t1 + 2a) . . . U (8),fb
t

(t2). (5.3)

Adjoint gauge links are related to ordinary gauge links in the fundamental representation
via U (8),ab

t
= Tr[T aUtT bU †

t
], where T a = ▷a/

⇔
2 are the SU(3) generators with the Gell-

Mann matrices ▷a.
The operators HRPC at time t1 and time t2 are built from gauge links in the fundamental
representation generating gluons with definite lattice quantum numbers RPC . The gluonic
operators on the lattice are not unique. First lattice studies of gluelumps employed simple
operators built from clover-leaf plaquettes [52, 130]. Lattice results used in this work
were computed from improved chair-like operators constructed and discussed in detail in
Ref. [127].
The operators are constructed as linear combinations of closed gauge link paths. There
are 24 basic building blocks Ln, n = 1, . . . , 24, which have a chair-like shape, i.e. are 1↑ 2
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with UN

±j
denoting a product of N gauge links in the fundamental representation in ±j-

direction. All 24 chair-like building blocks are also defined graphically in Figure 1 of
Ref. [127] (the red chair-shaped paths).
Linear combinations of Ln that correspond to the five representations, A1, A2, T1, T2 and
E, have been worked out in Ref. [127] and are given by

Ha

A1
=

⎞
H̃A1

⎡

ϖϱ

T a

ϖϱ
=

⎦ 24[︄

n=1

Ln

⎢

ϖϱ

T a

ϖϱ
(5.5)

Ha

A2
=

⎞
H̃A2

⎡

ϖϱ

T a

ϖϱ
=

⎦ 12[︄

n=1

(≃1)aLn ≃

24[︄

n=13

(≃1)aLn

⎢

ϖϱ

T a

ϖϱ
(5.6)

Ha

T
x
1
=

⎞
H̃T

x
1

⎡

ϖϱ

T a

ϖϱ
= (L6 + L20 + L21 + L11 ≃ L18 ≃ L8 ≃ L9 ≃ L23)ϖϱ T

a

ϖϱ
(5.7)

Ha

T
y
1
=

⎞
H̃

T
y
1

⎡

ϖϱ

T a

ϖϱ
= (L5 + L19 + L24 + L10 ≃ L17 ≃ L7 ≃ L12 ≃ L22)ϖϱ T

a

ϖϱ
(5.8)

Ha

T
z
1
=

⎞
H̃T

z
1

⎡

ϖϱ

T a

ϖϱ
= (L1 + L2 + L3 + L4 ≃ L13 ≃ L14 ≃ L15 ≃ L16)ϖϱ T

a

ϖϱ
(5.9)

Ha

T
x
2
=

⎞
H̃T

x
2

⎡

ϖϱ

T a

ϖϱ
= (L6 ≃ L20 + L21 ≃ L11 + L18 ≃ L8 + L9 ≃ L23)ϖϱ T

a

ϖϱ
(5.10)

Ha

T
y
2
=

⎞
H̃

T
y
2

⎡

ϖϱ

T a

ϖϱ
= (L5 ≃ L19 + L24 ≃ L10 + L17 ≃ L7 + L12 ≃ L22)ϖϱ T

a

ϖϱ
(5.11)

Ha

T
z
2
=

⎞
H̃T

z
2

⎡

ϖϱ

T a

ϖϱ
= (L1 ≃ L2 + L3 ≃ L4 + L13 ≃ L14 + L15 ≃ L16)ϖϱ T

a

ϖϱ
(5.12)

Ha

E1
=

⎞
H̃E1

⎡

ϖϱ

T a

ϖϱ
= (vx ≃ vy)

ϖϱ
T a

ϖϱ
(5.13)

Ha

E2
=

⎞
H̃E2

⎡

ϖϱ

T a

ϖϱ
= (vx + vy ≃ 2vz)

ϖϱ
T a

ϖϱ
, (5.14)
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with

vx = L6 + L20 + L21 + L11 + L18 + L8 + L9 + L23 (5.15)

vy = L5 + L19 + L24 + L10 + L17 + L7 + L12 + L22 (5.16)

vz = L1 + L2 + L3 + L4 + L13 + L14 + L15 + L16 , (5.17)

where lower indices ς,ϑ = 1, . . . , 3 refer to the rows and columns of the 3 ↑ 3 matrices
Ln, which are defined in Eq. (5.4). An operator generating a state, which also has definite
parity and charge conjugation, is given by

Ha

RPC = Ha

R±± =
1

4

⎞⎞
Ha

R±(PHa

R)
⎡
± C

⎞
Ha

R±(PHa

R)
⎡⎡

. (5.18)

The correlation function (5.2) can be simplified analytically,

CRPC (t2 ≃ t1) =

Tr
/︄
H̃RPC (t1)Q(t1, t2)H̃

†

RPC (t2)(Q(t1, t2))
†

\︄
≃

1

3
Tr

/︄
H̃RPC (t1)

\︄
Tr

/︄
H̃

†

RPC (t2)
\︄
,

(5.19)

by exploiting T a

ϖϱ
T a

ςφ
= ↩ϖφ↩ϱς ≃ ↩ϖϱ↩ςφ/3. Q(t1, t2) denotes a product of temporal gauge

links in the fundamental representation connecting time t1 and time t2.
The size of the chair-like building blocks can be adjusted through both N (see Eq. (5.4))
and the number of APE smearing steps applied to the spatial gauge links appearing in the
operators H̃RPC . An optimal value of N = 2 was determined and the number of smearing
steps was optimized on ensemble B (see Table 4.3) in Ref. [129]. For the other three
ensembles, the APE step numbers NAPE were selected based on the optimization performed
in Chapter 4 and Ref. [55]. Ultimately, the chosen values were NAPE = 33, 82, 115 and
164 for ensembles A, B, C and D, respectively.

5.2.2 Lattice setup

Lattice results for the gluelump correlation functions (5.19) were obtained as part of a
master’s thesis [129]. However, these calculations were performed on the same four SU(3)
gauge link ensembles, denoted as A, B, C and D, used for computing hybrid static poten-
tials in Chapter 4. The parameters for these ensembles are summarized in Table 4.3 and
further detailed in Section 4.1.2. Employing the same lattice setup ensures consistency and
enables direct comparisons between hybrid static potentials and the gluelump spectrum.
To reduce statistical errors in the gluelump correlation functions, the multilevel algorithm
[77] was employed as previously for the lattice calculation of hybrid static potentials in
Chapter 4. The technical details of this method are discussed in Sections 2.4.4, as well as
in Refs. [55, 78]. Here, a single level of time-slice partitioning was implemented, using a
regular pattern with time-slice thickness p1 = p2 = · · · = pnts = a and nm = 10 sublattice
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configurations, separated by nu = 30 standard heat bath sweeps. These parameters were
optimized specifically for the computations of gluelumps, as discussed in Ref. [129].
For the analysis, we consider two sets of gluelump correlation function computations: one
using unsmeared temporal links and the other using HYP2-smeared temporal links. HYP2
smearing reduces the self-energy of the static adjoint quark, leading to smaller statistical
errors. However, results from unsmeared temporal links remain crucial, as they provide
direct consistency with our previous hybrid static potential calculations (see Chapter 4)
and are required for converting gluelump masses from the lattice scheme to the Renormalon
Subtraction scheme, following the procedure in Ref. [44] (see Section 5.4).
Statistical uncertainties for individual ensemble results were estimated using the jackknife
method. We applied the bootstrap method for continuum extrapolations, which combine
data from multiple ensembles, following the approach described in Appendix A. Specifically,
we used NA = 640, NB = 320 and NC = ND = 160 reduced jackknife bins and generated
K = 10000 bootstrap samples.

5.3 Numerical results

In the following, we describe in detail the analysis of the lattice data from Ref. [129], which
was conducted in this work.

5.3.1 Gluelump masses at finite lattice spacing

We define an e!ective mass, which is a common and straightforward approach to numeri-
cally extract the mass from the asymptotic temporal behavior of the correlation function
CRPC (t) (5.19),

me,s

e!;RPC (t) =
1

a
ln

⎭
Ce,s

RPC (t)

Ce,s

RPC (t+ a)

⎨
. (5.20)

Thus, in the limit of large temporal separations t, the e!ective mass approaches a plateau,
which can be identified with the mass of the corresponding ground state

lim
t⇒↗

me,s

e!;RPC (t) = me,s

RPC . (5.21)

We assume that me,s

RPC extracted at large but finite t corresponds to a single state in the
sector R

PC and not to be obscured by contributions of di!erent states with the same lat-
tice quantum numbers but di!erent continuum total angular momentum. This yields a
gluelump mass me,s

RPC for each representation R
PC

↘ {A±±

1 , A±±

2 , E±±, T±±

1 , T±±

2 }, each
ensemble e ↘ {A,B,C,D} and both unsmeared and HYP2-smeared temporal links indi-
cated by s ↘ {none,HYP2}.
We obtain the gluelump mass by fitting a constant to me,s

e!;RPC (t) within the range t≃
min

△

t △ t≃max, where the e!ective mass shows a plateau within statistical errors. The procedure
for the determination of the fit range is similar to the one used in Section 4.2 and reads as
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Figure 5.1: Exemplary plots of e!ective masses mC,s

e!;RPC (t)a. The horizontal gray bands
depict the fitted plateau mC,s

RPCa and their width corresponds to the statistical
error. (Left) R

PC = T+→

1 , (right) R
PC = E++.

follows:

1. The lower bound of the fitting range tmin is defined as the smallest t, where the
di!erence between the consecutive values of me,s

e!;RPC (t)a and me,s

e!;RPC (t + a)a is
within 2ϱ.

2. tmax is the maximal t, where Ce,s

RPC (t + a) has been computed, i.e.
tmax = 11a, 19a, 19a, 19a for ensembles A, B, C, D, respectively.

3. Fits to me,s

e!;RPC (t)a are performed for all ranges t≃
min

△ t △ t≃max satisfying:

t≃min ⇒ tmin , t≃max △ tmax and t≃max ≃ t≃min ⇒ 3a . (5.22)

4. The fit yielding the longest plateau with ε2
red

△ 1 is taken as the final result for
me,s

RPCa, where the reduced ε2 is calculated as

ε2
red

=
a

t≃max ≃ t≃
min

[︄

t=t
↑
min

,t
↑
min

+a,...,t↑max

⎞
me,s

e!;RPC (t)a≃me,s

RPCa
⎡2

⎞
ϱ[me,s

e!;RPC ](t)a
⎡2 (5.23)

with ϱ[me,s

e!;RPC ](t)a denoting the statistical error of me,s

e!;RPC (t)a.

This algorithm identifies gluelump masses from reliable plateaus in the e!ective masses
at large t. The fitting range was manually adjusted to correct non-ideal selections in
about ten percent of cases. We cross-check our results using a more conservative fit range,
t≃
min

+ a △ t △ t≃max. Results for both approaches agree within statistical errors indicating
a reliable plateau extraction.
The quality of our lattice data is demonstrated in Figure 5.1, where we present two typical
e!ective mass plots and the corresponding plateau fits for representations R

PC = T+→

1

(left plot) and R
PC = E++ (right plot), e = C and both s = none and s = HYP2. The

horizontal gray band represents the plateau fit result.

60



CHAPTER 5. GLUELUMPS

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 1 2 3 4 5 6 7 8

T1+−

Πu

Σu−

V
e,
no
ne
Λ η

ε
(r
)a

e = A

0.95

1

1.05

1.1

0 1 2 3 4 5 6 7 8

T1+−

Πu

Σu−

e = B

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8

T1+−

Πu

Σu−

V
e,
no
ne
Λ η

ε
(r
)a

r/a

e = C

0.8

0.85

0.9

0 1 2 3 4 5 6 7 8

T1+−

Πu

Σu−

r/a

e = D

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 2 4 6 8 10 12

T1+−

T1−−

E−−

E+−

Πu

Σu−

Σg+`

Πg

Δg
Σg−

Σu+
Δu

T2−−

T2+−

V
A
,H
Y
P2
Λ η

ε
(r
)a

r/a

e = AHYP2

(b)

Figure 5.2: (a) Hybrid static potentials V e,none

$ω
ε

(r)a with $⇁
ϑ = !u, ”→

u for r/a ⇒ 1 and
gluelump masses me,none

T
+→
1

a at r/a = 0.

(b) Hybrid static potentials V A,HYP2

$ω
ε

(r)a with $⇁
ϑ =

!u,”→
u ,”

+≃
g ,!g,&g,”→

g ,”
+
u ,&u for r/a ⇒ 2 from Ref. [51] and gluelump

masses mA,HYP2

RPC a with R
PC = T+→

1 , T→→

1 , T→→

2 , E→→, T+→

2 , E+→ at r/a = 0.

The lattice data for RPC = A→→

2 and unsmeared temporal links (s = none) is obscured by
large statistical errors such that the identification of an e!ective mass plateau is impossible.
Therefore, we do not report gluelump masses for this case and do not use the corresponding
correlator data in the remainder of this work.
We summarize all resulting gluelump masses me,s

RPCa for all 20 R
PC representations, the

four ensembles and computations with unsmeared und with smeared temporal links in
Table E.3.

5.3.2 Gluelumps and hybrid static potentials

The gluelump mass results me,s

RPCa complement the hybrid static potential results V e,s

$ω
ε
a

computed in the previous chapter and presented in Figure 4.2. The lowest gluelump with
lattice quantum numbers T+→

1 , which is expected to correspond to the continuum gluelump
with JPC = 1+→ [52, 127] (see Section 5.3.5), is associated to the two lowest hybrid static
potentials with quantum numbers !u and ”→

u , as discussed before. In Figure 5.2a, we
present the !u and ”→

u hybrid static potentials from all ensembles with unsmeared tem-
poral links together with the corresponding T+→

1 gluelump mass at r = 0. The static
potential data clearly approach the gluelump mass for vanishing quark-antiquark separa-
tion, demonstrating the expected degeneracy.
Ref. [51] computed even higher-lying hybrid static potentials for ensemble A and HYP2-
smeared temporal links. These can be directly compared with our gluelump masses from
ensemble A with s = HYP2. We compare the six lowest lattice gluelump masses, which are
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expected to correspond to the four lowest continuum gluelump states (see Section 5.3.5),
with the lattice hybrid static potentials in Figure 5.2b. The correspondence in the limit r ↗

0 between higher lying hybrid static potentials and heavier gluelumps is also demonstrated,
which was discussed for continuum quantum numbers in Section 5.1 and Table 5.1 This is
an important cross-check of our results.

5.3.3 Continuum extrapolation

Lattice gluelump masses me,s

RPC depend on the lattice spacing a. However, a direct ex-
trapolation to a = 0 is not possible due to the inherent self-energy of the static adjoint
color source, which diverges as 1/a. Since this self-energy is identical for all gluelumps, it
cancels in mass di!erences, making them finite in the continuum limit. As previously done
by other authors, we use the lightest gluelump with lattice quantum numbers T+→

1 as a
reference mass and define the gluelump mass splitting

&me,s

RPCa = me,s

RPCa≃me,s

T
+→
1

a , (5.24)

where the self-energy cancels.
We compute &me,s

RPCa for all 19 representations, the four ensembles and smeared and
unsmeared temporal links. In Figure 5.3 we present these mass splittings &me,s

RPC in
physical units as a function of a2 for s = HYP2. Results from smeared and unsmeared
temporal links are collected in Table E.4 and are mostly consistent, while the latter exhibit
slightly larger statistical errors (see Figure E.1 in the Appendix).
As expected for the Wilson plaquette action, we observe a linear dependence on a2 for the
three smaller lattice spacings. To extrapolate to a = 0, we use the function

&mfit,s

RPC (a) = &ms

RPC ,cont
+ cs

RPCa
2 (5.25)

and perform a two-parameters ε2-minimizing fit for each representation R
PC including

three data points. The fit parameter &ms

RPC ,cont
represents the continuum limit of the

gluelump mass splitting, which is summarized in Table 5.2 and presented in Figure 5.3
at a = 0. The dashed lines in Figure 5.3 show the fit functions with mostly ε2

red
→ 1

indicating reasonable fits.
The data points from ensemble A deviate from the linear behavior. We extend our fit
function by a term proportional to a4 and include data points from ensemble A in the
fits. The continuum gluelump mass splittings from this three-parameter fit are mostly
consistent with the results of the previous fit. We use the di!erences to estimate the
systematic error (the second of the two errors provided in Table 5.2).
The consistency between both fits supports the validity and stability of our continuum
extrapolations. However, despite being the most straightforward approach to continuum
extrapolated gluelump mass splitting, the above-presented method has some drawbacks.
The continuum extrapolations are based on very few data points. Moreover, these data
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Figure 5.3: Continuum extrapolations of gluelump mass splittings &me

RPC for HYP2-
smeared temporal links.

points also result from a plateau fit to few data points in the e!ective masses. Some e!ective
masses exhibit large statistical errors, obscuring the fit or making a plateau identification
di"cult. We present a more elaborate method in the following to improve the quality and
stability of our results.

Continuum extrapolated gluelump mass splittings from simultaneous fits to

correlator data from several ensembles

The method we present here bases the results for continuum gluelump mass splittings on
more data points than the abovementioned method. To this end, we define a ratio of
correlation functions Ce,s

RPC (t),

C̃
e,s

RPC (t) =
Ce,s

RPC (t)

Ce,s

T
+→
1

(t)
, (5.26)
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R
PC &mnone

RPC ,cont
[GeV] &mHYP2

RPC ,cont
[GeV]

T++
1 1.956(71)(86) 1.997(45)(39)

T+→

1 0 0
T→+
1 1.431(37)(39) 1.268(79)(6)

T→→

1 0.336(21)(30) 0.337(20)(33)
T++
2 1.838(50)(35) 1.833(49)(33)

T+→

2 0.940(34)(10) 0.945(32)(4)
T→+
2 1.750(63)(44) 1.676(57)(40)

T→→

2 0.531(35)(0) 0.562(35)(36)
A++

1 0.995(34)(3) 0.996(33)(3)
A+→

1 2.223(40)(13) 1.997(79)(109)
A→+

1 2.366(62)(126) 2.420(77)(31)
A→→

1 1.929(158)(320) 1.480(46)(8)
A++

2 2.216(75)(24) 2.221(72)(29)
A+→

2 1.659(127)(113) 1.382(123)(77)
A→+

2 1.407(62)(83) 1.465(66)(45)
A→→

2 - 2.316(79)(103)
E++ 1.282(28)(14) 1.281(27)(12)
E+→ 0.881(24)(17) 0.882(24)(17)
E→+ 1.609(51)(54) 1.593(50)(47)
E→→ 0.600(27)(29) 0.619(41)(40)

Table 5.2: Continuum extrapolated gluelump mass splittings &ms

RPC ,cont
derived from the

gluelump masses in Table E.3 using a linear fit a2 (see Eq. (5.25)). The first error
represents the statistical error, while the second error accounts for systematic
di!erences between extrapolations using a2 and a4 fits (see text for details).

such that the gluelump mass splitting &me,s

RPC as defined in Eq. (5.24) can be extracted
from the exponential fallo! of the correlator ratio at large times, i.e.

lim
t⇒↗

C̃
e,s

RPC (t) = Ae,s

RPC exp
]︄
≃&me,s

RPC t
⌊︄
. (5.27)

The gluelump mass splitting &me,s

RPC has a lattice spacing dependence, which we expect
to be linear in a2 following our previous analysis. We incorporate the lattice spacing
dependence into the fit function, which is given by

C̃
fit,e,s

RPC (t) = Ae,s

RPC exp
⎞
≃ (&mRPC ,cont + cs

RPCa
2)t

⎡
. (5.28)

The fit parameter &mRPC ,cont denotes the continuum gluelump mass splitting. In the
continuum, gluelump mass splittings should be independent of the smearing method. Thus,
we can use the data obtained with and without HYP2 smearing of temporal links not only
for a cross-check but also to increase the number of data included in the fit. This results
in a simultaneous 9-parameter fit to the correlator data from ensembles B, C and D for
unsmeared and HYP2-smeared temporal links for each representation R

PC . In general,
the parameters Ae,s

RPC and cs
RPC are di!erent between HYP2 smearing (s = HYP2) and
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no smearing (s = none) of temporal links. However, the parameters obtained from the fits
appear to be equal within statistical errors between the unsmeared and HYP2-smeared
data sets. Consequently, the number of fit parameters can be reduced and the resulting
5-parameter fit reads

C̃
fit,e,s

RPC (t) = Ae

RPC exp
⎞
≃ (&mRPC ,cont + cRPCa2)t

⎡
. (5.29)

In order to identify a reasonable fitting range for a fit of Eq. (5.29) to the correlator ratio
data, we define a modified e!ective mass using the correlator ratios (5.26)

m̃e,s

e!,RPC (t) =
1

a
ln

⎭
C̃

e,s

RPC (t)

C̃
e,s

RPC (t+ a)

⎨
. (5.30)

Inspired by previous fit algorithms, the lower bound of the fitting range is set to the
temporal extent, where the e!ective mass is consistent with a plateau within statistical
errors. The details of determining the fit range tmin △ t △ tmax are the following [57]:

1. For each e, s we define te,s
min

= t̃≃ a/2 with t̃ denoting the smallest value of t, where
the e!ective mass (5.30) satisfies |m̃e,s

e!,RPC (t)a≃ m̃e,s

e!,RPC (t+ a)a| < 2ϱ.

2. tmin is set to the largest of those te,s
min

. Consequently, the lower bound for the fit
range is the same for all ensembles.

3. tmax is the largest t, where the correlation functions Ce,s

RPC (t) have been computed.

The results of the fits are summarized in Table 5.3. We obtain ε2
red

= O(1) indicating
reasonable fits. For R

PC = A→→

2 and data from unsmeared temporal links (s = none), no
plateau in the e!ective mass was identified in the previous section. Including these data
in the simultaneous fit of the correlator ratio results in ε2

red
↖ 1. Thus, we exclude them

and fit only HYP2-smeared data for R
PC = A→→

2 .
To test the stability of our continuum-extrapolated mass splittings, we repeat the fitting
using a more conservative range t≃

min
△ t △ tmax. The modified lower bound t≃

min
is defined

similarly to tmin but with a stricter plateau condition, i.e. |m̃e,s

e!,RPC (t≃a)a≃m̃e,s

e!,RPC (t)a| <

2ϱ. As a result, t≃
min

> tmin, leading to an increase in statistical errors of approximately
50%, as expected due to a worsening signal-to-noise ratio at larger t. However, the resulting
mass splittings remain statistically consistent with those in Table 5.3, with no systematic
shift due to excited-state contamination. Di!erences between the two fits are quoted as
systematic errors (third error in Table 5.3).
Similar to our previous approach, we verify the stability of our continuum extrapolation
by adding an a4 term to the fit function (5.29),

C̃
fit,e,s

RPC (t) = Ae

RPC exp
⎞
≃ (&mRPC ,cont + cRPCa2 + dRPCa4)t

⎡
. (5.31)

We also include correlator data from ensemble A, which has the coarsest lattice spacing.
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R
PC &mRPC ,cont [GeV] ε2

red

T++
1 1.793(94)(35)(42) 0.88

T→+
1 1.213(59)(3)(24) 1.05

T→→

1 0.342(19)(22)(21) 0.43
T++
2 1.771(85)(60)(35) 0.39

T+→

2 0.966(29)(2)(13) 0.64
T→+
2 1.638(73)(78)(30) 1.38

T→→

2 0.503(12)(5)(5) 1.34
A++

1 0.979(26)(21)(14) 1.00
A+→

1 2.088(51)(123)(36) 0.82
A→+

1 2.354(53)(27)(106) 0.92
A→→

1 1.433(31)(31)(16) 0.91
A++

2 2.210(66)(57)(38) 0.75
A+→

2 1.376(128)(155)(60) 0.92
A→+

2 1.496(32)(109)(21) 0.48
A→→

2
↪

2.149(340)(7)(133) 1.34
E++ 1.258(19)(2)(15) 0.83
E+→ 0.858(21)(23)(18) 0.50
E→+ 1.511(162)(44)(81) 1.18
E→→ 0.559(12)(44)(11) 0.87

ϑ
For R

PC = A
→→
2 we exclude correlator data obtained with unsmeared temporal links (s = none) from the fit .

Table 5.3: Continuum extrapolated gluelump mass splittings &mRPC ,cont obtained from
5-parameter fits of the fit function (5.29) to correlator data from ensembles B,
C and D. The first error is the statistical error, while the second error is a
systematic error representing the di!erence between an a2 and an a4 ansatz for
the continuum extrapolation, respectively, and the third error represents the
systematic error coming from the choice of fitting range (see text for details).

The 19 resulting continuum-extrapolated gluelump mass splittings from these 7-parameter
fits remain statistically consistent with those obtained from the 5-parameter fits. The
di!erences between the two sets of results are quoted as systematic errors (the second of
three errors in Table 5.3).

5.3.4 Comparison of gluelump mass splittings with literature

We compare our continuum-extrapolated gluelump mass splittings, &mRPC , with those
from previous lattice studies [52, 127]. Figure 5.4 presents this comparison for the repre-
sentations R

PC = T→→

1 , T→→

2 , A++
1 , A+→

2 , E+→, for which continuum extrapolations were
also performed in Ref. [52]. Our results are presented as orange data points, which rep-
resent the values of &mRPC ,cont + cRPCa2 at our three smallest lattice spacings a =

0.040 fm, 0.048 fm, 0.060 fm (see Section 5.3.3, in particular Table 5.3). The results from
Ref. [52] are shown as blue data points for three lattice spacings
a = 0.068 fm, 0.095 fm, 0.170 fm along with a continuum extrapolation linear in a2, similar
to our method in Section 5.3.3. Since calculations in Ref. [52] were also performed in pure
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Figure 5.4: Comparison of our results for gluelump mass splittings to results from
Refs. [52](Foster/Michael) and Ref. [127](Marsh/Lewis). Error bars represent
exclusively statistical errors.

SU(3) gauge theory, its continuum-extrapolated mass splittings should, in principle, be
directly comparable to ours. While the results exhibit qualitative agreement across all five
representations, there are quantitative discrepancies of up to → 30%. The di!erences likely
originate from improvements in the extraction of results in our work. Our continuum mass
splittings are obtained from a fit incorporating a large number of correlator data points,
whereas Ref. [52] performed an extrapolation to a = 0 based on only three data points.
Moreover, our calculations employ three significantly smaller lattice spacings, reducing dis-
cretization e!ects. Given these factors, we consider our continuum extrapolations more
robust and reliable than those in Ref. [52].
Ref. [127] reports results at two lattice spacings, a = 0.0685 fm, 0.0982 fm, but does not
perform a continuum extrapolation. Unlike our study and Ref. [52], these calculations
were performed in full QCD, including dynamical quarks, with a pion mass approximately
3.5 times heavier than its physical value. While both approaches introduce systematic
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uncertainties, the qualitative agreement of the results is encouraging for the study of gluonic
correlation functions such as the gluelump correlator.

5.3.5 Spin assignment

Assigning continuum spin to lattice gluelump mass splittings is challenging due to several
factors. First, the lattice gluelump masses are classified by irreducible representations of a
subgroup of the continuum symmetry group of gluelumps and, thus, do not have definite
continuum spin J . Each continuum irreducible representation J decomposes into multiple
representations of the lattice symmetry group. Consequently, each lattice representation
receives contributions from an infinite number of continuum representations,

A1 ▽ 0, 4, 6, 8, . . .

T1 ▽ 1, 3, 4, 5, . . .

T2 ▽ 2, 3, 4, 5, . . .

E ▽ 2, 4, 5, 6, . . .

A2 ▽ 3, 6, 7, 9, . . .

(5.32)

(see e.g. Ref. [131]). Therefore, assigning the lowest allowed total angular momentum J

to the lowest state in the representation R
PC might not always be correct. However, this

can be checked because some R
PC include the same J and should, thus, be degenerate.

In particular, J = 2 is the lowest angular momentum value in T2 and E. Consequently, a
degeneracy of the lattice gluelump masses is expected.
Secondly, di!erent continuum states could have similar masses and contribute to the same
lattice representation. Extraction of a plateau becomes di"cult, or a fake plateau is seen
in the e!ective mass and a mass is extracted that lies between the continuum states. This
could be checked using several operators in the R

PC representation, which would resemble
di!erent continuum quantum numbers. In principle, computing a correlation matrix with
those operators and solving a generalized eigenvalue problem (see e.g. Ref. [128]) would
allow us to identify the competing continuum states. First attempts of finding appropriate
gluelump operators have been made in the context of a bachelor’s thesis [132], which might
be helpful for future refinements.
Since we have a single operator for each cubic representation and cannot di!erentiate
between di!erent continuum total angular momenta, we adopt the reasonable strategy
of assigning the lowest allowed J to the lowest state in R

PC . The most plausible spin
assignments are determined based on the results summarized in Table 5.3 and Figure 5.5,
observed degeneracies and the expected hierarchy of angular momenta. The following
discussion outlines the reasoning behind each spin assignment, as previously presented in
Ref. [57]:

• A1 states:

– APC

1 ↗ probably J = 0:
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Figure 5.5: Summary of continuum extrapolated gluelump mass splittings. The horizontal
axis indicates the lowest continuum total angular momentum J appearing in
the corresponding representation of the cubic group. The error bars denote
statistical and systematic errors.

The two lowest J values contained in A1 are J = 0 and J = 4. Since higher
angular momentum states are generally associated with larger energies, the
lower-lying states in A1 are naturally assigned J = 0. In particular, for the
lighter A1 states, A++

1 and A→→

1 , no alternative assignment seems plausible.

• T1 states:

– T+→

1 and T→→

1 ↗ J = 1:
The T1 representation can contain J = 1 and J = 3, but the latter is also present
in A2. Since the energy levels for the corresponding A2 states are significantly
higher, it is reasonable to assign J = 1 to T+→

1 and T→→

1 .

– T→+
1 and T++

1 ↗ J = 1 or J = 3:
The energy level for T→+

1 and T++
1 are consistent with the energy level for A→+

2

and A++
2 , respectively, which suggests they may correspond to the same J = 3

state. However, the large uncertainty in both states allows for the possibility
that they have J = 1, while A→+

2 and A++
2 have J = 3.

• T2 and E states:

– T→→

2 , E→→
↗ J = 2:

Both representations contain J = 2 and their energy levels are degenerate within
errors, indicating they likely correspond to the same state with J = 2. While
a J = 4 assignment is theoretically possible, it is unlikely, as the J = 3 state
(indicated by A→→

2 ) is already heavy and A→→

1 , a lower bound for J = 4, lies
significantly above the T→→

2 and E→→ energy levels.
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– T+→

2 , E+→
↗ J = 2:

Follows the same reasoning as for T→→

2 , E→→ (see previous item).

– E++
↗ J = 2 (excluding T++

2 ):
The T++

2 energy level is approximately 3ϱ above the E++ energy level, which
is unexpected since all small J values in E++ are also present in T++

2 . This
discrepancy could be a statistical fluctuation or indicate unfavorable overlaps in
the T++

2 operator, possibly due to a large contribution from a heavy J = 3 state
(the A++

2 energy level indicates that 3++ is quite heavy). Given this uncertainty,
E++ is assigned J = 2, while T++

2 is excluded from the interpretation.

– T→+
2 , E→+

↗ J = 2 (not inconsistent):
The energy levels for T→+

2 and E→+ are degenerate within errors suggesting a
common J = 2 state. However, their errors, particularly for E→+, mean that
other J assignments cannot be ruled out.

• A2 states:

– APC

2 ↗ J = 3 (most likely):
The lowest possible J values in A2 are J = 3 and J = 6. Following the same
argument as previously for the A1 states, the lower spin value is the more
plausible assignment. For A→+

2 and A++
2 , this is further supported by our

discussion of the T→+
1 and T++

1 states above, it suggests J = 3 for A→+
2 and

A++
2 .

We can refine our analysis because we observed several degeneracies of lattice gluelump
mass splittings, suggesting that they possibly correspond to the same continuum quan-
tum number. We perform simultaneous fits to these lattice correlators using a single fit
parameter for the continuum gluelump mass splitting &mRPC ,cont, combining two lattice
representations results in a ε2-minimizing 9-parameter fit of Eq. (5.29). Specifically, we
obtain final results for JPC = 2+→, JPC = 2→+ and JPC = 2→→ by combining fits for the
corresponding lattice representations T+→

2 and E+→, T→+
2 and E→+ and T→→

2 and E→→,
respectively. The resulting ε2

red
of O(1) confirm the reasonability of these combined fits.

Our final results for gluelump mass splittings with quantum numbers JPC are summarized
in Table 5.4, where energy levels with plausible but unconfirmed continuum J assignments
are shaded in gray.

5.4 Conversion of gluelump mass from the lattice to the RS
scheme

As discussed in previous sections, the lattice results for gluelump masses, denoted as
me,s

RPCa, include the self-energy of the static adjoint color source. This self-energy de-
pends inversely on the lattice spacing a and diverges as a ↗ 0. Consequently, only mass
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JPC &mJPC [GeV] R
PC JPC &mJPC [GeV] R

PC

0++ 0.979(36) A++
1 2++ 1.258(24) E++

0+→ 2.088(138) A+→

1 2+→ 0.925(42) T+→

2 &E+→ combined fit
0→+ 2.354(122) A→+

1 2→+ 1.664(256) T→+
2 &E→+ combined fit

0→→ 1.433(47) A→→

1 2→→ 0.523(11) T→→

2 &E→→ combined fit
1++ 1.793(108) T++

1 3++ 2.210(95) A++
2

1+→ 0 ≃ 3+→ 1.376(210) A+→

2

1→+ 1.213(64) T→+
1 3→+ 1.496(116) A→+

2

1→→ 0.342(36) T→→

1 3→→ 2.149(340) A→→

2
↪

Table 5.4: Final results for gluelump mass splittings with quantum numbers JPC . Errors
include both statistical and systematic errors, added in quadrature. The column
R

PC indicates from which cubic representation the result was taken. For J = 2
and PC = +≃,≃+,≃≃, final results are obtained through combined fits (see
text for details). Energy levels with plausible but unconfirmed continuum total
angular momentum J assignments are shaded in gray.

di!erences, in which the self-energy contribution cancels out, yield meaningful continuum-
limit results. As long as no continuum limit is performed, the lattice spacing a regulates
the divergences.
Di!erent renormalization schemes exist to address these divergences. The gradient flow
method provides a promising approach on the lattice for handling self-energy contributions,
which is explored in Ref. [133].
A standard renormalization scheme in perturbation theory is the Renormalon Subtraction
(RS) scheme [134]. The RS scheme plays a critical role in the BOEFT, where specifically
the gluelump mass m

T
+→
1

in this scheme at a scale ϖf = 2.5/r0 → 1GeV serves as a
key input parameter for the calculation of the heavy hybrid meson spectra [14]. The
choice of ϖf = 2.5/r0 → 1GeV is motivated by its role as a reasonable cuto! scale in the
hierarchy of energy scales in the BOEFT [135]. Consequently, we aim to convert our precise
lattice gluelump masses into the RS scheme. We specifically focus on converting the 1+→

lattice gluelump mass, as it served as the reference for our computed mass splittings in
Section 5.3.3. The RS masses for higher gluelumps can then be derived using the precise
continuum mass splittings in Table 5.2.
To perform this conversion, we follow the procedure outlined in Ref. [44], which utilized
lattice data from Ref. [52]. Several improvements distinguish our approach from this earlier
work. Our analysis, which has also been published in Ref. [57], benefits from more precise
lattice data at smaller lattice spacings, improving the accuracy and reliability of the results
(see Section 5.3.4 for a comparison). On the perturbative side, the running of the coupling
in the MS scheme has been refined by one perturbative order. Moreover, we employ a
more precise value of $

MS
, thereby reducing systematic uncertainties and increasing the

overall precision of our conversion, as discussed further below.
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The renormalon is the analog of the lattice self-energy of the static adjoint color charge
in perturbation theory. A renormalon arises due to the factorial growth of expansion
coe"cients in perturbative series, leading to divergent behavior. The RS scheme mitigates
this issue by subtracting the renormalon contribution, thus ensuring a more convergent
and reliable result. In the following, we summarize the necessary equations from Refs. [44,
136, 137] in order to convert the lattice gluelump mass to the gluelump mass in the RS
scheme.
The gluelump mass in the RS scheme, $RS

B
(ϖf ), is related to the lattice gluelump mass,

$L

B
(a), through the perturbative conversion equation

$RS

B (ϖf ) = $L

B(a)≃
⎞
↩$L

B(a) + ↩$RS

B (ϖf )
⎡
. (5.33)

Here,
⎞
↩$L

B
(a) + ↩$RS

B
(ϖf )

⎡
represents the perturbative corrections associated with the

self-energy.
The lattice self-energy, ↩$L

B
(a), is given by a perturbative expansion in the lattice coupling

ςL(a)

↩$L

B(a) =
1

a

↗[︄

n=0

c(8,0)n (ςL(a))
n+1 . (5.34)

The coe"cients c(8,0)n have been computed up to n = 19 in Refs. [136,137]. The label (8, 0)
refers to a static charge in the adjoint representation and applies to calculations using the
standard Wilson plaquette action and a static propagator with unsmeared temporal links.
Consequently, we can only utilize our lattice results obtained with unsmeared temporal
links to maintain consistency with the perturbative formulas.
The RS scheme counterpart, ↩$RS

B
(ϖf ), is expressed in terms of the MS coupling ς

MS
(ϖf )

↩$RS

B (ϖf ) =
↗[︄

n=1

ϖf
⎞
Ṽ

RS

s,n ≃ Ṽ
RS

o,n

⎡
(ς

MS
(ϖf ))

n+1 (5.35)

(see Ref. [44]). The coe"cients Ṽ
RS

s,n and Ṽ
RS

o,n are known exactly for n = 0, 1, 2 and have
been estimated for n = 3, 4 (see Table 2 in Ref. [44] and references therein).
The conversion via Equation (5.33) requires all terms to be known at the same order in
the coupling. Therefore, the first step is to express the lattice coupling ςL in terms of the
MS coupling, ς

MS
. Their relation is given as a perturbative expansion

ς
MS

= ςL(1 +
n[︄

j=1

djς
j

L
) . (5.36)

The expansion coe"cients are estimated up to j = 3. They are d1 = 5.883 . . ., d2 =

43.407 . . . (see Refs. [44, 136] and references therein) and d3 = 352 [136]. An inverted
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Figure 5.6: ςL(a) as a function of ς
MS

(1/a). The three solid lines represent the polynomial
expression (5.38) (or equivalently (5.39)) truncated at orders n = 2, 3, 4 in ς

MS
,

with higher-order terms neglected. Similarly, the data points represent a poly-
nomial expansion of ς

MS
in terms of ςL, i.e. ς

MS
= ςL(1 +

\︂
n

j=0 djς
j

L
) up to

n = 1, 2, 3, respectively (see Ref. [137] and references therein). The dashed line
represents the MSa conversion scheme (5.37). The shaded region highlights the
range of ς

MS
(1/a) corresponding to the lattice spacings 0.040 fm . . . 0.093 fm,

as used in this work.

relation can be achieved in di!erent ways. One approach, valid up to j = 2, is

ςL(a) = ς
MS

(1/a)
1

1 + d1ςMS
(1/a) + (d2 ≃ d21)ςMS

(1/a)
. (5.37)

Alternatively,

ςL(a) = ς
MS

(1/a)
⎞
1≃ d1ςMS

(1/a) + (2d21 ≃ d2)(ςMS
(1/a))2

⎡
. (5.38)

The first conversion scheme corresponds to the MSa conversion scheme and the second
equation represents the MSb conversion scheme from Ref. [137]. The MSb scheme can be
further extended to incorporate the newly estimated d3, yielding:

ςL(a) = ς
MS

(1/a)
⎞
1≃ d1ςMS

(1/a) + (2d21 ≃ d2)(ςMS
(1/a))2

+ (≃5d31 + 3d1d2 ≃ d3)(ςMS
(1/a))3

⎡
. (5.39)

Although both conversion schemes are valid in principle, they exhibit significant discrep-
ancies and introduce systematic uncertainties at the typical scales used for this analysis.
Figure 5.6 illustrates the di!erence between di!erent conversions and truncations of the
perturbative expansion of ςL in terms of ς

MS
. As expected, for small values of ς

MS
↭ 0.05,

the di!erent conversions agree. However, for larger values of ς
MS

, substantial deviations
appear. The deviations are significant for the range 0.15 ↭ ς

MS
(1/a) ↭ 0.20, correspond-
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ing to lattice spacings in the range 0.040 fm . . . 0.093 fm, as used in this study (highlighted
by the gray-shaded region in Figure 5.6).
Ref. [136] stated that the MSa scheme was superior. However, Ref. [44] employed the MSb

scheme up to order ς3
MS

. In alignment with their approach, we also adopt the MSb scheme
up to ς3

MS
in our calculations. Nevertheless, the systematic uncertainties associated with

the conversion of ςL to ς
MS

remain an open issue. Further refinement and validation of this
conversion procedure through perturbative calculations would be essential for improving
accuracy.
As a second step, we account for the running of the coupling when replacing ςL(a) with
ς

MS
(ϖf ) at a di!erent scale ϖf ∋= 1/a. The ϑ-function governs the running of the coupling

via
ϑ(ς

MS
(µ)) =

µ

ς
MS

(µ)

dς
MS

(µ)

dµ
. (5.40)

It can be expressed perturbatively as an expansion in ς
MS

ϑ(ς
MS

) = ≃2ϑ0

4[︄

i=0

⎞ς
MS

4↪

⎡
i+1 ϑi

ϑ0
, (5.41)

with coe"cients ϑi determined up to five-loop order, i = 4 [138]. With the ϑ-function, the
running coupling ς

MS
(ϖ) can be expressed terms of powers of ς

MS
(µ) at a reference scale

µ = $(0)

MS
, up to order ς2

MS
it reads

ς
MS

(ϖ) = ς
MS

(µ)

⨀︂
1 +

2ς
MS

(µ)

4↪
ϑ0 ln(µ/ϖ)

⨁︁
1 +O

]︄
ς

MS

⌊︄⨁︂⨂︁
. (5.42)

We will employ the five-loop running from Ref. [138] to compute numerical values for the
MS coupling.
Having expressed the lattice coupling ςL(1/a) in terms of the MS coupling ς

MS
(µ) and

incorporated the running of the coupling, we can now rewrite Eq. (5.33) as an expansion
in ς

MS
(µ). Truncating this series at order ς3

MS
(denoted as NNNLO) yields the final

conversion formula

$RS

B (ϖf ) = $L

B(a)≃
1

a
c(8,0)0 ς

MS
(ϖf )

+

⎦
1

a
c(8,0)1 +

1

a
c(8,0)0

⎬
≃d1 +

2ϑ0
4↪

ln(ϖfa)

⎪
+ ϖf

⎞
Ṽ

RS

s,1 ≃ Ṽ
RS

o,1

⎡⎢
(ς

MS
(ϖf ))

2

+

⎦
1

a
c(8,0)2 +

2

a
c(8,0)1

⎬
≃d1 +

2ϑ0
4↪

ln(ϖfa)

⎪
+

1

a
c(8,0)0

⎬
≃d2 +

2ϑ1
(4↪)2

ln(ϖfa) + d21

⎪

+
2

a
c(8,0)0

⎬
≃d1 +

2ϑ0
4↪

ln(ϖfa)

⎪2
+ ϖf

⎞
Ṽ

RS

s,2 ≃ Ṽ
RS

o,2

⎡⎢
(ς

MS
(ϖf ))

3. (5.43)

At order ς2
MS

(NNLO) this equation coincides with Eq. (70) in Ref. [44].
In Ref. [44] the coe"cient c(8,0)2 appearing at NNNLO expression was estimated as c(8,0)2 =

193.8(2.8). More recent calculations provide a value of, c(8,0)2 = 193.2(3) [137]. We use
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this up-to-date value, but its impact on the final result for the gluelump mass in the RS
scheme is expected to be negligible due to the minimal di!erence.
Furthermore, we use the five-loop running coupling from Ref. [138] along with the updated
value r0$

(0)

MS
= 0.624(36) [101] and r0 = 0.5 fm to compute numerical values for ς

MS
(1/a).

In Table 5.5, we list both ς
MS

(1/a) and ςL(a) for the four lattice spacings used in our
simulations a = 0.040 fm , 0.048 fm , 0.060 fm , 0.093 fm. The use of the five-loop running
coupling represents an improvement over Ref. [44], which employed the four-loop running.

ϑ a in fm 1/a in GeV ς
MS

(1/a) ςL(a) (Eq. (5.38))
6.000 0.093 2.118 0.200 0.172
6.284 0.060 3.285 0.170 0.127
6.451 0.048 4.108 0.158 0.113
6.594 0.040 4.932 0.150 0.104

Table 5.5: ς
MS

(1/a) from the five-loop running coupling from Ref. [138] and ςL(a) accord-
ing to Eq. (5.38) for the four lattice spacings used in our simulations.

We now use our computed gluelump mass values at the four lattice spacings,
a = 0.040 fm , 0.048 fm , 0.060 fm , 0.093 fm, to determine the RS gluelump mass, $RS

B
(ϖf =

1/a). Choosing ϖf = 1/a ensures that large logarithmic terms in the conversion formula
are avoided. Figure 5.7 presents $RS

B
(1/a) at LO, NLO, NNLO and NNNLO for our

four lattice spacings (colored data points). At LO, lattice and RS masses are identical
$RS

B
(1/a) = $L

B
(a). The corresponding numerical values are listed in Table 5.6.

We compare our results with those from Ref. [44] (gray data points), which were derived
using lattice data from Ref. [52] at coarser lattice spacings. Our converted results exhibit
a convergence pattern similar to that observed in Ref. [44] and both data sets appear
consistent.

a [fm] $RS

B
(1/a) = $L

B
(a)

LO
$RS

B
(1/a)

NLO
$RS

B
(1/a)

NNLO
$RS

B
(1/a)

NNNLO
[GeV]

0.093 2.821(5) 0.798(5) 1.298(5) 1.167(5)
0.060 3.541(7) 0.883(7) 1.440(7) 1.316(7)
0.048 3.990(6) 0.902(6) 1.502(6) 1.378(6)
0.040 4.429(8) 0.923(8) 1.568(8) 1.442(8)

Table 5.6: $RS

B
(1/a) in GeV for our four lattice spacings at LO, NLO, NNLO and NNNLO.

The errors are purely statistical.

To determine $RS

B
at the scale ϖf = 2.5/r0 → 1GeV, we adopt the procedure of Ref. [44].

The first step is to use the NNNLO expression (5.43) with ϖf = 1/amin = 1/0.040 fm and
to fit it to the lattice results at all four lattice spacings simultaneously to obtain the fit
parameter $RS

B
(ϖf = 1/0.040 fm). For ensembles A, B and C, we have ϖf ∋= 1/a, such that

the logarithmic terms in Eq. (5.43) do not vanish. The resulting value of this fit is given
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Figure 5.7: $RS

B
(1/a) for our four lattice spacings at LO, NLO, NNLO and NNNLO. The

gray data points represent results from Ref. [44](Bali/Pineda) for comparison.

by
$RS

B (ϖf = 1/0.040 fm = 12.5/r0) = 1.463(3)GeV. (5.44)

However, the relatively large reduced chi-square value ε2
red

= 4.36 suggests some tension
among the four lattice spacings when combined with the perturbative conversion function.
Possible reasons could be the large logarithmic terms from the separation of scales ϖf ∋= 1/a,
truncation e!ects in the perturbative series, or lattice discretization errors, which are
expected to scale as a2. We assess the impact of excluding the coarsest lattice, a = 0.093 fm.
The di!erence between the result, which is $RS

B
(ϖf = 1/0.040 fm) = 1.460(4)GeV with

ε2
red

= 5.89, and the previous result is incorporated into the final systematic uncertainty
(see the discussion at the end of this section). To address possible discretization errors, we
perform an additional fit including an explicit a2-correction term in Eq. (5.43). We include
all four lattice spacings into this fit, which yields $RS

B
(ϖf = 1/0.040 fm) = 1.454(6)GeV

with ε2
red

= 4.94. Again, we include the di!erence from Eq.(5.44) in the final systematic
uncertainty. For comparison, a direct conversion of the lattice data point at the smallest
lattice spacing results in $RS

B
(ϖf = 1/0.040 fm) = 1.442(8)GeV, as presented in Figure 5.7

and Table 5.6. This result is slightly lower than the fit results.
For the propagation of the result at ϖf = 1/0.040 fm = 12.5/r0 to the specific scale ϖ ≃

f
=

2.5/r0 → 1GeV, we avoid errors from the large logarithms in the formulas above by using
a di!erent equation,

$RS

B (ϖ ≃
f
= 2.5/r0) = $RS

B (ϖf = 12.5/r0) +
⎞
↩$RS,PV

B
(ϖf )≃ ↩$RS,PV

B
(ϖ ≃

f
)
⎡
. (5.45)

The choice of a useful prescription such as the Principal Value prescription to compute
↩$RS

B
is possible due to the cancellation of the renormalon in the di!erence ↩$RS,PV

B
(ϖf )≃
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↩$RS,PV

B
(ϖ ≃

f
). ↩$RS,PV

B
in the Principal Value prescription is computed via

↩$RS,PV

B
(ϖf ) = N$ϖfςMS

(ϖf )
↗[︄

s=0

cs

⎬
Db→s(≃

2↪

ϑ0ςMS
(ϖf )

)≃ 1

⎪
. (5.46)

This equation coincides with Eq. (61) in Ref. [44], when replacing Nm by N$. We use the
more recently determined value N$ = ≃1.37(9) from Ref. [137]. The equation is evaluated
with coe"cients b and cs [134,139,140], which read

b =
ϑ1
2ϑ2

0

(5.47)

c0 = 1 (5.48)

c1 =
1

4bϑ3
0

⎦
ϑ2
1

ϑ0
≃ ϑ2

⎢
(5.49)

c2 =
1

b(b≃ 1)

ϑ4
1 + 4ϑ3

0ϑ1ϑ2 ≃ 2ϑ0ϑ2
1ϑ2 + ϑ2

0

]︄
≃2ϑ3

1 + ϑ2
2

⌊︄
≃ 2ϑ4

0ϑ3
32ϑ8

0

. (5.50)

Db(≃x) is a complex function which can be written as

Db(≃x) = ≃xe→xxbcos(↪b)%(≃b, 0) + x(≃x)be→x [%(≃b, 0)≃ %(≃b,≃x)] , (5.51)

with the incomplete % function

%(b, x) =

)︄
↗

x

dttb→1e→t. (5.52)

The imaginary part cancels in the di!erence
⎞
↩$RS,PV

B
(ϖf )≃ ↩$RS,PV

B
(ϖ ≃

f
)
⎡
.

Using Eq. (5.45) to propagate our result (5.44) determined from a fit to the lattice data
to the specific scale ϖ ≃

f
= 2.5/r0 → 1GeV, we obtain

$RS

B (ϖf = 2.5/r0 → 1GeV) = 0.857(3)GeV. (5.53)

The given error is a purely statistical uncertainty. With the more accurate lattice gluelump
masses in our analysis, we could decrease the statistical error by a factor of 4 compared to
the result from Ref. [44], which reads $RS

B
(ϖf = 2.5/r0 → 1GeV) = 0.912(12)GeV.

The result is also subject to systematic uncertainties, which we summarize and compare
to those reported in Ref. [44] in the following.
The uncertainty of $

MS
introduces an error in the running coupling. In Ref. [44], where

the four-loop running coupling was used, it is estimated to be 0.04GeV. Our analysis,
which utilizes the five-loop running coupling and a more precise $

MS
value from Ref. [101]

reduces this systematic error associated with $
MS

to 0.03GeV.
Moreover, the result at ϖf = 1/0.040 fm = 12.5/r0 is derived from lattice gluelump masses
at di!erent scales including 1/a = 5.4/r0, 8.3/r0, 10.4/r0. The separation between these
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scales to ϖf = 1/0.040 fm = 12.5/r0 leads to systematic error due to the running of the
coupling. We estimated this error by the di!erence to a fit incorporating only the three
lattice gluelump masses at scales closest to ϖf = 1/0.040 fm = 12.5/r0. The error estimate
amounts to → 0.003GeV.
Lattice discretization errors proportional to a2 present in the lattice gluelump masses
are also a source for systematic errors. We account for these discretization errors by
introducing a a2 term in the fit of $RS

B
(ϖf = 1/0.040 fm), which di!ers from our main

result by → 0.01GeV, thus estimating the systematic error due to discretization e!ects.
The perturbative conversion formula is only known up to NNNLO. To estimate the error
from the truncation of the perturbative expansion, Ref. [44] considers the di!erence be-
tween the NNLO and NNNLO result, which in our case is → 0.03GeV. Additionally, the
coe"cients in the perturbative expressions introduce systematic error. Due to the 10%

uncertainty in NVs ≃NVo , there is a systematic error contribution of → 0.07GeV [44].
When summing all these systematic errors in the same way as in Ref. [44], our total
systematic uncertainty amounts to 0.143GeV. This is an improvement compared to the
0.205GeV systematic uncertainty reported in Ref. [44].
Our final result is

$RS

B (ϖf = 2.5/r0 → 1GeV) = 0.857(3)(143)GeV, (5.54)

where the first error is statistical and the second error is systematic. The systematic error
is significantly larger than the statistical error associated with the lattice gluelump masses.
Therefore, improvements on the perturbative side are necessary to enhance the precision
of the 1+→ gluelump mass in the RS scheme.
For completeness, we also mention that in Ref. [44], a determination of $RS

B
(ϖf = 2.5/r0 →

1GeV) was conducted using the (hybrid) static potentials ”+
g , !u and ”→

u . The resulting
value was reported as $RS

B
(ϖf = 2.5/r0 → 1GeV) = [0.888 ± 0.039(latt.) ± 0.083(th.) ±

0.032($
MS

)]GeV, which is in agreement with our result presented in Eq. (5.54). This
approach to determining the gluelump mass in the RS scheme could, in principle, also
be repeated with our more accurate lattice results for the (hybrid) static potentials from
Chapter 4. However, similar to the findings above, the accuracy of perturbative expressions
currently is the limiting factor of precision.

5.5 Summary

In this chapter, we investigated 20 lattice gluelumps from pure SU(3) lattice gauge theory.
The correspondence between gluelumps, representing the short-distance limit of hybrid
static potentials, and multiplets of hybrid static potentials was discussed and confirmed
through lattice data.
Throughout this chapter, we employed lattice correlator data from Ref. [129], computed
on gauge link ensembles with four di!erent lattice spacings, using both HYP2-smeared
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and unsmeared temporal links. We extracted reliable gluelump masses for each lattice
setup through plateau fits to the e!ective mass. Gluelump mass splittings were defined
relative to the lowest-lying state in the T+→

1 representation. These mass splittings were
extrapolated to a = 0, where we explicitly estimated systematic uncertainties arising from
discretization e!ects. The results from smeared and unsmeared temporal links were found
to be consistent.
To further improve the determination of continuum gluelump mass splittings, we intro-
duced a superior approach utilizing a larger set of lattice data. By defining a correlator
ratio with respect to the T+→

1 representation, we extracted continuum gluelump mass split-
tings via an exponential fit. Discretization e!ects proportional to a2 and a4 were accounted
for and systematic uncertainties were carefully estimated. The chosen fit ranges were ana-
lyzed and we quantified the impact of di!erent selections. Our final continuum results for
19 gluelump mass splittings are summarized in Table 5.3. These results show agreement
with previous studies [52,127] while achieving significantly improved accuracy.
Additionally, we carefully examined the identification of continuum spin quantum numbers
for our lattice representations and refined the extracted gluelump masses based on observed
degeneracy patterns. Our main results are presented in Table 5.4. However, the spin
assignment of several states remains ambiguous and requires the inclusion of additional
gluelump operators capable of distinguishing di!erent continuum spin states. This needs
to be addressed in future work.
As the gluelump mass in the Renormalon Subtraction (RS) scheme plays a crucial role in
the determination of heavy hybrid meson masses within the Born-Oppenheimer E!ective
Field Theory [14], we converted our lattice result for m

T
+→
1

to the RS scheme, following the
approach in Ref. [44]. Our final result is $RS

B
(ϖf = 2.5/r0 → 1GeV) = 0.857(3)(143)GeV,

where the first uncertainty is statistical and the second systematic. Due to our more precise
gluelump lattice data and recent updates of perturbative parameters, we have improved
regarding statistical and systematic uncertainties upon the commonly used estimate from
Ref. [44], significantly reducing statistical and systematic uncertainties.
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6 Hybrid spin-dependent and

hybrid-quarkonium mixing potentials at

order (1/mQ)
1

In the previous chapters, we have considered the static limit of heavy hybrid mesons and
neglected the spin of the heavy quarks. This simplifying approach is reasonable up to
a certain point for bottom or charm quarks, whose masses (mb → 4.18GeV and mc →

1.27GeV in the MS scheme [3]) are significantly larger than the hadronic scale $
MS

→

332MeV [141]. Corrections to this approximation appear in the expansion of the Born-
Oppenheimer E!ective Field Theory (BOEFT) Lagrangian (see Refs. [14–20]) and come
in orders of the inverse heavy quark mass 1/mQ, as discussed in Chapter 3. Since quarks
are spin-1/2 fermions, the spin of a quark-antiquark pair in a hybrid meson can couple
to S

QQ̄
= 0 or S

QQ̄
= 1, influencing the quantum numbers JPC of the (hybrid) meson

and a!ecting its properties and mass spectrum. In the static approximation, we can only
predict degenerate spin multiplets, but spin-dependent corrections in the expansion in
1/mQ resolve this degeneracy.
While heavy quark spin-dependent corrections to the ordinary static potential arise at or-
der (1/mQ)2, they appear already at order (1/mQ)1 for heavy hybrid mesons due to the
coupling between heavy quark spin and non-zero gluon spin [15, 17, 18, 142]. A possible
mixing between quarkonium and hybrid quarkonium is related to the heavy quark spin
and is also an e!ect that appears with a factor of (1/mQ)1 in the BOEFT Lagrangian.
This makes both kinds of spin-dependent e!ects particularly relevant for precision spec-
troscopy. Although order (1/mQ)2 corrections to the static quarkonium potential have been
investigated with lattice field theory methods [76, 104, 143, 144], a first-principles compu-
tation of the next-to-leading order (NLO) corrections to hybrid potentials, which not only
involve heavy quark spin-dependent parts, has not yet been performed. Previous stud-
ies of spin e!ects in hybrid mesons include early lattice NRQCD investigations [145, 146]
as well as more recent full lattice QCD calculations of charmonium and bottomonium
hybrids [11–13]. From the e!ective field theory approach, hybrid spin-dependent poten-
tials have been explored in weakly coupled potential NRQCD (pNRQCD) at small quark-
antiquark separations [17, 18]. In this framework, each correction is decomposed into a
perturbative, distance-dependent part and a non-perturbative contribution expressed in
terms of gluonic correlators. At large separations, QCD e!ective string theory describes
these potentials [109, 110]. These approaches were used in Refs. [15, 23] to parametrize
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1

hybrid potentials at NLO for short and long distances, combining pNRQCD predictions
with QCD e!ective string theory. However, all of these studies rely on unknown non-
perturbative parameters that require determination from lattice QCD.
A formulation of spin-dependent and hybrid-quarkonium mixing potentials in the BOEFT
framework has recently been derived by matching to NRQCD without assumption on
the quark-antiquark separation [15, 19]. These potentials can be expressed in terms of
generalized Wilson loops with chromomagnetic insertions, making them accessible to lattice
QCD calculations. The present chapter provides the first lattice field theory determination
of these (1/mQ)1-spin-dependent potentials. Building on the techniques developed for
hybrid static potentials in Chapter 4, our lattice calculation and analysis constitute a good
starting point for future studies at multiple lattice spacings, with the ultimate goal of
achieving a continuum limit extrapolation and renormalized results.
We begin by summarizing the key formulas for spin-dependent and hybrid-quarkonium
mixing potentials at order (1/mQ)1 in the heavy quark mass expansion for the lowest hybrid
mesons with gluon quantum numbers ωPC = 1+→, following Refs. [14–19]. The matching
procedure between BOEFT and NRQCD relates the spin-dependent potentials to integral
expressions involving generalized Wilson loops with chromomagnetic insertions [14–19]. By
analytically integrating these expressions, we derive matrix elements suitable for evaluation
in pure SU(3) lattice gauge theory. We investigate multiple methods to extract potential
values and present results for the four (1/mQ)1-potentials V sa

11 , V sb

10 , V mix

!→
u

and V mix

”u
at

fixed gradient flow time and lattice spacing.
This work, including the underlying lattice calculations and data analysis, has been pre-
sented previously in Ref. [58].

6.1 Matrix form of spin-dependent potentials for εPC = 1+→

The spin-dependent component of the hybrid potential in the Lagrangian at order (1/mQ)1

was introduced in Eq. (3.8). For the hybrid mesons under consideration, where the gluons
possess quantum numbers ωPC = 1+→, it can be expressed as

V (1),SDn
↑
A

↑;nA
1+→ (r) = P

n
↑
j

11 V sa

11 (r)
⎞
(Sp

QQ̄
)A

↑
A
P

pq

10(S
q

1)
jk

⎡
P

kn

11

+ P
n
↑
j

11 V sb

10 (r)
⎞
(Sp

QQ̄
)A

↑
A
P

pq

11(S
q

1)
jk

⎡
P

kn

10 + P
n
↑
j

10 V sb

01 (r)
⎞
(Sp

QQ̄
)A

↑
A
P

pq

11(S
q

1)
jk

⎡
P

kn

11 ,

(6.1)

where the spin indices are explicitly written. The gluon spin-1 operator (Sq

1)
jk = ≃i⇀qjk

and the heavy quark spin operator (Sp

QQ̄
)A

↑
A have three Cartesian x-, y- and z-components,

q = x, y, z and p = x, y, z, respectively.
The matrix V (1),SDn

↑
A

↑;nA
1+→ is decomposed into radially symmetric potentials V sa

11 (r), V sb

10 (r)

and V sb

01 (r), where r is the heavy quark-antiquark separation. Time-reversal symmetry and
hermiticity imply that V sb

10 = V sb

01 . Consequently, there are two independent hybrid spin-
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1

dependent potentials, V sa

11 (r) and V sb

10 (r). The potential V sa

11 is associated with the term
S
QQ̄

· P10 · S1 = S
QQ̄

· (er ∞ er) · S1, thus, it is relevant when the gluon spin and heavy
quark spin align along the quark-antiquark separation axis. Similarly, V sb

10 is proportional
to S

QQ̄
· P11 ·S1 = S

QQ̄
· (1≃ er ∞ er) ·S1, thus, it is important when both the gluon spin

and the heavy quark spin are orthogonal to the quark-antiquark separation axis.
The potential V n

↑
n

mix
appearing at order (1/mQ)1 in the Lagrangian (3.11), which is repon-

sible for the mixing of hybrid mesons with ωPC = 1+→ and ordinary quarkonium with
ωPC = 0++, is decomposed into two independent, radially symmetric potentials

V n
↑
n

mix (r) =V mix

!→
u
(r)Pn

↑
n

10 + V mix

”u
(r)Pn

↑
n

11 . (6.2)

V mix

!→
u
(r) denotes the component relevant for the spin components being aligned with the

quark-antiquark separation axis and V mix

”u
(r) is relevant for orthogonal orientation of the

field spin components relative to the separation axis.
As already stated in the introduction, it is the main goal of this work to carry out the first
lattice gauge theory computation of the four unknown next-to-leading order potentials,
V sa

11 , V sb

10 , V mix

!→
u

and V mix

”u
. To achieve this, we require suitable expressions for a lattice

evaluation of these potentials, which are presented in the following sections.

6.2 Spin-dependent potentials for εPC = 1+→ in terms of
matrix elements

6.2.1 Matching between BOEFT and NRQCD

The hybrid spin-dependent and hybrid-quarkonium mixing potentials of interest are deter-
mined by matching NRQCD and BOEFT correlators at order (1/mQ)1. In the following, we
outline a matching calculation at order (1/mQ)0 and order (1/mQ)1 to introduce the nota-
tion relevant for the final expressions of the hybrid spin-dependent and hybrid-quarkonium
mixing potentials. The matching calculation was conducted in Ref. [19] for the hybrid
spin-dependent potentials and in Ref. [15] for the hybrid-quarkonium mixing potentials.
We specifically focus on the case of gluon quantum numbers ωPC = 1+→ related to the
lowest heavy hybrid mesons. Further details on the matching procedure for non-relativistic
e!ective field theories can be found in Refs. [15, 17–19] and references therein.
The equivalence between NRQCD and BOEFT up to a given order in the expansion is
imposed by matching the NRQCD quarkonium (hybrid) operator and the quarkonium
(hybrid) field in the BOEFT in the large time limit, i.e.

lim
T⇒↗

O⇀PC (r, R, T ) =
/︂

Z⇀PC’⇀PC ( r, R, T ) . (6.3)

Here, r = r1 ≃ r2 and R = (r1 + r2)/2 denote the relative and center-of-mass coordinate
of the heavy quark-antiquark pair, respectively. ’⇀PC (r, R, T ) represents the (hybrid)
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1

quarkonium field in the BOEFT, while Z⇀PC is a normalization constant. The operator
O⇀PC corresponds to a suitable NRQCD interpolating operator for a (hybrid) quarkonium
state with gluon spin quantum numbers ωPC . An interpolating operator for ordinary
quarkonium is given by

O0++ = O!+
g
= Q̄(r2)U(r2; r1)Q(r1) . (6.4)

Here, U(r2; r1) denotes a straight Wilson line connecting r2 and r1. The NRQCD correlator
is expanded around the static limit, meaning that Q and Q̄ denote a static quark and static
antiquark, respectively. Corrections to the static limit are incorporated by an expansion of
the correlator in terms of 1/mQ. A simple interpolating operator for the lowest quarkonium
hybrid may be

O1+→ = Q̄(r2)U(r2;R)B(R)U(R; r1)Q(r1) , (6.5)

where the chromomagnetic field (Bi = ≃⇀ijkFjk/2) creates a gluonic excitation with ωPC =

1+→ (see e.g. Ref. [14]).
The matching procedure imposes equality between the BOEFT correlator and the NRQCD
correlator order by order in the inverse heavy quark mass expansion. At order (1/mQ)0

and for arbitrary gluon spin, the matching equation takes the form

/︂
Z⇀PCe

→itV
(0)

ϖPC (r)
⨂︂
Z†

⇀PC = lim
t⇒↗

↓#|O†

⇀PC (r, T/2)O⇀PC (r,≃T/2)|#↔ . (6.6)

The left-hand side results from evaluating the BOEFT correlator, which includes the static
potential V (0)

⇀PC at this order. The right-hand side corresponds to the leading order term
in the expansion of the NRQCD correlator around the static limit. It is equivalent to a
Wilson loop correlation function (see Section 2.3), with creation and annihilation operators
for a gluonic excitation with ωPC .
At next-to-leading order, order (1/mQ)1, the matching equation for the spin-dependent
terms is given by [19]

/︂
Z⇀PC

1

T

)︄
T/2

→T/2
dt≃e→i(T/2→t

↑)V
(0)

ϖPC (r)V (1), SD

⇀PC (r)e→i(t↑+T/2)V
(0)

ϖPC (r)
⨂︂
Z†

⇀PC

= ≃ lim
T⇒↗

cF
T

)︄
T/2

→T/2
dt≃SQQ · ↓#|O†

⇀PC (r, T/2)gB(t≃, r1)O⇀PC (r,≃T/2)|#↔ . (6.7)

↓#|O†

⇀PC (r, T/2)gB(t≃, r1)O⇀PC (r,≃T/2)|#↔ represents a generalized Wilson loop, which is
a Wilson loop with a chromomagnetic field insertion B at position (t≃, r1) on one of the
temporal lines of the Wilson loop.
We omitted the spin indices in the above equations for better readability. In fact, these ex-
pressions are matrix-valued equations for the potentials V (0)

⇀PC (r) = V (0)n↑
n

⇀PC (r) and
V (1),SD

⇀PC (r) = V (1),SDn
↑
A

↑;nA
⇀PC . The potential matrices have been decomposed in Eqs. (3.3)

and (3.8) employing the projection matrices P⇀$ ∝ P
n
↑
n

⇀$ , which project onto irreducible

83



CHAPTER 6. HYBRID SPIN-DEPENDENT AND HYBRID-QUARKONIUM
MIXING POTENTIALS AT ORDER (1/MQ)

1

representations of the dihedral group D↗h. The projection matrices P⇀$ (3.4) are defined
as P

n
↑
n

⇀$ =
\︂

↩=±$ Pn
↑

⇀↩
P †n

⇀↩
where P⇀↩ are the normalized eigenfunctions of the gluon spin

operator S2
⇀ and S⇀r̂, with r̂ denoting the quark-antiquark separation axis, i.e. they fulfill

S2
⇀P⇀↩ = ω(ω+ 1)P⇀↩ and S⇀r̂P⇀↩ = ▷P⇀↩ [147].

We now focus again on gluon spin quantum numbers ωPC = 1+→. Since the irreducible
representations of D↗h are labeled by $⇁

ϑ in this work, we introduce projection vectors
P1$ω

ε
, such that P

n
↑
n

1” ∝ P
n
↑
n

11 =
\︂

$ω
ε=”+

u ,”→
u
Pn

↑
1$ω

ε
P †n

1$ω
ε

and P
n
↑
n

1! ∝ P
n
↑
n

10 = Pn
↑

1!→
u
P †n

1!→
u

give
the projection matrices as defined earlier. These projection vectors relate to P1↩ via

P1”+
u
=
≃i
⇔
2
(P1→1u ≃ P1+1u) , P1”→

u
=

≃1
⇔
2
(P1→1u + P1+1u) , P1!→

u
=≃ iP10u .

(6.8)

Now, we can expand the interpolating operator for the lowest quarkonium hybrid in terms
of representations $⇁

ϑ

O1+→ =
[︄

$ω
ε=”±

u ,!→
u

P †

$ω
ε
O$ω

ε
, (6.9)

where

O$ω
ε
= Q̄(r2)U(r2;R)B$ω

ε
(R)U(R; r1)Q(r1) (6.10)

is an interpolating operator that creates a state with definite quantum numbers $⇁
ϑ.

For the remainder of the calculation, we place the quark and antiquark at fixed positions
along the z-axis, choosing r1 = (0, 0, r/2) and r2 = (0, 0,≃r/2), without loss of generality.
Note that we adopt a simplified notation, where r is denoted as r ∝ (0, 0, r). In the
cartesian basis representation, the projection vectors P1$ω

ε
, as defined here, are given by

P1”+
u
=

⎟

∑︁⟨︂
≃i

0

0

⟩︂

∏︁⨆︁ , P1”→
u
=

⎟

∑︁⟨︂
0

i

0

⟩︂

∏︁⨆︁ , P1!→
u
=

⎟

∑︁⟨︂
0

0

≃i

⟩︂

∏︁⨆︁ . (6.11)

Consequently,

B!→
u
= ≃iBz , B”+

u
= ≃iBx , B”→

u
= +iBy . (6.12)

Finally, the matching equations can be decomposed into separate equations for the radially
symmetric potentials at each order in 1/mQ. At leading order, order (1/mQ)0, this results
in

V$ω
ε
(r) = lim

T⇒↗

i

T
ln
⎞
P

n
↑
n

1$ ↓#|O†,n

1+→(r, T/2)O
n
↑

1+→(r,≃T/2)|#↔
⎡
. (6.13)
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Using Eq. (6.9), the ordinary and lowest hybrid static potentials are determined from

V!+
g
(r) = lim

T⇒↗

i

T
ln
⎞
↓#|O†

!+
g
(r, T/2)O!+

g
(r,≃T/2)|#↔

⎡
(6.14)

V”u(r) = lim
T⇒↗

i

T
ln

⎟

∑︁⟨︂
[︄

$ω
ε=”+

u ,”→
u

↓#|O†

$ω
ε
(r, T/2)O$ω

ε
(r,≃T/2)|#↔

⟩︂

∏︁⨆︁ (6.15)

V!→
u
(r) = lim

T⇒↗

i

T
ln
⎞
↓#|O†

!→
u
(r, T/2)O!→

u
(r,≃T/2)|#↔

⎡
. (6.16)

Thus, the static potential is given by the logarithm of a Wilson loop correlation function
in the large time limit.
At next-to-leading order, order (1/mQ)1, the matching equation (6.7) decomposes into
separate matching equations for the spin-dependent potentials V sa

11 (r) and V sb

10 (r) (see
Ref. [19] for details on the decomposition)

V sa

11 (r) =≃ cF lim
T⇒↗

1

T

Tr [P11]/︄
Pn↑n
11 ↓#|O†,n

1+→O
n↑
1+→ |#↔

\︄↑

)︄ +T/2

→T/2
dt

/︄⎞]︄
S
i

1

⌊︄kl
P

ij

10

⎡
·

⎞
P

lq

11↓#|O
†,q

1+→gBj(t,+r/2)Op

1+→ |#↔P
pk

11

⎡\︄

Tr [(S1 · P10) · (P11S1P11)]
(6.17)

V sb

10 (r) =≃
cF
2

lim
T⇒↗

V”u(r)≃ V!→
u
(r)

sin
⎞
(V”u(r)≃ V!→

u
(r))T2

⎡↑

⌉︄{︄{︄}︄
Tr [P11] Tr [P10]/︄

Pn↑n
11 ↓#|O†,n

1+→O
n↑
1+→ |#↔

\︄ /︄
Pm↑m
11 ↓#|O†,m

1+→O
m↑
1+→ |#↔

\︄↑

)︄ +T/2

→T/2
dt

/︄⎞]︄
S
i

1

⌊︄kl
P

ij

11

⎡
·

⎞
P

lq

11↓#|O
†,q

1+→gBj(t,+r/2)Op

1+→ |#↔P
pk

10

⎡\︄

Tr [(S1 · P11) · (P11S1P11)]
. (6.18)

To simplify these equations further, the action of the gluon spin operator S1 on the pro-
jection matrices must be evaluated, which is detailed in Appendix D together with the
evaluation of the traces.
The final integral matching expressions for the spin-dependent potentials in terms of the
irreducible representations $⇁

ϑ read

V sa

11 (r) =≃ icF lim
T⇒↗

1

T
)︄ +T/2

→T/2
dt
↓#|O†

”→
u
gBz(t,+r/2)O”+

u
|#↔ ≃ ↓#|O†

”+
u
gBz(t,+r/2)O”→

u
|#↔

↓#|O†

”+
u
O”+

u
|#↔+ ↓#|O†

”→
u
O”→

u
|#↔

, (6.19)
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and

V sb

10 (r) =
icF
2

lim
T⇒↗

V”u(r)≃ V!→
u
(r)

2 sin
⎞
(V”u(r)≃ V!→

u
(r))T2

⎡

)︄
T/2

→T/2
dt
↓#|O†

”+
u
gBy(t,+r/2)O!→

u
|#↔+ ↓#|O†

”→
u
gBx(t,+r/2)O!→

u
|#↔

⎣
1
2

⎞
↓#|O†

”+
u
O”+

u
|#↔+ ↓#|O†

”→
u
O”→

u
|#↔

⎡
↓#|O†

!→
u
O!→

u
|#↔

. (6.20)

These equations are equivalent to those in Ref. [19], where a slightly di!erent notation is
used. The correlators in the numerator, which constitute the generalized Wilson loops,
involve two hybrid operators with di!erent $⇁

ϑ, which were selected by the projectors.
The chromomagnetic field component is inserted in between and the insertion position is
integrated over.
The matching procedure was conducted in Ref. [15] for the hybrid-quarkonium mixing
potentials. After analogous calculations, the final matching equations for the hybrid-
quarkonium mixing potentials in terms of the irreducible representations $⇁

ϑ are

V mix

”u
(r) =

icF
4mQ

lim
T⇒↗

V”u(r)≃ V!+
g
(r)

2 sin
⎞
V”u(r)≃ V!+

g
(r))T2

⎡

)︄
T/2

→T/2
dt
↓#|O†

!+
g
gBx(t,+r/2)O”+

u
|#↔ ≃ ↓#|O†

!+
g
gBy(t,+r/2)O”→

u
|#↔

⨂︂
↓#|O†

!+
g
O!+

g
|#↔ 1

2(↓#|O
†

”+
u
O”+

u
|#↔+ ↓#|O†

”→
u
O”→

u
|#↔)

, (6.21)

V mix

!→
u
(r) =

icF
2mQ

lim
T⇒↗

V!→
u
≃ V!+

g

2 sin
⎞
V!→

u
≃ V!+

g
)T2

⎡
)︄

T/2

→T/2
dt

↓#|O†

!+
g
gBz(t,+r/2)O!→

u
|#↔

⨂︂
↓#|O†

!+
g
O!+

g
|#↔ ↓#|O†

!→
u
O!→

u
|#↔

.

(6.22)

These equations correspond to those derived in Ref. [15], where we only adjusted the no-
tation to the one used in this work. The correlators in the numerator, the generalized
Wilson loops, for the hybrid-quarkonium mixing potentials include one ordinary quarko-
nium operator and one hybrid operator. The resulting expressions are integrals over the
temporal insertion position of the chromomagnetic field in the generalized Wilson loops in
the large time limit. However, these expressions are not suited for lattice computations. In
the next section, we exploit the large time limit and analytically perform the integration to
relate the potentials to matrix elements, which can be extracted from lattice calculations
of hybrid Wilson loops with chromomagnetic field insertions.
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6.2.2 Spectral decomposition and integral evaluation

For the integration of the spin-dependent potentials we employ the spectral decomposition
of the correlators

↓#|O†

$ω
ε
(r, T/2)Bk(t,+r/2)O$ω

ε
↑(r,≃T/2)|#↔

=
[︄

n

[︄

m

↓#|O†

$ω
ε

∫︁∫︁n,$⇁

ϑ

⎧ ⎥
m,$⇁

ϑ

≃
∫︁∫︁O$ω

ε
↑ |#↔

⎥
n,$⇁

ϑ

∫︁∫︁Bk

∫︁∫︁m,$⇁

ϑ

≃
⎧
(r)

e
→(Vn,!ω

ε
(r)+Vm,!ω

ε
↑ (r))T/2

e
+(Vn,!ω

ε
(r)→Vm,!ω

ε
↑ (r))t (6.23)

↓#|O†

$ω
ε
(r, T/2)O$ω

ε
↑(r,≃T/2)|#↔

=
[︄

n

↓#|O†

$ω
ε

∫︁∫︁n,$⇁

ϑ

⎧ ⎥
n,$⇁

ϑ

∫︁∫︁O$ω
ε
|#↔e

→Vn,!ω
ε
(r)T

, (6.24)

where sets of normalized static eigenstates
∫︁∫︁n,$⇁

ϑ

⎧
were inserted. The large time limit

selects the ground state since excited states become exponentially suppressed due to their
larger energy. The normalized ground state of a static quark and antiquark separated by
r is defined as

∫︁∫︁0,$⇁

ϑ

⎧
= lim

T⇒↗

e→hT
O$ω

ε
|#↔

∫︁∫︁∫︁e→hTO$ω
ε
|#↔

∫︁∫︁∫︁
, (6.25)

where O$ω
ε

are the interpolating operators as definied in Eqs. (6.10) and (6.12). Conse-
quently, the overlap factors ↓#|O†

$ω
ε
|n,$⇁

ϑ↔ = ↓n,$⇁
ϑ|O$ω

ε
|#↔ are positive and real. However,

it is important to note that trial states created by an alternative interpolating operator
may have a relative phase compared to the ground state defined above.
Using the spectral decomposition and taking the large-time limit, the integrals in the
matching equations (6.19) to (6.22) can be evaluated analytically. This leads to explicit
expressions for the spin-dependent potentials at order (1/mQ)1 in terms of ground-state
matrix elements

V sa

11 (r) =
igcF
2

]︄⎥
0,!+

u

∫︁∫︁Bz(r/2)
∫︁∫︁0,!→

u

⎧
(r)≃

⎥
0,!→

u

∫︁∫︁Bz(r/2)
∫︁∫︁0,!→

u

⎧
(r)

⌊︄
(6.26)

V sb

10 (r) =
igcF
2

]︄⎥
0,!+

u

∫︁∫︁By(r/2)
∫︁∫︁0,”→

u

⎧
(r) +

⎥
0,!→

u

∫︁∫︁Bx(r/2)
∫︁∫︁0,”→

u

⎧
(r)

⌊︄
(6.27)

V mix

”u
(r) =

igcF
4mQ

]︄⎥
0,”+

g

∫︁∫︁Bx(r/2)
∫︁∫︁0,!+

u

⎧
(r)≃

⎥
0,”+

g

∫︁∫︁By(r/2)
∫︁∫︁0,!→

u

⎧
(r)

⌊︄
(6.28)

V mix

!→
u
(r) =

igcF
2mQ

⎥
0,”+

g

∫︁∫︁Bz(r/2)
∫︁∫︁0,”→

u

⎧
(r). (6.29)

To transform the insertion position of the chromomagnetic field from +r/2 to ≃r/2, we
exploit the behavior of the matrix elements under a P ′ C transformation, which reads
⎥
0,$⇁

ϑ

∫︁∫︁Bj(≃r/2)
∫︁∫︁0,$⇁

ϑ

≃
⎧
= ≃↼↼≃

⎥
0,$⇁

ϑ

∫︁∫︁Bj(+r/2)
∫︁∫︁0,$⇁

ϑ

≃
⎧
. Additionally, we apply a time

reversal transformation under which the matrix elements behave like
⎥
0,$⇁

ϑ

∫︁∫︁Bj(+r/2)
∫︁∫︁0,$⇁

ϑ

≃
⎧
= ≃

⎥
0,$⇁

ϑ

≃
∫︁∫︁Bj(+r/2)

∫︁∫︁0,$⇁
ϑ

⎧
. Applying these transformations,
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we obtain the final expressions for the hybrid spin-dependent and hybrid-quarkonium mix-
ing potentials in terms of matrix elements, which we extract from lattice calculations in
the following sections

V sa

11 (r) =
igcF
2

]︄ ⎥
0,!→

u

∫︁∫︁Bz(≃r/2)
∫︁∫︁0,!+

u

⎧
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⎥
0,!→

u

∫︁∫︁Bz(≃r/2)
∫︁∫︁0,!+

u

⎧
(r)

⌊︄
(6.30)

V sb

10 (r) =
igcF
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⌊︄
(6.31)

V mix

”u
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igcF
4mQ
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⎥
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g

∫︁∫︁By(≃r/2)
∫︁∫︁0,!→

u

⎧
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⌊︄
(6.32)

V mix

!→
u
(r) =

igcF
2mQ

⎥
0,”+

g

∫︁∫︁Bz(≃r/2)
∫︁∫︁0,”→

u

⎧
(r). (6.33)

It is important to note that Eqs. (6.30) to (6.33) depend on the choice of operators B$ω
ε
,

as dictated by Eqs. (6.25) and (6.10). A di!erent choice of operators B$ω
ε

may lead to
sign changes or introduce phase factors in Eqs. (6.30) to (6.33). This consideration will
be particularly relevant for defining suitable lattice creation operators in the subsequent
sections.

6.3 Lattice computation

6.3.1 Extraction of matrix elements from generalized Wilson loops

We aim to compute the hybrid spin-dependent and hybrid-quarkonium mixing potentials
via the corresponding matrix elements, see Equations (6.30)-(6.33). To obtain these matrix
elements, we calculate ratios of Wilson loop-like correlation functions, which asymptotically
approach the desired values in the large-time limit. We define the correlator ratio as follows

RBk

$ω
ε$

ω
ε
↑(t; r, T )

= WBk

$ω
ε$

ω
ε
↑(t; r, T )

⎦
1

W$ω
ε
(r, T )W$ω

ε
↑(r, T )

⎢1/2⎦W$ω
ε
↑(r, T/2≃ t)W$ω

ε
(r, T/2 + t)

W$ω
ε
(r, T/2≃ t)W$ω

ε
↑(r, T/2 + t)

⎢1/2

.

(6.34)

Here, W$ω
ε
(r, T ) denotes the familiar (hybrid) Wilson loop correlation function of hybrid

trial states for quantum numbers $⇁
ϑ (see Chapter 4),

W$ω
ε
(r, T ) = ↓#|(Olattice

$ω
ε

)†(r, T/2)Olattice

$ω
ε

(r,≃T/2)|#↔, (6.35)

where the lattice operators Olattice

$ω
ε

(r, T ) are discussed in the following subsection.
WBk

$ω
ε$

ω
ε
↑(t; r, T ) is the generalized Wilson loop with di!erent (hybrid) creation and an-

nihilation operators and a chromomagnetic insertion along one of the temporal lines of the
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Wilson loop,

WBk

$ω
ε$

ω
ε
↑(t; r, T ) =↓#|(Olattice

$ω
ε

)†(r, T/2)Blattice

k
(≃r/2, t)Olattice

$ω
ε
↑ (r,≃T/2)|#↔ . (6.36)

Blattice

k
(≃r/2, t) with k = x, y, z is the lattice chromomagnetic field, which is inserted on

the temporal line of the Wilson loop at spatial position ≃r/2 ∝ (0, 0,≃r/2) and temporal
position t. We discretize it on the lattice with the common clover-leaf discretization, i.e.

Blattice

l
=

⇀lmn

2

⎞
!mn ≃!†

mn

⎡
= ≃igBl , (6.37)

where the clover-leaf plaquette is defined as

!mn =
1

4

⎞
Pm,n + Pn,→m + P→m,→n + P→n,m

⎡
. (6.38)

The chromomagnetic field is always placed at spatial position ≃r/2 in the Wilson loop,
which is consistent with Eqs. (6.30) to (6.33). So, we omit the spatial argument in the
remainder of this work.
t = 0 denotes the center of the Wilson loops on the temporal axis. For odd temporal exten-
sion T , the midpoint of the temporal line lies between two lattice sites, while for even T ,
it coincides with a lattice site. Consequently, valid insertion positions for the chromomag-
netic field are t/a = . . . ,≃1, 0, 1, . . . for even T and t/a = . . . ,≃3/2, ≃1/2, 1/2, 3/2, . . .

for odd T . At t = 0, the chromomagnetic field is symmetrically inserted between the two
spatial transporters of the Wilson loop. For t < 0, the field is closer to the transporter at
≃T/2, while for t > 0, it is closer to the one at T/2.
We defined the correlator ratio (6.34) so that it asymptotically approaches the matrix
element of interest in the large time limit. This can be proven by inserting the spectral
decomposition of the Wilson loops, Eqs. (6.24) and (6.23). As T ↗ ⇐, excited-state
contributions are exponentially suppressed and the ground state dominates. The first
square root in the denominator of Eq. (6.34) cancels the overlap factors ↓#|(Olattice

$ω
ε

)†
∫︁∫︁0,$⇁

ϑ

⎧

and
⎥
0,$⇁

ϑ

≃
∫︁∫︁Olattice

$ω
ε
↑ |#↔ along with the exponential T -dependence in the dominating term

from the spectral decomposition. Similarly, the second square root eliminates the residual
t-dependence. In the large T -limit, the so-defined correlator ratio (6.34) approaches a
plateau

lim
T⇒↗
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ε$

ω
ε
↑(t; r, T ) =

⎥
0,$⇁

ϑ

∫︁∫︁Blattice
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∫︁∫︁0,$⇁

ϑ

≃
⎧
(r) = ≃ig

⎥
0,$⇁

ϑ

∫︁∫︁Bk

∫︁∫︁0,$⇁

ϑ

≃
⎧
(r). (6.39)

The asymptotic value of this ratio directly yields the matrix element of interest, which
depends on the spatial separation of the static quark and antiquark r but is independent
of the temporal insertion position t.
For finite T , the leading contamination from excited states in Eq. (6.39) is expected to arise
from the Wilson loops in the second square root. The dominant excited-state contamina-
tion comes from the Wilson loop with $⇁

ϑ with the smallest energy gap between the ground
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state and the first excited state and the shortest temporal extent, T/2 ≃ |t|. As a result,
excited-state contamination is less suppressed in ratios with t ∋= 0, so we expect that they
reach the plateau slightly later than those with t = 0. However, for su"ciently large T , all
ratios eventually converge to the same plateau, corresponding to the desired ground-state
matrix element. Thus, it is beneficial to incorporate ratios with di!erent t into the analysis.
This approach enhances the signal by increasing statistics while providing some control on
systematic uncertainties from excited states.
Besides the definition in Eq. (6.34), other ratio formulations could also be used to extract
the matrix elements. Later, we introduce an alternative approach and compare it to the
ratio method discussed here.

6.3.2 Lattice creation operators and their phase

The interpolating operators/creation operators defined in Eqs. (6.10) and (6.12) are not
ideal for use in the lattice Wilson loops due to their relatively poor ground-state overlap.
In Chapter 4, we already employed optimized lattice creation operators from Ref. [51] to
compute Wilson loops and precisely extract the hybrid static potentials !u and ”→

u . These
optimized operators, as defined in Eqs. (4.3) and (4.4), consist of a weighted sum of properly
rotated non-trivially shaped paths of gauge links. This structure enhances the ground-
state overlap compared to chromomagnetic field components as operators. Consequently,
we adopt the optimized lattice operators for the computation of spin-dependent potentials
as well. The hybrid Wilson loops are, thus, computed on the lattice from Eq. (4.2).
Accordingly, the generalized Wilson loop is computed on the lattice from

WBk

$ω
ε$

ω
ε
↑(t; r, T )

=
⟨︄
Tr

⎞
aS↑,$ω

ε
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⎞
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ε
(≃r/2, r/2;T/2)

⎡†

U(≃r/2;T/2, t)Blattice

k
(≃r/2, t)U(≃r/2; t,≃T/2))

⎡⟩︄

U

, (6.40)

where the creation operators aS,$ω
ε
(≃r/2, r/2;T/2) are defined in Eq. (4.4) and ↓. . .↔

U

denotes the average on the ensemble of gauge link configurations.
As before, we apply APE smearing to the spatial links, as it significantly increases the
ground-state overlap. The smearing parameters are chosen following the calculations in
Chapter 4.
The shape of the gauge-link path S, which serves as the fundamental building block of the
lattice creation operators in Eq. (4.4), defines the structure of the creation operator for
the quantum numbers $⇁

ϑ. Similar to Chapter 4, we choose S = SIV,2 for $⇁
ϑ = ”→

u and
S = SIII,1 for $⇁

ϑ = !+
u . In order for O

lattice

”+
u

and O
lattice

”→
u

to have the same structure, we
use for !→

u S = R(≃↪/2)SIII,1, which is a counterclockwise ↪/2 rotation of the insertion
SIII,1 with respect to the z axis. It is important to note that an operator, which we label
with O

lattice,2

”+
u

, built for !→
u using the non-rotated insertion SIII,1, has a di!erent operator
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structure than O
lattice

”+
u

. Even though this alternative operator also generates states with
quantum numbers !→

u , it generates smaller ground-state overlap and was, thus, only used
for numerical cross-checks and not for the final results.
To ensure consistency with Eq. (6.25), the lattice operators O

lattice

$ω
ε

must be defined such
that they satisfy the condition

∫︁∫︁0,$⇁

ϑ

⎧
= lim

T⇒↗

e→hT
O

lattice

$ω
ε

|#↔
∫︁∫︁∫︁e→hTOlattice

$ω
ε

|#↔
∫︁∫︁∫︁
, (6.41)

where |0,$⇁
ϑ↔ is identical to the ground state defined in Eq. (6.25). As we already discussed,

defining |0,$⇁
ϑ↔ here with a relative phase to the first definition in Eq. (6.25) would lead

to an inconsistency with Eqs. (6.30)-(6.33). In order to ensure consistency, we replace the
lattice operators with

O
lattice

$ω
ε

↗

⎭
lim
T⇒↗

↓#|(Olattice

$ω
ε

)†e→hT
O$ω

ε
|#↔

∫︁∫︁∫︁↓#|(Olattice

$ω
ε

)†e→hTO$ω
ε
|#↔

∫︁∫︁∫︁

⎨

⋃︁ ⋂︁⨄︁ ⋀︁
=ϖ!ω

ε

O
lattice

$ω
ε

, (6.42)

where ς$ω
ε

is the relative phase between O$ω
ε

and O
lattice

$ω
ε

, which takes values of either +1

or ≃1. The phase depends on the exact shape of Olattice

$ω
ε

.
In order to determine the relative phase, we compute the ς$ω

ε
using O

lattice

$ω
ε

as defined in
Eqs. (4.3) and (4.4) and O$ω

ε
as given in Eqs. (6.10) and (6.12). Numerical results show

that ς!+
g
= ς!→

u
= ς”+

u
= ς”→

u
= +1. A graphical analysis of the operator structure can

further support this. By projecting the operators aS;$ω
ε

onto the plane of the associated
chromomagnetic field B$ω

ε
, we observe consistent orientation between the operator projec-

tion and the plaquettes forming the chromomagnetic field operator. Specifically, projecting
the operator a

SIII,1;”
+
u

onto the yz-plane shows alignment with the plaquettes that con-
stitute B”+

u
⇑ Blattice

x . Similarly, a
SIII,1;”

→
u
, when projected onto the xz-plane, displays

the same orientation to B”→
u
⇑ ≃Blattice

y , as expected. Lastly, a
SIV,2;!

→
u

shows a matching
orientation with B!→

u
⇑ Blattice

z .

6.3.3 Lattice setup

We perform the first direct lattice calculation of hybrid spin-dependent potentials V sa

11 (r),
V sb

10 (r), V mix

!→
u
(r) and V mix

”u
(r). To this end, we employ one of the four SU(3) lattice gauge

ensembles used in the previous chapters, specifically ensemble B, which has a lattice spac-
ing of a = 0.060 fm (see Table 4.3 for details). By employing ensemble B, we obtain lattice
data for these potentials at intermediate quark-antiquark separations, making this ensem-
ble a solid starting point to explore their behavior. Furthermore, this setup serves as a
foundation for future studies aiming at continuum-extrapolated results.
In previous chapters, we have employed the multilevel algorithm [77] to reduce statistical
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errors. In this chapter, we use another promising method, the gradient flow [68], which
has already been applied for related correlators in Refs. [71,74–76] (see also Section 2.4.3).
We employ an implementation of the gradient flow algorithm carried out in the context of
Refs. [76, 106].
The gradient flow serves as a smearing procedure, in which the gauge fields are smeared
over a sphere of radius rf =

/︂
8tf and, thus, reduces significantly undesired ultraviolet

(UV) fluctuations. In order to avoid discretization e!ects from overlapping gauge links
in the Wilson loop, we ensure that the separation of operators in both the temporal and
spatial directions is larger than 2rf . Specifically, for (hybrid) Wilson loops without an
insertion along the temporal line, the constraint for its spatial and temporal extents reads
r, T ⇒ 2rf . For Wilson loops with an insertion, we require the smallest distance between the
operator and the inserted field to be su"ciently large, which translates to T/2≃ |t| ⇒ 2rf ,
where t denotes the insertion position (see Eq. (6.36)). Additionally, for chromomagnetic
insertions extending along the separation axis, we impose the constraint r ⇒ 2rf + a.
We compute the correlators at several flow times in the range 0 △ tf/a2 △ 1.445. These
flow times correspond to flow radius range of 0 △ rf/a △ 3.4. The larger the flow radius, the
better the signal-to-noise ratio. However, due to discretization e!ects, the reliable region
of lattice results for the potentials is restricted. We present results for a representative
flow radius rf/a = 1.8 in the following. This choice is justified by the conclusions on the
gradient flow dependence of our results made in Section 6.4.2.
The gradient flow is also a useful renormalization scheme for the correlators of interest
involving chromomagnetic field insertions [148]. For the potentials (6.30) to (6.33) to be
finite, the divergent chromomagnetic matrix elements

⎥
0,$⇁

ϑ

∫︁∫︁Bk

∫︁∫︁0,$⇁
ϑ

≃
⎧
(r) are multiplied

with a matching coe"cient cF . The matching coe"cients cF (tf , µ) are known for the con-
version from gradient flow as a renormalization scheme with scale tf to the MS scheme with
the renormalization scale µ up to one-loop order [73,74]. Thus, given results of the matrix
element at several lattice spacings and flow times, the product of matching coe"cient and
matrix element can be extrapolated to the continuum at fixed flow times. Performing a
continuum extrapolation of flowed observables with chromomagnetic insertions is particu-
larly advantageous, as the convergence is expected to be significantly improved compared
to non-flowed observables. After this extrapolation, any remaining dependence on the flow
time can be removed by an additional flow time extrapolation to tf ↗ 0.
In this work, we explore the gradient flow procedure for calculating hybrid spin-dependent
potentials at a single lattice spacing. Our results demonstrate that the chosen setup, in
combination with gradient flow, is promising. They suggest that our calculations and
analysis can be extended to multiple lattice spacings and flow times in future studies. This
extension will allow for a precise continuum and zero-flow time extrapolation.
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6.4 Numerical results

6.4.1 Potentials at finite lattice spacing and flow radius

In the following, we present correlator ratios RBk

$ω
ε$

ω
ε
↑(t; r, T ) defined in Eq. (6.34) computed

at lattice spacing a = 0.060 fm and flow radius rf/a = 1.8 and discuss the methods used
to extract the corresponding potentials.
We exploit translational and rotational symmetry in our calculations. Precisely, correlators
involving O

lattice

”+
u

and O
lattice

”→
u

, which correspond to the same potential (see Eq. (6.31) and
(6.32)) and are related by rotational symmetry, are averaged.
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Figure 6.1: Correlator ratios ≃RBz

”→
u ”+

u
(t; r = 9a, T ), ≃R

By

!→
u ”+

u
(t; r = 9a, T ),

≃(1/2)RBx

!+
g ”+

u
(t; r = 9a, T ) and ≃(1/2)RBz

!+
g !→

u
(t; r = 9a, T ) in units of the

lattice spacing a = 0.060 fm at flow radius rf/a = 1.8. The prefactors ≃1 and
≃1/2 were chosen such that the asymptotic values at large T correspond to
V sa

11 (r = 9a)/cF (top left), V sb

10 (r = 9a)/cF (top right), V mix

!→
u
(r = 9a)mQ/cF

(bottom left) and V mix

”u
(r = 9a)mQ/cF (bottom right), see Eqs. (6.39) and

(6.30) to (6.33). Each gray band represents a fit of a constant to data points
fulfilling both T/2≃ |t| ⇒ 2rf and 9a △ T △ Tmax.

In Figure 6.1, we show the relevant ratios RBk

$ω
ε$

ω
ε
↑(t; r, T ) for the four hybrid spin-dependent

and hybrid-quarkonium mixing potentials. The ratios are presented as functions of T

for the exemplary spatial separation of r = 9a = 0.54 fm. We consider several temporal
positions of the chromomagnetic field insertion t/a = ≃3/2, ≃1, ≃1/2, 0, +1/2, +1, +3/2.

93



CHAPTER 6. HYBRID SPIN-DEPENDENT AND HYBRID-QUARKONIUM
MIXING POTENTIALS AT ORDER (1/MQ)

1

The ratios with di!erent t/a approach their asymptotic values in the computed range
of T/a, although ratios with t ∋= 0 exhibit observable excited-state contributions and
tend to reach their plateau slightly later. Moreover, excited-state contributions are more
pronounced in the ratios related to hybrid spin-dependent potentials (top row of Figure 6.1)
than in those related to hybrid-quarkonium mixing potentials (bottom row). The reason
is that the operator for the trivial, non-excited gluon configuration ”+

g generates a larger
ground-state overlap compared to hybrid operators. This behavior is explained by the more
complex gluon configurations of hybrid states, which are more challenging to approximate
using lattice operators. These configurations have been studied in detail in Refs. [49,149].
The asymptotic values of the ratios as shown in Figure 6.1 correspond directly to the
potentials V sa

11 (r)/cF , V sb

10 (r)/cF , V mix

!→
u
(r)mQ/cF and V mix

”u
(r)mQ/cF (see Eqs. (6.30) to

(6.33)). We extract these values by fitting a constant to the available set of ratios, which
includes multiple values of t. The range of T included in the fit is constrained by the
gradient flow radius rf . We exclude ratios where T/2 ≃ |t| < 2rf to avoid overlap-
ping e!ects. In the following, we explore di!erent methods for determining the fit range
Tmin △ T △ Tmax.
In all approaches, the upper bound, Tmax, is set to maintain a moderate noise-to-signal ra-
tio, significantly below unity. We adopt Tmax/a = 14 for hybrid spin-dependent potentials,
while for hybrid-quarkonium mixing potentials, we set Tmax/a = 16.
The starting point for the determination of Tmin is a fit algorithm, which is inspired by
the one used in previous chapters. The lower bound Tmin(t, r) was chosen as the smallest
T , where |RBk

$ω
ε$

ω
ε
↑(t; r, T ) ≃ RBk

$ω
ε$

ω
ε
↑(t; r, T + a)| < 2ϱ[RBk

$ω
ε$

ω
ε
↑ ](t; r, T + a) with ϱ[RBk

$ω
ε$

ω
ε
↑ ]

denoting the statistical error.
Most ratios satisfy this plateau criterion already at the smallest T fulfilling T/2≃ |t| ⇒ 2rf .
With these Tmin(t, r), we obtain reasonable fits indicated by reduced ε2 values of order
1. Typically, Tmin(t = 0, r)/a = 8, though, for example, for V sb

10 (r) the algorithm selects
Tmin(t = 0, r)/a = 10 for 3 △ r/a △ 7. Consequently, the resulting potential shows a large
variation of statistical uncertainties between neighboring potential data points, which is
not due to a change in the data quality but the abrupt change in Tmin(t, r). To address this
issue, we investigated an alternative approach in which a fixed Tmin is applied uniformly
across all values of t and r, ensuring more consistent statistical uncertainties. We test three
di!erent values for the fixed lower bound, Tmin/a = 8, Tmin/a = 9 and Tmin/a = 10. The
extracted potential values obtained with Tmin/a = 8 and Tmin/a = 9 are found to agree,
with a slight trend that the potentials determined using Tmin/a = 9 are slightly lower
than those extracted at Tmin/a = 8. Moreover, Tmin/a = 10 does not significantly alter the
central values of the extracted potentials but led to a noticeable increase in statistical errors.
Based on these findings, we conclude that using Tmin/a = 9 represents an optimal choice,
balancing the need for stable statistical uncertainties. This choice ensures consistency
across di!erent values of r and facilitates a smoother interpolation or parametrization of
the extracted potentials.
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Figure 6.2: Hybrid spin-dependent potentials V sa

11 (r)/cF and V sb

10 (r)/cF (left) and hybrid-
quarkonium mixing potentials V mix

!→
u
(r)mQ/cF and V mix

”u
(r)mQ/cF (right) in

units of the lattice spacing a = 0.060 fm at flow radius rf =
/︂

8tf = 1.8 a.

The final results for the potentials, obtained using this refined fitting procedure, are pre-
sented as a function of the quark-antiquark separation in Figure 6.2 and are summarized
in Tables E.5 and E.6.

Alternative ratio method

Beyond the ratio defined in Eq. (6.34), alternative approaches can be used to extract the
matrix elements in Eqs. (6.30)-(6.33). One such alternative is the following ratio

RBk

2;$ω
ε$

ω
ε
↑(t; r, T ) =

WBk

$ω
ε$

ω
ε
↑(t; r, T )

W$ω
ε
(r, T/2≃ t)W$ω

ε
↑(r, T/2 + t)

. (6.43)
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In the limit T ↗ ⇐, this ratio approaches

RBk

2;$ω
ε$

ω
ε
↑(t; r, T ) ↗T⇒↗

⎥
0,$⇁

ϑ

∫︁∫︁Blattice

k

∫︁∫︁0,$⇁
ϑ

≃
⎧
(r)

⎥
0,$⇁

ϑ

∫︁∫︁Olattice

$ω
ε

|#↔↓#|(Olattice

$ω
ε
↑ )†

∫︁∫︁0,$⇁
ϑ

≃
⎧ . (6.44)

The quality of the alternative ratios and their plateaus is comparable to those shown in
Figure 6.1.
Since the ground-state overlaps ↓0,$⇁

ϑ|O
lattice

$ω
ε

|#↔ = ↓#|(Olattice

$ω
ε

)†|0,$⇁
ϑ↔ are positive, as en-

sured by Eq. (6.41), we can extract them from a single exponential fit of W$ω
ε
(r, T ) and

W$ω
ε
↑(r, T ) in the large time limit with the fit function

W$ω
ε
(r, T ) =

⎞
↓0,$⇁

ϑ|O
lattice

$ω
ε

|#↔
⎡2

e
→V0,!ω

ε
(r)T . This alternative ratio provides an indepen-

dent way to verify the matrix elements extracted using the primary method discussed in
the previous section. The asymptotic values of the alternative Wilson loop correlator ratio
(see Eq. (6.44)) are extracted from a plateau fit in the large T range, similar to the method
discussed earlier. Once the overlap factors are obtained, the matrix elements are obtained
by multiplying the plateau values with the corresponding ground-state overlaps. The re-
sults are statistically consistent with those obtained from the ratio in Eq. (6.34). The
consistency of the extracted values further validates the reliability of our primary method
and confirms that systematic uncertainties are well under control.

6.4.2 Flow time dependence of correlator ratios and matrix elements

One of the key benefits of the gradient flow is the significant enhancement in the signal
quality of correlators. This improvement is demonstrated in Figure 6.3, where we plot

S(t; r, T ) =
&RBx

!+
g ”+

u
(t; r, T )

∫︁∫︁∫︁
tf

&RBx

!+
g ”+

u
(t; r, T )

∫︁∫︁∫︁
tf=0

, (6.45)

which represents the statistical error of RBx

!+
g ”+

u
(t; r, T ) at flow time tf ⇒ 0 normalized by

its statistical error at tf = 0. The dependence on tf is shown for several values of T with
fixed t = 0 and r/a = 9. The statistical errors are drastically reduced by the gradient flow,
with the most significant improvement for tf/a2 ⇒ 0.4 or rf/a ⇒ 1.8.
On the one hand, the larger the flow time tf and, thus, the flow radius rf , the smaller
the relative error of the correlator ratio. On the other hand, a larger flow radius shifts the
reliable range of T and r to significantly larger separations because, as discussed earlier,
discretization errors may arise due to the overlapping of smeared operators. In particular,
when the distance between two operators is smaller than 2rf systematic errors introduced
by the flow radius become sizable. For instance, this e!ect is noticeable for T <

↘ 2rf in the
e!ective potentials for ordinary and hybrid static potentials at small T/a. Discretization
e!ects for r <

↘ 2rf are illustrated in Figure 6.4, where we show the di!erence of ordinary
static potential data at several flow radii from a fit of the non-flowed data of the ordinary
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Figure 6.3: Relative error S(t = 0; r = 9a, T ) as defined in Eq. (6.45) as function of the
flow time tf/a2 for several T .

static potential. The data points coincide only for r ⇒ 2rf . Below this bound, discretization
e!ects due to overlapping flowed operators lead to distortions from the non-flowed potential
result. Potential data for r < 2rf should be interpreted with caution to ensure a reliable
analysis. In the previous section, we presented results for an intermediate flow radius
of rf/a = 1.8 to balance signal improvement and data reliability. This choice ensures a
significant reduction of statistical error while maintaining an acceptable range of lattice
data for the analysis of potentials.
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Figure 6.4: Di!erence between flowed and non-flowed ordinary static potential
V!+

g
(r/a)|rf ≃ V fit

!+
g
(r/a)|rf/a=0 as a function of r/a for di!erent flow radii rf .

V fit

!+
g
(r/a)|rf=0 has been obtained from a fit of the Cornell potential to the

lattice data V!+
g
(r/a) at flow radius rf/a = 0 in the range 2a △ r △ 11a.

Data at multiple lattice spacings are currently unavailable, preventing a continuum limit
a ↗ 0. Nonetheless, we analyze the flow time dependence of the matrix elements. The flow
time dependence of the matrix elements ↓0,!→

u |B
lattice
z |0,!+

u ↔ (r), ↓0,”→
u |B

lattice
y |0,!+

u ↔ (r),
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Figure 6.5: The matrix elements a2 ↓0,!→
u |B

lattice
z |0,!+

u ↔ (r) (top left),
a2 ↓0,”→

u |B
lattice
y |0,!+

u ↔ (r) (top right), a2
⎥
0,”+

g

∫︁∫︁Blattice
x |0,!+

u ↔ (r) (bottom
left) and a2

⎥
0,”+

g

∫︁∫︁Blattice
z |0,”→

u ↔ (r) (bottom right) for selected separations r
as functions of the flow time tf/a2.

⎥
0,”+

g

∫︁∫︁Blattice
x |0,!+

u ↔ (r) and
⎥
0,”+

g

∫︁∫︁Blattice
z |0,”→

u ↔ (r) for several fixed r as a function of
the flow time is displayed in Figure 6.5. These matrix elements are directly related to
the potentials V sa

11 (r), V sb

10 (r), V mix

!→
u
(r) and V mix

”u
(r) up to a multiplicative factor, namely

the matching coe"cient cF (tf , µ). Assuming discretization e!ects are small, the matrix
elements exhibit a relatively weak flow-time dependence. From perturbation theory, one
expects that a logarithmic dependence should be canceled by the logarithmic flow-time de-
pendence of cF (tf , µ), which is known up to one-loop order [73,74]. These findings suggest
that a combined continuum limit and zero-flow-time extrapolation is feasible once compu-
tations are performed at multiple lattice spacings. Related studies [71,74–76,148,150] have
explored di!erent methods for continuum and zero-flow-time extrapolations for related ob-
servables. These techniques could be applied to our results in future work, enabling the
determination of fully renormalized hybrid spin-dependent potentials suitable for precise
parametrizations.

6.4.3 Comparison with parametrizations in the literature

The presented lattice data correspond to the hybrid spin-dependent potentials V sa(r) and
V sb(r) as well as the hybrid-quarkonium mixing potentials V mix

”u
(r)mQ/2 and V mix

!→
u
(r)mQ/2,

up to a multiplicative constant cF (see Eqs. (6.30))-(6.33)) and possible minor systematic
e!ects arising from the finite lattice spacing a and finite flow time tf . These first-principles
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lattice gauge theory computations provide a crucial initial insight into spin-dependent cor-
rections, including hybrid-quarkonium mixing with ordinary quarkonium. Moreover, they
demonstrate the feasibility of a more precise extraction of these potentials. While a com-
bined continuum-limit and zero-flow-time extrapolation remains a necessary future step,
the current lattice results are expected to be close to that limit within the given preci-
sion. Since these are the first lattice field theory results that directly determine these
potentials for quark-antiquark separations 0.30 fm<

↘ r <
↘ 0.72 fm, we want to compare them

exemplarily to existing parametrizations in the literature. This is not intended as a rig-
orous comparison, as further steps remain necessary, but rather as an illustration of how
our lattice study enables possible improvements in heavy hybrid meson mass predictions
previously performed in Refs. [15, 17,18,23].
In the literature, spin e!ects in the heavy hybrid meson spectra due to hybrid spin-
dependent and hybrid quarkonium mixing potentials have been explored using a com-
bination of approaches. The short-distance behavior of the potentials can be derived from
potential non-relativistic QCD (pNRQCD). For instance, the short-distance multipole ex-
pansion of V sa

1+11(r) and V sb

1+10(r) with non-perturbative parameters has been given in
Eqs. (3.9) and (3.10) [17,18]. These non-perturbative parameters are expressed in terms of
r-independent gluonic correlators in Ref. [17, 18] but have not been calculated yet. Thus,
they were estimated through fits to existing charmonium hybrid meson spectrum data in
Refs [17, 18] and subsequently, predictions have been extended to the bottomonium sec-
tor. For r ↗ 0, the hybrid spin-dependent potentials are expected to be degenerate. The
short-distance prediction for the hybrid-quarkonium mixing potentials [15] reads

V mix

”u
(r) = V mix

!→
u
(r) =

±cF▷2

mQ

. (6.46)

with an unknown sign and parameter ▷.
In Refs. [15,23], interpolating functions for the potentials were employed, which incorporate
the expected long-distance behavior of the potentials from QCD e!ective string theory,
which are given by

V sa

1+11(r) = ≃
2cF↪2g$≃≃≃

ϱ

1

r3
(6.47)

V sb

1+10(r) = ∈
cF g$≃↪2

⇔
↪ϱ

1

r2
(6.48)

V mix

”u
(r) =

↪3/2g$≃cF
2mQ

⇔
ϱr2

(6.49)

V mix

!→
u
(r) =

≃↪2g$≃≃≃cF
mQϱr3

. (6.50)

The long-distance behavior includes parameters such as the string tension ϱ, which can, in
principle, be fixed through a fit to available lattice data for the ordinary static potential.
Other parameters as g$≃ and g$≃≃≃ can be fixed using lattice data for quarkonium spin-
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Figure 6.6: Lattice field theory results for V mix

”u
(r)mQ/cF and V mix

!→
u
(r)mQ/cF at fixed

lattice spacing a = 0.060, fm, compared to variants of interpolating func-
tions (6.51).

dependent potentials, though only up to an unknown sign. The parameter ▷ and the
sign in Eq. (6.46) were varied in Ref. [15] to explore their impact on heavy hybrid meson
spectra.
As an illustrative example, Figure 6.6 presents our lattice results for V mix

”u
(r)mQ/cF and

V mix

!→
u
(r)mQ/cF alongside interpolating functions from Ref. [15], which are given by

V mix

”u
[±≃](r) =

cF▷2

mQ

⎟

⟨︂
±1≃ r

2

r
2
”

1 + r4

r
4
”

⟩︂

⨆︁ r” =

⎭∫︁∫︁g$≃↪3/2
∫︁∫︁

2▷2ϱ1/2

⎨1/2

(6.51)

V mix

!→
u
[±±](r) =

cF▷2

mQ

⎟

⟨︂
±1± r

2

r
2
#

1 + r5

r
5
#

⟩︂

⨆︁ r! =

⎭∫︁∫︁g$≃≃≃↪2
∫︁∫︁

▷2ϱ

⎨1/3

, (6.52)

with g$≃ = ≃59MeV, g$≃≃≃ = ±230MeV, determined from a lattice data fit of spin poten-
tials for heavy quarkonium, and ▷ = 600MeV, which was chosen because it creates the
largest mixing of the explored values. However, none of these interpolating variants with
the chosen parameters closely match our lattice results as demonstrated by Figure 6.6,
while the qualitative behavior of the predictions seems to agree with our lattice data.
Given the uncertainties in the values and signs of non-perturbative parameters, which are
di"cult to constrain using existing lattice QCD data, we believe our direct lattice compu-
tation of hybrid spin-dependent and hybrid-quarkonium mixing potentials from generalized
Wilson loops will provide more precise estimates and will help to resolve open questions
about these potentials.
Techniques developed for parametrizations and removal of discretization errors in the hy-
brid static potentials (as outlined in Chapter 4) might be extended to the hybrid potentials
at order (1/mQ)1 calculated with gradient flow, enabling precise parametrizations of the
spin-dependent potentials. As discussed earlier, once renormalized results are available,
the resulting hybrid spin-dependent potentials will contribute to sophisticated predictions
of heavy hybrid meson masses.
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1

6.5 Summary

In this chapter, we investigated the hybrid spin-dependent and hybrid-quarkonium mixing
potentials at order (1/mQ)1 derived in the BOEFT using first-principles lattice gauge
theory calculations. These potentials play a crucial role in understanding the hyperfine
splitting in heavy hybrid meson spectra and their mixing with conventional quarkonia.
We specified the expressions for the hybrid spin-dependent potentials in the ωPC = 1+→

sector. We outlined the matching between the BOEFT and NRQCD and worked out the
potentials in terms of matrix elements by analytical integration of the matching expressions.
The lattice computation of these potentials was then discussed in detail. We outlined the
methodology for extracting matrix elements from generalized Wilson loops and explained
how to construct lattice creation operators, incorporating appropriate phase factors, to
compute the corresponding potentials. The specifics of the lattice setup, including the
choice of gradient flow time, were discussed in detail.
Our numerical results provide the first direct lattice field theory determination of the hybrid
spin-dependent and hybrid-quarkonium mixing potentials at order (1/mQ)1 for quark-
antiquark separations in the range 0.30 fm △ r △ 0.72 fm. We analyzed these potentials at
finite lattice spacing and flow radius and studied the flow-time dependence of correlator
ratios and matrix elements. Although a full continuum and zero-flow-time extrapolation
were beyond the scope of this work, our results suggest that these are feasible when the
calculations are extended to several smaller and larger lattice spacings.
While predictions for the potentials exist in the literature, where unknown, non-perturbative
parameters can partly be fixed by existing lattice data for the hybrid charmonium spec-
tra or spin-dependent potentials for quarkonium, direct lattice computation of the hybrid
spin-dependent potentials are important to reduce uncertainties and improve theoretical
predictions of heavy hybrid meson spectra.
To conclude, this work represents a significant advancement in studying spin-dependent
e!ects in the heavy hybrid meson spectrum. The methodology developed here sets the stage
for future studies with improved precision, including continuum-limit, renormalization and
zero-flow time extrapolation of the computed potentials and parametrizations.
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7 Conclusions

This thesis has enhanced and extended the range of precise results for hybrid meson po-
tentials at the leading and next-to-leading order in the Born-Oppenheimer E!ective Field
Theory (BOEFT) by employing pure SU(3) lattice gauge theory calculations with lattice
spacings as small as 0.04 fm. We computed the hybrid static potentials !u and ”→

u with un-
precedented accuracy and provided parametrizations consistent with the continuum limit
(see Section 4.6 for a detailed summary). Our results extend the available lattice data
to smaller separations and improve the precision of mass predictions for the lowest heavy
hybrid mesons within the BOEFT.
Additionally, we extracted a spectrum of 19 continuum-extrapolated gluelump mass split-
tings with total angular momentum up to J = 3 and displayed their connection to the
short-distance limit of hybrid static potentials (see Section 5.5). Although our lattice
results significantly improve previous studies, the conversion to renormalized gluelump
masses in the RS scheme, which directly a!ect hybrid meson mass predictions, remains
limited by the precision of perturbative expressions.
We also performed an exploratory study of the hybrid spin-dependent potentials V sa(r)/cF

and V sb(r)/cF as well as for the hybrid-quarkonium mixing potentials V mix

”u
(r)mQ/cF and

V mix

!→
u
(r)mQ/cF at order (1/mQ)1 in the BOEFT. We related these potentials to matrix

elements, which can be obtained from generalized Wilson loops suitable for lattice evalua-
tion. Through this, we were able to provide the first lattice results for heavy quark spin-
dependent corrections to hybrid static potentials (see Section 6.5 for a detailed summary).
These findings represent an important step towards clarifying open questions regarding the
hyperfine splitting and mixing with ordinary quarkonium in the spectrum of heavy hybrid
mesons. A combined a ↗ 0 and rf ↗ 0 extrapolation remains mandatory for rigorous
renormalized continuum results.
Systematic uncertainties such as volume e!ects from the finite lattice volume and topolog-
ical freezing were carefully addressed and excluded. By utilizing multiple lattice data en-
sembles, we quantified and e!ectively eliminated discretization e!ects from the lattice data
for hybrid static potentials (see Section 4.3), gluelump mass splittings (see Section 5.3.3)
and the renormalized RS gluelump mass (see Section 5.4). These strategies may also be
applied to hybrid spin-dependent potentials at order (1/mQ)1 once lattice data at several
lattice spacings is available.
While our study was conducted in pure gauge theory without dynamical quarks, which is
a simplifying approximation introducing an unclear systematic uncertainty, lattice compu-
tations of hybrid static potentials from Ref. [38] suggest that omitting dynamical quarks
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leads to no statistically significant deviations. Moreover, the inclusion of dynamical quarks
would introduce several multiparticle states consisting of light pions and ordinary quarko-
nium below the hybrid state of interest. These states could lead to systematic errors in
the results and avoiding contamination from them is rather di"cult. In pure gauge theory,
such multiparticle states are limited to states involving ordinary quarkonium and a rela-
tively heavy glueball. These states only a!ect the potentials at very small separations (as
discussed in Section 4.4.3) and can be safely neglected for this work.
Future work should focus on extending lattice calculations to smaller lattice spacings and
larger volumes. This would allow making contact to string-like descriptions as e.g. in
Ref. [15, 23, 112, 114] at large r and to higher-order perturbation theory at small r similar
to Ref. [113], to enhance the description of the potentials. However, achieving fine lattices
with large volumes is computationally demanding due to critical slowing down. Master
field simulations [151] o!er a promising approach to overcome this challenge, such that
volume e!ects from topological freezing are avoided. Additionally, applying the gradient
flow method to hybrid static potentials and gluelumps may provide an e!ective strategy for
improving precision, extracting higher-lying hybrid static potentials with similar accuracy
and achieving renormalization.
Overall, this work successfully enhances the range and accuracy of results for heavy hybrid
meson potentials and contributes essential inputs for refined theoretical predictions of heavy
quark spin e!ects and heavy hybrid meson masses within the BOEFT framework.
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A Error analysis

This appendix outlines the methods used throughout this work for the statistical error
analysis in Monte Carlo simulations. These were already described and used in Refs.
[55,57,58]. We employ the jackknife and bootstrap methods to estimate statistical errors,
ensuring reliable results.
To eliminate correlations in Monte Carlo time, measurements on consecutively generated
gauge link configurations from ensemble e are combined into N e bins.
For results from individual ensembles, we employ the jackknife method starting at the
level of correlation functions. For the data points of the correlation function of interest
Ce(t), statistical errors are determined via a standard jackknife analysis. From N e reduced
jackknife samples Ce,jackknife

j
(t) the error is computed as

ϱCe(t) =

⎦
N e

≃ 1

N e

N
e[︄

j=1

⎞
Ce,jackknife

j
(t)≃ C̄

e
(t)

⎡2
⎢1/2

, (A.1)

where C̄
e
(t) denotes the result for the full sample. Quantities derived from the correla-

tion function, Oe, such as the e!ective potentials V e

e!;$ω
ε
(r, T ), gluelump correlator ratios

C̃
e,s

RPC (t) or the correlator ratios RBk

$ω
ε$

ω
ε
↑(t; r, T ) related to hybrid spin-dependent potentials,

are calculated on each reduced jackknife sample and the error is computed analogously to
Eq. (A.1).
For cases where results from di!erent ensembles are combined, such as for the parametriza-
tion of static potentials in Section 4.3 or continuum gluelump mass splittings in Sec-
tion 5.3.3, the bootstrap method is employed. This approach is more practical than con-
tinuing with the jackknife method due to a large number of reduced jackknife samples, i.e.
for fits in Section 4.3 this would amount to NA

↑ NB
↑ NC

↑ ND
↑ NA

HYP2 , and the
corresponding huge computational e!ort.
Reduced jackknife samples for the quantity of interest Oe must be inflated

Oe

j = Ō
e
+ (N e

≃ 1)
⎞
Oe,jackknife

j
≃ Ō

e
⎡
. (A.2)

From the inflated samples Oe

j
, a bootstrap sample is generated by randomly selecting N e

data points for each ensemble, where the same inflated sample may be selected more than
once. This procedure is applied to the static potential V e

$ω
ε
(r) for the parametrization in

Section 4.3, the gluelump mass splittings &me

RPC or gluelump correlator ratio C̃
e,s

RPC (t)

for the fits in Section 5.3.3. The bootstrap error of the derived quantity Q is given by the
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standard deviation of the bootstrap samples, i.e.

ϱQ =

⎦
1

K

K[︄

k=1

⎞
Qk ≃ Q̄

⎡2
⎢1/2

. (A.3)

Here, Qk denotes the result on the k-th bootstrap sample and Q̄ the result on the full
sample. Q may be one of the fit parameters extracted from the fits in Section 4.3 and
Section 5.3.3. K, the number of bootstrap samples, has to be chosen su"ciently large, such
that &Q is essentially independent of K. Throughout this work, K = 10000 bootstrap
samples are used.
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B SU(2) gauge field ensembles

In the following, we summarize details on generated SU(2) gauge field ensembles [53, 117,
152]. We generated three ensembles of gauge link configurations with gauge couplings ϑ =

2.85, 2.70, 2.50. We relate the lattice spacing a to the scale t0 using a parametrization of
ln
]︄
t0/a2

⌊︄
determined in Ref. [153] via the gradient flow. Physical units are then introduced

by setting
⇔
8t0 = 0.3010 fm, which corresponds to r0 = 0.5 fm. The details of the gauge

link ensembles are summarized in Table B.1. The three lattice volumes are approximately
L3

↑T → (1.3 fm)3↑ (1.3 fm). For the investigation of finite volume e!ects in Section 2.6.3,
additional ensembles with both smaller and larger lattice volumes at gauge couplings ϑ =

3.00, 2.85, 2.70, 2.50 were generated.

ensemble ϑ a in fm [153] (L/a)3 ↑ T/a Nsim Ntotal Nor Ntherm Nsep Nmeas

a 2.50 0.078 163 ↑ 16 20 40000 0 10000 100 6000

b 2.70 0.041 323 ↑ 32 20 25000 0 10000 100 3000

c 2.85 0.026 483 ↑ 48 20 25000 0 10000 200 1500

Table B.1: Gauge link ensembles for gauge group SU(2).
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C Di!erent formulations of the

hybrid-quarkonium mixing potential at

order (1/mQ)1

In Section 3.1.2, we introduce the hybrid-quarkonium mixing Lagrangian for gluon spin
ω = 1 in a notation that aligns with the one used in Refs. [19, 23], which reads

Lmixing = 2V n
↑
n

mix

⎞
’n

↑
†

0++’
n0
1+→ +’0†

0++’
nn

↑

1+→ + H.c.
⎡
. (C.1)

In Ref. [15], where the hybrid-quarkonium mixing potential was derived, a di!erent nota-
tion is used. There, the quarkonium field is denoted by S = S0+ϱkSk

1 and the hybrid field
is denoted by Hj = Hj

0 + ϱkHjk

1 . The subscripts 0 and 1 stand for the heavy quark pair
spin S

QQ̄
and the superscripts denote the three components of the gluon or heavy quark

spin 1 case. For clarity, we have in our notation ’0
0++ = S0, ’A

0++ = Sj

1, if A = j. For the
hybrid field ’n0

1+→ = Hn

0 and ’nA

1+→ = Hnj

1 , if A = j. The BOEFT Lagrangian for the fields
S and Hj reads [15]

L = tr
⎞
S†

⎞
i↽t ≃ hS

⎡
S
⎡

⋃︁ ⋂︁⨄︁ ⋀︁
=Lquarkonium

+tr
⎞
Hn

↑
†

⎞
i↩n

↑
n↽t ≃ hn

↑
n

H

⎡
Hn

⎡

⋃︁ ⋂︁⨄︁ ⋀︁
=Lhybrids

+tr
⎞
S†V n

↑
n

mix {ϱ
n
↑
, Hn

}+ H.c.
⎡

⋃︁ ⋂︁⨄︁ ⋀︁
=Lmixing

.

(C.2)
hS and hH denote the order (1/mQ)0 Hamiltonian for quarkonium and hybrid quarkonium,
respectively,

hS(r) = ≃
&r

mQ

+ V!+
g
(r) (C.3)

hn
↑
n

H (r) = ≃
&r

mQ

↩n
↑
n +

[︄

$ω
ε=!→

u ,”u

V$ω
ε
(r)Pn

↑
n

1$ =

= ≃
&r

mQ

↩n
↑
n + V!→

u
(r)

⎞
er ∞ er

⎡
n
↑
n

+ V”u(r)
⎞
1≃ er ∞ er

⎡
n
↑
n

. (C.4)

Each term in tr(. . .) in Eq. (C.2) is a 2 ↑ 2 matrix and tr(. . .) denotes the trace with
respect to these 2 ↑ 2 matrices. The term Lmixing in the Lagrangian (C.2) describes
hybrid-quarkonium mixing, which is either formulated in terms of the fields ’⇀PC as in
Eq. (3.11) or in terms of the fields S and Hj as in Eq. (C.2).
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D Evaluation of traces in the matching

expressions for hybrid spin-dependent

potentials

In this appendix, we give details on the evaluation of traces of spin matrices and projec-
tion vectors occurring in the matching expressions for hybrid spin-dependent potentials,
Eqs. (6.17) and (6.18).
The projection matrices P⇀$ (3.4) projecting onto an irreducible representation $⇁

ϑ ↘

D↗h are either expanded in terms of the normalized eigenfunctions P⇀↩ of the gluon spin
operator S2

⇀ and S⇀r̂ or the projection vectors P⇀$ω
ε

(see Section 6.2.1). For ωPC = 1+→,
the relevant projection matrices are

P11 ∝ P1”u =P1”+
u
P †

1”+
u
+ P1”→

u
P †

1”→
u
= P+1uP

†

1+1u + P1→1uP
†

1→1u (D.1)

P10 ∝ P1!→
u
=P1!→

u
P †

1!→
u
= P10uP

†

10u . (D.2)

For the calculation of the matching equations in Section 6.2.1, we can assume that the
quark-antiquark separation axis is the z-axis. In particular, in the cartesian basis represen-
tation and with the quark-antiquark pair being separated along the z-axis, the projection
vectors P1↩ε are given by

P1±1u = ∈
1
⇔
2

⎟

∑︁⟨︂
1

±i

0

⟩︂

∏︁⨆︁ , P10u =

⎟

∑︁⟨︂
0

0

1

⟩︂

∏︁⨆︁ . (D.3)

The projection vectors P1$ω
ε

are related to P1↩ε via

P1”+
u
=
≃i
⇔
2
(P1→1u ≃ P1+1u)

P1”→
u
=
≃1
⇔
2
(P1→1u + P1+1u)

P1!→
u
=≃ iP10u . (D.4)

Consequently, in the cartesian basis representation and with the quark-antiquark pair being
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separated along the z-axis, the projection vectors P1$ω
ε

are represented by

P1”+
u
=

⎟

∑︁⟨︂
≃i

0

0

⟩︂

∏︁⨆︁ , P1”→
u
=

⎟

∑︁⟨︂
0

i

0

⟩︂

∏︁⨆︁ , P1!→
u
=

⎟

∑︁⟨︂
0

0

≃i

⟩︂

∏︁⨆︁ . (D.5)

Eqs. (6.17) and (6.18) involve several expressions given by traces of spin operators and
projection matrices. These expressions can be evaluated by considering that a cartesian
component of the spin operator S1 acts on a projection vector P1↩ε as follows [147]

Sx

1P1+1u =
1
⇔
2
P10u Sy

1P1+1u =
i
⇔
2
P10u Sz

1P1+1u =P1+1u (D.6)

Sx

1P1→1u =
1
⇔
2
P10u Sy

1P1→1u =
≃i
⇔
2
P10u Sz

1P1→1u =≃ P1→1u

(D.7)

Sx

1P10u =
1
⇔
2
(P1→1u + P1+1u) Sy

1P10u =
i
⇔
2
(P1→1u ≃ P1+1u) Sz

1P10u =0 . (D.8)

Consequently, the occurring traces involving no correlation functions can be computed
straightforwardly, resulting in [19]

Tr [P11] = 2 (D.9)

Tr [(S1 · P10) · (P11S1P11)] = 2 (D.10)

Tr [P10] = 1 (D.11)

Tr [(S1 · P11) · (P11S1P10)] = 2 . (D.12)

Exemplarily for the traces involving correlation functions, we work out the numerator in
Eq. (6.17) given by Tr

/︄
(S1P10) ·

⎞
P11↓#|O

†

1+→gBO1+→ |#↔P11

⎡\︄
,

Tr
/︄
(S1P10) ·

⎞
P11↓#|O

†

1+→gBO1+→ |#↔P11

⎡\︄

=
⎞]︄

S
i

1

⌊︄kl
P

ij

10

⎡
·

⎞
P

lq

11↓#|O
†,q

1+→gB
j
O

p

1+→ |#↔P
pk

11

⎡
, (D.13)

with
⎞
S
i

1P
ij

10

⎡
Bj =

⎟

∑︁⟨︂
Sx

1

Sy

1

Sz

1

⟩︂

∏︁⨆︁

⎟

∑︁⟨︂
0

0

1

⟩︂

∏︁⨆︁
⎞
0, 0, 1

⎡
⎟
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Bx
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Bz

⟩︂

∏︁⨆︁ = Sz

1Bz,

= (Sz

1)
kl
·

⎞
P

lq

11↓#|O
†,q

1+→gBzO
p

1+→ |#↔P
pk

11

⎡
(D.14)

= (Sz

1)
kl
·

⎞⎞
P l

1+1uP
†,q

1+1u + P l

1→1uP
†,q

1→1u

⎡
↓#|O†,q

1+→gBzO
p

1+→ |#↔P
pk

11

⎡
. (D.15)

The spin operator Sz

1 acts on the projection vectors according to Eqs. (D.6)-(D.8), which
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yields
⎞
P k

1+1uP
†,q

1+1u ≃ P k

1→1uP
†,q

1→1u

⎡
↓#|O†,q

1+→gBzO
p

1+→ |#↔P
pk

11 . (D.16)

The aim is to to express the correlators in terms of $⇁
ϑ representations of the operators.

Therefore, we replace the projection vectors P1↩ε with P1$ω
ε

according to Eq. (D.4), result-
ing in

i
⎞
P k

1”→
u
P †,q

1+”+
u
≃ P k

1”+
u
P †,q

1”→
u

⎡
↓#|O†,q

1+→gBzO
p

1+→ |#↔P
pk

11 (D.17)

=i
⎞
P k

1”→
u
P †,q

1+”+
u
≃ P k

1”+
u
P †,q

1”→
u

⎡
↓#|O†,q

1+→gBzO
p

1+→ |#↔
⎞
P p

1”+
u
P †,k

1”+
u
+ P p

1”→
u
P †,k

1”→
u

⎡
. (D.18)

Due to the trace and the orthonormality of the projection vectors, the expression simplifies
to

= iP †,q

1+”+
u
↓#|O†,q

1+→gBzO
p

1+→ |#↔P
p

1”→
u
≃ iP †,q

1”→
u
↓#|O†,q

1+→gBzO
p

1+→ |#↔P
p

1”+
u
. (D.19)

Using the expansion of the operator O1+→ in terms of $⇁
ϑ representations (6.9), we finally

arrive at

Tr
/︄
(S1P10) ·

⎞
P11↓#|O

†

1+→gBO1+→ |#↔P11

⎡\︄

= i↓#|O†

”→
u
gBzO”+

u
|#↔ ≃ i↓#|O†

”+
u
gBzO”→

u
|#↔ , (D.20)

which is the final result for the numerator in Eq. 6.19.
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E Summary of lattice field theory results

E.1 SU(3) lattice field theory data for the ”+
g , !u and ”→

u

static potentials

In Table E.1, we list V e

$ω
ε
(r)a, the bare lattice data points in units of the lattice spacing

(see Section 4.2). In Table E.2 we list Ṽ e

$ω
ε
(r), the lattice data points defined in Eqs. (4.18)

and (4.19), where the self-energy as well as lattice discretization errors at tree-level and
proportional to a2 are removed.
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APPENDIX E. SUMMARY OF LATTICE FIELD THEORY RESULTS

ensemble r/a V e

!+
g
a V e

”u
a V e

!→
u
a

A

1 0.411038(27) 1.2697(139) 1.2841(48)
2 0.596753(62) 1.2527(28) 1.2813(35)
3 0.699138(134) 1.2457(27) 1.2972(41)
4 0.772857(238) 1.2476(27) 1.3228(48)
5 0.835109(387) 1.2570(28) 1.3547(58)
6 0.891807(601) 1.2726(30) 1.3898(71)

B

1 0.365472(9) 1.0222(63) 1.0253(64)
2 0.512961(19) 1.0067(46) 1.0150(52)
3 0.584400(40) 0.9996(45) 1.0155(56)
4 0.629977(73) 0.9966(44) 1.0212(61)
5 0.664972(117) 0.9963(43) 1.0315(67)
6 0.694703(175) 0.9973(82) 1.0432(76)

C

1 0.345081(4) 0.9245(28) 0.9248(29)
2 0.478535(11) 0.9091(40) 0.9120(43)
3 0.540198(26) 0.9019(39) 0.9095(25)
4 0.577592(47) 0.8976(37) 0.9110(25)
5 0.604988(76) 0.8959(21) 0.9154(26)
6 0.627360(111) 0.8954(20) 0.9210(28)

D

1 0.329925(2) 0.8556(24) 0.8557(24)
2 0.453884(7) 0.8417(22) 0.8433(22)
3 0.509466(16) 0.8353(21) 0.8396(23)
4 0.542058(29) 0.8317(21) 0.8393(23)
5 0.565146(46) 0.8295(20) 0.8412(24)
6 0.583422(68) 0.8282(19) 0.8438(25)
7 0.598894(93) 0.8276(19) 0.8479(26)

AHYP2

2 0.116648(13) 0.7427(21) 0.7737(7)
3 0.206462(31) 0.7369(18) 0.7901(8)
4 0.275767(60) 0.7395(17) 0.8151(9)
5 0.336546(114) 0.7483(18) 0.8469(10)
6 0.392896(184) 0.7621(19) 0.8809(6)
7 0.446512(289) 0.7805(21) 0.9171(7)
8 0.498474(446) 0.8037(24) 0.9586(8)
9 0.549517(680) 0.8326(15) 0.9966(9)
10 0.599980(1032) 0.8613(19) 1.0382(11)
11 0.649218(1563) 0.8920(23) 1.0831(13)
12 0.696191(2361) 0.9243(28) 1.1266(15)

Table E.1: Bare lattice data points for the ”+
g , !u and ”→

u static potentials in units of the
lattice spacing (see Section 4.2).
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ensemble r/a r [fm] Ṽ
e

!+
g
[GeV] Ṽ

e

”u
[GeV] Ṽ

e

!→
u
[GeV]

A

1 0.0931 ≃0.46677(6) 1.2484(295) 1.2502(102)
2 0.1863 ≃0.1033(24) 1.2245(73) 1.2541(76)
3 0.2794 0.0929(24) 1.2122(76) 1.2903(91)
4 0.3726 0.2428(24) 1.2169(78) 1.3454(108)
5 0.4657 0.3726(24) 1.2372(81) 1.4131(127)
6 0.5589 0.4919(25) 1.2703(84) 1.4876(154)

B

1 0.0600 ≃0.76257(3) 1.2715(200) 1.2687(210)
2 0.1201 ≃0.3254(26) 1.2318(150) 1.2465(170)
3 0.1801 ≃0.1227(24) 1.2127(149) 1.2521(183)
4 0.2402 0.0174(24) 1.2039(147) 1.2719(199)
5 0.3002 0.1292(24) 1.2035(147) 1.3061(220)
6 0.3603 0.2256(24) 1.2067(270) 1.3449(246)

C

1 0.0480 ≃0.93421(2) 1.2979(110) 1.2930(118)
2 0.0960 ≃0.4459(28) 1.2489(168) 1.2525(180)
3 0.1441 ≃0.2326(24) 1.2241(165) 1.2472(108)
4 0.1921 ≃0.0910(24) 1.2082(159) 1.2551(112)
5 0.2401 0.0176(24) 1.2015(95) 1.2737(116)
6 0.2881 0.1079(24) 1.1999(93) 1.2968(122)

D

1 0.0400 ≃1.09060(1) 1.3332(112) 1.3266(109)
2 0.0800 ≃0.5520(30) 1.2754(108) 1.2776(113)
3 0.1200 ≃0.3260(25) 1.2497(109) 1.2653(116)
4 0.1600 ≃0.1796(24) 1.2337(106) 1.2655(118)
5 0.2000 ≃0.0706(24) 1.2234(104) 1.2753(122)
6 0.2400 0.0176(24) 1.2173(101) 1.2888(127)
7 0.2800 0.0930(24) 1.2148(99) 1.3088(133)

AHYP2

2 0.1863 ≃0.1112(24) 1.2267(58) 1.2573(51)
3 0.2794 0.0928(23) 1.2126(56) 1.2904(51)
4 0.3726 0.2430(24) 1.2178(58) 1.3430(53)
5 0.4657 0.3727(24) 1.2364(61) 1.4102(54)
6 0.5589 0.4923(26) 1.2654(66) 1.4822(52)
7 0.6520 0.6059(28) 1.3045(72) 1.5588(52)
8 0.7452 0.7159(32) 1.3538(79) 1.6467(53)
9 0.8383 0.8240(37) 1.4148(74) 1.7273(54)
10 0.9315 0.9308(44) 1.4757(79) 1.8153(55)
11 1.0246 1.0351(54) 1.5407(85) 1.9104(58)
12 1.1178 1.1345(69) 1.6090(91) 2.0026(61)

Table E.2: Lattice data points defined in Eqs. (4.18) and (4.19), where the self-energy
as well as lattice discretization errors at tree-level and proportional to a2 are
removed (using Fit 1), for the ”+

g , !u and ”→
u static potentials in units of GeV

(physical units are introduced by setting r0 = 0.5 fm).
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E.2 SU(3) lattice field theory data for gluelumps

E.2.1 Lattice gluelump masses for all ensembles and unsmeared and HYP2
smeared temporal links

R
PC

m
A,none

RPC a m
B,none

RPC a m
C,none

RPC a m
D,none

RPC a m
A,HYP2

RPC a m
B,HYP2

RPC a m
C,HYP2

RPC a m
D,HYP2

RPC a

T
++
1 2.144(44) 1.633(17) 1.451(3) 1.279(6) 1.598(39) 1.155(7) 0.980(3) 0.828(6)

T
+→
1 1.332(2) 1.078(2) 0.971(2) 0.898(2) 0.771(2) 0.580(2) 0.500(1) 0.448(2)

T
→+
1 1.936(7) 1.464(9) 1.292(5) 1.173(3) 1.378(6) 0.966(9) 0.813(8) 0.699(12)

T
→→
1 1.474(9) 1.195(3) 1.062(3) 0.970(2) 0.907(16) 0.698(3) 0.592(3) 0.520(2)

T
++
2 2.071(9) 1.560(14) 1.382(3) 1.248(4) 1.513(9) 1.064(13) 0.912(3) 0.798(4)

T
+→
2 1.735(9) 1.360(5) 1.198(5) 1.087(4) 1.181(8) 0.860(5) 0.726(4) 0.637(4)

T
→+
2 2.030(8) 1.489(26) 1.351(6) 1.222(4) 1.470(8) 1.029(11) 0.880(6) 0.768(6)

T
→→
2 1.576(2) 1.211(14) 1.096(3) 1.001(2) 1.019(2) 0.717(12) 0.617(6) 0.551(2)

A
++
1 1.753(8) 1.371(5) 1.201(6) 1.099(3) 1.194(7) 0.873(5) 0.730(6) 0.648(3)

A
+→
1 2.276(27) 1.748(6) 1.486(8) 1.351(4) 1.718(26) 1.251(6) 1.017(7) 0.875(16)

A
→+
1 2.159(108) 1.794(6) 1.551(7) 1.370(9) 1.776(24) 1.275(14) 1.082(7) 0.919(9)

A
→→
1 1.966(10) 1.416(27) 1.314(4) 1.211(38) 1.407(10) 0.964(14) 0.844(4) 0.731(3)

A
++
2 2.351(6) 1.700(15) 1.500(8) 1.328(8) 1.793(6) 1.202(14) 1.029(8) 0.878(7)

A
+→
2 1.887(8) 1.371(23) 1.288(6) 1.133(17) 1.306(20) 0.881(20) 0.795(12) 0.676(16)

A
→+
2 2.069(13) 1.580(4) 1.351(8) 1.205(9) 1.512(12) 1.069(8) 0.879(8) 0.757(9)

A
→→
2 - - - - 1.546(91) 1.266(15) 1.059(8) 0.910(8)

E
++ 1.917(9) 1.477(3) 1.255(11) 1.162(3) 1.359(8) 0.978(3) 0.785(11) 0.711(3)

E
+→ 1.726(12) 1.356(3) 1.181(6) 1.081(2) 1.165(11) 0.858(3) 0.710(6) 0.631(2)

E
→+ 2.014(10) 1.521(15) 1.255(25) 1.209(3) 1.460(9) 1.027(15) 0.785(24) 0.759(3)

E
→→ 1.563(6) 1.227(7) 1.089(9) 1.010(2) 1.006(6) 0.727(6) 0.619(8) 0.563(5)

Table E.3: Lattice gluelump masses me,s

RPC a in units of the lattice spacing obtained from
fits to e!ective mass plateaus (see Section 5.3.1). The row corresponding to the
lightest gluelump with R

PC = T+→

1 is shaded in gray.
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E.2.2 Gluelump mass splittings for all ensembles and unsmeared and HYP2
smeared temporal links

R
PC ’m

A,none

RPC a ’m
B,none

RPC a ’m
C,none

RPC a ’m
D,none

RPC a

T
++
1 0.812(44) 0.555(17) 0.480(3) 0.381(6)

T
+→
1 0 0 0 0

T
→+
1 0.604(7) 0.386(9) 0.321(5) 0.276(3)

T
→→
1 0.142(9) 0.118(3) 0.091(3) 0.072(2)

T
++
2 0.739(9) 0.482(14) 0.411(3) 0.350(4)

T
+→
2 0.403(9) 0.282(5) 0.227(4) 0.189(4)

T
→+
2 0.698(8) 0.411(26) 0.380(6) 0.325(4)

T
→→
2 0.244(3) 0.133(14) 0.125(2) 0.103(2)

A
++
1 0.421(8) 0.293(5) 0.230(5) 0.201(4)

A
+→
1 0.944(27) 0.670(6) 0.515(8) 0.453(4)

A
→+
1 0.828(108) 0.716(6) 0.580(7) 0.472(9)

A
→→
1 0.634(10) 0.338(27) 0.343(4) 0.313(38)

A
++
2 1.019(6) 0.622(15) 0.529(8) 0.430(8)

A
+→
2 0.555(8) 0.294(22) 0.317(6) 0.235(17)

A
→+
2 0.737(13) 0.502(4) 0.380(8) 0.308(9)

A
→→
2 - - - -

E
++ 0.585(9) 0.399(3) 0.284(11) 0.264(3)

E
+→ 0.394(12) 0.279(4) 0.210(6) 0.183(3)

E
→+ 0.682(10) 0.443(15) 0.284(25) 0.311(4)

E
→→ 0.231(6) 0.149(6) 0.118(9) 0.112(2)

R
PC ’m

A,HYP2

RPC a ’m
B,HYP2

RPC a ’m
C,HYP2

RPC a ’m
D,HYP2

RPC a

T
++
1 0.827(39) 0.575(7) 0.480(3) 0.381(6)

T
+→
1 0 0 0 0

T
→+
1 0.607(6) 0.387(9) 0.313(8) 0.251(12)

T
→→
1 0.136(16) 0.119(3) 0.092(3) 0.072(2)

T
++
2 0.743(9) 0.484(13) 0.412(3) 0.350(4)

T
+→
2 0.410(8) 0.281(5) 0.227(4) 0.189(4)

T
→+
2 0.699(8) 0.449(11) 0.380(6) 0.321(6)

T
→→
2 0.249(2) 0.138(12) 0.117(5) 0.104(2)

A
++
1 0.424(7) 0.293(5) 0.231(5) 0.201(4)

A
+→
1 0.948(26) 0.671(6) 0.518(7) 0.428(16)

A
→+
1 1.005(24) 0.695(14) 0.582(7) 0.471(9)

A
→→
1 0.636(9) 0.384(14) 0.344(4) 0.283(3)

A
++
2 1.022(6) 0.622(14) 0.529(8) 0.430(7)

A
+→
2 0.536(20) 0.302(20) 0.296(11) 0.229(15)

A
→+
2 0.741(11) 0.489(8) 0.379(8) 0.309(9)

A
→→
2 0.776(91) 0.687(14) 0.559(8) 0.462(9)

E
++ 0.589(9) 0.398(3) 0.285(11) 0.264(3)

E
+→ 0.394(11) 0.279(4) 0.210(6) 0.183(3)

E
→+ 0.690(9) 0.448(15) 0.286(24) 0.311(4)

E
→→ 0.235(6) 0.148(6) 0.119(8) 0.115(4)

Table E.4: Gluelump mass splittings &me,s

RPC a in units of the lattice spacing obtained
by subtracting the lattice gluelump masses from Table E.3 (see Section 5.3.3).
&me,s

T
+→
1

= 0 by definition (see Eq. (5.24)), because we use me,s

T
+→
1

as reference
mass.
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Figure E.1: Continuum extrapolations of gluelump mass splittings &mRPC for unsmeared
temporal links.
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E.3 SU(3) lattice field theory data for hybrid spin-dependent
and hybrid-quarkonium mixing potentials at O(1/mQ)

method Tmin(t, r) Tmin/a = 8 Tmin/a = 9 Tmin/a = 10
r/a a2V sa

11 (r)mQ/cF

1 0.01766(58) 0.01766(58) 0.01734(97) 0.01728(131)
2 0.01653(49) 0.01653(49) 0.01624(83) 0.01631(118)
3 0.01505(46) 0.01505(46) 0.01470(73) 0.01465(102)
4 0.01346(44) 0.01346(44) 0.01291(68) 0.01256(94)
5 0.01205(43) 0.01205(43) 0.01147(66) 0.01104(91)
6 0.01093(44) 0.01093(44) 0.01060(71) 0.01044(101)
7 0.00970(48) 0.00970(48) 0.00945(82) 0.00941(117)
8 0.00834(49) 0.00834(49) 0.00794(80) 0.00773(106)
9 0.00716(50) 0.00716(50) 0.00660(81) 0.00614(107)
10 0.00638(63) 0.00638(63) 0.00590(104) 0.00550(138)
11 0.00589(84) 0.00589(84) 0.00580(138) 0.00583(183)
12 0.00512(91) 0.00512(91) 0.00512(138) 0.00527(177)

method Tmin(t, r) Tmin/a = 8 Tmin/a = 9 Tmin/a = 10
r/a a2V sb

10 (r)/cF

1 0.01726(43) 0.01726(43) 0.01657(77) 0.01596(119)
2 0.01622(43) 0.01622(43) 0.01543(74) 0.01468(112)
3 0.01397(58) 0.01479(35) 0.01397(58) 0.01312(88)
4 0.01270(46) 0.01336(29) 0.01270(46) 0.01204(70)
5 0.01087(54) 0.01178(31) 0.01108(47) 0.01037(70)
6 0.00921(62) 0.01018(35) 0.00947(53) 0.00871(80)
7 0.00829(66) 0.00915(35) 0.00849(57) 0.00776(88)
8 0.00828(39) 0.00828(39) 0.00786(64) 0.00752(92)
9 0.00724(41) 0.00724(41) 0.00708(66) 0.00711(95)
10 0.00606(50) 0.00606(50) 0.00586(74) 0.00576(102)
11 0.00499(54) 0.00499(54) 0.00465(81) 0.00415(115)
12 0.00452(59) 0.00443(61) 0.00403(94) 0.00338(138)

Table E.5: Hybrid spin-dependent potentials V sa

11 (r)/cF and V sb

10 (r)/cF in units of the lat-
tice spacing a = 0.060 fm at flow radius rf =

/︂
8tf = 1.8 a. The four columns

correspond to the four fitting variants discussed in Section 6.4.1. Our main
results were obtained by setting Tmin/a = 9 and are shaded in gray. Potential
values with separations r <

↘ 2rf + a = 4.6 a should be taken with caution due to
possible operator overlapping e!ects.
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method Tmin(t, r) Tmin/a = 8 Tmin/a = 9 Tmin/a = 10
r/a a2V mix

!u
(r)mQ/cF

1 0.02284(18) 0.02284(18) 0.02281(26) 0.02276(34)
2 0.02092(15) 0.02092(15) 0.02087(22) 0.02082(29)
3 0.01852(13) 0.01852(13) 0.01844(19) 0.01838(24)
4 0.01615(11) 0.01615(11) 0.01606(16) 0.01599(20)
5 0.01403(9) 0.01403(9) 0.01394(14) 0.01386(18)
6 0.01221(7) 0.01221(7) 0.01213(11) 0.01206(15)
7 0.01062(7) 0.01062(7) 0.01054(10) 0.01045(13)
8 0.00928(7) 0.00928(7) 0.00915(11) 0.00905(14)
9 0.00797(12) 0.00813(9) 0.00797(12) 0.00786(15)
10 0.00699(13) 0.00716(9) 0.00699(13) 0.00687(16)
11 0.00634(14) 0.00648(9) 0.00634(14) 0.00624(17)
12 0.00591(10) 0.00591(10) 0.00577(15) 0.00564(19)

method Tmin(t, r) Tmin/a = 8 Tmin/a = 9 Tmin/a = 10
r/a a2V mix

”→
u

(r)mQ/cF

1 0.02211(18) 0.02211(18) 0.02208(27) 0.02203(35)
2 0.02041(17) 0.02041(17) 0.02033(24) 0.02024(30)
3 0.01872(15) 0.01872(15) 0.01861(22) 0.01850(27)
4 0.01720(14) 0.01720(14) 0.01710(21) 0.01700(26)
5 0.01589(14) 0.01589(14) 0.01578(21) 0.01568(26)
6 0.01462(15) 0.01462(15) 0.01453(21) 0.01446(26)
7 0.01344(16) 0.01344(16) 0.01336(24) 0.01330(30)
8 0.01247(17) 0.01247(17) 0.01242(26) 0.01238(34)
9 0.01133(19) 0.01133(19) 0.01133(31) 0.01133(43)
10 0.01051(21) 0.01051(21) 0.01047(34) 0.01042(45)
11 0.00934(22) 0.00934(22) 0.00922(34) 0.00910(44)
12 0.00860(24) 0.00860(24) 0.00839(37) 0.00820(50)

Table E.6: Hybrid-quarkonium mixing potentials V mix

!→
u
(r)mQ/cF and V mix

”u
(r)mQ/cF in

units of the lattice spacing a = 0.060 fm at flow radius rf =
/︂

8tf = 1.8 a. The
four columns correspond to the four fitting variants discussed in Section 6.4.1.
Our main results were obtained by setting Tmin/a = 9 and are shaded in gray.
Potential values with separations r <

↘ 2rf + a = 4.6 a should be taken with cau-
tion due to possible operator overlapping e!ects.
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