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Abstract: The concept of symmetry under various transformations of quantities describing basic
natural phenomena is one of the fundamental principles in the mathematical formulation of physical
laws. Starting with Noether’s theorems, we highlight some well–known examples of global symme-
tries and symmetry breaking on the particle level, such as the separation of strong and electroweak
interactions and the Higgs mechanism, which gives mass to leptons and quarks. The relation between
symmetry energy and charge symmetry breaking at both the nuclear level (under the interchange
of protons and neutrons) and the particle level (under the interchange of u and d quarks) forms the
main subject of this work. We trace the concept of symmetry energy from its introduction in the
simple semi-empirical mass formula and liquid drop models to the most sophisticated non-relativistic,
relativistic, and ab initio models. Methods used to extract symmetry energy attributes, utilizing the
most significant combined terrestrial and astrophysical data and theoretical predictions, are reviewed.
This includes properties of finite nuclei, heavy-ion collisions, neutron stars, gravitational waves,
and parity–violating electron scattering experiments such as CREX and PREX, for which selected
examples are provided. Finally, future approaches to investigation of the symmetry energy and its
properties are discussed.

Keywords: symmetry and conservation laws; symmetry breaking; semi–empirical mass formula;
liquid drop model; heavy-ion collisions; neutron skin; neutron stars; quark matter

1. Introduction

The concept of symmetry with respect to the transformation of quantities describing
basic natural phenomena is one of the guiding principles of the mathematical formulation
of physical laws. It is difficult to trace where it originated, but one should certainly
mention the work of Emmy Noether, who in 1918 proved two theorems stating that
continuous symmetries in the universe give rise to mathematical conservation laws [1,2].
These theorems [3,4] became central in general relativity, quantum physics and elementary
particle physics. In simple terms, her work implies that, for example:

• Translation invariance (symmetry) leads to the conservation of linear momentum.
• Rotation invariance in space yields the conservation of angular momentum.
• Invariance with respect to time-reversal results in the conservation of energy.
• U(1) local symmetry with respect to the phase shift in rotation by a certain angle in

a complex plane gives rise to the conservation of the electric charge; in the Standard
model, U(1) symmetry leads to the conservation of the weak charge, a combination of
the electric charge and isospin.

• Invariance under a combined replacement of all particles in a system by their antipar-
ticles (Charge), their mirror images (Parity) and reversal of the flow of time (Time)
constituting the CPT theorem [5], which is an example of a discrete symmetry. The
total symmetry holds in the Standard model [https://www.iop.org/explore-physics/
big-ideas-physics/standard-model (accessed on 1 March 2024)] but not for individual
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components. The related conservation law is still a matter of debate, but this does not
diminish the importance of CPT invariance in theoretical physics [6].

The discovery of various mechanisms of symmetry breaking in the 1960’s and 1970’s
(see [7] for the most recent review) represented a major breakthrough in the investigation
of symmetries in nature and the consequences of their breaking. It is now believed that
most symmetries, existing at some point in the evolution of the universe, are now broken.
This means they ceased to exist due to the interference of some external conditions and can
be (partially) restored if these conditions change.

For example, in cosmology, the cooling of the universe led to separation of the strong
force from the electroweak interaction at some very high temperature, higher than the
critical temperature for the separation of the electromagnetic and weak interactions. Further
cooling caused the breaking of the electroweak symmetry, with the electromagnetic and
weak forces acquiring very different strengths and properties. If the temperature in some
terrestrial experiment increased toward the value at the birth of the universe, partial
restoration of the original unified force might be possible.

Another example of the consequences of spontaneous symmetry breaking is the Higgs
mechanism [8] based on the assumption that at the beginning of the universe, there existed a
scalar field present in all space (the Higgs field) in an unstable state. Spontaneous symmetry
breaking of the Higgs field triggered a mechanism that gave mass to elementary fermions
(quarks and leptons), the weak bosons W and Z and to the Higgs boson itself.

The symmetry and its breaking directly relevant to this work is the approximate charge
symmetry under global exchange of u and d quarks, reflecting conservation of the strong
force with respect to this exchange. We will discuss charge symmetry and the consequences
of its breaking in low- and high-energy nuclear physics in the next sections.

This paper is organized as follows: The paper is organized as follows: After a general
introduction to the concept of symmetry and its breaking in physics in Section 1, the
symmetry energy phenomenology is discussed in Section 2, including introduction of
isospin (Section 2.1) and symmetry energy in infinite matter and finite nuclei via liquid drop
models (Sections 2.2 and 2.3). Section 3 is devoted to a survey of experimental efforts to
determine the properties of symmetry energy in dedicated systems including mirror nuclei
(Section 3.1), heavy-ion collisions (Section 3.2), measurement of neutron skin (Section 3.3)
and combined terrestrial and astrophysical data (Section 3.4). Finally, conclusions and
outlook are presented in Section 4.

This review makes no attempt to give a detailed description of the many methods and
approaches mentioned. For these, the reader is directed to the references provided and any
good basic text.

2. Symmetry Energy Phenomenology

2.1. Charge Symmetry and Conservation of Isospin

The idea that the proton and the neutron are two charge states of one particle, the
nucleon, was proposed by Heisenberg in 1932 [9]. This concept, supported by experimental
data from p-p and p-n scattering, led to the introduction of a quantity locally conserved
in nucleon–nucleon interactions, initially referred to as “isotopic spin” and later called
“isospin” by Wigner in 1937 [10]. In 1954, Yang and Mills showed that the conservation
of isospin is a global property of strong interactions and is generated by symmetry under
independent rotation of isospin at all space–time points, provided the electromagnetic field
is neglected (see [11] and refs. therein).

The formulation of quantum chromodynamics (QCD), the theory of strong interactions,
relates isospin conservation to charge symmetry. This symmetry is not exact but is broken
by the competition of two effects, the non-equal u and d quark masses and their different
charges. It turns out that the mass difference between u and d quarks has an effect about
twice as strong as that of their electromagnetic repulsion, making it the dominant factor
in charge symmetry breaking. The reasons for the different masses of the u and d quarks
and why they possess mass at all are not yet fully understood. Quark masses cannot be
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measured directly because as far as is known, they cannot exist freely; they are always
bound to particles. Both indirect experiments and lattice QCD suggest that quark masses
in hadrons are less than about 6 MeV/c2. It is conjectured that the quarks contribute very
little to hadron masses (with nucleon mass being about 940 MeV/c2), which mostly come
from the strong interaction through processes such as emission and absorption of gluons
via the energy–mass equivalence.

Assuming that the masses of u and d quarks are zero, another important symmetry of
the strong interaction in hadronic systems can be identified as symmetry under the reversal
of the quark spin orientation with respect of the direction of its motion, known as the chiral
symmetry [12]. This symmetry is both explicitly and spontaneously broken in nature. Small
quark masses and electroweak forces are responsible for the explicit breaking. Spontaneous
chiral symmetry breaking contributes to generating the masses of hadrons and making
pseudoscalar mesons (e.g., the pion) light. As the theory of strong interaction cannot be
directly applied in low-energy nuclear physics, chiral effective field theories are used to
model systems composed of nucleons and pions, both finite and infinite, and to probe the
long-range part of the nuclear force [12–16].

2.2. Infinite Matter, Finite Nuclei and Symmetry Energy

As already mentioned in Section 2.1, the roles of isospin and of the proton/neutron
ratio in practical low-energy nuclear physics were recognized early in the 20th century.
The quest for understanding the mechanism of nuclear binding led to the formulation of
the semi–empirical mass formula (SMF), which is based on the incompressible liquid drop
model of the atomic nucleus, constructed by Gamow in 1930 [17] and later developed by
Weizsacker [18] and Bethe and Bacher [19] in 1935 and 1936, respectively.

In this model, the binding energy per particle of a spherical nucleus with A = N + Z
nucleons, consisting of closely packed spherical N neutrons and Z protons, is given by

B(A, Z)/A = avol + asurf A−1/3 + aCZ2 A−4/3 + asym(N − Z)2 A−2, (1)

where avol is expected to be positive and the other three coefficients, asurf, and aC and asym
are negative [20]. The first three terms, representing the volume, surface, and Coulomb
contributions to B(A, Z)/A, respectively, have classical forms. The energy associated
with charge symmetry breaking at the nucleon level is included in the symmetry term
with the coefficient asym. This term is constructed with the assumption that protons and
neutrons are fermions with different values of isospin, form non-interacting Fermi gases
and obey the Pauli principle. The coefficients in Equation (1) are determined by fitting
to the measured nuclear masses M(A, Z) = Zm(1H) + Nmn − B(A, Z)/c2 [20]. The A
dependence of individual terms in Equation (1) is illustrated in Figure 1. As expected, the
interplay between the surface and Coulomb terms is dependent on A, while the symmetry
term is contributing around 25% to B(A, Z)/A almost independently of A (except for very
light nuclei) across the whole range of A between about 50 and 300.
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Figure 1. Binding energy per particle as calculated in Equation (1) with coefficients avol, asurf, aC and
asym equal to 15.36 MeV, −16.42 MeV, −0.691 MeV and −22.53 MeV, respectively. The relative magnitude
of the volume, surface, Coulomb and symmetry terms is displayed versus the mass number A = Z + N

for a range of (Z, N) = (8, 16), (20, 34), (30, 50), (40, 66), (50, 82), (60, 98), (70, 112), (80, 126), (90, 140)
and (100, 154). N = Z nuclei are not included in the figure, illustrating only a general trend. For more
discussions, see the text and Ref. [21].

The mass number independence of the volume term in Equation (1) led to the concept
of infinite nuclear matter (INM), originally a platform for testing nuclear models under
simplified conditions [19,22]. INM consists of an infinite number of uniformly distributed
protons and neutrons, with a fixed proton/neutron ratio and no Coulomb field. Only two
quantities characterize INM, the binding energy per particle E0 and the particle number
density ρ0. Extrapolation of B(A, Z = N)/A to A → ∞ approximates E0, determined by fit
to experimental atomic masses, to be close to −16 MeV [20].

More assumptions were needed to calculate the value of the second quantity describing
INM, the particle number density ρ0 [21]. As SMF assumes a spherical nucleus of radius
R with closely packed spherical nucleons of radius r0 uniformly distributed inside, the
density of such an object can be calculated using a relation between R, r0 and the number
of nucleons A. The volume of a sphere with radius R containing A smaller spheres with
radii r0 is V = 4

3 πR3, whichf is equal to 4
3 πr3

0 f A. Introducing R0 = f r0 (f being a packing
factor), we obtain the familiar expression for the mass number dependence of the nuclear
radius R = R0 A1/3 and the A-independent uniform density ρ0 = A/V = 3/(4πR3

0).
In the early days, the value of R0 was determined from the analysis of electron scat-

tering experiments on heavy nuclei and on hydrogen and the deuteron, which confirmed
the finite size of the nucleon. This analysis was not quite model-independent because it re-
quired assumptions about the proton charge distribution in the nucleus [23,24]. Eventually,
R0 = 1.12 fm was chosen and ρ0 set to 0.17 fm−3 [22].

Including this elementary algebra in the paper is important in the spirit of searching
for the origin of quantities that are now in everyday use as benchmark requirements of
nuclear theory models but clearly have a fundamental physical content despite all its limits.

There are two extreme forms of INM: symmetric nuclear matter (SNM), consisting of
an equal number of protons (uud) and neutrons (ddu); and pure neutron matter (PNM),
made only of neutrons. SNM and PNM are extremely well suited for the determination of
the symmetry energy and its relation to charge symmetry and its breaking [25].

If charge symmetry were exact, all nucleons would have the same mass and zero
charge, and INM would in the PNM phase, i.e., a fully symmetric excited state of nuclear
matter. However, as all systems in nature prefer being in the lowest possible state, a
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spontaneous charge symmetry breaking occurs, driving the INM to its ground state, which
is in equilibrium with respect to exchange d ↔ u, having, on average, an equal number of
protons and neutrons at each space-time point, the SNM. This transition is mainly assisted
by the difference between d and u quark masses but also with their different charges, as
discussed in the previous section. The energy difference between PNM and SNM binding
energies per particle at saturation density is a measure of the charge symmetry breaking at
nuclear level and is defined as symmetry energy S0,

S0 = [B(A, Z = 0)/A − B(A, Z = N)/A]A→∞, (2)

which leads to the approximation of S0 by asym. Here, the symbol S0 has a special meaning,
representing the symmetry energy per particle at the saturation density. Despite various
refinements of the SMF formula, including correlations between individual terms and
different methods of fitting to experimental atomic masses, asym is found with a most likely
value ≈ 30 MeV [20].

In this section, we emphasize that the parameters of INM and their implications are
based only on measured atomic masses and electron scattering experiments but otherwise
on very basic assumptions about properties of a hypothetical nuclear medium stripped of
any realistic effects such as surface tension, Coulomb force and pairing. Yet, a fundamental
outcome arises: the constant particle number density (independent of the nucleon number
A) implies equilibrium between the attractive and repulsive components of the nuclear
force at that density, known as the saturation density . In other words, regardless of the
position in space, each nucleon is surrounded by roughly the same number of neighboring
nucleons. If the range of the nuclear force is shorter than the average distance between
nucleons, each nucleon interacts with only a few neighboring nucleons and contributes
equally to the total binding energy per particle of the matter, the saturation energy. We
reiterate that the early values of E0, ρ0 and S0 are remarkably close to those presently used
in current sophisticated models. We will return to this point in the conclusions in Section 4.

2.3. Density Dependence of the Symmetry Energy and the Liquid Drop Models

As concluded in the previous section, the SMF apparently grasped important phe-
nomenology of nuclear binding at just one density, the saturation density, in the most trivial
case of a spherical nucleus with uniform distributions of spherical protons and neutrons;
further development was clearly desirable. Myers and Swiatecki [26–28] developed in the
1960’s and early 1970’s, a series of models still based on the liquid drop/droplet concept
but which included more realistic features to calculate nuclear masses. These models re-
tained the basic ingredients, volume, surface, Coulomb and symmetry terms, but each was
developed further. First, the SMF was extended to include dependence on nuclear shape
and shell corrections to form a Liquid Drop Model (LDM) [26]. Next, the Droplet Model
of average nuclear properties was derived by expanding volume, surface and Coulomb
terms in a Taylor series around their values in the LDM. This model allowed, together with
the aid of an independent Thomas–Fermi model, the calculation of a variety of nuclear
properties, such as nuclear radii, proton and neutron density distributions, neutron skin,
nuclear compression and the surface and volume symmetry energy [27].

In this section, we follow the 1969 version of the Droplet Model [27], which consistently
demonstrates the transition from the SMF to a density-dependent model of nuclear masses
and thus nuclear ground-state binding. The essential point is that the Taylor expansions in
this model are performed in terms of two variables, the neutron–proton (n-p) asymmetry
δ = (ρn − ρp)/ρ (with ρ = ρn + ρp) and the deviation of the density ρ from the saturation
density ρ0 ε = −(ρ − ρ0)/(3ρ0). It follows that the model explicitly includes sensitivity to
ranges of values of δ and ε within which it is employed.

Taking only the volume term of the energy density in the Droplet Model, the binding
energy per particle of nuclear matter is now expressed as [27]

B(ρ, δ, ε)/A = −avol + Jδ2 + 1/2(Kε2 − 2Lεδ2 + Mδ4) + . . . (3)
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in powers of ε and δ2 (assuming symmetry between neutrons and protons) where J is
the symmetry energy coefficient, K is the compressibility coefficient, and the term with
L determines the density dependence of the symmetry energy chosen that L is always
positive. The symmetry anharmonicity coefficient M specifies deviation of the symmetry
energy from a quadratic dependence on δ. We note that the sign of avol in Equation (3) is
opposite to that in Equation (1) in line with the original reference.

At the saturation density, δ and ε are zero in SNM and the binding energy per particle is

B(ρ, δ = 0, ε = 0)/A = E0. (4)

The energy per particle of PNM at saturation when δ = 1 and ε = 0 becomes

B(ρ, δ = 1, ε = 0)/A = E0 + J + 1/2M, (5)

where M represents a second-order contribution often neglected in other models. At any
other density, Equation (3) allows the introduction of asymmetric nuclear-matter (ANM)
with a density and proton/neutron ratio dependent energy per particle.

The symmetry energy per particle at saturation density S0 (see Equation (2)) is now
equal to J, with a small higher-order contribution S0 = J + 1/2M . At any other density,
the difference between binding energies per particle of PNM and SNM becomes S = J −
Lε + 1/2M.

The use of Taylor expansions raises questions about their validity, especially at densi-
ties and n-p asymmetries far from saturation values. To examine limits on such a strategy,
we rewrite Equation (3) as

E = E1 + E2 + E3 (6)

with

E1 = −avol, (7)

E2 = Jδ2, (8)

E3 = 1/2(Kε2 − 2Lεδ2 + Mδ4). (9)

Examination of Figure 2 reveals that while E2 is dependent only on δ, which is the
usual approximation in practice, E3, the only part dependent on both ε and δ as well as on
K and L, will influence the nuclear binding of asymmetric systems further away from ρ0.
Although at saturation density (middle panel) its contribution is negligible, and the series
(3) converges rapidly, at densities below saturation E3 reduces the effect of E2, driving
the system to stronger binding (top panel). The opposite effect is seen at densities above
saturation (bottom panel). Already at twice ρ0, the positive contribution of E3 to the total
binding energy, higher than that of E2, indicates divergence of the series (3). It increases
significantly the binding energy of neutron-rich nuclei and, consequently, that of PNM.
Given the definition of symmetry energy using PNM and SMN, the effect of E3 is significant
and should not be neglected at densities higher than 2ρ0.

For completeness, it should be noted that further extension of liquid-drop-based
physics to finite nuclei led to the series of macroscopic–microscopic droplet models, such
as the finite range droplet model (FRDM) of Moller and collaborators ([29–31] and that of
the referebces therein). These models are currently providing some of the most reliable
empirical predictions not only of nuclear masses but also nuclear shapes, fission barriers
and α and β decay rates.
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Figure 2. Energy E (full black circles) vs. asymmetry δ spanning from symmetric (δ = 0) to pure
neutron matter (δ = 1). The individual terms E1 (solid black), E2 (dashed red) and E3 (dot-dashed
blue) were calculated with avol, J, K, L and M being equal 15.677, 28.062, 294.80, 123.53 and 2.673 MeV,
respectively [27], for three values of the density 0.5, 1 and 2ρ0, corresponding to ε = 0.167, 0 and
−0.333 (top, middle and botton panel), respectively.

However, neither SMF nor various liquid-drop-based models include assumptions
on nuclear interactions affecting nuclear binding. We discuss this topic, which triggered a
wide-spread activity in the field of low-energy nuclear physics, in the next section.

3. Search for the Symmetry Energy

The quest for constraining the symmetry energy and its properties has been one of
the main topics of interest in nuclear structure theory and experiments in recent decades.
Comprehensive review articles have summarized the state of relevant data and theory at
the time they were written [16,32–38]. Despite consolidated efforts, fundamental challenge
remains due to the fact that symmetry energy is not a directly measurable quantity but must
be extracted from rather convoluted data using nuclear and particle models. It is close to
impossible to include adequately all the correlations among the model parameters and take
into account different sensitivity and uncertainty in the data. Thus, unique identification
of the symmetry energy related to the charge symmetry breaking and its contribution to
understanding of nuclear forces is currently beoynd reach. What is equally challenging is to



Symmetry 2024, 16, 1038 8 of 18

give justice to the extensive activity in this field. Thus, we give only a few recent examples
to illustrate the breadth and diversity of the search for symmetry energy, its properties and
influence in various physical systems.

3.1. Charge Symmetry Breaking and Mirror Nuclei

In Section 2.2, we discussed the basic definition of the symmetry energy, S0, as a
difference between SNM and PNM energies per particle at saturation density as an example
of the charge symmetry breaking in INM. Charge symmetry and charge independence of
nuclear forces in finite nuclei have been extensively studied in mirror nuclei, i.e., pairs of
nuclei with with exchanged proton and neutron numbers, for example, 15O and 15N, 17O
and 17F, 39Ca and 39K or 41Sc and 41Ca. The discrepancy between experiment and theory in
the binding and Coulomb energy differences of mirror pairs was identified in the 1960’s
and is known as the Okamoto–Nolen–Schiffer anomaly (ONS) [39,40]. It remains one of
the long-standing problems in nuclear physics.

To parameterize charge symmetry breaking in finite nuclei and its consequence for
ONS, various theoretical models have been utilized in the past, e.g., [41–46] and most
recently by Li et al. [47]. The models include charge symmetry breaking short-range
interactions and long-range electromagnetic interaction on various level of sophistication.
Models including effects of quark structure of nucleons were also explored, in e.g., [25,48]
and very recently by Sagawa et al. [49] who proposed a phenomenological model providing
a link between charge symmetry breaking of the nuclear interaction and QCD.

However, although some of the models yielded results rather close to experiment, a
full understanding of the ONS anomaly leading to improved modeling of charge symmetry
breaking in nuclei is still elusive.

3.2. Heavy-Ion Collisions

Heavy-ion collisions (HIC) at low and medium beam energy (below about
10 GeV/nucleon) have been considered for a long time the only terrestrial means to explore
the density dependence of the symmetry energy in the supra-saturation density region and
to utilize it to improve our knowledge of the nuclear equation of state (EoS). In this section,
we focus on the current status of the effort to extract properties of nuclear matter at various
densities, temperatures and isospin asymmetries and to relate the predictions from nuclear
many-body theory to observables measured in medium-energy collisions.

Data from elliptic and transverse particle flows, isospin diffusion in peripheral colli-
sion, near–threshold pion production and n-p spectra and/or measurements of the π−/π+

ratio (see e.g., [50–59]) have been utilized and analyzed using two classes of transport
codes, one based on Boltzmann–Uehling–Uhlenbeck (BUU) theory [60,61] and the other on
quantum molecular dynamics [62] (comparisons of the outcome of both methods can be
found in [63–65]).

The data are usually analysed using a set of models with systematically different
density dependence (slopes) of symmetry energy, quantified by the derivative of the
symmetry energy with respect to density at saturation, the parameter L, important for
construction of the EoS of high-density matter. In simpler cases, just two models are used,
one predicting up-sloping (stiff) and the one down-sloping (soft) rate of change of the
symmetry energy with increasing density [63] and agreement with experiment is sought.

The questions which are still debated in the community are what is the maximum total
density achievable in a n-p matter in low and medium HIC and whether the EoS, reflecting
HIC data obtained in this region, is applicable in neutron stars (NS).

Maximal total particle density in n-p matter created in collisions of symmetric and
asymmetric Ca, Sn and Pb systems at beam energies below 800 MeV/nucleon was investi-
gated by Stone et al. [66–68]. The pBUU transport model [50] was used with two Skyrme
forces, SVbas (soft) and SVsym-34 (SVsym for short) (stiff) [69]. These forces predict a
significant difference in the parameter L at saturation, being 34 MeV for SVbas and 81 MeV
for SVsym, with rather similar saturation values of J, 30 and 34 MeV, respectively. The
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distinct difference in the rate of change of the symmetry energy with density as calculated
with the SVbas and SVsym Skyrme forces is illustrated in Figure 3.
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δS
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Figure 3. Derivative of symmetry energy with respect to density vs. total density normalized to ρ0 as
calculated with the SVbas and SVsym Skyrme forces. The density scale along the x-axis is the same
as that along the y-axis in the top panels of in Figure 4.

The maximum total particle number density ρmax/ρ0 and related n-p asymmetry
δ = (ρn − ρp)/(ρn + ρp) as a function of beam energy are illustrated in Figure 4 for the case
of 212−208Pb collisions at beam energy 200–800 MeV/nucleon. The maximum total density
does not exceed 2.5–3.0 ρ0 and there is only marginal sensitivity of ρmax/ρ0 to density
dependence of symmetry energy (top panels). The n-p asymmetry δ shows almost beam
energy independent difference between predictions of SVbas and SVsym models (bottom
panels). The SVbas model indicates a minor gain in asymmetry above the experimental
value (blue dashed curves) while SVsym never reaches it. Therefore, a slight preference
might be given to the soft SVbas model. Interestingly, the simulations revealed a significant
role of the Coulomb interaction causing a substantial decrease in δ with respect to the
experimental value [67]. The Coulomb effect cannot be switched off in the real world and
must be taken into account in interpretation of data.

Nuclear symmetry energy and its density dependence are important in all density
regimes, from supernovae at low densities, neutron-rich nuclei around saturation density
and NS at several times the saturation value [63]. As already mentioned above, it is often
argued that HIC provide the only terrestrial laboratory to study this density dependence
using transport models. What is overlooked is that the structure of the matter created at
HIC and that in the cores of NS are fundamentally different. In the near-symmetric systems
in HIC only strong interaction acts in contrast with the highly asymmetric matter in NS
both strong and weak interactions take place. It follows that particle composition and
processes are present in NS, and, consequently, different EoS (for details see [21]) governs
NS physics. On the technical side, the one term Taylor expansions used to extract density
dependence of the symmetry energy are valid only close to saturation and are inadequate
at higher density, definitely at several times nuclear saturation density (see Section 2.3). In
addition, there is a difference in temperature and (mostly unknown) density dependence
on typical lifetimes of strong and weak interactions [70]. Thus, we conclude that EoSs
constructed on the basis of HIC data do not apply to NS.
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Figure 4. Maximum normalized particle number density (top panels) and n-p asymmetries δ (bottom
panels) as a function of beam energy in the pBUU simulation for the SVbas (red) and SVsym (black)
Skyrme symmetry energy models. Left and right panels: the results obtained with and without
Coulomb interactions, respectively. For more explanation, see text and [66–68].

3.3. Neutron Skin Thickness

Neutron-heavy nuclei typically have non-uniform proton and neutron distributions
with a neutron-rich outer layer, the neutron skin. A strong correlation between the neutron
skin thickness and the rate of change in symmetry energy with increasing density (L) was
found [71–73]. Using nuclear models sensitive to the density dependence of S can provide
predictions of neutron skin, while experiments, in turn, provide information on L.

Figure 5 shows data on the neutron skin of the only two stable double-magic nuclei
with a significant neutron excess in the entire nuclear chart, 48Ca and 208Pb, and their
weighted average obtained with hadronic probes. By contrast, a purely electroweak deter-
mination of the neutron skin from measurement of parity-violation asymmetry APV in the
scattering of longitudinally polarized electrons from an unpolarized target, first used by
Donnelly et al. [74], was made at the Jefferson Laboratory, with results 48Ca 0.121 ± 0.026
(exp) ± 0.024 (model) fm (CREX) [75]) and 208Pb 0.283 ± 0.071 fm (PREX) [76]). Not shown
is the recent measurement at LHC of the neutron skin in 208Pb, 0.217 ± 0.058 fm, inferred
from particle distributions and their collective flow in ultra-relativistic 208Pb + 208Pb colli-
sions, mediated by interactions of gluons. We see that the CREX result is consistent with the
weighted mean range of the hadronic experiments. The PREX value deviates considerably,
whereas the LHC results, while somewhat high, are more consistent.

The goal of theory is to reproduce simultaneously the PREX and CREX results
and global nuclear properties across the nuclear chart. Among the many calculations,
Reed et al. [73], taking only the PREX data and using a special version of relativistic mean
field models, obtained J, and L being J = (38.1 ± 4.7) MeV and L = (106 ± 37) MeV not
consistent with all other available data (see Figure 6). Various other approaches such as
nuclear energy density functional theory [77], other relativistic mean field models [78] and
Bayesian analysis [79] have been employed without notable success in the interpretation of
the CREX and PREX results, and the discussion continues.
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Figure 5. Neutron skin measurement with 68% confidence intervals and related citations. Horizon-
tal dashed lines indicate ±1 standard deviations from the weighted means of experiments other
than CREX or PREX I+II. The figure was taken from ref. [80] where the original references, under
numbers [17,18,70–78], can be found. Others can be found in refs. [67–69].

Figure 6. Constraints on the J–L correlation obtained from a variety of experimental and theoretical
approaches. The figure was taken from ref. [73] to illustrate the tension with the recent PREX-II result.

3.4. Symmetry Energy Constraints from Combined Terrestrial and Astrophysical Data

The advent of new telescopes and gravitational wave (GW) detection systems has led
to an increasing amount of data on cold and warm NS, supernovae and, more recently,
GW. Two more quantities, the tidal deformation Λ1.4 and the radius R1.4 of 1.4 M⊙ NS,
have been added to the traditional maximum mass and radius of cold NS as variables
required to test the validity of theoretical models. On the terrestrial side, the obligatory
E0 and ρ0 have been complemented with dipole polarizability αD [81,82], isobaric analog
states [83–85], pygmy resonances [86,87], polarized proton elastic scattering [88], theoretical
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PNM properties at low densities and temperatures (unitary gas) and related data on cold
atoms [89]. It remains to be seen how much direct evidence regarding symmetry energy
can be obtained from these new approaches.

There have been comprehensive reviews of methods and results covering symmetry
energy and its density dependence studies based on the data, experiments and observa-
tions [33,35]. In this section, we mention only several recent works, some utilizing GW
data, illustrative of the increasing diversity of the search for the density dependence of
symmetry energy.

The vibration mode of the core–crust interface in neutron star binaries is sensitive
to the symmetry energy profile of the dense matter in the NS core, as investigated by
Neill et al. ([90] and the refs. therein). It was shown that the vibration triggers a resonant
flare, Bayesian analysis reveals that coincident timing of the flare and GW signal during
binary NS in spiral may yield new constraints on properties of the symmetry energy,
comparable to those obtained from terrestrial nuclear experiments (see Figure 3 in [91]).

The possibility of constraining L using dynamics of GW emission and dynamical mass
ejection in the post-merger phase of a binary neutron coalescence was studied by Most
and Raithel [92]. Neutron star merger simulations in full general relativity indicated that
post-merger dynamics and GW emission are insensitive to L, but the dynamical mass ejecta
exhibit weak sensitivity to L, with large values of L tending to enhance ejecta. Such a
correlation may be useful when the real post–merger GW signal is observed.

Providencia et al. [93] studied hyperonic stars in the framework of a relativistic mean
field approach [94] in order to constrain the density dependence of symmetry energy. The
effects of hyperon presence in the core on NS radius, the direct nucleonic and hyperonic
URCA (DU) processes and the cooling of accreting NS were investigated. Correlations
between L, the onset density of DU cooling process and hyperonic single-particle potentials
were found. It was also shown that the electronic DU process is affected by hyperons
only if the slope of the symmetry energy L is less than 70 MeV. Boukari and Rahbi [95]
used the quark—meson–coupling–Bogoliubov model which includes u, d and s quarks to
investigate effects of the slope of symmetry energy on the structure and properties of NS.
They concluded that the improved model is in accordance with GW170817 observations
and that the constrained symmetry energy does not allow for nucleonic direct URCA
processes inside neutron stars or for hyperon nucleate inside neutron stars.

The possible existence of quark and/or hybrid NS stars with a quark core has been dis-
cussed in the literature for many decades. A phase transition from a low–density hadronic
phase to a high–density quark phase on different scales, NS, HIC at ultra–high beam energy
and early universe, was originally proposed in late 1970’s and early 1980’s [96–99]. More
recently, hadron and quark phases and their onset and mixing in NS (see e.g., [38,100–119])
have been of interest despite no observational evidence having been found.

The quantities expected to be sensitive to the symmetry energy and its density depen-
dence are the hadron–quark phase transition and its properties. Employing astrophysical
data to constrain predictions of the hadron–quark transition in NS has been quite frequent
in recent years. For example, Miao et al. [120], using a quark-mean-field model, found a
strong correlation between the symmetry energy slope L and the properties of the hadron–
quark phase transition. Limits on the maximum mass of NS, radius of 1.4 M⊙ mass stars
and the strength and density dependence of the hadron–quark phase transition were set.
Liu et al. [116] investigated properties of the symmetry energy using a hybrid star with the
hadron–quark phase transition and reached a similar conclusion, finding that the radii and
tidal deformabilities of hybrid stars constrain mostly the density dependence of symmetry
energy while the observed maximum masses of hybrid stars constrain mostly the EoSs of
symmetric nuclear and quark matter.

A recent review by Aryal et al. [121] provides a comprehensive discussion of how
different sets of conditions describing matter in NS and their mergers relate to those when
the first-order hadron–quark transition and its eventual change to crossover takes place
in HIC at ultra-high beam energies. The QCD phase diagram and the effect of charge,
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isospin and strangeness on the critical end point (CEP), the end of a hadron–quark phase
equilibrium curve, are also discussed.

The outcome of this review, based on the chiral mean field (CMF) model [122], makes
a distinction between the HIC scenario (isospin symmetric, large charge fraction and low
strangeness) and NS (isospin asymmetric, low charge fraction and high strangeness). In
the latter scenario, the confinement transition comes at a lower baryon chemical potential,
extends to higher temperature and presents a distinguished CEP signal. Such a prediction
is interesting, as it is thought that strong first-order phase transitions can leave signals in the
post–merger part of GW signals from NS mergers [123]. A more recent review by Pandav
et al. [124] complements [121], includes information on the status of the experimental
search for the critical point in HIC and comments on the physical implications of the data
compared with theory (see section 2 of [124]).

The Adelaide–Saclay version of the quark–meson coupling model (QMC) [125–129]
has been applied to both atomic nuclei and nuclear matter. A recent study [130], aiming
to take account of the correlations between values the three nuclear matter parameters,
searched a 3D mesh with “coordinates” (ρ0, E0, J) with ranges of ρ0 0.14–17 fm−3, E0 from
−15 to −18 MeV and J between 27 and 36 MeV. Each matrix point chosen determines
the coupling constants of the model and hence allows for the calculation of a variety of
nuclear matter and NS properties. When these were compared with expected empirical and
observational values, only two sets, ρ0 = 0.16 E0 = −15 or −16 MeV and J = 31 MeV, satisfied
all the data. A clear success of the model was that the coupling constants associated with
the successful sets 9.5 ≤ Gσ ≤ 10.0 fm2, 5.8 ≤ Gω ≤ 6.1 fm2 and 3.35 ≤ Gρ ≤ 3.45 fm2

were entirely consistent with the best-fit values when the model was applied to atomic
nuclei [131,132].

Adam et al. used the generalized Skyrme model [133,134] (not to be confused with
the model familiar in nuclear energy density functional) to calculate the symmetry energy
and its density dependence in nuclear matter. The binding energy of skyrmion crystals,
the building blocks of the model, is sensitive to the isospin degrees of freedom. This
mathematical model allows the investigation of non-perturbative features of strongly inter-
acting matter at all scales, from single baryons and nuclei to NS. The symmetry energy and
relative fractions of neutrons, protons, electrons and muons in β-equilibrated asymmetric
nuclear matter was calculated as a function of the baryon number density, and the best
values obtained for SNM parameters at saturation were S0 = 31.9 MeV, L = 46.4 MeV and
ρ0 = 0.22 fm−3. It is interesting that this very different concept of nuclear structure produces
results comparable with traditional values (although with a slightly higher ρ0).

4. Conclusions and Outlook

Following a general introduction to the role of symmetry and its breaking in nature, our
work has focused on the concept of charge symmetry and its breaking at the nuclear level.

The phenomenology of symmetry energy has been discussed starting with introduc-
tion of the concept of nuclear matter. It is argued that the two extreme forms of INM,
namely the fully excited state (PNM) and the asymmetric ground state (SNM) of nuclear
matter, can be interpreted as an example of spontaneous charge symmetry breaking by
the strong force. In this context, the symmetry energy can be perceived as a measure of
the energy released during this process. It is essential to obtain as accurate as possible
information on the properties of symmetry energy.

An extensive search for the effects of symmetry energy and its density dependence
in a wide variety of systems, including mirror nuclei, heavy-ion collisions, neutron skin,
cold NS, products of NS coalescence and skyrmion crystals, employing many theoretical
models, has been reviewed. Two main conclusions emerged:

(i) It is interesting that the most basic properties of nuclear matter, a hypothetical
medium not existing in nature and introduced to physics in 1930’s as a highly simplified
testing ground of nuclear models, are still in use despite the mainly classical rudimentary
assumptions leading to their derivation (see Sections 2.2 and 2.3). The current range of the
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value of symmetry energy S at saturation density, S0 = J, falls between 26 and 35 MeV,
with the most probable value around 30–32 MeV. This differs little from early analysis
based on the simple semi-empirical mass formula [21]. The rather small variation in the
value of J, almost independent of the nuclear system used for its extraction, may be related
to its origin in the exchange of u and d quarks (see Section 2.1). The value of the slope L
is extracted from Taylor expansions of binding energy of nuclei in LDM in terms of n-p
asymmetry δ and the density deviations from the saturation value ε. It is a common practice
to utilize only first terms of these expansions, which inevitably becomes inadequate at
higher densities and/or particle density asymmetries (see Section 2.3). This may be one
of the reasons why there is no generally accepted result available and extracted values
of L range from about 20 to 100+ MeV (see Figure 6). Note that the value of L found by
Myers and Swiatecky in 1969 [27] is 123 MeV for J = 28 MeV, not fully inconsistent with
current limits.

(ii) The choice of nuclear models and methods plays an important role in any attemps
to determine the symmetry energy density dependence. Models of different physical
scenarios have varying sensitivities to the effect of symmetry energy compared to other
factors, not always considered at an adequate level. Highly asymmetric systems, such
NSs, are favored over close-to-symmetric ones, such as HIC or supernovae. Moreover, the
theoretical accuracy of a model, which is admittedly not easy to estimate, is hardly ever
explicitly included in the uncertainty of a calculated quantity. It follows that, as discussed
in this work, we currently have as many mutually inconsistent L values as we have models,
illustrating the diversity in model construction and application. The models and methods
are not focused enough to produce a coherent and credible background for the overall
assessment of the symmetry energy and its properties.

To gain perspectives for any future investigations into symmetry energy and its density
dependence in nuclear matter and finite nuclear systems, it is essential to better understand
and minimize the effects of model dependencies. Furthermore, reducing errors of the data
used to fit numerous variable model parameters is desirable. It should also be recognized
that while the symmetry energy is a significant factor in nuclear physics, charge symmetry
and its breaking are only some of the many poorly known factors playing roles in the
nuclear force. Major advancements in the determination of the properties of symmetry
energy (on the nucleon level) are unlikely to occur until a more fundamental understanding
of the nuclear force itself is achieved.
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