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Quantum generative adversarial learning in a

superconducting quantum circuit

Ling Hu'#, Shu-Hao Wu?*, Weizhou Cai', Yuwei Ma', Xianghao Mu’, Yuan Xu', Haiyan Wang’,
Yipu Song’, Dong-Ling Deng'?, Chang-Ling Zou?', Luyan Sun'*

Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning. It has shown
splendid performance in a variety of challenging tasks such as image and video generation. More recently, a quantum
version of generative adversarial learning has been theoretically proposed and shown to have the potential of exhibit-
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ing an exponential advantage over its classical counterpart. Here, we report the first proof-of-principle experimental
demonstration of quantum generative adversarial learning in a superconducting quantum circuit. We demonstrate
that, after several rounds of adversarial learning, a quantum-state generator can be trained to replicate the statistics
of the quantum data output from a quantum channel simulator, with a high fidelity (98.8% on average) so that the
discriminator cannot distinguish between the true and the generated data. Our results pave the way for experimentally
exploring the intriguing long-sought-after quantum advantages in machine learning tasks with noisy intermediate—

scale quantum devices.

INTRODUCTION

Machine learning (I), or more broadly artificial intelligence (2), repre-
sents an important area with general practical applications where near-
term quantum devices may offer a substantial speedup over classical
ones. With this vision, an intriguing interdisciplinary field of quantum
machine learning/artificial intelligence has emerged and attracted tre-
mendous attention in recent years (3, 4). A number of quantum algo-
rithms that promise exponential speedups have been theoretically
proposed (3-6), and some were demonstrated in proof-of-principle
experiments (7, 8). Yet, in most of these previous scenarios, the input
datasets considered are typically classical. As a result, certain costly pro-
cesses or techniques, such as quantum random access memories (9), are
required to first map the classical data to quantum wave functions so as
to be processed by quantum devices, rendering the potential speedups
nullified (10).

Here, we experimentally demonstrate a quantum version of gener-
ative adversarial network (QGAN) (11, 12), where both input and
output datasets are quantum from the beginning. In classical machine
learning, a GAN (13, 14) contains two major components, a generator
(G) and a discriminator (D) (13). They are trained through an adver-
sarial learning procedure: In each learning round, D optimizes her strat-
egies to identify the fake data produced by G, while G updates his
strategies to fool D. Under reasonable assumptions, such an adversarial
game will end up at a Nash equilibrium point, where G produces data
that match the statistics of the true data and D can no longer distinguish
the fake data with a probability larger than '/,. In the quantum setting
considered here, G consists of a superconducting circuit, which can gen-
erate an ensemble of quantum states with certain probability distri-
bution, while D is composed of a quantum apparatus that carries out
projective measurements. The arbitrary input quantum data are gener-
ated by a quantum channel simulator.
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RESULTS

The QGAN algorithm

Figure 1A shows the schematic of the QGAN scheme. The black box
provides the quantum true data, which are described by a density
matrix o of a quantum system, while both the internal physical struc-
ture and the quantum process do not need to be known. G can gen-
erate arbitrary quantum states (p) by producing an ensemble of pure
quantum states, i.e., a pure state from a set is randomly selected with
certain probability to mimic the quantum true data. D performs quan-
tum measurements (M) on the true and the generated (fake) data and
attempts to distinguish them by the statistics of the measurement out-
comes p, = trMp and p; = trMo. In the QGAN, the measurement
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Fig. 1. The QGAN. (A) The basic components of the QGAN, including a black box
quantum process for the quantum true data o, the generator (G) that produces an
ensemble of pure quantum states (p), and the discriminator (D) that performs projec-
tive measurements M. (B) The process of the QGAN with the quantum states and the
measurement basis on a Bloch sphere, where {|g), |e)} are the ground and excited state
of a qubit. D and G play the adversarial game alternatively, in which D optimizes the
measurement strategy to discriminate p from o, while G optimizes the generation
strategy to fool D.
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Fig. 2. The experimental protocol of the QGAN algorithm. (A) The experiment starts with a state ¢ as the quantum true data and a randomly generated state p(ro, 8o, Po)
from the generator. Then, the discriminator (D) and generator (G) optimize their strategies to compete against each other alternatively and repetitively. The stop condition
of the game is either D fails to distinguish p from ¢ (the measurement output difference d < dg, a preset bound) or the step count ¢, reaches the limit cg. (B) Procedure of
optimizing D and G using the gradient descent method. The initial measurement axis M(Bo, Yo) for D is randomly chosen. The parameters $ and vy are updated in the process
of optimizing D, while r, 6, and @ are updated in the process of optimizing G. The measurement and control of the quantum system are realized through field programmable
gate arrays (FPGAs), while the estimations of the gradients are performed on a classical computer.

outcomes are public to both G and D. According to p,, 5, D and G com-
pete against each other by adaptively adjusting their strategies alterna-
tively to distinguish p from ¢ and to fool D, respectively. ¢ and p are two
distinct interpretations of mixed quantum states: One is the output of a
physical process in which an initial pure state might be entangled with
some degrees of freedom of the environment; the other is an ensemble
of pure states. Our QGAN scheme can also be explained as a game
trying to distinguish between these two interpretations.

A visualized illustration of the general procedure of the QGAN is
depicted in Fig. 1B by presenting o, p, and M of a qubit system in
the Bloch sphere (note that we use the same notation M to represent
both the projective measurement and its corresponding axis). D and G
play the game alternatively. D starts first, and in her turn, M is opti-
mized to maximize the difference of the measurement outcome d = p, -
Po- Inan ideal case, D’s turn ends up withd = 1 llp — oll;, corresponding
to the normalized trace distance (15), and M converges to be parallel with
p — o in the Bloch sphere representation (Fig. 1B). For G’s turn, p is op-
timized to minimize d and, thus, approaches a cross section such that p —
o is perpendicular to M (Fig. 1B). As a result, the trace distance between
the fake and the true data reduces progressively in each round, and the
game eventually approaches the unique Nash equilibrium with d = 0 and

pc :pp = % (11)

Experimental implementation

We realize the QGAN learning algorithm (11) in a superconducting
quantum electrodynamics architecture (16, 17). Our experimental de-
vice consists of a superconducting transmon qubit dispersively coupled
to a bosonic microwave mode (18-23). The quantum state of the trans-
mon qubit serves as either p or ¢ alternatively in the algorithm. The
bosonic mode facilitates the creation of the quantum true data ¢ in
an arbitrary state through a quantum channel simulator, which requires
adaptive control of both the transmon qubit and the bosonic mode. The
detailed descriptions of the experimental device and apparatus are
provided in the Supplementary Materials and (24, 25). G generates
the state p(r, 8, ¢) of the transmon by randomly preparing a pure state
in the set {U(6, ¢)|g), U(n — 6, ¢ + m)|g)} with the corresponding prob-
abilities {r, 1 — r}. Here, U (0, @) = €#°:/2¢/%+/2 is the unitary operation
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on the transmon qubit, with 6, and o, being the Pauli matrices. D per-
forms the measurements by applying a unitary prerotating operation
with the axis angles (, y) on the transmon and detecting the population
of the ground state |g), which leads to M = U'(B, v)|gXg|U(B, ¥).

The protocol of our experimental QGAN algorithm is illustrated in
Fig. 2A. The experiment starts with a randomly generated state p(r;, 6y,
¢o) by G, a randomly picked measurement axis M (Bo, Yo) by D, and the
quantum true data ¢ from a fixed quantum channel simulator. In each
round of experiment, D plays the adversarial game first with p fixed,
followed by G’s turn with M fixed. In all runs, d is obtained by averaging
n = 5000 repetitive measurements on the true and the fake data, respec-
tively. The gradient dd/0 for the control parameter & € {r, 6, ¢, B, v} is
critical for the QGAN. These gradients are approximately obtained by
measuring d with respect to & and € + 8(8 < 1) and calculating the dif-
ferential numerically on a classical computer. According to the principle
of gradient descent, the parameters are updated to maximize d (minimize
d with d > 0) for D’s (G’s) turn, as explained in Fig. 2B (see the Supple-
mentary Materials for the strategy). Here, each determination of d is
counted as one step, and the total number of steps quantifies the con-
sumption of time and copies of data. In practical experiments, the pro-
jective detection outcomes follow a binomial statistic and show a standard
deviation (sd) of d as sd = \/pp(l —py)/n+ps(1—p,)/n. When ap-
proaching the Nash equilibrium, p,~p,~3, and then, sd~1/v/2n =
0.01. Therefore, the measurement precision of d will limit the conver-
gence of the game. In our experiments, D’s turn ends when the differences
of d in the last three steps are less than 0.02. The G’s turn ends when
d < R;for the jth round: R; = 0.055 — 0.01j when j < 3,and R; = 0.02 when
j > 3. These two adversarial learning procedures can be repeated many
rounds until either the total count of steps ¢, reaches a preset limit cg or
the optimized d in D’s round is smaller than a preset bound dg.

The QGAN performance

Figure 3 (A to C) shows the typical results for the experimental QGAN
with 6 = |g)(g| of the transmon qubit, the highest purity state that can be
achieved in the experiment, as an example for the quantum true data.
Since a quantum channel simulator can generate an arbitrary quantum
state (25), the QGAN experiments by taking an arbitrary mixed state of
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Fig. 3. Tracking of the QGAN. (A to C) Experimental results for selecting ¢ = |g)(g| as the quantum true data. (A) The snapshots of the system at the particular steps
indicated by the black vertical arrows in (B) (from left to right in the same order), in the Bloch sphere representation. (B) The tracking of p,, Ppr d, and F during the quantum
adversarial learning process. The gray shadow regions are the processes of optimizing D, while the rests are those for optimizing G. The horizontal color arrows indicate the
vertical axis that each curve with the same color corresponds to. Since the convergence condition dg for the case of pure states is small (see the Supplementary Materials)
and there is inevitable measurement imprecision, the optimized M is difficult to obtain or could even be randomized in certain trials. In this particular trial, M ends up
nearly antiparallel with both p and o, resulting in trMo ~ trMp =~ 0 and d = 0. (C) The measured state tomography of the experimental o, and final ps with a state fidelity
F =0.991, demonstrating a successful QGAN that G can fool D by generating quantum data highly similar to the true data. (D to F) Typical experimental results for ¢ in an

arbitrary mixed state with each panel being the counterpart of (A) to (C), respectively.

the transmon as the true data is also studied, and the results are depicted
in Fig. 3 (D to F). During the QGAN, the trajectory of control param-
eters are recorded (Fig. 3, B and E) instead of characterizing the exact
experimental p and M. As shown in Fig. 3 (A and D), the snapshots of
the quantum states and measurement axis at the particular steps indi-
cated by the arrows in Fig. 3 (B and E, respectively; from left to right in
the same order) are plotted on the Bloch sphere. Here, oy, py, and M; are
the ideal results derived on the basis of the calibrated control parameters.
As expected, D adaptively adjusts M to be parallel with p; — o1, while
G learns from the measurement outcomes to generate quantum data
to fool D, and the generated quantum data gradually converges to the
plane that contains the quantum true data and is perpendicular to M.
As aresult, d oscillates in D’s and G’s turns due to the adversarial pro-
cess and eventually approaches 0, which indicates that, ultimately, D
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fails to discriminate p from ¢ and G achieves his goal of replicating
the statistics of the quantum true data.

To characterize the adversarial learning process, we introduce the
state fidelity F(or, p;) = try//01p1/01 in the adversarial process to
quantify the indistinguishability between the true and the generated
data. As plotted in Fig. 3 (B and E), F approaches 1 after about 220
and 120 steps, respectively. The final generated quantum state py after
the adversarial game and the experimental input state 6. are measured
using state tomography (Fig. 3, C and F), and fidelities as large as
F(Ge, pr) = 99.1% are achieved for both the pure- and mixed-state cases.
These high fidelities verify that the unique Nash equilibrium, in which a
quantum G can replicate the statistics of the quantum true date, can be
efficiently achieved in a quantum experimental realization of GAN. Al-
though we calibrate the system parameters to infer the ideal oy and p;
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Fig. 4. Statistics of the QGAN performance. (A) The cumulative probability of the total step count to finish the adversarial learning process. The QGAN is implemented for
two different cases, with a pure (|g)(g|) and an arbitrary mixed state as the quantum true data, respectively. The count limit cg for these two cases is 500 and 300, respectively. The
obtained average cgp, for these two types of adversarial learning process is 243 and 170, respectively. Exp., experimental; sim., simulation. (B) The cumulative probability of final
state fidelity F. The average fidelities for the pure state and the mixed state are both 98.8%. For comparison, the noiseless numerical simulations of the adversarial learning process

are also performed 100 times, and their distributions are shown as solid lines.

during the adversarial process, it is not necessary for the QGAN. Our
experimental protocol can reach its equilibrium without requiring the
knowledge about the exact data generated by G or the measurement axis
chosen by D and thus promises a double-blind quantum machine
learning process just as its classical counterparts.

By taking the total steps (cyep) and the fidelity of the final generated
state (F) as the figures of merit, the statistics of our QGAN performance
is lastly studied with 100 random adversarial learning processes. We
study both cases with the same pure and arbitrary mixed states as the
quantum true data as in Fig. 3 but with different random p and M at
the beginning, all showing similar behaviors as those in Fig. 3. Figure 4A
plots the cumulative probability of the total steps, i.e., the probability to
finish the QGAN experiment within ¢, steps. The average cq,, for these
two types of adversarial learning process are 243 and 170, respectively.
Figure 4B shows the cumulative probability of state fidelity F with the
average fidelities for both the pure and the mixed quantum data of
98.8%. Comparing to the noiseless numerical simulation results, the ex-
perimental average cyep is about twice larger, and the average F is about
1% lower. These differences are mainly attributed to the decoherence pro-
cesses of the qubit, the finite measurement precision of d, and the non-
ideal measured gradients. Further studies about the effects of the
experimental imperfections are provided in the Supplementary Materials.

DISCUSSION

The QGAN algorithm demonstrated in our experiments can be direct-
ly extended to a quantum system with higher dimensions. In our
superconducting architecture, the bosonic mode actually provides a
quantum system with infinite dimensions, which can be encoded as
a multilevel system. On the basis of the same adaptive technique used
in our current experiment, an arbitrary quantum state of a photonic
qudit with m levels (equivalent to a log,m-qubit system) can be gen-
erated and manipulated with the assistance of the transmon qubit
(25). Then, our experiment can be straightforwardly extended to this
photonic qudit that serves as either the quantum true or generated
data. Another possible extension of our current experiment is to ex-
plore a more complicated architecture with multiple bosonic modes
coupled to multiple transmon qubits (26-28). Both the quantum true
and generated data can be stored in these bosonic modes.

Hu et al., Sci. Adv. 2019;5:eaav2761 25 January 2019

For an m-dimensional system, the number of the QGAN parameters
scales as O(m?); therefore, our algorithm is still feasible for experiments
with reasonable time and quantum resource consumptions. For in-
stance, our numerical simulations (see the Supplementary Materials)
indicate that the QGAN algorithm for two- and three-qubit systems
could converge to a final state fidelity larger than 0.95 with roughly
thousands of steps on average. In the current experiment, the gradient
is estimated numerically via a classical mean. As envisioned in (12), the
gradient can also be obtained through a quantum circuit with higher
efficiency if more quantum resources are available. We note that, al-
though quantum-state tomography is applied in our experiment to
characterize the performance, it is not necessary for the QGAN
algorithm. In the case of a quantum system with a large number of
qubits, a better and more efficient way of assessing the QGAN per-
formance would be desired.

In conclusion, we have demonstrated the feasibility of quantum
generative adversarial learning with a superconducting quantum cir-
cuit in which the input data, the G, and the D are all quantum
mechanical. Our results show that the G can learn the patterns of
the input quantum data and produce quantum states with high fidelity
that are not distinguishable by the D. Since our QGAN experiment
requires neither a quantum random accessing memory nor a universal
quantum computing device or any fine-tuning parameters (thus
robust to experimental imperfections), it carries over to the noisy
intermediate-scale quantum (NISQ) devices (29) widely expected to
be available in the near future. An experimental demonstration of
the QGAN with NISQ devices promises to showcase the quantum
advantages over classical GAN—a possible approach to realizing
quantum supremacy (30, 31) with practical applications. Yet, an
unambiguous experimental demonstration of quantum supremacy
in this context may still require substantial technology advance-
ments. Our results might also have far-reaching consequences in
solving quantum many-body problems with the QGAN algorithm,
given the recent rapid progress in related directions (32-36). In ad-
dition, the hybrid quantum-classical architecture demonstrated in this
work can be straightforwardly extended to the optimal control (37) and
self-guided quantum tomography (38), and we also anticipate their
applications in other quantum machine learning/artificial intelli-
gence algorithms.
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MATERIALS AND METHODS

Our experimental device consists of a superconducting transmon qubit
dispersively coupled to two microwave cavities (18, 19). The transmon
qubit has an energy relaxation time T; = 30 us and a pure dephasing
time T, = 120 us, and its quantum state serves as either p or ¢ alterna-
tively during the QGAN algorithm. The long-lived cavity has a photon
lifetime T = 143 us and serves as an ancillary photonic qubit to facilitate
the creation of the quantum true data ¢ in an arbitrary state through a
quantum channel simulator (25). In (25), we showed that an arbitrary
quantum state of the photonic qubit can be generated deterministically,
which can be mapped back onto the transmon qubit for the initial o.
The other short-lived cavity with T} = 44 ns is to readout the transmon
qubit with the help of a phase-sensitive Josephson bifurcation amplifier
(39-41) for a high-fidelity single-shot measurement. In each experi-
ment, the qubit is initialized to the ground state |g). The operations
on the transmon qubit and the ancillary photonic qubit are realized
through numerically optimized pulse sequences with the gradient as-
cent pulse engineering method (42, 43) based on carefully calibrated
system parameters and are implemented by field programmable gate
arrays (FPGAs) with customized logic. The details of the FPGAs and
the experimental apparatus can be found in 24.

In our experiments, one step consists of 2n = 10, 000 measurements
of the quantum states (both p and o) for calculating d, which is selected
as the loss function for the QGAN optimization. During the turns of D
and G, the gradients of d were estimated with respect to each optimi-
zation parameter. Each update of the parameters requires n,, + 1 steps
for n,, parameters, with n, = 2 and 3 for D and G, respectively. State
tomography was performed after the QGAN algorithm to characterize
the true data ¢ and the generated p based on the recorded parameters
in the quantum channel simulator and the QGAN algorithm. Note
that we did not repeat the QGAN process to obtain the tomography
to save time.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/1/eaav2761/DC1

Section S1. Tracking of p — 6 and M during the QGAN process

Section S2. Comparisons between the experimental and the numerical simulation results
Section S3. Algorithm and numerical results

Fig. S1. Tracking of p — ¢ and M and the comparison between experiments and numerical
simulations based on the recorded parameters & in the QGAN process as shown in Fig. 3.

Fig. S2. Statistics of the QGAN performance based on numerical simulations.

Fig. S3. Influence of & and sd in the QGAN performance and count of steps when the QGAN
converges to the same dg for different y and p.

Fig. S4. Performance of the QGAN algorithm for multipartite quantum systems with the
quantum true data being a random mixed state.

Fig. S5. Performance of the QGAN algorithm with Greenberger-Horne-Zeilinger and W states
as the quantum true data.
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