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Quantum-enhanced (i.e., higher perfor-
mance by quantum effects than any clas-
sical methods) mean value estimation of
observables is a fundamental task in var-
ious quantum technologies; in particular,
it is an essential subroutine in quantum
computing algorithms. Notably, the quan-
tum estimation theory identifies the ulti-
mate precision of such an estimator, which
is referred to as the quantum Cramér-
Rao (QCR) lower bound or equivalently
the inverse of the quantum Fisher infor-
mation. Because the estimation preci-
sion directly determines the performance
of those quantum technological systems, it
is highly demanded to develop a generic
and practically implementable estimation
method that achieves the QCR bound.
Under imperfect conditions, however, such
an ultimate and implementable estimator
for quantum mean values has not been
developed. In this paper, we propose
a quantum-enhanced mean value estima-
tion method in a depolarizing noisy envi-
ronment that asymptotically achieves the
QCR bound in the limit of a large number
of qubits. To approach the QCR bound in
a practical setting, the method adaptively
optimizes the amplitude amplification and
a specific measurement that can be im-
plemented without any knowledge of state
preparation. We provide a rigorous analy-
sis for the statistical properties of the pro-
posed adaptive estimator such as consis-
tency and asymptotic normality. Further-
more, several numerical simulations are
provided to demonstrate the effectiveness
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of the method, particularly showing that
the estimator needs only a modest num-
ber of measurements to almost saturate
the QCR bound.

1 Introduction

Mean value (or expectation value) estimation
of quantum observables is an important task in
many quantum information technologies, such as
subroutines in quantum algorithms for both near-
term noisy and future fault-tolerant quantum de-
For instance, variational quantum algo-
rithms require estimating mean values iteratively
to train the parameters of a parameterized quan-
tum circuit |1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13].
Surely, the performance of those information pro-
cessing technologies heavily depends on the esti-
mation precision. In addition, real quantum de-
vices suffer from noise induced by the interaction
of system and environment, and such noise deteri-
orates the efficiency for reading out calculation re-
sults. Therefore, developing efficient mean-value
estimation methods (in a noisy environment) is
highly important [14, 15, 16, 17, 18, 19, 20].

For this purpose, the statistical estimation the-
ory |21, 22| and their quantum extension |23, 24|
are useful. In particular, the seminal Cramér-Rao
inequality and Fisher information, which identify
the limit of estimation precision, have been ex-
tended to quantum versions [25, 26, 24, 27, 28|;
that is, the quantum Cramér-Rao (QCR) inequal-
ity and quantum Fisher information. As in the
classical case, they can be used to determine
the ultimate performance of several quantum in-
formation processing systems such as quantum
sensors [29, 30, 31, 32, 33, 34]. Moreover, the
QCR acts as a fundamental limitation on in-
formation extractable from quantum mechanical

vices.
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systems, e.g., [35]. Therefore, extensive investiga-
tions have been conducted to characterize estima-
tors that (almost) achieve the QCR lower bound
i.e., the ultimate precision bound for optimized
quantum measurement |36, 37, 38, 39, 40, 41, 42,
43, 44]. Note that whether such optimal esti-
mators are implementable depends on available
quantum operations in the target system. Devis-
ing an implementable and optimal (in the sense
of QCR) estimator is thus one of the most impor-
tant subjects in quantum sensing and metrology.

In this way, the quantum statistical estima-
tion theory should be appropriately applied to
develop efficient estimators for various quantities
in quantum computing, such as mean values of
quantum observables. At the same time, toward
the early success of quantum computing, there
is an increasing need for efficient estimators that
can be realized with as few demanding quantum
operations as possible. For instance, some less-
demanding implementation methods for phase es-
timation algorithm [45, 46, 47, 48, 49, 50] and am-
plitude estimation algorithm [51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61] have been developed, and
their performance has been investigated using the
statistical estimation theories. Nevertheless, in
practical noisy settings before the fault-tolerant
era, devising an estimator that is both easy to
implement and capable of achieving the ultimate
QCR bound remains an ongoing subject of re-
search. Focusing on the mean-value estimation
problem in a noisy environment, Ref. [18] formu-
lated this problem within the framework of am-
plitude estimation and proposed a Bayesian infer-
ence method for this problem; however, there was
no discussion on how to achieve the QCR bound.
To our best knowledge, only Ref. [58] gave a de-
tailed analysis on the QCR bound in the noisy
amplitude estimation problem; in particular, un-
der the assumption that the system is subjected
to depolarization noise, the estimator given in [58]
achieves the precision that is yet strictly lower
than the ultimate limit.

In this paper, we focus on the problem of con-
structing a less-demanding quantum mean-value
estimator in a depolarizing noisy environment.
In light of quantum estimation theory and quan-
tum metrology, the following questions are im-
portant. (i) What is the quantum-enhanced pre-
cision limit (or, the optimal QCR bound) over
less-demanding protocols for estimating a quan-

tum mean value? (i) Can we construct an im-
plementable estimator such that the estimation
precision achieves the QCR bound? (iii) Also, is
there any mathematical guarantee of the estima-
tion performance? The main contribution of this
paper is to give answers to all the above ques-
tions.

A summary of those contributions are as fol-
lows. The details are provided in Section 3. First,
the answer to the question (i) is given in Theo-
rem 1; we derive the precision limit for estimat-
ing a quantum mean value, in the setup where
we are allowed to use noisy quantum states but
no demanding controlled amplifications. Based
on the findings obtained from the precision limit,
we construct a modified maximum likelihood
estimator that adaptively optimizes a specific
measurement (positive operator-valued measure
(POVM)) and the number of amplitude ampli-
fication operations, by maximizing the magni-
tude of quantum enhancement. The optimality of
this estimator is supported by Theorem 2, stating
that there exists a POVM that makes the ratio
of the quantum and classical Fisher information
close enough to 1 (leading that the QCR bound
is almost achieved) in the limit of large number
of qubits. Note that, as mentioned in the second
paragraph, the implementation of such an opti-
mal estimator is in general nontrivial, but our
estimator can be efficiently implemented without
any knowledge of the target state, which is usu-
ally prepared by a black-box unitary in the mean
value estimation problem. Thus, this is the an-
swer to the question (ii). As for the question (iii),
we prove that the estimator satisfies the following
statistical properties.

e Consistency (Theorem 3): As the number of
measurements increases, the estimation ac-
curacy becomes better. More precisely, the
probability that the estimated value is arbi-
trarily close to the true value approaches 1
in the infinite limit of the number of mea-
surements.

e Asymptotic normality (Theorem 4): The es-
timator regularized by its Fisher informa-
tion asymptotically follows the standard nor-
mal distribution, as the number of measure-

As a result, the estima-

tion error asymptotically achieves the clas-

sical Cramér-Rao lower bound.

ments increases.
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Therefore, the proposed estimator has mathemat-
ical guarantees in its performance.

In addition to the above theoretical contribu-
tions, Section 4 is devoted to thorough numer-
ical simulations. In particular, we will demon-
strate that the above asymptotic properties hold
even with a modest number of each measurement
(~ 500) and a modest number of qubits (~ 20).
Also, we focus on the previously-reported prob-
lem that the precision of the quantum mean value
estimation under the depolarizing noise may sig-
nificantly deteriorate depending on the target
value to be estimated; but we will numerically
demonstrate that the proposed method can also
get around this problem due to the optimization.
Note here that the above-mentioned Bayesian in-
ference method [18] optimizes a quantum circuit
containing multi-parameter in order to alleviate
the target value dependency of estimation effi-
ciency, while our method optimizes just one dis-
crete parameter, which is clearly computationally
advantageous.

The mean value estimation is essential in many
quantum algorithms, such as quantum simula-
tion, but is too time-consuming. Thus, it be-
comes crucial for practical and large-scale quan-
tum computing to leverage quantum enhance-
ment for efficiently estimating mean values. Since
our adaptive mean-value estimation method uti-
lizes the maximal quantum enhancement, we be-
lieve that our method takes a pivotal role specifi-
cally in the early stage of fault-tolerant quantum
computing.

2 Preliminary

The quantum-enhanced amplitude estimation al-
gorithm studied in [52, 57, 58, 60|, which does
not use the hard-to-implement phase estimation
algorithm [14], consists of two major steps. The
first step is to perform amplitude amplification on
the quantum state whose amplitude is to be esti-
mated, and then make a measurement; this pro-
cedure is repeated with different operation times.
The second step is to estimate the amplitude by
classical post-processing for the combined mea-
surement result, i.e., the maximum likelihood es-
timation.

The problem is to estimate the amplitude
sin (¢*), with unknown ¢* € (0,7/2), of the fol-

lowing (n + 1)-qubit quantum state A |0),,

A|O>n+1
:= cos (¢) [¢o),,|0); +sin (¢%) [¢1),, 1)1, (1)

where [0),, . ; is the computational basis of (n+1)-
qubit, [t)g), and |iq), are normalized n-qubit
quantum states. Here, A is a black-box (i.e.,
unknown yet implementable) operation on a de-
vice, which is often called an oracle in the Grover
search algorithm. Note that a single application
of A or A' is counted as one query. The first step
is to amplify the amplitude via the operator Q
defined as

Q= A (210} 41 Oy = Tnst) AT (1 @ 7).
2)

where I, is the identity operator on the n-qubit
system, and Z denotes the 2 x 2 Pauli Z ma-
trix. From the assumption of implementability
of A and A" as oracle operators, the amplifica-
tion operator Q is also implementable. As shown
originally in [14], the amplification operator cor-
responds to the following rotation gate in the sub-
space S spanned by [vg),, [0); and [¢1),, |1);:

_ |cos(2¢*) —sin(20%)|  _iopy
Qls = sin (2¢*)  cos (2¢*%) = (3)

where Y denotes the Pauli Y matrix with respect
to the basis of §. Thus, m applications of Q to
the state (1) yield

Q" A0),, 11 = cos [(2m +1)¢"] [¢ho),, [0)

+sin [(2m + 1)¢*] [¥1),, 1), -
(4)

We now measure the last qubit of Eq. (4) by the
computational basis |0); and |1);. Then the prob-
ability of obtaining "1" is given by

P (m; ¢*) == % — %COS 2(2m+1)9*].  (5)
Note that this is equivalent to the Bernoulli trial
with success probability P (m; ¢*). By the appli-
cations of Q, the resolution on ¢* in the proba-
bility (5) is enhanced by the factor 2m+1; on the
other hand, the ambiguity emerges in the sense
that the probability P (m;¢) becomes periodic
with respect to ¢.

In the second step, we estimate the amplitude
based on the measurement results obtained in
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the first step by the maximum likelihood esti-
mation method. Note that in the first step, we
prepare the quantum states with different res-
olutions in order to eliminate the ambiguities,
as similar to the methods for phase measure-
ment [62, 46, 63, 64, 65, 50]. Specifically, for
each of predefined odd numbers 2my + 1 (k =
1,2,--+, M), we prepare the state (4) and mea-
sure it N times with the computational basis in-
dependently. Here, M denotes the total number
of types of quantum states to be prepared. We
write z(%) e {0,1,--- , N} as the number of hit-
ting "1" for the state Q™*A[0),, ;. The mea-
surement results for M different states are put
together as xp; = (2, 2@ ... (M) Then
the likelihood function to have xj; is given by

H Fi(e

where F, (as(k); mg, ®*) is the probability of ob-
taining (®). Given the measurements x,s, the
maximum likelihood estimation assumes that the
value of ¢ that maximizes £y (¢; xs) is a plausi-
ble estimate of the true value ¢*. In other words,
the maximum likelihood estimate qAS M for ¢* from
the M series of measurements is defined as

mka ¢)7 (6)

¢7 33M

dar = argmax L (¢; ). (7)
#€[0,m/2]
Note that the maximum likelihood estimator for
sin (¢*) corresponds to sin () due to the invari-
ance property of maximum likelihood estimators.
Thanks to the quantum-enhanced resolution via
amplitude amplification and the elimination of its
ambiguities by the product of likelihoods, the es-
timation precision of ¢* and sin (¢*) can be im-
proved quadratically with respect to the number
of total queries of A and A', by using a specific
sequence my, = 287! as demonstrated in [52].
We now consider the mn-qubit depolarizing
channel:
1 —

Dlp| := 717”
[p] := pp + y

where p is an arbitrary density operator and 1 —p
is the probability that depolarization occurs. As
in [18, 58, 57|, we here consider a noise model
in which depolarization occurs with probability
1 — pq for a single application A or Af. This
assumption may be justified when the actual im-
plementation of oracles A and A requires com-
plicated circuits compared to other operations in

d:.=2", (8)

Eq. (2). Then the probability of obtaining "1"
for the final state under this noise model is given
by

. | pml
Pp (m;¢*) := 5~ q2

The subscript D means that the quantum state
to be measured has passed through the above-
defined depolarizing channels. Then the classical
Fisher information associated with the probabil-
ity (9) for ¢* is calculated as

Ze(m; ¢¥)
_ @m+1)%p3"" Y sin? [2(2m + 1)97]
Po(m; o) (1-Po(mi¢r))

Equation (10) indicates that the estima-
tion may become ineffective if m satisfies
sin [2(2m + 1)¢*] ~ 0. More precisely, if m and
¢* satisfy this condition, the classical Cramér-
Rao lower bound of the estimation error for ¢*
significantly deteriorates [18, 57]. In addition,
even if we use the above-described maximum
likelihood estimation based on the M series of
measurements for my (k = 1,2,---, M), which
are predefined independently to ¢*, the same
deterioration may occur [57]. Importantly, this
phenomena are also seen in the quantum mean
value estimation problem discussed in the next
section.

cos [2(2m + 1)¢*]. (9)

(10)

3 Quantum-enhanced mean value es-
timation

First, in Section 3.1, we formulate the quantum
mean value estimation problem in a similar way
to the amplitude estimation problem shown in the
previous section. Then, we provide the precision
limit in estimating the mean value when we can
prepare and measure noisy amplitude-amplified
quantum states, in Section 3.2. To achieve the
precision limit, we next provide the efficient and
implementable measurements in Section 3.3 and
thereby develop an adaptive mean-value estima-
tion algorithm in Section 3.4. In Section 3.5, we
discuss the statistical properties of our method
such as consistency, asymptotic normality, and
the (classical) Fisher information that can be-
come large by the adaptive optimization. Finally,
a summary of our protocol is provided in Sec-
tion 3.6.
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3.1 Mean value estimation problem

Our goal is to estimate the mean value of a known
Hermitian operator O with eigenvalues +1, i.e.,
(O) = (A|O|A), where |A) := A]0),, is an n-
qubit quantum state with a state preparation
unitary A. Here, we assume that A and Af
are black-box operations yet implementable on
a device, similar to A in the previous section.
Note that O is a unitary operator, which is as-
sumed to be implementable; also, the projective
measurement {(I, + O)/2, (I, — O)/2} is imple-
mentable, which is often assumed in quantum al-
gorithms. A typical O is a single Pauli string
such as O = X ® Z ® - - -; note that our method
is applicable to estimate the mean value of a lin-
ear combination of Pauli strings that form a com-
pletely anti-commuting set, because there exists
a unitary operator that groups the linear combi-
nation into a single Pauli string [66].

In the estimation problem, we aim for max-
imizing the estimation precision of the target
mean value (O) in given total queries to A and
AT [15, 67, 18, 20]. In particular, we address this
problem without the quantum phase estimation
algorithm which requires many controlled oper-
ations [15]. The amplitude estimation method
(with no controlled-Q operations) in the pre-
vious section can be applied to this problem:;
hence, ideally, we need quadratically less queries
of A and A" compared to the standard algorithm
without amplitude amplification, to estimate the
mean value with specified precision — that is, the
quantum-enhanced mean value estimation.

Here, we describe the mean value estimation
problem in a similar way to the previous sec-
tion. Suppose |A) is not an eigenstate of O (thus
[(O)| # 1). Then the two quantum states |A)
and O |A) are linearly independent and form the
following subspace [18, 68|:

8 :=Span {|4),0|4)} = Span {|4), |4")},
(11)

where |A1) is an (unknown) normalized state or-
thogonal to |A) obtained by Gram-Schmidt pro-
cedure to |A) and O |A). We denote |A) and |A+)
as |0) and [1), respectively, and identify S as the
1-qubit Hilbert space likewise the idea of qubiti-
zation [69, 70|. We then define an n-qubit oper-
ator (), which corresponds to the amplitude am-

plification operator in Eq. (2), as
Q = A(2]0), (0], — I) ATO.

Recall that the oracles A and A! are imple-
mentable, meaning that the amplification op-
erator () is also implementable. This oper-
ator keeps the subspace S invariant because

O|A) = (0) |[A) 4+ /1 — (O)?* |AL) and O |AL) =
V1= (0)?|A) — (0)|AL) hold from the defini-

tion of |At) and the fact that ©? = I,,. Then,
similar to Eq. (3), the representation of @ on
S is expressed as a unitary operator: Qlg =
Z(cos (0*)Z + sin (0*)X) = exp(i0*Y), where
we define X,Y,Z as the Pauli X, Y, Z matri-
ces in the basis |0) and |1). The rotational an-
gle 0* is related to the target mean value as
0* := arccos ((O)); in what follows 6* is also re-
ferred to as the target value. Note that, for the
target mean value (O) = cos §*, the domain of 6*
is given by 6* € (0, ), which is twice as that of
¢* in the previous section.

Using several queries of the rotation @@ on S,
we can prepare and measure the quantum state
with quantum-enhanced resolution by o € N, at
the cost of o queries to A and Af. Applying m
times of the rotation @ to |0) followed by O and
going back to the computational basis by AT, we
obtain the following quantum state

0 (W) 0),, + sin (W)AT "

(13)

(12)

where this state uses 2(m + 1) queries to A or
Al in total. Here, the basis AT |1) is actually un-
known by the black-box assumption of AT; thus,
the class of implementable measurements on the
state (13) is restricted, as detailed in the follow-
ing sections. On the other hand, the projective
measurement of O on Q™ |0) should be consid-
ered in S because of the implicit 8*-dependence
of @. That is, this process is equivalent to the
projective measurement of Z @ O)| s. on the fol-
lowing state with 2m + 1 queries to A or A':

0s ((2m i 1)6*> 0) + sin ((2m + 1)0*> 1) .

2 2
(14)
This means that we can measure the quantum
state with (2m+1)-fold enhanced resolution of 6*,
although available POVM is restricted. There-
fore, for a given a € N, we can prepare and mea-
sure the quantum state Eq. (13) (o« = 2m +2) or
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Eq. (14) (o = 2m + 1), according to the parity
of a; we write these states in a unified manner as
p(a; 0%). In the following, we call a the amplified
level. Note that p(a;6*) requires « queries to A
or AT in total.

Here, we assume the state p(a;0*) is subjected
to the (global) depolarization noise with proba-
bility 1 — pq (> 0) for each use of A (A'), as in
the previous case. Then, the output state with «
queries to A or A is given by

1—pa‘
d

po(a; 0%) == pgp(a; 07) + I,.  (15)
We remark that A and A! (e.g., the time evo-
lution of a global Hamiltonian) are usually com-
prised of a large number of gates, which would
sufficiently scramble local noise into global depo-
larization noise. Such assumptions are verified
in terms of theoretical |71, 72] and (small-size)
experimental [57]| aspects, while we leave further
verification in a large-size experiment as future
work.

3.2 Limit of estimation precision with noisy
amplitude-amplified states

In the following, we derive the precision limit in
estimating 6* with the use of the noisy amplitude-
amplified states pp(«;6*), based on the quan-
tum Fisher information of these states; see Ap-
pendix A for a summary of quantum estimation
theory. To this end, we suppose that any POVM
including the joint measurement on multiple n-
qubit systems can be performed, for the time be-
ing.

For a given number Ny of queries to A or At
let us prepare a set of pp(«a;0*) by splitting the
total queries. More specifically, we consider any
partition {a)} of given total queries Ny such
that Ny = Zﬂ/lzll «, for some positive integer M.
Then, we define the quantum state before mea-
surement as

P (0%) = pp(f; %)@+ - @pp (i 0%). (16)

Note that each pp(c;0*) uses aj queries to A
or A, and thus the quantum state p%)m) uses Ny
queries in total. Here, for all partitions, we pro-
vide the upper bound of the total quantum Fisher
information Zq tot [p%)m)] of the state p%)m) in es-

timating 6*.

Theorem 1. (Precision limit in the mean-value
estimation problem) For a given number Nq of
queries to n-qubit state preparation oracles A and
AT, we consider all partitions {a}} (o}, € N) of
Ny such that Ny = M ), for some positive
integer M'. Here, each use of A and A" induces
the n-qubit depolarization moise with probability
1 — pq. Then, the total quantum Fisher infor-
mation Lq ot regarding 0° of the quantum state
p%““)(e*) in Eq. (16) satisfies the following in-
equalities:

N2 2Ng
bm) qpq
T ot P( < , Nq < ag,
o [ D } 21—n + (1 _ 21—n)pévq a
and
N, app2os
(bm) q qu
Iq,tot |:p’D :| S 21_n + (1 — 21_n)pg¢B7 Nq > aB,
where ap 1s defined by
2c
«
ap := argmax Pq (17)

Sen 2 (12 pg

Furthermore, if Ny < ag or Nq = rag for some
r € N, there exists a partition {a),} satisfying the
above equality.

The proof is given in Appendix B, and a similar
evaluation (i.e., the loss of quadratic term on N)
of quantum Fisher information can also be found
in the previous works on noisy quantum metrol-
ogy |73, 74, 75|. Note that, if the argmax returns
multiple values, we take the minimum as ag. A
particularly important fact is that the equality in
the case Ny = rag > ap holds for the partition
M' =r and o), = ap Vk; that is,

pO™ (0%) = pp(ap;0*) @ - - @ pp(ap; ) (18)

enables us to achieve the upper bound of Zg tof.
Here, ap can be expressed as
7
ap = argmax M, (19)
aeN o
where Z,(«) denotes the quantum Fisher infor-
mation of pp(a;6*) regarding 6*:

2,2c

a™p
Iq(a) : 4

= T T (20)

We can derive Eq. (20) using the standard recipe
found in e.g., [76, 77, 78]. That is, fixing « to ap
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provides the best usage of A and AT in estimating
0* under the noisy condition. In this paper, we
particularly focus on the regime ag 2 100 (i.e., <
1% depolarization noise on each A) for the early
stage of fault-tolerant quantum computing [79].
As for the case Ny < ap, if we coherently use all
queries (i.e., M’ =1 and o) = Ny), the quantum
Fisher information of p%)m) achieves the upper
bound, which contains the quadratic term with
respect to the total queries Nj.

From the quantum Cramér-Rao (QCR) in-
equality [25, 26, 24, 27, 28], the upper bounds in
Theorem 1 set the precision limit in estimating
0* with given queries Ny, via the quantum states
pp(aj;0*). That is, for any (unbiased) estimator
6 of 0* based on the measurement result from the
quantum states, the mean squared error (MSE)
of 0 is lower bounded as

R 1 21—n +(1 - 21—n Ng
MSE(9) > — ( o JPa" N, < an
q Pq
(21)
and
. 1 21711 +(1— 2lfn ap
MSE(d) > ( _ )r” N, > ag.
q®B pan
(22)

Note that we can obtain the lower bound of MSE
regarding (O) = cos@* by simply multiplying
this inequality by 1 — (O)2. These inequalities
hold for any POVM independent to 8*; thus they
characterize the limit of estimation precision that
cannot be improved by any measurement. In
the following, we mainly focus on the precision
limit given by Eq. (22) because the other bound
is asymptotically negligible in a large number of
queries Ng.

3.3 The two-type measurement

To most efficiently read out the quantum mean
value from pp, we need a POVM whose classical
Fisher information achieves the quantum Fisher
information defined for this state. In fact, we
found the following 3-valued POVM that satisfies
the above requirement for specific values of 6*
and pp(a;0*) with even a = 2m + 2, as shown in
Appendix C:

My := |0), (0], My := AT|1) (1] A,

My := I, — My — My, (23)

where we recall that (0], AT|T) = (0|1) = 0. Note
that this POVM can be obtained from an optimal
POVM that exactly achieves the quantum Fisher
information at the cost of 8*-dependancy in the
POVM elements; also see Appendix C.
Suppose we can perform such an optimal mea-
. (bm)
surement on each n-qubit system of pj
separable way. Then, the corresponding (total)

classical Fisher information Z to¢, which depends

on p(g ™) and the selection of POVM, is equal to

T tot [p%)m)] and furthermore achieves the upper
bound in Theorem 1 by setting o) = ap Vk.
However, both the optimal measurement and the
POVM (23) contain the unknown state A'|T),
and thus it is highly nontrivial to perform the
measurements on standard quantum computing
devices under the black-box assumption of A and
At Hence, we approximate the ideal 3-valued
POVM by marginalizing it, to have the following
2-valued POVM:

in a

Ml(even) =1, — Méeven)’

My := [0),, (0], (24)
where the superscript even means that we can
perform this measurement on the quantum state
pp with even a (i.e., @« = 2m + 2). This POVM
can be implemented without any knowledge of
the black-box operations A and A, by the com-
putational basis measurement followed by post-
processing for classifying the obtained measure-
ments into "0" or "1".

The measurement (24) has powerful estimation
capabilities in the sense of its Fisher informa-
tion, as follows. Measuring the state (15) with
a = 2m + 2 by this POVM, we obtain the mea-

(even)

surement result corresponding to M; with
probability
P(even) (m' 0*)
D )
d—1 d—1
= —f—pé(mﬂ) sin? [(m + 1)6*] — 0
(25)
Then, the classical Fisher information with

Eq. (25) is calculated as
Ic(even) (m; 9*)

(2m+2)2pa ™ Y sin? [(2m + 2)67]
AP (m; 6%) (1 — P (i 9*)) '

(26)
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Also, we rewrite the corresponding quantum
Fisher information (20) as Ic(leven) (m) :=Zq(2m+
2) for simplicity.

Theorem 2. (Optimality of the marginalized
POVM)

I(Eeven) (’I’)’L; 9*)

even 1 2(1 B p(2:1m+2)
(27)
holds, where k is defined as
sin? [(m + 1)6*]
1 — p2m™+2 cos? [(m 4 1)0%] + en(m; 6%)
(28)

K=

Here, e,(m;0*) = O(27™) if cos [(m + 1)0*] # 0.
When 6% /21 is an irrational number, there exists
an m (i.e., the number of querying Q) such that
Koo = limy, 00 K s arbitrarily close to 1.

This theorem means that, to estimate a par-
ticular 6%, the POVM (24) can become optimal
in the sense of Fisher information, as the number
of qubits increases; the proof of Theorem 2 and
additional analysis are provided in Appendix C.
Note that a more detailed analysis shows that
the factor e,(m;6*) diverges at certain points
(m, %) such that cos[(m + 1)0*] = 0, while in
other points, it converges to zero exponentially
fast with respect to the number of qubits n. In
the limit of a large number of qubits n, Ic(even) still
depends on 6* by the factor ko, in the domains
sin [2(m + 1)0*] # 0, which differs from the clas-
sical Fisher information of the original 3-valued
POVM; see Appendix C.

Based on Theorem 2, in the next subsection
we introduce an algorithm that optimizes m (or
equivalently «) in a certain finite range. Al-

though this theorem does not guarantee Ic(even) R

I(Seven) for the optimized «, we numerically verify
this approximation holds well when using modest
number of qubits. Furthermore, this optimiza-
tion is often valid even when 6* /2 is a rational
number as demonstrated later. As a consequence,
this algorithm enables us to have nearly optimal
POVMs for almost all 8* in the large system di-
mension, in the sense of total Fisher information
i'e'7 Ic,tot ~ Iq,tot-

Although the even POVM (24) can become op-
timal in the sense of Fisher information, this does

not necessarily guarantee that the actual estima-
tor (particularly the maximum likelihood estima-
tor based on the POVM) produces the best esti-
mate that achieves the QCR bound. Actually, the
probability (25) is an even function with respect
to the value 6*—m /2, and the maximum likelihood
estimation associated with this even POVM can-
not distinguish the sign of mean values. To con-
struct an estimator that may correctly estimate
the true target value, we therefore introduce the
following second POVM that breaks the above-
mentioned symmetry:

Ml(Odd) =1, — MéOdd),
(o] In
M It o (29)

2

From the assumption, the projective measure-
ment of O is implementable. Here, we recall that
the process to measure Q™ |0) by this POVM
is equivalent to the projective measurement of
Z ® Ol|g. on the state p(a;60*) with odd o =
2m+ 1, as mentioned in Section 3.1. For this rea-
son, we have added the superscript odd for the
POVM (29). Then, the probability of obtaining
"1" is given as

2m—+1
odd * 1
PD( )(m;0 ) = 5~ d

cos[(2m + 1)0*].

(30)
The coefficient of 6* differs by the factor 2 com-
pared to that of ¢* in Eq. (9), because the pres-
ence of sign for quantum mean values doubles the
domain of the target value. Since the probabil-
ity (30) is an odd function unlike Eq. (25), the
measurement can distinguish the sign of the tar-
get mean value. Note that, in contrast to the
even POVM, the classical Fisher information cor-
responding to the odd POVM, IéOdd) (m; 6%), al-
ways deviates from the quantum Fisher informa-
tion even if the number of qubits increases; see
Appendix C.

Hence, our estimator is composed of the even
and odd POV Ms, where the probability of obtain-
ing the measurement result "1" is summarized as
follows:

Pp(a; 6%)
1—p—él.tcos(oﬂ*) a is odd
B 2 2 ’
R L_lﬁ- a{inQ(a9*>—d_l} i Vn.
y Pq s 5 |, aiseve
(31)
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Here a € N represents the number of queries to
the operator A or Af. We perform the measure-
ment via Eq. (29) when ais odd (o = 2m+1) and
via Eq. (24) when « is even (o = 2m + 2). Also,
the classical Fisher information corresponding to
each measurement is represented as

azp?la sin? (af*)
4Pp(c; 60%)(1 — Pp(a; 6%))°

Le(a;07) = (32)

3.4 The proposed adaptive estimation algo-
rithm

Based on the discussion so far, the algorithm
should satisfy the following conditions:

e When sin (af*) ~ 0, the classical Fisher
information (32) becomes nearly zero, and
thus the estimation becomes inefficient by
the Cramér-Rao inequality. Hence, such «
should be avoided, in both POVMs (24) and
(29).

e We want to employ measurements whose
classical Fisher information approaches the
quantum Fisher information for enhancing
the estimation power.

e We want the total quantum Fisher informa-
tion Zg tot to achieve the upper bound, shown
in Theorem 1; thus a should be chosen to
approach ap = argmax,cy Zq(@)/a, gener-
ating the state (18).

Here we describe our mean value estimation
method that adaptively adjusts the amplified
level o and thereby satisfies the above three re-
quirements. Importantly, this method inherits
several good properties of the maximum likeli-
hood estimation, as proven in Section 3.5. Note
that, in the context of the amplitude estimation
algorithms described in Section 2, Ref. [58] dis-
cusses the similar POVM in Eq. (24). However,
unlike our method, the algorithm of [58] does not
employ an adaptive optimization algorithm for
estimation; thus it cannot achieve the quantum
Fisher information for almost all 8* and also suf-
fers from the problem of vanishing classical Fisher
information.

Our algorithm is based on the maximum likeli-
hood estimation method for the random variables
subjected to the probability distribution (31). An
overview is shown in Fig. 1. The algorithm is
composed of the following five procedures.

(i) Set the first amplified level oy = 1, and
set the number of measurements N and the
number of steps M as some natural numbers.

(ii) If the amplified level «y is even, then we
measure N copies of the quantum state
pp(ag; 6%) of Eq. (15) with the POVM (24).
If o is odd, we perform the POVM (29) to
each of N copies of pp(ag;0*). We write
the total number of hitting "1" as z(*) ¢
{0,1,--- ,N}. Here, z®) is a realization of
the Binomial random variable

X®) ~ Bin(N,Pp(ay: 6%).  (33)

(iii) Calculate the maximum likelihood estimate
ék based on the total £ measurement results
xy = (21,23 ... 2(®) That is, 0, max-
imizes the likelihood function

HFZ( O; (1), 9)

(34)

9$k¢

where Fj (x(l); a(x—1), 9*) is the probabil-
ity distribution of the random variable X®.

(iv) Determine oy for the next measurement
based on the current estimate 6y by nu-
merically solving the following optimization
problem:

Ly ()
1 — § cos? (aék) 7
(35)
where D, C N is a (finite) optimization
range and 0 € (0, 1] is a parameter for regu-
larization.

Qf1 ‘= argmax
a€Dy

(v) Repeating the above procedure (ii)—(iv) for
k = 1,2,...,M, we obtain a final estimate
Opr. (We omit the optimization in (iv) when

k=DM.)

We make some remarks on the proposed algo-
rithm. First of all, we assume that the probabil-
ity of depolarization 1 — p, is identified by some
experiments on the quantum device to be used
in advance and the calibration on pq is perfect.
The impact of calibration errors of pq on this al-
gorithm is analyzed numerically in Appendix F
Unlike Bayesian estimation, our algorithm does
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Figure 1: Overview of the proposed algorithm for estimating (O) = (A|O|A). Here, |A) is a target state prepared
by operating an n-qubit quantum circuit A on the computational basis |0),, and O is a target Hermitian operator
with eigenvalues £1. We use the modified maximum likelihood estimation method based on the specific quantum
circuits with the amplitude amplification operator Q and the two POVMs M (ever) Af(0dd)  The measurement based
on the two types of POVM yields probability distributions with different symmetries, and as a result the algorithm
can estimate the mean value (A|O|A) correctly including its sign. We assume that the depolarization noise is induced
when implementing the state preparation A or AT. Even under this noisy condition, the algorithm can estimate the
target value efficiently in the sense of the Fisher information by optimizing the number of querying @ (i.e., m) and
the type of POVM (i.e., even or odd), which are encoded together into a 1-dimensional discrete parameter . That
is, the optimization improves the classical Fisher information so that it gets sufficiently close to the quantum Fisher

information, when the system dimension d = 2" is enough large.

not require any prior information on the target
value.

Then, we note that the measurement xy, in (iii)
is the collection of all the results via the mea-
surements with oy VI = 1,2,--- k. As well as
the method in Section 2, the ambiguity in esti-
mating 6*, which arises from the periodic nature
of Pp(ag;0*), can be eliminated by the product
of likelihoods with different resolutions. Because
the amplified level oy depends on the previous
results xj_1 (except for the case k = 1), the like-
lihood function Ly (0; xy) has a hierarchical struc-
ture, unlike the case of Eq. (6).

The optimization problem (35) comes from the
third requirement described in the beginning of
this subsection; we will provide a detailed ex-
planation in the next two paragraphs. Since
the elements of Dj are integers, the optimiza-
tion problem can be efficiently solved using a
simple brute force method. Also, it is obvious
that the optimization does not yield an ampli-
fied level such that sin (aék) ~ 0, and thus our
method can avoid vanishing classical Fisher infor-
mation regardless of the target value. It should
be noted that this algorithm finally outputs an

estimate 0y together with the realized ampli-
fied levels {ax}?L, in a single run which uses
Ny = N2, ag queries to A and Af in total.

Here, we explain the meaning of the term Z./«
in the optimization problem (35), which is the
objective function when § = 1 (i.e., no regular-
ization). By Theorem 2, the objective function
can be written as koZq(a)/a for even a when
d = 2" is sufficiently large, because we can as-
sume cos (afy/2) # 0 without loss of general-
ity. Now, ke € [0, 1) is a periodic function while
Zq(o)/a is a unimodal function, with respect to
«; the former function oscillates much faster than
the change of the latter unless the noise level
is too big, resulting that the maximum point of
the objective function keoZy(a)/a is close to a
point that maximizes Zq(«)/a within Dj. Fur-
thermore, the numerical simulation shown later
suggests that, at around the maximum point of
KooLg(a)/a, we observe koo ~ 1. This means
that, from Theorem 2, our POVM becomes nearly
optimal i.e., Z. = Z,. Note that the odd classi-
cal Fisher information is comparable to the quan-
tum Fisher information when a1 takes a rela-
tively small value, and therefore the odd « (i.e.,

Accepted in { Yuantum 2024-08-27, click title to verify. Published under CC-BY 4.0. 10



a = 2m+ 1) also takes an important role in such
a regime.

Importantly, if we set Dy, such that Dy, C Dy
and ap € Dy for some k', then the output of this
optimization problem converges to ap . (6*) as the
step k increases, under the condition 0, — 0%
which is actually valid as proven in the next sub-
section. Here, ap(0*) is defined as a solution of
Eq. (35) with Dy, = N and 8, = 6*. The above
discussion says that the factor ap (6*) would be
close to ap = argmax,y Zq(a)/a, which yields
the state (18) and thereby achieves the upper
bound of the total quantum Fisher information.
Thus, our algorithm uses the maximal quantum
enhancement specified by ag in Theorem 1 as the
step k increases. In the following section, we nu-
merically verify these desirable properties of our
algorithm.

The optimization presented above has the fol-
lowing issue that forced us to introduce a regu-
larization function. That is, if ks is too close
to one, the probability 1 — Pp(a;6*) becomes
small for such an o when d > 1, meaning that
we need a large number of shots N to have a
good estimate. To circumvent this issue, we in-
troduce a regularization function Reg(c; ék) such
that Reg ~ 0 at ko ~ 1 and take the objec-
tive function koo Zy/c X Reg rather than kooZq /.
Then, kooZy/a x Reg is not maximized at an o
such that ko is too close to 1. But we want Ko
to be close enough to 1, hence the regularization
term Reg should satisfy Reg ~ 0 only in the nar-
row region of « satisfying ko, ~ 1. We employ the
following regularization function satisfying those
requirements:

sin? (a§k>

Regles ék) - 1 —dcos? (aék) .

(36)

When we employ the parameter § closer to 1, the
regularization function becomes sharper around
a such that koo >~ 1. Hence, we arrive at the ob-
jective function given in Eq. (35). In the numer-
ical simulation shown later, we choose § = 0.95.
Also, the optimization ranges of {Dy} control
the following trade-off. That is, a large « is pre-
ferred to enhance the Fisher information per shot,
but if « dramatically (e.g., super-exponentially)
increases with respect to k, then the estimation
will be failed for a practical N because the likeli-
hood function L (6; x)) has many peaks around

the true target value. A more detailed analysis
related to this trade-off can be found in Ref. [80].

3.5 Statistical properties of the estimator

Although the random variables X () describing
the measurement results depend on each other
and have the hierarchical structure as shown in
Eq. (34), we can prove the following desirable sta-
tistical property of the estimator; i.e., the consis-
tency.

Theorem 3. (Consistency; informal version.)
There exists a unique mazimum likelihood esti-
mator Oy of Lar(0; Xar) such that

cos Oy — (O), (37)

where — means the convergence in probability
as N — oo. In addition, the random wvariable
ar(Xk_1) converges to a constant o, in the sense
of probability as follows

N—o00
(38)

where ay (xr_1) is the optimized amplified level
based on the measurement results xj_q; that is,
{ar} become independent with each other, as
N — 0.

The proof is given in Appendix E, where o}
is given in Eq. (C.5). Theorem 3 means that
the proposed estimator is valid in the sense that
more data leads to more accurate estimation.
That is, unlike the previous method [18] which
uses Bayesian inference based on the measure-
ment with the odd POVM (29) (not the even
POVM), the estimate approaches the true value
with high probability as the number of measure-
ments N increases, as implied by Eq. (37). Note
that the Bayesian inference may return estimates
far from the true value as discussed in [19].

Furthermore, the asymptotic variance of the es-
timator can achieve the Cramér-Rao lower bound
when N is large. To show this result, we focus
on the following total classical/quantum Fisher
information in our method:

M

Tegor (0%) = N Y Ex,, [Te (ag (Xi-1);07)],
= (39)
M

Tqior (0°) = N D Ex, , [Tq (o (Xp-1))] -
o (40)
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The derivation is provided in Appendix D. Since
Theorem 3 states that ay (Xj_1) converges to a
constant o, with high probability as IV increases,
the total Fisher information also converges as fol-
lows;

Ic/q,tot(e*) N :/q,tot(e*) 7 (41)
N N
where :/q,t ot (0%) is the asymptotic value of the

total classical/quantum Fisher information de-
fined as

N

B

Z;:tot (9*) : IC (Oé}:,; 9*) ) (42)

e
Il
—

B

I;,tot (0%):=N

Tq (o) - (43)

T
I

Note that aj depends on the target value 6* im-
plicitly as in Eq. (C.5). Here, we provide the
convergence theorem for the distribution of our
estimator.

Theorem 4. (Asymptotic normality; informal
version.) If O is a mazimum likelihood esti-
mator of Lar(0; Xar), then the following conver-
gence holds;

\/I;tot (arccos (O)) (cos Onr — <(’)>)
SN (0,1-(0)), (49)

where N'(0,1 — (O)?) denotes a centered normal
distribution with variance 1—{0)?, and — means
the convergence in distribution as N increases.

This theorem shows that the distribution of the
estimator cos 0/ gets arbitrarily close to the nor-
mal distribution with mean (O) in large N. In
addition, the asymptotic variance of the estima-
tor is proportional to the inverse of the asymp-
totic value of the total classical Fisher informa-
tion. Thus, our estimator can asymptotically
achieve the classical Cramér-Rao lower bound. In
the next section, we numerically demonstrate how
fast the above two asymptotic properties behave
with respect to V.

As mentioned in Section 3.4 and demonstrated
later, the adaptive optimization (35) yields the
nearly optimal measurement (i.e., Z. =~ Z,) at
each step in a large number of qubits. Fur-
thermore, the output aj of (35) converges to

apc(0*) =~ ap as the step k increases for an ap-
propriate choice of {Dy}. As a result, the prop-
erties of our algorithm lead to the following rela-
tions regarding the total Fisher information:
Zy(as)

* *\ . TH * ~ *+q

c,tot(g ) ~ q,tot( )Mf;>1 NqTB7 (45)
where Ny denotes the total number of queries for
the asymptotic sequence {aj }:

M
Ni:=N> aj. (46)
k=1

Note that this can be rewritten as Nj = Zf\ill Q
for M' = NM and o) = o if (k—1)N+1<1<
kN in the notation of Theorem 1. Importantly,
the most right hand side in Eq. (45) matches
the upper bound in Theorem 1, where we use
Ng (= ap) queries to A or Al in total. In the
next section, we demonstrate that the approxi-
mation errors are sufficiently small for almost all
0*, via an appropriate choice of {Dk}{y:?; that
is, together with the asymptotic normality, our
estimator nearly achieves the ultimate precision
given by the inverse of total quantum Fisher in-
formation (22).

3.6 Summary of the proposed protocol

Here we summarize the notable feature of the pro-
posed adaptive method, with remarks on which
part is theoretically guaranteed and which part is
left for numerical verification.

The goal is to ultimately estimate (O) = cos 6%,
for the given n-qubit implementable operators A
and O; note that, likewise the Grover operator,
the implementability of these operators does not
mean that all the operator components are known
and accordingly (O) is directly computable. The
noise parameter pq are assumed to be known. An-
other important assumption is that d = 2™ > 1.
We do not need other prerequisite for the target
system.

The estimation procedure is illustrated in
Fig. 1, where the amplification level ay, which de-
termines the number of querying ) and the type
of POVM, is updated via Eq. (35) at each step k
(each step contains N shots). This optimization
(35) is the maximization of classical Fisher infor-
mation per queries, Z./«, reflecting the goal to
achieve quantum Fisher information Z, at each
step and g, — ap := argmax,cy Zq(a)/a. Here,
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ap provides the best coherent use of noisy A or Af
in estimating 6*, which is proved in Theorem 1.
From the analysis of our POVM (24) in Theo-
rem 2, the objective function Z./« can be writ-
ten as KooZy/cr, Where koo is a bounded periodic
function regarding «. Then, to achieve the above
goal, the following properties should be satisfied:
(i) max KooZy/cv in a given optimization range
Dy, (3 «) is close to max Zy/a in Dy, and (ii)
koo & 1 (ie., Zo = Z,) at the maximum point.
Note that we gradually expand the range of Dy
as k increases to eliminate the estimation ambi-
guity; see Section 2. In Section 3.4, we provide an
intuitive explanation (not a rigorous proof) that
the properties (i) and (ii) hold, and furthermore,
these properties will be numerically verified in the
next section.

On the other hand, Theorems 3 and 4 guar-
antee the statistical properties of the estimator.
More precisely, Theorem 3 guarantees the consis-
tency, stating that the estimate approaches the
true value with high probability as the number
of shots N increases. Also, Theorem 4 guaran-
tees the asymptotic normality, stating that the
estimator asymptotically achieves the classical
Cramér-Rao lower bound 1/Z7 . (6*). Here, the
(asymptotic) total classical/quantum Fisher in-
formation Z7 (. (6) and Z ;4 (0%) are defined in
Egs. (42) and (43), respectively. Therefore, if the
nearly optimal sequence «y is properly chosen,
the estimator achieves the estimation precision
/T 0t (0%) = 1/I5 1 (0%), and furthermore, it
also achieves the precision ap/(NjZq(ap)) for the
(asymptotic) total queries Nj in Eq. (46), when
the iteration k is sufficiently large. This matches
the precision limit in Theorem 1 (more precisely,
Eq. (22)). We numerically find that this hap-
pens in a moderate number of shots IV, as will be
demonstrated in Figs. 2, 3 and 5.

4 Numerical Experiment

In this section, we numerically verify the perfor-
mance of the proposed algorithm. First, in the
practical (i.e., a few hundred of) measurement
number N, we demonstrate that the asymptotic
properties given by Theorems 3 and 4 hold. Next,
by evaluating the asymptotic value of the total
Fisher information, we confirm that the proposed
algorithm retains a large classical Fisher infor-
mation regardless of the target value 6*. Also,

we show that the desirable relations given by
Eq. (45) hold for a system of dozens of qubits,
that is, the total classical Fisher information
becomes sufficiently close to the total quantum
Fisher information for such systems.

4.1 Asymptotic properties with respect to the
number of measurements

To demonstrate the properties of our algorithm,
we numerically evaluate the root mean squared

error (RMSE) of cos 6 defined as

RMSE {cos OA} = \/Eé [(cosé — cos 9*)2]

1 &
~ J Z Z:ZI (cos 0[i] — cos 6*)2,
(47)

where # is the total number of trials, and 0[i] de-
notes the estimate of ith trial. In the following,
we use # = 300 samples to evaluate the RMSE.
We assume the depolarization noise with the pa-
rameter pq = 0.995. The number of qubits is set
to 20, which corresponds to the system dimension
d = 2%0. We also fix the number of measurements
as N = 500 for each circuit. To obtain the max-
imum likelihood estimates, we used a modified
brute force method, in which the search domain
becomes narrowed as the measurement process
proceeds. The amplified level aj of the kth mea-
surement process (k = 2, ..., M) is determined by
solving the optimization problem (35), where the
maximum likelihood estimate ék,l has been ob-
tained at the (k — 1)th step. Also, in this work,
the optimization range is chosen as

Dp1:={2,2+1,---,2}. (48)

The exponential increase of the number of el-
ements in Dj_; is inspired by the fact that,
when there is no noise, the exponential increment
sequence my = 2F~1 achieves the Heisenberg-
limited scaling [52]; also see the discussion below
Eq. (7).

Figure 2 shows the relationship between the
RMSE Eq. (47) and the total number of queries
Ny calculated as

M
Ny=N> . (49)
k=1
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Figure 2: The estimation error of (O) = cos#* and the total number of queries for several target values (a)—(f). The
x-axis shows the total number of queries to the state preparation A or At in a single trial of our method. The root
mean squared error (RMSE) of the estimator cos f is estimated by the averaged value over 300 trials, as in Eq. (47).
Since the number of total queries in a single trial of our method varies stochastically, the corresponding x-axis value
of the RMSE dot is taken as the maximum value of total queries in the 300 trials. The blue solid and green dashed
lines represent the asymptotic values of CCR/QCR bounds obtained from the corresponding classical /quantum Fisher
information I:/qvtot(ﬂ*), respectively. The orange dash-dotted and the gray dotted lines represent the Heisenberg-
limited scaling and the precision limit derived in Theorem 1 (in the case of Ny > ap = 199), respectively.
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Figure 3: The probability density of the maximum likelihood estimator cosfy; in the case of M = 8. The blue
and orange plots correspond to the results with N = 50 and IV = 500, respectively. The histograms represent the
empirical probability density over 3000 trials, and the solid lines denote the probability density of the centered normal
distribution with the variance corresponding to the asymptotic CCR bound. The upper right panels show the same
plots (but the x-axis represents the absolute error) with much wider range in the horizontal axis to show the existence
of outliers. The larger N becomes, the sharper the density gets around the target value, which demonstrates the
consistency in Theorem 3. Also, the outliers vanish in large N; thus the empirical density is nearly identical to the
normal distribution, which is exactly the asymptotic normality in Theorem 4.

Here, we remark that Ny can be rewritten as
Ny = XM o for M = NM and o) = oy if
(k—1)N 4+ 1 <1 < kN in the notation of The-
orem 1. The red dots indicate the RMSE with
M =3,4,---,12 from left to right in each panel.
Since Ny is a random variable due to the ran-
domness of ay, we plot the RMSE as a function
of the maximum value of Ny in # = 300 trials,
and thus the RMSE dots are overestimated with
respect to the number of queries. In addition, the
classical Cramér-Rao (CCR) lower bound and the
quantum Cramér-Rao (QCR) lower bound are
depicted with the solid blue and dashed green
lines, respectively; these are calculated by sub-
stituting the true value 6* and the asymptotic
sequence {af}L, into L7 g0t (07) in Egs. (42)
and (43). Note that the difference between
the bounds obtained from the # = 300 aver-
age of the total Fisher information (not shown
in the figure), Z./q ot (0%), and the asymptotic
CCR/QCR bounds from Z* (0*) can be neg-

¢/q,tot
ligible, which clearly supports Eq. (41). The or-

ange dash-dotted and gray dotted lines represent
the Heisenberg-limited (HL) scaling RMSE =
O(1/Ny) and the precision limit given by Eq. (22)
with 1 — (O)2, respectively.

Several important features are observed. First,
the CCR and QCR bounds are close to each

other; the first part of Eq. (45) holds. Note that
this good approximation holds even when the tar-
get value 0* /2 is a rational number as shown in
the panel (d); actually, we will see in the next
subsection that this approximation (i.e., the first
part of (45)) holds for almost all * in the nu-
merical simulation. We then find that the RMSE
almost achieves the CCR and accordingly QCR
bounds in all the cases of six target values. That
is, N = 500 is sufficient to obtain the asymp-
totic normality (44) in the chosen noise condi-
tion. We here remark that by taking the number
of shots N (originally, we fix N = 500 for all
iteration steps) as a linear function Ny of the it-
eration step k, as was done in Ref. [46, 63|, the
RMSE of our method can nearly achieve the QCR
bound even for a regime with smaller total queries
(Nq ~ O(10%)). Moreover, the empirical proba-
bility density of our estimator shown in Fig. 3
converges to the normal distribution whose vari-
ance corresponds to the asymptotic CCR bound
as N increases, which directly demonstrates the
asymptotic normality (44). Recall that this key
property holds because the amplified levels are
almost identical to {a}}4L, due to Theorem 3,
which is demonstrated in Fig. 7 in Appendix E.
Moreover, as the step M increases, we confirm
that all of the RMSE, the CCR bound, and the
QCR bound nearly achieve the precision limit;
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the second part of Eq. (45) also holds, in addi-
tion to the first part of the relations and Theo-
rem 4. Therefore, our algorithm estimates the
mean value (O) = cosf* with precision close
enough to the ultimate limit given by Theorem 1
(or more precisely (22)) in the current setup.
Note that the RMSE decreases nearly accord-
ing to the Heisenberg-limited scaling when N is
small. Actually, this quadratic improvement is
more distinct in the case where the depolariza-
tion noise is smaller, which certainly recovers the
previous result [52] in the ideal amplitude estima-
tion; see Fig. 9 in Appendix F.

Finally, Appendix F also provides the case of
pq = 0.99; that is, 1% depolarization noise is
added through each operation A or Af, while
Fig. 2 studies the case of only 0.5% noise. The
panels (a) and (b) in Fig. 9 show that, as ex-
pected, the RMSE loses the quadratic speedup
with respect to Ny immediately and approaches
the precision limit (i.e., the classical scaling re-
garding Ng).

4.2 Efficiency of the estimator

As described in Section 3, the classical Fisher in-
formation (32) vanishes at certain points of the
amplified level a. Here we show that, in the same
numerical experiment as before, our algorithm
can avoid those points thanks to the optimiza-
tion of v and as a result Eq. (45) holds for almost
all 0*. For this purpose, we calculate the asymp-
totic total Fisher information Z7, . (6*) and the
asymptotic queries Ny with equally distributed
10° points of cos@* in (0, 1), based on Eq. (C.5).
Figure 4 shows the target-value dependency
of the Cramér-Rao lower bound in terms of the
total (asymptotic) classical Fisher information
ctot(07), of our method and the following two
estimation methods. That is, the classical Fisher
information for the standard (i.e., no amplitude
amplification) sampling method, which is usually
employed for VQE [2] calculations, is defined by
Eq. (42) with of = 1 Vk. Also, the classical
Fisher information of the method [52, 57, 58],
which uses amplitude amplification yet in a non-
adaptive way, is defined by Eq. (42) with af =
1, af = 2F Yk > 2, where the corresponding mea-
surement is the even POVM (24). Here, the num-
ber of measurement processes is chosen as M = §;
in this case Dy;—1 (M > 8) contains ag under the
chosen noise level.

Standard

5 — Proposed
I ‘ —— Non-adaptive

w

J |
d i Jr » I M I

0.0 0.2 0.4 0.6 0.8 1.0
Target value (©) = cos (6 *)

Figure 4: Comparison of the Cramér-Rao lower bound
in terms of the total (asymptotic) classical Fisher infor-

mation 77 (6*), of the three estimation methods for

several values of *. The black (bottom), orange (top),
and blue (middle) lines correspond to our method, the
standard classical sampling method with af = 1, and
the non-adaptive method with the predefined sequence
af =1, af = 2F (k > 2), respectively. Note that
the non-adaptive method uses more queries than our
method because aj = 2% is the maximum number in
the optimization range Dy _1; the blue line is lower than
the black line at some points of 6*.

First, the black (bottom) line reflects that our
classical Fisher information does not almost de-
pend on the target value, meaning the robust-
ness of the estimator. In addition, compared to
the standard method, we observe an improvement
of about two orders of magnitude for all target
values in our Fisher information. The improve-
ment depends on the noise level, and therefore
the estimation efficiency is further accelerated if
the noise becomes smaller. In contrast to our to-
tal classical Fisher information, the performance
of the non-adaptive method depicted with the
blue (middle) line heavily depends on the tar-
get value. Note that, since the total number of
queries in the non-adaptive method is bigger than
that in our method, there exist some target values
cos 0* such that the total Fisher information of
ours is less than that of the non-adaptive method.
On the other hand, there are some target values
for which the estimation error bound deviates by
about two orders of magnitude from ours. There-
fore, when the amplified level {a}4L, is chosen
non-adaptively, even if the asymptotic properties
of maximum likelihood estimators hold, the esti-
mation efficiency significantly decreases.
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Figure 5: Comparison of the asymptotic total classical
and quantum Fisher information of our method in the
case of 20-qubit system. The middle blue line represents
the ratio between the quantum and classical Fisher infor-

mation: Z; . (0%) over Z%, . (6*) (indicated by A = ¢*

and B = ¢*). On the other hand, the orange (top)
and black (bottom) lines represent N;Z,(ap)/ap over
T; 101 (07) (indicated by A = Limit and B = ¢*) in the
case of M = 8 and M = 20, respectively. The vertical
dotted lines represent the target values corresponding to
0* =m/j, j =2,4 from left to right.

Finally, Fig. 5 shows the ratio of the asymptotic
total classical and quantum Fisher information in
our method. For almost all target values, the ra-
tio of Zj 1o and Iy is close to 1, which is in line
with the results discussed in the previous subsec-
tion. Moreover, as expected from the objective
function in Eq. (35), relaxing the regularization
as § — 1, we confirm that the ratio gets closer
to 1; see Fig. 6, meaning that the first relation of
Eq. (45) holds. Recall now that, in general, the
QCR bound (i.e., the ultimate limit of the esti-
mation precision) can only be achieved when us-
ing the optimal measurement tailored for a given
quantum state. Therefore, the result obtained
here means that our estimation method selects
the almost optimal measurements (or POVM) in
the sense of Fisher information. In addition, the
ratio of NjZq(ap)/ap and Ij . gets closer to
1 as M increases, meaning that the second re-
lation in (45) holds for almost all target values.
Since the right hand side of the second relation
in Eq. (45) is equivalent to the precision limit by
Theorem 1, our algorithm therefore provides the
almost best usage of A and Al in estimating the
mean value from noisy quantum devices.

For the target values 0* = 7/2,7/4, the dif-

ference of Zj i and Z7 . is larger than that for
other target values. Note that such a difference
is also distinct at 0" = 7/3,7/6 when § — 1; see
Fig. 6. This is because the values of (m + 1)0*
(mod 27) obtained from the amplitude amplifica-
tion are limited when 6* /27 is a rational number.
In this case, (m + 1)6* (mod 27) cannot arbi-
trarily get close to 7/2 or 3w/2, meaning that
the classical Fisher information cannot arbitrar-
ily get close to the quantum Fisher information;
see Theorem 2 or Appendix C. The peaks at these
rational points in Fig. 5 are very sharp, because
the values of (m + 1)6* (mod 27) fill the domain
[0,27) exponentially fast in the optimization of
amplified levels with the chosen {Dk}ﬁi 1!, when
the target values shift slightly from these points.
Thus, these anomalous cases can be ignored in
practice.

5 Conclusions

We have proposed a quantum-enhanced mean
value estimation method in a noisy environment
(assumed to be the depolarization noise) that al-
most achieves the precision limit, when the tar-
get quantum state consists of a modest num-
ber of qubits. Here, we derive the precision
limit by evaluating the quantum Fisher informa-
tion for the noisy quantum states with quantum-
enhanced resolution regarding the target mean
value, in the setup without demanding controlled
amplifications. This method employs a modified
maximum likelihood estimation consisting of the
amplitude amplification and the adaptive mea-
surement; the latter is derived from the ideal
POVM achieving the quantum Fisher informa-
tion, and notably, it can be implemented on stan-
dard quantum computing devices without any
knowledge of the state preparation oracle for the
target state. The measurement and the num-
ber of queries of the amplification operators are
adaptively optimized for enhancing the classical
Fisher information toward achieving the quan-
tum Fisher information. Importantly, thanks to
the maximum likelihood formulation and the two
types of measurements with different symmetry
in the probability distribution, our estimator en-
joys some provable statistical properties such as
consistency and asymptotic normality.

To show the effectiveness of the proposed es-
timator, we executed several numerical experi-
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ments. The asymptotic statistical properties are
evaluated in terms of the root mean squared er-
ror (RMSE), for several target values; the re-
sult was that, in all cases, the RMSE saturates
the asymptotic classical and quantum Cramér-
Rao lower bound, with a modest number of mea-
surements. In particular, we confirmed that the
classical Fisher information almost saturates the
ultimate quantum Fisher information in a large
system dimension d = 22 (corresponding to a
twenty-qubit system). In addition, we studied
how the total Fisher information depends on the
target value by evaluating the asymptotic clas-
sical/quantum Cramér-Rao lower bounds. Al-
though the previous researches [18, 57| imply that
the classical Fisher information significantly de-
teriorates for certain target values under depo-
larization noise, the proposed estimator retains a
large Fisher information regardless of the target
value, due to the adaptive optimization.

We believe that the estimation method pre-
sented in this paper paves the way for an inter-
disciplinary research in quantum computing and
quantum sensing; actually a few such trials have
been found in the literature [81, 82|. Moreover,
it may be useful in a wide field of quantum in-
formation technologies beyond the subroutine in
quantum computing algorithms.
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A Fisher information and Cramér-Rao
inequality

Let X be a multi-dimensional discrete random
variable following a joint probability distribution
L(x;0), where 6 is an unknown parameter in R
(in our case, the domain is (0, 7)). Our goal is to
estimate 6 or generally a function of 0, say g(6)
with ¢(-) a bijective function, by constructing an
estimator é(X) for g(6). In general, if é(X) is an
unbiased estimator, i.e., Ex [é(X)] = g(0), then
the mean squared error of é(X) is bounded as

2
e » (%)

This is called the Cramér-Rao inequality [22].
Also, Z. 1ot () is the total classical Fisher infor-
mation defined as

(A1)

2
Tepot(0) == Ex l{gelnﬁ(ﬁ;X)} 1 . (A2
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For simplicity, we write /00 as 0y in what fol-
lows.

Next, let us consider the estimation problem
for a single parameter embedded in a quan-
tum state p(f). Fixing a POVM for measuring
the quantum state, we can obtain the probabil-
ity distribution parameterized by 6 and study
Eq. (A.1). However, there is a freedom for de-
signing a POVM in the quantum case. Utilizing
this freedom, the lower bound of Eq. (A.1) can
in fact be improved; that is, the following quan-
tum Cramér-Rao inequality holds (for simplicity,
g(0) =0) |25, 26, 24, 27, 28]:

1 S 1
Ze(0) ~ Zq(6)
where Z. is the classical Fisher information as-
sociated with the probability distribution for a
POVM {Mj} and the target state p(6). Here, Z
denotes the quantum Fisher information defined
by only the quantum state p(6) as follows:

74(0) = tr [L&pp(0)]
where Lgip is the symmetric logarithmic deriva-
tive (SLD), which is defined as the Hermitian op-
erator satisfying

00p(6) = 5 (Lswop(6) + p(6) Lsw)

Note that the second inequality Eq. (A.3) holds
for any POVM {M}} independent to 6. There-
fore, the quantum Fisher information character-
izes the fundamental limit of estimation precision
that cannot improve via any measurement.

MSE [¢(X)] > (A.3)

(A.4)

(A.5)

B Proof of Theorem 1

Here, we provide a proof of Theorem 1. For con-
venience, we recall it.

Theorem 1. For a given number Ny of queries
to n-qubit state preparation oracles A and AT,
we consider all partitions {a}} (o), € N) of Nq
such that Ny = z{;ﬁl ), for some positive in-
teger M'. Here, each use of A and A" induces
the n-qubit depolarization noise with probability
1 —pq. Then, the total quantum Fisher infor-
mation Lqtor regarding 0 of the quantum state
P (07) == pp(ah;0%) ® -~ @ pp(aly: 07) satis-
fies the following inequalities:

N2 2Nq

(bm) < qPa
Ty tot [PD } = olon 4 (1- 21_”)pévq’

Nq < ap,

and

N, aBpQO‘B
Iq,tot [P%Dm)} <

where ag is defined by

Qp = argmax ap?la
B A T (12l
Furthermore, if Ny < ap or Ny = rag for some
r € N, there exists a partition {),} satisfying the
above equality.

Proof. First, for any parition {a}}, Zq tot [p%'m)]

is given by the sum of each quantum Fisher in-
formation for pp(c;0*) with respect to 6*:

M’ 2a/
(})?pq *

k=1 2%4— (1— Q—n)pgé;C

M/
= Z Zy(a).
k=1

Iq,tot [p(Dbm)] =

(B.1)

Considering
Iy(a) = a2p(21a (21" + (1 — 217") Pq);

we can directly confirm that Z,(«)/ca is an in-
creasing function in the regime 0 < a < ag, from
the definition of ag. Note that if the argmax in
the definition of ap returns multiple values, we
take the minimum as ap. In the case of Ny < ag,
for any partition {a} }, o, < Nq < ap holds, and
therefore we have

M/
Z Iq(o% Z ak
k=1

/
A
N
<Z :Iq(Nq), (B.2)
where we recall N, = S0 lak The second

equality holds for the following partition: M’ =1
and o] = Ng.

Next, we consider the second case Ny > ap.
By definition, Zy(a)/a < Zq(ag)/ap holds for
any a € N, and this leads to

& aj, Zy(oB)

ZI ak Z —7 (OéB)

aB aB

Ny

(B.3)

If there exists a natural number r such that Ny =
rap, then the first equality is saturable for the
partition: M’ = r, o) = ap for all k. This
completes the proof of Theorem 1. O
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C Analysis for the POVMs

Our problem is to estimate the target parame-
ter § € (0,7) embedded into the noisy quantum
state (15). Here, let us consider the following
POVM:

The POVM has the following meanings; My and
M correspond to the measurement in the sub-
space basis |0),, and AT |1), respectively, and M
corresponds to the event such that the measured
state is not in the subspace Span {\O)n AT |1>}
Now, the classical Fisher information Z.(0) for
the probability distribution
{tr[Mypp(e;0)]}iy, a=2m+2  (C.2)

is calculated as follows:

Ti(6) = 4(n')* (m + 1) sin® [2(m + 1)6] {77’ +

— 4(7]/)2 (m + 1)2 d"?’ + 2(1 — 77,)

sin? [2(m + 1)6]

dn' +2(1—17')

21— of) _ dlo)? cos? [2(m + 1)0 } d=2

, -1
(1 + 2(1_77)>2 — 1+ sin? [2(m + 1)6]

d(n’')? dn/
) dy +2(1—n 21 =)\ "2 d()2(2m + 2)?
<100 m-1? S (10 ) = G €3

where 7' = p? = p2"*2. Since a function

2?/(K + 2?), z € [~1,1] with a positive con-
stant K is maximized at x = 41, we obtain
the third line, and therefore the condition for
the equality is given by sin[2(m +1)§] = +1.
The most right hand side in the final line corre-
sponds to the quantum Fisher information Z(«)
for a = 2m + 2. Thus, for 6 satisfying the equal-
ity condition, the POVM (C.1) is optimal in the
sense that the corresponding classical Fisher in-
formation gives the quantum Fisher information.
Moreover, in the limit of d = 2" — oo, the
classical Fisher information is equal to the quan-
tum Fisher information except for (m, ) satisfy-
ing sin[2(m + 1)0] = 0. Note that, in general,
the eigenstates of SLD operator can be used to
construct the optimal measurement that exactly
achieves the quantum Fisher information [27|. In
our case, the POVM of optimal measurement
consists of quantum states in the form of superpo-
sition of |0), and AT |1), where the coefficients of
the states depend on the unknown target value;

the POVM (C.1) is obtained by removing this
target-dependency in the coefficients.

Although the POVM (C.1) is an opti-
mal measurement for certain 6 satisfying
sin [2(m + 1)0] = +1, its implementation is non-
trivial especially for M; because Af|I) is un-
known. Note that the optimal POVM obtained
from the SLD operator has the same difficulty in
implementation. Therefore, in this paper, we fo-
cus on the 2-valued POVM (24), which can be
obtained from the POVM (C.1) as follows:

M(()even) — My, Ml(even) — My + My, (C.4)

This POVM removes the element M; from the
original 3-valued POVM (C.1), meaning that the
quantum Fisher information is not achieved in
general.

The classical Fisher information associated
with the 2-valued POVM is calculated as, assum-
ing cos[(m + 1)8] # 0,
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(2m + 2)2n' sin? [(m + 1)6)

Iéeven) (m; 9) _ =

1—1ncos?[(m+1)0] + i cos? [(nm+1)9] < l_d

sin? [(m + 1)0] (

7 2/ cos? [(m + 1)9])

1-n'
dn’

I(even) (m)
4 1— 1/ cos? [(m + 1)f]

+dmm;&ﬂm(rfﬁﬁ42wmﬁum+1m)

s 2
+ 1)0] —1
= I(even) — [(m (1 2 ) ]

0 T o Tm 1 108 + et ) T ) (C5)

where we recall ' := Pq p2m+2 and in the final line, we defined ¢, as

1—n 1—n' ., >
i0) = 1-— -2 1)0] ) . C.6
eulmi0) = et (1= 5 = 2 cost [+ 10 (©6)
\

This factor e, vanishes exponentially fast Now, when /27 is an irrational number, the set

with respect to the number of qubits n if
cos [(m + 1)6] # 0, as follows:

1—of 1__0(1)
n' cos? [(m + 1)6] 2» AL
(C.7)
where we recall d = 2". Here, we define the coef-
ficient of I(geven) (m) as k:

len(m; )] <

sin? [(m + 1)6)
1 — 1 cos? [(m+ 1)0] + e,(m; 0)

R =

(C.8)

Then, Eq. (C.5) is expressed as

1—
Iéeven)(m; 9) _ /{Iéeven) (m) [1 +9 - n ] ]

lim I(even) (m;0) =

d—o0

T8 (m) sin? [(m + 1)6)]

of complex numbers {01, with suf-

ficiently large m fill the unit c1rcle in the com-
plex plane. Thus, there exists an m such that
cos [(m + 1)0)] is arbitrarily close to 0 and accord-

ingly

sin? [(m + 1)6)

=i = € (0,1
froo = " T 1= 7’ cos? [(m + 1)6] 0,1)
(C.10)
is arbitrarily close to 1. Therefore, from

Eq. (C.9), the classical Fisher information suffi-
ciently approaches the quantum Fisher informa-
tion, under certain condition on (m, €); moreover,
taking an appropriate m, we can make the con-
vergence exponentially fast with respect to the
number of qubits (recall d = 2™ with n the num-
ber of qubits). This establishes Theorem 2.

Here we point out that there is discontinuity
in the classical Fisher information, which implies
the instability of estimation. For this purpose, let
us see the Fisher information in the limit d — oo:

cos[(m+1)0] =0

) (C.11)
, cos[(m+1)0]#0

1 =1 cos? [(m+1)6)

That is, for cos[(m + 1)0] # 0, we obtain

lim Z(°V° (m; 0) < 4/ (m + 1)? =

d—o0

lim I(even) (m).

d—o0

(C.12)

The first equality holds for cos[(m + 1)0] = 0 even though zeven) (m; @) vanishes at such points as
shown in Eq. (C.11). Therefore, the classical Fisher information is not continuous at cos [(m + 1)6] = 0

in the limit d = 2" — oo.
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Finally, as for the other 2-valued POVM (2

9), comparing the Fisher information

Zy)c(a;0) for

o = 2m + 1, we can obtain the following inequality for d > 2:

(2m + 1)*(p2m™+1)? sin® [(2m + 1)9]

79 (1m; 9) =

4P (m; 0) (1 - PH (m;0))

< (2m+1)%p2Cm ) < Ty (2m +1).  (C.13)

Hence, unlike the even classical Fisher information, the odd classical Fisher information is always
smaller than the quantum Fisher information even when the number of qubits increases.

D Statistical structure of the algorithm

In our model, the distribution of random variables X s has a hierarchical model as follows;

E iBM,
where F,, 1is

Pp(am(:cm_l); 9) .
formation as

Ic,tot (9) = -

= iM&

-y ¥

m=1 :D,,L:(.Z’(l),"' 7w(m))

P> Z

m 1$(m)mm 1= (,1; 1)

S

2(m=1))

S

:_Zzﬁmlxmlv 2891HF<

m=1Tm-1 z(m)

S

== Z Z Em 1 a:m 1,0)Ey(m) |:39 lnF (Y( m).

m=1Tm—-1

where we used the conditional probability (D.1)
in the third line. Y™ denotes a random variable
following Fp, (y"™); com (1), 0), with 3™ €
{0,1,--- , N}. Note here that x,,_1 is not a ran-
dom variable, but a realized value of X,,,_1. The
expectation in the final line corresponds to the
classical Fisher information in Eq. (32) multi-
plied by N. Thus, we can write the total classical
Fisher information as

M
)=N Z Ex,, , [Zc (am(Xm-1);0)].

m=1
(C.3)

Ic,tot (‘9

Similarly, we define the corresponding total quan-

HF(

the probability function of Binomial

am(mm 1) 9) (D.l)

distribution with success probability

Substituting Eq. (D.1) into Eq. (A.2), we obtain the total classical Fisher in-
Ex,, [08 10 F (X0 00 (X 1), 0)]
892 In F,, (x(m); am (Tm—1), 0) Lon(€;0)

892 In F, (:U(m); am (Tm—1), 9) F, (x(m); am (Tm—1), 9) Lon—1(m—1;0)

am(Tm-1), «9) F, (x(m);am(xm_l),H)

am(@m-1),9)] (D.2)

tum Fisher information as

M
=N Z Ex, , [Iq (Oém(mel))]'

m=1
(C.4)

Ty ot (0)

As proved in the following subsection,
am(Xm-1) = o, holds with high probability for
all m as N increases, where o}, is a solution of
the following optimization problem for the target
value 0 (not an estimate 6):

Ze(e0)
'= argmax
a€Dy, 1 o

sin? (af)
1 —dcos? (ah)’

*
am

(C.5)

where we define af = 1. Using Eq. (C.5), the
asymptotic values of the total classical/quantum
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Figure 6: Comparison of the asymptotic total classical
and quantum Fisher information of our method in the
case of 20-qubit system and M = 8. The blue (top)
and orange (bottom) lines represent the results for the
case of the regularization parameter § = 0.95 and § =
0.99, respectively. The vertical dotted lines represent the
target values corresponding to 6* = 7 /j, j = 2,3,4,6
from left to right.

Fisher information are given by

M
:/q,tot ('9) =N Z Z-c/q (a;kn; 0) . (06)

m=1

Then we have
7, 0 M Ay )
. c/q,tot _ _ Tc/q,tot

i T 5 30 =
(C.7)

which characterizes the variance of our estimator
in the asymptotic regime.

Finally, we show the impact of § on the asymp-
totic total classical/quantum Fisher information
in Fig. 6. Here, the experimental settings are
equal to those in Section 4. As expected from
the form of the objective function (C.5), we con-
firm that the ratio of Z7, . . (0) gets closer to 1
when 6 — 1. Also, in the case of § = 0.99, the
peaks at the rational points 7/j, (7 = 2,3,4,6)
become more distinct than the case of § = 0.95.

E Proof for statistical properties

Let 0* € (0, ) satisfying cos 8* = (O) be a target
value to be estimated. Since the objective func-
tion in Eq. (C.5) vanishes at af* = Ir (I € Z),
then the definition of «, leads to aj;,0* # In for

m = 2,3,--- ,M. Thus, we can take an integer
zm satisfying

1
6" c O — (ZTW, i w), ¥m, (E.1)
am am

and define Oy := ﬂ%]:l@(m).

Theorem 3. There exists a unique mazrimum
likelihood estimator 0y of Lar(0; Xar) such that
cos Oy — cos0* (convergence in probability) with
the probability approaching 1 as N — oo, and

lim Plop(Xk—1) =a3] =1 (E.2)

N—oo

holds for allk=2,--- , M.

As a demonstration of Theorem 3, we pro-
vide an example of the realized amplified levels
in Fig. 7. Here, the experimental settings are
equivalent to those in Section 4.1. Figure 7 shows
that the amplified levels converge rapidly to the
asymptotic values, and therefore the total Fisher
information and the total number of queries also
show rapid convergence.

Proof. Let E(m) be the following event
ap(Xk—1) = af holds for all £ = 1,2,--- ,m,
and there exists a unique maximum likelihood
estimator 6,, of L (0; X,,) which converges to
0*. Note that if we establish ém — 0*, then this
immediately leads to cos 0, — cos6* due to the
continuous mapping theorem.

In the case of m = 1, the likelihood function
L£1(0; X1) is equivalent to Fi(X(1;a3,6). Be-
cause the success probability Pp(aj;-) : (0,7) —
(0,1) is injective and the likelihood equation

oI Fi(XW;at,0) =0 (E.3)

has a unique solution when a solution exists, it
follows that

PE(1)] -1 as N — oo, (E.4)

from the theory of maximum likelihood estima-
tion [22].

Here, we assume that P[E(M — 1)] — 1 for
M > 2. For simplicity, we identify the classi-
cal Fisher information Z.(«;#) with the objec-
tive function in Eq. (35) in this proof. Fixing «
in the objective function Z.(«; #), we can confirm
that Ze(a; Op7—1) converges smoothly to Z.(c; 6%)
when 0y;_1 — 6*. If there is a unique point maxi-
mizing Z.(a; 0*) in the range of Djs_1, then there
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(a) cos@* = 0.042
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(b) cos0* = 0.5

Figure 7: Convergence of the amplified levels ay, with respect to N. The color bars represent the average of the
realized amplified levels normalized by its asymptotic values o, over 3000 trials, and the error bars denote the standard
deviation. With a fixed value of k, the three color bars show the results corresponding to N = 5 (left, blue), N =
50 (center, orange), and N = 500 (right, green), respectively.

exists some small number ¢ > 0, and the follow-
ing implication holds

(Ji-s-o

< 6/} Q{QM(XM_l) = aj‘vf},
(E.5)
where {-} denotes a set of events such as

A

GM—l(wM—l) — 9*‘ < 6/} .

{ZBM—1 : (E.6)

Note that even if the maximum point of Z(c; 0*)
in Djs_1 is not unique, Eq. (E.5) also holds when
we adopt the minimum value in a subset Dp;_y
of Dys—1 as the realization of aps(Xps—1). Here,
the subset Djs_1 consists of elements in Djys_;
satisfying

7. (Oé; éM—l) - Iéf}‘j"i)l (éM—l)‘ < €Ethreshold;
(E.7)

where €threshold 18 @ small positive number, and

IC(TR;);)I (éM_1> = max Z. (a; éM—l)- (E.8)

aE€EDprq

Note that aj, is defined as the minimum value of
Dyy_1 for 6*. In the limit of §y;_1 — 6%, Dy_q
for éM_l has the same elements in Dj;_q for 0,
and therefore the implication in Eq. (E.5) holds.
From the assumption P[E(M — 1)] — 1, there

exists N € N for all 7 > 0 such that

PlEM = 1) 0 {|fu -0

<6/}] >1—n

(E.9)

holds for all N > N{. The implication in
Eq. (E.5) yields the following inequality

< 6/}]
< P[BE(M - )n{an(Xn1) = ajy ]
< P [{an(Xp1) = o VE}|.

Note that if op(xr—1) = o« holds for all
k = 1,2,---,M, then the likelihood function
L (0;xpr) can be written as

1—n< P[EM=1)0 {0y -0

(E.10)

M

LM (‘97 mM) = Fm (l,(m)’ (0779 (mmfl) 30>
m=1
T m;az,,0).  (B.11)
ngl F, (a: s, 0). .

On the other hand, Lemma 2 guarantees the ex-
istence of some natural number N3 such that

PIA]>1-n, (E.12)

for all N > N3, where an event A is defined as
A M F, (X (m);afn,G) has a unique maxi-
mum point éM such that éM — 0*.

From Egs. (E.10) and (E.12), if we choose N >
max{ N}, N5}, then
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PE(M)]

=P :{[,M (0; X37) has a unique maximum point 0y s.t. 6y — 9*}ﬁ{ak(Xk_1) =ajVk=1,2,-- 7]\/[H

=P :Aﬂ{ak(Xk_l) = Oéz Vk}} >1— 2.

In conclusion, we have proved that P [E(M)] — 1
also holds, and the mathematical induction es-
tablishes the theorem.

O

To prove Lemma 2 or Eq. (E.12), we first estab-
lish the existence of a solution for the likelihood
equation on Fj,.

Lemma 1. A natural number 2 < m < M
is fized arbitrarily. Suppose Plam(Xm-1) =
o] — 1 as the number of measurements N in-

P [Fm (X<m>; a;‘n,e*) > F, (X(m>; al, 9)}

M
= (m) - i i i ) .U. ) * _ = af
P { n!;[l F, (X ,am,H) has a unique maximum point 0; s.t. Oy — 0 }ﬂ{ak(Xk 1) = oy Vk’}]

(E.13)

creases, then F,(X(™): o 0) has a unique maz-

imum point 0™ in ©,, such that 0™ — 6* with
the probability approaching 1.

Proof. We first show

P [Fm (X<m>;a:n,9*) > F,, (X<m>;a;*n,9)} 1

(E.14)
holds for any 6 € ©,,,, 8 # 6*. The Lh.s can be
transformed as

= Z Z Lom—1 (®m—1;0%) Fpp, (:n(m); am(Tm—1), 0*) l{Fm (X(m); ar, 0*) > F, (X(m); Q. 9) }(x(m))

z(m) Tm—1

= 2 D

o EDpm_1  Tm-i 2(m)
am(Em—1)=al,

Lo—1 Z F,, (ac(m); al, 9*) I{Fm (X(m); a, 9*) > b, (X(m); Q. 0) }(x(m))

= Z P lam(Xm—1) = a},] Z F, (x(m);a;n,ﬁ*) 1{Fm (X(m);a%,9*> > Fp (X(m); a;kn,e)}(:c(m)),

ol EDpm—1 z(m)

where 1{-}(x) denotes an indicator function. By
assumption, the summation for o/, of the last
line vanishes except for the term with o], = o,
as NN increases. Thus, the remaining term can be
written as

P [Fm (Y<m>; al, 0*) > F, (Y(m>; al, 0)] ,
(E.16)

where Y (™) denotes a random variable following

Bin (N, Pp (a,; 0%)). (E.17)

Since the probability Pp (a,;0) is an injective
function with respect to 8 € ©,,; and its support

is independent to 6, these conditions yield

P By (Y;05,,07) > Fu (Y™ 05,,0)| = 1,

(E.18)
as N — oco. We can prove this from law of large
numbers for independent Bernoulli trials on Y (")
and the non-negativity of the Kullback-Leibler
divergence. Combining Egs. (E.18), (E.15), we
complete the proof of Eq. (E.14).

By definition of ©,,, we can choose a small
positive number 0 such that (6*—4,60*+3§) C ©,,.

Let B4 be the following events
B. F, (X(m);aj‘n,ﬁ*) > F, (X(m);a;"n,H* + 5)
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holds.
Considering z(™) ¢ B, NB_, the equation

0

25 (E.19)

F, (:c(m);a*m,ﬁ) =0,

has solutions, and we write 0(™) as the solution
closest to 0* among them. Since the difference
between 0™ and 6* is less than d; and for all
€ > 0 there exists N* € N such that P[B4]| >
1 —eforall N > N* by Eq. (E.14), we obtain

P[l6e —¢*| <] > P[By NB]
>1— 2 (E.20)
In  addition, the  likelihood  equation

Eq. (E.19) has a unique solution maximiz-
ing Fp,(z™);a%,0) in O, if a solution of
Eq. (E.19) exists in ©,,. Therefore, 6™ is a
unique maximum point of Fj, (z(m) ;a;‘mﬁ) in
O

O

Applying Lemma 1 to all the functions {F,,},
we establish the existence of a unique maximum
point of the product function II,, F,.

Lemma 2. Suppose Plog(Xj—1) = of] — 1
for all k = 2,---,M and 0V — ¢* (con-
vergence in probability). Then, there exists a
unique mazrimum point O of the product func-
tion IM_ F, (XM a* 0) in (0,7) such that
O — 0 with the probability approaching 1 as
N — o0.

M

Proof. From the assumption and Lemma 1, we
can choose N* € N for all € > 0 such that the
probability of occurrence of the following event
C is bigger than 1 — € for all N > N*;

C For all m, 0(m) exists in ©y.

Here, 0™ denotes a (unique) maximum point of
F,, in ©)7. Actually, F), is globally maximized
at the point 8™ because of the periodicity of
F,:

max Fp, (x(m); ar, 6) =F, (a:(m); Q. é(m)) .

0e(0,m)

(E.21)
Let Opax (émin) be the maximum (minimum)
value of a set {#(™}. Since the product function
IM_| F,, is a continuous function with respect
to 6, it has a maximum point Oy in [émin, émax].
émax and émm themselves cannot be a maximum
point, because the gradient at these points does
not vanish as follows. Since émin < f(m) holds,
we obtain

9 1 (m).
%plFm(:n ;am,0>

gmin

Fip1---Fu

emin

M
Z OF;
k=1

OFy,
R X 1 k—1 86
kﬁ(k)?égmin

Fiy1--- Fa >0,

Hmin

(E.22)

where F,,, > 0 and OpF,,, > 0 for 6 < o(m)
lead to the final inequality. In the same way, we
can prove that the gradient at Orax is negative.
Therefore, we obtain

P |there exists a maximum point 0, of H F,, (X(m); ar, 0) in ©,, such that 0y & 6*

m=1

> P[C]>1—g¢,

where we use the fact that émin, émax — 0* yields
Op — 0.

Finally, we show that II,,F}, is globally
maximized at éM. For simplicity, we write
Fo (2™ 0) as F,,(6). By Taylor’s theorem,
there is a scalar ¢, between 6(m) and éM such

(E.23)

that

In F,, (07 —1In F, (rr)

_ 5 IHF2m(Cm) (é(m) B 9M)2.
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Here, the second derivative in Eq. (E.24) can be
upper bounded by N and a positive constant K
(independent to N) as

_‘W (é(m) - 9M)2 _ % (é(m) _ éM)Z'

(E.25)

Recalling that F;(6) has a single peak in (0, 7),
for an arbitrary A ¢ ©)s, we obtain

In Fy(Gr) — In Fy(\)
o=
_ N |pgsin (c1)(zM /N = Pp(1l;¢1)) NL
2 P'D(l; Cl) [1 - PD(I;Cl)] 2 ’

(E.26)

where ¢; is a scalar between A and éM, and
L > 0 is a positive constant. = Combining
Egs. (E.21) and (E.24)—(E.26), the following in-
equalities hold:

M A A M A
Fn(0r) F1(0ar) Fr(01r)

In > In + In -
2500 RN T )
N ~ M A(m) 2

>3 L‘)\—HM’—KZ 0m _ 4y, 1
27)

For sufficiently large N, the second term in the
square bracket becomes small compared to the
first term, and therefore we conclude that

[T EnBr) > TT Fu() (.28)
Consequently, the maximum of IIM_, F,,, in Oy,
becomes the global maximum in (07 ).

O

Finally, we prove that, when N is large, the
asymptotic variance of our estimator can achieve
the classical Cramér-Rao lower bound.

Theorem 4. If Oy is a mazimum likelihood es-
timator on Lar(0; Xar) such that Oy — 0% (con-
vergence in probability), then the following con-
vergence holds;

T ot (0%) (cos Opr — cos 0*> — N(0,sin? 6%),
(E.29)
where N denotes a centered normal distribution
with variance sin®@* and — means the conver-
gence in distribution as N increases.

Proof. Using the Taylor’s theorem, we can ex-
pand 9 In Ly(0; Xas) around 6 = 0* as

(99 lnﬁM(e;XM) = 89 lnL‘M(G*;XM)
+ 0 In L (6%; X11)(6 — 0%)
1
+ 533 In L (05 Xar)(6 — 072,
(E.30)

where 8’ denotes some real number between 0 and
0*. Since 0); is a root of the likelihood equation,
we obtain

~ . A
Ig,tot(e*)(eM -0 ) = 73 —

where for simplicity we introduced the random

variables A, B, and C' defined as

A= <Z:,t0t (9*)) e

(E.31)

OpIn Lpr (0% Xar),
* ) L g2 *
B = - (Ic,tot(a )) 80 In [’M(e ;XM)’

-1 A
€ = (2 @) 0 a0 Ko ).

Here, we show that A converges to the stan-
dard normal distribution. To apply Lemma
3, we first calculate the characteristic func-
tion of A replacing X7, oy, = Yar, o, where
Yy = (YO ... YIM)y is a random vec-
tor whose element follows Binomial distribution
Bin(N,Pp («f,;0%)) independently. That is, for
t € R we have

E [exp(it A‘XM am— Y,k )}

I:tot 9*
M .
m=1 I:tot
B ﬁ ( 2 T(ak;0%) 1 ))N
m=1 2N Zm 1 Zc(ag,; 0%)

where Yl(m) denotes a random variable following
Bernoulli distribution with the success probabil-
ity Pp(a,;0%), and f,, is the probability func-
tion of Yl(m). Thus, Lemma 3 yields

A}i_r}n(DOE [exp(itA)] = exp <—t22> . (E.33)
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Therefore, A — N(0, 1) holds.

Next, we consider the convergence of B. Ac-
cording to the Chebyshev inequality, for all ¢ > 0
we obtain

E[(B-1)]

PB-1|>d< >

- (E.34)

Here, (B — 1)? is upper bounded, and the expec-
tation of (B — 1)? replacing X s, am — Yar, o,
also converges to 0 as follows. For simplicity, we
define W,,,(Y ™)) and w,, (Y (™) as

W (Y™) .= 32 In F,,, (Y™ o, 6%)

I m?

—E [83 In Fm(Y(m); Q. 9*)] ,

W (V™) := 03 I fr (V™ 0%, 6%)
~B (0§ fn (s}, 07)]

respectively.

E[(B—I)Q‘

qu7ozm—>YM,Oc¢J
~ Var [ag In T, F (Y™ 0% 9*)}
B (200007
S B[ W (Y)W (Y0
R 20 (09)]

M
- [I:,tjmf 3 B[]

1 X E w2, (7))
= — 5 — 0,

N[ Ze(ags 07)]

(E.35)

where we used I (0*) = —E[07 In[[}_, Fy]
for the first equality. Thus, Lemma 3 establishes
that B — 1 holds.

Since N*185’ InLp(0';2p) is also upper
bounded, Opr — 0% — 0 yields C — 0. To sum
up the above asymptotic properties, we conclude
that the following convergence holds;

T ot (07)(00s — 67) — N(0,1). (E.36)

In addition, the delta method [22] yields a more
suitable expression

I*

o tot(0%) (cos s — cos ) — N(0,sin? 6%).
(E.37)
O
To complete the proof of Theorem 4, we finally

show the following lemma.

Lemma 3. Let h(xy, g, - ,ap) be an up-
per bounded function on xpy € {0,1,--- ,N}M
and Y™ (m = 1,2,---,M) be an indepen-
dent random wariable following Binomial dis-
tribution Bin(N,Pp (af,;0%)).  Suppose that
E [h(Ya, 03, - ,a),)] converges to some con-
stant B as N — oo, then the following conver-
gence holds

Jim B [A(Xar,02(X1), - ang(Xar1))] = 6.
(E.38)
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Proof. Expanding the left hand side in Eq. (E.38), we obtain

E [h( X, a2(X1), -+ anm(Xar—1) ZEM xar; 0 ) h(xear, ao(xr), -+, an(xar—1))
= Z LM(mM;H*)h(mM,ag(ml),--- ,OéM(iBMfl))

ag(xp_1)=a; Vk

+ > Lyr(ar; 0 )h(war, ag(@r), - o (®pr—1))
k(wk ajlj)wyéa* Jk

- ¥ H i (20707, 0%) Bl@ar, 03,0 ady)

T\ =
ag(Tk— 1)—04 Vk

+ > Lar(xar; 0)h(xar, co(xy), - onr(zp-1))

@)
ag(zr—1)#ay Ik

=E[h(Yr, a5, ,aiy)]
+ > Lor(xar; 0°)h(Tar, ao(xr), -+ s ap(Ta-1))

Y,
ag(zp_1)#a) 3k

M
- ¥ [T B (205, 0%) h(@ar, 03, ady)- (E.39)

T
ag(xr_1)#a) Ik

The above expression yields the following inequality

B [2( X, 02(X1), -+ o (X 1)) — B
< |E[h(Yar, a3, apy)] = B
+ > Ly(@ar; 07) (W@, ao(@r), -+ o (@ar-1))]

T M
ag(zrp_1)#a) Ik

DY

Ty
ag(zg—1)#og Ik

Fon (20): 05, 0) Ih(@ar. 03, - o)

==E

1

M
c(n_prtay I m
where ~y is the upper bound of h. The convergence of amplified levels implies that for all € > 0 there
exists N* € N such that

M
* * * €
Plog(Xp_1) = af VK] = > L (xpr;0%) = > II Fn@™;a;, 9)>1—%,
x x m=1
ak(a:k—ljyza;; vk Oék(mk—lj)wiak vk
(E.41)

for all N > N*. Combining Egs. (E.40), (E.41) F Additional experiment
and the assumption for the convergence of _ _
E [h(Yar, 0, -, a%y)], we obtain Eq. (E.38). F.1 Impact of calibration errors

Here, we provide the numerical simulations to

- clarify the impact of calibration errors of p, on
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the performance of our method. If an estimate of
pg contains some calibration error, the resulting
estimator can be biased even in the asymptotic
case. The experimental settings are the same
as those in Section 4.1. Figure 8 shows that in
the current setting, the +0.1% calibration errors
can be ignored up to ~ 10° queries. In the case
of the +0.5% calibration errors, the estimation
performance deteriorates even for small queries
~ 6 x 10%. The results indicate that our method
requires a relatively high-precision estimate of pq
that have the precision comparable to the target
precision of cosf*. Note that, in the quantum
amplitude estimation problem, the previous pa-
per [57] provides the (non-adaptive) multiparam-
eter estimation method with respect to both a
target parameter and a noise parameter. In ad-
dition, they also show the robustness of target
parameter estimation against the estimation er-
ror of the noise parameter in terms of the Fisher
information matrix. Although a similar extension
of our adaptive method is possible, it falls outside
the scope of this paper.

F.2 Asymptotic properties in several noise pa-
rameters

We provide additional results to confirm the
asymptotic property of our estimator in several
noise parameters. Here, all settings except for
the noise parameter are the same as Section 4.1,
and the noise parameter is set to pq = 0.999 (i.e.,
0.1% depolarization noise) or p; = 0.99 (i.e., 1%
depolarization noise). In Fig. 9, we can confirm
that the RMSE achieves the CCR bound (also
QCR bound) sufficiently in N = 500 as in Sec-
tion 4.1.
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Figure 8: The impact of calibration error of p, on the estimation performance. The plots indicate the root mean
squared error (RMSE) of the method, evaluated with 200 trials, using the estimated noise parameter p, including
+0.1% or £0.5% calibration errors. The true value of pq is taken as 0.995. The green solid line represents the
(asymptotic) QCR bound under the perfect calibration. We note that the RMSE is plotted as a function of the
maximum value of N in the trials because of the randomness of N.
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Figure 9: The estimation error of (O) = cosf* and the total number of queries under several depolarization noise
parameters. The root mean squared error (RMSE) of the estimator cos 6 is evaluated by 300 trials, and the red dots
correspond to M = 3,4,---,12 (or 14) from left to right. Since Ng in Eq. (49) is a random variable in our method,
the RMSE is plotted as a function of the maximum value of Ny in 300 trials. The blue solid and green dashed lines
represent the asymptotic values of CCR/QCR bounds obtained from the corresponding classical/quantum Fisher
information I:/%tot(ﬁ*), respectively. The orange dash-dotted and the gray dotted lines represent the Heisenberg-
limited scaling RMSE = O(1/N,) and the precision limit derived in Theorem 1, respectively.
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