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Abstract We classify simple linearly compact n-Lie superalgebras with n > 2
over a field IF of characteristic 0. The classification is based on a bijective corre-
spondence between non-abelian n-Lie superalgebras and transitive Z-graded Lie
superalgebras of the form L = @?;llL j»wheredimZ,_; =1,L_ and L,_; gener-
ate L, and [Lj,L,—j_] = 0 for all j, thereby reducing it to the known classification
of simple linearly compact Lie superalgebras and their Z-gradings. The list con-
sists of four examples, one of them being the n + 1-dimensional vector product
n-Lie algebra, and the remaining three infinite-dimensional n-Lie algebras.

0 Introduction

Given an integer n > 2, an n-Lie algebra g is a vector space over a field IF, endowed
with an n-ary anti-commutative product

Ang_>g> al/\"'/\an’_)[alw"aan]?

subject to the following Filippov-Jacobi identity:

[ala"'7an—17[b17'"7bn]] = [[al7-~-7an—l;bl]ab27~-~7bn]
+[bla[ala'~'7an71ab2]7b37"'abn]
—l—~--+[b],...7bn,1,[al,...,an,l,bn]]. 0.1

The meaning of this identity is similar to that of the usual Jacobi identity for a
Lie algebra (which is a 2-Lie algebra), namely, given ay,...,a,—1 € g, the map
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Dgyy,..a, 8+ @ givenby Dy, o  (a)=lai,...,a,_1,a],is a derivation of the
n-ary bracket. These derivations are called inner.

The notion of an n-Lie algebra was introduced by Filippov in 1985 (L1). In
this and several subsequent papers, (12} [18; [19; [20), a structure theory of finite-
dimensional n-Lie algebras over a field FF of characteristic 0 was developed. In
particular, Ling in (20) discovered the following disappointing feature of n-Lie
algebras for n > 2: there exists only one simple finite-dimensional n-Lie algebra
over an algebraically closed field F of characteristic 0. It is given by the vector
product of n vectors in the n + 1-dimensional vector space V, endowed with a
non-degenerate symmetric bilinear form (-,-). Recall that, choosing dual bases
{a;} and {da'} of V, i.e., (a;,a’) = &;j,i,j =1,...,n+ 1, the vector product of
n vectors from the basis {qg;} is defined as the following n-ary bracket:

[ail yees iy = 8i|,~--7in+1aln+lv
where €; . ; ., is a non-zero totally antisymmetric tensor with values in F, and
extended by n-linearity. This is a simple n-Lie algebra, which is called the vector
product n-Lie algebra; we denote it by O".

Another example of an n-Lie algebra appeared earlier in Nambu’s generaliza-
tion of Hamiltonian dynamics (23). It is the space ¢ (M) of & *-functions on a
finite-
dimensional manifold M, endowed with the following n-ary bracket, associated
to n commuting vector fields Dy,...,D, on M:

oo fu] =det | oovnrn.. U . 0.2)

The fact that this n-ary bracket satisfies the Filippov-Jacobi identity was noticed
later by Filippov (who was unaware of Nambu’s work), and by Takhtajan (25),
who introduced the notion of an n-Poisson algebra (and was unaware of Filippov’s
work).

A more recent important example of an n-Lie algebra structure on € (M),

given by Dzhumadildaev (6), is associated to n — 1 commuting vector fields Dy, ...,D,_
on M:
h . In
D ... D
(f1y- .o fu] = det 1(f1) 1) (0.3)

anl(fl) Dn71<fn)

In fact, Dzhumadildaev considered examples (0.2) and (0.3) in a more general
context, where (M) is replaced by an arbitrary commutative associative alge-
bra A over F and the D; by derivations of A. He showed in (9) that (0.2)) and (0.3)
satisfy the Filippov-Jacobi identity if and only if the vector space ) ;FD; is closed
under the Lie bracket.

In the past few years there has been some interest in n-Lie algebras in the
physics community, related to M-branes in string theory. We shall quote here two
sources — a survey paper (13), containing a rather extensive list of references, and
a paper by Friedmann (14), where simple finite-dimensional 3-Lie algebras over
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C were classified (she was unaware of the earlier work). At the same time we (the

authors of the present paper) have been completing our work (5) on simple rigid

linearly compact superalgebras, and it occurred to us that the method of this work

also applies to the classification of simple linearly compact n-Lie superalgebras!
Our main result can be stated as follows.

Theorem 0.1 (a) Any simple linearly compact n-Lie algebra with n > 2, over
an algebraically closed field F of characteristic 0, is isomorphic to one of
the following four examples:

(1) the n+ 1-dimensional vector product n-Lie algebra O™,

(ii) the n-Lie algebra, denoted by S", which is the linearly compact vector
space of formal power series F[[x1,...,x,]], endowed with the n-ary
bracket Ii where D; = a%i;

(iii) the n-Lie algebra, denoted by W", which is the linearly compact vec-
tor space of formal power series F[[xi,...,x,—1]], endowed with the

n-ary bracket 1| where D; = 9%;;
(iv) the n-Lie algebra, denoted by SW", which is the direct sum of n — 1
copies of F[[x]], endowed with the following n-ary bracket, where {4

is an element of the jth copy and f' = %2

[f1<j1>,...f,$j”>] =0, unless {j1,...,jn} D{1,...,n—1},
[f1<1> fk<k711) fk(k) fk<k)1 fk(k;w P
9 — ) b) + ) + sy Jn
= (=D*"(fio ot (Fefirr — Fiar ) fera - f) ®.

(b) There are no simple linearly compact n-Lie superalgebras over I, which are
not n-Lie algebras, if n > 2.

Recall that a linearly compact algebra is a topological algebra, whose under-
lying vector space is linearly compact, namely is a topological product of finite-
dimensional vector spaces, endowed with discrete topology (and it is assumed
that the algebra product is continuous in this topology). In particular, any finite-
dimensional algebra is automatically linearly compact. The basic example of an
infinite-dimensional linearly compact space is the space of formal power series
F|[x1,...,x]], endowed with the formal topology, or a direct sum of a finite num-
ber of such spaces.

The proof of Theorem [(Lf] is based on a construction, which associates to an
n-Lie (super)algebra g a pair (Lie g, 1), where Lie g =[];>_ Lie ;g is a Z-graded
Lie superalgebra of depth 1 and p € Lie ,_; g, such that the following properties
hold:

(L1) Lie g is transitive, i.e., if a € Lie ;g with j > 0 and [a,Lie _;g] = 0, then
a=0;
(L2) Lie gis generated by Lie _;g and u;
(L3) [u,Lie og] =0.
A pair (L, i), where L =[];>_L; is a transitive Z-graded Lie superalgebra
and u € L,_1, such that (L2) and (L3) hold, is called admissible.

The construction of the admissible pair (Lie g, ), associated to an n-Lie
(super)algebra g, uses the universal Z-graded Lie superalgebra W (V) =[] ;> _ W;(V),
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associated to a vector superspace V (see Sect.for details). One has W;(V) = Hom (S/ "1V, V),
so that an element y € W,,_1 (V) defines a commutative n-superalgebra structure on
V and vice versa. Universality means that any transitive Z-graded Lie superalgebra
L=[]j>_L; with L_; =V canonically embeds in W(V) (the embedding being
givenby L; > a— @, € W;(V), where @,(ar,...,ajt1) =[...[a,a1],...,aj+1]).

So, given a commutative n-ary product on a superspace V, we get an element
U € W,—1(V), and we denote by Lie V the Z-graded subalgebra of W (V), gener-
ated by W_{ (V) and u. The pair (Lie V, ) obviously satisfies properties (L.1) and
(L2).

How do we pass from commutative to anti-commutative n-superalgebras? Given
a commutative n-superalgebra V with n-ary product (ay,...,a,), the vector super-
space I1V (II stands, as usual, for reversing the parity) becomes an anti-commutative
n-superalgebra with n-ary product

[ai,...,an) = p(ai,...,an)(ai,...,a,), (0.4)
where
o (_])/’(al)+p<a3)+"'+1)(“n71) if n is even
pla,....an) = { (—1)Plaa)+plas)t+plani) if p is odd, ©.5)
and vice versa.
Thus, given an anti-commutative n-superalgebra g, with n-ary product [ay, .. .,a,),
we consider the vector superspace ITg with commutative n-ary product (ay,...,a,),

given by , consider the element yu € W, (IIg), corresponding to the latter
n-ary product, and let Lie g be the graded subalgebra of W(IIg), generated by
W_i(IIg) and u.

Note that properties (L1) and (L2) of the pair (Lie g,u) still hold, and it
remains to note that property (L3) is equivalent to the (super analogue of the)
Filippov-Jacobi identity. Finally, the simplicity of the n-Lie (super)algebra g is
equivalent to

(L4) the Lie gg-module Lie _;g is irreducible.

An admissible pair, satisfying property (L4) is called irreducible. Thus, the
proof of Theorem [0.1] reduces to the classification of all irreducible admissible
pairs (L, ), where L is a linearly compact Lie superalgebra. It is not difficult to
show, as in (5), that S C L C Der S, where S is a simple linearly compact Lie
superalgebra and Der S is the Lie superalgebra of its continuous derivations (it is
at this point that the condition n > 2 is essential).

Up to now the arguments worked over an arbitrary field F. In the case F is
algebraically closed of characteristic 0, there is a complete classification of simple
linearly compact Lie superalgebras, their derivations and their Z-gradings (2; 135
165 [17). Applying these classifications completes the proof of Theorem [0.1]

For example, if g is a finite-dimensional simple n-Lie superalgebra, then dimLie g <
oo, and from (L6) we see that the only possibility for Lie g is L = P/F1, where P
is the Lie superalgebra defined by the super Poisson bracket on the Grassmann
algebra in the indeterminates &;,...,&,,1, given by

{éiagj}:bijv i,jzl,...,l’l+1, 0.6)
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where (b;;) is a non-degenerate symmetric matrix, the Z-grading on L being given
by deg(&;, ... &) =s—2,and u =& ... &,41. We conclude that g is the vector
product n-Lie algebra. (The proof of this result in the non-super case, obtained by
Ling (20), is based on the study of the linear Lie algebra spanned by the derivations
Dy, .4, ,» and is applicable neither in the super nor in the infinite-dimensional
case.) We have no a priori proof of part (b) of Theorem [0.1] — it comes out only
after the classification process.

If char F = 0, we have a more precise result on the structure of an admissible

pair (L, ).

Theorem 0.2 If char F =0 and (L, ) is an admissible pair, then L = ED;?;]_le,

where L,_1 =TFu, S := @’};EIL./ is an ideal in L, and Lj = (adL_1)"~ ' u for
j=0,....n—1.

Of course, Theorem reduces significantly the case wise inspection in the
proof of Theorem[0.1] Moreover, Theorem[0.2]can also be used in the study of rep-
resentations of n-Lie algebras. Namely a representation of an n-Lie algebra g in a
vector space M corresponds to an n-Lie algebra structure on the semidirect prod-
uct L_; = g x M, where M is an abelian ideal. Hence, by Theorem [0.2] we obtain
a graded representation of the Lie superalgebra S = @;';E]L,- in the graded super-
vector space L(M) = Y"=% M;, M; = (adM)" /' i so that L;M; C M;;. Such
“degenerate” representations of the Lie superalgebra S are not difficult to classify,
and this corresponds to a classification of representations of the n-Lie algebra g.
In particular, representations of the n-Lie algebra O" correspond to “degenerate”
representations of the simple Lie superalgebra H(0,n) (finite-dimensional repre-
sentations of O" were classified in (7)), using Ling’s method, mentioned above).

Finally, note that, using our discussion on F-forms of simple linearly compact
Lie superalgebras in (3), we can extend Theorem [0.1] to the case of an arbitrary
field IF of characteristic 0. The result is almost the same, namely the F-forms are
as follows: 0", depending on the equivalence class of the symmetric bilinear form
up to a non-zero factor, and the n-Lie algebras S, W" and SW" over F.

1 Preliminaries on n-Superalgebras

Let V be a vector superspace over a field [F, namely we have a decomposition
V = V5@ V7 in a direct sum of subspaces, where V; (resp. V7) is called the subspace
of even (resp. odd) elements; if v € Vg, ot € Z/27 = {0, 1}, we write p(v) = a.
Given two vector superspaces U and V, the space Hom (U,V) is naturally a
vector superspace, for which even (resp. odd) elements are parity preserving (resp.
reversing) maps; also U ® V is a vector superspace via letting p(a® b) = p(a) +
p(b)foracU,beV.

In particular, the tensor algebra (V) = @ ez, T/ (V) is an associative super-
algebra. The symmetric (resp. exterior) superalgebra over V is the quotient of
the superalgebra T'(V) by the 2-sided ideal, generated by the elements a ® b —
(=P PO a (resp. a@ b+ (—1)P PP b a), where a,b € V. They are denoted
by S(V) and A(V) respectively. Both inherit a Z-grading from T(V): S(V) =
®jez, S, A(V) = @jeZ+AJ(V)-
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A well known trivial, but important, observation is that the reversal of parity of
V,i.e., taking the superspace ITV, where (ITV )y =V, 1, establishes a canonical
isomorphism:

S(ITV) ~ A(V). (1.1)

Definition 1.1 Let n € Z and let V be a vector superspace. An n-superalgebra
structure (or n-ary product) on'V of parity o € Z./27 is a linear map 1 : T"(V) —
V of parity o.. A commutative (resp. anti-commutative) n-superalgebra of parity
o is a linear map 1 : S"(V) — V (resp. A"V — V) of parity o, denoted by [(a; ®
Qay) = (ay,...,ay) (resp. = lay,...,ay)).

Lemma 1.2 Ler (V, 1) be an anti-commutative n-superalgebra. Then (IIV, 1) is a
commutative n-superalgebra (of parity p(1t) +n— 1 mod 2) with the n-ary product

:a(al ®®an) :p(ala"'aan)“(al ®®an>a (1.2)

where

% ) P(aanzk)’ (1.3)

and vice versa.

Proof Denote by p’ the parity in ITV. Then, for ay,...,a, €V, p'(i(a1 ® -+ ®
an)) = p(u) + 1+ ¥l pla;) = Xl p'(a;) + p(u) +n+1 mod 2, ie., p'() =

p(u)+n—1 mod 2. Besides, we have p(ay,...,a;,ait1,...,an)p(ai,...,air1,ai,...,a,)

(—1)Pl@)+plais1) hence:
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pla1® - ®a®ai @ Qay)
=plag,...,a)t(a1® - Qa;Rai11 Q- Ray)
— —(—I)P(a")p(a"“)p(al,...,an)‘u(m R Rajy ®ai®"'®an)
= —(—I)P(“")p(“i“)p(al,...,an)p(al,...,ai+1,ai,...,an)
xp(a1® - @air1 ®a; @ @ay)
— (_I)Pl(ai)l/(fliﬂ)ﬁ(al ®--- Qa1 ®ai®"'®an)-
O

Definition 1.3 A derivation D of parity a € Z/27 of an n-superalgebra (V, 1) is
an endomorphism of the vector superspace V of parity o, such that:

D(u(ar @ @ay) = (=)W (u(Day @@+ @ a)
+(=) (e @ Day @+ D ay) + -+
+ (=14l plan)) () ® - @ D(ay))).

It is clear that derivations of an n-superalgebra V form a Lie superalgebra,
which is denoted by Der V. It is not difficult to show that all inner derivations of
an n-Lie algebra g span an ideal of Der g (see e.g. (7)), denoted by Inder g.

Now we recall the construction of the universal Lie superalgebra W (V), asso-
ciated to the vector superspace V. For an integer k > —1, let W, (V) = Hom (S¥*1(V), V),
in other words, W, (V) is the vector superspace of all commutative k+ 1-superalgebra
structures on V, in particular, W_; (V) =V, Wy (V) = End (V), W (V) is the space
of all commutative superalgebra structures on V, etc. We endow the vector super-
space

W) =TT (V)
k=—1

with a product fUg, making W (V') a Z-graded superalgebra, given by the follow-
ing formula for f € W, (V), g € W, (V):

ng(XOa“-»prrq) = Z S(io,"'aiqaiq+la"'7ip+q)
ig<-<ig
iq+]<“'<l'p+q
X F(8(Xigs -+ Xig ) Xiguy -5 Xipyg) (1.4)

where € = (—1)V, N being the number of interchanges of indices of odd x;’s in
the permutation 6(s) = i5, s =0, 1,..., p+q. Then the bracket

[f.8] = fOg — (~)PP g0y (15)
defines a Lie superalgebra structure on W (V).

Lemma 1.4 LetV be a vector superspace and let L € W, _1(V), D € Wy(V). Then

(a) [u,D] =0 ifand only if D is a derivation of the n-superalgebra (V,1t).

(b) D is a derivation of parity a of the commutative n-superalgebra (V, 1) if and
only if D is a derivation of parity & of the anti-commutative n-superalgebra
(ITV, i), where
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flar®--®@ay) = plar,...,ap) (a1 @ - @ay),
and p(ay,...,ay) is defined by (1.3).
Proof By (L.3) and (I.4), we have:

[W,D](b1 @+ @b,) = (UOD)(b1 ® -~ @ by) — (—1)*PH(DOR) (b @+~ @ by)
= Z (€(ity---,in) U (D(b;,) @bi, @+~ Rb;,))

—(=1)*PWD(u(by ®---®by)),

where o is the parity of D. Therefore [it, D] = 0 if and only if

D(u(br®@---@by)) = (=)W Y (g(ir,...,in)u(D(byy) @by, @+ @ b))
iz<?~l~<in
= (1) W (W(D(b)) @by @+ @ by_1)
+ (=)D (b @ D(by) @+ @ byy) + - -
+ (=1) 2B+ 4pGni)) 1y (b @ - - @ by @ D(by)),
i.e., if and only if D is a derivation of (V, i) of parity ¢, proving (a).
In order to prove (b), note that D is a derivation of parity a of (V,u) if and
only if
D(fi(a; ®---®ay) = play,...,a,)D(p(a; ® - Ray))
= plar,....an) (=)W (W(D(a) ©ar ® ... ay)
+ (=)W (a; @D(a2) @ ....an) + - -
+ (=Pl 4pl@n1) y (g @ --- @ D(ay)))
= plar,...,a,) (1) Wp(D(ar),a, ..., an)
x(R(D(a1)®az---@ay)
+(=1)* @ p(D(ar),az,....a,)p(ar,D(a2),...,ay)
xfi(ar®@D(az) - @ay) +--
_|_(_])a(P(al)+"'+P(an—1))p(D(al)7az,._.7an)
xp(ai,...,D(ay))jii(a1 ®---@D(ay))).

If n is even, we have:

plar,...,a) (=)W p(D(ar),az,...,a,) = (—1)*PHT1),
(_1)‘1P(01)p(D(al)’a27' .. 7an)p(alaD(a2)v' .. 7an) = (_l)a(p(al)Jrl)?

()P0 p (D), ) pla, . D)= (1)l
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If n is odd, we have:

plai,...,an)(—=1)*Wp(D(ay),az,...,ay) = (—1)%PW),
(—1)ap<a1)p(D(a1),a2, —yan)plar,D(a),...,ay) = (_l)a(p(a1)+1)7

(—1)*pla)t+plan) p(D(ay),ay ..., an)play,...,D(ay))(—1)*P@)++plani)),

Since [i has parity equal to p(it) +n— 1 mod 2, (b) is proved. O

2 The Main Construction

Let (g, i) be an anti-commutative n-superalgebra over a field F with n-ary product

[ai,...,a,], and let V = ITg. Consider the universal Lie superalgebra W (V) =

[T Wi(V), and let i € W,,_;(V) be the element defined by . Let Lie g =

[T;=_, Lie jg be the Z-graded subalgebra of the Lie superalgebra W V), generated

by W_1(V) =V and fi.

Lemma 2.1 (a) Lie g is a transitive subalgebra of W(V).

(b) If D € Lie og, then the action of D on Lie _1g =V (= Ilg) is a derivation of
the n-superalgebra g if and only if [D, fi] = 0.

(c) Lieog is generated by elements of the form

(aday)...(ad ap—1)iL, where a; € Lie _1jg=V. 2.1

Proof (a) is clear since W (V) is transitive and the latter holds since, for f € Wi (V)
and a,ay,...,ar € W_1(V) =V one has:

[fral(ar,....a) = fla,ar,.. ).

(b) follows from Lemma y
In order to prove (c) let L_; =V and let Lo be the subalgebra of the Lie alge-
bra Wy(V), generated by elements (2.1). Let [] j>—1L; be the full prolongation of

Ly®Lyie,Lj={aeW;(V)|la,L_1] C L;_1} for j > 1. This is a subalgebra of
W (V), containing V and I, hence Lie g. This proves (¢c). O

Definition 2.2 An n-Lie superalgebra is an anti-commutative n-superalgebra g of
parity o, such that all endomorphisms D, . 4, , of g (ai,...,a,—1 € @), defined
by

Dtll.,..an,l (a) == [al P ;anfl 7a]7

are derivations of g, i.e., the following Filippov-Jacobi identity holds:

[at,...,an-1,[b1,---,bn]]
= (=1)¥lattrlan-)([(ay,... an1,b1],b2, .. ., bn)
_|_(_1)17(h1)(P(a1)+"'+17(an—|)) [b1,[ar,... an—1,b2],b3,. .., by
4o (= D) POOFAPGu ) plan) Ay by Tay . an—t, b))
(2.2)
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Recall from the Introduction that the pair (L, i), where L = [Ij>—1Ljisa
Z-graded Lie superalgebra and u € L,,_1, is called admissible if properties (L.1),(L.2)
and (L3) hold. Two admissible pairs (L, 1) and (L', 1’) are called isomorphic if
there exists a Lie superalgebra isomorphism ¢ : L +— L', such that ¢(L;) = L’j for
all jand ¢(u) e F*p'.

The following corollary of Lemma [2.1]is immediate.

Corollary 2.3 If g is an n-Lie superalgebra, then the pair (Lie g, j1) is admissible.
Now it is easy to prove the following key result.

Proposition 2.4 The map g — (Lie g,[1) induces a bijection between isomor-
phism classes of n-Lie superalgebras, considered up to rescaling the n-ary bracket,
and isomorphism classes of admissible pairs. Under this bijection, simple n-Lie
algebras correspond to irreducible admissible pairs. Moreover, g is linearly com-
pact if and only if Lie g is.

Proof Given an admissible pair (L,u), where L = [];>_;Lj, 4 € L,—1, we let
g =1IIL_, and define an n-ary bracket on g by the formula

[ai,...,an) = plai,...,an)[... [W,a1]...,an)],

where p(ai,...,ay) is given by (1.3). Obviously, this n-ary bracket is anti-commutative.
The Filippov-Jacobi identity follows from the property (L3) using the embedding

of L in W(L_;) and applying Lemma [2.1(b). Thus, g is an n-Lie superalgebra.
Due to properties (L1) and (L2), we obtain the bijection of the map in question.

It is obvious that g is simple if and only if the pair (L, ) is irreducible. The fact
that the linear compactness of g implies that of Lie g is proved in the same way as
Proposition 7.2(c) from (5). O

Remark 2.5 If g is a finite-dimensional n-Lie algebra, then Lie _;g = I1g is purely
odd, hence dimW (ITg) < oo and therefore dimLie g < oo. In the super case this fol-
lows from Theorem|0.2]if char F =0, and from the fact that any finite-dimensional
subspace of W (V) generates a finite-dimensional subalgebra if char F > 0. Thus,
an n-Lie superalgebra g is finite-dimensional if and only if the Lie superalgebra
Lie g is finite-dimensional.

Remark 2.6 LetV be a vector superspace. Recall that a sequence of anti-commutative
(n+1)-ary products d, ,n=0,1,..., of parity n+1 mod 2 on V endow V with a
structure of a homotopy Lie algebra if they satisfy a sequence of certain quadratic
identities, which mean that d% =0, d; is a Lie (super)algebra bracket modulo
the image of dy and dj is the derivation of this bracket, etc. (24). (Usually one
also requires a Z-grading on V for which d,, has degree n — 1, but we ignore
this requirement here.) On the other hand, recall that if y, is an (n+ 1)-ary anti-
commutative product on V of parity n+1 mod 2, then the (n+ 1)-ary product i,
defined in LemmalT.4] is a commutative odd product on the vector superspace ITV .
It is easy to see that the sequence of (n+ 1)-ary products fi, define a homotopy
Lie algebra structure on ITV if and only if the odd element u =Y, 1, € W(ITV)
satisfies the identity [u, 1] = 0. As above, we can associate to a given homotopy
Lie algebra structure on V the subalgebra of W (ITV'), denoted by Lie (V, i), which
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is generated by W_{(IIV) and all fi,,, n =0, 1,.... If the superspace V is linearly
compact and the homotopy Lie algebra is simple with j1,, # 0 for some n > 2, then
the derived algebra of Lie (V, ) is simple, hence is of one of the types X (m,n),
according to the classification of (17). Then the simple homotopy Lie algebra is
called of type X(m,n). (Of course, there are many homotopy Lie algebras of a
given type.) Lemma [3.1]below shows, in particular, that in characteristic 0 any n-
Lie superalgebra of parity n mod 2 is a homotopy Lie algebra, for which fi; =0
if j % n— 1. This was proved earlier in (8)) and (22).

3 Proof of Theorem [0.2]

For the sake of simplicity we consider the n-Lie algebra case, i.e. we assume that
L_ is purely odd. The same proof works verbatim when L_; is not purely odd,
using identity (2.2). Alternatively, the use of the standard Grassmann envelope
argument reduces the case of n-Lie superalgebras of even parity to the case of
n-Lie algebras.

First, introduce some notation. Let Sy, be the group of permutations of the
2n—1 element set {1,...,2n— 1} and, for ¢ € Sy,_1, let £(0) be the sign of o.
Denote by S the subset of S, consisting of permutations &, such that o(1) <
-+ <o(n—1),0(n) <--- <o(2n—1). Consider the following subsets of S (/ and
s stand for “long” and “short” as in (8)):

sh ={ceS o@2n—1)=2n—-1},
It is immediate to see that S = 't US*I. Likewise, let
Shh — {o€ sh |oc(2n—2) =2n-2},
Sllsz — {6 ESll | G(}’l—l) :21/1—2},
s — {ceS"|oc(2n—1)=2n-2},
S5182 — {o €S |o(n—2) :2’1_2}-

Then St = §'t2 UShs2 and $51 = §51%2 U §51%2, Likewise, we define the subsets
S witha=1lora=s, for 1 <k<2n-—1, so that

Sl — A1k 15k | ) G-kt 3.1

Lemma 3.1 If (L=T];>_iLj, 1) is an admissible pair, then [(adL_;)" /="y, u] =
0 forevery j=0,...,n—1.

Proof Tf (L, i) is an admissible pair, then, by Lemma[2.1{c), Lo = (adL_1)" ' u,

hence [(adL_1)"~! u,u] = 0 by property (L3). Now we will show that [(adL_1)" /!

p,u] =0 for every j=1,...,n— 1. By Lemma 2.1[b) and property (L3), the
Filippov-Jacobi identity holds for elements in ITL_; with product (I.2). Letxy,...,x,j 1 €
L_1. By definition, [, [xq,...,[x,—j—1,u]]] = uOx1, ..., X jo1, 1] — (—1)J=1)

[X1,..., [¥n—j—1,1]]00p. One checks by a direct calculation, using the Filippov-

Jacobi identity, that

uOAL [y, oo, )] = (=170 D e, o, )]0 = 0,
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where, for f € Hom(V®¥, V), Altf € Hom(V®¥,V) denotes the alternator of f,

ie, Altf(ar,...,ar) = Yoes, f(ao(1)s --->as(k))- Hence, since u € Wy—1(L-1),
we have

[,u, [xh ERRE) [xn*jflnum = ((]"’ 1)!+ 1)HD[xla ERRE) [x"*jflvuﬂ'

We will prove a stronger statement than the lemma, namely, we will show that, for
every j=1,...,n—1 one has:

pOxr, .o e j—1,u1]] = 0. (3.2)

Note that, by definition, for ay,...,a,; € L1, we have:

(/'LD[xlv RE) [xn—j—lnuﬂ)(alv' . '7an+j)

= ) e(o)u(frr, s Poa—j1, 4]} (@g(1)s - - Ao (j11))
o(l)<-<o(j+1)
o(j+2)<--<o(n+j)
Ao (j+2)s- 4o (nt))

= Z S(G)N(.u(xnfjflw"7x17a0'(1)7‘-'7ac(j+l))a
o(l)<--<o(j+1)
o(j+2)<--<o(n+j)
Ao (j12)r++>o(nt)):

Therefore (3.2) is equivalent to the following:

Z S(G)u(xc(l)a"'7x(7(n—1)7“(x6(n)’"'ax6(2n—1))) =0. (3.3)

oeshtrhn—j-1

SetAg = E(O-)H'(xc(l)a - Xe(n—1)> IJ'(xG(n)a s 7xc7(2n—l))>’ Qll...l, = desll-"lt
Ag, and similarly define Q.. 4, Where a = s or a = [. Then (3.3)) is equivalent to
Qll-uln—j—l = 0. In fact, we shall prove more:

Qll...l[ = Qllu.l,,lst = QS[...St,ll[ = Qsl‘..St = 0 fort = 07 s = 2. (34)

For t = 0 and r = 1, equality (3.4) can be proved as in (8, Prop. 2.1). Namely,
by the Filippov-Jacobi identity, for any ¢ € §°!, A5 can be written as a sum of n
elements A, where 7 € S" is such that {7(1),...,7(n—1)} C {o(n),...,0(2n—
1)}. Since the sets {7(1),...,7(n—1)} and {o(n),...,0(2n—1)} have n— 1 and
n elements, respectively, there exists only one i such that {7(1),...,7(n — 1)} U
{i}={o(n),...,06(2n—1)}. Theni<2n—2andi# t(1),...,7(n—1). Therefore
there are n — 1 possibilities to choose i. It follows that

Qs = (n—1)Qy,. (3.5)

Likewise, by the Filippov-Jacobi identity, for any ¢ € S', A; can be written as
a sum of one element A, with p € Sl and n— 1 elements A¢, with T € §1 such
that {7(1),...,7(n—2)} C {o(n),...,0(2n —2)}. As above, there exists only
one i such that {t(1),...,7(n—2)}U{i} = {o(n),...,6(2n—2)}. Such an i is
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different from 7(1),...,7(n—2) and i < 2n— 2. Hence there are n possibilities to
choose i. Notice that
1 n—1 n .. 2n—=2 2n-1
p= (G(n) . 6(2n-2) o(l) ... on—1) 2n1) » (36
hence £(p) = (—1)""'&(o). Therefore
0y =nQy, +(=1)"" Q- (3.7)

Equations and form a system of two linear equations in the two inde-
terminates Oy, and Q;,, whose determinant is equal to n”—n—1- (—1)", which
is different from zero for every n > 2. It follows that O5; =0 = @y, i.e., (3.4) is
proved for ¢ = 1. Since, as we have already noticed, S = Sh 4§51, fort=0
also follows.

Now we argue by induction on z. We already proved (3.4) fort =0and 7 = 1.
Assume that

Qll...l,_| = Ql|...lt_2xt_] = Q‘Yl...s‘[_zl,_l = QS].A.St,l = O

for some 1 <t < n—2. Similarly as above, by the Filippov-Jacobi identity, for any
o € §1-% A5 can be written as a sum of n elements A; with 7 € S4-! such that
{z(1),...,t(n—=1)} C {o(n),...,6(2n—1)}, ie., {t(1),...,7(n — D)} U{i} =
{o(n),...,6(2n—1)},forsomei<2n—t—1andi## 7t(1),...,7(n—1). It follows
that there are n — ¢ choices for i, hence

Qsl‘..s, = (”_I)Qll...[,- (3.8)

Likewise, if o € $¥1--14 then, by the Filippov-Jacobi identity, As can be written
as a sum of one element A, with p € Sh-It a5 in , and n — 1 elements A; with
7 € She-h-15 such that {(1),...,7(n—2)} C {o(n),...,0(2n—2)}. As above,
there exists only one i such that {z(1),...,7(n—2)}U{i} = {o(n),...,0(2n—
2)}. Theni<2n—t—1,i# 1(1),...,7(n—2). It follows that

Oy =(—t+1)0 1 15+ (=10 4. (3.9)

Then, using l| and the inductive hypotheses Qy,..5, , =0=0y,..;_,, we get the
following system of linear equations:

Osy..0 = (n_t>Qll..‘l,

Oy iy =(n—1+1)0y 4 15+ (=104 (3.10)
Qs1 st Qsl...s,,ll, =0 ’
On.t, 010,15 =0,

whose determinant is equal to (—1)" + 1. It follows that if n is even then Q;, ;, =

0 = QSI..AS[ = Qsl--u“t—llt = Ql| ...lt,ls‘,’ hence iS prOVed.
Now assume that n is odd. Then (3.10) reduces to

QS]...S{ = (n - t)Qlllt
QSI...St,ll; = (n —1 + I)Qll...l,,lst + Qll...l; (31 1)
Qsl...s, + Qsl...s,,ll, =0.
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Using the Filippov-Jacobi identity as above, one gets the following system of
linear equations:

QS] St ol 1l = (n —t+ 2) Qll dios st T Qll diosi 1l + Qll Ay ol 1Sy
(3.12)
OQsiosialy sy = (M=t +1)00 4 ose 11, + Oyt ol 1y

Besides, using the inductive hypotheses, we get:

QS]...S,,zlt,llt + QSI...St,zl,,ISt = QS]...St,zl,,l = O
Oty asi1se T Oty asi ity = Qlyody g5, =0 (3.13)
Oty olyyse T Oty aly ity =ty oty =

Taking the sum of the two equations in (3.12), and using the three equations in
(3.13), we get: Oy,..1._ss, 15, = Qiy..ii_ps,_,1, = 0. By arguing in the same way, one
shows that

Oy ..lysisr oty =0 forevery k=0,...1 2. (3.14)

Finally, using the Filippov-Jacobi identity as above, one gets the following system
of linear equations:

-2
Qll.“[, = anl..‘S, + (_1)n+t Qsl...s,,ll, +o = Qs112S3...s, + Qllsz.“s,
QSl..‘S[,zl,,luS‘/ = (n —t + I)Qll.‘.ltfzs‘[,llt + Qll.‘.ll

Qllsz...s, = (n —t+ 1)Qsllz..‘l[ + Ql].‘.lm
which reduces, by (3.14), to the following:

-2
Qll.“l, = anl‘..s, + (_1)n+t Qslu.s,,llt +o = Qs11253...s, + Qllszu.s,
Qsl...s,,zl,,ls, = Qll...lt

(3.15)
Qllsz.‘.sr = Qll..‘lt N
System (3.15) implies the following equation:
_ —1)+1
Qll...l, = anl..‘st + <_1>n+t 2Qs1...s,,1l, + ( )2 Qll...l,
This equation together with (3.1T) form a system of four linear equations in four
t

indeterminates, whose determinant is equal to (n—7+1)((—1)"""(n—1)+ # -

n(n—r)). It is different from O for every r = 1,...,n —2. Hence Q;, ;, =0 =
Oty ty_ysy = Osyosily = Osy..5 and 3.4 is proved. O

Proof of Theorem[0.2] Any element of the subalgebra generated by L_; and L is a
linear combination of elements of the form:

AR AN I N (3.16)

with ay,...,a5,b1,...,bg,... in L_;. By Lemma [3.1} every element of the form

[[[...[1,a1],...,as], 1] is either O or an element in L_;, therefore we can assume

that u appears only once in (3.16)), i.e., any element of Lliesin [...[u,L_1],...,L_1].
O
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Remark 3.2 We conjecture that Theorem [0.2] holds also in non-zero characteris-
tic if char F > n. Our argument works for char F > (n — 1)2. The following
example shows that Theorem [0.2] (and Theorem [0.1) fails if 0 < char F < n.
Let g = Fa be a 1-dimensional odd space, which we endow by the following n-
bracket: [a,q,...,a] = a. The Filippov-Jacobi identity holds if n = sp + 1, where
p = char F and s is a positive integer. However, Lie g is not of the form described
by Theorem[0.2]

4 Classification of Irreducible Admissible Pairs

First, we briefly recall some examples of Z-graded linearly compact Lie superal-
gebras over a field F of characteristic 0, and some of their properties. For more
details, see (17) and (4).
Given a finite-dimensional vector superspace V of dimension (m|n) (i.e. dimVy =

m, dimV; = n), the universal Lie superalgebra W (V) is isomorphic to the Lie
superalgebra W (m,n) of continuous derivations of the tensor product F(m,n) of
the algebra of formal power series in m commuting variables xi,...,x, and the
Grassmann algebra in n anti-commuting variables &, ..., &,. Elements of W (m,n)
can be viewed as linear differential operators of the form

X=Y Px&) +ZQ, —5 P, Q; € F(m,n).

i=1

The Lie superalgebra W (m, n) is simple linearly compact (and it is finite-dimensional
if and only if m = 0).

Letting degx; = —deg 3%, =k;, deg&; = —deg 3%, =s;, where k;, s; € Z, defines
a Z-grading on W (m,n), called the Z-grading of type (ki,...,km|s1,...,5,). Any
Z-grading of W(m,n) is conjugate (i.e. can be mapped by an automorphism of
W (m,n)) to one of these. Clearly, such a grading has finite depth d (meaning that
W (m,n); # 0 if and only if j > —d) if and only if k; > O for all i. It is easy to show
that the depth d = 1 if all k;’s and s;’s are 0 or 1, or if all k;’s are 0, s; = —1 for
some j, and s; = O for every i # j.

Now we shall describe some closed (hence linearly compact) subalgebras of
W(m,n).

First, given a subalgebra L of W(m,n), a continuous linear map Div : L —
F(m,n) is called a divergence if the action 7, of L on F(m,n), given by

m(X)f =Xf+(=1)PXPDL rDivx, XelL,
is a representation of L in F(m,n) for any A € F. Note that
Spiv(L) :={X € L | DivX =0}

is a closed subalgebra of L. We denote by Sp;, (L) its derived subalgebra (recall that
the derived subalgebra of g is [g, g]). An example of a divergence on L = W (m,n)
is the following, denoted by div:

div (ZP +iQ’;§j> zi%+i(_1)ﬂ@j>§%.
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Hence for any A € F we get the representation ) of W (m,n) in F(m,n). Also,
we get closed subalgebras S/, (W (m,n)) D Sz, (W (m,n)) denoted by S'(m,n) D
S(m,n). Recall that §'(m,n) = S(m,n) is simple if m > 1, and

0
S/(l,n):S(l,n)@IF‘él...éna—m, 4.1)

where S(1,n) is a simple ideal.

The Z-gradings of type (ki,...,ku|s1,-..,5,) of W(m,n) induce ones on S’ (m,n)
and S(m,n) and any Z-grading is conjugate to those. The description of Z-gradings
of depth 1 for §’'(m,n) and S(m,n) is the same as for W (m,n).

Next examples of subalgebras of W (m,n), needed in this paper, are of the form

L(®) = {X € W(m,n) | X& = 0},

where o is a differential form.
In the case m = 2k is even, consider the symplectic differential form

k n
O, =2Y dxi Ndxiyi+ Y d&idE iy
i=1 i=1

The corresponding subalgebra L( ) is denoted by H'(m,n) and is called a Hamil-
tonian superalgebra. This superalgebra is simple, hence coincides with its derived
subalgebra H(m,n), unless m = 0, when the Hamiltonian superalgebra is finite-
dimensional.

It is convenient to consider the “Poisson” realization of H(m,n). For that let
Di = Xi, qi = Xi+i» i = 1,...,k, and introduce on F(m,n) the structure of a Poisson
superalgebra P(m,n) by letting the non-zero brackets between generators to be as
follows:

{pi,ait =1={&,&—in1},

and extend by the Leibniz rule. Then the map P(m,n) — H'(m,n), given by f +—
d d d o .

Y, (TI{I B%i - a—‘i aip’) —(=1)PYk Tg,« agfﬁv defines a surjective Lie super-

algebra homomorphism with kernel F1. Thus, H'(m,n) = P(m,n)/F1. In this real-

ization H(0,n) is spanned by all monomials in & mod F1 except for the one of

top degree, and we have:
H'(0,n) = H(0,n) ®FE; ... &,. (4.2)

Note that H(0,n) is simple if and only if n > 4.
All Z-gradings of depth 1 of H'(0,n) are, up to conjugacy, those of type
(I1,...,1),(1,0,...,0, —1),and (| 1,...,1,0,...,0), if n is even ().
——

n/2
Another example is HO(n,n) = L(®,5) C W(n,n), where @ps = Y, dx;d&; is
an odd symplectic form. This Lie superalgebra is simple if and only if n > 2. It
contains the important for this paper subalgebra SHO'(n,n) = HO(n,n)NS'(n,n).
Its derived subalgebra SHO(n,n) is simple if and only if n > 3.
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Again, it is convenient to consider a “Poisson” realization of HO(n,n). For
this consider the Buttin bracket on ITF (n,n):

af d nofa
(b=} (G55 - 3L ),

This is a Lie superalgebra, which we denote by PO(n,n), and the map PO(n,n) —
HO(n,n), given by

af 9 Hof
fr= Z(Q}q&él (=" ag,ax,>

is a surjective Lie superalgebra homomorphism, whose kernel is F1. Thus, HO(n,n) =
P(n,n)/F1. In this realization we have:

SHO'(n,n) = {f € P(n,n)/F1 | Af =0},

where A =YY", ax a 2 is the odd Laplace operator. Then SHO(n,n) is an ideal of
codimension 1 in SHO'(n,n), and we have:

SHO'(n,n) = SHO(n,n) FE; ... &,. (4.3)

All Z-gradings of depth 1 of SHO'(n,n) are, up to conjugacy, those of type (1,
11,...,1), (0,...,0,1|0,...,0,—1), and (1,...,1,0,...,0[0,...,0,1,...,1),
~—— ~——

where k =0,...,n (3).
The next important for us example is

KO(nn+1)={XeW(n,n+1) | X0 = fo,. forsome f € F(n,n+1)},

where @,c = d&, 11 + Y1 (&idx; +x;d&;) is an odd contact form. This superalge-
bra is simple for all n > 1. Another realization of this Lie superalgebra is PO(n n+

1) = ITF(n,n+ 1) with the bracket { f,g}po = (2—E)f8"g —(=1)PH 2 35 (2~

E)g—Y 1(%%—(—1) i) ag gg) where E=Y" l(x,ax +§,85) The isomor-

phism PO(n,n+1) — KO(n,n+1) is given by f — (2—E)faé - +(=1)P) 9?{1 E—
T (g—){l% —(=1)P) gg 8‘9 ). It turns out that for each B € F the Lie superalge-
bra KO(n,n+ 1) admits a dlvergence

af
3€n+1 ’

divgf =Af+(E—np) f€PO(nn+1).

We let
SKO'(n,n+1;B) ={f € PO(n,n+1) | divg f = 0}.
This Lie superalgebra is not always simple, but its derived algebra, denoted by

SKO(n,
n+ 1;B), is simple if and only if n>2. In fact, SKO'(n,n+ 1; ) =SKO(n,n +
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I;8),unless B=1orf = ”n;z In the latter cases SKO(n,n+ 1; ) is an ideal of
codimension 1 in SKO'(n,n+ 1; ), and we have:

SKO'(n,n+1;1) = SKO(n,n+ 1;1) +F& ... & 11, 4.4

-2 -2
SKO' (n,n—l—l;nn> — SKO <n,n+1;"n> +FE .. E.  (45)

All Z-gradings of depth 1 of SKO' (n,n+1; ) are, up to conjugacy, of type (0, ...,0,
1/0,...,0,—1,0), and (1,...,1,0,...,0|0,...,0,1,...,1), where k = 0,....,n (3).
S—— S——

k k

Theorem 4.1 Let (L = EB;?;I_ \Lj, 1) be an irreducible admissible pair over an
algebraically closed field F of characteristic 0, where L is a linearly compact Lie
superalgebra, and n > 2. Then
(a) L= 697;1_1Lj is a semidirect product of the simple ideal S = @7;31Lj and
the I-dimensional subalgebra L,_ = Fu, where | is an outer derivation of
L, such that [, Ly] = 0.
(b) The pair (L, ) is isomorphic to one of the following four irreducible admis-
sible pairs:
(i) (H'(0,n+1),&...&41), n > 3, with the grading of type (|1,...,1);
(i) (SHO'(n,n),é&...&,), n>3, with the grading of type (0, ...,0|1,...,1);
(iii) (SKO'(n—1,n;1),&;...&,-1&y), n > 3, with the grading of type (0, . ...,
0l1,...,1);
iv) S(1,n—1),&...& %) n >3, with the grading of type (0|1,...,1).

Proof The decomposition L =S x Fyt in (a) follows from Theorem[0.2] The fact
that S is simple is proved in the same way as in (5, Th. 7.3). Indeed, S is the
minimal among non-zero closed ideals of L, since if I is a non-zero closed ideal
of L, then INL_; # O by transitivity, hence, by irreducibility, /NL_; = L_j,
from which it follows that I contains S. Next, by the super-analogue of Cartan-
Guillemin’s theorem (I} [15), established in (10), S = S'&A (m, h), for some sim-
ple linearly compact Lie superalgebra S’ and some m,h € Z>¢, and U lies in
Der(S'@0(m,h)). Since Der(S'@ 0 (m,h)) = DerS' @0 (m,h) +1@W (m,h) (10),
we have: © =Y,;(di®a;)+ 1@ u’ for some d; € DerS', a; € O(m,h) and pu’ €
W(m,h).

First consider the case when ( is even. Then g’ is an even element of W (m, h),
hence, by the minimality of the ideal S'® & (m,h), h = 0. Now suppose m > 1. If
U’ lies in the non-negative part of W (m,0) with the grading of type (1,...,1|),
then the ideal generated by S'x; is a proper u-invariant ideal of S'&®&'(m,0), con-
tradicting its minimality. Therefore we may assume, up to a linear change of inde-
terminates, that y' = 9971 + D, for some derivation D lying in the non-negative
part of W(m,0). Since u lies in L,_;, we have deg(x;) = —n+ 1, but this is a
contradiction since the Z-grading of L has depth 1. It follows that m = 0.

Now consider the case when u is odd. Consider the grading of W (m,h) of
type (1,...,1[1,...,1), and denote by W (m,h)>( its non-negative part. If ' €
W (m,h)>o, then the minimality of the ideal §'& & (m,h) implies m = h = 0. Now
suppose that & > 1 and that g’ has a non-zero projection on W (m,h)_;. Then,
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up to a linear change of indeterminates, (' = &%1 + D for some odd derivation

D € W(m,h)>p. Since u lies in L,_j, we have deg(&;) = —n+ 1 < —1. Since
L D S’ and the grading of L has depth 1, it follows that every element in S’ has
positive degree, but this is a contradiction since S’ is simple. This concludes the
proof of the simplicity of S.

In order to prove (), note that the grading operator D of the simple Z-graded
Lie superalgebra S is an outer derivation (since [u,Lo] = 0,D ¢ Ly). Another
outer derivation of S is y. From the classification of simple linearly compact
Lie superalgebras (16} [17) and their derivations in (L6} [17)), (2, Prop. 1.8) (see
also Lemmabelow), we see that the only possibilities for L are H'(0,n+ 1),
SHO'(n,n), SKO'(n—1,n;1), SKO' (n — 1,n;"T_2), and S'(1,n) for n > 3. From
the description of Z-gradings of depth 1 of these Lie superalgebras, given above,
it follows that L = SKO' (n—1,n; %) is ruled out, whereas for the remaining
four possibilities for L only the grading of type (0,...,0|1,...,1) is possible, and
for them indeed L,_; = Fu, where u is as described above. It is immediate to
check that in these four cases the pair (L, 1) is admissible. Irreducibility of the
Lo-module L_; follows automatically from the simplicity of S since its depth is 1.
O

Remark 4.2 In cases (i)~(iv) of Theorem [4.1|b) the subalgebra Ly and the Lo-
module ITL_; are as follows:

() Lo=sopy1(F), IIL_| = F"*! with the standard action of so, 1 (F);
(i) Lo =S8(n,0), IL_; = F[[x1,...,x,]]/F1, where F[[xi,...,x,]] is the stan-
dard module over S(n,0);
(iil) Lo=W(n—1,0),IIL_; =F[[xy,...,x,—1]], which carries the representation
Ty—_1 of W(n—1,0);
(iv) Lo =W(1,0) x sl,_1(F[[x]]), [IL_; = F"~! @ F[[x]] with the standard action
of sl,—1 (F[[x]]) and the representation 7ty _ (,—1) of W(1,0) on F[[x]].

As we have seen, an important part of the classification of irreducible admissi-
ble pairs is the description of derivations of simple linearly compact Lie algebras.
This description is based on the following simple lemma.

Lemma 4.3 Let L be a linearly compact Lie superalgebra and let a be a reduc-
tive subalgebra of L (i.e. the adjoint representation of a on L decomposes in a
direct product of finite-dimensional irreducible a-modules). Then any continuous
derivation of L is a sum of an inner derivation and a derivation commuting with
the adjoint action of a.

Proof (16) We have closed a-submodules:
Inder L C Der L C EndL,

where Inder L and Der L denote the subspaces of all inner derivations and all
continuous derivations of the Lie superalgebra L in the space of continuous endo-
morphisms of the linearly compact vector space L. Since L =[];V;, where V; are
finite-dimensional irreducible a-modules, we have: End L =[], ; Hom (V;,V;),
hence End L, and therefore Der L, decomposes into a direct product of irreducible
a-submodules. Hence

Der L = Inder L&V,
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where V is an a-submodule. But aV C Inder L since Inder L is an ideal in Der L.
Hence aV = 0, i.e., any derivation from V commutes with the adjoint action of a
on L. O

5 Classification of Simple Linearly Compact n-Lie Algebras Over
a Field of Characteristic 0, and Their Derivations

Proof of Theorem By Proposition[2.4] the classification of simple linearly com-
pact n-Lie algebras is equivalent to the classification of admissible pairs (L, ),
for which L is linearly compact. The list of the latter consists of the four examples
(1)—(@v) given in Theorem (b) It is easy to see that the corresponding n-Lie
algebras are 0", §", W" and SW". (By Lemma (a), we automatically get from
[1,Lo] = 0 that the Filippov-Jacobi identity indeed holds.) O

The notation for the four simple n-Lie algebras comes from the following fact.

Proposition 5.1 (a) The Lie algebra of continuous derivations of the n-Lie alge-
bras 0", S", W" and SW" is isomorphic to so,1(F), S(n,0), W(n—1,0) and
W (1,0) x sl,—1 (F[[x]]), respectively. Its representation on the n-Lie algebra
is described in Remark4.2)

(b) All continuous derivations of a simple linearly compact n-Lie algebra g over
an algebraically closed field of characteristic 0 lie in the closure Inder g of
the span of the inner ones.

Proof Let g be one of the four simple n-Lie algebras and let Der g be the Lie alge-
bra of all continuous derivations of g. Then L := Inder g is an ideal of Der g. By
Remark[4.2] Ly is isomorphic to the Lie algebras listed in (a). But all derivations of
the Lie algebras Ly = so,+1 (F), W(n—1,0) and W(1,0) x sl,_; (F[[x]]) are inner,
and Der S(n,0) = S(n,0) ®FE, where E = Zix,'a%’_. This is well known, except
for the case L = W (1,0) x sl,—; (F[[x]]). We apply Lemmal[4.3]to this case, taking
a= Fx% @ sl,—1 (F). If D is an endomorphism of the vector space L, commuting
with a, we have, by Schur’s lemma:

d d
D (xkd> = ockxkd—, D(xka) = Bixka, forae sl,_; (F), where oy, B € F.
X X

Since D is also a derivation of L, we conclude that D is a multiple of ad x%.

Let now D € Der g\( Inder g = Ly). Since [D, L] C Ly, D induces a deriva-
tion of Ly. Since all derivations of Ly are inner, except for E in the case g = §",
but E is not a derivation of g, we conclude that there exists a € Ly, such that
D|r, = ad alg,. Therefore D' = D —a commutes with the action of Lo on L_.
But the latter representation is described in Remark [4.2] and, clearly, in all cases
the only operators, commuting with the representation operators of Lo on L_j,
are scalars. Since a non-zero scalar cannot be a derivation of g, we conclude that
D' =0,hence Derg=Ly. O

In conclusion we discuss F-forms of the four simple n-Lie algebras, where I is
a field of characteristic 0. Let ' O [F be the algebraic closure of . Given a linearly
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compact n-Lie algebra g over F, its F-form is defined as an n-Lie algebra g* over
I, such that F @p g¥ is isomorphic to g.

Due to the bijection given by Proposition [2.4] the F-forms of g are in one-
to-one correspondence with the [F-forms of the Z-graded Lie superalgebras Sg =
[Lie g,Lie g]. But the latter are parameterized by the set H'(Gal,AutSy), where
Gal is the Galois group of F over F, and AutSg is the group of continuous auto-
morphisms of the Lie superalgebra Sy, preserving its Z-grading (cf. (3)).

By the method of (3) it is easy to compute the group AutSy, using Remark@

Proposition 5.2 One has:
AutSqg =Gy X %,

where 7 is a prounipotent group and Gy is a reductive group, isomorphic to
Op41(F), GL,(F), GL,—1(F) and T~ x SL,_,(F), if g is isomorphic to O", ", W"

and SW" over I, respectively.

We have H! (Gal,AutSy) =H! (Gg,Gal) (see, e.g., (3)). Furthermore, H' (Gg,Gal)=
1 in the last three cases of Proposition hence the only F-forms of $", W" and
SW" over F are ", W" and SW" over F. Finally, it follows from (3) that the
F-forms of the Z-graded Lie superalgebra H(0,n+ 1) are the derived algebras
of the Lie superalgebras P/F1, where P is a Poisson algebra, defined by (0.6).
Hence F-forms of O" are vector product n-Lie algebras on F+1 n > 3, with a
non-degenerate symmetric bilinear form (up to isomorphism, these n-Lie algebras
depend on the equivalence class of the bilinear form up to a non-zero factor).
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Appendix A

Below we list all known examples of infinite-dimensional simple n-Lie algebras
over an algebraically closed field [ of characteristic O for n > 3.

Let A be a commutative associative algebra over IF and let g be a Lie algebra
of derivations of A, such that A contains no non-trivial g-invariant ideals.

Example 1 S(A,g)=A, where g is an n-dimensional Lie algebra with basis Dy, ..., Dj,
the n-ary Lie bracket being

oo fil =det | oovnr TR
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Example 2 W(A,g), where g is an n— 1-dimensional Lie algebra with basis Dy, ... .
D,,_1, the n-ary Lie bracket being

fi a
Di(fi) ... Di(fa)

Dn—l(fl) Dn—l(fn)

Example 3 SW(A,D) = AV @ ... @ AP is the sum of n — 1 copies of A and
g = FD, the n-ary Lie bracket being the following. For & € A, denote by R the
corresponding element in A% then

YA =0, unless {ji,... g} D {1,...,n—1}:
U/ p OV S S
= (=D fi it (D) firt — fiD(fes) fiera - f) Y

extended on SW (A, D) by anticommutativity.

[f1s.., fu] =det

It is an open problem whether there exist any other simple infinite-dimensional
n-Lie (super)algebras over an algebraically closed field of characteristic 0 if n > 2.
In particular are there any examples of infinite-dimensional simple n-Lie superal-
gebras over a field of characteristic 0, which are not n-Lie algebras, if n > 2?
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