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Abstract We classify simple linearly compact n-Lie superalgebras with n > 2
over a field F of characteristic 0. The classification is based on a bijective corre-
spondence between non-abelian n-Lie superalgebras and transitive Z-graded Lie
superalgebras of the form L =⊕n−1

j=−1L j, where dimLn−1 = 1, L−1 and Ln−1 gener-
ate L, and [L j,Ln− j−1] = 0 for all j, thereby reducing it to the known classification
of simple linearly compact Lie superalgebras and their Z-gradings. The list con-
sists of four examples, one of them being the n + 1-dimensional vector product
n-Lie algebra, and the remaining three infinite-dimensional n-Lie algebras.

0 Introduction

Given an integer n≥ 2, an n-Lie algebra g is a vector space over a field F, endowed
with an n-ary anti-commutative product

Λ
ng→ g, a1∧·· ·∧an 7→ [a1, . . . ,an],

subject to the following Filippov-Jacobi identity:

[a1, . . . ,an−1, [b1, . . . ,bn]] = [[a1, . . . ,an−1,b1],b2, . . . ,bn]
+[b1, [a1, . . . ,an−1,b2],b3, . . . ,bn]
+ · · ·+[b1, . . . ,bn−1, [a1, . . . ,an−1,bn]]. (0.1)

The meaning of this identity is similar to that of the usual Jacobi identity for a
Lie algebra (which is a 2-Lie algebra), namely, given a1, . . . ,an−1 ∈ g, the map
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tarin@math.unipd.it · Department of Mathematics, MIT, Cambridge, Massachusetts 02139,
USA



2 N. Cantarini, V. G. Kac

Da1,...,an−1 : g 7→ g, given by Da1,...an−1(a) = [a1, . . . ,an−1,a], is a derivation of the
n-ary bracket. These derivations are called inner.

The notion of an n-Lie algebra was introduced by Filippov in 1985 (11). In
this and several subsequent papers, (12; 18; 19; 20), a structure theory of finite-
dimensional n-Lie algebras over a field F of characteristic 0 was developed. In
particular, Ling in (20) discovered the following disappointing feature of n-Lie
algebras for n > 2: there exists only one simple finite-dimensional n-Lie algebra
over an algebraically closed field F of characteristic 0. It is given by the vector
product of n vectors in the n + 1-dimensional vector space V , endowed with a
non-degenerate symmetric bilinear form (·, ·). Recall that, choosing dual bases
{ai} and {ai} of V , i.e., (ai,a j) = δi j, i, j = 1, . . . ,n + 1, the vector product of
n vectors from the basis {ai} is defined as the following n-ary bracket:

[ai1 , . . . ,ain ] = εi1,...,in+1ain+1 ,

where εii,...,in+1 is a non-zero totally antisymmetric tensor with values in F, and
extended by n-linearity. This is a simple n-Lie algebra, which is called the vector
product n-Lie algebra; we denote it by On.

Another example of an n-Lie algebra appeared earlier in Nambu’s generaliza-
tion of Hamiltonian dynamics (23). It is the space C ∞(M) of C ∞-functions on a
finite-
dimensional manifold M, endowed with the following n-ary bracket, associated
to n commuting vector fields D1, . . . ,Dn on M:

[ f1, . . . , fn] = det

D1( f1) . . . D1( fn)
. . . . . . . . . . . . . . . . . . .
Dn( f1) . . . Dn( fn)

 . (0.2)

The fact that this n-ary bracket satisfies the Filippov-Jacobi identity was noticed
later by Filippov (who was unaware of Nambu’s work), and by Takhtajan (25),
who introduced the notion of an n-Poisson algebra (and was unaware of Filippov’s
work).

A more recent important example of an n-Lie algebra structure on C ∞(M),
given by Dzhumadildaev (6), is associated to n−1 commuting vector fields D1, . . . ,Dn−1
on M:

[ f1, . . . , fn] = det

 f1 . . . fn
D1( f1) . . . D1( fn)

. . . . . . . . . . . . . . . . . . . . . . . .
Dn−1( f1) . . . Dn−1( fn)

 . (0.3)

In fact, Dzhumadildaev considered examples (0.2) and (0.3) in a more general
context, where C ∞(M) is replaced by an arbitrary commutative associative alge-
bra A over F and the Di by derivations of A. He showed in (9) that (0.2) and (0.3)
satisfy the Filippov-Jacobi identity if and only if the vector space ∑i FDi is closed
under the Lie bracket.

In the past few years there has been some interest in n-Lie algebras in the
physics community, related to M-branes in string theory. We shall quote here two
sources — a survey paper (13), containing a rather extensive list of references, and
a paper by Friedmann (14), where simple finite-dimensional 3-Lie algebras over
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C were classified (she was unaware of the earlier work). At the same time we (the
authors of the present paper) have been completing our work (5) on simple rigid
linearly compact superalgebras, and it occurred to us that the method of this work
also applies to the classification of simple linearly compact n-Lie superalgebras!

Our main result can be stated as follows.

Theorem 0.1 (a) Any simple linearly compact n-Lie algebra with n > 2, over
an algebraically closed field F of characteristic 0, is isomorphic to one of
the following four examples:

(i) the n+1-dimensional vector product n-Lie algebra On;
(ii) the n-Lie algebra, denoted by Sn, which is the linearly compact vector

space of formal power series F[[x1, . . . ,xn]], endowed with the n-ary
bracket (0.2), where Di = ∂

∂xi
;

(iii) the n-Lie algebra, denoted by W n, which is the linearly compact vec-
tor space of formal power series F[[x1, . . . ,xn−1]], endowed with the
n-ary bracket (0.3), where Di = ∂

∂xi
;

(iv) the n-Lie algebra, denoted by SW n, which is the direct sum of n− 1
copies of F[[x]], endowed with the following n-ary bracket, where f 〈 j〉

is an element of the jth copy and f ′ = d f
dx :

[ f 〈 j1〉
1 , . . . f 〈 jn〉

n ] = 0, unless { j1, . . . , jn} ⊃ {1, . . . ,n−1},

[ f 〈1〉1 , . . . , f 〈k−1〉
k−1 , f 〈k〉k , f 〈k〉k+1, f 〈k+1〉

k+2 , . . . , f 〈n−1〉
n ]

= (−1)k+n( f1 . . . fk−1( f ′k fk+1− f ′k+1 fk) fk+2 . . . fn)〈k〉.

(b) There are no simple linearly compact n-Lie superalgebras over F, which are
not n-Lie algebras, if n > 2.

Recall that a linearly compact algebra is a topological algebra, whose under-
lying vector space is linearly compact, namely is a topological product of finite-
dimensional vector spaces, endowed with discrete topology (and it is assumed
that the algebra product is continuous in this topology). In particular, any finite-
dimensional algebra is automatically linearly compact. The basic example of an
infinite-dimensional linearly compact space is the space of formal power series
F[[x1, . . . ,xk]], endowed with the formal topology, or a direct sum of a finite num-
ber of such spaces.

The proof of Theorem 0.1 is based on a construction, which associates to an
n-Lie (super)algebra g a pair (Lie g, µ), where Lie g = ∏ j≥−1 Lie jg is a Z-graded
Lie superalgebra of depth 1 and µ ∈ Lie n−1g, such that the following properties
hold:
(L1) Lie g is transitive, i.e., if a ∈ Lie jg with j ≥ 0 and [a,Lie −1g] = 0, then

a = 0;
(L2) Lie g is generated by Lie −1g and µ;
(L3) [µ,Lie 0g] = 0.

A pair (L,µ), where L = ∏ j≥−1 L j is a transitive Z-graded Lie superalgebra
and µ ∈ Ln−1, such that (L2) and (L3) hold, is called admissible.

The construction of the admissible pair (Lie g,µ), associated to an n-Lie
(super)algebra g, uses the universal Z-graded Lie superalgebra W (V )= ∏ j≥−1 Wj(V ),



4 N. Cantarini, V. G. Kac

associated to a vector superspace V (see Sect. 1 for details). One has Wj(V )= Hom (S j+1V,V ),
so that an element µ ∈Wn−1(V ) defines a commutative n-superalgebra structure on
V and vice versa. Universality means that any transitive Z-graded Lie superalgebra
L = ∏ j≥−1 L j with L−1 = V canonically embeds in W (V ) (the embedding being
given by L j 3 a 7→ ϕa ∈Wj(V ), where ϕa(a1, . . . ,a j+1) = [. . . [a,a1], . . . ,a j+1]).

So, given a commutative n-ary product on a superspace V , we get an element
µ ∈Wn−1(V ), and we denote by Lie V the Z-graded subalgebra of W (V ), gener-
ated by W−1(V ) and µ . The pair (Lie V,µ) obviously satisfies properties (L1) and
(L2).

How do we pass from commutative to anti-commutative n-superalgebras? Given
a commutative n-superalgebra V with n-ary product (a1, . . . ,an), the vector super-
space ΠV (Π stands, as usual, for reversing the parity) becomes an anti-commutative
n-superalgebra with n-ary product

[a1, . . . ,an] = p(a1, . . . ,an)(a1, . . . ,an), (0.4)

where

p(a1, . . . ,an) =
{

(−1)p(a1)+p(a3)+···+p(an−1) if n is even
(−1)p(a2)+p(a4)+···+p(an−1) if n is odd,

(0.5)

and vice versa.
Thus, given an anti-commutative n-superalgebra g, with n-ary product [a1, . . . ,an],

we consider the vector superspace Πg with commutative n-ary product (a1, . . . ,an),
given by (0.4), consider the element µ ∈Wn−1(Πg), corresponding to the latter
n-ary product, and let Lie g be the graded subalgebra of W (Πg), generated by
W−1(Πg) and µ .

Note that properties (L1) and (L2) of the pair (Lie g,µ) still hold, and it
remains to note that property (L3) is equivalent to the (super analogue of the)
Filippov-Jacobi identity. Finally, the simplicity of the n-Lie (super)algebra g is
equivalent to

(L4) the Lie 0g-module Lie −1g is irreducible.

An admissible pair, satisfying property (L4) is called irreducible. Thus, the
proof of Theorem 0.1 reduces to the classification of all irreducible admissible
pairs (L,µ), where L is a linearly compact Lie superalgebra. It is not difficult to
show, as in (5), that S ⊆ L ⊆ Der S, where S is a simple linearly compact Lie
superalgebra and Der S is the Lie superalgebra of its continuous derivations (it is
at this point that the condition n > 2 is essential).

Up to now the arguments worked over an arbitrary field F. In the case F is
algebraically closed of characteristic 0, there is a complete classification of simple
linearly compact Lie superalgebras, their derivations and their Z-gradings (2; 3;
16; 17). Applying these classifications completes the proof of Theorem 0.1.

For example, if g is a finite-dimensional simple n-Lie superalgebra, then dimLie g<
∞, and from (16) we see that the only possibility for Lie g is L = P/F1, where P
is the Lie superalgebra defined by the super Poisson bracket on the Grassmann
algebra in the indeterminates ξ1, . . . ,ξn+1, given by

{ξi,ξ j}= bi j, i, j = 1, . . . ,n+1, (0.6)
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where (bi j) is a non-degenerate symmetric matrix, the Z-grading on L being given
by deg(ξi1 . . .ξis) = s−2, and µ = ξ1ξ2 . . .ξn+1. We conclude that g is the vector
product n-Lie algebra. (The proof of this result in the non-super case, obtained by
Ling (20), is based on the study of the linear Lie algebra spanned by the derivations
Da1,...,an−1 , and is applicable neither in the super nor in the infinite-dimensional
case.) We have no a priori proof of part (b) of Theorem 0.1 — it comes out only
after the classification process.

If char F = 0, we have a more precise result on the structure of an admissible
pair (L,µ).

Theorem 0.2 If char F = 0 and (L,µ) is an admissible pair, then L =⊕n−1
j=−1L j,

where Ln−1 = Fµ, S := ⊕n−2
j=−1L j is an ideal in L, and L j = (adL−1)n− j−1µ for

j = 0, . . . ,n−1.

Of course, Theorem 0.2 reduces significantly the case wise inspection in the
proof of Theorem 0.1. Moreover, Theorem 0.2 can also be used in the study of rep-
resentations of n-Lie algebras. Namely a representation of an n-Lie algebra g in a
vector space M corresponds to an n-Lie algebra structure on the semidirect prod-
uct L−1 = gn M, where M is an abelian ideal. Hence, by Theorem 0.2, we obtain
a graded representation of the Lie superalgebra S =⊕n−2

i=−1Li in the graded super-
vector space L(M) = ∑

n−2
i=−1 M j, M j = (adM)n− j−1µ so that LiM j ⊂ Mi+ j. Such

“degenerate” representations of the Lie superalgebra S are not difficult to classify,
and this corresponds to a classification of representations of the n-Lie algebra g.
In particular, representations of the n-Lie algebra On correspond to “degenerate”
representations of the simple Lie superalgebra H(0,n) (finite-dimensional repre-
sentations of On were classified in (7), using Ling’s method, mentioned above).

Finally, note that, using our discussion on F-forms of simple linearly compact
Lie superalgebras in (3), we can extend Theorem 0.1 to the case of an arbitrary
field F of characteristic 0. The result is almost the same, namely the F-forms are
as follows: On, depending on the equivalence class of the symmetric bilinear form
up to a non-zero factor, and the n-Lie algebras Sn, W n and SW n over F.

1 Preliminaries on n-Superalgebras

Let V be a vector superspace over a field F, namely we have a decomposition
V =V0̄⊕V1̄ in a direct sum of subspaces, where V0̄ (resp. V1̄) is called the subspace
of even (resp. odd) elements; if v ∈ Vα , α ∈ Z/2Z = {0̄, 1̄}, we write p(v) = α .
Given two vector superspaces U and V , the space Hom (U,V ) is naturally a
vector superspace, for which even (resp. odd) elements are parity preserving (resp.
reversing) maps; also U ⊗V is a vector superspace via letting p(a⊗b) = p(a)+
p(b) for a ∈U , b ∈V .

In particular, the tensor algebra T (V ) = ⊕ j∈Z+T j(V ) is an associative super-
algebra. The symmetric (resp. exterior) superalgebra over V is the quotient of
the superalgebra T (V ) by the 2-sided ideal, generated by the elements a⊗ b−
(−1)p(a)p(b)b⊗a (resp. a⊗b+(−1)p(a)p(b)b⊗a), where a,b∈V . They are denoted
by S(V ) and Λ(V ) respectively. Both inherit a Z-grading from T (V ): S(V ) =
⊕ j∈Z+S j, Λ(V ) =⊕ j∈Z+Λ j(V ).
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A well known trivial, but important, observation is that the reversal of parity of
V , i.e., taking the superspace ΠV , where (ΠV )α = Vα+1̄, establishes a canonical
isomorphism:

S(ΠV )'Λ(V ). (1.1)

Definition 1.1 Let n ∈ Z+ and let V be a vector superspace. An n-superalgebra
structure (or n-ary product) on V of parity α ∈Z/2Z is a linear map µ : T n(V )→
V of parity α . A commutative (resp. anti-commutative) n-superalgebra of parity
α is a linear map µ : Sn(V )→V (resp. Λ nV →V ) of parity α , denoted by µ(a1⊗
·· ·⊗an) = (a1, . . . ,an) (resp. = [a1, . . . ,an]).

Lemma 1.2 Let (V,µ) be an anti-commutative n-superalgebra. Then (ΠV, µ̄) is a
commutative n-superalgebra (of parity p(µ)+n−1 mod 2) with the n-ary product

µ̄(a1⊗·· ·⊗an) = p(a1, . . . ,an)µ(a1⊗·· ·⊗an), (1.2)

where

p(a1, . . . ,an) = (−1)∑
[ n−2

2 ]
k=0 p(an−1−2k), (1.3)

and vice versa.

Proof Denote by p′ the parity in ΠV . Then, for a1, . . . ,an ∈ V , p′(µ̄(a1 ⊗ ·· ·⊗
an)) = p(µ)+ 1 + ∑

n
i=1 p(ai) = ∑

n
i=1 p′(ai)+ p(µ)+ n + 1 mod 2, i.e., p′(µ̄) =

p(µ)+n−1 mod 2. Besides, we have p(a1, . . . ,ai,ai+1, . . . ,an)p(a1, . . . ,ai+1,ai, . . . ,an)=
(−1)p(ai)+p(ai+1), hence:
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µ̄(a1⊗·· ·⊗ai⊗ai+1⊗·· ·⊗an)
= p(a1, . . . ,an)µ(a1⊗·· ·⊗ai⊗ai+1⊗·· ·⊗an)

=−(−1)p(ai)p(ai+1)p(a1, . . . ,an)µ(a1⊗·· ·⊗ai+1⊗ai⊗·· ·⊗an)

=−(−1)p(ai)p(ai+1)p(a1, . . . ,an)p(a1, . . . ,ai+1,ai, . . . ,an)
×µ̄(a1⊗·· ·⊗ai+1⊗ai⊗·· ·⊗an)

= (−1)p′(ai)p′(ai+1)
µ̄(a1⊗·· ·⊗ai+1⊗ai⊗·· ·⊗an).

ut

Definition 1.3 A derivation D of parity α ∈ Z/2Z of an n-superalgebra (V,µ) is
an endomorphism of the vector superspace V of parity α , such that:

D(µ(a1⊗·· ·⊗an)) = (−1)α p(µ)(µ(Da1⊗a2⊗·· ·⊗an)

+(−1)α p(a1)
µ(a1⊗Da2⊗·· ·⊗an)+ · · ·

+(−1)α(p(a1)+···+p(an−1))
µ(a1⊗·· ·⊗D(an))).

It is clear that derivations of an n-superalgebra V form a Lie superalgebra,
which is denoted by Der V . It is not difficult to show that all inner derivations of
an n-Lie algebra g span an ideal of Der g (see e.g. (7)), denoted by Inder g.

Now we recall the construction of the universal Lie superalgebra W (V ), asso-
ciated to the vector superspace V . For an integer k≥−1, let Wk(V )= Hom (Sk+1(V ),V ),
in other words, Wk(V ) is the vector superspace of all commutative k+1-superalgebra
structures on V , in particular, W−1(V ) = V , W0(V ) = End (V ), W1(V ) is the space
of all commutative superalgebra structures on V , etc. We endow the vector super-
space

W (V ) =
∞

∏
k=−1

Wk(V )

with a product f �g, making W (V ) a Z-graded superalgebra, given by the follow-
ing formula for f ∈Wp(V ), g ∈Wq(V ):

f �g(x0, . . . ,xp+q) = ∑
i0<···<iq

iq+1<···<ip+q

ε(i0, . . . , iq, iq+1, . . . , ip+q)

× f (g(xi0 , . . . ,xiq),xiq+1 , . . . ,xip+q), (1.4)

where ε = (−1)N , N being the number of interchanges of indices of odd xi’s in
the permutation σ(s) = is, s = 0,1, . . . , p+q. Then the bracket

[ f ,g] = f �g− (−1)p( f )p(q)g� f (1.5)

defines a Lie superalgebra structure on W (V ).

Lemma 1.4 Let V be a vector superspace and let µ ∈Wn−1(V ), D∈W0(V ). Then

(a) [µ,D] = 0 if and only if D is a derivation of the n-superalgebra (V,µ).
(b) D is a derivation of parity α of the commutative n-superalgebra (V,µ) if and

only if D is a derivation of parity α of the anti-commutative n-superalgebra
(ΠV, µ̄), where
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µ̄(a1⊗·· ·⊗an) = p(a1, . . . ,an)µ(a1⊗·· ·⊗an),

and p(a1, . . . ,an) is defined by (1.3).

Proof By (1.5) and (1.4), we have:

[µ,D](b1⊗·· ·⊗bn) = (µ�D)(b1⊗·· ·⊗bn)− (−1)α p(µ)(D�µ)(b1⊗·· ·⊗bn)
= ∑

i1
i2<···<in

(ε(i1, . . . , in)µ(D(bi1)⊗bi2 ⊗·· ·⊗bin))

−(−1)α p(µ)D(µ(b1⊗·· ·⊗bn)),

where α is the parity of D. Therefore [µ,D] = 0 if and only if

D(µ(b1⊗·· ·⊗bn)) = (−1)α p(µ)
∑
i1

i2<···<in

(ε(i1, . . . , in)µ(D(bi1)⊗bi2 ⊗·· ·⊗bin))

= (−1)α p(µ)(µ(D(b1)⊗b2⊗·· ·⊗bn−1)

+(−1)α p(b1)
µ(b1⊗D(b2)⊗·· ·⊗bn−1)+ · · ·

+(−1)α(p(b1)+···+p(bn−1))
µ(b1⊗·· ·⊗bn−1⊗D(bn)),

i.e., if and only if D is a derivation of (V,µ) of parity α , proving (a).
In order to prove (b), note that D is a derivation of parity α of (V,µ) if and

only if

D(µ̄(a1⊗·· ·⊗an) = p(a1, . . . ,an)D(µ(a1⊗·· ·⊗an))

= p(a1, . . . ,an)((−1)α p(µ)(µ(D(a1)⊗a2⊗ . . .an)

+(−1)α p(a1)
µ(a1⊗D(a2)⊗ . . .an)+ · · ·

+(−1)α(p(a1)+···+p(an−1))
µ(a1⊗·· ·⊗D(an)))

= p(a1, . . . ,an)(−1)α p(µ)p(D(a1),a2, . . . ,an)
×(µ̄(D(a1)⊗a2 · · ·⊗an)

+(−1)α p(a1)p(D(a1),a2, . . . ,an)p(a1,D(a2), . . . ,an)
×µ̄(a1⊗D(a2) · · ·⊗an)+ · · ·
+(−1)α(p(a1)+···+p(an−1))p(D(a1),a2, . . . ,an)
×p(a1, . . . ,D(an))µ̄(a1⊗·· ·⊗D(an))).

If n is even, we have:

p(a1, . . . ,an)(−1)α p(µ)p(D(a1),a2, . . . ,an) = (−1)α(p(µ)+1),

(−1)α p(a1)p(D(a1),a2, . . . ,an)p(a1,D(a2), . . . ,an) = (−1)α(p(a1)+1),
...

(−1)α(p(a1)+···+p(an−1))p(D(a1),a2, . . . ,an)p(a1, . . . ,D(an))=(−1)α(p(a1)+...+p(an−1)+1).
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If n is odd, we have:

p(a1, . . . ,an)(−1)α p(µ)p(D(a1),a2, . . . ,an) = (−1)α p(µ),

(−1)α p(a1)p(D(a1),a2, . . . ,an)p(a1,D(a2), . . . ,an) = (−1)α(p(a1)+1),
...

(−1)α(p(a1)+···+p(an−1))p(D(a1),a2 . . . ,an)p(a1, . . . ,D(an))(−1)α(p(a1)+···+p(an−1)).

Since µ̄ has parity equal to p(µ)+n−1 mod 2, (b) is proved. ut

2 The Main Construction

Let (g,µ) be an anti-commutative n-superalgebra over a field F with n-ary product
[a1, . . . ,an], and let V = Πg. Consider the universal Lie superalgebra W (V ) =
∏

∞
k=−1 Wk(V ), and let µ̄ ∈Wn−1(V ) be the element defined by (1.2). Let Lie g =

∏
∞
j=−1 Lie jg be the Z-graded subalgebra of the Lie superalgebra W (V ), generated

by W−1(V ) = V and µ̄ .

Lemma 2.1 (a) Lie g is a transitive subalgebra of W (V ).
(b) If D ∈ Lie 0g, then the action of D on Lie −1g = V (= Πg) is a derivation of

the n-superalgebra g if and only if [D, µ̄] = 0.
(c) Lie 0g is generated by elements of the form

( ad a1) . . .( ad an−1)µ̄, where ai ∈ Lie −1g = V. (2.1)

Proof (a) is clear since W (V ) is transitive and the latter holds since, for f ∈Wk(V )
and a,a1, . . . ,ak ∈W−1(V ) = V one has:

[ f ,a](a1, . . . ,ak) = f (a,a1, . . . ,ak).

(b) follows from Lemma 1.4.
In order to prove (c) let L̃−1 = V and let L̃0 be the subalgebra of the Lie alge-

bra W0(V ), generated by elements (2.1). Let ∏ j≥−1 L̃ j be the full prolongation of
L̃−1⊕ L̃0, i.e., L̃ j = {a ∈Wj(V )|[a, L̃−1]⊂ L̃ j−1} for j ≥ 1. This is a subalgebra of
W (V ), containing V and µ̄ , hence Lie g. This proves (c). ut

Definition 2.2 An n-Lie superalgebra is an anti-commutative n-superalgebra g of
parity α , such that all endomorphisms Da1,...,an−1 of g (a1, . . . ,an−1 ∈ g), defined
by

Da1,...an−1(a) = [a1, . . . ,an−1,a],

are derivations of g, i.e., the following Filippov-Jacobi identity holds:

[a1, . . . ,an−1, [b1, . . . ,bn]]

= (−1)α(p(a1)+···+p(an−1))([[a1, . . . ,an−1,b1],b2, . . . ,bn]

+(−1)p(b1)(p(a1)+···+p(an−1))[b1, [a1, . . . ,an−1,b2],b3, . . . ,bn]

+ · · ·+(−1)(p(b1)+···+p(bn−1))(p(a1)+···+p(an−1))[b1, . . . ,bn−1, [a1, . . . ,an−1,bn]]).
(2.2)
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Recall from the Introduction that the pair (L,µ), where L = ∏ j≥−1 L j is a
Z-graded Lie superalgebra and µ ∈Ln−1, is called admissible if properties (L1),(L2)
and (L3) hold. Two admissible pairs (L,µ) and (L′,µ ′) are called isomorphic if
there exists a Lie superalgebra isomorphism φ : L 7→ L′, such that φ(L j) = L′j for
all j and φ(µ) ∈ F×µ ′.

The following corollary of Lemma 2.1 is immediate.

Corollary 2.3 If g is an n-Lie superalgebra, then the pair (Lie g, µ̄) is admissible.

Now it is easy to prove the following key result.

Proposition 2.4 The map g 7→ (Lie g, µ̄) induces a bijection between isomor-
phism classes of n-Lie superalgebras, considered up to rescaling the n-ary bracket,
and isomorphism classes of admissible pairs. Under this bijection, simple n-Lie
algebras correspond to irreducible admissible pairs. Moreover, g is linearly com-
pact if and only if Lie g is.

Proof Given an admissible pair (L,µ), where L = ∏ j≥−1 L j, µ ∈ Ln−1, we let
g = ΠL−1, and define an n-ary bracket on g by the formula

[a1, . . . ,an] = p(a1, . . . ,an)[. . . [µ,a1] . . . ,an],

where p(a1, . . . ,an) is given by (1.3). Obviously, this n-ary bracket is anti-commutative.
The Filippov-Jacobi identity follows from the property (L3) using the embedding
of L in W (L−1) and applying Lemma 2.1(b). Thus, g is an n-Lie superalgebra.
Due to properties (L1) and (L2), we obtain the bijection of the map in question.
It is obvious that g is simple if and only if the pair (L,µ) is irreducible. The fact
that the linear compactness of g implies that of Lie g is proved in the same way as
Proposition 7.2(c) from (5). ut

Remark 2.5 If g is a finite-dimensional n-Lie algebra, then Lie −1g = Πg is purely
odd, hence dimW (Πg) < ∞ and therefore dimLie g < ∞. In the super case this fol-
lows from Theorem 0.2 if char F = 0, and from the fact that any finite-dimensional
subspace of W (V ) generates a finite-dimensional subalgebra if char F > 0. Thus,
an n-Lie superalgebra g is finite-dimensional if and only if the Lie superalgebra
Lie g is finite-dimensional.

Remark 2.6 Let V be a vector superspace. Recall that a sequence of anti-commutative
(n+1)-ary products dn , n = 0,1, . . . , of parity n+1 mod 2 on V endow V with a
structure of a homotopy Lie algebra if they satisfy a sequence of certain quadratic
identities, which mean that d2

0 = 0, d1 is a Lie (super)algebra bracket modulo
the image of d0 and d0 is the derivation of this bracket, etc. (24). (Usually one
also requires a Z-grading on V for which dn has degree n− 1, but we ignore
this requirement here.) On the other hand, recall that if µn is an (n + 1)-ary anti-
commutative product on V of parity n+1 mod 2, then the (n+1)-ary product µ̄n,
defined in Lemma 1.4, is a commutative odd product on the vector superspace ΠV .
It is easy to see that the sequence of (n + 1)-ary products µ̄n define a homotopy
Lie algebra structure on ΠV if and only if the odd element µ = ∑n µ̄n ∈W (ΠV )
satisfies the identity [µ,µ] = 0. As above, we can associate to a given homotopy
Lie algebra structure on V the subalgebra of W (ΠV ), denoted by Lie (V,µ), which
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is generated by W−1(ΠV ) and all µ̄n, n = 0,1, . . . . If the superspace V is linearly
compact and the homotopy Lie algebra is simple with µ̄n 6= 0 for some n > 2, then
the derived algebra of Lie (V,µ) is simple, hence is of one of the types X(m,n),
according to the classification of (17). Then the simple homotopy Lie algebra is
called of type X(m,n). (Of course, there are many homotopy Lie algebras of a
given type.) Lemma 3.1 below shows, in particular, that in characteristic 0 any n-
Lie superalgebra of parity n mod 2 is a homotopy Lie algebra, for which µ̄ j = 0
if j 6= n−1. This was proved earlier in (8) and (22).

3 Proof of Theorem 0.2

For the sake of simplicity we consider the n-Lie algebra case, i.e. we assume that
L−1 is purely odd. The same proof works verbatim when L−1 is not purely odd,
using identity (2.2). Alternatively, the use of the standard Grassmann envelope
argument reduces the case of n-Lie superalgebras of even parity to the case of
n-Lie algebras.

First, introduce some notation. Let S2n−1 be the group of permutations of the
2n− 1 element set {1, . . . ,2n− 1} and, for σ ∈ S2n−1, let ε(σ) be the sign of σ .
Denote by S the subset of S2n−1 consisting of permutations σ , such that σ(1) <
· · ·< σ(n−1), σ(n) < · · ·< σ(2n−1). Consider the following subsets of S (l and
s stand for “long” and “short” as in (8)):

Sl1 = {σ ∈ S| σ(2n−1) = 2n−1},
Ss1 = {σ ∈ S| σ(n−1) = 2n−1}.

It is immediate to see that S = Sl1 ∪Ss1 . Likewise, let

Sl1l2 = {σ ∈ Sl1 | σ(2n−2) = 2n−2},
Sl1s2 = {σ ∈ Sl1 | σ(n−1) = 2n−2},
Ss1l2 = {σ ∈ Ss1 | σ(2n−1) = 2n−2},
Ss1s2 = {σ ∈ Ss1 | σ(n−2) = 2n−2}.

Then Sl1 = Sl1l2 ∪ Sl1s2 , and Ss1 = Ss1l2 ∪ Ss1s2 . Likewise, we define the subsets
Sa1...ak , with a = l or a = s, for 1≤ k ≤ 2n−1, so that

Sa1...ak−1 = Sa1...ak−1sk ∪Sa1...ak−1lk . (3.1)

Lemma 3.1 If (L = ∏ j≥−1 L j,µ) is an admissible pair, then [(adL−1)n− j−1µ,µ] =
0 for every j = 0, . . . ,n−1.

Proof If (L,µ) is an admissible pair, then, by Lemma 2.1(c), L0 = (adL−1)n−1µ ,
hence [(adL−1)n−1 µ,µ] = 0 by property (L3). Now we will show that [(adL−1)n− j−1

µ,µ] = 0 for every j = 1, . . . ,n− 1. By Lemma 2.1(b) and property (L3), the
Filippov-Jacobi identity holds for elements in ΠL−1 with product (1.2). Let x1, . . . ,xn− j−1 ∈
L−1. By definition, [µ, [x1, . . . , [xn− j−1,µ]]] = µ�[x1, . . . , [xn− j−1,µ]]−(−1) j(n−1)

[x1, . . . , [xn− j−1,µ]]�µ. One checks by a direct calculation, using the Filippov-
Jacobi identity, that

µ�Alt[x1, . . . , [xn− j−1,µ]]− (−1) j(n−1)[x1, . . . , [xn− j−1,µ]]�µ = 0,
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where, for f ∈ Hom(V⊗k,V ), Alt f ∈ Hom(V⊗k,V ) denotes the alternator of f ,
i.e., Alt f (a1, . . . ,ak) = ∑σ∈Sk

f (aσ(1), . . . ,aσ(k)). Hence, since µ ∈ Wn−1(L−1),
we have

[µ, [x1, . . . , [xn− j−1,µ]]] = (( j +1)!+1)µ�[x1, . . . , [xn− j−1,µ]].

We will prove a stronger statement than the lemma, namely, we will show that, for
every j = 1, . . . ,n−1 one has:

µ�[x1, . . . , [xn− j−1,µ]] = 0. (3.2)

Note that, by definition, for a1, . . . ,an+ j ∈ L−1, we have:

(µ�[x1, . . . , [xn− j−1,µ]])(a1, . . . ,an+ j)

= ∑
σ(1)<···<σ( j+1)

σ( j+2)<···<σ(n+ j)

ε(σ)µ([x1, . . . , [xn− j−1,µ]](aσ(1), . . . ,aσ( j+1)),

aσ( j+2), . . . ,aσ(n+ j))

= ∑
σ(1)<···<σ( j+1)

σ( j+2)<···<σ(n+ j)

ε(σ)µ(µ(xn− j−1, . . . ,x1,aσ(1), . . . ,aσ( j+1)),

aσ( j+2), . . . ,aσ(n+ j)).

Therefore (3.2) is equivalent to the following:

∑
σ∈Sl1,...,ln− j−1

ε(σ)µ(xσ(1), . . . ,xσ(n−1),µ(xσ(n), . . . ,xσ(2n−1))) = 0. (3.3)

Set Aσ = ε(σ)µ(xσ(1), . . . ,xσ(n−1),µ(xσ(n), . . . ,xσ(2n−1))), Ql1...lt = ∑σ∈Sl1...lt

Aσ , and similarly define Qa1...at , where a = s or a = l. Then (3.3) is equivalent to
Ql1...ln− j−1 = 0. In fact, we shall prove more:

Ql1...lt = Ql1...lt−1st = Qs1...st−1lt = Qs1...st = 0 for t = 0, . . . ,n−2. (3.4)

For t = 0 and t = 1, equality (3.4) can be proved as in (8, Prop. 2.1). Namely,
by the Filippov-Jacobi identity, for any σ ∈ Ss1 , Aσ can be written as a sum of n
elements Aτ , where τ ∈ Sl1 is such that {τ(1), . . . ,τ(n−1)} ⊂ {σ(n), . . . ,σ(2n−
1)}. Since the sets {τ(1), . . . ,τ(n−1)} and {σ(n), . . . ,σ(2n−1)} have n−1 and
n elements, respectively, there exists only one i such that {τ(1), . . . ,τ(n− 1)}∪
{i}= {σ(n), . . . ,σ(2n−1)}. Then i≤ 2n−2 and i 6= τ(1), . . . ,τ(n−1). Therefore
there are n−1 possibilities to choose i. It follows that

Qs1 = (n−1)Ql1 . (3.5)

Likewise, by the Filippov-Jacobi identity, for any σ ∈ Sl1 , Aσ can be written as
a sum of one element Aρ with ρ ∈ Sl1 , and n− 1 elements Aτ , with τ ∈ Ss1 such
that {τ(1), . . . ,τ(n− 2)} ⊂ {σ(n), . . . ,σ(2n− 2)}. As above, there exists only
one i such that {τ(1), . . . ,τ(n− 2)}∪ {i} = {σ(n), . . . ,σ(2n− 2)}. Such an i is
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different from τ(1), . . . ,τ(n−2) and i≤ 2n−2. Hence there are n possibilities to
choose i. Notice that

ρ =
(

1 . . . n−1 n . . . 2n−2 2n−1
σ(n) . . . σ(2n−2) σ(1) . . . σ(n−1) 2n−1

)
, (3.6)

hence ε(ρ) = (−1)n−1ε(σ). Therefore

Ql1 = nQs1 +(−1)n−1Ql1 . (3.7)

Equations (3.5) and (3.7) form a system of two linear equations in the two inde-
terminates Qs1 and Ql1 , whose determinant is equal to n2−n−1− (−1)n, which
is different from zero for every n > 2. It follows that Qs1 = 0 = Ql1 , i.e., (3.4) is
proved for t = 1. Since, as we have already noticed, S = Sl1 + Ss1 , (3.4) for t = 0
also follows.

Now we argue by induction on t. We already proved (3.4) for t = 0 and t = 1.
Assume that

Ql1...lt−1 = Ql1...lt−2st−1 = Qs1...st−2lt−1 = Qs1...st−1 = 0

for some 1≤ t < n−2. Similarly as above, by the Filippov-Jacobi identity, for any
σ ∈ Ss1...st , Aσ can be written as a sum of n elements Aτ with τ ∈ Sl1...lt , such that
{τ(1), . . . ,τ(n− 1)} ⊂ {σ(n), . . . ,σ(2n− 1)}, i.e., {τ(1), . . . ,τ(n− 1)} ∪ {i} =
{σ(n), . . . ,σ(2n−1)}, for some i≤ 2n−t−1 and i 6= τ(1), . . . ,τ(n−1). It follows
that there are n− t choices for i, hence

Qs1...st = (n− t)Ql1...lt . (3.8)

Likewise, if σ ∈ Ss1...st−1lt , then, by the Filippov-Jacobi identity, Aσ can be written
as a sum of one element Aρ with ρ ∈ Sl1...lt as in (3.6), and n−1 elements Aτ with
τ ∈ Sl1...lt−1st , such that {τ(1), . . . ,τ(n− 2)} ⊂ {σ(n), . . . ,σ(2n− 2)}. As above,
there exists only one i such that {τ(1), . . . ,τ(n− 2)}∪ {i} = {σ(n), . . . ,σ(2n−
2)}. Then i≤ 2n− t−1, i 6= τ(1), . . . ,τ(n−2). It follows that

Qs1...st−1lt = (n− t +1)Ql1...lt−1st +(−1)n−1Ql1...lt . (3.9)

Then, using (3.1) and the inductive hypotheses Qs1...st−1 = 0 = Ql1...lt−1 , we get the
following system of linear equations:

Qs1...st = (n− t)Ql1...lt
Qs1...st−1lt = (n− t +1)Ql1...lt−1st +(−1)n−1Ql1...lt
Qs1...st +Qs1...st−1lt = 0
Ql1...lt +Ql1...lt−1st = 0,

(3.10)

whose determinant is equal to (−1)n +1. It follows that if n is even then Ql1...lt =
0 = Qs1...st = Qs1...st−1lt = Ql1...lt−1st , hence (3.4) is proved.

Now assume that n is odd. Then (3.10) reduces toQs1...st = (n− t)Ql1...lt
Qs1...st−1lt = (n− t +1)Ql1...lt−1st +Ql1...lt
Qs1...st +Qs1...st−1lt = 0.

(3.11)
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Using the Filippov-Jacobi identity as above, one gets the following system of
linear equations:{

Qs1...st−2lt−1lt = (n− t +2)Ql1...lt−2st−1st −Ql1...lt−2st−1lt +Ql1...lt−2lt−1st
Qs1...st−2lt−1st = (n− t +1)Ql1...lt−2st−1lt +Ql1...lt−2lt−1lt .

(3.12)

Besides, using the inductive hypotheses, we get:Qs1...st−2lt−1lt +Qs1...st−2lt−1st = Qs1...st−2lt−1 = 0
Ql1...lt−2st−1st +Ql1...lt−2st−1lt = Ql1...lt−2st−1 = 0
Ql1...lt−2lt−1st +Ql1...lt−2lt−1lt = Ql1...lt−2lt−1 = 0.

(3.13)

Taking the sum of the two equations in (3.12), and using the three equations in
(3.13), we get: Ql1...lt−2st−1st = Ql1...lt−2st−1lt = 0. By arguing in the same way, one
shows that

Ql1...lksk+1lk+2...lt = 0 for every k = 0, . . . t−2. (3.14)

Finally, using the Filippov-Jacobi identity as above, one gets the following system
of linear equations:

Ql1...lt = nQs1...st +(−1)n+t−2Qs1...st−1lt + · · ·−Qs1l2s3...st +Ql1s2...st
Qs1...st−2lt−1st = (n− t +1)Ql1...lt−2st−1lt +Ql1...lt
...
Ql1s2...st = (n− t +1)Qs1l2...lt +Ql1...lt ,

which reduces, by (3.14), to the following:
Ql1...lt = nQs1...st +(−1)n+t−2Qs1...st−1lt + · · ·−Qs1l2s3...st +Ql1s2...st
Qs1...st−2lt−1st = Ql1...lt
...
Ql1s2...st = Ql1...lt .

(3.15)

System (3.15) implies the following equation:

Ql1...lt = nQs1...st +(−1)n+t−2Qs1...st−1lt +
(−1)t +1

2
Ql1...lt .

This equation together with (3.11) form a system of four linear equations in four
indeterminates, whose determinant is equal to (n−t +1)((−1)n−t(n−t)+ 1−(−1)t

2 −
n(n− t)). It is different from 0 for every t = 1, . . . ,n− 2. Hence Ql1...lt = 0 =
Ql1...lt−1st = Qs1...st−1lt = Qs1...st , and (3.4) is proved. ut

Proof of Theorem 0.2 Any element of the subalgebra generated by L−1 and µ is a
linear combination of elements of the form:

[. . . [[. . . [[[. . . [µ,a1], . . . ,as],µ],b1], . . . ,bk],µ], . . . ] (3.16)

with a1, . . . ,as,b1, . . . ,bk, . . . in L−1. By Lemma 3.1, every element of the form
[[[. . . [µ,a1], . . . ,as],µ] is either 0 or an element in L−1, therefore we can assume
that µ appears only once in (3.16), i.e., any element of L lies in [. . . [µ,L−1], . . . ,L−1].

ut
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Remark 3.2 We conjecture that Theorem 0.2 holds also in non-zero characteris-
tic if char F ≥ n. Our argument works for char F > (n− 1)2. The following
example shows that Theorem 0.2 (and Theorem 0.1) fails if 0 < char F < n.
Let g = Fa be a 1-dimensional odd space, which we endow by the following n-
bracket: [a,a, . . . ,a] = a. The Filippov-Jacobi identity holds if n = sp + 1, where
p = char F and s is a positive integer. However, Lie g is not of the form described
by Theorem 0.2.

4 Classification of Irreducible Admissible Pairs

First, we briefly recall some examples of Z-graded linearly compact Lie superal-
gebras over a field F of characteristic 0, and some of their properties. For more
details, see (17) and (4).

Given a finite-dimensional vector superspace V of dimension (m|n) (i.e. dimV0̄ =
m, dimV1̄ = n), the universal Lie superalgebra W (V ) is isomorphic to the Lie
superalgebra W (m,n) of continuous derivations of the tensor product F(m,n) of
the algebra of formal power series in m commuting variables x1, . . . ,xm and the
Grassmann algebra in n anti-commuting variables ξ1, . . . ,ξn. Elements of W (m,n)
can be viewed as linear differential operators of the form

X =
m

∑
i=1

Pi(x,ξ )
∂

∂xi
+

n

∑
j=1

Q j(x,ξ )
∂

∂ξ j
, Pi,Q j ∈ F(m,n).

The Lie superalgebra W (m,n) is simple linearly compact (and it is finite-dimensional
if and only if m = 0).

Letting degxi =−deg ∂

∂xi
= ki, degξi =−deg ∂

∂ξi
= si, where ki,si ∈Z, defines

a Z-grading on W (m,n), called the Z-grading of type (k1, . . . ,km|s1, . . . ,sn). Any
Z-grading of W (m,n) is conjugate (i.e. can be mapped by an automorphism of
W (m,n)) to one of these. Clearly, such a grading has finite depth d (meaning that
W (m,n) j 6= 0 if and only if j ≥−d) if and only if ki ≥ 0 for all i. It is easy to show
that the depth d = 1 if all ki’s and si’s are 0 or 1, or if all ki’s are 0, s j = −1 for
some j, and si = 0 for every i 6= j.

Now we shall describe some closed (hence linearly compact) subalgebras of
W (m,n).

First, given a subalgebra L of W (m,n), a continuous linear map Div : L →
F(m,n) is called a divergence if the action πλ of L on F(m,n), given by

πλ (X) f = X f +(−1)p(X)p( f )
λ f DivX , X ∈ L,

is a representation of L in F(m,n) for any λ ∈ F. Note that

S′Div(L) := {X ∈ L | DivX = 0}

is a closed subalgebra of L. We denote by SDiv(L) its derived subalgebra (recall that
the derived subalgebra of g is [g,g]). An example of a divergence on L = W (m,n)
is the following, denoted by div:

div

(
m

∑
i=1

Pi
∂

∂xi
+

n

∑
j=1

Q j
∂

∂ξ j

)
=

m

∑
i=1

∂Pi

∂xi
+

n

∑
j=1

(−1)p(Q j) ∂Q j

∂ξ j
.
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Hence for any λ ∈ F we get the representation πλ of W (m,n) in F(m,n). Also,
we get closed subalgebras S′div(W (m,n)) ⊃ Sdiv(W (m,n)) denoted by S′(m,n) ⊃
S(m,n). Recall that S′(m,n) = S(m,n) is simple if m > 1, and

S′(1,n) = S(1,n)⊕Fξ1 . . .ξn
∂

∂x1
, (4.1)

where S(1,n) is a simple ideal.
The Z-gradings of type (k1, . . . ,km|s1, . . . ,sn) of W (m,n) induce ones on S′(m,n)

and S(m,n) and any Z-grading is conjugate to those. The description of Z-gradings
of depth 1 for S′(m,n) and S(m,n) is the same as for W (m,n).

Next examples of subalgebras of W (m,n), needed in this paper, are of the form

L(ω) = {X ∈W (m,n) | Xω = 0},

where ω is a differential form.
In the case m = 2k is even, consider the symplectic differential form

ωs = 2
k

∑
i=1

dxi∧dxk+i +
n

∑
i=1

dξidξk−i+1.

The corresponding subalgebra L(ωs) is denoted by H ′(m,n) and is called a Hamil-
tonian superalgebra. This superalgebra is simple, hence coincides with its derived
subalgebra H(m,n), unless m = 0, when the Hamiltonian superalgebra is finite-
dimensional.

It is convenient to consider the “Poisson” realization of H(m,n). For that let
pi = xi, qi = xk+i, i = 1, . . . ,k, and introduce on F(m,n) the structure of a Poisson
superalgebra P(m,n) by letting the non-zero brackets between generators to be as
follows:

{pi,qi}= 1 = {ξi,ξn−i+1},

and extend by the Leibniz rule. Then the map P(m,n)→ H ′(m,n), given by f 7→
∑

k
i=1

(
∂ f
∂ pi

∂

∂qi
− ∂ f

∂qi
∂

∂ pi

)
−(−1)p( f )

∑
k
i=1

∂ f
∂ξi

∂

∂ξk−i+1
, defines a surjective Lie super-

algebra homomorphism with kernel F1. Thus, H ′(m,n) = P(m,n)/F1. In this real-
ization H(0,n) is spanned by all monomials in ξi mod F1 except for the one of
top degree, and we have:

H ′(0,n) = H(0,n)⊕Fξ1 . . .ξn. (4.2)

Note that H(0,n) is simple if and only if n≥ 4.
All Z-gradings of depth 1 of H ′(0,n) are, up to conjugacy, those of type

(|1, . . . ,1),(|1,0, . . . ,0, −1), and (|1, . . . ,1︸ ︷︷ ︸
n/2

,0, . . . ,0), if n is even (5).

Another example is HO(n,n) = L(ωos)⊂W (n,n), where ωos = ∑
n
i=1 dxidξi is

an odd symplectic form. This Lie superalgebra is simple if and only if n ≥ 2. It
contains the important for this paper subalgebra SHO′(n,n) = HO(n,n)∩S′(n,n).
Its derived subalgebra SHO(n,n) is simple if and only if n≥ 3.
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Again, it is convenient to consider a “Poisson” realization of HO(n,n). For
this consider the Buttin bracket on ΠF(n,n):

{ f ,g}B =
n

∑
i=1

(
∂ f
∂xi

∂g
∂ξi

− (−1)p( f ) ∂ f
∂ξi

∂g
∂xi

)
.

This is a Lie superalgebra, which we denote by PO(n,n), and the map PO(n,n)→
HO(n,n), given by

f 7→
n

∑
i=1

(
∂ f
∂xi

∂

∂ξi
− (−1)p( f ) ∂ f

∂ξi

∂

∂xi

)
is a surjective Lie superalgebra homomorphism, whose kernel is F1. Thus, HO(n,n)=
P(n,n)/F1. In this realization we have:

SHO′(n,n) = { f ∈ P(n,n)/F1 | ∆ f = 0},

where ∆ = ∑
n
i=1

∂

∂xi
∂

∂ξi
is the odd Laplace operator. Then SHO(n,n) is an ideal of

codimension 1 in SHO′(n,n), and we have:

SHO′(n,n) = SHO(n,n)⊕Fξ1 . . .ξn. (4.3)

All Z-gradings of depth 1 of SHO′(n,n) are, up to conjugacy, those of type (1, . . . ,
1|1, . . . ,1), (0, . . . ,0,1|0, . . . ,0,−1), and (1, . . . ,1︸ ︷︷ ︸

k

,0, . . . ,0|0, . . . ,0︸ ︷︷ ︸
k

,1, . . . ,1),

where k = 0, . . . ,n (5).
The next important for us example is

KO(n,n+1) = {X ∈W (n,n+1) | Xωoc = f ωoc for some f ∈ F(n,n+1)},

where ωoc = dξn+1 +∑
n
i=1(ξidxi + xidξi) is an odd contact form. This superalge-

bra is simple for all n≥ 1. Another realization of this Lie superalgebra is PO(n,n+
1) = ΠF(n,n+1) with the bracket { f ,g}BO = (2−E) f ∂g

∂ξn+1
−(−1)p( f ) ∂ f

∂ξn+1
(2−

E)g−∑
n
i=1(

∂ f
∂xi

∂g
∂ξi
−(−1)p( f ) ∂ f

∂ξi

∂g
∂xi

), where E = ∑
n
i=1(xi

∂

∂xi
+ξi

∂

∂ξi
). The isomor-

phism PO(n,n+1)→KO(n,n+1) is given by f 7→ (2−E) f ∂

∂ξn+1
+(−1)p( f ) ∂ f

∂ξn+1
E−

∑
n
i=1(

∂ f
∂xi

∂

∂ξi
− (−1)p( f ) ∂ f

∂ξi

∂

∂xi
). It turns out that for each β ∈ F the Lie superalge-

bra KO(n,n+1) admits a divergence

divβ f = ∆ f +(E−nβ )
∂ f

∂ξn+1
, f ∈ PO(n,n+1).

We let

SKO′(n,n+1;β ) = { f ∈ PO(n,n+1) | divβ f = 0}.

This Lie superalgebra is not always simple, but its derived algebra, denoted by
SKO(n,
n + 1;β ), is simple if and only if n≥ 2. In fact, SKO′(n,n + 1;β )= SKO(n,n +
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1;β ), unless β = 1 or β = n−2
n . In the latter cases SKO(n,n + 1;β ) is an ideal of

codimension 1 in SKO′(n,n+1;β ), and we have:

SKO′(n,n+1;1) = SKO(n,n+1;1)+Fξ1 . . .ξn+1, (4.4)

SKO′
(

n,n+1;
n−2

n

)
= SKO

(
n,n+1;

n−2
n

)
+Fξ1 . . .ξn. (4.5)

All Z-gradings of depth 1 of SKO′(n,n+1;β ) are, up to conjugacy, of type (0, . . . ,0,
1|0, . . . ,0,−1,0), and (1, . . . ,1︸ ︷︷ ︸

k

,0, . . . ,0|0, . . . ,0︸ ︷︷ ︸
k

,1, . . . ,1), where k = 0, . . . ,n (5).

Theorem 4.1 Let (L = ⊕n−1
j=−1L j,µ) be an irreducible admissible pair over an

algebraically closed field F of characteristic 0, where L is a linearly compact Lie
superalgebra, and n > 2. Then

(a) L = ⊕n−1
j=−1L j is a semidirect product of the simple ideal S = ⊕n−2

j=−1L j and
the 1-dimensional subalgebra Ln−1 = Fµ , where µ is an outer derivation of
L, such that [µ,L0] = 0.

(b) The pair (L,µ) is isomorphic to one of the following four irreducible admis-
sible pairs:

(i) (H ′(0,n+1),ξ1 . . .ξn+1), n≥ 3, with the grading of type (|1, . . . ,1);
(ii) (SHO′(n,n),ξ1 . . .ξn), n≥3, with the grading of type (0, . . . ,0|1, . . . ,1);

(iii) (SKO′(n−1,n;1),ξ1 . . .ξn−1ξn), n≥ 3, with the grading of type (0, . . . ,
0|1, . . . ,1);

(iv) (S(1,n−1),ξ1 . . .ξn−1
∂

∂x ), n≥ 3, with the grading of type (0|1, . . . ,1).

Proof The decomposition L = S oFµ in (a) follows from Theorem 0.2. The fact
that S is simple is proved in the same way as in (5, Th. 7.3). Indeed, S is the
minimal among non-zero closed ideals of L, since if I is a non-zero closed ideal
of L, then I ∩ L−1 6= /0 by transitivity, hence, by irreducibility, I ∩ L−1 = L−1,
from which it follows that I contains S. Next, by the super-analogue of Cartan-
Guillemin’s theorem (1; 15), established in (10), S = S′⊗̂Λ(m,h), for some sim-
ple linearly compact Lie superalgebra S′ and some m,h ∈ Z≥0, and µ lies in
Der(S′⊗̂O(m,h)). Since Der(S′⊗̂O(m,h)) = DerS′⊗̂O(m,h)+1⊗W (m,h) (10),
we have: µ = ∑i(di ⊗ ai) + 1⊗ µ ′ for some di ∈ DerS′, ai ∈ O(m,h) and µ ′ ∈
W (m,h).

First consider the case when µ is even. Then µ ′ is an even element of W (m,h),
hence, by the minimality of the ideal S′⊗̂O(m,h), h = 0. Now suppose m ≥ 1. If
µ ′ lies in the non-negative part of W (m,0) with the grading of type (1, . . . ,1|),
then the ideal generated by S′x1 is a proper µ-invariant ideal of S′⊗̂O(m,0), con-
tradicting its minimality. Therefore we may assume, up to a linear change of inde-
terminates, that µ ′ = ∂

∂x1
+ D, for some derivation D lying in the non-negative

part of W (m,0). Since µ lies in Ln−1, we have deg(x1) = −n + 1, but this is a
contradiction since the Z-grading of L has depth 1. It follows that m = 0.

Now consider the case when µ is odd. Consider the grading of W (m,h) of
type (1, . . . ,1|1, . . . ,1), and denote by W (m,h)≥0 its non-negative part. If µ ′ ∈
W (m,h)≥0, then the minimality of the ideal S′⊗̂O(m,h) implies m = h = 0. Now
suppose that h ≥ 1 and that µ ′ has a non-zero projection on W (m,h)−1. Then,
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up to a linear change of indeterminates, µ ′ = ∂

∂ξ1
+ D for some odd derivation

D ∈ W (m,h)≥0. Since µ lies in Ln−1, we have deg(ξ1) = −n + 1 < −1. Since
L ⊃ S′ξ1 and the grading of L has depth 1, it follows that every element in S′ has
positive degree, but this is a contradiction since S′ is simple. This concludes the
proof of the simplicity of S.

In order to prove (b), note that the grading operator D of the simple Z-graded
Lie superalgebra S is an outer derivation (since [µ,L0] = 0,D /∈ L0). Another
outer derivation of S is µ . From the classification of simple linearly compact
Lie superalgebras (16; 17) and their derivations in (16; 17), (2, Prop. 1.8) (see
also Lemma 4.3 below), we see that the only possibilities for L are H ′(0,n + 1),
SHO′(n,n), SKO′(n− 1,n;1), SKO′ (n−1,n; n−2

n

)
, and S′(1,n) for n ≥ 3. From

the description of Z-gradings of depth 1 of these Lie superalgebras, given above,
it follows that L = SKO′ (n−1,n; n−1

n

)
is ruled out, whereas for the remaining

four possibilities for L only the grading of type (0, . . . ,0|1, . . . ,1) is possible, and
for them indeed Ln−1 = Fµ , where µ is as described above. It is immediate to
check that in these four cases the pair (L,µ) is admissible. Irreducibility of the
L0-module L−1 follows automatically from the simplicity of S since its depth is 1.
ut

Remark 4.2 In cases (i)–(iv) of Theorem 4.1(b) the subalgebra L0 and the L0-
module ΠL−1 are as follows:

(i) L0 ∼= son+1(F), ΠL−1 = Fn+1 with the standard action of son+1(F);
(ii) L0 ∼= S(n,0), ΠL−1 = F[[x1, . . . ,xn]]/F1, where F[[x1, . . . ,xn]] is the stan-

dard module over S(n,0);
(iii) L0 ∼=W (n−1,0), ΠL−1 = F[[x1, . . . ,xn−1]], which carries the representation

πλ=−1 of W (n−1,0);
(iv) L0 ∼=W (1,0)nsln−1(F[[x]]), ΠL−1 = Fn−1⊗F[[x]] with the standard action

of sln−1(F[[x]]) and the representation πλ=−1/(n−1) of W (1,0) on F[[x]].

As we have seen, an important part of the classification of irreducible admissi-
ble pairs is the description of derivations of simple linearly compact Lie algebras.
This description is based on the following simple lemma.

Lemma 4.3 Let L be a linearly compact Lie superalgebra and let a be a reduc-
tive subalgebra of L (i.e. the adjoint representation of a on L decomposes in a
direct product of finite-dimensional irreducible a-modules). Then any continuous
derivation of L is a sum of an inner derivation and a derivation commuting with
the adjoint action of a.

Proof (16) We have closed a-submodules:

Inder L ⊂ Der L ⊂ EndL,

where Inder L and Der L denote the subspaces of all inner derivations and all
continuous derivations of the Lie superalgebra L in the space of continuous endo-
morphisms of the linearly compact vector space L. Since L = ∏ j Vj, where Vj are
finite-dimensional irreducible a-modules, we have: End L = ∏i, j Hom (Vi,Vj),
hence End L, and therefore Der L, decomposes into a direct product of irreducible
a-submodules. Hence

Der L = Inder L⊕V,
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where V is an a-submodule. But aV ⊂ Inder L since Inder L is an ideal in Der L.
Hence aV = 0, i.e., any derivation from V commutes with the adjoint action of a
on L. ut

5 Classification of Simple Linearly Compact n-Lie Algebras Over
a Field of Characteristic 0, and Their Derivations

Proof of Theorem 0.1 By Proposition 2.4, the classification of simple linearly com-
pact n-Lie algebras is equivalent to the classification of admissible pairs (L,µ),
for which L is linearly compact. The list of the latter consists of the four examples
(i)–(iv) given in Theorem 4.1(b). It is easy to see that the corresponding n-Lie
algebras are On, Sn, W n and SW n. (By Lemma 1.4(a), we automatically get from
[µ,L0] = 0 that the Filippov-Jacobi identity indeed holds.) ut

The notation for the four simple n-Lie algebras comes from the following fact.

Proposition 5.1 (a) The Lie algebra of continuous derivations of the n-Lie alge-
bras On, Sn, W n and SW n is isomorphic to son+1(F), S(n,0), W (n−1,0) and
W (1,0)n sln−1(F[[x]]), respectively. Its representation on the n-Lie algebra
is described in Remark 4.2.

(b) All continuous derivations of a simple linearly compact n-Lie algebra g over
an algebraically closed field of characteristic 0 lie in the closure Inder g of
the span of the inner ones.

Proof Let g be one of the four simple n-Lie algebras and let Der g be the Lie alge-
bra of all continuous derivations of g. Then L0 := Inder g is an ideal of Der g. By
Remark 4.2, L0 is isomorphic to the Lie algebras listed in (a). But all derivations of
the Lie algebras L0 = son+1(F), W (n−1,0) and W (1,0)n sln−1(F[[x]]) are inner,
and Der S(n,0) = S(n,0)⊕FE, where E = ∑i xi

∂

∂xi
. This is well known, except

for the case L = W (1,0)n sln−1(F[[x]]). We apply Lemma 4.3 to this case, taking
a = Fx d

dx ⊕ sln−1(F). If D is an endomorphism of the vector space L, commuting
with a, we have, by Schur’s lemma:

D
(

xk d
dx

)
= αkxk d

dx
, D(xka) = βkxka, for a ∈ sln−1(F), where αk,βk ∈ F.

Since D is also a derivation of L, we conclude that D is a multiple of ad x d
dx .

Let now D ∈ Der g\( Inder g = L0). Since [D,L0] ⊂ L0, D induces a deriva-
tion of L0. Since all derivations of L0 are inner, except for E in the case g ∼= Sn,
but E is not a derivation of g, we conclude that there exists a ∈ L0, such that
D|L0 = ad a|L0 . Therefore D′ = D− a commutes with the action of L0 on L−1.
But the latter representation is described in Remark 4.2, and, clearly, in all cases
the only operators, commuting with the representation operators of L0 on L−1,
are scalars. Since a non-zero scalar cannot be a derivation of g, we conclude that
D′ = 0, hence Der g = L0. ut

In conclusion we discuss F-forms of the four simple n-Lie algebras, where F is
a field of characteristic 0. Let F ⊃ F be the algebraic closure of F. Given a linearly
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compact n-Lie algebra g over F, its F-form is defined as an n-Lie algebra gF over
F, such that F⊗F gF is isomorphic to g.

Due to the bijection given by Proposition 2.4, the F-forms of g are in one-
to-one correspondence with the F-forms of the Z-graded Lie superalgebras Sg =
[Lie g,Lie g]. But the latter are parameterized by the set H1(Gal,AutSg), where
Gal is the Galois group of F over F, and AutSg is the group of continuous auto-
morphisms of the Lie superalgebra Sg, preserving its Z-grading (cf. (3)).

By the method of (3) it is easy to compute the group AutSg, using Remark 4.2.

Proposition 5.2 One has:

AutSg = Gg nU ,

where U is a prounipotent group and Gg is a reductive group, isomorphic to
On+1(F), GLn(F), GLn−1(F) and F××SLn−1(F), if g is isomorphic to On, Sn, W n

and SW n over F, respectively.

We have H1(Gal,AutSg)=H1(Gg,Gal) (see, e.g., (3)). Furthermore, H1(Gg,Gal)=
1 in the last three cases of Proposition 5.2, hence the only F-forms of Sn, W n and
SW n over F are Sn, W n and SW n over F. Finally, it follows from (3) that the
F-forms of the Z-graded Lie superalgebra H(0,n + 1) are the derived algebras
of the Lie superalgebras P/F1, where P is a Poisson algebra, defined by (0.6).
Hence F-forms of On are vector product n-Lie algebras on Fn+1, n ≥ 3, with a
non-degenerate symmetric bilinear form (up to isomorphism, these n-Lie algebras
depend on the equivalence class of the bilinear form up to a non-zero factor).
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Appendix A

Below we list all known examples of infinite-dimensional simple n-Lie algebras
over an algebraically closed field F of characteristic 0 for n≥ 3.

Let A be a commutative associative algebra over F and let g be a Lie algebra
of derivations of A, such that A contains no non-trivial g-invariant ideals.

Example 1 S(A,g)=A, where g is an n-dimensional Lie algebra with basis D1, . . . ,Dn,
the n-ary Lie bracket being

[ f1, . . . , fn] = det

D1( f1) . . . D1( fn)
. . . . . . . . . . . . . . . . . . .
Dn( f1) . . . D1( fn)

 .
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Example 2 W (A,g), where g is an n−1-dimensional Lie algebra with basis D1, . . . ,
Dn−1, the n-ary Lie bracket being

[ f1, . . . , fn] = det

 f1 . . . fn
D1( f1) . . . D1( fn)

. . . . . . . . . . . . . . . . . . . . . . . .
Dn−1( f1) . . . Dn−1( fn)

 .

Example 3 SW (A,D) = A〈1〉⊕ ·· · ⊕A〈n−1〉 is the sum of n− 1 copies of A and
g = FD, the n-ary Lie bracket being the following. For h ∈ A, denote by h〈k〉 the
corresponding element in A〈k〉, then

[ f 〈 j1〉
1 , . . . , f 〈 jn〉

n ] = 0, unless { j1, . . . , jn} ⊃ {1, . . . ,n−1};

[ f 〈1〉1 , . . . , f 〈k−1〉
k−1 , f 〈k〉k , f 〈k〉k+1, f 〈k+1〉

k+2 , . . . , f 〈n−1〉
n ]

= (−1)k+n−1( f1 . . . fk−1(D( fk) fk+1− fkD( fk+1)) fk+2 . . . fn)〈k〉,

extended on SW (A,D) by anticommutativity.

It is an open problem whether there exist any other simple infinite-dimensional
n-Lie (super)algebras over an algebraically closed field of characteristic 0 if n > 2.
In particular are there any examples of infinite-dimensional simple n-Lie superal-
gebras over a field of characteristic 0, which are not n-Lie algebras, if n > 2?
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