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Abstract
The sixth Painlevé equation PVI is both the isomonodromy deformation
condition of a 2-dimensional isomonodromic Fuchsian system and of a 3-
dimensional irregular system. Only the former has been used in the literature
to solve the nonlinear connection problem for PVI, through the computation of
invariant quantities pjk = tr(MjMk). We prove a new simple formula express-
ing the invariants pjk in terms of the Stokes matrices of the irregular system,
making the irregular system a concrete alternative for the nonlinear connection
problem. We classify the transcendents such that the Stokes matrices and the
pjk can be computed in terms of special functions, providing a full non-trivial
class of 3-dim. examples such that the theory of non-generic isomonodromy
deformations of Cotti et al (2019 Duke Math. J. 168 967–1108) applies. A
sub-class of these transcendents realises the local structure of all the 3-dim
Dubrovin–Frobenius manifolds with semisimple coalescence points of the
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type studied in Cotti et al (2020 SIGMA 16 105). We compute all the mono-
dromy data for these manifolds (Stokes matrix, Levelt exponents and central
connection matrix).

Keywords: sixth Painlevé equation, isomonodromy deformations,
irregular system, Stokes matrices, coalescing eigenvalues,
Dubrovin–Frobenius manifolds, Laplace transform.

Mathematics Subject Classification numbers: 34M55

1. Introduction

The present paper proposes three main results. The first is a monodromy formula which imple-
ments the isomonodromic deformation method for the sixth Painlevé equation using a 3-
dimensional irregular system. The second is the classification of the solutions of the Painlevé
equation which realizes the first non-trivial class of examples satisfying the theory of non-
generic isomonodromy deformations developed in [9]. The last is the computation of all the
monodromy data (local moduli) of the 3-dimensional Dubrovin–Frobenius manifolds with
semisimple coalescence points of the type studied in [10]. The second and third issues above
provide an interesting application of sixth Painlevé equation.

The sixth Painlevé equation, hereafter denoted by PVI, is the nonlinear ordinary differential
equation (ODE)

d2y
dx2

=
1
2

[
1
y
+

1
y− 1

+
1

y− x

](
dy
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)2

−
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+
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x2(x− 1)2

[
α+β

x
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+ γ
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(y− 1)2
+ δ

x(x− 1)
(y− x)2

]
,

where the coefficients can be parameterized by four complex constants θ1,θ2,θ3,θ∞, with
θ∞ 6= 0, as follows

2β =−θ21, 2δ = 1− θ22, 2γ = θ23, 2α= (θ∞ − 1)2. (1.1)

PVI has three fixed singularities at x= 0,1,∞, called critical points, and its solutions are called
transcendents, because generically are not expressible in terms of classical functions through
Umemura’s admissible operations [52–54].

In order to characterize a transcendent, it is important to know its behaviour, called critical,
at the critical points. A most difficult issue is the nonlinear connection problem, which is to
express the one or two integration constants parametrizing the critical behaviour of a branch
of a transcendent at a critical point (branch cuts |argx|< π, |arg(1− x)|< π in the x-plane),
in terms of the integration constants expressing its critical behaviour at another critical point.
The isomonodromy deformation method has proved effective in solving this problem: PVI is
equivalent to the isomonodromy deformation equations, i.e. the Schlesinger equations, of a
2× 2 isomonodromic Fuchsian system

dΦ
dλ

=
3∑

k=1

Ak(u)
λ− uk

Φ (1.2)
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with u= (u1,u2,u3) ∈ C3 and eigenvalues of Ak =±θk/2,
∑3

k=1Ak = diag(−θ∞/2,θ∞/2).
Equivalence means that solutionsA1(u),A2(u),A3(u) of the Schlesinger equations, up to con-
stant diagonal conjugation, are in one-to-one correspondence with solutions of PVI, with

x=
u2 − u1
u3 − u1

.

The correspondence has been known since [18, 51] and is realized by the explicit formulae
in appendix C of [42]. The core of the method is to be able to explicitly compute the three
different pairs of integration constants for a given branch respectively at x= 0,1 and ∞ in
terms of the same traces

pjk = tr(MjMk), 1⩽ j 6= k⩽ 3, (1.3)

where M1,M2,M3 ∈ SL(2,C) are the monodromy matrices at λ= u1,u2,u3 of a funda-
mental matrix solution Φ(λ,u), defined for u varying in a sufficiently small simply connected
domain ofC3\

⋃
j ̸=k{uj = uk}, andλ in the planewith branch-cuts from u1,u2,u3 towards infin-

ity. This method was first used in the seminal paper [40] for a wide class of generic solutions,
and then by several authors in non-generic cases (see [30] for a review).

PVI also admits an isomonodromic representation by a 3-dimensional systemwith Fuchsian
singularity at z= 0 and irregular at z=∞. Indeed, in [36] a class of integrable systems called
JMMS [43] are described in the loop algebra framework of [1] and, using duality of moment
maps [2], dual isomonodromic systems are obtained. In particular, the dual to (1.2) turns out
to be

dY
dz

=

(
U+

V(u)
z

)
Y, U= diag(u1,u2,u3), (1.4)

with a certain matrix V(u), satisfying

eigenvaluesofV= 0,
θ∞ − θ1 − θ2 − θ3

2
,
−θ∞ − θ1 − θ2 − θ3

2
, diag(V) =−diag(θ1,θ2,θ3).

A symmetric description of the Harnad duality [36] is provided by theorem 1.2 of [6]4.
By a Laplace transform [3], it was equivalently proved that the isomonodromy deformation
equations of (1.4) reduce to PVI, in [13, 14] for θ1 = θ2 = θ3 = 0, and in [48] for the general
case. This was later shown also in [4]. The one-to-one correspondence between solutions of
PVI and diagonal conjugation classes of matrices V is realized in [48] by explicit formulae
V= V(x,y(x)) (up to typing misprints).

As suggested in [48], system (1.4) may be useful for the study of symmetries, and
this was later investigated in [4, 6], but (1.4) has never been used for the isomonodromic
approach, which has always been based on the Fuchsian system (1.2), even in the most
recent developments [21, 37, 38]. One main reason is the lack of a formula expressing the
2-dimensional invariants pjk in terms of the 3-dimensional Stokes matrices of the irregular
system. This issue was not considered in [48] and—to our knowledge—the formula is not
available. A first result of our paper is precisely the derivation of this formula, so filling a gap
in the established literature.

To state our main results, it is necessary to recall the theory of non-generic isomonodromy
deformations developed in [9], and reworked in [35] by a Laplace transform. In [9] (see also
[8, 32–34] for a simpler exposition), an irregular n× n system of type (1.4) is considered, with

4 In [6], isomonodromic systems are attached to a certain class of supernova graphs. In particular, it is possible to attach
isomonodromic systems of order higher than 2 to each of the six Painlevé equations, of which (1.4) is an example.
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U= diag(u1, . . . ,un) and V(u) holomorphic in a sufficiently small polydisc D(uc) centred at
a coalescence point uc = (uc1, . . . ,u

c
n), so called because ucj = uck for some j 6= k. The polydisc

contains a coalescence locus passing through uc, where some components of u= (u1, . . . ,un)
merge. Such n-dimensional version of (1.4) has a unique formal matrix solution

YF(z,u) =

I+∑
k⩾1

Fk(u)z
−k

zdiag(V) exp{zU},

and ‘canonical’ fundamental matrix solutions Yν(z,u), uniquely identified by their asymptotic
behaviour YF(z,u) for z→∞ in the overlapping sectors (for small ε> 0)

Sν : τ∗ +(ν− 2)π− ε < argz< τ∗ +(ν− 1)π+ ε, ν ∈ Z.

Here, τ∗ ∈ R satisfies τ∗ 6= 3π/2− arg(ucj − uck) mod π, for j 6= k such that ucj 6= uck. These
solutions, their Stokes phenomenon and monodromy data are in general well defined only in
a smaller subdomain of D(uc) away from coalescence points. Theorem 1.1. of [9] extends the
theory to the whole D(uc): if the following vanishing conditions hold

Vjk(u)−→ 0 for j 6= k, whenever uj− uk → 0, (1.5)

then the matrix coefficients Fk(u) and the canonical solutions are holomorphic in D(uc), and
the Stokes phenomenon is well posed. Moreover, the monodromy data of (1.4) are well defined
and constant on the whole D(uc). The Stokes matrices, defined by Yν+1 = YνSν , satisfy

(Sν)jk = (Sν)kj = 0 for j 6= ksuchthatucj = uck.

As a consequence, in order to compute the monodromy data, it suffices to compute the data of
the restricted system

dY
dz

=

(
U(uc)+

V(uc)
z

)
Y. (1.6)

The possibility of restricting at u= uc simplifies the computation of monodromy data, to the
extent that sometimes it can be done in terms of classical special functions.

This theory has attracted the interest of mathematicians for its applications to Dubrovin–
Frobenius manifolds [10] and quantum cohomology of some varieties [10, 11, 19], starting
from dimension n⩾ 4. Our paper provides the first full non trivial class of 3-dimensional irreg-
ular systems such that this theory is realized, and of 3-dimensional Frobenius manifolds where
[10] applies. This may be seen as an interesting application of PVI.

1.1. Results

(1)We prove the formula expressing the pjk in terms of the Stokes matrices, making the irregu-
lar system (1.4) an alternative to the Fuchsian one for the isomonodromy deformation method
of PVI. There are two cases.

• If u varies in a sufficiently small polydisc of C3\
⋃
j̸=k{uj = uk}, in theorem 3.1 we show

that

pjk =

 2cosπ(θj− θk)− eiπ(θj−θk)(S1)jk(S−1
2 )kj, j≺ k,

2cosπ(θj− θk)− eiπ(θk−θj)(S1)kj(S−1
2 )jk, , j� k,

(1.7)
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where the ordering relation j≺ k means <(eiτ∗
(uj− uk))< 0. Here τ∗ ∈ R satisfies τ∗ 6=

3π/2− arg(uj− uk) mod π, 1⩽ j 6= k⩽ 3, for u in the polydisc. The branch cuts from
u1,u2,u3 to ∞ used to define the monodromies in (1.3) have direction 3π/2− τ∗.

• If u varies in a sufficiently small polydiscD(uc) centred at a coalescence point uc, whereV(u)
is holomorphic and satisfies (1.5), formulae (1.7) hold for j 6= k such that ucj 6= uck, while

pjk = 2cosπ(θj− θk) for j 6= ksuchthatucj = uck.

The pjk are now defined for a fundamental matrix solution Φ(λ,u) with u varying in a small
subset of D(uc) in whose interior u1,u2,u3 are pairwise distinct. In this case, τ∗ 6= 3π/2−
arg(ucj − uck) mod π, for all j 6= k such that ucj 6= uck.

Remark 1.1. In the paper, τ∗ will be called τ (0) in case there are not coalescences, and τ in
case of coalescences. Notice that at x= 0,1,∞ only two out of the three u1,u2,u3 coalesce,
because x= (u2 − u1)/(u3 − u1).

Theorem 3.1 is based on the isomonodromic Laplace transform of [35], which relates an
isomonodromic irregular system to a Fuchsian one, both of dimension n, in presence of coales-
cences. In our case, we relate the 3-dimensional (1.4) to the 2-dimensional (1.2). A dimensional
reduction of the monodromy will be studied.

(2) In section 4, we classify all the branches y(x) holomorphic at x= 0, corresponding to
the coalescence u2 − u1 → 0, such that V(u) satisfies (1.5), so that theorem 1.1 of [9] applies to
system (1.4). This classification is an application of PVI providing the simplest but non-trivial
full class of irregular systems realizing the theory of [9].

Moreover, for such transcendents we show that the restriction (1.6) at u= uc (namely
at x= 0) can be solved in terms of either confluent hypergeometric functions or general-
ized hypergeometric of type (p,q) = (2,2). Our classification is summarized in the table of
section 4

In section 5, we compute the Stokes matrices of (1.4) and the invariants pjk associated with a
selection of the classified transcendents. Being [9] applicable, the calculation will be explicitly
done by means of special functions using the restriction (1.6) at x= 0.

Remark 1.2. It suffices to compute the critical behaviour at x= 0 and the corresponding integ-
ration constants in terms of the pjk. The results at x= 1,∞ are obtained applying the symmet-
ries of PVI [49]. See section 3.1 of [30] for a short explanation of the procedure. For this
reason, in this paper we concentrate on x= 0 only.

(3) In case β = γ = δ− 1/2= 0, a branch of a PVI transcendent locally encodes the struc-
ture of a 3-dimensional Dubrovin–Frobeniusmanifold [14, 23], whose local canonical coordin-
ates are u= (u1,u2,u2). System (1.4) is related to a flat connection on the manifold. Its mono-
dromy data are the natural moduli which locally parameterize the manifold. Given these data
the manifold structure can be locally reconstructed by a Riemann–Hilbert boundary value
problem [13, 14].

The coalesce of some coordinates uj− uk → 0 satisfying theorem 1.1 of [9] corresponds
to true points of the manifold, the semisimple coalescence points, whose theory is developed
in [10]. This has important applications to the computation of monodromy data of quantum
cohomologies in dimension n⩾ 4 [11, 19].

In section 6, we compute all the monodromy data, namely the Stokes matrix, the Levelt
exponents and the central connection matrix, parameterizing the 3-dimensional Dubrovin–
Frobenius manifolds at a semisimple coalescence point. The manifold structure is in this case
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encoded in a transcendent holomorphic at a critical point, belonging to our classification. This
provides the realization of [10] in dimension n= 3, as an interesting application of PVI.

(4) Preliminarily to (1)–(3) above, in section 2, theorem 2.1, we rework the results of [48] by
means of the Laplace transform of Pfaffian systems studied [35], in order to obtain the correct
formulae V= V(x,y(x)). We correct some typing misprints of [48], so making the formulae
usable.

2. PVI as isomonodromy condition of an irregular system

Consider a 3-dimensional Frobenius integrable Pfaffian system

dY= ω(z,u)Y, ω(z,u) =

(
U+

V− I
z

)
dz+

3∑
k=1

(zEk+Vk)duk (2.1)

where U= diag(u1,u2,u3), u= (u1,u2,u3) in a domain of C3, and Ek = ∂U/∂uk. The set

∆C3 :=
⋃
i̸=j

{u ∈ C3 | ui− uj = 0} (2.2)

of ‘diagonals’ is called coalescence locus. V= V(u) is a matrix holomorphic on a polydisc D,
that we can choose in two ways.

Case 1. D= D(u0) centred at u0, such that D(u0)∩∆C3 = ∅.
Case 2. D= D(uc), such that D(uc)∩∆C3 6= ∅, with centre at uc ∈∆C3 . We assume that uc

is the most coalescent point, namely if ucj 6= uck for some j 6= k, then uj 6= uk for all u ∈ D(uc).
There are two possibilities: either the case with two distinct eigenvalues λ1 6= λ2, namely

λ1 := uci = ucj for some 1⩽ i 6= j⩽ 3, and λ2 := uck 6= uci for k ∈ {1,2,3}\{i, j},

or the case uc1 = uc2 = uc3. The latter will not be considered. In view of the use of theorem 1.1
of [9], we assume in Case 2 that

lim
ui−uj→0

Vij(u) = 0 holomorphically when ui− uj → 0 in D(uc). (2.3)

The integrability of the Pfaffian system (2.1) is equivalent to the strong isomonodromy of

dY
dz

=

(
U+

V
z

)
Y. (2.4)

This means that the essential monodromy data (Stokes matrices, monodromy exponents, cent-
ral connection matrix) are independent of u. In Case 1, the result is standard [41], while the
isomonodromic theory in Case 2 is established in [9].

Lemma 2.1. The integrability condition dω = ω ∧ω of (2.1) holds on a domain of C3 if and
only if V and Vk satisfy on that domain the system

Vk(u) =

(
Vij(δik− δjk)

ui− uj

)3

i,j=1

, 1⩽ k⩽ 3. (2.5)

∂kV= [Vk,V], k= 1,2,3. (2.6)
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Both (2.6) and the Pfaffian system

dG=

 3∑
j=1

Vj(u)duj

 G (2.7)

are integrable. A Jordan form of V is constant and is given by G−1VG for a suitable funda-
mental solution of (2.7).

Proof. The proof of (2.5) and (2.6) and of the integrability condition ∂iVj− ∂jVi = ViVj−VjVi
of (2.6) and (2.7) is a computation. The last statement follows from the fact that (2.6) and (2.7)
imply ∂j(G−1VG) = 0 for every fundamental solution of (2.7).

Remark 2.1. In case V is analytic on either D= D(u0), or on D= D(uc) with vanishing con-
ditions (2.3), then a fundamental solutionG(u) of (2.7), such thatG−1VG= J is a Jordan form,
is holomorphic and holomorphically invertible on D. For details, we refer to [9, 32, 35] (see
also [8]).

It is an exercise to prove the following

Lemma 2.2. Any solution of the system of partial differential equations (PDEs)

3∑
k=1

∂f
∂uk

= 0,
3∑

k=1

uk
∂f
∂uk

= αf, α ∈ C,

has structure f = (u2 − u1)αF
(
u2−u1
u3−u1

)
, or f = (u3 − u1)αG

(
u2−u1
u3−u1

)
, whereF andG are some

functions of their argument.

Proposition 2.1. The matrix

Θ= diag(θ1,θ2,θ3) :=−diag(V(u))

is constant along the solutions of (2.5) and (2.6). Every solution of (2.5) and (2.6) admits the
factorization

V(u) = (u3 − u1)
Θ Ω(x) (u3 − u1)

−Θ, Vk(u) = (u3 − u1)
Θ Ωk(u) (u3 − u1)

−Θ, (2.8)

where Ω(x) depends only on x := u2−u1
u3−u1 , and

Ω1 =


0 Ω12(x)

u1−u2
Ω13(x)
u1−u3

Ω21(x)
u1−u2

0 0
Ω31(x)
u1−u3

0 0

 , Ω2 =


0 Ω12(x)

u2−u1
0

Ω21(x)
u2−u1

0 Ω23(x)
u2−u3

0 Ω32(x)
u2−u3

0

 ,

Ω3 =


0 0 Ω13(x)

u3−u1

0 0 Ω23(x)
u3−u2

Ω31(x)
u3−u1

Ω32(x)
u3−u2

0

 .
If V has diagonal form µ̂= diag(µ1,µ2,µ3), then the general solution of (2.7) diagonalizing
V has structure

G(u) = (u3 − u1)
Θ · G̃(x) · (u3 − u1)

µ̂, (2.9)

where G̃(x) diagonalizes Ω(x), and is defined up to G̃ 7→ G̃ · diag(ε1,ε2,ε3), where ε1,ε2,ε3 ∈
C\{0}.
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Proof. Substituting (2.5) into (2.6) we see that ∂kVjj = 0, ∀ j = 1,2,3, ∀ k= 1,2,3. Notice
that

∑
kVk = 0. This, and the conditions (2.5) and (2.6), with diagV(u) =−Θ, imply

3∑
k=1

∂kV= 0,
3∑

k=1

uk∂kVij = (θi− θj)Vij.

Thus, (2.8) for V follows from lemma 2.2. Then, (2.8) for Vk follows from (2.5). The factor-
ization (2.9) is also proved from (2.7) and lemma 2.2.

Proposition 2.2. The three equations (2.6) are equivalent to

dΩ
dx

=
[
Ω̂2,Ω

]
, (2.10)

where

Ω̂2(x) :=
1

x− 1

0 0 0
0 0 Ω23(x)
0 Ω32(x) 0

+
1
x

 0 Ω12(x) 0
Ω21(x) 0 0

0 0 0

 .
Moreover, (2.7) is equivalent to

dG̃
dx

= Ω̂2(x)G̃.

Proof. All follows from the factorizations in proposition 2.1 and the chain rule.

In the sequel, we will be interested in the solutions of (2.5) and (2.6) satisfying:

diag
(
V(u)

)
= diag(−θ1,−θ2,−θ3), (2.11)

V hasdistincteigenvalues = 0,
θ∞ − θ1 − θ2 − θ3

2
,
−θ∞ − θ1 − θ2 − θ3

2
. (2.12)

V is then diagonalizable. Here, θ∞ is just introduced to give a name to the eigenvalues. By
lemma 2.1, the eigenvalues of V are constant and by proposition 2.1 the θj are constant, so that
θ∞ is a constant. The following statement is straightforward.

Lemma 2.3. If V is a solution of (2.5) and (2.6) with constraints (2.11) and (2.12), then all
the matrices

K0 ·V · (K0)−1, K0 := diag(k01,k
0
2,k

0
3), k01,k

0
2,k

0
3 ∈ C\{0},

are solutions with the same constraints. There is no loss of generality in taking k03 = 1.

The main result of the section is

Theorem 2.1. The integrability condition (2.5) and (2.6), with the constraints (2.11)
and (2.12), is equivalent to PVI with coefficients (1.1) given in terms of the parameters
θ1,θ2,θ3,θ∞. Equivalently, the nonlinear system (2.10) with Ω satisfying the same con-
straints (2.11) and (2.12) is equivalent to PVI.
There is a one-to-one correspondence between transcendents y(x) and equivalence classes

{
K0 ·V · (K0)−1, K0 = diag(k01,k

0
2,1), (k01,k

0
2) ∈ C2\{0,0}

}
(2.13)
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of solutions of (2.6), or the corresponding classes {K0 ·Ω · (K0)−1} of solutions of (2.10). The
following explicit formulae hold.

Ω12 =
k1(x)
k2(x)

·
(x2 − x)

dy
dx

+(θ∞ − 1)y2 +
(
θ2 − θ1 + 1− (θ∞ + θ2)x

)
y+ θ1x

2(x− 1)y
,

Ω21 =
k2(x)
k1(x)

·
(x2 − x)

dy
dx

+(θ∞ − 1)y2 +
(
θ1 − θ2 + 1− (θ∞ − θ2)x

)
y− θ1x

2(x− y)
,

Ω13 = k1(x) ·
(x− x2)

dy
dx

+(1− θ∞)y2 +
(
(θ1 − θ3)x+ θ∞ + θ3 − 1

)
y− θ1x

2(x− 1)y
,

Ω31 =
1

k1(x)
·
(x− x2)

dy
dx

+(1− θ∞)y2 +
(
(θ3 − θ1)x+ θ∞ − θ3 − 1

)
y+ θ1x

2x(y− 1)
,

Ω23 = k2(x) ·
(x− x2)

dy
dx

+(1− θ∞)y2 +
(
(θ∞ − θ2)x+ θ∞ + θ3 − 1

)
y− x(θ∞ − θ2 + θ3)

2(x− y)
,

Ω32 =
1

k2(x)
·
(x− x2)

dy
dx

+(1− θ∞)y2 +((θ∞ + θ2)x+ θ∞ − θ3 − 1)y− x(θ∞ + θ2 − θ3)

2x(1− y)
.

The functions kj(x) are obtained by the quadratures

kj(x) = k0j exp{Lj(x)} , k0j ∈ C\{0}, Lj(x) =
ˆ x

lj(ξ)dξ, j= 1,2, (2.14)

with

l1(x) :=
x(1− x)

dy
dx

+(θ2 − θ1 − θ3 + 1)y2 +((θ1 + θ3)x+ θ1 − θ2 − 1)y− θ1x

2x(x− 1)(y− 1)y
,

l2(x) :=
1

2x(1− x)(1− y)(x− y)

(
−x(x− 1)2

dy
dx

+((θ1 − 3θ2 + θ3 + 1)x− θ1 + θ2 + θ3 − 1)y2

+
(
(2θ2 − θ1 − θ3)x

2 +(3θ2 − 3θ3 − 1)x+ θ1 − θ2 + 1
)
y+((θ1 − 2θ2 + 2θ3)x− θ1)x

)
.

The proof will be given in the analytic case D= D(u0), or the case D= D(uc) with condi-
tions (2.3), but it is based on linear algebra and calculus of derivatives. Thus, the formulae hold
at every point (u1,u2,u3) in a domain of C3 where the calculations make sense. They emend
editing misprints of [48].

Remark 2.2. The eigenvalues of V are distinct if and only if

θ∞ 6= 0,±(θ1 + θ2 + θ3).

This can always be fulfilled for V associated to a given PVI with coefficients α,β,γ,δ, because
the θν , ν = 1,2,3,∞, are defined by (1.1), so the changes θ∞ 7→ 2− θ∞, θ1 7→ −θ1, θ2 7→ −θ2,
θ3 7→ −θ3 do not change the specific equation PVI under consideration.
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Figure 1. Proof of theorem 2.1.

Remark 2.3. In case θ1 = θ2 = θ3 = 0, then in theorem 2.1

V(u)≡ Ω(x), k1(x) = k01

√
y
√
x− 1

√
y− 1

√
x
, k2(x) = k02

√
y− x√

y− 1
√
x
.

If we choose k01 =±
√
−1, k02 =±

√
−1, then

VT =−V

is associated with a Dubrovin–Frobeniusmanifold [14]. The expressions of theorem 2.1 reduce
to the formulae in section 4 of [23] (see page 269 there for the relation y 7→ V and (48) at page
270, for the relation V 7→ y). These formulae were later used in [27] and in section 22 of [9].

2.1. Proof of theorem 2.1

Since the works of Fuchs [18] and Schlesinger [51], it has been known that there is a one-to-one
correspondence between solutions of PVI and equivalence classes

{E−1Ã1E , E−1Ã2E , E−1Ã3E , E = diag(ε1,ε3), ε1,ε3 ∈ C\{0}} (2.15)

of solutions of the Schlesinger equations

dÃ1

dx
=

[Ã2,Ã1]

x
,

dÃ3

dx
=

[Ã2,Ã3]

x− 1
,

dÃ2

dx
=− [Ã2,Ã1]

x
− [Ã2,Ã3]

x− 1
, (2.16)

with constraints −(A1 +A2 +A3) = diag(θ∞/2, −θ∞/2) and eigenvalues of Ak =±θk/2.
This has been summarized in appendix C of [42]. To prove theorem 2.1, we use a Laplace trans-
form and a dimensional reduction to show that there is a one to one correspondence between
equivalence classes (2.13) and (2.15). The scheme of the proof is in figure 1.

To starts, we assume that V is a solution of (2.6) with pairwise distinct eigenvalues, one
being equal to zero. Let a diagonal form be

µ̂ := diag(µ1,0,µ3) = G(u)−1V(u)G(u),

where G is a fundamental solution of (2.7), determined up to G 7→ G · diag(ε1,ε2,ε3).
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2.1.1. Step 1. Equivalent 3-dimensional Pfaffian systems—arrow (1) in figure 1. For fixed u a
vector solution Y⃗(z,u) of (2.4) is representable by a Laplace transform

Y⃗(z,u) = z
ˆ
γ

eλzΨ⃗(λ,u)dλ, (2.17)

where γ is a suitable path such that eλz(λ−U)Ψ⃗(λ)
∣∣∣
γ
= 0, and Ψ⃗ is a vector solution of a

Fuchsian system

dΨ
dλ

=
3∑

k=1

Bk(u)
λ− uk

Ψ, Bk =−EkV. (2.18)

This is established in [3] in generic cases, and in [31] in every case. In [35], u varies inD(u(0))
or D(uc), and the Laplace transform relates (2.1) to the non-normalized Schlesinger system

dΨ= P(λ,u)Ψ, P(λ,u) =
3∑

k=1

(
Bk(u)
λ− uk

d(λ− uk)+Vk(u)duk

)
. (2.19)

Elementary computations show that dω = ω ∧ω is equivalent to the integrability condition
dP= P∧P. This is also evident in [4, 5, 48], and in [15] for Dubrovin–Frobenius manifolds.

2.1.2. Step 2. Dimensional reduction—arrows (2) and (3) in figure 1. Since G satisfies (2.7),
the gauge transformation Ψ = GX transforms (2.19) into the normalized Schlesinger system

dX= P̃(λ,u)X, P̃(λ,u) =
3∑

k=1

B̃k(u)
λ− uk

d(λ− uk), (2.20)

where B̃k := G−1BkG=−G−1EkGµ̂. Explicitly,

B̃1 =
1

detG

−(G22G33 −G23G32)b1 0 −(G22G33 −G23G32)d1
(G21G33 −G23G31)b1 0 (G21G33 −G23G31)d1
−(G21G32 −G22G31)b1 0 −(G21G32 −G22G31)d1

 (2.21)

B̃2 =
1

detG

 (G12G33 −G13G32)b2 0 (G12G33 −G13G32)d2
−(G11G33 −G31G13)b2 0 −(G11G33 −G31G13)d2
(G11G32 −G31G12)b2 0 (G11G32 −G31G12)d2

 (2.22)

B̃3 =
1

detG

−(G12G23 −G13G22)b3 0 −(G12G23 −G13G22)d3
(G11G23 −G21G13)b3 0 (G11G23 −G21G13)d3
−(G11G22 −G21G12)b3 0 −(G11G22 −G21G12)d3

 , (2.23)

where

b1 = G11µ1, b2 = G21µ1, b3 = G31µ1, d1 = G13µ3, d2 = G23µ3, d3 = G33µ3.

(2.24)

By construction, TrB̃k = TrBk = θk, and the eigenvalues of Bk and B̃k are θk,0,0. Let a vector
solution of (2.20) be denoted by

X⃗ :=

X1

X2

X3

 , and let X :=

(
X1

X3

)
.
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Then, Φ =
∏3

j=1(λ− uj)−θj/2X satisfies

dΦ =

(
3∑

k=1

Ak

λ− uk
d(λ− uk)

)
Φ, Ak :=

(
(B̃k)11 (B̃k)13
(B̃k)31 (B̃k)33

)
− θk

2
I. (2.25)

By construction,

A∞ :=−(A1 +A2 +A3) =

(
θ∞/2 0
0 −θ∞/2

)
, TrAk = 0, eigenvalues of Ak =±θk

2
,

(2.26)

where θ∞ is defined by

µ1 =
θ∞ − θ1 − θ2 − θ3

2
, µ3 =

−θ∞ − θ1 − θ2 − θ3
2

. (2.27)

Notice that X2 is obtained by a quadrature. The integrability condition dP̃= P̃∧ P̃ reduces to

∂iAk =
[Ai,Ak]

ui− uk
, i 6= k; ∂iAi =−

∑
k ̸=i

[Ai,Ak]

ui− uk
. (2.28)

Arrow (3) in figure 1 is contained in the following

Lemma 2.4. If {Ak}k=1,2,3 is a solution of (2.28) with constraints (2.26), then all elements of
the equivalence class

{E−1A1E , E−1A2E , E−1A3E , E := diag(ε1,ε3), ε1,ε3 ∈ C\{0}} (2.29)

are a solution with the same constraints. There is a one-to-one correspondence between equi-
valent classes (2.29) and equivalence classes

{K0 ·V · (K0)−1, K0 = diag(k01,k
0
2,k

0
3), k01,k

0
2,k

0
3 ∈ C\{0}} (2.30)

of solutions of (2.5) and (2.6) satisfying the constraints (2.11) and (2.12) (see lemma 2.3).

Proof. The first assertion in straightforward. For the second, we do a proof slightly different
from [48]. To every solution V of (2.5) and (2.6) satisfying the constraints (2.11) and (2.12),
we associate Ak in (2.25), using (2.21)–(2.24), so that

Ak =

(
akbk akdk
ckbk ckdk

)
− θk

2
I, k= 1,2,3, (2.31)

where

a1 =
−(G22G33 −G23G32)

detG
, a2 =

G12G33 −G13G32

detG
, a3 =

−(G12G23 −G13G22)

detG
,

(2.32)

c1 =
−(G21G32 −G22G31)

detG
, c2 =

G11G32 −G31G12

detG
, c3 =

−(G11G22 −G21G12)

detG
.

(2.33)

The above expressions determine a class (2.29) in terms of V. Indeed, V determines G up
to G 7→ G · diag(ε1,ε2,ε3), so that detG 7→ ε1ε2ε3 detG, ak 7→ ε−1

1 ak, bk 7→ ε1bk, ck 7→ ε3ck,
dk 7→ ε3dk, which determines Ak up to Ak 7−→ E−1AkE . Moreover, a change V 7→ V ′ = K0 ·
V · (K0)−1 inducesG 7→ G ′ = diag(k01,k

0
2,k

0
3) ·G. Therefore, from (2.24) and (2.32)–(2.33) we

receive a ′
j = aj/k0j , b

′
j = k0j bj, c

′
j = cj/k0j , d

′
j = k0j dj. It follows that Ak in (2.31) is invariant.
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Conversely, consider a solution of (2.28) with constraint (2.26), which can be written as
in (2.31). Thus

V= Gµ̂G−1 =

 −θ1 −a2b1 − c2d1 −a3b1 − c3d1
−a1b2 − c1d2 −θ2 −a3b2 − c3d2
−a1b3 − c1d3 −a2b3 − c2d3 −θ3

 . (2.34)

The above is invariant under the map ak 7→ ε−1
1 ak, bk 7→ ε1bk, ck 7→ ε3ck, dk 7→ ε3dk and the

map Ak 7→ E−1AkE . Moreover, Aj determines aj, bj, cj, dj up to aj 7→ aj/k0j , bj 7→ k0j bj, cj 7→
cj/k0j , dj 7→ k0j dj, j = 1,2,3, so that to each {A1,A2,A3} is associate V up to the freedom
V 7→ K0 ·V · (K0)−1.

Lemma 2.5. Every solution of (2.28) with constraints (2.26) admits the factorization

Ak(u) = (u3 − u1)
−A∞Ãk(x) (u3 − u1)

A∞ , k= 1,2,3, (2.35)

where x= u2−u1
u3−u1

, and the Ãk(x) satisfy the same constraints and solve the Schlesinger
equations (2.16).

Proof. The equations (2.28) imply that

3∑
i=1

∂iAk = 0;
3∑
i=1

ui∂iAk =
[
Ak,A∞

]
, k= 1,2,3.

In particular,
∑3

i=1 ui∂i (Ak)12 =−θ∞(Ak)12,
∑3

i=1 ui∂i (Ak)21 = θ∞(Ak)21,∑3
i=1 ui∂i (Ak)jj = 0. Therefore, (2.35) follows from lemma 2.2 and then (2.16) follows by

the chain rule.

The λ-component of (2.25) is the Fuchsian system (1.2), and (2.28) expresses its isomono-
dromy. For u away from coalescence points, (1.2) is equivalent to

dΦ̃

dλ̃
=

(
Ã1(x)

λ̃
+

Ã2(x)

λ̃− x
+

Ã3(x)

λ̃− 1

)
Φ̃, (2.36)

through the gauge transformation Φ̃(λ̃,x) = (u3 − u1)A∞Φ(λ,u) and change of variables λ̃=
(λ− u1)/(u3 − u1), with x= (u2 − u1)/(u3 − u1). The Schlesinger equations (2.16) are the
isomonodromy condition for (2.36).

Proposition 2.3. The matrices Ãk(x) in (2.35) have structure

Ãk(x) =

zk(x)+
θk
2

−ṽk(x)zk(x)

zk(x)+ θk
ṽk(x)

−zk(x)−
θk
2

 , k= 1,2,3, (2.37)

for some functions ṽk(x), zk(x). The matrix Ω(x) in (2.8) has structure

Ω(x) = K(x)Z(x)K(x)−1, K(x) = diag(k1(x),k2(x),1) (2.38)

for some functions k1(x), k2(x), where

Zii =−θi, Zij(x) = zj(x)−
ṽj(x)zj(x)
ṽi(x)zi(x)

(
zi(x)+ θi

)
, 1⩽ i 6= j ⩽ 3. (2.39)
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Proof. Conditions (2.26) imply ck = (θk− akbk)/dk, k= 1,2,3, so that (2.31) yields

Ak =

(
akbk− θk/2 akdk

(θk− akbk)bk/dk θk/2− akbk

)
=⇒
(2.34)

Vij =−
(
ajbi+

di
dj
(θj− ajbj)

)
,

1⩽ i 6= j ⩽ 3. (2.40)

Define zk = zk(u) and vk = vk(u) by zk+ θk = akbk and vkzk =−akdk. Then

Ak =

zk+ θk/2 −vkzk
zk+ θk
vk

−zk− θk/2

 ; Vij =

(
zj−

vjzj
vizi

(zi+ θi)

)
di
dj
, 1⩽ i 6= j⩽ 3. (2.41)

Substituting the factorization (2.9) into (2.32) and (2.33), we receive

aj(u) = ãj(x)(u3 − u1)
−θj−µ1 , bj(u) = b̃j(x)(u3 − u1)

−θj+µ1 ,

cj(u) = c̃j(x)(u3 − u1)
−θj−µ3 , dj(u) = d̃j(x)(u3 − u1)

θj+µ3 , j= 1,2,3.

Substituting intoAk in (2.40), recalling that µ1 −µ3 = θ∞ and comparing with (2.35) we find

Ãk(x) =

(
ãk(x)b̃k(x)− θk/2 ãk(x)d̃k(x)(

θk− ãk(x)b̃k(x)
)
b̃k(x)/d̃k(x) θk/2− ãk(x)b̃k(x)

)
.

Comparison with Ak in (2.41) proves (2.37), with zk(u)≡ zk(x) and vk(u) = ṽk(x)(u3 −
u1)µ3−µ1 . Now, V in (2.41) becomes

Vij(u) =

(
zj(x)−

ṽj(x)zj(x)
ṽi(x)zi(x)

(
zi(x)+ θi

)) d̃i(x)

d̃j(x)
(u3 − u1)

θi−θj , 1⩽ i 6= j⩽ 3.

The above brings back the factorization (2.8) and proves (2.38) and (2.39), with k1(x) :=
d̃1(x)/d̃3(x) and k2(x) := d̃2(x)/d̃3(x).

2.1.3. Step 4. From (2.16) to PVI—arrow (4) in figure 1. As mentioned in the beginning,
there is a one to one correspondence between equivalence classes (2.15) and solutions of PVI.
We will use the explicit correspondence in appendix C of [42]. Our x coincides with t used
in [42]. The matrices A0(t),At(t),A1(t) in formula (C.47) of [42] are related to ours by the
identifications

A0(t)−
θ0
2

= Ã1(x), At(t)−
θt
2
= Ã2(x), A1(t)−

θ1
2

= Ã3(x), t= x,

(θ0,θt,θ1) in(C.47) = (θ1,θ2,θ3) in our notations.

(z0,zt,z1) in(C.47) = (z1,z2,z3) in our notations.

(u,w,v) in(C.47) = (ṽ1, ṽ2, ṽ3) in our notations.

Following [42], the matrices Ãk are parameterized by the 7+1 independent parameters θ1, θ2,
θ3, θ∞, k, y, z, x, where k, y and z are respectively defined by
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k= (1+ x)ṽ1z1 + ṽ2z2 + xṽ3z3, y=
xṽ1z1
k

,

z=
z1 + θ1
y

+
z2 + θ2
y− x

+
z3 + θ3
y− 1

≡ (Ã1)11 + θ1/2
y

+
(Ã2)11 + θ2/2

y− x
+

(Ã3)11 + θ3/2
y− 1

.

Do not confuse the parameter z above, taken from [42], with the independent variable z previ-
ously used in system (2.1).

Now, z1,z2,z3 and ṽ1, ṽ2, ṽ3 can be explicitly parametrized in terms of θ1,θ2,θ3,θ∞,k,y,z,x
by formulae (C.51)–(C.52) (in [42], z̃= z− θ1/y− θ2/(y− x)− θ3/(y− 1) is used in place
of z).

The Schlesinger equations (2.16) become a first order nonlinear system of three differen-
tial equations for y,z,k, reported in formula (C.55) of [42]. As for k(x), it is computable as the
exponential of a quadrature in dx involving y(x) and z(x), so it is determined up to a multiplic-
ative constant k0, which is identified with ε3/ε1 in the equivalence class (2.15). Eliminating
z from the remaining first order system for y and z, we see that y solves PVI. If y= y(x) is a
solution, then

z(x) =
1
2

(
x(x− 1)

y(x)(y(x)− 1)(y(x)− x)
dy(x)
dx

+
θ1
y(x)

+
θ2 − 1
y(x)− x

+
θ3

y(x)− 1

)
. (2.42)

2.1.4. Step 5. Completion of the proof of theorem 2.1: the explicit formulae. From (2.39) and
(C.51) of [42], we receive

Z12 = z2 − (z1 + θ1)
x− y

(1− x)y
, Z13 = z3 − (z1 + θ1)

x(y− 1)
(1− x)y

,

Z21 = z1 − (z2 + θ2)
(1− x)y
x− y

, Z23 = z3 − (z2 + θ2)
x(y− 1)
x− y

,

Z31 = z1 − (z3 + θ3)
(1− x)y
x(y− 1)

, Z32 = z2 − (z3 + θ3)
x− y

x(y− 1)
.

Substituting (C.52) in the above, where z(x) is given by (2.42), we obtain the explicit expression
of Z(x) in terms of y(x) and dy(x)/dx, which gives Ωij(x) = Zij(x)ki(x)/kj(x), 1⩽ i 6= j ⩽ 3,
k3 := 1, as in the statement of theorem 2.1.

To complete the proof of theorem 2.1, we find the differential equations for k1(x) and k2(x).
The factorization (2.38) implies that

Ω̂2 = KZ2K
−1, Z2 =

 0 Z12/x 0
Z21/x 0 Z23/(x− 1)
0 Z32/(x− 1) 0

 .
Substituting the above and (2.38) into (2.10) we find[

K−1 dK
dx

, Z
]
= [Z2,Z]−

dZ
dx
,

namely

dlnk1
dx

=


1
Z13

(
[Z2,Z]13 −

dZ13

dx

)
1
Z31

(
dZ31

dx
− [Z2,Z]31

) ,
dlnk2
dx

=


1
Z23

(
[Z2,Z]23 −

dZ23

dx

)
1
Z32

(
dZ32

dx
− [Z2,Z]32

) .
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Substituting the expressions of the entries of Z and Z2 in terms of y and dy/dx, the r.h.s. of the
above expressions respectively become l1(x) and l2(x) in the statement of theorem 2.1. Notice
that k1(x) and k2(x) contain multiplicative integration constants k01 and k

0
2 responsible for the

correspondence between y and the equivalence class {K0 ·V · (K0)−1, K0 = diag(k01,k
0
2,1)}.

The proof of theorem 2.1 is complete. □

3. Monodromy data pjk in terms of Stokes matrices

As mentioned in the introduction, the monodromy data pjk of the 2× 2 Fuchsian system (1.2)
parameterize Painlevé VI transcendents, allowing us to solve the nonlinear connection prob-
lem. We prove a formula expressing the pjk in terms of the Stokes matrices of the 3× 3 sys-
tem (2.4), so making system (2.4) a concrete alternative to (1.2) in the isomonodromy deform-
ation method for PVI. The formula is stated in theorem 3.1 below and, to our knowledge, does
not appear in the literature5.

Preliminarily, we recall when the pjk can be used to parametrize univocally the
branch of a transcendent. Consider M := SL(2,C)3/(Mj 7→ C−1MjC, detC 6= 0)≡
SL(2,C)3/SL(2,C), the space of conjugacy classes of triples M1,M2,M3. The ring of
its invariant polynomials is generated by the traces [17]

pjk = tr(MjMk), j 6= k ∈ {1,2,3},

p∞ = tr(Mj3Mj2Mj1) = 2cos(πθ∞), j1 ≺ j2 ≺ j3; pj = TrMj = 2cos(πθj).

The ordering relation ≺ will be explained in (3.3). Two facts play a crucial role. First, a con-
jugacy class belonging to a ‘big’ open subset6 of M can be explicitly parameterized by the
pjk, pj, p∞, according to tables 1 and 2 of [39] (generalized to the Garnier system with two
times in [7]). The second fact is that there is a one-to-one correspondence betweenmonodromy
data and branches of Painlevé transcendents, if none of theMj, j = 1,2,3 andMj3Mj2Mj1 is
equal to ±I, where I is the identity matrix [26]. In this case the integration constants express-
ing the critical behaviours can be univocally written in terms of the pjk, provided the triple
M1,M2,M3 is in the big open of M. Such explicit formulae can be found in [4, 16, 22,
24–26, 28, 40, 44, 46]. An example of a point not in the big open is a triple generating a redu-
cible group, another example is (p12,p23,p31) = (±2,±2,±2), discussed in section 6.2.1. The
analytic continuation of a branch is obtained by a completely explicit action of the braid group
on the monodromy data pjk [4, 16, 24, 39].

5 What we can find in the literature is theorem I (theorem 1) at page 389 of [31], where the relation is given between
Stokes matrices of the irregular system of dimension n and traces of products of monodromy matrices of certain
selected solutions of the Laplace-transformed Fuchsian system of the same dimension. Moreover, in theorem 2 of
[4], and in [13, 14] in case of Frobenius manifolds, a Killing–Coxeter identity is given relating a product of Stokes
matrices and a product of monodromy matrices (pseudo-reflections) of the Laplace-transformed Fuchsian system of
the same dimension.
6 Let (i, j,k) be a cyclic permutation of ( j1, j2, j3). According to [39], the big open is the complement inM of the set
where the following six algebraic equations are satisfied:(p2jk − 4)(p2jk + p2i + p2∞ − pjkpip∞ − 4) = 0,

(p2jk − 4)(p2jk + p2j + p2k − pjkpjpk − 4) = 0,
for all i= 1,2,3.

.
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Definition 3.1. The Stokes rays of system (2.4) associated with U(u) = diag(u1,u2,u3) are
the infinitely many half-lines in the universal covering of the punctured z-planeC\{0}, issuing
from z= 0 towards∞, defined by <((uj− uk)z) = 0, =((uj− uk)z)< 0, for uj 6= uk.

The following refinement of the size of the polydisc D must be applied.

In Case 1, D= D(u0). Let τ (0), η(0) ∈ R satisfy

τ (0) = 3π/2− η(0), η(0) 6= arg(u0i − u0j )mod π, ∀ i 6= j. (3.1)

τ (0) is an admissible direction in the z-plane for the Stokes rays of U(u0), that is no such
rays have directions τ (0) + hπ, h ∈ Z. The size of D(u0) is so small that the Stokes rays of
U(u) in the z-plane do not cross the directions τ (0) + hπ, as u varies in D(u0).
In Case 2, D= D(uc). The components of uc = (uc1,u

c
2,u

c
3) only have two distinct values

λ1,λ2. Let τ , η ∈ R satisfy

τ = 3π/2− η, η 6= arg(λ1 −λ2)mod π. (3.2)

τ is an admissible direction in the z-plane for the Stokes rays of U(uc). The size of D(uc)
is so small that no Stokes rays associated with pairs (uj,uk) such that ucj 6= uck cross the
admissible directions argz= τ + hπ, h ∈ Z, as u varies in D(uc). For this to occur, it is
necessary and sufficient [9, 35] that D(uc) = {u ∈ C3 | max1⩽l⩽3 |uj− ucj |⩽ ϵ0} has size
ϵ0 < δ/2, where δ =minρ>0 |λ1 −λ2 + ρexp{η

√
−1}|= distance in the λ-plane between

two half-lines respectively issuing from λ1 and λ2 towards infinity in direction η.

If D is as small as specified above, an ordering relation ≺ is well defined in {1,2,3}:

• In Case 1,

j≺ k ⇐⇒ <(eiτ
(0)

(u0j − u0k))< 0, j 6= k. (3.3)

• In Case 2, there is no ordering relation for j,k such that ucj = uck, while

j≺ k ⇐⇒ <(eiτ (ucj − uck))< 0, j 6= k and ucj 6= uck. (3.4)

With the above assumptions on D, according to [9] system (2.4) admits a unique formal solu-
tion

YF(z,u) =

I+∑
k⩾1

Fk(u)z
−k

zdiag(V)ezU, (3.5)

with matrix coefficients Fk(u) holomorphic on D, and unique canonical fundamental matrix
solutions Yν(z,u), ν ∈ Z, such that

Yν(z,u)∼ YF(z,u), z→∞, (3.6)
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in the sector (for ε small enough)

Sν : τ∗ +(ν− 2)π− ε < arg z< τ∗ +(ν− 1)π+ ε,

τ∗ = τ (0) or τ, depending on Case 1 or Case 2.

This is standard in Case 1, while in Case 2 it holds as a result of the vanishing conditions (2.3),
as established in [9].

Remark 3.1 (Uniqueness of the formal solution). In the case D= D(uc), the notion of par-
tial resonance for V(uc) is introduced in corollary 4.1 of [9] (the name is first used in [50]). In
our case with vanishing conditions (2.3), partial resonance occurs if and only if

θi− θj ∈ Z\{0} for i 6= j such that uci = ucj .

For example, for x= (u2 − u1)/(u3 − u1)→ 0, partial resonance means θ1 − θ2 ∈ Z\{0}.
According7 to corollaries 1.1 and 4.1 of [9], if there is no partial resonance system (2.4) restric-
ted at fixed u= uc has a unique formal solution equal to YF(z,uc).

Definition 3.2. The Stokes matrices of system (2.4) are the connection matrices such that

Yν+1(z,u) = Yν(z,u)Sν . (3.7)

It will suffice to only consider S1 and S2 because Sν+2 = e−2π idiag(V) Sν e2π idiag(V).

The Stokes matrices are constant on D by the integrability of (2.1). This is standard [41] in
case of D(u0), while it follows from8 theorem 1.1 of [9] in case of D(uc). In the latter case, for
each ν ∈ Z,

(Sν)ij = (Sν)ji = 0 if uci = ucj .

Let for short call

η∗ := η(0) or η, and u∗ = u0 or uc,

depending on case (3.1) or (3.2). Recall that η∗ = 3π/2− τ∗. In the λ-plane, consider branch
cuts L1(η∗),L2(η∗),L3(η∗) oriented from u1,u2,u3 respective to infinity in direction η∗, see
figure 2. Let Pη∗(u) be the λ-plane with these cuts and with the determinations

η∗ − 2π < arg(λ− uk)< η∗.

The domain of definition of the solutions of (2.18), (2.25) and (1.2) is the set

Pη∗(u)×̂D(u∗) := {(λ,u) | u ∈ D, λ ∈ Pη∗(u)} ≡
⋃
u∈D

(
Pη∗(u)×{u}

)
.

We are ready to state the main result of the section.

Theorem 3.1. Let D be D(u0), or D(uc), and η∗, τ∗ as above. For every point u• in D(u0),
or in D(uc)\∆C3 , there is a neighbourhood U of u• in D and a fundamental matrix solution
Φhol(λ,u) of system (1.2), holomorphic of (λ,u) ∈ Pη∗(u)×̂ U , whose monodromy invariants

pjk := tr(Mj(u)Mk(u)),

7 The statement of corollary 1.1. of [9] is imprecise: it is not that ‘the diagonal entries of Â1(0) do not differ by non-
zero integers’, but the elements of each sequence (Â1(0))j1 j1 ,(Â1(0))j2 j2 , . . . ,(Â1(0))jℓ jℓ corresponding to uj1 (0) =
uj2 (0) = . . .= ujℓ (0), which precisely is the partial resonance.
8 The matrices S1 and S2 correspond to Sν and Sν+µ in [9, 35]. The sectors in (3.6) correspond to the sectors
Sν(D(u∗)), Sν+µ(D(u∗)) and Sν+2µ(D(u∗)) of [35], where u∗ := u0 or uc, depending on the type of polydisc
considered.
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Figure 2. Pη∗(u), branch-cuts and basic loops. The base point λ0 for the loops γj
belongs to

⋂
u∈DPη∗(u).

are independent of u. Here,Mj(u) is the monodromy matrix at λ= uj of Φhol(λ,u). They are
expressed in terms of the Stokes matrices of system (2.4):

pjk =

 2cosπ(θj− θk)− eiπ(θj−θk)(S1)jk(S−1
2 )kj, j≺ k,

2cosπ(θj− θk)− eiπ(θk−θj)(S1)kj(S−1
2 )jk, , j� k,

(3.8)

with ordering (3.3) or (3.4) according to the polydisc being eitherD(u0) orD(uc). In the latter
case,

pjk = 2cosπ(θj− θk) for j 6= k such that ucj = uck. (3.9)

To appreciate the general validity of (3.8), notice that every fundamental solution Φ ′(λ,u)
of system (1.2), defined at u•, is Φ ′(λ,u) = Φhol(λ,u•)C ′(u), with detC ′(u) 6= 0, so that its
tr(M ′

jM ′
k) coincide with pjk in (3.8). The following proposition is proved in appendix B.1.

Proposition 3.1. Consider either Case 1 or Case 2. In Case 2, let the coalescence be uc1 = uc2 or
uc2 = uc3, while u3 − u1 6= 0. Then, in order to compute the monodromy data of (2.4), it suffices
to compute the data of

dY
dz

=

(
U(x)+

Ω(x)
z

)
Y, U(x) =

0 0 0
0 x 0
0 0 1

 , (3.10)

whereΩ is given in theorem 2.1. The monodromy data for the system (2.4) relative to a prefixed
admissible direction argz= τ (0) (Case 1) or τ (Case 2) are the same data of system (3.10)
relative to the admissible direction τ (0) + arg(u03 − u01), or τ + arg(uc3 − uc1).

The case u3 − u1 → 0, x→∞, can be recovered from the proposition above by the
symmetry

θ′2 = θ3, θ′3 = θ2; θ′1 = θ1, θ′∞ = θ∞; y′(x′) =
1
x
y(x), x=

1
x′
.

Replacing (2.4) by (3.10) is equivalent to assuming that u1 = 0, u2 = x, u3 = 1 in (2.4).

Corollary 3.1. The results of theorem 3.1 hold for the monodromy invariants pjk of sys-
tem (2.36), in terms of the Stokes matrices of system (3.10).
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3.1. Proof of theorem 3.1

The Stokes matrices are related to the monodromy of certain selected column vector solutions
Ψ⃗1(λ,u), Ψ⃗2(λ,u), Ψ⃗3(λ,u) of system (2.18). These are uniquely determined in theorem 5.1
of [35], to which we refer (with n= 3 and the identification θk =−λ ′

k − 1, being λ ′
k used in

[35]). They are holomorphic on Pη(u)×̂D(u∗). A solution Ψ⃗k has a branching point at λ= uk
in case θk 6∈ Z, and for λ ∈ Pη∗(u) its monodromy corresponding to a loop γj : (λ− uj) 7−→
(λ− uj)e2π i in figure 2 is given in [35] by:

Ψ⃗k 7−→

e
2π iθkΨ⃗k, j= k,

Ψ⃗k+αjcjkΨ⃗j, j 6= k,
αj :=

{
e2π iθj − 1, θj 6∈ Z

2π i , θj ∈ Z , j,k ∈ {1,2,3}

(3.11)

with certain connection coefficients cjk. The above formulae imply that ckk = 1 for θk 6∈ Z, and
ckk = 0 for θk ∈ Z. If θk ∈ Z− := {−1,−2,−3, . . .}, in some cases depending on the specific
V it may happen that Ψ⃗k ≡ 0, then cjk = 0 for every j.

It is proved in [35] that the cjk are isomonodromic connection coefficients, i.e. they do not
depend on u ∈ D, so that the transformation (3.11) holds for every u in the polydisc. In case
of coalescences,

cjk = 0 for j 6= k such that ucj = uck.

In this case, as u varies in D(uc) the branch cuts Lj(η) and Lk(η) can overlap, but this causes
no difficulties because the corresponding cjk = 0, so that Ψ⃗k has trivial monodromy at λ= uj.
Hence, (3.11) makes sense also in case of coalescences in D= D(uc).

A matrix solution of system (2.18) is constructed with the selected solutions:

Ψ(λ,u) :=
(
Ψ⃗1(λ,u)

∣∣∣ Ψ⃗2(λ,u)
∣∣∣ Ψ⃗3(λ,u)

)
. (3.12)

It has constant monodromy, but it is not necessarily fundamental.

Remark 3.2. A sufficient condition to be fundamental is that V has no integer eigenvalues,
which is not our case. If V has some integer eigenvalues and Ψ(λ,u) is fundamental, neces-
sarily at least one θk ∈ Z (see [3] for the generic case and [31, 35] for the most general case).

By the Laplace transform (2.17), [31, 35] prove that

cjk =


e2π iθk

αk
(S1)jk, j≺ k,

−
(S−1

2 )jk

e2π i(θj−θk)αk
, j� k,

(3.13)

where the Stokes matrices are those of system (2.4). This is true without any assumptions on
the matrix V, and holds also in case of coalescences with vanishing conditions (2.3).

Let

X(λ,u) := G−1Ψ(λ,u) =

X
1
1 X1

2 X1
3

X2
1 X2

2 X2
3

X3
1 X3

2 X3
3

 (3.14)
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be the matrix solution of system (2.20) corresponding to (3.12), and consider the associated
matrix solutions Φ[jk] =

∏3
j=1(λ− uj)−θj/2X[jk] of system (2.25), where

X[jk](λ,u) =
(
Xj(λ,u)

∣∣∣ Xk(λ,u)), Xj :=

(
X1
j

X3
j

)
, 1⩽ j< k⩽ 3.

The monodromy (3.11) induces the transformations:

γ1 : X1 7−→ e2π iθ1X1, X2 7−→ X2 +α1c12X1, X3 7−→ X3 +α1c13X1; (3.15)

γ2 : X1 7−→ X1 +α2c21X2, X2 7−→ e2π iθ2X2, X3 7−→ X3 +α2c23X2; (3.16)

γ3 : X1 7−→ X1 +α3c31X3, X2 7−→ X2 +α3c32X3, X3 7−→ e2π iθ3X3; (3.17)

We distinguish two cases: (1) there are two linearly independent Xj, Xk, j 6= k; (2) all the Xj

are linearly dependent.
1) Linearly independent case. Without loss of generality, assume thatX1 andX3 are linearly

independent (the discussion is analogous for another independent pairXj,Xk). We compute the
monodromy matrices M1,M2,M3, corresponding to the loops γ1,γ2,γ3 , of the following
fundamental matrix solution of system (1.2)

Φhol(λ,u) := Φ[13](λ,u) =
3∏
j=1

(λ− uj)
−θj/2X[13](λ,u). (3.18)

From (3.15) and (3.17) we receive

M1 =

(
eπ iθ1 e−π iθ1α1c13
0 e−π iθ1

)
, M3 =

(
e−π iθ3 0

e−π iθ3α3c31 eπ iθ3

)
,

so that

p13 = e−iπ(θ1+θ3)α1α3c13c31 + 2cos(π(θ1 − θ3)).

Now, X2 = aX1 + bX3 for some a,b ∈ C, so that for the loop γ2 the transformation (3.16)
yields

M2 = e−iπθ2

(
1+α2c21a α2c23a
α2c21b 1+α2c23b

)
.

In order to find a,b, we recall that

TrM2 = 2cosπθj, detM2 = 1. (3.19)

Since α2 = e2iπθ2 − 1 for θ2 6∈ Z and α2 = 2π i for θ2 ∈ Z, both (3.19) are equivalent to

c21a+ c23b=

{
1, if θ2 6∈ Z;
0, if θ2 ∈ Z. (3.20)

In order to find other conditions on a and b, we consider the transformation of X2 in (3.15)
along the loop γ1:

X2 7−→ X2 +α1c12X1 ≡ aX1 + bX3 +α1c12X1,

X2 = aX1 + bX3 7−→ ae2iπθ1X1 + b(X3 +α1c13X1).
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The above holds if and only if a(e2iπθ1 − 1)+α1(bc13 − c12) = 0. Thus

c13b=

{
c12 − a, if θ2 6∈ Z;
c12, if θ2 ∈ Z. (3.21)

For the loop γ3 in (3.17):

X2 7−→ X2 +α3c32X3 ≡ aX1 + bX3 +α3c32X3,

X2 = aX1 + bX3 7−→ a(X1 +α3c31X3)+ be2π iθ3X3.

The above is true if and only if b(e2iπθ3 − 1)+α3(ac31 − c32) = 0, namely

c31a=

{
c32 − b, if θ2 6∈ Z;
c32, if θ2 ∈ Z. (3.22)

We are ready to compute Tr(M1M2). In case X1 and X2 are also independent (i.e. b 6= 0),
since Tr(M1M2) is invariant by conjugation, we can compute it using X1 and X2 as a basis,
and this is done as above for the case X1,X3, yielding

p12 = e−iπ(θ1+θ2)α1α2c12c21 + 2cos(π(θ1 − θ2)).

In case X1 and X2 are not independent, then b= 0 and

M2 =

(
e−iπθ2(1+α2c21a) e−iπθ2α2c23a

0 e−iπθ2

)
.

Using (3.20)–(3.22) we receive

M2 =



(
eiπθ2 2isin(πθ2)c12c23
0 e−iπθ2

)
, c12c21 = 1, c32 = c31c12, for θ2 6∈ Z;

(−1)θ2
(
1 2π i c23a
0 1

)
, c12 = 0, c31a= c32, c21a= 0, for θ2 ∈ Z.

Therefore,

p12 = 2cos(π(θ1 + θ2)) ≡
c12c21=1

2c12c21(cosπ(θ1 + θ2)− cosπ(θ1 − θ2))+ 2cosπ(θ1 − θ2),

θ2 6∈ Z,

p12 = (−1)θ22cos(πθ1) ≡
c12=0

2c12c21(cosπ(θ1 + θ2)− cosπ(θ1 − θ2))+ 2cosπ(θ1 − θ2),

θ2 ∈ Z.

The computation of p23 = Tr(M2M3) can be done in an analogous way. In conclusion, all the
possibilities considered lead to the formula

pjk = e−iπ(θj+θk)αjαkcjkckj+ 2cos(π(θj− θk)). (3.23)

Finally, substituting (3.13) we receive (3.8) in full generality.
2) The linearly-dependent case. The gauge γY := z−γY, γ ∈ C, transforms (2.1) into

d(γY) = ω(z,u;γ) γY, ω(z,u;γ) =

(
U+

V− (1+ γ)I
z

)
dz+

3∑
k=1

(zEk+Vk)duk.

This changes θk 7→ θk+ γ, while θ∞ is unchanged, and (2.27) changes to µ1[γ] = (θ∞ − θ1 −
θ2 − θ3 − 3γ)/2, µ3[γ] = (−θ∞ − θ1 − θ2 − θ3 − 3γ)/2.
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There exists γ0 > 0 sufficiently small such that V− γ has non-integer eigenvalues and non-
integer diagonal entries for 0< |γ|< γ0. Hence, the analogous of the matrix (3.12), here called

γΨ(λ,u) =
(
γΨ⃗1(λ,u)

∣∣
γΨ⃗2(λ,u)

∣∣
γΨ⃗3(λ,u)

)
, is fundamental, so that there are two inde-

pendent column vectors in the triple γX1(λ,u),γX2(λ,u),γX3(λ,u). The connection coeffi-
cients in (3.11), depending on γ, will be called cjk[γ], with

αk[γ] = e2π i(θk+γ) − 1.

The discussion of the independent case can be repeated, with the cjk[γ] and αk[γ] in the trans-
formations (3.15)–(3.17). We can assume that γX1 and γX3 are independent, otherwise the
discussion is analogous for another independent pair. After the gauge

γΦ=
3∏
j=1

(λ− uj)
−(θj+γ)/2

γX,

we obtain the analogous of system (1.2):

d(γΦ)
dλ

=
3∑

k=1

Ak[γ]

λ− uk
γΦ, Ak := Ak[γ]−

θk+ γ

2
. (3.24)

Let

γΦ
[1,3](λ,u) =

3∏
j=1

(λ− uj)
−θj/2

(
γX1(λ,u)

∣∣∣ γX3(λ,u)
)

be the analogous of (3.18), and letMj[γ] be its monodromy matrix at uj. The same procedure
leading to (3.23) yields

pjk[γ] := tr(Mj[γ]Mk[γ])

= e−iπ(θj+θk+2γ)αj[γ]αk[γ]cjk[γ]ckj[γ] + 2cos(π(θj− θk)), j 6= k.
(3.25)

In general, cjk[γ], γΨ, γXk and γΦ
[1,3] diverge for γ→ 0. Therefore, the monodromy matrices

M1[γ], M2[γ], M3[γ] generate the monodromy group for 0< |γ|< γ0, but may be not
defined at γ= 0. To overcome the problem, we use a relation proved in full generality in [31],
and in [3] in a generic case. In case D= D(u0), the relation says that at any u ∈ D(u0)

αkcjk =

{
e−2π iγαk[γ] cjk[γ], if k� j,

αk[γ] cjk[γ], if k≺ j,
for real 0< γ < γ0. (3.26)

The ordering ≺ is (3.3). In case D= D(uc), the same relation holds at any u ∈ D(uc)\∆C3

for j 6= k such that ucj 6= uck, the ordering relation being (3.4). For j 6= k such that ucj = uck the
ordering relation is not defined, but cjk = cjk[γ] = 0, so that we can state that (3.26) still holds.
Using (3.26), (3.25) becomes

pjk[γ] = eiπγ e−iπ(θj+θk)αjαkcjkckj+ 2cos(π(θj− θk)), 0< γ < γ0real, (3.27)

for both u ∈ D(u0) and u ∈ D(uc)\∆C3 (in the latter case, (3.27) is true also for j 6= k such that
ucj = uck, because it just reduces to the identity 2cos(π(θj− θk)) = 2cos(π(θj− θk))). Since
both the cjk and cjk[γ] are constant, (3.27) extends analytically at ∆C3 .

Now, (3.27) holds for 0< γ < γ0, the r.h.s. depends holomorphically on γ ∈ C, while
the l.h.s. pjk[γ] has been defined for 0< |γ|< γ0. We show that pjk[γ] can also be obtained
from a fundamental matrix solution of (3.24) which is holomorphic at γ= 0, so is well
defined at γ= 0. To do that, recall from [9] that if D= D(uc), the choice of an admissible
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direction τ determines a cell decomposition of D(uc) into topological cells, called τ -cells.
They are the connected components of D(uc)\(∆C3 ∪X(τ)), where X(τ) is the locus of points
u= (u1,u2,u3) ∈ D(uc) such that <(eiτ (uj− uk)) = 0.

For D= D(u0), let u• ∈ D(u0). For D= D(uc), let u• belong to a τ -cell of D(uc). Then,
there is a sufficiently small neighbourhood U of u• such that, as u varies in U , the point uk
represented in the λ-plane remains inside a closed disc Dk centred at u•k , with Dj ∩Dk = ∅ for
1⩽ j 6= k⩽ 3. Consider the simply connected domain

Bu• := Pη∗(u•)\(D1 ∪D2 ∪D3).

Since system (3.24) holomorphically depends on the parameters (u,γ) ∈ U ×{γ ∈ Cs.t. |γ|<
γ0}, according to a general result (see for example [55], theorem 24.1) it has a fundamental
matrix solution

Φ
(u•)
hol (λ,u,γ)

holomorphic of (λ,u,γ) ∈ Bu• ×U ×{γ ∈ Cs.t. |γ|< γ0}. If U is sufficiently small, it holo-
morphically extends to

(
Pη∗(u)×̂ U

)
×{γ ∈ Cs.t. |γ|< γ0}. For some invertible connection

matrix C(u,γ) we have

Φ
(u•)
hol (λ,u,γ) = γΦ

[13](λ,u) ·C(u,γ), 0< |γ|< γ0.

Now, C(u,γ) is holomorphic of u ∈ U , for any 0< |γ|< γ0, but may diverge as γ→ 0. On

the other hand, the monodromy matrix Mhol
k (u,γ) of Φ(u•)

hol (λ,u,γ) at λ= uk (the loop going
around ∂Dk) is holomorphic of (u,γ) ∈ U ×{γ ∈ Cs.t. |γ|< γ0}, including γ= 0. Moreover,

Mk[γ] = C(u,γ) ·Mhol
k (u,γ) ·C(u,γ)−1.

Since Tr(Mhol
j (u,γ)Mhol

k (u,γ)) = Tr(Mj[γ]Mk[γ])≡ pjk[γ], we see from (3.27) that

Tr(Mhol
j (u,γ)Mhol

k (u,γ)) = eiπγ e−iπ(θj+θk)αjαkcjkckj+ 2cos(π(θj− θk)), 0< γ < γ0.

Now, both the l.h.s. and the r.h.s. are continuous of γ in a neighbourhood of γ= 0. Therefore,
taking the limit γ→ 0+ we obtain

pjk := tr(Mhol
j (u,0)Mhol

k (u,0)) = e−iπ(θj+θk)αjαkcjkckj+ 2cos(π(θj− θk)). (3.28)

In case D= D(uc), we can repeat the above discussion also for u• on the boundary of one τ -
cell (provided that u• 6∈∆C3), because τ = 3π/2− η can be slightly changed without affecting
the properties of fundamental solutions.

Therefore, we have proved that for every u• ∈ D(u0) or u• ∈ D(uc)\∆C3 , we can find a

fundamental solution Φ
(u•)
hol (λ,u,0) of system (1.2), holomorphically depending on (λ,u) ∈

Pη∗(u)×̂ U , with U small enough, such that its monodromy invariants are the pjk in (3.28).
Thus, we conclude that the formulae (3.8) always hold. In the linearly dependent case,
Φhol(λ,u) in the statement of the theorem is preciselyΦ(u•)

hol (λ,u,0) above, while in the linearly
independent case it is a fundamental matrix like (3.18). □
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4. Classification of transcendents satisfying vanishing conditions (4.1).
Reduction to special functions

By proposition 3.1, in order to compute the monodromy data useful to solve the nonlinear
connection problem for PVI, it suffices to take system (3.10).

We classify all branches of transcendents holomorphic at x= 0 (behaviour y(x) =∑∞
n=0 bnx

n), such that the associated Ω(x) of theorem 2.1 satisfies

lim
x→0

Ω12(x) = lim
x→0

Ω21(x) = 0 holomorphically (4.1)

(by the symmetries of PVI, it is enough to study x= 0). The reason why we study this case
is for the importance of the conditions (4.1): according to theorem 1.1 of [9], they allow to
compute all the monodromy data of the isomonodromically x-dependent system (3.10) with
coalescing eigenvalues 0 and x→ 0 using the system reduced at the coalescence x= 0:

dY
dz

=

(
U0 +

Ω0

z

)
Y, U0 := diag(0,0,1), Ω0 := Ω(0). (4.2)

The latter is simpler than (3.10), because Ω12(0) = Ω21(0) = 0. Hence, for the nonlinear con-
nection problem, theorem 3.1 and Corollary 3.1 allow us to obtain the pjk’s in terms of the
Stokes matrices of the simpler system (4.2).

When (4.1) holds, we will show that system (4.2) is equivalent to a scalar confluent hyper-
geometric equation or to a generalized hypergeometric equation of type (q,p) = (2,2), so that
the Stokes matrices, and consequently the pjk, can be concretely computed. This computation
will be explicitly done in section 5 for a selection of transcendents, being all other cases carried
out analogously.

The reduction to a scalar ODE follows two steps. First, (4.2) is changed by a gauge trans-
formation Y= G0Ỹ, where G

−1
0 Ω0G0 = diag(µ1,0,µ3). A column (ỹ1, ỹ2, ỹ3)T of Ỹ satisfies a

first order system of ODEs. Then, this system is reduced by elimination9 to a single scalar
ODE for one of the components ỹj. The latter is in general of the third order (generalized
hypergeometric), but depending on the structure ofΩ0 wemay receive a second order equation
(confluent hypergeometric).

The classification and reduction to special functions is technically performed in appendix A
and summarized in the table below. The first column refines the part of the table of [29] con-
cerning transcendents with Taylor series at x= 0. The parameters θ1,θ2,θ3,θ∞ and the free
parameter (the integration constant) y0 or y(|N|)0 in y(x), if any, must satisfy the conditions
in the second column. In the third column, we give our classification according to the fulfil-
ment of the vanishing conditions (4.1) and indicate the classical special functions in terms of
which (4.2) can be solved. For the classical special functions appearing, we refer to appen-
dices B.2 and B.3. For N ∈ Z\{0} we also define

NN :=

{
{0,2,4, . . . , |N| − 1}∪ {−2,−4, . . . ,−(|N| − 1)}, if N is odd

{1,3, . . . , |N| − 1}∪ {−1,−3, . . . ,−(|N| − 1)}, if N is even .
(4.3)

9 G0 is defined with the freedom G0 7→ G0∆, where ∆ is a constant diagonal matrix. The transformation
(̃y1, ỹ2, ỹ3)T 7→∆ · (̃y1, ỹ2, ỹ3)T does not change the scalar linear ODE obtained after elimination of two compon-
ents.

4134



Nonlinearity 36 (2023) 4110 G Degano and D Guzzetti

Taylor series Conditions on parameters
Classical special
functions

y(x) = y0 +
∑
n⩾1

bn(y0) x
n

Solution (A.1).

y0 =
θ∞ − 1+ θ3

θ∞ − 1
,

θ∞ + θ3 /∈ Z,
θ∞ 6= 1;
or

y0 =
θ∞ − 1− θ3

θ∞
,

θ∞ − θ3 /∈ Z,
θ∞ 6= 1.

The vanishing
condition (4.1)
does not hold

y(x) = y0 +
∑
n⩾1

bn(y0) x
n

Solution (A.2).

θ3 = 0, θ∞ = 1,
y0 free parameter.

y(x) =
|N|−1∑
n=0

bnx
n+

y(|N|)0

(|N|)!x
|N|

+
∑

n⩾|N|+1

bn(y
(|N|)
0 ) xn

(T1)
Solution (A.3).

b0 =
N

θ∞ − 1
, θ∞ 6= 1.

y(|N|)0 free parameter.
θ∞ − 1+ θ3 = N ∈
Z \ {0}
(section A.1.2)
or
θ∞ − 1− θ3 = N ∈
Z \ {0},
and
θ1 − θ2 ∈NN

(section A.1.1)

Confluent
hypergeometric
equation (A.8) if
θ1 = θ2;
equations (A.10),
(A.13), θ1 > θ2;
equations (A.11),
(A.14), θ1 < θ2.

b0 =
N

θ∞ − 1
, θ∞ 6= 1.

y(|N|)0 free parameter.
θ∞ − 1+ θ3 = N ∈
Z \ {0}
or
θ∞ − 1− θ3 = N ∈
Z \ {0},
and either
θ∞ − 1 ∈{
{−1, . . . ,−|N|+ 1}
{1, . . . , |N| − 1}

or
θ1 + θ2 ∈NN

The vanishing
condition (4.1)
does not hold

y(x) = y ′0x+
∑
n⩾2

bn(y
′
0) x

n

(T2)
Solution (A.15)

y ′0 =
θ1

θ1 − θ2
,

θ1 − θ2 6∈ Z θ1 6= 0, θ2 6= 0
(section A.2 and A.2.1)

(2,2)—
Generalized
hypergeometric
equation (A.22)

y ′0 =
θ1

θ1 + θ2
,

θ1 + θ2 6∈ Z, θ1 6= 0,
θ2 6= 0
(section A.2 and A.2.2)

The vanishing
condition (4.1)
does not hold

(Continued.)
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y(x) = y ′0x+
∑
n⩾2

bn(y
′
0) x

n

(T3)
Solution (A.16)

θ1 = θ2 = 0
y ′0 6= 0,1 free parameter
(section A.2.3)

Confluent
hypergeometric
equation (A.24)

y(x) =
|N|∑
n=1

bnx
n

+
y(|N|+1)
0

(|N|+ 1)!
x|N|+1

+
∑

n⩾|N|+2

bn(y
(|N|+1)
0 ) xn

(T4)
Solution (A.17)

θ1 − θ2 = N ∈ Z \ {0}
θ1 ∈{
{−1,−2, . . . ,−|N|+ 1}
{1,2, . . . , |N| − 1}

y(|N|+1)
0 free parameter
(section A.2.4)

(2,2)—
Generalized
hypergeometric
equation (A.25)

θ1 − θ2 = N ∈ Z \ {0}
or
θ1 + θ2 = N ∈ Z \ {0}
and
θ1 = 0,N,
y(|N|+1)
0 free parameter
(section A.2.4)

Confluent
hypergeometric
equation (A.27)
(either θ1 = N⩾ 1,
or θ1 = 0, N⩽−1)
equation (A.29)
(either
θ1 = N⩽−1, or
θ1 = 0, N⩾ 1)

θ1 − θ2 = N ∈ Z \ {0}
{(θ3 + θ∞ − 1),
(−θ3 + θ∞ − 1)}∩
NN 6= ∅
y(|N|+1)
0 free parameter
(section A.2.5)

(2,2)—
Generalized
hypergeometric
equation (A.31)

θ1 + θ2 = N ∈ Z \ {0}
θ1 ∈{
{−1,−2, . . . ,−|N|+ 1}
{1,2, . . . , |N| − 1}

or
{(θ3 + θ∞ − 1),
(−θ3 + θ∞ − 1)}∩
NN 6= ∅
y(|N|+1)
0 free parameter
(section A.2.6)

The vanishing
condition (4.1)
does not hold

Before going into the details of the construction of this table, we would like to highlight
two facts:

i) in cases (T1), (T3) and (T4), even though the parameters θ1,θ2,θ3,θ∞ are highly degener-
ate, the solutions for which conditions (4.1) are satisfied are still higher order transcend-
ental functions;

ii) For generic parameters θ’s, there exists precisely one solution for which conditions (4.1)
are satisfied, that is case (T2).
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Remark 4.1. In the table of [29] there is a misprint. Corresponding to the branches (45), the
correct condition is

√
−2β ∈ {−1,−2, . . . ,N+ 1} for N< 0, and

√
−2β ∈ {1,2, . . . ,N− 1}

for N> 0. In (61), the correct condition is
√
2α ∈ {−1,−2, . . . ,N+ 1} for N< 0, and

√
2α ∈

{1,2, . . . ,N− 1} for N> 0. Solutions to PVI with Taylorexpansions have been studied also in
[45]

5. Monodromy data—Examples

For a selection of the tabulated transcendents satisfying the vanishing (4.1), we compute the
Stokes matrices of system (3.10), and by formulae (3.8) the corresponding monodromy invari-
ants pjk of the 2× 2 Fuchsian system (2.36).

Thanks to theorem 1.1 in [9], it suffices to consider the simplified system (4.2) at x= 0 and
its fundamental solutions Y1(z),Y2(z),Y3(z) with canonical asymptotics

Yj(z)∼ YF(z,0), z→∞ in Sj, j= 1,2,3, (5.1)

where YF(z,0) is the value at x= 0 of the unique formal solution

YF(z,x) =

I+∑
k⩾1

Fk(x)z
−k

z−ΘezU(x),

of system (3.10), whose coefficients Fk(x) are also holomorphic at x= 0. Then, the Stokes
matrices of (3.10) are just obtained from the solutions (5.1) through the relations

Y2(z) = Y1(z)S1, Y3(z) = Y2(z)S2.

We will choose the basic Stokes sectors to be

S1 : −
3π
2
< arg(z)<

π

2
, S2 : −

π

2
< arg(z)<

3π
2
, S1 :

π

2
< arg(z)<

5π
2
,

so that S1 contains the admissible ray in direction τ = 0, corresponding to η = 3π/2 in the
λ-plane. We will do the gauge transformation Yj = G0Ỹj, diagonalizing Ω0, which does not
affect the Stokes matrices, so that the canonical asymptotics will be

Ỹj(z)∼ ỸF(z) := G−1
0 YF(z,0), z→∞ in Sj, j= 1,2,3.

In the examples below, no partial resonance occurs, so that it is not necessary to compute
YF(z,x) and evaluate it at x= 0, being sufficient to compute directly the formal solution of (4.2),
with behaviour YF(z) = (I+

∑
k⩾1 F̊kz

−k)z−ΘezU0 , which is unique (remark 3.1) and coincides
with YF(z,0).

5.1. Case (T3) of the table (i.e. solutions (A.16))

In this case, the gauge Ỹ= G0Y transforms system (4.2) into

dỸ
dz

=

 1
2θ∞

−θ3 + θ∞ 0 −θ3 + θ∞
0 0 0

θ3 + θ∞ 0 θ3 + θ∞

+
1
2z

−θ3 + θ∞ 0 0
0 0 0
0 0 −θ3 − θ∞

 Ỹ, (5.2)
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where

G0 =


−k̃01

θ3 + θ∞
θ3 − θ∞

− k̃01
k̃02

1− y ′0
y ′0

−k̃01

−k̃02
θ3 + θ∞
θ3 − θ∞

1 −k̃02

1 0 1

 (5.3)

is a diagonalizing matrix of (A.23). A column vector (ỹ1, ỹ2, ỹ3)T of Ỹ satisfies the 1st order
system 

dỹ1
dz

=
θ∞ − θ3
2θ∞

(ỹ1 + ỹ3)+
θ∞ − θ3

2z
ỹ1,

dỹ2
dz

= 0,

dỹ3
dz

=
θ∞ + θ3
2θ∞

(ỹ1 + ỹ3)−
θ∞ + θ3

2z
ỹ3.

Substituting the first equation into the third to eliminate ỹ3 and setting ỹ1 = wz(θ∞−θ3)/2 we
receive the confluent hypergeometric equation (A.24).

In this section we consider the case with θ3,θ∞ not integers, while the case θ3 = 0 and θ∞ ∈
Z \ {0} will be considered in section 6. Since θ1 − θ2 6∈ Z\{0} there is no partial resonance,
so that the formal solution of system (5.2) is unique. It is computed following section 4 of [9],
receiving

ỸF(z) =

(
I+O

(
1
z

))


−y′0
θ3 − θ∞

2k̃01θ∞
−(1− y′0)

θ3 − θ∞

2k̃02θ∞
−θ3 − θ∞

2θ∞
z−θ3ez

−y′0
k̃02
k̃01

y′0 0

y′0
θ3 − θ∞

2k̃01θ∞
(1− y′0)

θ3 − θ∞

2k̃02θ∞

θ3 + θ∞
2θ∞

z−θ3ez


,

where k̃01, k̃
0
2 are in (A.23). The elements of the second row of the solutions of (5.2) are con-

stants, while from (A.24) the elements of the first row have the general form

ỹ1(z;a,b,m,n) =

[
aM

(
ze2mπ i;

θ∞ − θ3
2

,θ∞

)
+ bU

(
ze2nπ i;

θ∞ − θ3
2

,θ∞

)]
z(θ∞−θ3)/2,

a,b ∈ C,n,m ∈ Z,

whereM and U are the confluent hypergeometric functions of appendix B.2. It is sufficient to
compute the first two rows of the fundamental solutions Ỹ1, Ỹ2, Ỹ3 with asymptotics ỸF in the
Stokes sectors S1,S2,S3, respectively. The computation of the second row is immediate by
comparison with the second row of the leading term of ỸF. The first row is obtained by com-
parison of the first row of the leading term of ỸF and the leading coefficients of the asymptotics
of M and U. For the fundamental solution Ỹ1 we use formulas (B.4) and (B.6) with ϵ=−1:

Ỹ1(z) =


ỹ1(z;0,b1,0,0) ỹ1(z;0,b2,0,0) ỹ1(z;a3,b3,0,0)

−y′0
k̃02
k̃01

y′0 0

(Ỹ1)31 (Ỹ1)32 (Ỹ1)33

 ,
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where

a3 =−Γ

(
θ∞ − θ3

2

)
θ3 − θ∞
2θ∞

,

b1 =−y′0
θ3 − θ∞

2k̃01θ∞
, b2 =−(1− y′0)

θ3 − θ∞

2k̃02θ∞
, b3 =

Γ((θ∞ − θ3)/2)
Γ((θ∞ + θ3)/2)

θ3 − θ∞
2θ∞

e−iπ(θ∞−θ3)/2.

For the fundamental solution Ỹ2 we use formulas (B.4) and (B.6) with ε= 1:

Ỹ2(z) =


ỹ2(z;0,b1,0,0) ỹ1(z;0,b2,0,0) ỹ1(z;a,b3eiπ(θ∞−θ3)/2,0,0)

−y′0
k̃02
k̃01

y′0 0

(Ỹ2)31 (Ỹ2)32 (Ỹ2)33

 .
For the fundamental solution Ỹ3 we have to use the cyclic relation (B.5) with n=−1 and again
formulas (B.4) and (B.6) with ϵ=−1 to obtain the asymptotics of the function U in the sector
S3:

Ỹ3(z) =


ỹ1(z;a1, b̃1,0,0) ỹ1(z;a2, b̃2,0,0) ỹ1(z;a3e−iπ(θ∞+θ3), b̃3,−1,−1)

−y′0
k̃02
k̃01

y′0 0

(Ỹ3(z))31 (Ỹ3(z))32 (Ỹ3(z))33

 ,
where

a1 = 2iy′0
θ3 − θ∞

2k̃01θ∞
Γ

(
θ∞ + θ3

2

)
sin
[π
2
(θ∞ + θ3)

]
eiπθ3 ,

a2 = 2i(1− y′0)
θ3 − θ∞

2k̃02θ∞
Γ

(
θ∞ + θ3

2

)
sin
[π
2
(θ∞ + θ3)

]
eiπθ3 ,

b̃1 = b1e
iπ(θ∞+θ3), b̃2 = b2e

iπ(θ∞+θ3), b̃3 = b3e
−iπ(θ∞+θ3).

The non trivial entries (S1)13 and (S1)23 can be computed from the entries (1,3) and (2,3) of
the equation Ỹ2(z) = Ỹ1(z)S1, while the non trivial entries (S2)31 and (S2)32 can be computed
from the entries (1,1) and (1,2) of the equation Ỹ3(z) = Ỹ2(z)S2, obtaining

S1 =


1 0 −2ik̃01

Γ((θ∞ − θ3)/2)
Γ((θ∞ + θ3)/2)

sin
[π
2
(θ∞ − θ3)

]
0 1 −2ik̃02

Γ((θ∞ − θ3)/2)
Γ((θ∞ + θ3)/2)

sin
[π
2
(θ∞ − θ3)

]
0 0 1

 (5.4)

and

S2 =


1 0 0

0 1 0

− 2iπ y ′0e
iπθ3

k̃01Γ(1− (θ∞ + θ3)/2)Γ((θ∞ − θ3)/2)
− 2iπ (1− y ′0)e

iπθ3

k̃02Γ(1− (θ∞ + θ3)/2)Γ((θ∞ − θ3)/2)
1

 .

(5.5)
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With the choice of the admissible direction τ = 0, corresponding to η = 3π/2, formulas (3.8)
become

p12 = 2, p13 = 2cos(πθ3)− 4y′0 sin
[π
2
(θ∞ − θ3)

]
sin
[π
2
(θ∞ + θ3)

]
,

p23 = 2cos(πθ3)− 4(1− y′0)sin
[π
2
(θ∞ − θ3)

]
sin
[π
2
(θ∞ + θ3)

]
.

The above expressions confirm the results of [29], page 3260, Case (46).

5.2. Case (T1) of the table with N=−1, θ1 = θ2, θ3 = θ∞

We consider the transcendent in case (T1) for θ2 = θ1, θ3 = θ∞:

y(z) =
1

1− θ∞
+ y ′0x+O(x2), x→ 0. (5.6)

This solution appears in formula (16) of [25], whose monodromy data {pjk, 1⩽ j 6= k⩽ 3}
for the 2× 2 Fuchsian system are given in theorem 3 of [25], for θ1,θ∞ not integers. It also
coincideswith (63) of [29], withmonodromy data given at page 3258, especially in the footnote
4. Here, we compute the Stokes matrices and apply the formulae of theorem 3.1, so re-obtain
and verifying the pjk of [25, 29].

If G0 diagonalizes Ω0 in (A.6), system (4.2) is transformed by the gauge Y= G0Ỹ into

dỸ
dz

=

 1
θ2 + θ3

0 0 0
0 θ2 θ2
0 θ3 θ3

− 1
z

θ2 0 0
0 0 0
0 0 θ2 + θ3

 Ỹ. (5.7)

For a column (ỹ1, ỹ2, ỹ3)T of Ỹ, the first and second equations of the system yield

ỹ1(z) = Cz−θ2 , C ∈ C, ỹ3 =
θ2 + θ3
θ2

dỹ2
dz

− ỹ2, (5.8)

and plugging this expression into the third equation we get the confluent hypergeometric
equation (A.8) for ỹ2. Since θ1 − θ2 6∈ Z\{0}, there is no partial resonance, so that the formal
solution of (5.7) is unique and computed following [9], section 4:

ỸF(z) =

(
1+O

(
1
z

))

·



k̃02
k̃01

2y′0(θ∞ − 1)+ θ∞(θ1 − 1)

2θ1θ∞
z−θ1

2y′0(θ∞ − 1)+ θ∞(θ1 − 1)

2θ1θ∞
z−θ1 0

−
2y′0(θ∞ − 1)+ θ∞(θ1 − 1)

2k̃01
√
θ∞(θ1 + θ∞)

z−θ1 −
2y′0(θ∞ − 1)− θ∞(θ1 + 1)

2k̃02
√
θ∞(θ1 + θ∞)

z−θ1
θ1

θ1 + θ∞
z−θ∞ez

2y′0(θ∞ − 1)+ θ∞(θ1 − 1)

2k̃01
√
θ∞(θ1 + θ∞)

z−θ1
2y′0(θ∞ − 1)− θ∞(θ1 + 1)

2k̃02
√
θ∞(θ1 + θ∞)

z−θ1
θ∞

θ1 + θ∞
z−θ∞ez


,

where k̃01, k̃
0
2 are given in (A.7). As in [25], we consider the case θ1,θ∞ not integers. For the

sake of the computation of the Stokes matrices, it is sufficient to compute the first two rows
of the fundamental solutions Ỹ1, Ỹ2, Ỹ3 with asymptotics ỸF in the Stokes sectors S1,S2,S3,
respectively. The computation of the first row is immediate, by comparison with the first row
of the leading term of ỸF. The second row is obtained by comparison of the second row of the
leading term of ỸF and the leading coefficients of the asymptotics of the confluent hypergeo-
metric functions M and U appearing in the general solution of (A.8):

ỹ2(z;a,b,m,n) = aM(ze2π im;θ1,θ1 + θ∞)+ bU(ze2π i n;θ1,θ1 + θ∞), a,b ∈ C,n,m ∈ Z.

4140



Nonlinearity 36 (2023) 4110 G Degano and D Guzzetti

Following the same procedure as in the previous section 5.1, we find that the Stokes matrices
are

S1 =


1 0 2ik̃01

sin(πθ1)√
θ∞

Γ(θ1)

Γ(θ∞)

0 1 −2ik̃02
sin(πθ1)√

θ∞

Γ(θ1)

Γ(θ∞)

0 0 1

 (5.9)

and

S2 =


1 0 0

0 1 0

iπ e−iπ(θ1−θ∞)

k̃01
√
θ∞

2y ′0(θ∞ − 1)+ θ∞(θ1 − 1)

Γ(1+ θ1)Γ(1− θ∞)

iπ e−iπ (θ1−θ∞)

k̃02
√
θ∞

2y ′0(θ∞ − 1)− θ∞(θ1 + 1)

Γ(1+ θ1)Γ(1− θ∞)
1

 .

(5.10)

We apply now formulae (3.8). For τ = 0 and η = 3π/2, the ordering relation is 1≺ 3 and
2≺ 3, while there is no ordering 1↔ 2, because u1 − u2 → 0. So we have p12 = 2 and

p13 = 2cosπ(θ1 − θ3)− eiπ(θ1−θ3)(S1)13(S−1
2 )31, 1≺ 3,

p23 = 2cosπ(θ2 − θ3)− eiπ(θ2−θ3)(S1)23(S−1
2 )32, 2≺ 3.

Substituting the entries of the Stokes matrices, we exactly obtain (and confirm!) the known
result of theorem 3 of [25] or formulas in the footnote 4 at page 3258 of [29], namely p12 = 2
and

p13 =
−4ssin(πθ1)sin(πθ∞)

θ1
+ 2cos(π(θ1 + θ∞)),

p23 =
4ssin(πθ1)sin(πθ∞)

θ1
+ 2cos(π(θ1 − θ∞)),

where the parameter s is equivalent to y ′0 through

y′0 =
θ∞(2s+ θ1 + 1)

2(θ∞ − 1)
.

We receive the same result also if we choose τ = π and η = π/2. In this case, the ordering
relation is 3≺ 1 and 3≺ 2. Then,

p13 = 2cosπ(θ1 − θ3)− eiπ(θ3−θ1)(S2)31(S−1
3 )13 1� 3,

p23 = 2cosπ(θ2 − θ3)− eiπ(θ3−θ2)(S2)32(S−1
3 )23 2� 3.

We need in this case the Stokes matrices S2 and S3, the latter being obtainable from S1 by the
formulae

S2ν+1 = e2π iνΘS1e−2π iνΘ, S2ν = e2π i(ν−1)ΘS1e−2π i(ν−1)Θ, ν ∈ Z,

where Θ := diag(θ1,θ2,θ3)≡ diag(θ1,θ1,−θ∞).
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Remark 5.1. The Stokes matrices (5.9) and (5.10) are the same as those for case (T1) of the
table with N=−1, θ1 = θ2, θ3 =−θ∞, since the corresponding system is equivalent to the
one for the transcendents considered in this section via the gauge transformation

Ỹ 7→ PỸ, P=

0 0 1
0 1 0
1 0 0

 .
6. Monodromy data of 3-dimensional Dubrovin–Frobenius manifolds at a
semisimple coalescence point

A semisimple Dubrovin–Frobenius manifoldM of dimension n is a complex analytic manifold
whose tangent bundle is equipped with a Frobenius algebra structure, semisimple on an open
dense subset Mss ⊂M, and with a z-deformed flat connection [10, 13, 14]. In suitable local
coordinates u= (u1, . . . ,un), called canonical, the zero-curvature condition is equivalent to
the Frobenius integrability of an n-dimensional analogue of the Pfaffian system (2.1):

dY= ω(z,u)Y, ω(z,u) =

(
U(u)+

V(u)
z

)
dz+

n∑
k=1

(zEk+Vk(u))duk, (6.1)

where U(u) = diag(u1, . . . ,un), Ek = ∂U/∂uk, and V(u) is skew-symmetric. V(u) is holo-
morphically diagonalized on Mss by a matrix G(u), which Dubrovin calls Ψ(u), so that (2.7)
in dimension n reads

∂Ψ

∂uk
= Vk(u)Ψ, k= 1, . . . ,n. (6.2)

ΨT ·Ψ is constant, satisfying a normalization condition fixed by the (non-positive definite)
metric of the manifold.

When some coordinates ui− uj → 0 coalesce, this corresponds to a true point of the man-
ifold if and only if V(u) is holomorphic and limui−uj→0Vij(u) = 0. Such points are called
semisimple coalescence points and their theory was established in [10] by a geometric applic-
ation of [9].

The monodromy data of the z-component of (6.1)

dY
dz

=

(
U(u)+

V(u)
z

)
Y, (6.3)

locally parametrize the manifold at semisimple points [13, 14], including the semisimple
coalescent ones [10]. This means that given the manifold, so that V(u) is locally given in
coordinates, the monodromy data of the z-component are determined. Conversely, given the
data, V(u) is obtained at semisimple points by solving a Riemann–Hilbert boundary value
problem, and then the manifold structure can be locally constructed from certain fundamental
matrix solutions of (6.3). This is also true for data give only at a semisimple coalescence point
[12, 50]. The global structure of the manifold is related to the analytic continuation of V(u),
and encoded in an explicit action of the braid group on the monodromy data (see [14] and [10]
for details).

The matrix V(u) has a precise definition in terms of the metric and an Euler vector field
defined on the manifold. Here, it suffices to say that for n= 3, (6.1) is a special sub-case
of (2.1), with

θ1 = θ2 = θ3 = 0, eigenvalues of V= µ,0,−µ, µ := θ∞/2 6= 0. (6.4)
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For n= 3, (2.8) implies

V(u) = Ω(x),

and the choice of remark 2.3 must be made to obtain VT =−V.
The structure of a 3-dimensional Dubrovin–Frobenius manifold can be written in terms of

the transcendent associated with V, PVI having parameters (6.4). More precisely, a branch of
the transcendent encodes the structure of a region called chamber of the manifold (similar
to a local chart: see definition 2.35 in [10]), through the explicit formulae appearing in [23].
The monodromy data of (6.3) associated with the branch, i.e. the data used for the nonlinear
connection problem!, are the data which locally parameterize themanifold, as explained above.

Consider a Dubrovin–Frobenius manifoldM at a semisimple coalescence point p ∈M, cor-
responding to canonical coordinates uc, such that uc1 = uc2. As u varies in a sufficiently small
D(uc), the corresponding point of M varies in a domain intersecting two chambers of M, the
semisimple coalescence point p being on their boundary. Semisimplicity implies V12 → 0 as
u1 − u2 → 0 in D(uc). Hence, the monodromy data of both chambers are the data associated
with a Painlevé transcendent y(x) such that the vanishing condition (4.1) holds. Therefore,
it necessarily has Taylor expansion in the class (T3) of our table, that for parameters (6.4)
becomes

y(x) = y ′0x+ y ′0(1− y ′0)(2µ
2 − 2µ+ 1)x2 +O(x3), y ′0 6= 0,1. (6.5)

The result of this section is the computation of all the monodromy data of the chambers
at the coalescence point p, namely the data of (6.3) associated with (6.5). By proposition 3.1,
they are the data of system (3.10), which can be computed from the restricted system (4.2).

Our computations provide all the cases when the theory of [10] applies in dimension n= 3.
The results are in propositions 6.1 and 6.2 below.

6.1. The restricted system

The matrix Ω(0) = Ω0 in (4.2) is (A.23) of section A.2.3, skew-symmetric only for (up to the
sign) k̃01 = i

√
y ′0 and k̃

0
2 = i

√
1− y ′0, namely

Ω0 =

 0 0 iµ
√
y′0

0 0 iµ
√
1− y′0

−iµ
√
y′0 −iµ

√
1− y′0 0

 .
The diagonalizing matrix G0, given in (5.3), with the parameters k̃01, k̃

0
2 fixed above, must be

renormalized by

G0 7−→Ψ0 := G0 · diag(1/
√
2,
√
y ′0,1/

√
2) =

 i
√
y ′0/2 −

√
1− y ′0 −i

√
y ′0/2

i
√

(1− y ′0)/2
√
y ′0 −i

√
(1− y ′0)/2

1/
√
2 0 1/

√
2

 .

(6.6)

In this way

Ψ−1
0 Ω0Ψ0 = µ̂= diag(µ,0,−µ),

and the following normalization, prescribed by the metric on the manifold, holds

ΨT
0 ·Ψ0 = η, η :=

0 0 1
0 1 0
1 0 0

 . (6.7)
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A change of the normalization (6.7) does not affect the computation of Stokes matrices, but
changes the central connection matrix C(0) (defined in (6.14) below). In conclusion, sys-
tem (5.2) for Ỹ=Ψ−1

0 Y becomes

dỸ
dz

=

U0 +
µ

z

1 0 0
0 0 0
0 0 −1

 Ỹ, U0 :=
1
2

1 0 1
0 0 0
1 0 1

 . (6.8)

Remark 6.1. (6.6) can be obtained by linear algebra, but must also come from the solution
Ψ(u) of (6.2) at u1 = u2. The general solution when n= 3 has structure (2.9)

Ψ(u) = Ψ̃(x)Hµ̂, Hµ̂ = diag(Hµ,1,H−µ), H := u3 − u1.

It is given by explicit formulae in [23] in terms of a PVI transcendent y(x). In our case, these
formulae yield

Ψ(u)
∣∣
u1=u2

= Ψ̃(0)Hµ̂, Ψ̃(0) =

 −i
√
y′0/2 −

√
1− y′0 −i

√
y′0

−i
√
1− y′0/2

√
y′0 i

√
1− y′0

−1/2 0 −1


·

1/
√
w0

1 √
w0

 ,
where w0 ∈ C\{0}. When considering system (3.10), H is replaced by 1. Our matrix Ψ0 is
Ψ̃(0) for

√
w0 =−1/

√
2. It follows that (6.6) can always be substituted by any Ψ ′

0 =Ψ0 ·
∆, where ∆ := diag(1/

√
w0,1,

√
w0). This changes the central connection matrix by C(0) ′ =

∆−1C(0), and corresponds to a rescaling of the flat coordinates of the manifold.

6.2. Stokes matrices and data pjk

Proposition 6.1. The Stokes matrices for the chambers of a semisimple Dubrovin–Frobenius
manifold associated with the branch (6.5), with µ 6= 0, are

S1 =


1 0 2

√
y ′0 sin(µπ)

0 1 2
√
1− y ′0 sin(µπ)

0 0 1

 , S2 =

 1 0 0
0 1 0

−2
√
y ′0 sin(µπ) −2

√
1− y ′0 sin(µπ) 1

 ,
(6.9)

and the invariants are

p12 = 2, p13 = 2− [(S1)13]2 = 2− 4y′0 sin
2(πµ), p23 = 2− [(S1)23]2 = 2− 4(1− y′0)sin

2(πµ).

Proof. If 2µ 6∈ Z, this is a particular case of the Stokes matrices (5.4) and (5.5), with θ1 = θ2 =
θ3 = 0, θ∞ = 2µ. If 2µ ∈ Z, we need two facts. The first is that the symmetries of the Pfaffian
system imply [13]

S2 = S−T
1 . (6.10)

The second fact is that for a Dubrovin–Frobenius manifold, in order to compute S1, it suffices
to have µ̂, the nilpotent exponent R (defined below) and the central connection matrix C(0)

(also defined below). Indeed, the following relations hold (see [10, 13])

S1 = (C(0))−1e−iπRe−iπ µ̂η−1(C(0))−T, or ST1 = (C(0))−1eiπReiπ µ̂η−1(C(0))−T. (6.11)
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We will compute R and C(0) for all values of µ 6= 0 in section 6.3 below. The result, substituted
in (6.11), gives (6.9) in all cases. The invariant pjk follow from theorem 3.1.

The invariants p12,p13,p23 in proposition 6.1 coincide with the data obtained by the direct
analysis of the 2× 2 Fuchsian system, at the bottom of page 1335 of [24] (see the formulae for
σ= 0 there, where there is a misprint, to be corrected by the replacement: x21 7→ x1, x2∞ 7→ x∞).

6.2.1. A remark on the transcendents (6.5) with integer µ. If µ ∈ Z\{0},
S1 = S2 = I, =⇒ p12 = p13 = p23 = 2.

This corresponds to a degenerate case mentioned in section 3, when the triple M1,M2,M3

and the integration constant in the transcendent cannot be parametrized by the pjk. For example,
if µ= 1, the series (6.5) is the Taylor expansion at x= 0 of the one-parameter family of solu-
tions

y(x) =
ax

1− (1− a)x
, a= y ′0 ∈ C\{0}, µ= 1. (6.12)

The Fuchsian system (2.36) has an isomonodromic fundamental solution

Φ̃(λ,x) =

 1 L(λ,x)

r(λ,x)
(1+(a− 1)x)2

k0
+ r(λ,x)L(λ,x)

 , k0 6= 0,

where

L(λ,x) =−a ln(λ)+ (a− 1) ln(λ− x)+ ln(λ− 1), r(λ,x) =
2((a− 1)x+ 1)λ+(1− a)x2 − 1

2k0
,

with monodromy matrices

M1 =

(
1 −2iπa
0 1

)
, M2 =

(
1 2iπ (a− 1)
0 1

)
, M3 =

(
1 2π i
0 1

)
,

generating a reducible monodromy group. Notice that a appears in y(x) and the matrices, but
not in the traces pjk. For other integer values of µ, we obtain the corresponding solutions with
expansion (6.5), applying to (6.12) the symmetry of PVI given in lemma 1.7 of [16], which
transforms y(x) for a PVI with given µ, to a solution ỹ(x) of a PVI with −µ or equivalently
1+µ. In this way, all values µ+N, N ∈ Z, are obtained. For example, from (6.12), we obtain

ỹ(x) =
ax(1+(a− 1)x2)2

(1+ x(a− 1))(1+ x(a− 1)(ax3 − x3 + 4x2 − 6x+ 4))
, µ=−1,2.

6.3. Fundamental solution at z=0 and central connection matrix

System (6.8) has a fundamental solution at the Fuchsian singularity z= 0 with the Levelt form

Ỹ(0)(z) = G(z)zµ̂zR, G(z) = I+
∞∑
k=0

Gkz
k (6.13)

where the series is convergent andR and theGk’s will be constructed recursively in propositions
6.3 and 6.4. The full monodromy data of the chambers of the Dubrovin–Frobenius manifold
associated to the branch (6.5) include the constant central connection matrix C(0), defined
by

Ỹ1(z) = Ỹ(0)(z)C(0), (6.14)
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where Ỹ1(z) is the fundamental solution in S1, related to the one of section 5.1 by a change of
normalization

Ỹ1(z) = diag
(√

2, 1/
√
y′0,

√
2
)
· Ỹ1(z)section5.1,

with k̃01 = i
√
y ′0, k̃

0
2 = i

√
1− y ′0, corresponding to Ψ0 = Gsection5.1

0 · diag(1/
√
2,
√
y ′0,1/

√
2) .

Proposition 6.2. The central connection matrix defined in (6.14) has the following entries,

C(0)
21 =−

√
1− y ′0, C(0)

22 =
√
y ′0, C(0)

23 = 0. (6.15)

If µ is not a half-integer, the remaining entries are:

C(0)
11 =−i

√
2π y ′0

21+2µ

sec(µπ)
Γ(1/2+µ)

, C(0)
31 = i(1− 2µ)

√
2π y ′0

22(1−µ)

sec(µπ)
Γ(3/2−µ)

, (6.16)

C(0)
12 =−i

√
2π(1− y ′0)

21+2µ

sec(µπ)
Γ(1/2+µ)

, C(0)
32 = i(1− 2µ)

√
2π(1− y ′0)

22(1−µ)

sec(µπ)
Γ(3/2−µ)

, (6.17)

C(0)
13 =

√
2π

21+2µ

sec(µπ)
Γ(1/2+µ)

eiµπ, C(0)
33 = (1− 2µ)

√
2π

22(1−µ)

sec(µπ)
Γ(3/2−µ)

e−iµπ. (6.18)

For µ > half-integer, the remaining entries are:

C(0)
11 =−

eiπµ
√
2y ′0

22µ+1
√
π(µ− 1/2)!

(4log2+ψ(µ+ 1/2)− γ) , C(0)
31 =

eiπµ
√
2y ′0

22µR13
√
π(µ− 1/2)!

,

(6.19)

C(0)
12 =−

eiπµ
√
2(1− y ′0)

22µ+1
√
π(µ− 1/2)!

(4log2+ψ(µ+ 1/2)− γ) , C(0)
32 =

eiπµ
√

2(1− y ′0)

22µR13
√
π(µ− 1/2)!

,

(6.20)

C(0)
13 =

√
2π

22µ(µ− 1/2)!
+
i
√
2(4log2+ψ(µ+ 1/2)− γ)

22µ+1
√
π(µ− 1/2)!

, C(0)
33 =− i

√
2

22µR13
√
π(µ− 1/2)!

,

(6.21)

where ψ(x) = Γ ′(x)/Γ(x).
For µ< 0 half integer, the above results apply exchanging the first and third rows of C(0),

with R31 in place of R13 and −µ in place of µ.

The proposition is proved as follows. Ỹ1(z) is explicitly obtained from the reduction to the
hypergeometric equation (A.24) (with θ3 = 0, θ∞ = 2µ), and its entries are chosen as linear
combinations of hypergeometric functions that match with the asymptotics ỸF(z), as done in
section 5.1. The behaviour of Ỹ1(z) at z= 0 can also be exactly computed form the expansion
of the hypergeometric functions at z= 0. It must then be compared with (6.13) in order to
extract C(0). Hence, to concretize the computation, we need to write (6.13) in more details.

6.3.1. Computation of Levelt form (6.13). From the general theory of Fuchsian singularities
[14, 55], thematricesGk andR are recursively computed by formal substitution into the system,
obtaining the following formulae.
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• For k= 1, if µi−µj 6= 1 then


choose (R1)ij = 0

(G1)ij =
(U0)ij

µj−µi+ 1
,

else if µi−µj = 1 then

{
necessarily (R1)ij = (U0)ij

(G1)ijis arbitrary;

• For k⩾ 2, if µi−µj 6= k, then


choose (Rk)ij = 0

(Gk)ij =
1

µj−µi+ k

U0Gk−1 −
k−1∑
p=1

GpRk−p


ij

,

else if µi−µj = k then

necessarily (Rk)ij =
(
U0Gk−1 −

∑k−1
p=1GpRk−p

)
ij

(Gk)ijis arbitrary;

here µ1 = µ, µ2 = 0, µ3 =−µ are the diagonal elements of µ̂. The nilpotent matrix R (which
depends on µ) is

R=
∞∑
k=1

Rk finite sum.

Proposition 6.3. If system (6.8) is non-resonant (i.e. 2µ 6∈ Z\{0}), then it has a fundamental
matrix solution (6.13) with

R= 0 (6.22)

(G1)ij =
1

µj−µi+ 1
(U0)ij, (6.23)

(Gk)ij =
1

µj−µi+ k

3∑
lk−1,...,l1=1

(U0)il1 . . .(U0)lk−1j

(µj−µl1 + k− 1) . . .(µj−µlk−1 + 1)
, k⩾ 2, (6.24)

where i, j = 1,2,3 and µ1 = µ, µ2 = 0, µ3 =−µ.

Proof. From the general theory sketched above we can choose R= 0 and G1 is (6.23). To
prove formula (6.24) we proceed by induction: with the choice R= 0, the recursive relations
for (Gk)ij, k⩾ 2, reduce to
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(Gk)ij =
1

µj−µi+ k
(U0Gk−1)ij. (6.25)

Then, (6.24) is easily verified for k= 2. Let us suppose (6.24) holds for k− 1, then substituting
it into (6.25) we receive (6.24).

Remark 6.2. Due to the particular form of U0, the only non zero entries ofGk, k⩾ 1, are those
at positions (1,1), (1,3), (3,1) and (3,3).

Consider now the resonant case, 2µ ∈ Z \ {0}. For µ> 0, the resonance µi−µj ∈ Z \ {0}
occurs only for i= 1 and j= 3 at step 2µ of the recursive construction if µ is half-integer, and
also for i= 1, j= 2 and i= 2, j= 3 at step µ when µ is an integer. For µ< 0, the above applies
with i, j exchanged.

Proposition 6.4. If system (6.8) with µ> 0 is resonant, then it has a fundamental matrix solu-
tion (6.13) with the following properties. For µ half-integer we can choose the matrix R in
such a way that the only (possibly) non zero entry is

R13 = (U0)13, for µ=
1
2
, (6.26)

R13 =
3∑

m=1

(U0)1m
µ3 −µm+ 2µ− 1

3∑
l2µ−2,...,l1=1

(U0)ml1 . . .(U0)l2µ−23

(µ3 −µl1 + 2µ− 2) . . .(µ3 −µl2µ−2 + 1)
, µ⩾ 3

2
.

(6.27)

For µ positive integer

R= 0.

If µ is half-integer, the matrix coefficient G2µ has entries (1,1), (3,1), (3,3) fully determined
and the entry (1,3) is an arbitrary parameter; if µ is an integer the matrix coefficient Gµ

has free parameters at entries (1,2) and (2,3) and another free parameter occurs in G2µ at
position (1,3).
For µ< 0, the above results apply exchanging the entry (1,3) with the entry (3,1) for µ

half-integer or exchanging the entries (1,2), (2,3), (1,3) with the entries (2,1), (3,2), (3,1),
respectively, for µ integer.

Proof. From the general theory of Fuchsian singularities, we can choose R such that only R13

is possibly non zero. Let us start considering half-integer values of µ. For the case µ= 1/2 we
have

(R1)ij = (U0)ij and (G1)ij arbitrary.

Let µ⩾ 3/2, then (R)13 = (U0G2µ−1)13. Now, for k= 1, . . . ,2µ− 1, formula (6.24) holds,
hencewe easily obtain the sought expression of (R)13. Again, the fact that (G2µ)13 is a free para-
meter is just a consequence of the general theory. Consider now the case of integer µ. For k=
1, . . . ,µ− 1 formula (6.24) holds and we have (Rµ)12 = (U0Gµ−1)12, but (U0)i2 = (U0)2j = 0,
for each i, j= 1, 2, 3, hence (Rµ)12 = 0. Similarly we get (Rµ)23 = 0. From the general the-
ory, (Gµ)12 = g1 and (Gµ)23 = g2 are free parameters. Let us use the inductive definition to
compute

(Gµ+1)ij =
1

µj−µi+µ+ 1
(U0Gµ)ij,
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where the product U0Gµ has structure

2U0Gµ =

B g1 C
0 0 0
B g1 C

 ,

withB= (Gµ)11 +(Gµ)31 andC= (Gµ)13 +(Gµ)33. Now, from (6.24) we see thatB= C= 0,
thus (U0Gk)11 = (U0Gk)31 = (U0Gk)13 = (U0Gk)33 = 0 for all k⩾ µ and therefore (R2µ)13 =
0.

The last statement for µ< 0 is obvious.

Summing up, the fundamental solution (6.13) has the following structure. For the non-
resonant case

R= 0, G(z) = I+
z
2

 1 0 1/(1− 2µ)
0 0 0

1/(1+ 2µ) 0 1

+O(z2). (6.28)

For the resonant case

zR =

1 0 R13 log(z)
0 1 0
0 0 1

 , µ⩾ 1
2
; zR =

 1 0 0
0 1 0

R13 log(z) 0 1

 , µ⩽−1
2
.

If µ 6=±1/2,±1, the expansion of G(z) up to the first order is the same as in (6.28), whereas
if µ=±1/2,±1 then G(z) has the form

G(z) = I+
z
2

 1 0 g
0 0 0

1/2 0 1

+O(z2), µ=
1
2
;

G(z) = I+
z
2

1 0 1/2
0 0 0
g 0 1

+O(z2), µ=−1
2
,

G(z) = I+
z
2

 1 g1 −1
0 0 g2

1/3 0 1

+O(z2), µ= 1;

G(z) = I+
z
2

 1 0 1/3
g1 0 0
−1 g2 1

+O(z2), µ=−1,

being g,g1,g2 ∈ C free parameters.

6.3.2. Computation of the Central connection matrix. The parameters of the confluent hyper-
geometric functions U(z;a,b),M(z;a,b) solving the hypergeometric equation (A.24) (with
θ3 = 0, θ∞ = 2µ) are a= µ and b= 2µ. According to lemma B.1 of appendix B, we can
express Ỹ1(z) in terms of the Hankel functions H(1)

ν (z),H(2)
ν (z), with

ν = µ− 1
2
.
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We notice immediately that the second row of the connection matrix is (6.15). In order to
compute the other rows, we have to distinguish between the non-resonant and resonant cases.

Let us start with the non-resonant case. We need the series expansion of the Hankel func-
tions in a neighbourhood of z= 0 when ν 6∈ Z:

H(1)
ν (z) =

∞∑
k=0

(
a(1)k (ν)

( z
2

)ν
− b(1)k (ν)

( z
2

)−ν
)
z2k, (6.29)

where

a(1)k (ν) = icsc(νπ)
(−1)k

4kk!
e−iνπ

Γ(ν+ k+ 1)
, b(1)k (ν) = icsc(νπ)

(−1)k

4kk!
1

Γ(−ν+ k+ 1)
,

and

H(2)
ν (z) =

∞∑
k=0

(
a(2)k (ν)

( z
2

)−ν

− b(2)k (ν)
( z
2

)ν)
z2k, (6.30)

where

a(2)k (ν) = icsc(νπ)
(−1)k

4kk!
1

Γ(−ν+ k+ 1)
, b(2)k (ν) = icsc(νπ)

(−1)k

4kk!
eiνπ

Γ(ν+ k+ 1)
.

Let us consider the entry (1,1) of (6.14):

√
π
√
y′0e

iνπ/2

[
iνa(1)0 (ν)

2ν+µ+1
zµ −

i−νb(1)0 (ν)

2−ν−µ+1

z
2
z−µ

]
(1+O(z))

=

((
1+

z
2

)
zµC(0)

11 +
z−µ

1− 2µ
z
2
C(0)
31

)
(1+O(z2))

thus we can read the entries (1,1) and (3,1) of the connection matrix and see they are (6.16).
The entries (1,2) and (3,2) have the same form with the substitution y ′0 → 1− y ′0, and
are (6.17). The computation of the entries (1,3) and (3,3) is carried out with the same proced-
ure using the expansion of H(2)

ν (z), obtaining (6.18).
Next, we consider the resonant case 2µ ∈ Z\{0}. For integer µ the computations are the

same as those of the previous non-resonant case. Through the relations (6.11) with R= 0, we
obtain the Stokes matrices (6.9), and more specifically S1 = S2 = I. For half-integer values of
µ,

ν = µ− 1/2= n ∈ Z,

hence the local representations of the Hankel functions in a neighbourhood of z= 0 are

H(1)
n (z) =

( z
2

)n ∞∑
k=0

f(1)k (z)
( z
2

)2k
− i
π

( z
2

)−n n−1∑
k=0

(n− k− 1)!
k!

( z
2

)2k
, (6.31)

where

f(1)k (z) =
(−1)k

k!

[
1+(2i/π) log(z/2)

Γ(n+ k+ 1)
− i
π

ψ(k+ 1)+ψ(n+ k+ 1)
(n+ k)!

]
,
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being ψ(x) = Γ ′(x)/Γ(x). For the second Hankel function we have:

H(2)
n (z) =

( z
2

)n ∞∑
k=0

f(2)k (z)
( z
2

)2k
+

i
π

( z
2

)−n n−1∑
k=0

(n− k− 1)!
k!

( z
2

)2k
, (6.32)

where

f(2)k (z) =
(−1)k

k!

[
1− (2i/π) log(z/2)

Γ(n+ k+ 1)
+

i
π

ψ(k+ 1)+ψ(n+ k+ 1)
(n+ k)!

]
.

Formulae (6.31) and (6.32) are valid for n ∈ N. Nevertheless, we can use them also for negative
integer n recalling that

H(1)
−n(z) = (−1)nH(1)

n (z), H(2)
−n(z) = (−1)nH(2)

n (z), n ∈ N.

Suppose that µ> 0. In this case R13 6= 0. We start studying the entry (1,1) of (6.14): the left
hand side is

−
√
π
√
y′0

einπ

22µ+1/2(µ− 1/2)!

(
2log2+

i
π
(ψ (µ+ 1/2)− γ)

)
(1+O(z))zµ +

+i
√
π
√
y′0

einπ

22µ−1/2π(µ− 1/2)!
(1+O(z))zµ logz+O(z2)(1+O(logz))zµ +O(z)z−µ,

while the right hand side is

(1+O(z))(C(0))11z
µ +(C(0))31(R)13z

µ logz.

Equating the two last relations and exploiting the dependence on µ and y ′0 we receive (6.19).
Similarly, we compute (6.20) and (6.21).

Suppose now that µ< 0. In this case R31 6= 0. The gauge Ỹ= PỸ ′ brings back to the case

−µ > 0, where P=

0 0 1
0 1 0
1 0 0

. We have Ỹ1 = PỸ ′
1, Ỹ

(0) = PỸ ′(0)P−1, so that C(0) = PC ′(0),

with R31 in place of R13 and −µ in place of µ.
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Appendix A. The classification

A.1. Transcendents with Taylor expansion y(x) = y0 +O(x)

We study the behaviour of Ω(x) of theorem 2.1 when y(x) = y0 +O(x), where O(x) =∑
n⩾1 bnx

n is a Taylor series in a neighbourhood of x= 0. The functions k1, k2 can be written
as

k1(x) = k01(1+O(x))
√
y(x− 1)(1+θ2)/2

√
y− 1x(1+θ2)/2

x(θ1+θ3y0/(y0−1))/2,

k2(x) = k02(1+O(x))
√
y− x(x− 1)θ2−θ3

√
y− 1x(1+θ1)/2

x(θ2+θ3y0/(y0−1))/2, k01,k
0
2 ∈ C\{0}.

Hence, the off diagonal elements of Ω(x) have the structure

Ω12(x) = ω12(x)xθ1−θ2 , Ω13(x) = ω13(x)x(θ1+θ3y0/(y0−1)−θ2−1)/2,

Ω21(x) = ω21(x)xθ2−θ1 , Ω23(x) = ω23(x)x(θ2+θ3y0/(y0−1)−θ1−1)/2,

Ω31(x) = ω31(x)x−(θ1+θ3y0/(y0−1)−θ2−1)/2−1, Ω32(x) = ω32(x)x−(θ2+θ3y0/(y0−1)−θ1−1)/2−1,

where ωij(x) are holomorphic functions at x= 0, explicitly computed from the formulae of
theorem 2.1.

Remark A.1. From the previous formulas, we see that holomorphicity ofΩ(x) at x= 0 requires

θ1 − θ2 ∈ Z and
θ3 y0
y0 − 1

∈ Z.

There are three classes of solutions y(x) = y0 +O(x), obtained in [25] and classified in the
tables of [29]. The generic one is

y(x) = y0(θ∞,θ3)+
∞∑
n=1

bn(θ⃗)x
n, θ∞ 6= 1, θ⃗ = (θ1,θ2,θ3,θ∞), (A.1)

with two possibilities

y0 =
θ∞ − 1+ θ3
θ∞ − 1

, θ∞ + θ3 /∈ Z; or y0 =
θ∞ − 1− θ3
θ∞ − 1

, θ∞ − θ3 /∈ Z.

By remark A.1, for this class of solutions Ω(x) is not holomorphic at x= 0. The other two
classes consist of the following one-parameter families of solutions: the family

y(x) = y0 +
(1− y0)(1+ θ21 − θ22)

2
x+

∞∑
n=2

bn(y0,θ1,θ2)x
n, θ3 = 0, θ∞ = 1, (A.2)

where y0 is a free parameter, and the family

y(x) =
|N|−1∑
n=0

bn(θ⃗)x
n+

y(|N|)0

(|N|)!
x|N| +

∞∑
n=|N|+1

bn(y
(|N|)
0 , θ⃗)xn, (A.3)

where y(|N|)0 is a free parameter,N ∈ Z \ {0}, the leading order coefficient is b0 = N/(θ∞ − 1),
θ∞ 6= 1, and

θ∞ − 1+ θ3 = N or θ∞ − 1− θ3 = N,
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with either

θ∞ − 1 ∈

{
{−1,−2, . . . ,N+ 1} if N< 0

{1,2, . . . ,N− 1} if N> 0
(A.4)

or (here, NN is (4.3))

{(θ1 + θ2), (θ1 − θ2)}∩NN 6= ∅. (A.5)

For the family (A.2), a direct inspection of the explicit formulae for the ωij’s shows that the
vanishing conditions (4.1) cannot hold.

A.1.1. Solutions (A.3)—Case θ∞ = θ3 +N+ 1. Let us start with the case θ1 = θ2. From the
explicit formulae, ω12(0) = ω21(0) = 0 hold if and only if N=−1, that is θ3 = θ∞. With this
condition Ω(x) has holomorphic limit at x= 0:

Ω0 =


−θ2 0 −k̃01

√
θ3

0 −θ2 k̃02
√
θ3

1

k̃01
√
θ3

(
θ3(1− θ2)

2
+(1− θ3)y

′
0

)
1

k̃02
√
θ3

(
θ3(1+ θ2)

2
+(1− θ3)y

′
0

)
−θ3

 ,

(A.6)

where

k̃01 = ik01e
iπθ2/2 k̃02 =−k02eiπ(θ2−θ3). (A.7)

Denoting by G0 a diagonalizing matrix of Ω0, with the gauge Y= G0Ỹ, system (4.2) for a
column (ỹ1, ỹ2, ỹ3)T of Ỹ is reduced by elimination to

z
d2ỹ2
dz2

+(θ2 + θ3 − z)
dỹ2
dz

− θ2ỹ2 = 0, (A.8)

which is a confluent hypergeometric equation with parameters a= θ2 and b= θ2 + θ3.
If θ1 − θ2 ∈ Z>0, then for the requirement limx→0Ω21(x) = 0 holomorphically to be ful-

filled it is necessary that ω21(0) = 0, which is equivalent to N⩽−2. Furthermore, from the
explicit formulae, we have

lim
x→0

Ω23(x) = ω23(0) = k̃02
√
|N|θ3, and ω32(0) = 0, ω31(0) = 0.

Now Ω32 = ω32/x, and so

lim
x→0

Ω32(x) =
d
dx
ω32(x)

∣∣∣∣
x=0

=
θ2

k̃02

√
θ3
|N|

.

The entries (2,1) and (3,1) of the isomonodromic deformation equations (2.10) give
dΩ21

dx
= (θ2 − θ1)

Ω21

x
+

Ω31Ω23

x− 1
dΩ31

dx
=

Ω21Ω32

x(x− 1)

=⇒


dω21

dx
=

ω31ω23

x(x− 1)
dω31

dx
+N

ω31

x
=

ω21ω32

x(x− 1)
.

(A.9)
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From the second equation we compute ω ′
31(0) = limx→0ω31(x)/x by taking its limit for x→ 0:

ω′
31(0)− |N| lim

x→0

ω31(x)
x

= lim
x→0

ω21(x)ω32(x)
x(x− 1)

= lim
x→0

(
ω′
21(0)x+O(x2)

)(
ω′
32(0)x+O(x2)

)
x

= 0,

so that we have (recall that N≤−2)

ω′
31(0)(1− |N|) = 0 =⇒ ω′

31(0) = 0.

From the above and first equation we obtain ω ′
21(0) = 0, because

ω′
21(0) = lim

x→0

ω31(x)ω23(x)
x(x− 1)

= lim
x→0

(
ω′
31(0)x+O(x2)

)
(ω23(0)+O(x))

x(x− 1)

=−ω′
31(0) k̃

0
2

√
|N|θ3 = 0.

By differentiating n times equations (A.9), it follows that

dn+1

dxn+1
(ω21) =

n∑
j=0

(
n
j

)
d j

dxj

(ω31

x

) dn−j

dxn−j

(
ω23(x)
x− 1

)
and

dn+1

dxn+1
(ω31)

(
1− |N|

n+ 1

)
=

n∑
j=0

(
n
j

)
d j

dxj
(ω21(x))

dn−j

dxn−j

(
ω32(x)
x(x− 1)

)
.

Thus, taking the limit x→ 0, we get

ω
(n+1)
31 (0)

(
1− |N|

n+ 1

)
= lim

x→0

n∑
j=0

(
n
j

)
d j

dxj

(
ω21(x)
x

)
dn−j

dxn−j

(
ω32(x)
x− 1

)
,

so that we can repeat the computations till 1− |N|/(n+ 1) = 0, that is up to step n= |N| − 2
included, and show that all the derivatives of ω21(x) and ω31(x) at x= 0 up to the order |N| − 1
vanish. In conclusion,

ω21(x) = x|N|
(
ω
(|N|)
21 (0)
(|N|)!

+O(x)

)
, ω31(x) = x|N|

(
ω
(|N|)
31 (0)
(|N|)!

+O(x)

)

and

lim
x→0

Ω21(x) = 0, lim
x→0

Ω31(x) =

√
θ3
|N|

K(θ2,θ3,N,A)

k̃01
holomorphically,

where

K(θ2,θ3,N,A) =
d|N|

dx|N|

[
x(x− 1)dy/dx+ θ3y(y− x)

2(1− y)

]∣∣∣∣∣
x=0

+ |N|A, A :=
y(|N|)0

2
.
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Here A is the free parameter. The matrix Ω(x) at the coalescence point x= 0 is then

Ω0 =



1− |N| − θ2 0 0

0 −θ2 k̃02
√
|N|θ3√

θ3
|N|

K(θ2,θ3,N,A)

k̃01

θ2

k̃02

√
θ3
|N|

−θ3

 ,

where k̃01, k̃
0
2 are as in (A.7). Following the same procedure as in the previous case, with a

diagonalizing matrix G0 for Ω0, system (4.2) for Ỹ= (G0)
−1Y is reduced to

ỹ1(z) = Cz1−|N|−θ2 , C ∈ C, ỹ3 =
θ2 + θ3

k̃02
√
|N|θ3

dỹ2
dz

− θ2

k̃02
√

|N|θ3
ỹ2 −Cz1−|N|−θ2

and

z
d2ỹ2
dz2

+(θ2 + θ3 − z)
dỹ2
dz

− θ2ỹ2 = Lz1−(|N|+θ2), L :=
Ck̃02
√
|N|θ3(1− |N|+ θ3)

θ2 + θ3
, (A.10)

which is an inhomogeneous confluent hypergeometric equation with parameters a= θ2 and
b= θ2 + θ3.

If θ1 − θ2 < 0, then for the requirement limx→0Ω12(x) = 0 holomorphically to be fulfilled it
is necessary that ω12(0) = 0, which is equivalent to N⩽−2. Proceeding as before, we obtain

Ω0 =


−θ2 + |N| − 1 0 −k̃01

√
|N|θ3

0 −θ2 0

−

√
θ3
|N|

θ2 − |N|+ 1

k̃01
−

√
θ3
|N|

H(θ2,θ3,N,A)

k̃02
−θ3

 ,

where k̃01, k̃
0
2 are as in (A.7) and

H(θ2,θ3,N,A) =
1
2
d|N|

dx|N|

[
x(x− 1)dy/dx+ θ3y(y− x)

y− 1

]∣∣∣∣∣
x=0

− |N|A, A :=
y(|N|)0

2
.

After a diagonalizing gaugeG0, system (4.2) reduces by elimination to an inhomogeneous con-
fluent hypergeometric equationwith parameters a= θ2 − |N|+ 1 and b= θ2 + θ3 − |N|+ 1:

z
d2ỹ2
dz2

+(θ2 + θ3 − |N|+ 1− z)
dỹ2
dz

− (θ2 − |N|+ 1) ỹ2 = Lz−θ2 , L :=
Ck̃01

√
|N|θ3 (|N| − 1− θ3)

θ2 + θ3 − |N|+ 1
.

(A.11)

A.1.2. Solutions (A.3)—Case θ∞ =−θ3 +N+ 1. For this case, the techniques to find the solu-
tions for which condition (4.1) is satisfied are the same as those used in the previous sections,
so we will just report the main results.
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For θ1 − θ2 = 0, the matrix Ω(x) holomorphically has limit Ω0 as x→ 0 with vanishing
Ω12(0) = Ω21(0) = 0 if and only if N=−1, that is θ∞ =−θ3. We have

Ω0 =



−θ2 0
k̃01√
θ3

(
θ3(1+ θ2)

2
+(1− θ3)y

′
0

)
0 −θ2

k̃02√
θ3

(
θ3(1− θ2)

2
+(1− θ3)y

′
0

)
√
θ3

k̃1

0

−
√
θ3

k̃02
−θ3


,

k̃01 = k01e
iπθ2/2,

k̃02 =−ik02eiπ(θ2−θ3)

(A.12)

and system (4.2) is again integrable in terms of confluent hypergeometric functions (A.8)
with parameters a= θ2 and b= θ2 + θ3.

If θ1 − θ2 > 0, condition (4.1) holds if and only if N⩽−2, and the matrix Ω(x) has holo-
morphic limit

Ω0 =



1− |N| − θ2 0 −k̃01

√
θ3
|N|

(θ2 + |N| − 1)

0 −θ2 −k̃02

√
|N|
θ3
H̃(θ2,θ3,N,A)

−
√
|N|θ3
k̃01

0 −θ3


,

where

H̃(θ2,θ3,N,A) =
d|N|

dx|N|

[
x(x− 1) dydx − (1− θ2)y(y− 1)

2(y− x)

]∣∣∣∣∣
x=0

− (θ2 + θ3 + |N| − 1)A, A=
y(|N|)0

2
,

and k̃01, k̃
0
2 are as in (A.12). System (4.2) is again reduced to a confluent hypergeometric

equation with parameters a= θ2 + |N| − 1 and b= θ2 + θ3 + |N| − 1:

z
d2ỹ2
dz2

+(θ2 + θ3 + |N| − 1− z)
dỹ2
dz

− (θ2 + |N| − 1)ỹ2 = 0. (A.13)

If θ1 − θ2 < 0, condition (4.1) holds if and only if N⩽−2 and we have

Ω0 =



−θ2 + |N| − 1 0 −k̃01

√
|N|
θ3
K̃(θ2,θ3,N,A)

0 −θ2 k̃02θ2

√
θ3
|N|

0

√
|N|θ3
k̃02

−θ3


,

where

K̃(θ2,θ3,N,A) =
d|N|

dx|N|

[
x((x− 1)dy/dx+ θ2 − |N|+ 1)

2y

]∣∣∣∣∣
x=0

− (θ3 + |N|)A, A=
y(|N|)0

2
,
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and k̃01, k̃
0
2 as in (A.12). System (4.2) reduces to a confluent hypergeometric equation with

parameters a= θ2 and b= θ2 + θ3:

z̃
d2ỹ2
dz̃2

+(θ2 + θ3 − z̃)
dỹ2
dz̃

− θ2ỹ2 = 0. (A.14)

A.2. Transcendents with Taylor expansion y(x) = y ′
0x+O(x2)

There are three classes of solutions. The generic one is

y(x) = y ′0(θ1,θ2)x+
∞∑
n=2

bn(θ⃗)x
n, θ⃗ = (θ1,θ2,θ3,θ∞), θ1,θ2 6= 0, (A.15)

where

y′0 =
θ1

θ1 − θ2
, θ1 − θ2 6∈ Z; or y′0 =

θ1
θ1 + θ2

, θ1 + θ2 6∈ Z.

Within this class, if θ1 = 0 or θ2 = 0, all the coefficients bn(θ⃗) = 0 and this gives respectively
the ‘singular solutions’

y(x)≡ 0, or y(x)≡ 1.

The other two classes are one-parameter families of solutions. One family is

y(x) = y ′0x+ y ′0(y
′
0 − 1)

θ23 − (θ∞ − 1)2 − 1
2

x2 +
∞∑
n=3

bn(y
′
0,θ3,θ∞)xn, θ1 = θ2 = 0, (A.16)

where y ′0 is a free parameter. The expression (A.16) for y ′0 = 0 or y ′0 = 1 reduces to the singular
solution

y(x)≡ 0 or y(x)≡ 1 respectively.

The other family is

y(x) =
|N|∑
n=1

bn(θ⃗)x
n+

y(|N|+1)
0

(|N|+ 1)!
x|N|+1 +

∞∑
n=|N|+2

bn(y
(|N|+1)
0 , θ⃗)xn, b1 =

θ1
N
, (A.17)

where y(|N|+1)
0 is a free parameter, N ∈ Z \ {0}, the relation

θ1 − θ2 = N or θ1 + θ2 = N,

holds, and either

θ1 ∈

{
{0,−1,−2, . . . ,N}, if N< 0

{0,1,2, . . . ,N}, if N> 0
(A.18)

or (NN is the set (4.3))

{(θ3 + θ∞ − 1),(−θ3 + θ∞ − 1)}∩NN 6= ∅. (A.19)

If y ′0 = θ1 = 0, (A.17) becomes

y(x) = Ax|N|+1 +
∞∑

n=|N|+2

bn(A,θ3,θ∞)xn, A :=
y(|N|+1)
0

(|N|+ 1)!
(A.20)
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Here, A is the free parameter. If y ′0 = 1 (and θ1 = N), it becomes

y(x) = x+Ax|N|+1 +
∞∑

n=|N|+2

bn(A,θ3,θ∞)xn. (A.21)

As seen above, y ′0 6= 0,1 for (A.15) and (A.16) and the functions k1,k2 can be written in a
neighbourhood of x= 0 as

k1(x) = k01(1+O(x))
√
−y′0 +O(x)(x− 1)(1+θ2)/2x(θ1(y

′
0−1)/y′0−θ2)/2,

k2(x) = k02(1+O(x))
√

1− y′0 +O(x)(x− 1)θ2−θ3x(θ2y
′
0/(y

′
0−1)−θ1)/2, k01,k

0
2 ∈ C\{0}.

Hence, the structure of the off-diagonal elements of the matrix Ω(x) is the following:

Ω12(x) = ω12(x)x(2y
′
0−1)(θ1/y

′
0−θ2/(y

′
0−1)), Ω13(x) = ω13(x)x(θ1(y

′
0−1)/y′0−θ2)/2,

Ω21(x) = ω21(x)x−(2y′0−1)(θ1/y
′
0−θ2/(y

′
0−1)), Ω23(x) = ω23(x)x(θ2y

′
0/(y

′
0−1)−θ1)/2,

Ω31(x) = ω31(x)x−(θ1(y
′
0−1)/y′0−θ2)/2, Ω32(x) = ω32(x)x−(θ2y

′
0/(y

′
0−1)−θ1)/2,

where ωij(x) are holomorphic functions at x= 0.

A.2.1. Generic solution (A.15)—Case y ′
0 = θ1/(θ1 − θ2). The matrix Ω(x) is holomorphic at

x= 0 with Ω1(0) = Ω21(0) = 0, and we have

Ω0 =


−θ1 0 k̃01

2 (θ1 − θ2 − θ3 − θ∞)

0 −θ2 − k̃02
2 (θ1 − θ2 + θ3 + θ∞)

− 1
2̃k01

(θ1 − θ2 − θ3 + θ∞) θ1
θ1−θ2

− 1
2̃k02

(θ1 − θ2 + θ3 − θ∞) θ2
θ1−θ2

−θ3

 ,

where

k̃01 = k01

√
θ1

θ1 − θ2
eiπθ2/2 and k̃02 = ik02

√
θ2

θ1 − θ2
eiπ(θ2−θ3).

System (4.2) can be reduced to the generalized hypergeometric equation

z2
d3w
dz3

+ z(b2 + a2z)
d2w
dz2

+(b1 + a1z)
dw
dz

+ a0w= 0, (A.22)

where w= z(θ1+θ2+θ3−θ∞)/2ỹ1 and the parameters are

a0 =
1
4
(θ1 + θ2 + θ3 − θ∞)(θ1 + θ2 − θ3 + θ∞)− θ1θ2, a1 = θ3 − θ∞ − 1, a2 =−1,

b1 =−θ∞
2

(θ1 + θ2 + θ3 − θ∞), b2 =
2+ 3θ∞ − θ1 − θ2 − θ3

2
.

A.2.2. Generic solution (A.15)—Case y ′
0 = θ1/(θ1 + θ2). For the solution (A.15) with y ′0 =

θ1/(θ1 + θ2) the condition (4.1) does not hold. Indeed, Ω(x) is holomorphic if and only if
θ1 = θ2 = 0, which is not admissible.
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A.2.3. Solutions (A.16). In this caseΩ(x) is holomorphic at x= 0 withΩ12(0) = Ω21(0) = 0,
we have

Ω0 =


0 0

k̃01
2
(θ3 + θ∞)

0 0
k̃02
2
(θ3 + θ∞)

1

2k̃01
(θ∞ − θ3)y

′
0

1

2k̃02
(θ∞ − θ3)(1− y ′0) −θ3

 ,

k̃01 = k01
√
y ′0,

k̃02 =−k02
√

1− y ′0e
−iπθ3 ,

(A.23)

and system (4.2) reduces to a confluent hypergeometric equationwith parameters a= (θ∞ −
θ3)/2 and b= θ∞:

z
d2w
dz2

+(θ∞ − z)
dw
dz

− θ∞ − θ3
2

w= 0. (A.24)

A.2.4. Solution (A.17)—Case θ1 − θ2 = N with condition (A.18). Let θ1 = k integer, in the
set (A.18), so that θ2 = k−N. We can divide the problem in three cases.

(i) If k 6= 0,N, so that y ′0 6= 0,1, then the matrix Ω(x) is holomorphic at x= 0, Ω12(0) =
Ω21(0) = 0, and

Ω0 =



−k 0
k̃01
2
(θ3 + θ∞ −N)

0 N− k
k̃02
2
(θ3 + θ∞ +N)

1

2k̃01

k

N
(θ∞ − θ3 +N)

1

2k̃02

N− k

N
(θ∞ − θ3 −N) −θ3


,

k̃01 = k01

√
k
N e

iπθ2/2,

k̃02 =−k02
√

N−k
N eiπ(θ2−θ3).

System (4.2) reduces to the generalized hypergeometric equation

z2
d3w
dz

+ z(a2 + b2z)
d2w
dz2

+(a1 + b1z)
dw
dz

+ a0w= 0 (A.25)

with parameters

a0 =
1
2
(N2 + 2k(−2+ k−N+ θ3 − θ∞)+N(2− θ3 + θ∞)),

a1 =
1
2
(−4−N+ 2k+ 3θ3 − 3θ∞), a2 =−1,

b1 =
1
2
(2+ θ∞)(2+N− 2k− θ3 + θ∞), b2 =

1
2
(8+N− 2k− θ3 + 3θ∞).

(ii) If θ1 ≡ k= 0, that is θ1 = 0 and θ2 =−N, then the transcendent is (A.20) and

k1(x) = k01(1+O(x))x(N+|N|)/2(x− 1)(1−N)/2, k2(x) = k02(1+O(x))(x− 1)−N−θ3 , k01,k
0
2 ∈ C.
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We need to distinguish the cases with negative and positive N. First, let N≤−1, then Ω(x) is
holomorphic at x= 0 and

Ω0 =



0 0 − k̃01
2 (θ3 + θ∞ + |N|)

0 −|N| − k̃02
2
(θ3 + θ∞ − |N|)

0
1

2k̃02
(θ3 − θ∞ − |N|) −θ3


, k̃01 = ik01e

iπ|N|/2 k̃02 = k02e
iπ(|N|−θ3),

(A.26)

after the diagonalizing gauge, system (4.2) is reduced to the confluent hypergeometric
equation with parameters a= (θ∞ − θ3 + |N|)/2 and b= θ∞ (here ỹ1 = wz(θ∞−θ3−|N|)/2)

z
d2w
dz2

+(θ∞ − z)
dw
dz

− θ∞ − θ3 + |N|
2

w= 0. (A.27)

If N⩾ 1, then

Ω0 =



0 0 0

0 |N| − k̃02(θ3 + θ∞ + |N|)
2

A(θ3 − θ∞ − |N|)
2k̃01

θ3 − θ∞ + |N|
2k̃02

−θ3

 ,

k̃01 = ik01e
−iπ|N|/2,

k̃02 = k02e
iπ(|N|+θ3).

(A.28)

System (4.2) reduces to the inhomogeneous confluent hypergeometric equation with para-
meters a= (θ∞ − θ3 + |N|)/2 and b= θ∞:

z
d2w
dz2

+(θ∞ − z)
dw
dz

− θ∞ − θ3 − |N|
2

w+C
(θ3 + θ∞ − |N|)(θ3 − θ∞ + |N|)

2
= 0, (A.29)

with ỹ1 = wz(θ∞−θ3+|N|)/2 and C= ỹ2 is constant.
(iii) If θ1 ≡ k= N( 6= 0), then the transcendent is (A.21), and

k1(x) = k01(1+O(x))
√
x− 1, k2(x) = k02(1+O(x))(x− 1)−θ3x(|N|−N)/2.

We have to distinguish between positive and negative N.
If N⩾ 1, then

Ω0 =


−|N| 0 − k̃01(θ3 + θ∞ − |N|)

2

0 0 − k̃02(θ3 + θ∞ + |N|)
2

θ3 − θ∞ − |N|
2k̃01

0 −θ3


, k̃01 = ik01, k̃02 = k02e

−iπθ3 . (A.30)
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We do gauge transformation Ŷ= PY by the permutation matrix P below

P=

0 1 0
1 0 0
0 0 1

 =⇒ P−1U0P= U0,

P−1Ω0P=


0 0 − k̃02(θ3 + θ∞ + |N|)

2

0 −|N| − k̃01(θ3 + θ∞ − |N|)
2

0
θ3 − θ∞ − |N|

2k̃01
−θ3


.

This transforms system (4.2) withΩ0 in (A.30) into a systemwith the same structure as that for
the previous case k= 0,N⩽−1, with the replacements k̃01 → k̃02 and k̃

0
2 → k̃01 (see (A.26)). We

conclude that also on this case the computation of the fundamental matrix solution is reduced
to the confluent hypergeometric equation (A.27) with parameters a= (θ∞ − θ3 + |N|)/2
and b= θ∞.

If N≤−1, then

Ω0 =


|N| 0 − k̃01

2
(θ3 + θ∞ + |N|)

0 0 0

1

2k̃01
(θ3 − θ∞ + |N|) − A

2k̃02
(θ3 − θ∞ − |N|) −θ3

 ,

where k̃01, k̃
0
2 are as in (A.30). Again, if P is the same permutation matrix as before, the gauge

Ŷ= PY leads to a system with the same form (A.28) of the previous case with k= 0,N⩾ 1,
exchanging names of k̃01 and k̃

0
2. The computation of the fundamental matrix solution is then

reduced to the same inhomogeneous confluent hypergeometric equation (A.29).

A.2.5. Solutions (A.17)—Case θ1 − θ2 = N with condition (A.19). The parameters θ3,θ∞ sat-
isfy condition (A.19): {(θ3 + θ∞ − 1),(−θ3 + θ∞ − 1)}∩NN 6= ∅. We have Ωij(x) = ωij(x),
i, j = 1,2,3,i 6= j, thus the matrix Ω(x) is holomorphic at x= 0, ω12(0) = ω21(0) = 0 and

Ω0 =


−(N+ θ2) 0

k̃01
2
(θ3 + θ∞ −N)

0 −θ2 −
k̃02
2
(θ3 + θ∞ +N)

1

2k̃01

N+ θ2

N
(θ∞ − θ3 +N)

1

2k̃02

θ2

N
(θ∞ − θ3 −N) −θ3

 ,

k̃01 = k01

√
N+θ2
N eiπθ2/2,

k̃02 = ik02

√
θ2
N e

iπ(θ2−θ3).

System (4.2) is integrable in terms of solutions of the generalized hypergeometric equation

z2
d3w
dz

+ z(a2 + b2z)
d2w
dz2

+(a1 + b1z)
dw
dz

+ a0w= 0 (A.31)

(here ỹ3 = wz1−l, l= θ2 +
θ3−θ∞+N

2 ) with parameters
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a0 =
1
2
(N2 + 2θ2(−2+ θ2 + θ3 − θ∞)+N(−2+ 2θ2 + θ3 − θ∞)),

a1 =
1
2
(−4+N+ 2θ2 + 3θ3 − 3θ∞),

a2 =−1, b1 =
1
2
(2+ θ∞)(2−N− 2θ2 − θ3 + θ∞), b2 =

1
2
(8−N− 2θ2 − θ3 + 3θ∞).

A.2.6. Solution (A.17)—Case θ1 + θ2 = N. Let us start assuming condition (A.19) for θ3,θ∞
holds. For this family of solutions, (4.1) does not hold. Indeed, the entries (1,2) and (2,1) of
Ω(x) are

Ω12(x) = ω12(x)x
2(N−2θ2) and Ω21(x) = ω21(x)x

−2(N−2θ2).

If Re(θ2) = N/2, N ∈ Z\{0}, then the conditions ω12(0) = ω21(0) = 0 imply N= 0 and θ2 =
0, a contradiction. If Re(θ2)< N/2, then condition ω21(0) = 0 is equivalent to θ2 = N, an
absurd. If Re(θ2)> N/2, then ω12(0) imply θ2 = 0, which is again a contradiction.

If condition (A.18) hold, by the same arguments, Ω(x) is not holomorphic at x= 0 for k 6=
0,N, while for k= 0 or k=N the problem can be traced back to the previous section.

A.3. A remark on the analytic τ -function of PVI

Some of the branches of PVI-transcendents analytic at x= 0, behaving as

y(x) = y′0x+O(x2),

may possibly be obtained from the τ -function with hypergeometric kernel appearing in section
5.1 of [20], in cases when θ2 = 0 and θ1 is integer. The parameters θ’s in [20] are related to
ours by θ1 = 2θ[20]0 , θ2 = 2θ[20]t , θ3 = 2θ[20]1 , θ∞ = 2θ[20]∞ + 2 (up to θj 7→ −θj, j = 1,2,3, and

θ∞ 7→ 2− θ∞, θ[20]∞ 7→ −1− θ
[20]
∞ ). Also, our α,β,γ,δ are equal to twice the same symbol of

[20]. Keeping this into account, the τ -function of section 5.1 of [20] requires

θ2 = 0, (θ1,θ3,θ∞) = (ν+ ν′ + η+ η′, ν− ν′, η− η′ + 2), ν,ν′,η,η′ ∈ C,

(the +2 in η− η ′ + 2 in unessential, since θ∞ appear in expressions like cosπθ∞).
If θ1 = ν+ ν ′ + η+ η ′ ∈ N, we expect the τ -function (5.6) of [20] to be analytic at x= 0 (x is
denoted by t in [20]), and consequently formulae (2.22) and (2.27) of [20] give

y(x) =
(θ∞ − 2)2 + θ21 − θ23 −κG

(θ∞ − 2)2 + θ21 − θ23
x + O(x2).

Here κG is the integration constant of [20]. For example, if

θ1 = ν+ ν′ + η+ η′ = 0,

we should receive our class of Taylor series (T3). For it, both in our paper and in [20], the
monodromy data are

p1 = p2 = p12 = 2, p13 + p23 = 2
(
cosπθ3 + cosπθ∞

)
,

while

p23 =

{
2
[
(1− y′0)cosπθ∞ + y′0 cosπθ3

]
, from our computation in section 5.1;

2cosπ(ν+ ν′), from [20].
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Our free parameter is y ′0, while in [20] it can be taken to be κG or any of the ν,ν ′,η,η ′, for
example ν+ ν ′. Identifying the two expressions of p23, we receive

y′0 =
cosπθ∞ − cosπ(ν+ ν′)

cosπθ∞ − cosπθ3
.

PVI τ -functions analytic at a critical point may be further investigated, possibly providing an
alternative classification of the analytic branches of transcendents.

Appendix B

B.1. Proof of proposition 3.1

In (2.4), consider the gauge and change of variable

Y= (u3 − u1)
Θezu1 Ŷ, z=

ẑ
u3 − u1

, (B.1)

Here (u3 − u1)Θezu1 is analytic if u3 − u1 6= 0 and u varies in a sufficiently small polydisc
such that u3 − u1 does not make a loop around zero (this occurs in both cases of D(u0) and
D(uc)). By the chain rule, (2.4) and its isomonodromy conditions ∂ukY= (zEk+Vk)Y, k=
1,2,3, become

dŶ
d̂z

=

(
U(x)+

Ω(x)
ẑ

)
Ŷ, (B.2)

∂Ŷ
∂x

=
(
ẑE2 +Ω̂2(x)

)
Ŷ, (B.3)

so that (B.2) is strongly isomonodromic. Note that (B.2) is (3.10). The Stokes rays in the z-
plane and ẑ-plane are

<(z(u3 − u1)) = <ẑ= 0, <(z(u2 − u1)) = <(x̂z) = 0, <(z(u3 − u2)) = <((1− x)̂z) = 0.

The admissible directions in the z-plane and ẑ-plane respectively are argz= τ∗ and arg ẑ=
τ̂∗ := τ∗ + arg(u3 − u1) (with τ∗ = τ (0) or τ ), and the sectors are in correspondence by

Sν : τ∗ +(ν− 2)π− ε < arg z< τ∗ +(ν− 1)π− ε,

Ŝν : τ̂∗ +(ν− 2)π− ε < arg ẑ< τ̂∗ +(ν− 1)π− ε,

ν ∈ Z. If u varies in D= D(u0) as small as assumed, then x varies in a ball around a x0 6= 0,
so small that Stokes rays do not cross the admissible directions arg ẑ= τ̂ (0) mod π. If u varies
in a polydisc D= D(uc), where either uc1 = uc2 or u

c
2 = uc3, with vanishing condition (2.3), the

Stokes rays corresponding to the coalescence play no role, and the results of [9] can be applied
to both (2.4) and (B.2).

We show that the transformation (B.1) preserves the Levelt form at z= 0 and the formal and
canonical solutions at z=∞. This will imply that the monodromy data for the system (2.4) rel-
ative to the admissible direction τ (0) or τ are the same data for (B.2) relative to the direction τ̂ (0)

or τ̂ . Since u3 − u1 6= 0 and the Stokes rays <(u3 − u1)z do not cross the admissible directions
in the z-plane, we can equally use τ̂ (0) := τ (0) + arg(u(0)3 − u(0)1 ), or τ̂ := τ + arg(uc3 − uc1) for
the computation of monodromy data.
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The Levelt forms are preserved. Consider a Levelt forms at ẑ= 0 for (B.2)

Ŷ(0)(̂z,x) = G̃(x)(I+
∞∑
ℓ=1

ϕ̂ℓ(x)̂z
ℓ)̂zµ̂.

From the standard formal computation [55] of the coefficients, we receive

(ϕ̂ℓ(x))ij =
(U(x)ϕ̂ℓ−1(x))ij
µj−µi+ ℓ

, ℓ⩾ 1, U(x) := G̃(x)−1U(x)G̃(x), ϕ̂0 = I.

We can always represent a Levelt forms at z= 0 for (2.4) as

Y(0)(z,u) = ezu1G(u)(I+
∞∑
ℓ=1

ϕℓ(u)z
ℓ)zµ̂.

The standard formal computation of the ϕℓ yields

ϕℓ(u) = (u3 − u1)
ℓ · (u3 − u1)

−µ̂ϕ̂ℓ(x)(u3 − u1)
µ̂.

For G and G̃ related by (2.9), it is easy to check that

Y(0)(z,u) = (u3 − u1)
Θezu1 Ŷ(0)(̂z,x).

Canonical solutions at infinity are preserved. Let Yν(z,u), ν = 1,2,3, be canonical solu-
tions at z=∞ for (2.4) and Ŷν (̂z,x) at ẑ=∞ for (B.2), having asymptotic behaviours respect-
ively given by the unique formal solutions

YF(z,u) =
(
I+

∞∑
ℓ=1

Fℓ(u)z
−ℓ
)
z−ΘezU(u), ŶF(̂z,x) =

(
I+

∞∑
ℓ=1

F̂ℓ(x)̂z
−ℓ
)
ẑ−ΘêzU(x),

with U(u) = diag(u1,u2,u3) and U(x) = diag(0,x,1), respectively in the sectors Sν or Ŝν , in
the cases of D(u(0)) or D(uc). By the formal computation of the coefficients we see that

Fℓ(u) = (u3 − u1)
−ℓ (u3 − u1)

ΘF̂ℓ(x)(u3 − u1)
−Θ.

This implies

YF(z,u) = (u3 − u1)
Θezu1 ŶF(̂z,x),

and, by uniqueness of the Yν and Ŷν ,

Yν(z,u) = (u3 − u1)
Θezu1 Ŷν (̂z,x).

B.2. Confluent hypergeometric functions

The confluent hypergeometric equation is

zw′′ +(b− z)w′ + aw= 0, a,b ∈ C.

Two linearly independent solutions are

M(z;a,b) :=
∞∑
s=0

(a)s
s!Γ(b+ s)

zs,

where (a)s denotes the Pochhammer symbol, and the function U(z;a,b), which is uniquely
determined by the asymptotic condition

U(z;a,b)∼ z−a, z→∞, −3
2
π < arg(z)<

3
2
π. (B.4)

4164



Nonlinearity 36 (2023) 4110 G Degano and D Guzzetti

The function M(z;a,b) is an entire functions of z,a,b, while U(z;a,b) has a branch point at
z= 0, all its branches being entire in a,b. The analytic continuation of U(z;a,b) is given by
the cyclic relation

U(ze2π i n) =
2π ie−π i bn sin(πbn)
Γ(1+ a− b)sin(πb)

M(z;a,b)+ e−2π i bnU(z;a,b), −π < arg(z)< π, n ∈ Z.

(B.5)

The function M(z;a,b) admits an asymptotic expansion as z→∞, −π/2< ϵarg(z)< 3π/2
given by

M(z;a,b)∼ ezza−b

Γ(a)

∞∑
s=0

(1− a)s(b− a)s
s!

z−s+
eϵπ i az−a

Γ(b− a)

∞∑
s=0

(a)s(a− b+ 1)s
s!

(−z)−s, (B.6)

where ϵ=−1,1 and a,b− a are not zero or a negative integer.

Lemma B.1. If b= 2a, we can write the general solution of the hypergeometric equation
in terms of the Hankel functions H(1)

ν (z),H(2)
ν (z), with ν = (b− 1)/2, through the following

relations:

U

(
−2iz;ν+

1
2
,2ν+ 1

)
=
i
√
π

2
eiπν(2z)−νe−izH(1)

ν (z),

U

(
2iz;ν+

1
2
,2ν+ 1

)
=− i

√
π

2
e−iπν(2z)−νeizH(2)

ν (z).

The Hankel functions have the asymptotics

H(1)
ν (z)∼

√
2
π z

ei(z−νπ/2−π/4), z→∞, −π < arg(z)< 2π ,

H(2)
ν (z)∼

√
2
π z

e−i(z−νπ/2−π/4), z→∞, − 2π < arg(z)< π.

B.3. (2,2)—Generalized hypergeometric functions

The generalized hypergeometric equation of kind (2,2) is

z2w′′′ + z(b2 + a2z)w
′′ +(b1 + a1z)w+ a0w= 0.

If b1,b2 are not negative integers and b1 − b2 is not an integer, then a fundamental set of solu-
tions is

w0(z;a,b) = 2F2

(
a1, a2
b1, b2

∣∣∣∣z) , w1(z;a,b) = z1−b1
2F2

(
1+ a1 − b1, 1+ a2 − b1

2− b1, 1+ b2 − b1

∣∣∣∣z) ,
w2(z;a,b) = z1−b2

2F2

(
1+ a1 − b2, 1+ a2 − b2

1+ b1 − b2, 2− b2

∣∣∣∣z) ,
where

2F2

(
a1, a2
b1, b2

∣∣∣∣z)=
∞∑
k=0

(a1)k(a2)k
Γ(b1 + k)Γ(b2 + k)

zk

k!
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is an entire function of z and of the parameters a1,a2,b1,b2. The following asymptotics hold:

2F2

(
a1, a2
b1, b2

∣∣∣∣z) ∼ 1
Γ(a1)Γ(a2)

[
K2,2(z)+ L2,2(ze

iϵπ)
]
, z→∞,

− (2+ ϵ)
π

2
< arg(z)< (2− ϵ)

π

2
,

where ϵ=−1,1,

K2,2(z) = ezzγ
∞∑
k=0

dkz
−k, d0 = 1, γ =

∑
h=1,2

(ah− bh)

(the recursive formulas for dk, k⩾ 1 can be found in [47], formula (6) of section 5.11.3) and

L2,2(z) =
∑
m=1,2

z−am
∞∑
k=0

cm,k
(−1)kz−k

k!
, cm,k = Γ(am+ k)

Γ(al− am− k)∏
n=1,2Γ(bn− am− k)

, l 6= m.
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