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Abstract

Neutrino physics is one of the most intriguing and vividly discussed topics in high-energy physics. 
Phenomena of neutrino oscillation give rise to a large number of experiments to actually observe these 
oscillations among different flavors of neutrinos. Though neutrino oscillation is confirmed from the ex-
perimental scenario, however, in most situations, the effect of the expansion of the Universe in neutrino 
oscillation has not been considered. Expansion of the present Universe is such a generic feature that it can 
not be avoided in the neutrino oscillation problem which is the main theme of this article. It also provides 
some new insights of early-universe neutrinos. Further, the neutrino oscillation can also be used as a tool to 
probe the existence of torsion in the cosmology. In this article, we report the effect of the expansion of the 
Universe and the torsion in the neutrino oscillation phenomena.
© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Neutrinos which today play an important role in different branches of physics namely sub-
atomic physics, astroparticle physics, and cosmology, were introduced almost 90 years ago by 
Pauli, denoted by ν. The immediate question was whether these particles are massive or not. In 
[1], Pontecorvo suggested one possible way to observe this which is, that if neutrino flavors are 
a superposition of massive eigenstates (eigenstates of non-diagonal mass-matrix in the action 
of theory), then they could oscillate among themselves. There are in fact several experiments 
looking for neutrino oscillations at that time: solar neutrino experiment, atmospheric neutrino 
measurements, reactor experiments, and accelerator experiments. Several experiments indeed 
claimed that their observation indeed shows evidence of neutrino oscillation however, the fi-
nal breakthrough came in 1998 when the Super-Kamiokande collaboration [2] reported having 
strong evidence of such oscillations between νμ ↔ ντ flavors.

In the standard quantum mechanical (QM) treatment of neutrino oscillations, neutrino mass-
eigenstates are considered to be relativistic and to have the same momentum which implies that 
their energies differ by their masses. But QM models also suffer several difficulties in describing 
the neutrino oscillation process compared to quantum field theory (QFT) (see [3–6]). Pontecor-
vo’s pioneering work is the theoretical basis of neutrino mixing, has been studied in great detail 
but there are still several open questions regarding the neutrino-mixing phenomena and their 
masses. Within the Standard Model (SM) framework, neutrinos are treated as three (νe, νμ, ντ )

massless left-handed fermions and the leptonic number is strictly conserved. The phenomenon 
of neutrino mixing, and the existence of non-zero neutrino masses, have captured much attention 
because it opens interesting perspectives on the physics beyond SM [7–11]. Actually, in presence 
of mixing, the masses of the flavor neutrinos (νe, νμ, ντ ) are not well-defined. In fact, neutrino 
fields entering in charge weak currents, have definite flavor but not a definite mass. The fields 
(ν1, ν2, ν3) with definite masses, which propagate as free fields, do not have a definite flavor, 
however, the latter can be obtained as a mixture of flavor fields and vice versa, depending on 
which fields one considers as fundamental. It is exactly this feature that leads to the observation 
2
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of neutrino oscillations according to Pontecorvo. Nonetheless, neutrino absolute mass values are 
yet to be found.

Observation of the Hubble telescope confirms that the present Universe is expanding with 
non-zero acceleration [12,13]. Hence, in the neutrino oscillation over long time-interval, it must 
have some impact on the nature of oscillation which can not be avoided especially for early 
Universe neutrinos. These neutrinos went through several phases of expansion of the Universe 
namely cosmological constant dominated (de-Sitter Universe), radiation-dominated Universe, 
and matter-dominated Universe. Hence, studying neutrino oscillation in the spatially homo-
geneous and isotropic universe we would expect some non-trivial features coming from the 
scale-factor of Friedmann-Robertson-Walker (FRW) background geometry, discussed in this ar-
ticle.

Torsion is on the other hand a feature that is neglected in General Relativity (GR). However, 
the presence of torsion leads to a dramatic effect in dynamics in curved spacetime especially in 
the context of cosmology [14–24]. In [18], it is shown that the torsion could generate repulsive 
gravitational force in the early Universe which prevents the formation of singularity. However, so 
far no evidence or signature of torsion has been found from experimental observations [25–30]. 
On the other hand, the neutrino oscillation phenomenon could detect the presence of torsion in 
the current expanding Universe since the presence of torsion changes the equations determining 
the evolution of scale factor and scale factor would directly affect the nature of these oscillations. 
Hence, neutrino oscillation can be useful in probing the torsion in the Universe.

Our aim is to show only the effect of the expansion of the Universe in the neutrino oscillation. 
The matter and the radiation in the Universe essentially affect the scale factor, follows from the 
Einstein equation, more specifically the Friedmann and Raychaudhuri equations. The core idea 
of this work is that the stress-energy tensor corresponding to the Standard model particles pro-
duces the curved spacetime, follows from the Einstein equation. On this background spacetime 
geometry, neutrinos are propagating. Hence, the effect of the matter and radiation in the Universe 
is essentially taken into account through the FRW metric, more specifically through the scale fac-
tor of the Universe. The mathematical derivation provided here is mathematically consistent and 
rigorous than the ones valid locally [31]. This result is discussed in section 4.3 and section 4.4. 
Further, we also discuss the effect of torsion in the FRW Cosmology in the neutrino oscillation 
which is the other aim of this article. A review of the torsion in general relativity and cosmol-
ogy are provided in the Appendix A. This result is discussed in the section 5 and section A.5. 
Considering the above possible effects of the expansion of the Universe and the Cosmological 
torsion in the neutrino oscillation, both the scale factor of the Universe and the torsion can be 
probed from the neutrino oscillation. The structure of this article is as follows. First, we briefly 
discuss the mathematical method to show the existence of neutrino oscillation phenomena in flat-
spacetime from the Dirac field theory. Next, we briefly discuss the formulation of the Dirac-field 
theory in curved spacetime, followed by a detailed computation of the probability amplitude of 
neutrino oscillations in FRW geometry. Next, we discuss the effect of torsion consistent with the 
properties of FRW cosmology and how to probe it in terms of neutrino oscillations.

2. Neutrino oscillation in the Minkowski spacetime

This section is a review of the neutrino oscillation in the Minkowski spacetime which is mostly 
considered in high-energy phenomenologies [32–34]. This provides the preliminary of the neu-
trino oscillation, important for the later purposes. Dirac field theory is defined by introducing the 
following action
3
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S =
∫

ψ̄(x)(i /∂ − m)ψ(x), /∂ = γ α∂α, (2.1)

which yields the following equation of motion

(i /∂ − m)ψ = 0, (2.2)

where γ αs are Dirac-gamma matrices, satisfying Clifford algebra {γ μ, γ ν} = 2ημνI with ημν =
diag(1, −1, −1, −1).

If neutrinos are not massless and their mass matrix will be non-diagonal (in general complex) 
then flavor eigenstates, denoted by |να〉, can be represented as linear superposition of the mass 
eigenstates, denoted by |νi〉:

|να〉 =
∑

i

Uαi |νi〉 , (2.3)

where U is a unitary matrix through which we can transform mass matrix into a diagonal form. 
U can be parametrized like Kobyashi-Maskawa matrix [35,36] using quark-mixing angles

U =
⎡
⎣ c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 − s2c3e

iδ

−s1s2 c1s2s3 − c2s3e
iδ c1s2s3 − c2c3e

iδ

⎤
⎦ , (2.4)

where ci = cos θi and si = sin θi .
If at initial time t = 0, a beam of pure να state is produced, the initial state is a superposition 

of the mass eigenstates

|να(0)〉 =
∑

i

Uαi |νi〉 . (2.5)

The time evolution of a mass eigenstate |νi〉 is determined by the Dirac equation for a propagating 
neutrino with definite mass mi . From Dirac equation, we obtain

ih̄
∂

∂t
ψiL(t, �x) = −

√
�p2c2 + m2c4 �σ . �̂p

| �p| ψiL(t, �x), (2.6)

where ψiL(t, �x) = 〈�x|νi〉t (phenomenological neutrinos are considered to be left-handed) and �σ
are three Pauli matrices. The Dirac equation in ultra-relativistic limit ( mc2

pc
� 1) becomes

ih̄
∂

∂t
ψiL(t, �x) = −

[
| �p|c + mic

3

2| �p|
] �σ . �̂p

| �p| ψiL(t, �x). (2.7)

Considering the second term in the square-bracket to be perturbation we can write the solution 
of the following form

ψiL(t, �x) = ei�(t)ψ
(0)
iL (t, �x), (2.8)

where

ih̄
∂

∂t
ψ

(0)
iL (t, �x) = −c�σ . �̂pψ

(0)
iL (t, �x). (2.9)

According to our assumption,

�σ . �̂p
ψ

(0)
iL (t, �x) = −ψ

(0)
iL (t, �x), (2.10)
| �p|

4
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and

�̂pψ
(0)
iL (t, �x) = �pψ

(0)
iL (t, �x). (2.11)

Under above assumption, we can write the phase factor as

�(t) = − 1

h̄

t∫
0

mic
3

2| �p| dt ′ = − mic
3

2h̄| �p| t. (2.12)

Hence,

〈�x|νi〉t = ψiL(t, �x) = e
−i

mi c
3

2h̄| �p| tψ(0)
iL (t, �x), (2.13)

which is equivalent to

|νi〉t = e
−i

mi c
3

2h̄| �p| t e−i
pc
h̄

t |νi〉 . (2.14)

As a consequence of (2.3), we obtain

|να(t)〉 =
∑

i

Uαie
−i

m2
i
c3

2ph̄
t
e
−i

pc
h̄

t |νi〉 . (2.15)

Therefore, the probability amplitude of observing an initially created flavor eigenstate |να〉 as the 
flavor eigenstate |νβ〉 at some later time t becomes

〈νβ |να(t)〉 =
∑

i

UαiU
∗
βie

−i
m2

i
c3

2ph̄
t
e
−i

pc
h̄

t
. (2.16)

Hence, the probability for a transition να → νβ under time evolution is

Pνα→νβ (t) = | 〈νβ |να(t)〉 |2 =
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i
(m2

i
−m2

j
)c3

2ph̄
t
. (2.17)

This is the quantity we are interested in finding for large time scale t .
Hence, all we need to know is the solution of the Dirac equation in the FRW spacetime and 

look its temporal behavior in order to find the effect of the expansion of the Universe in the 
neutrino oscillation phenomena.

3. Dirac field theory in curved spacetime

3.1. Introduction

This section is a brief review of the Dirac field theory in curved spacetime [37–40], prelim-
inary for showing our main results in section 4.3, section 4.4 and section 5. The action for the 
Dirac-field theory introduced in curved spacetime is given by

S =
∫ √−g(x)d4x

[ i

2

(
ψ̄(x)eμ

a(x)γ aDμψ(x) −Dμψ(x)eμ
a(x)γ aψ(x)

)−mψ̄(x)ψ(x)
]
,

(3.1)
5
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where tetrads eμ
a satisfy the following relation

gμνe
μ
ae

ν
b = ηab, gμν = e a

μ e b
ν ηab, (3.2)

where ηab = diag(1, −1, −1, −1). Further, Dμ defines covariant derivative for spinors in curved 
spacetime with spin-connection �μ, defined as follows

Dμ = ∂μ + �μ

�μ = 1

8
ωμbcσ

bc, σ bc = [γ b, γ c]
ωμab = ηace

c
ν eσ

b�
ν
σμ + ηace

c
ν ∂μeν

b

{γ a, γ b} = 2ηab,

(3.3)

where �ρ
μν is the metric-affine connection defined in GR.

From the action itself one can derive Dirac equation in curved spacetime which is

[ieμ
aγ

a(∂μ + �μ) − m]� = 0. (3.4)

3.2. Reduced Dirac equation

Note that

ieμ
cγ

c�μ = iγ c�c = i

8
ωcab(γ

cγ aγ b − γ cγ bγ a), (3.5)

where we have used the fact

ωcab ≡ eμ
cωμab. (3.6)

Utilizing the following identity

γ cγ aγ b = ηcaγ b + ηabγ c − ηcbγ a − iεcabdγdγ 5, (3.7)

we can write

γ c[γ a, γ b] = 2ηcaγ b − 2ηcbγ a − 2iεcabdγdγ 5. (3.8)

Using above relation, we can write the Dirac equation (3.4) more explicitly in the following way

ieμ
aγ

a∂μ� + 1

4
iωcab(η

caγ b − ηcbγ a)� − 1

4
εabcdωcabγdγ 5� − m� = 0. (3.9)

4. Dirac equation in the FRW geometry

4.1. Reduced Dirac equation in the FRW geometry

In order to know the nature of the neutrino oscillation, the Dirac equation is required to be 
solved to know the time-evolution of different propagating modes. In this section, we provide a 
mathematical technique to solve the Dirac equation in FRW spacetime from a system of decou-
pled ordinary differential equations.

In order to further simplify the Dirac equation defined earlier in (3.9), we now assume here 
a factorizability ansatz which will work when analyzing the Dirac equation in curved space-
times that are sufficiently symmetric. Here, we consider FRW geometry, in which line-element 
or metric is defined as follows
6
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ds2 = dt2 − a2(t)

(
dr2

1 − kr2 + r2d�2
)

, (4.1)

where a(t) is the scale-factor of the Universe and k is the spatial curvature of the Universe. 
This spacetime exhibits azimuthal symmetry and with metric elements specifically depends only 
on r, θ, t . This satisfies the necessary properties of the expanding Universe which is spatially 
homogeneous and isotropic. Further, the above metric is diagonal which also implies vierbein or 
tetrad is diagonal as well. Hence, the vierbeins inherit the same symmetries as the metric. Here, 
we choose the following ansatz

�(x) = f (x0, x1, x2)ψ(x), (4.2)

where x0 = t, x1 = r, x2 = θ , such that ψ satisfies following reduced Dirac equation

ieμ
aγ

a∂μψ − 1

4
εabcdωcabγdγ 5ψ − mψ = 0. (4.3)

In fact, it can be shown that for the FRW case the term involving the Levi-Civita symbol vanishes 
identically (shown later). Consequently, if there exists such an f that holds factorizability and 
the above equation, then we can get rid of the connection altogether.

The factorizability ansatz (4.2) with (4.3) leads to following equation

ieμ
aγ

a∂μf + i

4
ωcab(η

caγ b − ηcbγ a)f = 0. (4.4)

The above set of partial differential equations (PDE) can be further simplified by multiplying γ e

from left and taking the trace, leading to

4ηaeeμ
a∂μf + ωcab(η

caηeb − ηcbηea)f = 0

∂μ log(f ) + 1

2
e c
μ ηbcω

ab
a = 0.

(4.5)

From (3.3), we can write

e c
μ ηbcω

ab
a = �ν

μν + e a
μ ∂νe

ν
a. (4.6)

Using the fact that �ν
μν = ∂μ log

√
e where e(x) is the determinant of the vierbein. This leads to 

following formula

∂μ log(f ) = −∂μ log
√

e − 1

2
e a
μ ∂νe

ν
a. (4.7)

Defining f ≡ he− 1
2 gives

∂μ log(h) = −1

2
e a
μ ∂νe

ν
a, (4.8)

which will determine the existence of the factorizability condition. In the case of diagonal tetrads 
we will have following PDEs

∂t log(h) = −1

2
e t
t ∂t e

t
t , ∂r log(h) = −1

2
e r
r ∂re

r
r ,

∂θ log(h) = −1

2
e θ
θ ∂θ e

θ
θ , ∂ϕ log(h) = 0.

(4.9)

Here, we kept in mind f in independent of ϕ as a consequence of azimuthal symmetry of vier-
beins.
7
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This is the point up to which we can proceed without having detailed metric but knowing its 
structure (diagonal) and symmetry properties. Therefore, the existence of f highly depends on 
the exact expressions of metric elements.

4.2. Dirac equation in FRW spacetime

Recall for FRW spacetime, metric is of the following form

gμν =

⎡
⎢⎢⎢⎣

1 0 0 0

0 − a2(t)

(1−kr2)
0 0

0 0 −a2(t)r2 0
0 0 0 −a2(t)r2 sin2 θ

⎤
⎥⎥⎥⎦ . (4.10)

Hence, the vierbeins and their inverse are respectively as follows

eμ
a =

⎡
⎢⎢⎢⎣

1 0 0 0

0
√

1−kr2

a(t)
0 0

0 0 1
a(t)r

0

0 0 0 1
a(t)r sin θ

⎤
⎥⎥⎥⎦ , e a

μ =

⎡
⎢⎢⎢⎣

1 0 0 0
0 a(t)√

1−kr2
0 0

0 0 a(t)r 0
0 0 0 a(t)r sin θ

⎤
⎥⎥⎥⎦ .

(4.11)

Imposing the factorization condition (4.9) we obtain

∂t log(h) = ∂θ log(h) = 0 = ∂ϕ log(h)

∂r log(h) = 1

2

kr

1 − kr2 =⇒ h = (1 − kr2)−
1
4 ,

(4.12)

leading to

f = he− 1
2 = 1

a
3
2 (t)r sin

1
2 θ

. (4.13)

Therefore, factorizability of Dirac spinor gives

�(x) = 1

a
3
2 (t)r sin

1
2 θ

ψ(x), (4.14)

where ψ(x) satisfies the reduced Dirac equation, mentioned earlier.
For FRW geometry it can be easily shown through some computations that

ω101 = ȧ

a
, ω202 = ȧ

a
, ω212 = 1

ar

√
1 − kr2

ω303 = ȧ

a
, ω313 = 1

ar

√
1 − kr2, ω323 = cot θ

ar
,

(4.15)

which leads to following conclusion

1

4
εabcdωcabγdγ 5 = 0. (4.16)

Collecting above results, we can conclude that ψ(x) effectively satisfies

ieμ
aγ

a∂μψ − mψ = 0, (4.17)

where connection term is completely absent which makes the computation simpler. From now 
one consider k = 0 case for the FRW geometry, consistent with current observations [41–44].
8
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4.3. Solution of reduced Dirac equation in the FRW geometry

Let us start by writing down the equation (4.17) explicitly

ia
∂

∂t
ψ = −iγ t

[
γ r ∂

∂r
+ γ θ ∂

∂θ
+ γ ϕ ∂

∂ϕ

]
ψ + amγ tψ. (4.18)

We have some freedom in choosing γ μ = e
μ
aγ

a , since, vierbeins eμ
a depends on the choice of 

coordinate. Since, FRW metric was written in spherical coordinates, which makes the obvious 
choice of vierbeins to be diagonal, we choose to work with diagonal tetrad gauge in which

γ t
d = γ 0, γ r

d = γ 1

γ θ
d = 1

r
γ 2, γ

ϕ
d = 1

r sin θ
γ 3,

(4.19)

where {γ a}s are usual flat-spacetime gamma matrices. On the other hand, in the Cartesian tetrad 
gauge

γ t
c = γ 0, γ r

c = (γ 1 cosϕ + γ 2 sinϕ) sin θ + γ 3 cos θ

γ θ
c = 1

r

[
(γ 1 cosϕ + γ 2 sinϕ) cos θ − γ 3 sin θ

]
γ ϕ
c = 1

r sin θ
(−γ 1 sinϕ + γ 2 cosϕ),

(4.20)

in which vierbein axes point along t, x, y, z. Both of these tetrad choices are related by a simi-
larity transformation

S = e− ϕ
2 γ 1γ 2

e− θ
2 γ 3γ 1S, (4.21)

where

S = 1

2
(γ 1γ 2 − γ 1γ 3 + γ 2γ 3 + I). (4.22)

This implies that

Sγ 1S−1 = γ 3, Sγ 2S−1 = γ 1, Sγ 3S−1 = γ 2. (4.23)

The above two different choices are hence related by

γ μ
c = Sγ

μ
d S−1, (4.24)

and ψc = Sψd . The real and measurable quantities are same in both choices and hence, they are 
equivalent.

Therefore, according to the above discussion we just consider to solve reduced Dirac equation 
in diagonal tetrad gauge in which Dirac equation becomes

ia
∂

∂t
ψ = T ψ, (4.25)

where

T = −iγ 0γ 1 ∂ + γ 1

K − iaγ 0m, (4.26)

∂r r

9
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and

K = iγ 1γ 0γ 2 ∂

∂θ
+ i

sin θ
γ 1γ 0γ 3 ∂

∂ϕ
. (4.27)

Through simple algebra one can easily find that [T , K] = 0. For our detailed computation, we 
choose the following representation

γ 0 = i

[−I 0
0 I

]
, γ i =

[
0 σ i

σ i 0

]
, (4.28)

where σ is are the usual Pauli matrices. Hence, we are interested in the solution of the following 
form

� = 1

a
3
2 r sin

1
2 θ

Sψ. (4.29)

Using the above representation of gamma matrices, the matrix S can be expressed in the block-
diagonal form

S =
[
Z 0
0 Z

]
, Z =

[
e−i

ϕ
2 0

0 ei
ϕ
2

][
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
S. (4.30)

Using this choice, we can write a similar equation just like (4.25) in which ψ̃ = Sψ and

T̃ = −iγ 0γ 3 ∂

∂r
+ γ 3

r
K̃ − iaγ 2m

K̃ = iγ 3γ 0γ 1 ∂

∂θ
+ i

sin θ
γ 3γ 0γ 2 ∂

∂ϕ
,

(4.31)

and again [T̃ , K̃] = 0.
We can write the general solution in following form

ψ̃j = R(r)�(θ)e
imj ϕ−i

∫ t
t0

ω(t ′)dt ′
. (4.32)

For the solution � to be single valued we demand

�(ϕ + 2π) = �(ϕ), (4.33)

and according to the expression (4.30),

S(ϕ + 2π) = −S(ϕ), (4.34)

which means we require the solution ψ̃j to be such that it satisfies

ψ̃j (ϕ + 2π) = −ψ̃j (ϕ). (4.35)

The above demands the values of mj = ± 1
2 , ± 3

2 , ± 5
2 , . . . . Hence, in the representation (4.28) the 

angular part of the reduced Dirac equation becomes

K̃ψ̃j = i

[
σ 2 0
0 −σ 2

]
∂

ψ̃j − mj
[−σ 1 0

0 σ 1

]
ψ̃j . (4.36)
∂θ sin θ

10



S. Mandal Nuclear Physics B 965 (2021) 115338
We want the eigen-solutions of the above equation of the form K̃ψ̃j = κψ̃j . To find that we 
demand angular part of the spinor would be of the following form

[
�(θ)

σ 3�(θ)

]
=

⎡
⎢⎢⎣

�1
�2
�1

−�2

⎤
⎥⎥⎦ , (4.37)

so that we have two free components to be determined. This shows the eigenvalue equation 
reduces to

d

dθ

[
�1
�2

]
=

[ mj

sin θ
−κ

κ
mj

sin θ

][
�1
�2

]
. (4.38)

This is the set of reduced angular Dirac equation in FRW spacetime.
Now let us look at the radial part of the reduced Dirac equation. Utilizing the above equation 

and the ansatz (4.32) we can write

aω(t)ψ̃j,κ = −iγ 0γ 3 ∂

∂r
ψ̃j,κ + γ 3

r
κψ̃j,κ − iaγ 0mψ̃j,κ , (4.39)

which yields

aω(t)ψ̃j,κ =
[

0 −σ 3

σ 3 0

]
∂

∂r
ψ̃j,κ + κ

r

[
0 σ 3

σ 3 0

]
ψ̃j,κ + am

[−I 0
0 I

]
ψ̃j,κ . (4.40)

Writing the ansatz (according to [45]) explicitly in the following form

ψ̃j,κ =
[

Pκ(r)�j (θ)

σ 3Qκ(r)�j (θ)

]
e
imj ϕ−i

∫ t
t0

ω(t ′)dt ′
, (4.41)

we obtain the following set of radial equations

d

dr

[
Pκ

Qκ

]
=

[ − κ
r

a(ω + m)

−a(ω − m) κ
r

][
Pκ

Qκ

]
, (4.42)

which can be rewritten as

Pκ = − 1

a(ω − m)

(
d

dr
− κ

r

)
Qκ, Qκ = − 1

a(ω + m)

(
d

dr
+ κ

r

)
Pκ. (4.43)

Inserting Qκ in first equation leads to

[ d2

dr2 − κ(κ + 1)

r2 + ε2
]
Pκ = 0, (4.44)

where ε = a(t)
√

ω2(t) − m2 =⇒ ω(t) =
√

ε2

a2(t)
+ m2.

There are two linearly independent solution of the above equation which are

P
(κ)
1 (r) = eiεr

∞∑
l=0

Cl

r l
, Cl+1 = l(l + 1) − κ(κ + 1)

2iε(l + 1)
Cl , C0 = 1

P
(κ)
2 (r) = eiεr

∞∑
Dlr

l , Dl+1 = − l(l − 1) − κ(κ + 1)

2iε(l − 1)
Dl , D0 = 1.

(4.45)
l=0

11
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To have a regular solution at the origin and converging solution at infinity, we choose the general 
solution of the reduced radial Dirac equation to be

Pκ(r) = P
(κ)
1 (r>) + P

(κ)
2 (r<), (4.46)

where r< = min(r, R), r> = max(r, R) where r = R is the surface on which boundary condition 
is imposed.

For Qκ(r) we just need to reverse the sign of κ in the above solution, leading to following 
general solution

Qκ(r) = P
(−κ)
1 (r>) + P

(−κ)
2 (r<). (4.47)

In order to convergent series solution, the series defined in equation (4.45) must be truncated for 
each value of κ which shows that κ ∈ Z (integers).

Now we move back to angular part of reduced radial Dirac equation which are

�1 = − 1

κ

(
d

dθ
+ mj

sin θ

)
�2, �2 = 1

κ

(
d

dθ
− mj

sin θ

)
�1. (4.48)

In the small θ limit we can write the solutions in following way

�
(j)
1 = eiκθ

∞∑
l=0

dlθ
l
2 , dl=1 = −

l
2 ( l

2 + 1) − mj(mj − 1)

iκ( l
2 − 1)

dl, d0 = 1

�
(j)
2 = eiκθ

∞∑
l=0

dlθ
l
2 , dl=1 = −

l
2 ( l

2 + 1) − mj(mj + 1)

iκ( l
2 − 1)

dl, d0 = 1.

(4.49)

Using all the above information, we can write the solution of the Dirac equation in the FRW 
geometry as follows

�ε,mj ,κ = 1

a
3
2 (t)rθ

1
2

[
e−i

ϕ
2 − θ

2 e−i
ϕ
2

θ
2 ei

ϕ
2 ei

ϕ
2

][
Pκ�(j)

σ 3Qκ�(j)

]
e
imj ϕ−i

∫ t
t0

ω(t ′)dt ′

= 1

a
3
2 (t)rθ

1
2

e
−i

∫ t
t0

ω(t ′)dt ′
[

ei(mj − 1
2 )ϕ(Pκ − θ

2 σ 3Qκ)�(j)

ei(mj + 1
2 )ϕ( θ

2 Pκ + σ 3Qκ)�(j)

]

≡ 1

a
3
2 (t)

e
−i

∫ t
t0

ω(t ′)dt ′
�mj ,κ (r, θ,ϕ).

(4.50)

4.4. Neutrino oscillation in the FRW geometry

Inserting (4.50) in (2.14) we obtain

|νi(t)〉 = 1

a
3
2 (t)

e−i
∫ t

0 ωi(t
′)dt ′ |νi〉 , (4.51)

in the FRW cosmological background where ωi(t) =
√

ε2

a2(t)
+ m2

i where ωi(t) is the analogous 
to energy quanta (but not exactly since FRW geometry does not have time like Killing vector 
field) and mi is the mass of the ith mass eigenstate of neutrino.
12
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Hence, the probability for a transition να → νβ under time evolution in FRW geometry is

Pνα→νβ (t) = | 〈νβ |να(t)〉 |2√−g(t) =
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i
∫ t

0 dt ′(ωi(t
′)−ωj (t ′)). (4.52)

The above expression shows that in the expanding Universe, the probability for a transition os-
cillates with time through a non-trivial dependence of ωi(t) on scale factor a(t) of the expansing 
Universe.

Further, the above expression also carries the information about the different phases of the 
Universe. For instance, in radiation- and matter-dominated era of the Universe, the scale factor 
behaves as a(t) = βtα where α = 1

2 , 23 respectively. For α = 1
2 , we obtain the following expres-

sion

t∫
0

dt ′ωi(t
′) =

[
ε̃2

2mi

log

∣∣∣∣∣
√

m2
i t+ε̃2

t
+ mi√

m2
i t+ε̃2

t
− mi

∣∣∣∣∣ +
√

t (m2
i t + ε̃2)

]
, ε̃ = ε

β

= mit

[
ζi

2
log

∣∣∣∣∣
√

1 + ζi + 1√
1 + ζi − 1

∣∣∣∣∣ + √
1 + ζi

]
, ζi = ε̃2

m2
i t

.

(4.53)

In ζi → 0 limit, the expression inside the parenthesis behaves as

1 + ζi

2

[
log

(
4

ζi

)
+ 1

]
+ ζ 2

i

8
+ . . . (4.54)

whereas in ζi → ∞, it behaves as 2
√

ζi + 1
3

√
1
ζi

. This shows that the transition probability among 
two soft neutrinos behaves as

P(soft)
να→νβ

(t) →
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i ε2

2β2

(
1

mi
− 1

mj

)
e−i(mi−mj )t

×
(

4m2
i tβ

2

ε2

)i ε2

2m2
i
tβ2

(
4m2

j tβ
2

ε2

)−i ε2

2m2
j
tβ2

,

(4.55)

in leading order. The above expression also holds in t � β−2 region. This is very well expected 
since β−2 is the only non-trivial time-scale in neutrino oscillation in radiation-dominated Uni-
verse apart. On the other hand, for high energy neutrinos (ε → ∞), the transition probability 
behaves as

Pνα→νβ (t) →
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

− β
3ε

(m2
i −m2

j )t
3
2
, (4.56)

in the leading order of the exponential term. This also holds for finite-energy neutrinos for t �
β−2 domain. The series expansion in (4.54) is valid provided β �= 0.

On the other hand, for the early Universe, the scale factor behaves as a(t) = eHt where H is 
the Hubble constant, hence,
13
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t∫
0

dt ′ωi(t
′) =

t∫
0

dt ′
√

ε2

e2Ht ′ + m2
i

=
[

mi

2H
log

∣∣∣∣∣
√

ε2e−2Ht ′ + m2
i + mi√

ε2e−2Ht ′ + m2
i − mi

∣∣∣∣∣ −
√

ε2e−2Ht ′ + m2
i

H

]t

0

, ε > 0

= mi

H

[
1

2
log

∣∣∣∣∣
√

χ2
i + 1 + 1√

χ2
i + 1 − 1

∣∣∣∣∣ −
√

χ2
i + 1 − 1

2
log

∣∣∣∣∣
√

χ̄2
i + 1 + 1√

χ̄2
i + 1 − 1

∣∣∣∣∣
+

√
χ̄2

i + 1

]
, χi = ε

mi

e−Ht , χ̄i = ε

mi

,

(4.57)

which carries the information of H . On the other hand, for soft particles, we obtain

t∫
0

dt ′ωi(t
′) = lim

ε→0

t∫
0

dt ′
√

ε2

e2Ht ′ + m2
i = mit. (4.58)

For high-energy neutrinos in t � 1
H

domain, the expression inside the parenthesis in (4.57)
behaves as

ε

H

[
[1 − e−Ht ] + 1

2χ̄2
i

[eHt − 1] − 1

24χ̄4
i

[e3Ht − 1] + . . .
]
, (4.59)

and as a result of that in leading order, the transition probability behaves as

Pνα→νβ (t) →
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i
(

eHt −1
2Hε

)
(m2

i −m2
j )+i

(
e3Ht −1
24Hε3

)
(m4

i −m4
j )+...

. (4.60)

On the other hand, for t � 1
H

, the expression inside the parenthesis in (4.57) behaves as

mi

H

[
Ht − χ̄2

i

4
e−2Ht + . . .

]
(4.61)

and as a result of that in leading order, the transition probability behaves as

Pνα→νβ (t) →
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i(mi−mj )t+i e−2Ht ε2
4H

(
1

mi
− 1

mj

)
+...

. (4.62)

Thus, we obtain the qualitative corrections due to the expansion of the Universe in the neutrino 
oscillation with non-trivial inverse time-scales β, H in various domains of coordinate time t .

Hence, in the FRW geometry, the transition probability in the neutrino flavor oscillation carries 
the information about the expansion of the Universe with a great number of details of the scale 
factor of the background geometry.

5. Probing torsion in the neutrino oscillation

In order to probe torsion in the neutrino oscillation, we need to look at the effect of torsion 
in the Dirac equation in the FRW cosmology in the presence of torsion. A detailed discussion 
14
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on general relativity with the torsion is given in the Appendix A. Further, an ansatz for torsion 
compatible with the FRW geometry is also discussed in the Appendix A.

5.1. Effect of torsion in the Dirac equation

Recall that the Dirac equation in curved spacetime is (with metric sign being (1, −1, −1, −1))

[ieμ
aγ

a(∂μ + �μ) − m]� = 0, (5.1)

with

�μ = 1

8
ωμbc[γ b, γ c], (5.2)

where effect of torsion is taken into account by including spin-tensor (see appendix for details) 
compatible with symmetries of FRW geometry

ωμab = ηace
c

ν eσ
b�

ν
σμ + ηace

c
ν ∂μeν

b

= ω̃μab + ηace
c

ν eσ
bK

ν
σμ.

(5.3)

Note that using the ansatz in [28]

ηace
c

ν eσ
bK

ν
σμ = 2ηace

c
ν eσ

bφ(hν
μuσ − hσμuν)

= 2ηace
c

ν eσ
bφ(gν

μuσ − gσμuν)

= 2φηac(e
c

μ eσ
buσ − uνe c

ν eμb)

= 2φδc
a(eμcu

σ eσb − uνeνceμb)

= 4φuνeμ[aeνb],

(5.4)

where φ(t) is a function of time-coordinate only. In co-moving frame with velocity 1-form uμ =
(1, 0, 0, 0), we obtain

ωμab = ω̃μab + 4φeμ[ae0
b], (5.5)

which leads to

ieμ
cγ

c�μ = i

8
ωcab(γ

cγ aγ b − γ cγ bγ a) = i

8
ω̃cab(γ

cγ aγ b − γ cγ bγ a)

+ iφ

2
eμ

ceμ[ae0
b](γ

cγ aγ b − γ cγ bγ a)

= i

8
ω̃cab(γ

cγ aγ b − γ cγ bγ a) + iφ

2
ηc[ae0

b](γ
cγ aγ b − γ cγ bγ a)

= i

8
ω̃cab(γ

cγ aγ b − γ cγ bγ a) + iφ

4
[(γaγ

aγ b − γaγ
bγ a)e0

b

− (γbγ
aγ b − γbγ

bγ a)e0
a]

= i

8
ω̃cab(γ

cγ aγ b − γ cγ bγ a) + iφ

2
(4γ b − 2γ b + 4γ b)e0

b

= i

8
ω̃cab(γ

cγ aγ b − γ cγ bγ a) + 3iφγ t .

(5.6)

Effect of 3iφγ t can be thought of as a transformation of fields in the form � → � e−3
∫ t

dt ′φ(t ′), 
�̄ → �̄ e3

∫ t
dt ′φ(t ′) which modifies the exponent in (4.50).
15
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5.2. Effect of torsion in the neutrino oscillation

Though structurally the Dirac equation remains the same even in the presence of torsion 
in FRW cosmology with modified ωμab (shown in (5.5)), however, the time evolution of the 
states will be affected because of the modified exponent shown in the previous section. Since 
the scale factor itself is a solution of equations (A.62), (A.63) and (A.64) (shown in the ap-
pendix), hence, the scale factor will be affected by torsion whose signature can be observed 
from the time evolution factor 

∫ t

0 ωi(t
′)dt ′ integral in the exponent in equation (4.51) and so 

does in equation (4.52) for the probability of the transition of neutrino flavors. Hence, it is 
concluded that the presence of torsion in FRW cosmology can be probed based on the ob-
servation of neutrino oscillation phenomena. It is shown that solution of the Dirac equation 
in FRW geometry with the torsion, compatible with symmetries of FRW geometry can be 
obtained through the transformation of fields from its solution without torsion in the form 
� → � e−3

∫ t
dt ′φ(t ′), �̄ → �̄ e3

∫ t
dt ′φ(t ′). This follows from the fact that the covariant deriva-

tive contains −�μ when it acts on ψ̄ since γ 0�†
μγ 0 = −�μ. These non-oscillating factors 

e±3
∫ t

dt ′φ(t ′) due to the coupling with the torsion does not violate the unitarity since ψ̄[. . .]ψ
is invariant under the above-mentioned transformation where [. . .] contains a non-trivial matrix 
depending on the symmetry group of the theory. This also means the norm of the spinor re-
mains invariant as the expression of norm requires the product of ψ and ψ̄ which remains the 
same under the transformation � → � e−3

∫ t
dt ′φ(t ′), �̄ → �̄ e3

∫ t
dt ′φ(t ′) due to the presence of 

torsion.

6. Discussion

It is shown that the expansion of the Universe in the FRW cosmology affects the neutrino 
oscillation phenomena in a significant manner due to the cosmological scale factor. Further, 
the nature of the expansion of the Universe can be found out from the oscillating phase of the 
probability of transition among different neutrino flavor states. We have also considered an FRW 
cosmological model with the presence of torsion which is compatible with the symmetries of the 
FRW cosmology (suggested in [28]). The effect of torsion is non-trivial which can be probed 
from the observation of neutrino oscillation phenomena, shown through the detailed study of the 
Dirac equation in FRW spacetime. Our approach of finding the nature of neutrino oscillation in 
FRW geometry is much more general and covariant in nature since we have not used any sort of 
assumption unlike in [46–48]. Further, our result shows explicitly that torsion can indeed induce 
neutrino oscillation which is consistent with the result in [49] though the derivation in [49] is 
only valid locally. Furthermore, our derivation is exact unlike the approximated one, considered 
in [50].

For spacetimes with no time-like Killing vector fields like in FRW cosmology, the Hamilto-
nian operator is an integral of the Hamiltonian density over spacelike hypersurfaces �t and as 
a result of it, for spacetimes with no time-like Killing vector fields, the Hamiltonian operator 
must be time-dependent. That is why we obtain the explicit time dependence in the exponential 
factor of the transition probability in terms of the scale factor. It leads to a time-dependent phase 
factor rather than an operator of the form ei

∫
γ Pμ(x)dxμ

, used in [31,51–53] in order to find the 
solution of the Dirac-equation in a curved spacetime where γ : R �→ M is a curve on the space-
time manifold connecting two given points. The above-mentioned operator is used in literature in 
order to solve the Dirac-equation in a curved spacetime through the Hamiltonian-Jacobi method 
16
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(also known as an eikonal approximation and WKB approximation) with local approximations. 

Further, in general, ei
∫
γ1

Pμ(x)dxμ �= e
i
∫
γ2

Pμ(x)dxμ

where γ1, γ2 are two different curves connect-
ing the same two points in spacetime manifold since Pμ(x)dxμ is not a closed-form or in other 
words, ∇μPν − ∇νPμ �= 0 in general. This is consistent with the fact that parallel transports 
of a spinor along two different curves connecting the same two points are different in curved 
spacetime in general. However, the transition probability is a physical observable which must 
be unique and well-defined that can not be obtained from these approaches as a specific path 
can not be singled out in quantum theory. Moreover, these approaches also require considering 
certain local approximations in order to show the neutrino oscillation which is certainly ambigu-
ous. In many cases, the trajectories of neutrinos are considered to be null trajectories to show the 
effect of curved spacetime in the neutrino oscillation which is also mathematically inconsistent 
since the neutrino oscillation itself suggests neutrinos are massive fermions. These points are 
often ignored in the literature while making the local approximations which we do not consider 
here.

The direct effect of the scale factor of our expanding Universe in the neutrino oscillation 
can be used as a tool to probe various features of the Universe including the torsion. Since 
the scale factor of the Universe itself depends on the equation of state of the matter and the 
radiation contained in the Universe, hence, these features can also be probed through the neutrino 
oscillation by considering our results. Hence, our results are important for future prospects and 
observations in Cosmology. Though our discussion does not consider the interactions between 
neutrinos and other particles, allowed by the Standard model of particle physics, however, those 
interactions can be added in a covariant manner by extending our mathematical techniques to the 
interacting field theories in curved spacetime.
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Appendix A

A.1. Inclusion of torsion in GR

Covariant derivative or connection in differential geometry is introduced in following way 
(with metric signature being (−1, 1, 1, 1))

∇bva = ∂bva − �c
abvc. (A.1)

In GR connection �c
ab is considered to be symmetric but this may not be the case in general. In 

that case, torsion tensor is defined as
17
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Sa
bc ≡ �a

[bc], (A.2)

which is anti-symmetric in lower two indices.
Considering the metric-compatibility we can write

�a
bc = �̃a

bc + Sa
bc + S a

bc + S a
cb , (A.3)

where �̃a
bc are the Christoffel symbols, the metric-affine connection defined in GR. Torsion can 

also equivalently introduced in terms of defined contorsion tensor [54]

Ka
bc = Sa

bc + S a
bc + S a

cb =⇒ Kabc = −Kbac. (A.4)

The possible contractions of contorsion tensors are

Kb
ab = 2Sa = 2Sb

ab, Kb
ba = 0. (A.5)

Locally, it is always possible to split spacetime into the 3-dimensional instantaneous rest space of 
the observer and the world-lines of the observer, perpendicular to 3-dim hypersurface. Consider 
the 4-velocity of the observer to be ua which satisfies uaua = −1. To project any geometrical 
quantity on 3-dim hypersurface we will use the following metric

hab = gab + uaub, (A.6)

where gab is the metric of the spacetime. Observer’s motion can be described by using 1 + 3
splitting of the covariant derivative of the 4-velocity:

∇bua = 1

3
�hab + σab + ωab − Aaub

≡ Dbua − Aaub,

(A.7)

where Dbua is the 3-dim covariant derivative of 4-velocity and σab = D(bua) − 1
3�hab, ωab =

D[bua], Aa ≡ ub∇bua . One can easily show following features using the definitions

habu
b = 0 = σabu

b = Aau
a. (A.8)

Since, in a general spacetime with torsion

∇aua = ∇̃bua − Scabu
c − 2S(ab)cu

c, (A.9)

where ∇̃ denotes covariant derivative w.r.t. Christoffel symbols. Additionally, the spatial covari-
ant derivative breaks into

Dbua = D̃bua − h c
a h d

b Secdue − 2h c
a h d

b S(cd)eu
e, (A.10)

from which it can be shown in few simple mathematical steps that

� = �̃ + 2Sau
a

ωab = ω̃ab − h c[ah d
b]Secdue

σab = σ̃ab − 2h c
(a h d

b) S(cd)eu
e − 2

3
Scu

chab

Aa = Ãa + 2S(bc)au
buc,

(A.11)

where ̃ quantities are defined without torsion.
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Similar way, from the definition it follows that [55–57]

Ra
bcd = R̃a

bcd + ∂cK
a
bd − ∂dKa

bc + �̃a
ecK

e
bd − �̃e

bcK
a
ed

− �̃a
edKe

bc + �̃e
bdKa

ec + Ke
bdKa

ec − Ke
bcK

a
ed

=⇒ Rab = R̃ab + ∂cK
c
ab − ∂bK

c
ac + �̃d

cdKc
ab − �̃c

adKd
cb

− �̃d
cbK

c
ad + �̃c

abK
d
cd + Kc

abK
d
cd − Kc

adKd
cb

R = R̃+ gab∂cK
c
ab − gab∂bK

c
ac + �̃c

acK
ab
b − �̃a

bcK
c b
a

− �̃c
abK

ab
c + gab�̃c

abK
d
cd + Kab

bK
c
ac − Kab

cK
c
ab.

(A.12)

Note that,

Rabcd = −Rbacd , Rabcd = −Rabdc, (A.13)

however,

Rabcd �= Rcdab, Rab �= Rba. (A.14)

Einstein-Hilbert action with presence of cosmological constant is

S =
∫ [ 1

2κ
(R− 2�) +LM

]√−gd4x, (A.15)

where κ = 8πG
c4 . Variation of action w.r.t. metric tensor and contorsion tensor leads to Einstein-

Cartan equations [58,59]

Gab ≡ Rab − 1

2
Rgab = κTab − �gab, Tab ≡ − 2√−g

δ(
√−gLM)

δgab

Sabc = −κ

4
(2sbca + gcasb − gabsc), sa = sb

ab, s c
ab ≡ − 2√−g

δ(
√−gLM)

δKab
c

,

(A.16)

where sabc is known as spin-tensor.

A.2. Cosmology with torsion

Here, we first present two most important kinematic equations in the cosmological model 
which are Friedmann and Raychaudhuri equations in the presence of torsion. One can derive the 
Friedmann equation from the line element of FRW metric with consecutive contractions of 3-dim 
curvature tensor, which is presented as follows

Rabcd = h
q
a h s

b h d
c h

p
d Rqsfp −DcuaDdub +DduaDcub, (A.17)

where Dbua = 1
3�hab + σab + ωab. In addition, using the fact that the curvature tensor in 4-dim 

spacetime satisfies

Rabcd = Cabcd + 1

2
(gacRbd + gbdRac − gbcRad − gadRbc) − R

6
(gacgbd − gadgbc),

(A.18)

it can be shown that

R = 2

(
κT(ab)u

aub + � − 1
�2 + σabσab − ωabω

ab

)
, (A.19)
3
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where R is the spatial curvature. In FRW geometry R = 6k
a2 where k = 0, ±1 depending on 

flat, open and closed Universe. Considering H = �
3 and the fact that for maximally symmetric 

spacetime (FRW geometry is an example of that) σ = 0 = ω implies that

H 2 = κ

3
T(ab)u

aub − k

a2 + �

3
. (A.20)

Raychaudhuri equation turns out to be [60]

�̇ = −1

3
�2 −R(ab)u

aub − 2(σ abσab − ωabω
ab) +DaA

a + AaA
a

+ 2

3
Sau

a − 2S〈ab〉cσ abuc + 2S[ab]cωabuc − 2S(ab)cu
aubAc

S〈ab〉cσ ab = Sabcσ
ab + 1

3
uaub�Sabc.

(A.21)

Since, in FRW type models σ = 0 = ω = A which implies the above equation reduces to the 
following form

�̇ = −1

3
�2 −R(ab)u

aub + 2

3
�Sau

a

=⇒ Ḣ = −H 2 − 1

3
κTabu

aub − 1

6
T + 1

3
� + 2

3
HSau

a.

(A.22)

Using Bianchi identities

∇[eRab
cd] = 2Rab

f [eS
f
cd]

Ra
[bcd] = −2∇[bSa

cd] + 4Sa
e[bS

e
cd],

(A.23)

and the symmetries of curvature tensor, it can be show that

∇bGba = 2RbcS
cb
a +RbcdaS

dcb

=⇒ ∇bTba = 1

κ
(2RbcS

cb
a +RbcdaS

dcb).
(A.24)

Further, it can also be shown that

G[ab] = ∇aSb − ∇bSa + ∇cScab − 2ScScab

=⇒ ∇bGab = ∇bGba + 2(∇b∇aSb − ∇b∇bSa + ∇b∇cScab) − 4∇b(ScScab)

=⇒ ∇bTab = ∇bTba + 1

κ

[
2(∇b∇aSb − ∇b∇bSa + ∇b∇cScab) − 4∇b(ScScab)

]
.

(A.25)

Assuming isotropic cosmology, if we replace torsion tensor by spin-tensor we obtain Raychaud-
huri equation in the following form

�̇ = −1

3
�2 − κT(ab)u

aub − 1

2
κT − 1

6
κ�sau

a, (A.26)

and

∇bTba = Rbcs
bc

a + 1

2
Rsa − 1

4
Rbcdas

cbd −Rbcs
b

∇bTab = ∇bTba − ∇b∇csabc − κ ∇bscsabc.

(A.27)
2
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Using Cartan field equations, we can write

T[ab] = −1

2
∇csabc − κ

4
scsabc. (A.28)

On the other hand, symmetric part of Tab can be decomposed in following way

T(ab) = ρuaub + phab + 2u(aqb) + πab

=⇒ ρ = Tabu
aub (effective matter energy density)

p = 1

3
Tabh

ab (effective isotropic pressure)

qa = −h b
a Tacu

c (effective total-energy flux vector)

πab = h c〈ah d
b〉Tcd (effective anisotropic stress-tensor).

(A.29)

A.3. Torsion in FRW cosmology

In the previous subsection, Friedmann and Raychaudhuri equations were presented without 
any restriction on the form of the torsion. Here, we have considered an ansatz, proposed based 
on the compatibility with the isotropic FRW cosmological model.

In order to preserve homogeneity and isotropy in a maximally symmetric 3-dim space, we 
consider the following ansatz [28] for the torsion tensor:

Sabc = φ(habuc − hacub) = φ(gabuc − gacub). (A.30)

Based on the homogeneity requirement, φ can only be a scalar function depending on time. The 
fact that the choice of our ansatz respects the isotropy of 3-dim space becomes clear by taking 
the contraction to produce the torsion vector:

Sa = −3φua, (A.31)

which shows φ > 0 implies Sa and ua are anti-parallel and for φ < 0, Sa and ua are parallel.

|S| = √
SaSa = 3φ. (A.32)

Using the ansatz, spin-tensor and vector can be written as

sabc = 4

κ
φ(hacub − hbcua) =⇒ sa = 12

κ
φua. (A.33)

Next step is to formulate the continuity equation for the scalar function φ(t):

∇aSa = −3∇a(φua)

= −3ua∇aφ − 3φ∇aua

= −3
d

dτ
φ − 3φ∇aua.

(A.34)

Further, we demand that

∇aSa ∝ ∇aua =⇒ ∇aSa = nφ∇aua, (A.35)

where

n = −
(

3 + 1 d
φ × 1

a

)
. (A.36)
φ dτ ∇ ua
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The physical motivation behind this demand is that the torsion vector to remain with its world-
line, which consistent with the relation (A.31) which shows Sa lies in the same world-line with 
4-velocity vector. Hence, imposing this restriction, we try to ensure that these two vectors will 
continue to belong in the same world-line.

Combining (A.34) and (A.35), we obtain

∇aSa = nφ∇aua

=⇒ −3φ̇ = (n + 3)φ∇aua

φ̇ = −(n + 3)φ
∇aua

3
= −(n + 3)φH ≡ −νφH,

(A.37)

where we have used the fact that ∇aua = �. This can also be rewritten as

φ̇ = −νφ
ȧ

a
=⇒ φ(t) = φi

aν
i

aν(t)
, (A.38)

where φi and ai are the initial values.
Finally employing the ansatz, we can write the Raychaudhuri equation as

Ḣ = −H 2 − 1

3
κTabu

aub − 1

6
κT + 1

3
� + 2φH. (A.39)

Using following facts

∇bSa = 3φ̇uaub − φ�hab = ∇aSb

ScScab = −3φ2(uchcaub − uchcbua) = 0

∇cScab = ∇c[φ(gcaub − gcbua)]
= (∇aφub − ∇bφua) = −φ̇(uaub − ubua) = 0,

(A.40)

we can deduce that

G[ab] = 0 = R[ab] = T[ab]. (A.41)

Therefore, in FRW type cosmological model the Einstein, Ricci and the energy-momentum ten-
sor is symmetric, however, torsion will affect the conservation law in following way

∇bTab = −4φ(Tabu
b − �

κ
ua)

ua∇bTab = −4φ(Tabu
aub + �

κ
).

(A.42)

To maintain the isotropy and homogeneity of 3-dim space, we will restrict energy-momentum 
tensor to be that of perfect fluid:

Tab = ρuaub + phab. (A.43)

Substituting above expression in (A.42) leads to

ρ̇ = −3H(ρ + P) + 4φ(ρ + �
). (A.44)
κ
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Further, the Friedmann and Raychaudhuri equations will be reduced to following form

H 2 = κ

3
ρ − k

a2 + �

3

Ḣ = −H 2 − κ

6
(ρ + 3P) + �

3
+ 2φH.

(A.45)

Combining above two equations leads to

2HḢ = −2H 3 − κ

3
H(ρ + 3P) + 2�H

3
+ 4φH 2

κ

3
ρ̇ + 2k

a2 H = −2H 3 − κ

3
H(ρ + 3P) + 2�H

3
+ 4φH 2

=⇒ ρ̇ = −3H(ρ + P) + 12

κ
φH 2.

(A.46)

Although ρ̇ has been calculated in (A.44) and (A.46) in two different ways, they must be consis-
tent with each other which leads to the following conclusion that

φk

κa2 = 0, (A.47)

which shows that isotropy, 3-dim curvature, and torsion are incompatible with each other in the 
sense, that presence of torsion demands the spatial curvature of the FRW cosmological model to 
be zero exactly. This is consistent with the observation that the Universe is spatially Euclidean 
flat at a significant level.

A.4. Decomposition of energy-momentum tensor

As it has been discussed earlier that

Rab = R̃ab + ∇̃cK
c
ab − ∇̃bK

c
ac + Kd

abK
c
dc − Kd

acK
c
db

R= R̃− 2∇̃aK
ba
b − Kba

bK
c
ac + Kab

cK
c
ba,

(A.48)

but we also want to know what is the affect of torsion in energy-momentum tensor which can be 
found from following decomposition

Tab = T̃ab + �ab. (A.49)

Incorporating this into Einstein-Cartan field equation

Rab − 1

2
Rgab = κTab − �gab, (A.50)

we obtain

R̃ab − 1

2
R̃gab + Qab − 1

2
Qgab = κ(T̃ab + �ab) − �gab, (A.51)

where

Qab = ∇̃cK
c
ab − ∇̃bK

c
ac + Kd

abK
c
dc − Kd

acK
c
db

Q = −2∇̃aK
ba
b − Kba

bK
c
ac + Kab

cK
c
ba.

(A.52)

However, ‘∼’ quantities satisfy the Einstein field equations
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R̃ab − 1

2
R̃gab = κT̃ab − �gab, (A.53)

which leads to

κ�ab = Qab − 1

2
Qgab. (A.54)

According to our ansatz,

Kabc = 2φ(hbcua − hacub)

= 2φ(gbcua − gacub)

=⇒ Ka = Kb
ab = −6φua,

(A.55)

from which it can be derived that

Qab = −(6φ̇ − 12φ2 + 2φ�)uaub + (2φ̇ − 12φ2 + 10

3
φ�)hab

Q = 12(φ̇ − 4φ2 + φ�)

=⇒ κ�ab = −(12φ2 − 12φH)uaub − (4φ̇ − 12φ2 + 8φH)hab.

(A.56)

Considering matter as a perfect fluid, we can write

T̃ab = ρ̃uaub + p̃hab, (A.57)

which makes

Tab =
(

ρ̃ − 12
12φ2

κ
+ 12

φH

κ

)
uaub +

(
p̃ − 4

φ̇

κ
+ 12

φ2

κ
− 8

φH

κ

)
hab. (A.58)

This essentially makes the effective matter energy density and isotropic pressure to be

ρ = ρ̃ − 12
φ2

κ
+ 12

φH

κ

p = p̃ + 12
φ2

κ
− 8

φH

κ
.

(A.59)

Hence, the hidden contributions of torsion in the Friedmann and Raychaudhuri equations are

H 2 = κ

3
ρ̃ − k

a2 + �

3
+ 4φH − 4φ2

Ḣ = −H 2 − κ

6
(ρ̃ + 3p̃) + �

3
+ 4φH − 4φ2 + 2φ̇.

(A.60)

Combining above two equations, we obtain

Ḣ = −κ

2
(ρ̃ + p̃) + 2φ̇

=⇒ H = H̃ + 2φ.

(A.61)

Above relation states that positive value of φ enhances the effective Hubble parameter and neg-
ative value weakens it.
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A.5. Solution of the Friedmann equation

For k = 0 (spatially flat 3-dim space) and ρ̃ = w̃p̃, we obtain

H̃ = 2

3(1 + w̃)t

=⇒ ã(t) ∝ t
2

3(1+w̃) ,

(A.62)

where the barotropic index w̃ determines the type of matter.
We now find the time evolution of H in the presence of torsion in the case of flat Universe 

where cosmological constant dominates in which case

H̃ =
√

�

3

H = 2φ +
√

�

3
=⇒ Ḣ = 2φ̇.

(A.63)

Using (A.37), we can also write

Ḣ = −2νφH

=⇒ φ̇ = −νφ

(
2φ +

√
�

3

)
.

(A.64)

Solving the above equation, we obtain

φ(t) =
ν

√
�
3(

ν
φi

√
�
3 + 2ν

)
e
ν

√
�
3 t − 2ν

=⇒ H(t) =
√

�

3
+

ν

√
�
3(

ν

Hi−
√

�
3

√
�
3 + ν

)
e
ν

√
�
3 t − ν

,

(A.65)

where Hi = φi +
√

�
3 . For ν > 0, we obtain

lim
t→∞φ(t) = 0, lim

t→∞H(t) =
√

�

3
, (A.66)

and for ν < 0, we obtain

lim
t→∞φ(t) = −1

2

√
�

3
, lim

t→∞H(t) = 0. (A.67)

The case of positive value of ν states that after a long time evolution of Universe, torsion vanishes 
with a non-zero Hubble parameter which is positive definite. This is consistent with the fact that 
current observations fail to detect the presence of torsion.

Further, it can also be shown that if the initial torsion is very high such that it dominates then 
equation (A.60) becomes
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(H − 2φ)2 = 0

=⇒ ȧ(t)

a(t)
= 2φ(t)

=⇒ a(t) = a(t0)e
2
∫ t
t0

φ(t ′)dt ′
.

(A.68)

Hence, the evolution of torsion is fully encapsulated inside the scale factor which can easily 
be probed by neutrino oscillation. Further, expansion of Universe demands that scale factor be 
monotonically increasing which means that φ(t) needs to be positive definite. This also shows 
Sa and ua are anti-parallel according to (A.31).
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