

DSAM analysis of ^{104}Pd

C. Majumder¹, H. P. Sharma^{1,*} S. Chakraborty¹, S. S. Tiwary¹,
 S. S. Bhattacharjee², R. Garg², I. Bala², R. P. Singh², S.
 Muralithar², Neelam³, S. Das⁴, S. Samanta⁴, S. S. Ghugre⁴, A.
 Sharma⁵, P. V. Madhusudhana Rao⁶, R. Palit⁷, and U. Garg⁸

¹Department of Physics, Banaras Hindu University, Varanasi-221005

²Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067

³Department of Physics and Astrophysics, University of Delhi, New Delhi-110007

⁴UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata-700098

⁵Department of Physics, Himachal Pradesh University, Shimla-171005

⁶Department of Nuclear Physics, Andhra University, Visakhapatnam-530003

⁷Department of Nuclear and Atomic Physics,

Tata Institute of Fundamental Research, Mumbai-400005 and

⁸Department of Physics, University of Notre Dame, Notre Dame, Indiana-46556, USA

Introduction

Study of nuclei from $A \sim 110$ mass region is important due to presence of phenomena like γ vibrational bands, doublet bands, chiral bands, antimagnetic rotational bands. [1-3]. Pd nuclei are situated between well-deformed and spherical nuclei at $Z = 50$ shell closure and predicted to be soft *w. r. t.* γ and β deformations [4]. It is interesting to verify the theoretical predictions about Pd nuclei at low and at high spin.

Lifetime measurement is one of the best tool to study the deformation, transition rates and structure of nuclei. Previously, lifetime measurement was reported and AMR was established in several nuclei[1, 3, 5, 6]. In this study, we report lifetimes of states of the AMR band (B1) and a negative parity semi-decoupled band (B2) in ^{104}Pd (marked blue in Fig.1).

Experimental details and Data analysis

High spin states of ^{104}Pd were populated via the $^{94}\text{Zr}(^{13}\text{C}, 3n\gamma)$ reaction at beam energy 55 MeV with 15UD pelletron accelerator facility [7, 8] at Inter University Accelerator Centre (IUAC), New Delhi. The beam was impinged on a target of 1 mg/cm^2 thickness,

supported by 10 mg/cm^2 thick ^{197}Au backing. The emitted gamma rays were detected using clover detectors of the Indian National Gamma Array, at angles $32^\circ, 57^\circ, 90^\circ, 123^\circ, 148^\circ$ w.r.t. beam direction [9].

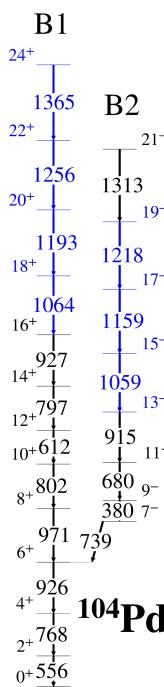


FIG. 1: Levels of band 1 and 2 in ^{104}Pd .

Several assymetric matrices were constructed from the list data. Out of five angles, matrices were constructed for two angles (90° and 148°). The background subtracted spectra of several transitions of interest were projected from these matrices. Lifetime of states were extracted using Doppler Shift Attenuation Method (DSAM) and for fitting, the computer code LINESHAPE [10] was used. The slowing down history of the recoils (moving with an initial recoil velocity of $\beta = 0.0098$ in present case) in the target and backing were simulated using a Monte Carlo technique, having 5000 histories with a time step of 0.006 ps .

The shell-corrected stopping power of Northcliffe

*Electronic address: hpsharma_07@yahoo.com

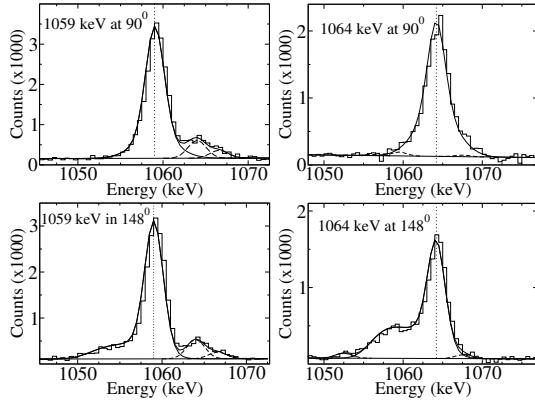


FIG. 2: Sample of lineshape fitting of 1059 keV and 1064 keV transitions, gated on 380 keV and 802 keV at 90° and 148° respectively.

and Schilling [11] was used. The error spectra were generated by setting the energy gates on the background near the transitions. The 100% side-feed contribution was assumed for the top most transition and for the lower transitions, side feeding intensities are estimated from previously reported intensities [1]. All parameters were allowed to vary until χ^2 minimization was reached. From the best fit of least square fitting of the shapes of the transitions, lifetimes were extracted. In this work, previously reported lifetimes of band B1 were reproduced well and first time, lifetime of the states of B2 band were extracted.

Results and Discussion

Lifetime measurements have been carried for ground state band and negative parity semi-decoupled band using DSAM technique. The previously reported lifetimes of the AMR band were reproduced. First time lifetimes of band B2 were extracted. Samples of lineshape fittings of the 1064 keV transition of the B1 band and 1059 keV transition of the B2 band are shown (Fig2). Results of lifetimes are summarised at table. More details of the analysis and results will be presented during the symposium.

Conclusion

Previously reported lifetime has been reproduced and lifetime of some states of semi-

	I^π (\hbar)	E_γ (keV)	Lifetime ^a (ps)	Lifetime ^b (ps)
B1	18^+	1064	0.26 (20)	0.27 (2)
	20^+	1193	0.19 (9)	0.18 (2)
	22^+	1256	0.22 (4)	0.20 (2)
	24^+	1365	0.23 (19)	0.24 (3)
B2	15^-	1059	0.16 (8)	-
	17^-	1159	0.44 (18)	-
	19^-	1218	0.12 (5)	-

^afrom present work

^bfrom Ref. [12]

decoupled band are reported first time.

Acknowledgements

First author acknowledge to UGC/BHU for fellowship (PHY/RES/RET Qualified-2014/2014-2015/953) and to Sutanu Bhattacharya for his help. Authors acknowledge INGA collaboration (Grant No.IR/S2/PF-03/2003-II). This work was supported in part by U. S. National Science Foundation (Grant No. PHY - 1713857).

References

- [1] D. Sohler et al. *Phys. Rev. C*, 85:044303, 2012.
- [2] C. Vaman et al. *Phys. Rev. Lett.*, 92:032501, 2004.
- [3] Dan Jerrestam et al. *Nuclear Physics A*, 571(2):393 – 412, 1994.
- [4] Ts. Venkova et al. *Eur. Phys. J. A*, 6(4):405–413, 1999.
- [5] P. Datta et al. *Phys. Rev. C*, 71:041305, Apr 2005.
- [6] Santosh Roy et al. *Phys. Lett. B*, 694(4):322 – 326, 2011.
- [7] G.K. Mehta et al. *Nucl. Inst. Meth. Phys. Res. A*, 268(2):334 – 336, 1988.
- [8] D. Kanjilal et al. *Nucl. Inst. Meth. Phys. Res. A*, 328(1):97 – 100, 1993.
- [9] S. Muralithar et al. *Nucl. Inst. Meth. Phys. Res. A*, 622(1):281 – 287, 2010.
- [10] J. C. Wells et al. Technical report, 1991.
- [11] L.C. Northcliffe et al. *At. Data Nucl. Data Tables*, 7(3):233 – 463, 1970.
- [12] N. Rather et al. *Phys. Rev. C*, 89:061303, 2014.