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Heavy ion-induced fusion reactions [1] near
the Coulomb barrier provide an excellent op-
portunity to explore the influence of nuclear
structure and nucleon transfer channels on fu-
sion. Numerous experimental and theoreti-
cal studies have shown that static deforma-
tion and inelastic excitation of the collision
partners influence fusion reactions, often en-
hancing sub-barrier fusion cross sections (o)
compared to the results obtained from no-
coupling calculations. However, the impact
of transfer channels on fusion dynamics re-
mains ambiguous. While some systems ex-
hibit significant enhancement in fusion cross
sections due to positive @-value neutron trans-
fer (PQNT) channels [2, 3], this is not uni-
versally observed across all systems [4]. To
explore the effect of transfer channels on fu-
sion dynamics further, we measured fusion ex-
citation functions for 28Si+140:142Ce near the
Coulomb barrier. There are two PQNT chan-
nels (2n and 4n pickup) in 22Si+14°Ce. In con-
trast, six PQNT channels (1n to 6n pickup)
exist in 28Si+142Ce.

The measurement was carried out using
the Heavy Ion Reaction Analyzer (HIRA)
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[5] at IUAC. Energy of the projectile (Ejap)
ranged from 103.5 =136 MeV. The evapora-
tion residues (ERs) were detected at the focal
plane of the HIRA by a multi-wire propor-
tional counter (MWPC). Unambiguous identi-
fication of the ERs were accomplished by mea-
suring their energy loss and time-of-flight.

It is generally observed that the effect of
transfer channels in reactions involving de-
formed reaction partners is not significant as
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FIG. 1: Fusion excitation functions for (a)

#Gi+11%Ce and (b) 28Si+'*?Ce.  Results of
coupled-channels calculations are also shown.
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FIG. 2: Fusion barrier distributions for (a)

28Gi4-19Ce and (b) 28Si+'*2Ce.  Results of
coupled-channels calculations are also shown.

compared to reactions involving spherical nu-
clei. In such cases, the barrier distribution
(D) serves as an excellent probe for detecting
the fingerprints of inelastic and transfer chan-
nels on fusion dynamics. D has convention-
ally been extracted from measured fusion cross
sections (of,s) by the “double-differentiation”
(DD) method proposed by Rowley et al
[6]. A recent study [7] showed that an an-
alytic method based on multi-Gaussian bar-
rier height distribution could be an excellent
recipe to obtain the experimental Ds. More-
over, this method is independent of energy
step size and here the results remain quite ro-
bust against large uncertainties in measured
Ofus, unlike in case of the DD method. In the
present work, we derived the experimental D
using both methods.

Measured excitation functions and the cor-
responding Ds, along with results of the
coupled-channels (CC) calculations [8], are
presented in Fig. 1 and Fig. 2, respectively.
When both collision partners were treated as
inert, the calculations significantly underpre-
dicted the measured og,s at sub-barrier ener-
gies for both systems, as shown in Fig. 1(a)
and 1(b). Next, we treated 28Si as inert
while considering two-phonon mutual excita-
tions for both quadrupole (2%) and octupole
(37) modes in 140:142Ce. Inclusion of this
coupling enhanced the theoretical cross sec-
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tions in the sub-barrier region (dashed line in
Fig. 1(a) and 1(b)), improving the predictions
somewhat, but still underestimated the exper-
imental og,s for both systems. We further in-
cluded the first 2% excited state of 28Si with
rotational nature, alongside the two-phonon
quadrupole and octupole modes of 140:142Ce,
In the case of 28Si+'49Ce, the experimental
excitation function was well reproduced. How-
ever, measured excitation function remained
underestimated by the calculation in the case
of 28Si+142Ce. The corresponding D for
28Gi+149Ce suggested probable role of addi-
tional weak channels due to the lower weight
of the lower energy peak. On the other hand,
the large underprediction of the fusion exci-
tation function for 28Si4+142Ce by the theory
pointed to the significant influence of transfer
channels in this system. For 28Si+14°Ce, we
found that a transfer strength (fi,) of 0.15 for
the 2n pick up channel produced a somewhat
better fit of the experimental D, while a larger
value distorted its shape, thereby constrain-
ing the transfer strength. In contrast, the
excitation function remained underpredicted
even after inclusion of 2n-transfer coupling in
the case of 28Si+'%?Ce. Also, shape of the
D, in this case, was markedly different from
the experimental data. This indicated a much
stronger influence of neutron transfer channels
in 28Si4+2Ce compared to 28Si+140Ce.

One of the authors (C.K.) acknowledges fi-
nancial support from the Council of Scientific
and Industrial Research, New Delhi via grant
no. CSIR/09/760(0038)/2019-EMR-1.

References

[1] G. Montagnoli et al., Eur. Phys. J. A 59, 138
(2023),

[2] M. Beckerman et al., Phys. Rev. Lett 45, 1472
(1980).

[3] R.N. Sahoo et al., Phys. Rev. C 102, 024615
(2020).

[4] H.M. Jia et al., Phys. Rev. C 86, 044621 (2012).

[5] A.K. Sinha et al., Nucl. Instrum. Methods A 339,
543 (1994).

[6] N. Rowley et al., Phys. Lett. B 254, 25 (1991).

[7] C.L. Jiang and B.P. Kay, Phys. Rev. C 105,
064601 (2022).

[8] K. Hagino et al., Comput. Phys. Commun. 123,

143 (1999).

398

Available online at www.sympnp.org/proceedings



