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Simulating noisy quantum circuits with matrix product density operators
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Simulating quantum circuits with classical computers requires resources growing exponentially in terms of
system size. Real quantum computer with noise, however, may be simulated polynomially with various methods
considering different noise models. In this work, we simulate random quantum circuits in one dimension with
matrix product density operators (MPDOs), for different noise models such as dephasing, depolarizing, and
amplitude damping. We show that the method based on matrix product states (MPSs) fails to approximate the
noisy output quantum states for any of the noise models considered, while the MPDO method approximates
them well. Compared with the method of matrix product operators (MPOs), the MPDO method reflects a clear
physical picture of noise (with inner indices taking care of the noise simulation) and quantum entanglement
(with bond indices taking care of two-qubit gate simulation). Consequently, in case of weak system noise, the
resource cost of the MPDO will be significantly less than that of the MPO due to a relatively small inner
dimension needed for the simulation. In case of strong system noise, a relatively small bond dimension may
be sufficient to simulate the noisy circuits, indicating a regime that the noise is large enough for an “easy”
classical simulation, which is further supported by a comparison with the experimental results on an IBM cloud
device. Moreover, we propose a more effective tensor updates scheme with optimal truncations for both the
inner and the bond dimensions, performed after each layer of the circuit, which enjoys a canonical form of the
MPDO for improving simulation accuracy. With truncated inner dimension to a maximum value κ and bond
dimension to a maximum value χ , the cost of our simulation scales as ∼NDκ3χ 3, for an N-qubit circuit with
depth D.

DOI: 10.1103/PhysRevResearch.3.023005

I. INTRODUCTION

The quantum computer has the potential to outperform
the best possible classical computers in many tasks such as
factoring large numbers. It relies on the fact that wave func-
tions represent amplitudes that grow exponentially in terms
of the system size [1]. At the heart is quantum coherence,
which is fragile and easily destroyed by noise. In principle,
this drawback may be overcome by the techniques of quantum
error correction and fault tolerance, which, however, require
tens of thousands of qubits to perform computing tasks of
practical relevance [2,3]. For near-term hardware systems,
precision needs to improve while systems size grows, to be
able to perform reasonable computing tasks before decoher-
ence, whose performance may be measured by the so-called
quantum volume [4]. It is claimed that systems with quantum
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volume as large as 32 have been achieved [5], and systems of
quantum volume 64 is on the way [6].

Real world quantum computers battling noise recently
achieved the so-called quantum supremacy, at Google, for
implementing random quantum circuits in a 53-qubit system
and a circuit depth of 20 [7]. It is well known that noiseless
random circuits are hard to simulate on classical computers
[8–13], and simulations of (noiseless) random quantum cir-
cuits on supercomputers have been implemented for more
than 40 qubits [14–17]. It still remains unclear, however,
whether there are classical algorithms running on available
supercomputers that may be able to simulate the behavior
of the Google system, due to physical noise that results in
low fidelity compared to noiseless systems. For instance, a
method based on second storage has been proposed, which
may simulate the system in a few days [18].

It is recently proposed in [19] that a method based
on matrix product states (MPSs) (one of the one-spacial-
dimensional tensor network states) can approximate the
behavior of real quantum systems. The MPS has been a
powerful method that faithfully represents ground states of lo-
cal Hamiltonians [20–22]. The singular value decomposition
(SVD) method for truncating the bond dimension for the MPS
has shown great success for finding ground states of spacial-
one-dimensional (1D) local Hamiltonians, both gapped and
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gapless. It is unclear, however, what the error model is that
the MPS method represents, for simulating circuit output dis-
tribution of real quantum computers.

Since MPSs cannot represent mixed states of quantum
systems, a natural idea is instead to use the matrix product op-
erators (MPOs) [20,23,24]. The MPO method has been used
to simulate quantum circuits of Shor’s and Grover’s algorithm
with noise [25]. Very recently, the MPO method has also
been used to simulate 1D random circuits [26]. For simulating
two-qubit gates, the MPO tensors with a “canonical” update
bring a factor of DN2 in simulating an N-qubit random circuit
with depth D in terms of complexity.

In this work, we simulate noisy 1D random quantum cir-
cuits with matrix product density operators (MPDOs), based
on the MPDO construction proposed in [24]. Another well-
known name of the MPDO is the MPS purification or the local
purification form of the mixed-state density matrix. Recently,
it is also shown that MPDOs can describe many-body ther-
mal states and open quantum many-body system efficiently
[27,28].

Compared with the MPO method, the inner indices in
the MPDO method capture the classical information of the
noise simulation, which also reduces the computational and
memory complexity under the condition of weak noise. The
MPDO model consists of two parts that are conjugated to
each other. By so, the simulation of the two-qubit gates can be
done in a similar way as the MPS simulation, which is taken
care of by the bond indices. In case of weak system noise, a
small inner dimension may be sufficient for the simulation, so
the resource cost of MPDO could be significantly less than
that of the MPO. In case of strong system noise, a relatively
small bond dimension may be sufficient to simulate the noisy
circuits, indicating a regime that the noise is large enough for
an “easy” classical simulation.

Moreover, we propose a more effective canonical tensor
update scheme, performed after each layer of the circuit,
which would truncate the inner dimension to some maxi-
mum value κ and the bond dimension to some maximum
value χ with a canonicalization of the MPDO for improving
simulation accuracy. The complexity of this scheme is only
proportional to DN for an N-qubit circuit with depth D. The
cost of our entire simulation scales as ∼NDκ3χ3.

We apply our method to simulate the random quantum
circuit with different noise models, including the dephasing
noise, the depolarizing noise, and the amplitude damping
noise. We demonstrate that the MPDO approximates the noisy
output quantum states well, while the method based on matrix
product states fails to approximate the noisy output quantum
states for any of the noise models considered. This indicates
that the bond dimension truncation method of the MPS sim-
ulation might not represent any local noise model in real
physical systems. With a further look into the deviation from
the Porter-Thomas distribution for the ideal random circuit
case, relatively small bond dimension for the MPDO method
already grasps some “qualitative behavior” of the noisy output
distribution. To test our method with a real quantum computer,
we run random circuits on an IBM 16-qubit device. The com-
parison between experimental data and the simulation based
on the MPDO method demonstrates that relatively small χ

and κ can indeed simulate the noisy random circuit efficiently.

We organize our paper as follows. In Sec. II, we discuss
the error models we use for our circuit simulation. In Sec. III,
we discuss the MPDO method for simulating noisy quantum
circuits and its complexity. In Sec. IV, we present our results
based on the MPDO method, and compare with an exact
noise simulation based on density matrices, and the MPS
method based on bond dimension truncation, for different
error models. In Sec. V, we study the effect of truncation on
the bond and inner dimensions. In Sec. VI, we run several
1D random circuits on 10 qubits of the 16-qubit IBM device
ibmq_16_melbourne, and compare with our simulation. Sum-
mary of the results and discussions on future directions will
be given in Sec. VIII.

II. NOISE MODELS

Physical noise E for quantum systems with a quantum state
ρ are generally characterized by the Kraus representation, as
given by

E (ρ) =
∑

k

EkρE†
k , (2.1)

where Ek’s are the Kraus operators and fulfill∑
k E†

k Ek = I [1].
For the quantum circuit of N qubits with single-qubit and

two-qubit quantum gates, normally the fidelity of single-qubit
gates are much higher than that of the two-qubit gates. We will
then assume that all single-qubit gates are ideal, and model the
noise only on the two-qubit gate U by

ρ →
∑

k

UEkρE†
k U †, (2.2)

where Ek’s acting on the same qubits of U .
Alternatively, for the noisy channel by E , we can denote the

channel corresponding to the two-qubit gate U by U , hence
rewrite Eq. (2.2) as

ρ → U ◦ E (ρ). (2.3)

In this work, we consider the following noise models.
(i) Dephasing noise.
The dephasing noise on a single qubit can be modeled by

ρ → EDF (ρ) = (1 − ε)ρ + εZρZ†, (2.4)

where ε ∈ [0, 1], and Z is the Pauli operator.
(ii) Depolarizing noise.
The depolarizing noise on a single-qubit U can be modeled

by

ρ → EDP(ρ) = (1 − ε)UρU† + ε
I

2
. (2.5)

Notice that, for a quantum circuit with gate noise modeled
by depolarizing noise, the density matrix of the output state
under will also be given in the form of a global depolarizing
noise, i.e.,

ρ → (1 − α)|ψ〉〈ψ | + α
I

M
, (2.6)

where |ψ〉 is the corresponding noiseless output state, and
M = 2N with N the number of qubits in the system.

(iii) Amplitude damping noise.
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FIG. 1. The structure of the matrix product density operators
(MPDO). Instead of directly using a tensor M to form a matrix
product operator, we choose M to be composed by the red tensor T [r]

and the blue tensor T [b], where T [b] = (T [r] )†. By so, the MPDO will
automatically satisfy the hermiticity of a density matrix, although
T s are general fourth-order tensors. In this way, the parameters of
the model can be fully used on the one hand, and the inner indices
between the T [b] and T [r] have emerged on the other hand. Those
inner indices can be used to describe the classic entropy of the
system. At the same time, when the classic entropy is small, the
model’s computational cost will become significantly smaller.

The amplitude damping noise on a single-qubit gate can be
modeled by

ρ → EAD(ρ) = A0ρA†
0 + A1ρA†

1, (2.7)

where A0 = (1 0
0

√
1 − ε

), A1 = (0
√

ε

0 0 ).
For a noisy two-qubit gate U , we could simply model the

above three noises by

ρ → U ◦ E⊗2(ρ). (2.8)

III. MODELING NOISE SIMULATION BY MATRIX
PRODUCT DENSITY OPERATORS

By applying MPOs instead of MPSs, one can extended the
error model to represent mixed quantum states, which allows
us to introduce typical random noise in a more direct and
efficient way. As shown in Fig. 1, we use the MPO to represent
the density matrix ρ of N qubits,

ρ =
2∑

s1,s′
1...,sN ,s′

N =1

M
s1,s′

1
L1,R1

IR1,L2 M
s2,s′

2
L2,R2

· · · IRN−1,LN MsN ,s′
N

LN ,RN

× |s1, . . . , sN
〉〈

s′
1, . . . , s′

N |, (3.1)

where I is the identity matrix connecting the left and right
indices, and ρ denotes the density matrix of a mixed quantum
state. sk and s′

k are known as the “physical” indices, which ex-
pand into the 2N × 2N density matrix ρ. Lk and Rk denote the
left and right “bond” indices, which carry some information
of entanglement between qubits.

However, there are at least two reasons that directly using
the tensor M to form an MPO representation of the density
matrix may not be the best choice. First, since the density ma-
trix is a Hermitian matrix, we must guarantee that M = M†,
which will make at least half of the M parameters invalid,

resulting in additional computational overhead. Second, con-
sidering the density matrix ρ = ∑

k λk|φk〉〈φk|, when k is not
too many, the density matrix can be regarded as the sum of the
direct products of several state vectors. In this case, it is very
inefficient to use tensor networks to model the direct product
of state vectors instead of the sum of several states itself.

Therefore, a proper way to ensure the hermiticity of density

matrix ρ is the MPDO method [24], which designs the M
sk ,s′

k
Lk ,Rk

to be composed by a general fourth-order tensor T sk ,ak
lk ,rk

and its

conjugate copy (T
s′

k ,ak

l ′k ,r
′
k

)∗,

M
sk ,s′

k
Lk ,Rk

=
dk∑

ak=1

T sk ,ak
lk ,rk

× (
T

s′
k ,ak

l ′k ,r
′
k

)∗
. (3.2)

In others words, the MPDO is composed of a general MPO
and its conjugation. The indices Lk and Rk of M correspond to
the direct product of indices lk ⊗ l ′

k and rk ⊗ r′
k , respectively.

In practice, the dimension of lk and rk bond indices Dk are
restricted to a certain maximum value χ .

The two conjugate MPOs were connected by the “inner”
indices ak , which could carry the classical information of the
system. This “inner” dimension will increase by adding sta-
tistical noise. The dimension of the inner indices dk would be
no more than 2DkDk+1. While in some cases, we still truncate
the dk to a smaller number κ < 2DkDk+1. The memory cost
of the MPDO would only be proportional to 2Nκχ2. Note
that if we use the M matrix directly, the memory cost will be
4Nχ4, which means that if κ reaches the upper bound, those
two models cost almost the same memory. While if the system
noise is small, the dimensions of the inner indices will be fixed
at a smaller value, and the model will consume significantly
fewer resources than using M directly.

To be more intuitive, here we give two particular examples
of the MPDO. The first example is the density matrix of
a pure quantum state ρpure = |s〉〈s|, where sk ∈ {0, 1}. The
corresponding T(k) is {Tsk ,ak

lk ,rk
: T sk ,0

0,0 = 1, others : 0}. For the
density matrix of a maximum mixed state ρmix = ( 1

2 |0〉〈0| +
1
2 |1〉〈1|)⊗N , the T(k) can be written as {Tsk ,ak

lk ,rk
: T 0,0

0,0 = T 1,1
0,0 =

1√
2
, others : 0}.
Applying gates and noise on the MPDO is straightforward.

Considering the symmetry of the density matrix, one only
needs to apply the gate to half of the density matrix, which
is the MPO; the rest automatically becomes the conjugation
of updated tensors. It is worth mentioning that the identity I
of the depolarizing noise in (A1) can also be decomposed into
two conjugate parts using 2I = ρ + ∑

i=x,y,z σiρσ
†
i , where σi

are Pauli matrices. As Fig. 2(a) shown, the one-qubit gate
wouldn’t change any topology or dimensions of the MPDO,
we could do it exactly with complexity ∼κχ2.

A two-qubit gate would be represented as a fourth-order
tensor U . As shown in Fig. 2(b), we first contract the gate with
the corresponding qubits, which form a sixth-order tensor W .
It can be separated into two new MPO tensors by the singular
value decomposition. In general cases, applying a two-qubit
gate would increase the dimension of bond indices between
the two qubits to min(2Dkdk, 2Dk+2dk+2). If we truncate it to
χ , the approximation error is ∼ ∑

j=χ+1 λ2
j/

∑
i=1 λ2

i , where
λi are the singular values in descending order. More details
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(a)

(b)

(c)

FIG. 2. (a) Applying a single-qubit gate on the corresponding
tensor of the MPDO. (b) Applying a two-qubit gate on two corre-
sponding tensors of the MPDO. The new tensors would be obtained
by the singular value decomposition (SVD). The SVD would in-
crease the bond dimension between those two tensors, while we
could find the global optimal truncation of tensors based on the
singular value of SVD. (c) Applying noise models on the corre-
sponding tensor is equivalent to applying each noise operator on
tensor separately and then direct sum them on the inner indices. The
increased dimensions of inner indices can also be truncated using
SVD.

about the strategy of this truncation are placed at the end of
this section. The computation cost is ∼κ2χ3 for contraction,
and ∼κ3χ3 for SVD.

Compared with the MPS method as discussed in [19], the
MPDO has a clear advantage in adding noise. Unlike the state
representation, the density matrix can directly express noise
as the Kraus representation in (2.1), which avoids repeated
Monte Carlo sampling of different noise. Let’s take the am-
plitude damping noise as an example. What we need to do
is to apply the A0 and A1 in (2.7) to ρ, respectively, and
then add them directly. Same to the gate operators, we only
need to apply noise to half of ρ to save the computational
cost. Note that the summation of noise and the contraction
of the conjugate tensors are not interchangeable. To avoid
unnecessary cross-terms, as shown in Fig. 2(c), here we need
to direct sum the different noise parts on the inner indices ak .
which writes

T sk ,ak
lk ,rk

=
⎧⎨
⎩

∑
s′

k
A

sk ,s′
k

0 T
s′

k ,a
′
k

lk ,rk
ak ∈ [0, dk )∑

s′
k

A
sk ,s′

k
1 T

s′
k ,a

′
k

lk ,rk
ak ∈ [dk, 2dk ),

(3.3)

thus,

M[new] =
∑

ak

T T † = A0M[old]A†
0 + A1M[old]A†

1. (3.4)

The computational cost of applying noise is ∼mκχ2; m is the
number of terms of the noise model.

There is an interesting fact behind the structure of the
MPDO. Note that the two-qubit gate introduces entanglement
entropy into the system, and it only increases the dimension of
the bond indices; meanwhile the single-qubit noise introduces
classical statistical entropy into the system, and only increases
the dimension of the inner indices. Therefore, if there is no

truncation, in the final structure of the MPDO, the dimen-
sions of the bond indices and inner indices will be related
to the quantum entanglement entropy and classical statistical
entropy of the system, respectively. The exact relationship
between bond/inner dimensions and entanglement/classical
entropy remains an open question.

In many cases, especially those with significant noise, a
small dimension of bond indices is enough to ensure high fi-
delity. So in order to remove unnecessary parameters, we may
truncate the bond indices and inner indices, simultaneously.
More specifically, we will first do a local optimal approxima-
tion on inner indices by SVD, which separate tensor T into

T sk ,ak
lk ,rk

=
∑

μ

= U sk ,μ

lk ,rk
SμVμ,ak , (3.5)

where Sμ is the singular value of T , U , and V are the unitary
matrix. Then we only keep κ largest Sμ and corresponding
orthogonal vectors in U and V . The approximate M can be
written as

M ≈
κ∑

μ=1

U ′S2U ′†. (3.6)

We repeat this process on each of the inner indices. Then,
before we truncate bond indices, we first apply QR decom-
position from the left of theMPDO to the right to form a
canonical form of the MPO, which writes

T sk ,ak
lk ,rk

=
∑

μ

Qsk ,ak
lk ,μ

Rμ,rk , T ′sk ,ak
lk ,rk

= Qsk ,ak
lk ,μ

,

T ′sk+1,ak+1

lk+1,rk+1
=

∑
lk+1

Rμ,lk+1 T sk+1,ak+1

lk+1,rk+1
. (3.7)

After applying this on all qubits, all tensors except the right-
most one are left canonicalized. In other words, they fulfill∑

lk ,sk ,ak

T sk ,ak
lk ,rk

T sk ,ak

lk ,r′
k

= Irk ,r′
k
, (3.8)

where I denotes the identity matrix. This canonicalization will
ensure the SVD truncation on the rightmost tensor is globally
optimal. We then use the SVD to truncate each of the bond
indices from right to left:

∑
lk+1

T sk ,ak
lk ,lk+1

T sk+1,ak+1

lk+1,rk+1
≈

χ∑
μ=1

U sk ,ak
lk ,μ

SμV sk+1,ak+1
μ,rk+1

. (3.9)

Note that each time the SVD changes the right tensor from left
canonicalized to right canonicalized, which results in the fol-
lowing SVD truncations are all globally optimal. Therefore,
the most economical way is first to complete a layer of two-
qubit gates and noise (see Fig. 3 for an illustration of a layer
in the dotted line circuit), then to perform a canonicalization
from left to right and the following SVD decomposition from
right to left. Compared with canonicalizing on each qubit in-
dependently, the order of this scheme reduces the complexity
of canonical truncation from a factor of N2 to a factor of N
without loss of the accuracy. The total cost of simulating an
N-qubit circuit with depth D is ∼DNκ3χ3. Note that while the
canonical form of the MPO cannot be used to find the global
optimal truncation of inner indices. we could still use the full
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FIG. 3. Sketch of the 1D random circuit with qubits number N =
7 and depth D = 5. The gray dotted line outlines the structure of
one layer. The circuit is interleaved by layers of single-qubit gates
(colored boxes) and two-qubit gates (the dots connected to a blank
box). The single-qubit gates are randomly sampled from the set of
universal single-qubit quantum gates. The two-qubit gates are either
control-NOT or control-Z with equal probability.

update method similar to that used in the higher dimensional
tensor network to find its global optimal truncation, in case
there are some people willing to tolerate excessive calculation
costs.

IV. COMPARISON MPDO SIMULATION
WITH DIFFERENT MODELS

Our numerical experiments are applied on the 1D random
circuit illustrated in Fig. 3. The colored boxes repre-
sent various single-qubit gates randomly generated from
eiα(σx sin θ cos φ+σy sin θ sin φ+σz cos θ ) with three random parame-
ters α, θ, φ ∈ [0, 2π ), which traverse the space of universal
single-qubit gates. The lines and the blank boxes connecting
two qubits represent either control-NOT (CNOT) or control-Z

gates with equal probability. It is known that such kinds of
(pseudo-)random circuits with big enough depth D could yield
an approximately Haar-distributed unitary, and generate en-
tanglement efficiently [29–31]. This kind of (pseudo-)random
quantum circuit has been discussed extensively for demon-
strating quantum supremacy [7,13,32,33].

We perform four different models to simulate this circuit.
(i) A simulator based on the state vector [15,34] for exact

noiseless simulation.
(ii) A simulator based on the density matrix [35] for exact

noise simulation. The noise would apply to each two-qubit
gate.

(iii) An MPS simulator based on approximating a pure state
by SVD method, as discussed in Ref. [19].

(iv) An MPDO simulator based on approximating a density
matrix by a conjugated tensor network structure and SVD, as
discussed in Sec. III. The noise would apply to each two-qubit
gate.

TABLE I. Noise rates in different noise models.

Fidelity MPS Dephasing Depolarizing Amplitude damping
with ρ0 bond dim noise rate noise rate noise rate

0.102 2 0.0231 0.0302 0.0454
0.183 3 0.0167 0.0220 0.0332
0.378 4 9.47 × 10−3 0.0125 0.0188
0.450 5 7.75 × 10−3 0.0102 0.0155
0.559 6 5.63 × 10−3 7.45 × 10−3 0.0113
0.644 7 4.25 × 10−3 5.64 × 10−3 8.51 × 10−3

0.745 9 2.84 × 10−3 3.76 × 10−3 5.69 × 10−3

0.847 12 1.59 × 10−3 2.12 × 10−3 3.20 × 10−3

0.931 15 6.88 × 10−4 9.14 × 10−4 1.38 × 10−3

0.999 28 9.94 × 10−6 1.33 × 10−5 2.01 × 10−5

Various noise models have been considered, including the
dephasing, the depolarizing, and the amplitude damping noise
model, as discussed in Sec. II.

A. Comparison based on fidelity

We consider the random circuits with 10 qubits and depth
D = 24. For clarity, we define the following notations.

(i) ρ0 denotes the output density matrix of the exact noise-
less simulator, which corresponds to a pure state representing
the exact output the noiseless random circuit.

(ii) ρe denotes the output density matrix of the exact noise
simulator, which gives the exact result of simulating the circuit
with given noise models by state vector technique.

(iii) ρs denotes the output density matrix of the MPS sim-
ulator, which corresponds to a pure state subject to different
truncation up to some maximum bond dimension χ .

(iv) ρd denotes the output density matrix of the MPDO
simulator, which is subject to different truncation up to
some maximum bond dimension χ and maximum inner
dimension κ .

The fidelity between two quantum states are given by

F (ρ, σ ) ≡ Tr
√√

ρσ
√

ρ. (4.1)

For comparing the MPS simulator with others, we define a
parameter r as

r = F (ρ0, ρs), (4.2)

which corresponds to a certain bond dimension truncation χ .
For each χ and noise model, we could find a corresponding
error rate ε in ρe that satisfied

F (ρ0, ρe) = r. (4.3)

We summarize the values of χ and corresponding ε in Table I.
We then use the MPDO simulator to simulate the noisy

random quantum circuit for different error models with error
rate ε as given in Table I. We set max bond dimension χ = 32,
and max inner dimension κ = 48.

For each r and each noise model, we calculate the fidelity
of F (ρe, ρs), which demonstrates how the MPS method ap-
proximates the exact result of the noisy output density matrix,
given the same fidelity of r = F (ρ0, ρs) = F (ρ0, ρe). We
also calculate the fidelity of F (ρe, ρd ), which demonstrates
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(a) (b) (c)

FIG. 4. Fidelity comparison for ρ0, ρe, ρd , and ρs, where r = F (ρ0, ρs ) = F (ρ0, ρe). (a) The dephasing noise; (b) the depolarizing noise;
(c) the amplitude damping noise.

how the MPDO method approximates the exact result of
the noisy output density matrix. Our results are shown in
Fig. 4.

From Fig. 4, it is clearly shown that when noise gradually
became significant, the MPS simulator gradually failed to
simulate all three noise models considered, even if it gives
the fidelity with the exact noiseless state with ρe. This indi-
cates that the MPS truncated approximation is not simulating
physical noise in real systems. On the other hand, the MPDO
method approximates ρe well, which can, in fact, simulate any
physical noise as given by the MPDO model construction.

B. Deviation from the Porter-Thomas distribution

For general random circuits, when D ∼ N , the output states
would reach to the Porter-Thomas distribution. However, in
the real world, a certain physical foundation would cause
certain types of noises, which leads to the deviation of output
states from the Porter-Thomas distribution. This deviation
should be correctly captured by a proper noisy simulator.

In this section, we consider random circuits with 15 qubits
and depth D = 24. We focus on analyzing how the Porter-

Thomas distribution changes due to the effect of noise, and
compare the different method of simulation.

For a density matrix ρ, consider a random variable pi =
〈xi|ρ|xi〉 for xi is the ith bit string from {0, 1}N , thus |xi〉 is one
of the computational basis.

If there is no noise, the output pure state |ψ〉 is resulted
from the random circuit U :|ψ〉 = U |0〉. Then for a pure state,
the probability of getting a certain base |xi〉 is

pi = |ci|2 = |〈xi|U |0〉|2. (4.4)

For a random circuit with sufficiently large depth, the distri-
bution of {p = pi(x)} is known to follow the Porter-Thomas
distribution,

Pr(p) = (M − 1)(1 − p)M−2 = M(e−M p + O(1)), (4.5)

with expectation 1/M [32], where M = 2N .
For random circuits with 15 qubits and depth 24, we cal-

culate the cumulated p distribution for different noise models
with the following.

(i) The Porter-Thomas distribution (corresponding to a ex-
act noiseless simulator).

(ii) Distribution given by an exact noise simulator.
(iii) Distribution given by an MPS simulator.

(a) (b) (c)

FIG. 5. Exact noisy simulation of cumulated p distributions for 1D random circuit with 15 qubits and 24 layers, under three different error
models with different noise rate. (a) The dephasing noise; (b) the depolarizing noise; (c) the amplitude damping noise. As the system noise
increases, the cumulated p distribution gradually deviates from the Porter-Thomas distribution.
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(a) (b) (c)

FIG. 6. Approximate results of the cumulated p distribution for different noise simulators. The system is a 1D random circuit with 15
qubits and 24 layers, under three different error models. (a) The dephasing noise; (b) the depolarizing noise; (c) the amplitude damping noise.
The green dashed line refers to the result of exact simulation. As a signal that MPS cannot faithfully be simulated with noise, when χ increase,
the distribution of MPS simulation will only get closer and closer to the Porter-Thomas distribution, while MPDO can gradually approach the
correct cumulated p distribution.

(iv) Distribution given by an MPDO simulator discussed in
Sec. III.

In Fig. 5, we compared the Porter-Thomas distribution
with exact simulations of different cumulated p distributions
under three different types of noise to show the derivation of
the output from the Porter-Thomas distribution. Notice that
the behavior of amplitude damping in Fig. 5(c) is different
compared to the other noise models. This is expected, because
when the noise rate became large, the density matrix through
the dephasing channel or the depolarizing channel would
reach a maximum mixed state, while the amplitude damping
channel makes the density matrix a pure state.

Results of approximated simulation are summarized in
Fig. 6, which clearly shows that the MPDO distribution
can approach its corresponding exact noisy distribution
with the increase of the bond dimension χ and the inner
dimension κ .

FIG. 7. Analysis result of the deviation from Porter-Thomas dis-
tribution under the depolarizing noise

The MPS method does not approximate the actual output
distribution of ρe. Notice that a relatively small bond and
inner dimensions χ = κ = 32 for the MPDO simulation al-
ready grasp some qualitative behavior of the cumulated p
distribution.

For the depolarizing noise, we can also study the deviation
from Porter-Thomas distribution analytically. As discussed in
Sec. II, the output density matrix of the random circuit will
be in the form of certain global depolarizing noise, as given
in (2.6). In this case, the distribution of {p = pi} will be given
by

P((1 − α)p1 + αp2 < p)

=
⎧⎨
⎩

0, if 0 � p � α
M ,

1 − (
1 − p−α/M

1−α

)M−1
, if α

M < p < 1 − α + α
M ,

1, if 1 − α + α
M � p � 1.

(4.6)

The detailed derivation of Eq. (4.6) is given in Appendix.
For different values of α, we plot the accumulated p distri-

bution in Fig. 7. For large α, the distribution approaches the
jump function, which corresponds to the uniform distribution.
Notice that the analytical result is based on the global noise α,
for which the numerical simulation given in Fig. 6(b) is based
on the gate noise ε. In general, α is a (complicated) function
of ε that depends on both N and D (Table I provides some
intuition of this function for N = 10, D = 24). Nevertheless,
the results of Fig. 6(b) qualitatively agree with the analytical
results given by Fig. 7, which also demonstrates that the
MPDO simulation delivers reasonable output.

V. TRUNCATION OF BOND AND INNER DIMENSIONS

In this section, we study the effect of truncation in our
MPDO for bond and inner dimensions. We consider random
circuits with 10 qubits and depth D = 24.

We first study the effect of truncating the bond dimension.
Notice the bond dimension, in fact, puts an upper bound for
the inner dimension. That is, when the bond dimension is
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(a) (b) (c)

FIG. 8. F (ρe, ρd ) for different noise rates and different MPDO with maximum bond dimension χ and maximum inner dimension κ = 2χ .
(a) The dephasing noise; (b) the depolarizing noise; (c) the amplitude damping noise.

truncated to a maximum value of χ , the inner dimension is
upper bounded by 2χ2. For each of the error models with
different error rates, we choose to truncate the bond dimension
to a maximum value χ and also truncate the inner dimension
to a maximum value κ = 2χ and compute F (ρe, ρd ) to see
how well the MPDO method approximates the exact noisy
result ρe. Our results are shown in Fig. 8.

As shown in Fig. 8, when the gate error is larger than some
threshold (approximately 0.01 for all the error models), the
smaller bound dimension suffices to simulate the noisy cir-
cuits, indicating it is the regime that the noise is large enough
for the quantum circuit to be “easy” for classical simulation.

We further study the effect of truncating the inner dimen-
sions. For each of the error models with different error rates,
we choose to truncate the bond dimension to a maximum
value χ = 32 and to truncate the inner dimension to a max-
imum value of κ . We compute F (ρe, ρd ) to see how well the
MPDO method approximates the exact noisy result ρe. Our
results are shown in Fig. 9.

As shown in Fig. 9, in case of weak system noise, the
smaller inner dimension suffices to simulate the noisy circuits.
In this case, the memory cost of MPDO is significantly less
than the MPO method by directly using the M tensor.

VI. EXPERIMENTS ON IBM QUANTUM DEVICES

To test our MPDO method with real quantum computers,
we run several 1D random circuits on the IBM device. We use
the 15-qubit device ibmq_16_melbourne [36]. The structure
of ibmq_16_melbourne is shown in Fig. 10.

We run 10-qubit random circuits on a chain, which con-
sists of the qubits 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, and simulate
these circuits with our MPDO method. The parameters of
ibmq_16_melbourne are given in Table II. The rightmost col-
umn shows the CNOT error rates. cxi_j represents the error
rate for CNOT operation of control qubit-i and target qubit-j.
cxi_j = cxj_i always holds, so we just list one of them.

Consider three 10-qubit random circuits with D =
4, 8, 12, 16 layers, respectively. Each circuit is run and mea-
sured in the computational basis on ibmq_16_melbourne for
8192 times. We assume the noise model is depolarizing noise,
and simulate these circuits via MPDO according to the noise
rates given in Table II.

Denote P(xi ) as the probability of bit string xi in ex-
periment, and Ps(xi ) as the probability of xi in our MPDO
simulation. To measure the similarity between P and Ps, we
use the Kullback-Leibler divergence between the distributions

(a) (b) (c)

FIG. 9. F (ρe, ρd ) for different noise rates and different MPDO with inner dimension κ . (a) The dephasing noise; (b) the depolarizing
noise; (c) the amplitude damping noise.
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FIG. 10. Structure of ibmq−16−melbourne.

P and Ps as given by

H (P, Ps) =
∑

P(x) log P(x) −
∑

P(x) log Ps(x). (6.1)

We first show the results between MPS models and experi-
ments in Fig. 11(a). We truncate the bond dimension of MPS
to a maximum value χ . However, the K-L divergence of the
MPS model no longer drops with increasing χ when it reaches
∼0.5, which indicated that the MPS model fails to express
the real physical noise in quantum circuits. For our MPDO
simulation, we truncate the bond dimension to a maximum
value χ and also truncate the inner dimension to a maximum
value κ = 2χ . The results of H (P, Ps) are shown in Fig. 11(b).
Then we truncate the bond dimension χ to a maximum value
32 and the inner dimension to a maximum value κ; the results
of K-L divergence H (P, Ps) versus κ are shown in the inset of
Fig. 11(b). These results not only show that the MPDO model
is better than the MPS model in simulating a real quantum
computer, but also shows that relatively small χ and κ can
already simulate the noisy random circuit efficiently.

VII. SIMULATING QUANTUM ERROR
CORRECTING CODE

In this section, we give an example of applying the MPDO
method to simulate quantum error correction codes. We con-
sider the perfect five-qubit code [37], whose encoding circuit
is shown in Fig. 12.

For a single-qubit state in the ensemble {|0〉, |1〉, (|0〉 +
|1〉)/

√
2, (|0〉 − |1〉)/

√
2, (|0〉 + i|1〉)/

√
2, (|0〉 − i|1〉)/

√
2},

TABLE II. Noise rates of ibmq_16_melbourne.

Qubit Readout error Single-qubit U2 error rate CNOT error rate

0 0.0185 5.48 × 10−4 cx0_1: 0.0236
1 0.0915 2.78 × 10−3 cx1_2: 0.0165
2 0.0395 8.90 × 10−4 cx2_3: 0.0171
3 0.0475 3.78 × 10−4 cx3_4: 0.0169
4 0.0595 1.06 × 10−3 cx4_5: 0.0295
5 0.0615 2.34 × 10−3 cx5_6: 0.0467
6 0.027 1.27 × 10−3 cx6_8: 0.0322
8 0.283 8.13 × 10−4 cx8_9: 0.0346
9 0.05 9.66 × 10−3 cx9_10: 0.0510
10 0.03 1.60 × 10−3

we encode it to five qubits via the encoding circuit, apply a
local depolarizing noise channel to all five qubits with noise
rate 0.05, then decode and recover the initial state. Denote
the average fidelity between the initial state and the recovered
state as F (ρ,R ◦ E ).

Suppose the CZ gate in the encoder and decoder is noisy
with noise rate ε; we considered four different noise models
in total. In addition to the previous dephasing, depolarizing,
and amplitude damping noise, we also added an example of
neighboring two-qubit noise, the collective dephasing noise
[38], which is defined as

ρ → ECD(ρ) = (1 − ε)ρ + εZcρZ†
c , (7.1)

where Zc = diag(1,−1,−1, 1).
Applying a two-qubit noise on the MPDO is similar to

the single-qubit case. We only need to contract those two
neighboring tensors T [i] and T [i+1] to a merged tensor W
with a physical dimension of 4, and then directly apply the
two-qubit noise gate to W as the way of the single-qubit noise
gate. Finally, the SVD decomposition is used to separate the
W into two new tensors. The product of the inner dimension

(a) (b)

FIG. 11. K-L divergence between simulations and experiments on the ibmq_16_melbourne device. (a) K-L divergence H between
experimental results and simulation results of MPS with maximum bond dimension χ for circuits with D layers. (b) K-L divergence H
between experimental results and simulation results of MPDO with maximum bond dimension χ and maximum inner dimension κ = 2χ for
circuits with D layers. (Inset) K-L divergence H between experimental results and simulation results of MPDO with maximum inner dimension
κ and maximum bond dimension χ = 32 for circuits with D layers.
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FIG. 12. Encoder of [5,1,3] code.

of those two tensors is equal to m times of the inner dimension
of W , where m is the number of terms of the noise model.

We simulate the aforementioned quantum error correcting
process with exact density matrix simulation and MPDO sim-
ulation. The maximum bond dim and inner dim in MPDO are
χ = 16 and κ = 32. The results of recovered fidelity versus
gate noise ε for different noise models are shown in Fig. 13.
The simulation results of the MPDO are close to the exact
ones even with a relative small χ and κ .

VIII. DISCUSSION

In this work, we have developed a method to simulate noisy
quantum circuits based on MPDO. We show that our method
approximates the noisy output states well. The method based

on MPS bond dimension truncation, failed to approximate the
noisy output states for any of the noise models considered,
indicating that the MPS method might not represent any local
noise model in real physical systems.

Our MPDO method exhibits the following advantages.
(i) It reflects a clear physical picture, with inner indices

taking care of noise simulation, and bond indices taking care
of two-qubit gate simulation.

(ii) Both bond and inner dimensions can be truncated using
the SVD method, adaptive to the need of different situations
of the noise simulation.

(iii) In case of strong system noise, small bond dimensions
are sufficient to simulate the noisy circuits.

(iv) In case of weak system noise, the memory cost of
MPDO is significantly less than the MPO method.

(v) With an effective tensor update scheme that truncates
the inner dimension up to a maximum value κ and bond di-
mension up to a maximum value χ , performed after each layer
of the circuit, the cost of our simulation scales as ∼NDκ3χ3,
for simulating an N-qubit circuit with depth D.

(vi) Experimental results on IBM devices demonstrate that
relatively small χ and κ can simulate the noisy random circuit
efficiently.

(a) (b)

(c) (d)

FIG. 13. Recovered fidelity versus gate noise ε for [5,1,3] perfect code. The blue line is the fidelity without quantum error correction.
(a) The dephasing gate noise; (b) the depolarizing gate noise; (c) the amplitude damping gate noise; (d) the collective dephasing gate noise.
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It remains an interesting open question to understand fur-
ther the relationship between bond/inner dimensions and
entanglement/classical entropy. It is also highly desired to
generalize our method to simulate noisy circuits in two spatial
dimensions so that we can more directly compare it to 2D
experimental data from, e.g., Google’s experiments [7].
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APPENDIX: DEPOLARIZING NOISE

Consider a simple mode of the depolarizing noise, which is
widely used by experiments and known to be a good model for
simulating many real quantum systems [7]. Consider a system
of N qubits. If the final error rate is α, then the final noisy state
can be written as

ρ = (1 − α)|ψ〉〈ψ | + α
I

M
, (A1)

where M = 2N and |ψ〉 is the ideal final state with the distri-
bution,

Pr(p) = (M − 1)(1 − p)M−2. (A2)

We notice (A1), where the first term |ψ〉〈ψ | corresponds to
the exact output, while the second term I

M corresponds to the
noise with uniform distribution, which is the white noise.

For the first term, we already know that the random vari-
able p1 = |〈ψ |φ〉|2, with the state |ψ〉 chosen uniformly at
random in the full space, satisfies Porter-Thomas distribution,
i.e., (A2). For the second term, by similar manipulation, we
have that p2 satisfies the single point distribution, with the

density function to be

Psp(p) = δ

(
p − 1

M

)
. (A3)

Then we calculate the probability with noise. Note that p ∈
[0, 1] in (A2) and (A3), however, for convenience; we should
make some extension of the function Pr(p) and Psp(p). We
define

Pr(p) :=
⎧⎨
⎩

0, if p < 0,

(M − 1)(1 − p)M−2, if 0 � p � 1,

0, if p > 1.

For Psp(p), we directly make the 0 extension.
According to (A1), since the assumption that white noise

is independent of the exact result, the probability with noise
should be

P((1 − α)p1 + αp2 < p)

=
∫∫

(1−α)x+αy<p

Pr(x)Psp(y)dxdy

=
∫ +∞

−∞

∫ p−αy
1−α

−∞
Pr(x)δ

(
y − 1

M

)
dxdy

=
∫ +∞

−∞

∫ p

−∞

1

1 − α
Pr

(
z − αy

1 − α

)
δ

(
y − 1

M

)
dzdy

=
∫ p

−∞

∫ +∞

−∞

1

1 − α
Pr

(
z − αy

1 − α

)
δ

(
y − 1

M

)
dydz

=
∫ p

−∞

1

1 − α
Pr

(
z − α/M

1 − α

)
dz. (A4)

By further calculation, we obtain the result

P((1 − α)p1 + αp2 < p)

=

⎧⎪⎨
⎪⎩

0, if 0 � p � α
M ,

1 − (
1 − p−α/M

1−α

)M−1
, if α

M < p < (1 − α) + α
M ,

1, if (1 − α) + α
M � p � 1.

(A5)
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