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Formal and computational aspects of light cone quantization are studied by 

application to quantum chromodynamics (QCD) in one spatial plus one temporal 

dimension. This quantization scheme, which has been extensively applied to per- 

turbative calculations, is shown to provide an intuitively appealing and numerical13 

tractable approach to non-perturbative computations as well. 

In the initial section, a light-cone quantization procedure is developed which 

incorporates fields on the boundaries. This allows for the consistent treatment 

of massless fermions and the construction of explicitly conserved momentum and 

charge operators. 

The next section, which comprises the majority of this work, focuses on the 

numerical solution of the light-cone Schrodinger equation for bound states. The 

state space is constructed and the Hamiltonian is evaluated and diagonalized by 

computer for arbitrary number of colors, baryon number and coupling constant 

strength. As a result, the full spectrum of mesons and baryons and their associated 

wavefunctions are determined. These results are compared with those which exist 

from other approaches to test the reliability of the method. The program also 

provides a preliminary test for the feasibility of, and an opportunity to develop 

approximation schemes for, an attack on three-plus-one dimensional QCD. . 
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Finally, analytic results are presented which include a discussion of integral 

equations for wavefunctions and their endpoint behavior. Solutions for hadronic 

masses and wavefuctions in the limits of both large and small quark mass are 

discussed. 
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-- 
INTRODUCTION”’ 

Quantum Chromodynamics (QCD), a field theory of strong interactions based 

on the gauge group SU(3), potentially describes all of hadronic and nuclear physics 

in terms of quarks and gluons as fundamental degrees of freedom. The short- 

distance structure of this theory, probed in processes involving large transfers of 

momentum, is relatively well understood. In this region, QCO is asymptotically 

free, and the effective interaction strength diminishes with increasing momentum. 

As a result, perturbative calculations become possible, and thus far have provided 

the best opportunities for experimental confrontation and confirmation. However, 

the most significant and intrinsically nonperturbative aspects of the theory, its pre- 

dictions for the spectrum and wavefunctions of hadrons, as well as the mechanisms 

for confinement and jet hadronization, remain unsolved. . 

Lattice gauge theory, in which the Feynman path integral is evaluated on a 

discrete spacetime grid, provides an appropriate tool for such calculations. For 

strong coupling, it provides an appealing description of confinement. Numerical 

results in general have been consistent with experiment, if qualitative, and there 

is little doubt their accuracy will improve with increasing computing power. 

Nevertheless, there is certainly room for the development of other methods. 

In this work, the general nonperturbative approach to field theory,“Discretized 

Light-Cone Quantization (DLCQ)“, introduced by Pauli and Brodskg in Ref. [2] 

is applied to SU(N) gauge th eories in one space and one time (1 + 1) dimensions as 

an initial step in that direction. In addition to this numerical approach, analytic 

solutions in the limits of both strong and weak coupling are presented. Throughout, 
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the quarks are limited to one flavor, but several values of the number of colors, IV, 

are included. 

SU(N) gauge theories restricted to 1 + 1 dimensions possess certain special 

properties which should be mentioned for the sake of orientation. Because there 

are no transverse directions, the gluons are not dynamical, and (in A+ = 0 gauge) 

their presence is felt only by the constraint equation they leave behind. Likewise 

the quarks carry no spin. The fermion field may be represented as a two-component 

spinor, and chirality for massless fermions identifies only the direction of motion. 

The coupling constant g carries the dimension of mass, so that the theory is su- 

perrenormalizable. Also, for one quark flavor of mass m, the relevant measure of 

coupling strength is g/m. Finally, the restriction to one spatial dimension produces 

confinement automatically, even for QEDr+l. The electric field is unable to spread 

out and the energy of a non-singlet state diverges as the length of the system. 

In spite of these idiosyncrasies, these models possess certain qualities to com- 

mend their study, not the least being tractability. There are only so many oppor- 

tunities to solve, albeit numerically, a confining field theory with arbitrary cou- 

pling from first principles. With solutions in hand, conceptual questions, points of 

principle, or approximation schemes for QCD which do not depend on the dimen- 

sionality of the model may be addressed. Also, these models provide a concrete 

example on which to test approximation schemes and numerical techniques which 

may prove useful for realistic problems, and a means to check those, such as the 

large-N expansion, already in use. Ultimately, though, the motivation for this 

study is negative. If these models cannot be solved, there is no hope for applying 

this method to QCD in 3 + 1 dimensions. 
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_- 1. QUANTIZATION 

1.1. LIGHT-CONE QUANTIZATION 

Quantization on the light-cone is formaliy similar to standard canonical equal- 

time quantization, but with a few technical differences which nevertheless make 

life much I31 easier. Given a (Lorentz-invariant) Lagrangian fZ(zp), a new variable 

2+ z x0 + x3 is defined to play the role of time, along with new spatial variables 

(in four dimensions), x- z x0 - x3 and xl E (x1,x2). 

In these coordinates, the non-zero elements of the metric tensor are 

g+-=g-+=2 

g+- =g-+=3 P*l) 

9 
ij = gi j = -@, 

with i and j representing the (transverse) directions 1 and 2. Under longitudinal 

Lorentz boosts (that is, in the x3 direction) x+ and x- transform as exp(fo)r*. 

The quantization surface xs = 0 is preserved, accounting for some of the simplified 

Lorentz properties of this scheme. This is especially true in two dimensions, where 

only this boost is possible. Because the Hamiltonian P- changes by only an overall 

scale, its eigenstates are Lorentz-invariant. Under parity transformations, however, 

x+ and x- are interchanged, and while parity will be conserved, its realization will 

not be as simple. 

Independent degrees of freedom are identified by the equations of motion. 

These are initialized to satisfy canonical commutation relations at x+ = 0, and 
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the creation and annihilation operators from their momentum space expansion 

define the Fock space. The momenta conjugate to x- and XL, P+ and P-L re- 

spectively, are diagonal in this space and conserved by interactions. P- acts as a 

Hamiltonian; in general it is complicated, dependent on the coupling constant, and 

it generates evolution in 2 +. Diagonalizing it is equivalent to solving the equations 

of motion. 

The mass shell condition, p2 = m*, for individual quanta implies that p- = 

Cm2 + P~VP+, so that positive (light-cone) energy quanta must also carry positive 

p+. This seemingly innocent detail is actually a very good thing; the positivity of 

p+ combined with its conservation is responsible in large part for the simplicity 

of this approach. First, x+- ordered perturbation theory becomes calculationally 

viable because a large class of diagrams which appear in the time-ordered ana- 

.logue vanish!’ These include any diagram containing a vertex in which quanta 

are created out of the vacuum; since all p+ are positive, at such a vertex the total 

momentum cannot be conserved. 

More importantly for the work described here, but by essentially the same 

reasoning, the perturbative vacuum is an eigenstate of the full, interacting Hamil- 

tonian, with eigenvalue zero. Pairs of quanta cannot be produced which conserve 

P * +tsl One very desirable feature of this remarkable fact is that not only is the 

ground state trivial, but also that all the quanta occurring in higher states are 

associated with meson and baryon wavefunctions rather than disconnected pieces 

of the vacuum. 

Finally, it greatly simplifies the numerical work, especially in 1+ 1 dimensions!61 

The system is quantized in a box of length L in the x- direction with appropriate 
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boundary conditions so that momenta are discrete and Fock space states denumer- 

able. For the fixed total momentum P +, the relevant dimensionless momentum 

will be I< 2X . = LP+ To see how I< restricts the space of states, consider Ii’ = 3, 

which must be partitioned among the quanta in each state. The only three pos- 

sibilities are (3), (2, l), and (1, 1,l). Contrast this with equal-time Fock states of 

definite PI. For equivalent numerical momentum, partitions will include not only 

those enumerated above, but also (4, -1), (104, -lOl), (5,5,3,1, -1, -lo), and so 

on. To keep the number of states finite, an additional cutoff in momentum must 

be introduced, whereas this is not necessary in the light-cone case. 

Not only does a fixed K act implicitly as a momentum cutoff, it also severely 

limits both the total number of states of definite momentum and the number of 

quanta in each individual state, as the example above demonstrates. K serves one 

more role. The continuum limit L + co is equivalent to li: -+ 00 as the physical 

momentum Ps remains fixed. The size of I< determines the physical size of the 

system, or equivalently, the fineness of the momentum space grid. 

1.2. LONG RANGE FIELDS AND CONSERVED CHARGES 

It is common in field theories in one spatial dimension for fields to persist, at 

large distances because of the lack of dimensions in which to spread. Among other 

consequences, it leads almost trivially to confinement for both QED and QCD, 

and to severe infrared divergences associated with massless scalars which prohibit 

Goldstone bosons!” Even in four dimensions, because they single out one direction, 

axial gauges such as A3 = 0 or A+ = 0 also lead to persistent fields!’ As a’result, 



boundary terms may not be discarded arbitrarily, and must be taken into account 

during quantization, particularly in two dimensions!s’1o1 

Light-cone quantization introduces this problem even for free fermions; when 

massless, physical degrees of freedom live on the boundaries in z-. This simple 

ease in two dimensions will be discussed first in some detail, because it is simple 

and the necessary outcome is known, and because it leads to a framework for 

handling related problems in less trivial systems. The approach here will follow 

that of McCartor~ll who has applied it to quantize the massless Schwinger Model 

on the light-cone. 

To cope with fields which may not diminish sufficiently at large distances to 

discard, the system may be studied in a box of length 2L in both Z- and s+ 

directions. In this way, boundary terms may be explicitly incorporated. 

Figure 1. Surfaces Used to Define Charges. 

The objective in quantizing a theory on the light cone is to cast it in terms of 
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convenient degrees of freedom while leaving intact its physical content. With this 

in mind, a time-independent charge Q derived from a conserved current jr which 

is conventionally defined on an initial surface x0 = 0, 

km 
Q J = dx’j’(O, x1) (1.2) 

-fiL 

may be rewritten in terms of jr at x+ = 0 provided that the flow through the 

boundaries { 1) and (3) in Fig. 1 is accounted for: 

L 0 L 

Q+ 
J 

dy-j+(O, y-) + ; 
J 

dy+j-(y+, L) + $ 
J 

dy+j-(y’, -L). W) 

-L -L 0’ 

If the currents drop off sufficiently in x-, this reduces to the more usual light-cone 

definition; this will not always be the case. The charge Q(xt) at an arbitrary x+, 

provided that it is defined by integrating on a surface extended to the x0 = 0 axis, 

will be independent of xp and equivalent to Q defined as in Eq. (1.2). Specifically, 

Q(x+) = ; 1 

2+ L 

dy-j+(x+, y-) + 3 
J 

dy+j-(y+,L) + ; 
J 

dy+i-(y+, -L). (1.4) 

-L -L 2+ 

satisfies a+Q(x+) = 0 identically by 8,jJ‘ = 0; the x+ derivatives of the last two 

terms explicitly cancel the surface terms from the first. 

With this prescription, the conserved momenta P” in terms of the energy- 

momentum tensor W’” defined at zc+ = 0 are then 

L 0 L 

pb = ; 
J 

dy-O+p(O, y-) + $ 
J 

dy+W‘(y+, L) + ; 
J 

dy+O-‘(y+, -L). (1.5) 

-L -L 0 
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1.3. QUANTIZATION OF FREE FERMIONS 

The Lagrangian density for free fermions, 

L = $(!j i$+ - m)$, (1.6) 

in two dimensions and light-cone coordinates and explicitly in terms of left and 

right spinor components is 

The corresponding equations of motion are 

and both components satisfy 

(a’ + nZ*)$L,R = 0. (1.10) 

In standard light-cone quantization, independent fields are specified at x+ = 0. 

However, x+ = 0 (as well as x- = 0) is a characteristic surface of the wave equation; 

as such, it is not in general possible to specify adequate initial conditions (or 

commutation relations to quantize them) on x+ = 0 alone. See, for example, Refs. 

[12] to [14]. For the specific case when m = 0, $L becomes a function of x+ alone, 

and initial conditions must be given on a surface (that is, a line in two dimensions) 

at no point tangent to lines of constant x+, such as the surface x- = 0. 



To quantize this system in a way which incorporates the m = 0 case naturally 

and also takes advantage of the surfaces in Fig. 1 on which charges are defined, 

the system is confined to a box of length 2L in Z+ and Z-. By using Eqs. (1.8) 

and (1.9), it is simple to identify which fields are independent; that is, which 

initial conditions are appropriate. Suppose that GR is specified along surface (2) 

at x+ = 0. On this surface, Eq. (1.9) is a constraint. By fixing $L at one point on 

this surface, at (0, -L) for example, $L may be determined along it by integration. 

Now that both ?,f)R and $r, are known on {2}, Eq. (1.8) may be used to evolve d?~ 

to the surface x+ = 0 + AZ+. Again, fixing +L at an intersecting point on surface 

(3) allows $L to be integrated out along x+ = Ax+ by Eq. (1.9), and so on. It 

is sufficient by construction then to specify $R on x+ = 0 and $L on surfaces { 1) 

and (3) (or alternatively on x- = 0) to fully determine the solutions throughout 

the box. To quantize, the conjugate momenta which generate evolution off of these 

surfaces, 

on surface (2)) and 

on { 1) and (3) are assigned commutation relations 

{ nR(x-), ‘bR(Y-)) = -i&(X- . 

(1.12) 

Y-J (1.13) 

and 

{ nL(x+), $L(YS>} = -++ - Y+). (1.14) 

To realize Eq. (1.13) on x+ = 0, $R may be expanded in normal modes after 
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imposing appropriate boundary conditions. Periodic boundary conditions require 

a state of momentum k+ = 0, where Ic+ is conjugate to x-, for completeness, but 

such a state cannot be a solution of the free equation of motion k+k- = m2 unless 

m2 = 0: However, antisymmetric boundary conditions allow $JR to be expanded in 

a set of such solutions which is also complete. “‘I Then 

,,!YR(O,x-) = & g (bnCiyz- + d;e’+-) . 

vzF,p,... 

with anticommutation relations 

{b,,, b!,.,} = { dn, dt,) = &,m; (1.16) 

the remaining anticommutators are zero. 

(1.15) 

To treat I+!JL and $JR symmetrically, $L is expanded on { 1) and (3) such that 

tLLk+, w (1.17) 

for which the argument x- is 4-L for x+ < 0, -L for x+ > 0. The operators 5, and 

d’ and their adjoints satisfy similar anticommutation relations, but commute with 

b and d because they represent independent degrees of freedom. 

The energy-momentum tensor for free fermions, 

. (1.18) 



has components 

(1.19) 

e-+ = o+- = m (‘i&R -t &L) . 

The evolution operators are then, by Eq. (1.5) 

For the special case where nz = 0, substitution of Eq. (1.15) into 

L 

p+= 
I 

dx-$$x$R (z+=o) 

I 
-L 

gives 

P+ = z (F) (b;bn + d;d, - 1) ; 
n=5,z,... 

(1.21) 

(1.22) 

the divergent vacuum momentum may be discarded. Because $L is expanded in 

Eq. (1.17) in deliberate analogy to $R, 

0 L 

p- = 
I 

dx+$~i~$L(x+, L) t dx+$Lixllr.(x+, -L) 
I 

(1~~~) 

-L 0 
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_ 
produces 

(1.24) P- = g 

n=q,z,... 

Because the untilded and tilded operators anticommute, states composed of the 

former have P- = 0, while the latter satisfy P+ = 0. Clearly then the b!, and d: 

create massless, right-moving particles of equal-time momentum 

p’ = 4 (p+-p-)++=Y 

and energy 

po = 3 (p++p-)+P+=Y, 

while the &L and 2: have 

p’ = Lp-=-y 

and 

pup-=y 

and are left-moving. Also, the vacuum values subtracted correspond to 

(PO) = 3 (p+) + 4 (p-)=-X (T) 

(P’)=$ (P’)-+ (p-)=0; 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.39) 

as usual, only the energy P” requires a subtraction. The degrees of freedom and 

physical interpretation of the usual equal-time quantization have been preserved; 
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specifically, both left- and right-moving massless fermions have been retained. This 

is particularly important when defining the vector and axial vector currents 

3 -cc = . . l+Jy’ll, : 

with components 

and 

Their corresponding charges are 

(1.31) 

L 0 L 

Q(5) = 3 
J 

dx-j&(0, x-) + 3 
/ 

dx+jG)(x+, L) + 3 
J 

dr+j& (x+, -L). (1.32) 
-L -L 0 

Note that if the $L degrees of freedom were not retained, j” and j! would be 

indistinguishable. In momentum space, . 

00 
Q(5) = CC b;bn - d:dn (t, 

> ( 
bt_,,b-, - dt,d-, 

> 
1 3 n=5,p,... 

(1.33) 

where the left-moving L, and (2n have been re-written as b-, and d-,. 

When the fermion mass is not identically zero, then in P-, for example, from 

Eq. (1.20), th ere is an additional term proportional to m which requires both ~+!J,R 

and $L along the contour. On the surface x+ = 0, where T+!JR is specified, $L maJ 

be determined by Eq. (1.9). The most general solution is 

L 

v,hL(O, x-) = -$ 
J 

dy-6(x- - Y-)$R(o,Y-)-+ 3 [tiL(o,L) +$‘L(o,-L)b (1.34) 

-L 

The last boundary term depends on conditions chosen on the surfaces perpendicular 

to x+ = 0 and is independent of $R. Eq. (1.34) is true independent of discretization, 
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and the boundary term is essential so that $JL(X-) transforms correctly under 

symmetry transformations such as Lorentz boosts. 

Substitution into the mass term in Eq. (1.20) for P- gives, from the term with 

$R in Eq. (1.34), the usual light-cone energy 

2 ($)c 
b:bn + d:dn + const. 

> 1 3 n=5,z,... 

with pi E 2nn/L. The boundary term contributes 

L 
m 2 [/ 

dx-&O,x-)]~ [+L(O,L) +~L(O,-L)I+ co+ 
-L 

or in momentum space, 

m 

5F 
~~(b!,+d,,)~(b~+&) tconj. 

n .f 

(1.35) 

(1.36) 

(1.37) 

For finite L, this represents a well-defined interaction between the formerly massless 

left- and right-moving quanta. However, in the continuum limit the integral over 

?,?!JR (or the sum over n) reduces to a term proportional to bi $ do, which contributes 

infinity from the factor m2/p+ in Eq. (1.35). Therefore, from this term, all of the 

& and 2 couple to states which contain bo or do, with P+ = 0 and P- = 00. 

An analogous result is obtained for the operator P+, but with plus and minus, 

and tilded and untilded operators reversed. In the continuum limit for massive 

fermions, then, the Poincare algebra must be built either on the tilded or untilded 

operators. The two are related by parity, but separated by an infinite energy 

barrier, and the choice determines whether x+ = constant or z- = constant is 
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treated as the usual light-cone quantization surface. It is at this point, then, 

that the well-known phenomenon occurs in which light-cone quantization removes 

half of the fermionic degrees of freedom. Apparently, this is only appropriate for 

massive fermions. 

The final result is physically sensible. In the continuum limit, the surface 

x+ = 0 is inadequate for specifying initial conditions for massless particles because 

left-moving particles can run parallel to it; conditions on a surface such as x- = 0 

must also be specified. When massive, however, any particle with finite momentum 

will intercept this surface at some point. For extremely energetic particles, however, 

this point may be very far away in x-, so this statement is only true if the length 

2L of x- included is infinite, In fact, it may be shown explicitly that the surface 

x+ = 0 is sufficient to specify solutions to the massive wave equation by mapping 

these solutions onto those completely specified on a space-like surface, such as 

X0 = 0. 

Because the goal of this numerical work is to obtain continuum limit solutions, 

the fermion masses will be kept finite, terms such as that in Eq. (1.37) will be 

explicitly excluded, and massless fermions will be considered as a limit. 

1.4. QUANTIZATION OF SU(N)I+.I 

An SU(N) gauge theory is defined by the Lagrangian 

L= -a FpvaF$ + G(iQ - m)$. 

F:,, is the field strength tensor 

F” pu = 4x - &A; - gfObCA;A; 

(1.3s) 

. (1.39) 
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and the covariant derivative is defined as 

iD, = ia, - gA;T”. (1.40) 

Operator ordering is potentially important; for example, the fields A; will not com- 

mute after quantization, and in expressions such as Eq. (1.39) should be considered 

as appropriately symmetrized. 

The gauge group generators satisfy 

[T” , Tb ] = ifabCTC (1.41) 

and are normalized such that 

Tr T”Tb = 3 6ab; (1.42) 

the structure constants fabc are fully antisymmetric. The completeness relation 

will be useful when constructing the Hamiltonian. The second term on the right 

is a result of the tracelessness of the generators, and is not present for the gauge 

group U(N). 

In two dimensions, the fermion field (in a representation in which 7’ is diagonal) 

1c, (1.44) 

is a two-component spinor in the fundamental representation. L and R indicate 

chirality, which, for massless fermions specifies only -direction. In that case, +L 
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is a function of only x+, 7+6~ of x-. The chiral y matrix representation is used 

throughout. Explicitly, 

with the chiral projection operators 

(1.46) 

As usual, 

{ y , 7” } = 2gv (1.47) 

A useful gauge choice is Awa = 0. As is generally the case for axial gauges, there 

are neither ghosts nor negatively normed gauge bosons, so the Fock space quanta, 

and therefore the wavefunction constituents are physical and positively normed. 

In particular, these gauges allow constraint equations to be solved for explicitly at 

the Lagrangian level, so that only physical degrees of freedom are quantized and 

appear in the Hamiltonian and space of states. Also, in 1 + 1 dimensions, this 

gauge choice is Lorentz (but not parity) invariant. 
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The equations of motion are then 

-a: A-” = P@“$R (1.49) 

ia+$R = 3 gA-aTa$R $3 rn$L (1.50) 

a+a-A-a = g&TatjL - 3 gf abca-A-bA-C. (1.51) 

Here and throughout, when not shown, color indices on the fermion fields are 

implied. As was the case with free fermions, it is important that all real degrees 

of freedom are identified, and in particular, that those associated with boundary 

terms are not discarded. This is necessary in axial gauges even for equal-time 

quantization and in four dimensions!““‘16”“81 

To quantize SU(N)r+l, charges will again be defined to account for bound- 

ary terms and will be explicitly conserved. As discussed in Refs. [lo] and [S], 

boundary terms for the gauge field appear which cannot be made to vanish at in- 

finity, and which are related to the residual gauge symmetry under x--independent 

transformation. 

In this gauge, the Lagrangian reduces to 

& =+ ( d-A-“)2 - g$&A-“T”+R 
(1.52) 
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while the elements of the energy-momentum tensor become 

@-- = 2$$& - 2gp$~A-“T”$L (1.53) 

Also, 

3 -+* = 2g&T*$R 
(1.54) 

---D 3 = 2g&,T”$L - gf abclL A-b A-C 

are the conserved currents associated wit,h global gauge transformations. 

The generators P+ and P- will be constructed in the same way as for free 

fermions, using Eq. (1.5). B ecause they are explicitly independent of z+, they ma] . 
be defined at x+ = 0, along the contours in Fig. 1. Including gauge fields, 

p+= 
J 

dy-$@?$R 

-L 

L 

+ 4 (a-A-“)2 + y (&L + &R)] 

and 

3 (a-A-*)2 + y (&L + &R)] 

(1.55) 

(1.56) 

+ J I dy+ t,bLix$L - g$LA-“Ta+L 
I 

. 

-L 

The integrals over y + are to be understood as over contours { 1) and (3) in’ Fig. 1 
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throughout this discussion. In order to quantize, the degrees of freedom may be 

determined from the equations of motion, Eqs. (1.48) to (1.51). 

Again, consider the system in a box of length 2L in x+ and x-. Specifying 

+R dOng X+ = 0 allows $JL, A-* and a-A-* to be determined from Eqs. (1.48) 

and (1.49), which are constraint equations on this surface, provided that they are 

specified at one point; for example, at (x+ = 0,x- = -L). Knowing these along 

x+ = 0, Eq. (1.50) gives the evolution of $R to the next x+ + Ax+ surface. 

Within this box, then, it is sufficient to specify $R at x+ = 0 (that is, surface 

(2) of Fig. 1 ), and A-*, d-A-” and $L on surfaces {I} and (3); these are then 

the independent degrees of freedom. 

Two comments are warranted. First, differentiating Eq. (1.51) with respect to 

x- shows it to be consistent with Eqs. (1.48) to (1.50), but only up to a boundary 

term independent of x-. Second, setting A+” = 0 does not complet,ely fix the 

gauge, as any x --independent gauge transformations preserve A+” = 0. This 

residual freedom may be used to fix A-” on one boundary!lB”o**J On the other 

boundary, A-“ would then be given in terms of other physical quantities. It will 

prove advantageous, however, to expand the phase space to include A-” as a 

physical degree of freedom, and to eliminate it at later stage. 

On surfaces of constant x+, Eqs. (1.48) and (1.49) are constraint equations and 

may be solved explicitly: 

L 

q,L(x) = -% 

J 
dy-e(x- - y-)‘i’R(x+#-) 

-L 

+ f [?)L(x+, L) + tiL(x+, -4 

(1.57) 
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L 

d-A-*(x) = -f 
J 

dy-6.(x- - y-)$!JkT”g~(x+, y-) 

-L 

+ 3 [a-A-*(x+, L) + a-A-*(x+,-L)] 

and 

L 

A-“(z) = - f 
J 

dy-lx- - y-b&T*ti~(x+, Y-) 
-L 

+ 3 x- [a-A-“(x+,L) + a-A-*(x+,-L)] 

+ 3 LQ”RO(x+) + 3 [A-*(x+, L) + A-*(x+, -L)] 

where the moments Q$*’ are defined as 

L 

QR - 
*(*I = 

J 
dy- (Y->” &T”ti~(x+, ~7. 

-L 

(1.58) 

(1.59) 

(1.60) 

In spite of the appearance of L, these solutions are completely general, as no 

boundary conditions have been imposed. Provided that the fields at fL, as well as 

L itself, transform as usual, these are fully invariant under Lorentz and residual- 

gauge transformations. Also, from Eqs. (1.57) to (1.59), these fields at x- = &L 

are related by 

L 

?+bL(x+, L) - $L(x+, -L) = -iy 
J 

dy-$R(x+, Y-1 9 

-L 

d-A-*(x+, L) - &A-*(x+,-L) = g&;(O) 

(1.61) 

‘(1.62) 
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and 

A-*(x +, L) - A-*(x+,-L) =gQ;“’ 

(1.63) 

+ L [A-*(x +, L) + A-*(x+,-L)] . 

Eq. (1.62) in particular gives the integral form of Gauss’ Law. Therefore, $L, 

A -*, and a-A-” are independent variables at only one boundary. To completely 

solve the equations of motion they must be specified at either L or -L, but not 

both independently, and in particular, none of these be set to zero at both ends. 

As a convention, when x+ = 0, the average of the two boundary terms, such as 

(1/2)[A-‘(0, L) + A-*(0,-L)], will be treated as the independent variable; see 

Fig. 1. 

On surfaces (1) and {3}, $L, A-*, and a-A -* are the independent degrees of 

freedom, and Eq. (1.50) b ecomes a constraint equation. In principle, I/JR may be 

solved for by inverting ia+ - (g/Z)A-*T”. Th is may be expressed iteratively, but 

the explicit solution will not be needed. 

The independent degrees of freedom may now be quantized by postulating 

canonical commutation relations for the momenta which generate translations per- 

pendicular to the surfaces on which they are defined. Then, at x+ = 0 (surface 

while on { 1) and {3}, 
6L 

xL = 6(a+bR) 

7r; = 
ix 

a(a- A-*) 
= d-A-“. 

(1.64) 

(1.65) 
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The anticommutators for $JR and $L are given in Eq. (1.13) and (1.14). In addition, 

[TV , A-b(yS)]~~~+(3~ = -iFb6(x+ - y+). (1.66) 

As usual, fields which are independent commute. The independent fields may be 

expanded in creation and annihilation operators such that the (anti)commutation 

relations are realized, and from these the Fock space may be constructed. 

The final result of solving for dependent degrees of freedom where appropriate 

and substituting in Eqs. (1.55) and (1.56) at x+ = 0 is that 

p-=-i+ 
J 

dx-dy-c(x- - Y-)&X-)+R(Y-) 

- $ 
J 

dx-dy-$LT*$R(x-)lx- - y-I$kT*$~(y-) 

+ 
J ( 

dy’ &&h(y+) - g3~A-“T%(y+) 
(1.67) 

and 

+ $ LQ$‘)Q$‘) + Lr;n; + gr;Q”d” 

p+= 
J 

dx-t+hkiF$R $ f 
J 

dx+ (T;)~ 

ln2 
+4 

J ( 
dy+ +; [ia+ - f A-“T”]-’ $L + [ [ia+ - 4 A-*TO] -I $L] + d’~) . 

(1.68) 

Also, the total gauge charge defined at x+ = 0 is 

Q” = Q”d”’ + 1 dy+ ($$T”GL - 3 jabcx;A-c) . (1.69) 
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and the Lorentz boost generator is 

1 =- 4 J dy- (y-@++ - x+@+-) + f J dy+ (x-@-+ - y+@--) 
(21 01+{3) 

-$Ljdy+($ (a-A-“)2+~&)+fL]dyt($ (a-A-*)2+~$+) 

0 -L 
(1.70) 

with dependent fields replaced where appropriate. 

The canonical momentum ?ri is given by a- A-* = (1/2)F+-* on the bound- 

ary, and acts as an x --independent background chromoelectric field. As such, it 

contributes to P- in Eq. (1.67) an energy proportional to the length of the system, 

and couples to the first moment of the charge density, Q;(l). 

The momenta Pp generate the equations of motion Eqs. (1.48) to (1.50), and 

the fourth equation, Eq. (1.51), up to a boundary term. However, the price paid 

for treating A-“ on surfaces { 1) and (3) as a physical degree of freedom to allon 

the simple commutation relation Eq. (1.66) is that Eq. (1.51) on the x- boundary, 

G”(x+) E a+r:+ 4r obcxf4A-c -g$iT*$L x 0 (1.71) 

cannot be satisfied as an operator equation. G”(x+) is, in fact, the generator 

of the residual x--independent gauge transformation, which acts by changing the 
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boundary conditions which would be necessary to fully fix the gauge!] For example, 

on surface {3}, the commutator 

dx+A*(x+)G*(x+) , Avb(y+, -L)] 

(1.72) 

= a+Ab(y’)+! fbaCAa(y+)A-C(y+ -L) , 3 

with Aa parametrizing the residual transformation. Eq. (1.71) must then be 

imposed on the space of states. Because it generates residual gauge transforma- 

tions, it commutes with the generators Pp, so that these will not move the states 

off this surface. Replacing 

(1.73) 

this condition on matrix elements becomes . 

P’ physical 1 (f”bc~~A-c(~‘) - $LT"~~L(x+))I~)+I~) I@physicat) = 0. (1.74) 

In this space, 

$~A-“T”$L(x+) M  fa*cA-ax;A-c(x+) = 0, (1.75) 

and $JLA-“T”$L effectively vanishes from P- and I<B, restoring some of the sym- 

metry between +R and ~,!JL. Also, Eq. (1.69) for Q” becomes, by Eq. (1.71), 

Q” M Q;(O) + [(g-L, L) - n$(L, -L)] 

(1.76) 

= Q”d”’ + [~TI(x’ = 0, x1 = -X&L) - r;(x” = o, x1 = AL)], 

and the generator of global gauge transformations may be given entirely in terms 

of $R, and ~1 at two points on the boundary. 
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This is reminiscent of equal-time quantization in the A0 = 0 gauge. There 

the phase space is expanded to include (in four dimensions) the three spatial A’ 

with canonical conjugates E’. Gauss’ Law, &E’ - p = 0, which generates time- 

independent gauge transformations, is abandoned as an operator equation but 

imposed on the states. 

Actually, this is more than reminiscent. The equations of motion in the gauge 

A -* = 0 are 

ia& = 7 +L (1.77) 

ia-ll,L - 4 A+“T”$L = 7 $‘R 

where the canonical momentum 

Iri = 
6Jc 

b(a+A+“) 
= a+A+“. 

(1.78) 

(1.79) 

(1.80) 

-- 

(1.81) 

The fields initialized on the boundaries (1) and (3) in the A+” = 0 gauge and 

appearing in P+ and P- evidently correspond to those which would have been 

obtained by usual light-cone quantization in the gauge A-” = 0, with left and right, 

+and- interchanged; in particular, with x- the time variable and x- = constant 
an initial surface. The condition on states, Eq. (1.74), after this interchange, 

corresponds to Eq. (l.SO), which is Gauss’ Law. 
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At this stage, an apparently consistent quantization scheme has been set up 

in which charges and spacetime generators are conserved by construction, and 

boundary terms have been explicitly included. No real use has been made of the 

box length 2L, and once it is taken to infinity, the scheme is evidently also Lorentz 

invariant. This includes the constraint, Eq. (1.74), which was obtained from a 

Lorentz-invariant equation of motion. 

In the continuum limit, $L on the boundaries couples to $JR only through an 

infinite-P-, zero-P+ mode, as previously discussed for free fermions. With the 

introduction of gauge fields, new terms have appeared in P-, Eq. (1.67), which 

also become infinite in this limit. To construct a state space in which this limit is 

sensible, that is, in which these terms vanish, consider first states only containing 

degrees of freedom associated with $R. To couple these directly to $L, an infinite 

energy $R particle must first be produced. In addition, $R couples to x2 by the 

a(l) * term A$QR m P-, but Qi(” is a non-singlet operator. States of ?/JR for which it 

does not vanish are infinite in energy due to the presence of the Casimir operator 

LQ~(“)Q>‘o) in P-. This is in contrast to electrodynamics in two dimensions, 

where the moment Q ) can still couple to a charge singlet, and for which T,J is (1 

related to the physically relevant 8 Ilo1 parameter. These are the only couplings 

between +R and the boundary degrees of freedom. Consequently, the sector of 

color-singlet states composed of only $R is separated from that with $L, A-* and 

~2 by an infinite-energy barrier. 

The result of this very long song and dance is that a representation of the color 

and Poincare algebra with finite matrix elements may be constructed in terms of 

singlet states of $R alone. In particular, the condition on the states, Eq. (1.74), is 
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trivially satisfied. Another representation based on +L and corresponding to the 

gauge A-* = 0 could be constructed as an alternative; this will not be developed 

here. 

Finally, in the GR sector, 

L 

p+ = J dx-$ki8?$R, 

-L 

while the Hamiltonian 

(1.82) 

L 
p-=2$ J dx-dy-c(x- - Y-b&(X-)+R(Y-) 

-L 
(1.83) 

L 
-$ J dx-dy-&T*$R(x-)1x- - y-I$‘$?‘R(~-). 

-L 

These will be evaluated in the sector for which the charge operator 

L 

Q” = Q”b”’ = J dx-t+!&Ta$R 

-L 

vanishes. When not otherwise indicated, the products of fields $XT”$R, which 

come from the normal-ordered current js*, are independently normal-ordered, as 

in P- and Q” above. 
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1.5. DISCRETE HAMILTONIAN, MOMENTUM AND 

BOOST OPERATORS 

As ,is typically done, the anticommutation relation for ~/JR(X) at x+ = 0, 

Eq. (1.13), may be realized by expanding +R in solutions of the free equations 

of motion, 

tiR(o, x->c = & 2 (b,,, ciyz- + d;,, e+-) . 

1 3 *=5,5,... 

and assigning the relations 

{ bn,cl , bk 1 = 

(1.S1) 

to the coefficients. It has proven useful to maintain the distinction between upper 

and lower color indices, as in these relations, particularly in the computer code. 

The adjoint representation, however, is real and in it no such distinction exists. -- 

To treat this system numerically, it is quantized in a box in x- of length 2L. 

Because fermionic fields appear in measurable quantities as bilinears, either peri- 

odic or antiperiodic boundary conditions are appropriate. As previously discussed, 

the latter will be employed to allow for an expansion in solutions of the free wave 

equation which is also complete. 

The Fock space of states is constructed by applying creation operators to the 

vacuum in all possible independent color-singlet combinations. The operators P’ 

and P- in this basis are obtained by substituting the expansion in Eq. (1.84) into 

Eqs. (1.82) and (1.83). 
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The result is, for P+, 

E n (brbn,, + dL,,d:) 
1 3 n=pT,... 

(l.S.5) 

after discarding an infinite vacuum momentum. P+ is diagonal in this basis, and 

independent of both quark mass m and coupling g. Quarks carry a momentum 

2mz/L in physical units. That P+ generates translations in z- may be explicitly 

verified: 

[P+ , l,bR(o, X-)] = -ia+$R = -;?a-?,bR. (1.86) 

The charge operator Q” defined in terms of the normal-ordered current, 

L 

Q J 

00 
a = dx- : $XTat+h~ : = 

CC 
b;Tab, - df,T”d, 

> 
-L TX;,;,... 

is also diagonal. It generat,es global color transformations, 

[Q" ,+R,L]=-T~$R,L 

and 

[Q” , Kb] = if4bcA-C, 

(LS7) 

(l.SS) 

with $L and A-= defined as functions of $R. 

Finally, P- is relatively complicated, is dependent on the coupling constant, 

and acts as the Hamiltonian, evolving the system in x+. In two dimensions, g 

carries the dimension of mass. The quark mass m is the only other dimensional 
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parameter, and apart from an overall and arbitrary mass scale, solutions depend 

on the ratio g/m. It is convenient to introduce the dimensionless coupling constant 

XE (l+ni2,g2)‘, or i=(s)‘. (1.89) 

as in Ref. [20], where X varies from zero when g/m is zero, to one when g/m is 

infinite. 

Defining the dimensionless momentum 

and Hamiltonian 

(1.90) 

the dependence on the box length drops out of the mass- squared operator, and 

hi2 = P+P- = $KH = 
m2 

(1 _ A?f-H* (1.91) - .% 

The dimensionless Hamiltonian H separates into the free and interacting terms, 

Ho and HI, with 

H = (1 - X?)Ho + X”Hr. (1.92) 

The free Hamiltonian Ho sums the energy nz’/k+ of free quarks, 

Ho = 2 
l+‘&... 

; (btb,,c + d!,,d$ , 

while the terms in HI are displayed in Tables [l] and [2]. 

(1.93) 
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Table [l] 

1) 

2) 

3) 

4) 

,5> 

(6) 

(7) 

I3I 

-T 
3-t 
3-t 

cc2 c3 
Cl c4 [ n3 - nl In4 + n2] bkdL3,c3d2,c2dZl 

CE;E; [nl + n3 In2 - n4] btn",'bn3,C3bn2,C2d~, 

C c4 c3 
c2 Cl 1 n2 - n3 I nl + n4] bn,,crd~3,cadfil?d~l 

{-CE:,'f [n4-n3jn2--nl] 

+c;; :; [ n4 + 1x2 I - 711 - n3] ) b!: 'bn3,C3d!12QC2d$ 
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Table [2] 

f (*)c,{[~-w-~l 

-[n+41 -n- P] ) { bt,cbn,c + d!z,cd;) 

These are summed over the half-integers ni such that momentum is conserved. 

The color matrix is defined by 

(1.94) 

while the bracket 

[nlm] = -$6.+m,o (1.95) 

represents the instantaneous gluon propagator corresponding to the linear potential 

in t-. 

-- 

The interaction Hamiltonian HI is composed of a product of currents j+(l which 

are individually normal-ordered. Rearranging terms to put HI in normal order, as 

in Table [I], produces the quark self-energy terms of Table 121. These interactions 

include a finite renormahzation of the quark mass, and, in color singlets, cancel 

infrared divergences from the four-quark interactions. 

The possibility of infrared divergences due to the divergence of the gluon prop- 

agator, Eq. (1.95) at zero momentum transfer, is related to the long range confining 

behavior of the linear potential. Eq. (1.95) is only strictly correct for non-zero n 
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and m. The finite box length naturally regulates this behavior, and the contribu- 

tion to the interacting part of P- when either n or m or both are zero may be 

computed directly form Eq. (1.83). It gives 

g2 1 
-8 L 

[- (Q~Q"(~) + Q4(2)Qa) + LQ~Q"] . (1.96) 

This vanishes between color singlets, and there are therefore no infrared divergences 

in this sector. It is consistent, then, to simply discard interactions with zero 

momentum transferred. 

In the continuum, several prescriptions have been employed to regulate the 

gluon propagator, including a sharp cutoff in the momentum transfer p+ near 

ZerOIm21 and pole prescriptions for l/p2 such as’231 

1 
( 

1 1 
5 (p+)2 + ic + (p+)2 - ie > 

and 

1 
5 ( 

1 
(p+ + icy + (p+ : 42 > * 

(1.97) 

(1.98) 

The differences are simplest to understand in terms of the spatial potentials that 

their Fourier transforms produce. The third is simply IX-I, while the first two 

effectively shift the potential by an infinite and negative constant. As is clear 

form Eq. (1.83), such a shift adds a term to P- proportional to (g2/c)Q4Qa, 

which for the system in a box, is equivalent to including the term (g2/4)LQaQa. 

which appears in P- directly in the potential. This makes confinement manifest 

in both the potential and in quark propagators, and in Refs. (211 and [22] was used 
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to-calculational advantage. In the space of color singlets, however, the various 

prescriptions are consistent. 

As a final comment on the Hamiltonian, no terms appear in which quarks either 

disappear or emerge from the vacuum. This is a consequence of the combination 

of the positive-definiteness of the light-cone momenta and the requirement of its 

conservation at vertices. In contrast to equal-time quantization, the vacuum cannot 

be coupled to any other state, and so is an exact eigenstate. 

The Lorentz boost generator in terms of only $R fields, 

L 

I<B = ; 
J 

dx- x-q!&i&bR , 

-L 

after discretization becomes 

(1.99) 

(-1) ?(m-n) b + tn + ‘> bt b 
m-n 

mn - d:drn) 

+ (-1)2(m+n+l) Cm - n, 
m+n+l (&d! + dm bn) ] . 

where the divergent term is discarded when m = n. As may be verified, at zs = 0, 

$R obeys the boost relation appropriate for a right-handed, spin one-half field, 

i[ I’& , $‘R(x-)] = (3 + x-a-) $‘R(f-) (1.101) 

even at finite L. Fields which depend upon $R, such as $L, will also transform cor- 

rectly, apart from boundary terms, which would require the retention of boundar? 

fields in Eq. (1.99). 
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Lorentz invariance is broken by choosing boundary conditions at a fixed L; 

while not evident in Eq. (1.101), it can be seen in that I(B is not diagonal, and so 

does not annihilate the vacuum. In the continuum limit, however, the non-diagonal 

term oscillates to zero, and the Lorentz invariance of the vacuum is restored, 

1.6. LORENTZ AND PARITY PROPERTIES OF \‘VAVEFUNCTIONS 

The effect of Lorentz boosts and parity transformations on wavefunctions is 

simplest to study in the continuum, where it is convenient to normalize the creat.ion 

and annihilation operators relativisticallyf2° For example, 

{ 
tc2 

bp+,c1, bk+ 
> 

= 47rk+b;;6(X-+ -p-t), 

and so forth. With this normalization, 

l,bR(+= f-3 [a,,,,~-fp+= + d;,ceip+=] 
2 

so that $R satisfies 

{+Rk)cl 3 &Yf2 }z+=y+ = 6:;+- - Y->. 

(1.102) 

(1.103) - -: 

(1.10-1) 

Here, z is employed as a spacetime variable to avoid confusion with the momentum 

fraction, or Bjorken variable, z. Also, 

+L(z-)c$-!!$ (a) [bp+,cC~p+z~ -d~,ce~ptz-]. (1.105) 
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Eigenstates may be normalized analogously, 

(cj(p+) 1 q5( k’)) = 4xk+qk+ - p+). 

Then, for example, if the valence meson is defined such that 

the wavefunction d(x) is normalized to one: 

1 

J 
dz q!~~(x) = 1. 

0 

(1.106) 

(1.107) 

(1.108) 

This normalization is convenient, as it matches that of the wavefunctions from t.he 

program. 

The generator of Lorentz boosts at z+ = 0, 

(1.109) 

is then 

00 i 
sn J [ dp+ (a,+b;:)b,t,, - b;:apt bp+,c + (a,+d;t,,)d;t - d;+,,a,td;+] . (1.110) 

0 

As a result, 

[ I<B , bii ] = ip+ap+ bi;, 
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and after some algebra, 

I(s I&.‘+)) = @+a,+ Iti( * 

The corresponding finite transformation is then 

eiuKw /t$(p+)) = It$(e-Op+)) ; 

(1.112) 

(1.113) 

boosting Iti( only scales the total momentum p+. The fraction 2, of p+ carried 

by each constituent remains unchanged, so that the wavefunction d(x) is boost- 

invariant. 

While Lorentz invariance is greatly simplified by quantizing on the light cone, 

parity becomes less transparent. In two dimensions, there are only longitudinal 

boosts, and since these leave the quantization surface intact, it is possible to con- 

struct a Hamiltonian, P+P-, and therefore wavefunctions, which are boost invari- 

ant. On the other hand, parity ( z’ c-) -zl ) interchanges z+ and z-, and Ps 

and P-, so the formalism treats left and right unevenly. Nevertheless, while parity 

interchanges P+ and P-, it clearly leaves the operator AI2 = P+P- unchanged. It 

is therefore possible, and when non-degenerate necessary, for states to have definite 

parity. 

To see how the parity operation affects wavefunction coordinates, consider 

a state of n particles of equal mass m, each carrying momentum fraction xi = 

k;/P+ = (kf + kf)/P+ and P+ = Ci k:. Define 5i to be the corresponding 

momentum fractions of the parity transformed state. To solve for these, exploit 

the fact that the ti are boost invariant to work in the center of mass frame so that 
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I 

c kf = 0. This will also be true in the transformed state where kf + -k!. As a 

result, 

p+ = ~(k~+kf)=~k; 
i i 

in both systems. Then 

x; = kf + kf kf - 
p+7 gizp+ 

kf 

and 

m2 

(1.114) 

(1.115) 

(1.116) 

Combined with 

CXi=Cii=l, 

i i 

this yields 

(1.117) 

(1.118) 

For the particular case of two equal mass particles, the momentum fractions 

x and 1 - x are simply interchanged. This inverse relation can be understood 

by noting that by x = (k” + k’)/P+, fast left-movers have x near zero as -k’ 
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approaches k ‘, fast right-movers have x near one, and parity interchanges left and 

right. 

Finally note that discretization by setting boundary conditions at fL on the 

z- axis alone explicitly breaks parity. The xi are restricted to a particular set 

of integers divided by the total integral momentum. Eqn. (1.118) then makes 

parity breaking evident, as the 5i will not in general be contained in this set. 

Obviously, this is remedied in the continuum limit. For the special case of two 

particles, however, it is soluble for any box size, since the x and 1 - x which 

are interchanged are already defined. Consequently, to determine the parity for 

a meson wavefunction, for example, it is only necessary to examine the minimum 

Fock (qq) wavefunction, at any K, for symmetry under momentum interchange. 

For example, the lowest mass eigenstates for any N or coupling are of the form 

1 

J 

dx4(xc) bt” +dt 
o (4nNx(l - x))f (l--z)p =p+*c IO) (1.119) - = 

with 4 symmetric under interchange of x and l- x. Interchanging these in the cre- 

ation operators and accounting for the opposing signs for particles and antiparticles 

under parity produces an over-all minus sign and shows this to be a pseudoscalar. 

An odd 4(x) represents a scalar. 

Alternatively, parity may be determined by computing the vacuum to one me- 

son matrix elements of the scalar and pseudoscalar color singlet operators $+ and 

&‘$?I These may be evaluated directly in terms of fields and the qij component 

of the meson wavefunction: 
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and 

(1.120) 

(01 : $y5t+b(z) : ld(k+)) = -mNiemiEL 

As expected, a d(x) odd under x c) 1 - x is a scalar and couples only to G$, while 

an even d(x) is a pseudoscalar. 

Finally, charge conjugation on these qq components interchanges quark and 

antiquark. Permuting operators and redefining momentum variables gives the same 

sign as parity, and all meson states are charge-parity even. 

1.7. CHIRAL ANOMALY 

The interacting part of the Hamiltonian P- is expressed entirely as a function 

of the current 

-+a 3 =2:&Tat& . (1.122) 

The commutator of j+a with itself is relatively easy to compute, and the evolution 

of j+a due to the interaction follows immediately. This allows for a quick and 

dirty calculation of the non-Abelian axial anomaly, assuming only that the gauge 

current is conserved. 
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The axial current 

(1.123) 
jca = - W~-“$L, 

differs from the vector current 

j+a = 23~T’gb~ 

(1.124) 
*--(I 

3 = 2$~~T~~~-f"%3-+4-~~-~, 

in the jma term, 

j,Q = -j-a _ fabCd_A-bA-C. (1.125) 

The gauge fields should be considered as appropriately symmetrized, and the cur- 

rents as normal-ordered. If the vector current is conserved, then 

a-j-" = -a+j+a (1.126) 

and therefore 

a -w 
P35 = 2a+j+' _ f abc@A-b/y (1.127) 

By the constraint equation 

-azAsb = 4 j+' (1.128) 

-b forA , 

,CJ 
P35 

‘Cc’ = 2a+j+a _ fabCA-bj+C. (1.129) 

Because the anomalous term depends only on the interaction, only that part of 

P- is needed to compute d+j+@, and the term in P- proportional to m will be 

neglected. 
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The commutators involving j+a are defined by first point splitting the two $R 

factors in j+a a distance c along x-. The exponential in A+’ needed to preserve 

gauge invariance is absent due to the choice of gauge. Then, using the expansion 

in Eq. (1.84), at x+ = 0 

[ j+a(x-) , jSb(y-)] = 2ijobcj+c(x-)~(x~ - y-) 

ibQb 

[ 1 
(1.130) 

-2Lsin(xt/L) 
qx- - y- - c) - qx- - y- + c) . 

As c vanishes, the second (Schwinger) term on the right may be represented in the 

more conventional form 

pub &-6(x- - y-). 

After some algebra and to leading order in c, 
. 

2a+j+“(x-) =i[ P- , j+a(x-)] = 

g2 
L 

-- 
8x J dy-r(x- - Y-)j+“(y-> 

-L 

(1.131) 

(1.132) 

g2 
L 

-- 
4 J dy-lx- - y-ljsb(y-)j+c(x-). 

-L 

The constraint equations for A-’ and &A-‘, neglecting boundary terms and 

using 

8-A-O = f e,,” F”‘“, (1.133) 

produces 

+ gfObCA-bj+C. (1.134) 
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This may be rewritten as 

D+ j+’ = -&LpUFC”, 

using 

DY = a+.6=c - 3 f=bq--b; 

(1.135) 

(1.136) 

also, in this gauge, 

D” = a-b==. (1.137) 

Finally, combining Eqs. (1.127) and (1.135), 

D, jt = &+,,FCYa. (1.138) 

This result is referred to as the covariant anomaly, and is discussed in Ref. [25]. 

The discussion in this work will be conducted predominantly in momentum 

space, and it is convenient to have a version of the algebra of Eq. (1.130) in terms 

of the transformed operators - E 
L 

vk” = 4 J dx-e-i2Z”2- j+O(x-). (1.139) 

-L 

The fermion fields satisfy antiperiodic boundary conditions, but the current, which 

is a product of these, satisfies periodic conditions, and the momentum k in this 

expansion is then an integer. By Eq. (1.130), th ese operators satisfy the Kac- 

Moody algebraLz6] 

[ vk” , bb ] = i jobcv;+( + 3 t6°b6k+~,0 . (1.140) 

Because states are restricted to color singlets, the transform of the U(1) current 

will be particularly important, as will be discussed in Chapter (3). 
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2. NUMERICAL RESULTS 

2.1. OVERVIEW OF PROGRAM 

The momentum, charge and Hamiltonian operators have been expressed as the 

dimensionless functions K, & and H of a discrete and denumerable Fock basis. K 

is already diagonal, so that it only remains to diagonalize H in a space in which 

& vanishes to determine the masses and wavefunctions of this system. This is 

best done by computer, and this section gives a brief outline the program used to 

accomplish this. This was run on an IBM 3081, with CPU time for the cases to be 

presented typically in the range of a few minutes. 

Once N, B and 2K are specified, all possible color-singlet combinations of h'- 

colored quarks consistent with the conserved quantities B and 2K are generated. 

(The momentum Is’ is the sum of half-integer quark momenta, so that it is con- 

venient to use 2K, which is always an integer, in this discussion.) In particular, 

to satisfy baryon number, all states begin with B N-tuplets of quarks. (B is re- 

stricted to be zero or positive, which is sufficiently general by charge conjugation 

invariance.) These quarks are understood to be contracted into SU(hr) singlets 

by antisymmetrizing in color, although in practice it is not, necessary to explicitly 

introduce color indices in order to compute color factors. To these baryons are 

appended quark- antiquark (qq) pairs, from zero to the maximum permitted by 

the momentum 2K which is divided into the positive-definite momenta carried by 

individual quarks. Again, these mesons are contracted into singlets. As for the 

baryons, color is fully contracted, and it is enough to know only which quarks are 

grouped into which singlet. 
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In addition to mesons, baryon-antibaryon pairs could be added; however, these 

are redundant to states formed by adding mesons. Finally, for U(N), B is required 

to be zero, as baryon number is essentially an electric charge for the extra U(1) 

and is also confined. 

The program to construct the Fock space is built around two subroutines. The 

first generates all possible combinations of n integers such that they sum to a fixed 

number, but with a particular integer limited to at most i appearances in each per- 

mutation. This is used to subdivide a fixed momentum among various particles. 

The index i accounts for Fermi statistics; for example, i = N for quarks (with one 

flavor) because the color degree of freedom allows the same momentum to be carried 

by at most N quarks. These permutations are stored and their locations recorded. 

The second routine is similar, except that rather than permuting momenta, it 

generates permutations of the locations of the entire momentum distributions pre- 

viously stored. The result has something of a tree structure. For example, for a 

subset of states with three mesons and two baryons, the possible ways of splitting 

momentum between mesons and baryons are run through. Within this, the total 

momentum of the mesons is split among the three mesons with bosonic statistics; 

the rest is split between the baryons with fermionic or bosonic statistics depending 

on N being odd or even. Once assigned, the possible momenta within the individ- 

ual mesons or baryons are iterated through. The final momentum assignment to 

individual quarks is checked to ensure that no more than N are the same before 

the state is stored. 

The resulting Fock space is in general not orthonormal and frequently over- 

complete. To remove redundant states, the inner-product matrix is comput,ed 
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and diagonalized, in the same way as the Hamiltonian is later computed. Over- 

completeness is indicated by zero eigenvalues. Appropriate states are dropped, the 

new matrix is again diagonalized, and so on, until no zero eigenvalues remain. The 

resulting matrix of eigenvectors with the eigenvalues divided out orthonormalizes 

the final set of states. Finally, options to further restrict the states by limiting 

the total number particles in each state by hand, or by discarding those whose 

invariant mass exceeds a cutoff, are included. 

The operators in the individual terms in the Hamiltonian are represented in 

the same form as the Fock states. The Hamiltonian matrix is evaluated by sand- 

wiching these between the complete but not orthonormal states, and then iterating 

through the momenta which these operators could carry. The original states are 

used in this stage because they are in general simpler to represent. As elaborated 

in-the Appendix A, these matrix elements are then contracted and the gluon prop- 

agators and color factors are computed. Finally, the resulting Hamiltonian matrix 

is converted to the corresponding matrix in the orthonormal basis. 

Finally, the Hamiltonian is diagonalized by standard, packaged routines, us- 

ing LU decomposition; see, for example, Ref. [27]. This produces both the full 

spectrum of states and the corresponding normalized wavefunctions, from which 

any computable quantity can be extracted up to the resolution I<. Typical values 

for I< used here were between 5 and 10, and in these cases, the time required to 

diagonalize the Hamiltonian was insignificant relative to that needed to evaluate 

it. 

Because the Hamiltonian m*Ho + g*HI breaks up into a free and interacting 

part such that the parameters m* and CJ* appear as overall constants before each, 
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the matrices Ho and HI are stored separately. Computing the spectrum for differ- 

ent g or m then only involves computing Ho and HI once, and then recombining 

and rediagonalizing at each g and m, with effectively no extra cost in time. 

2.2. SPECTRA 

One of the advantages of directly diagonalizing the Hamiltonian is that it pro- 

duces information about the entire spectrum of the theory in the form of eigenval- 

ues (masses) and eigenfunctions (wavefunctions), rather than of only the lightest 

states. 

Figs. (2) and (3) display the development of the 1 + 1 dimensional spectra for 

three colors, with baryon number of zero and one at relatively weak (X = .3325 or 

m/g = 1.6) and relatively strong (X = .9847 or m/g = .l) coupling. 

As is evident, the number of states is limited by the total momentum Ii’. As 

I< increases and the continuum limit is approached, Figs. (2a) and (2b) show the 

development of both a discrete set of bound states at low mass and a continuum of 

states with a threshold at 4M’, with M the mass of the lightest meson or baryon. 

It is clear that these states are both filling in the continuum with increasing Ii, 

and also maintaining some structure. 

At a particular I<, the states in the spectrum are eigenstates of both P+ and 

P-; in particular, individual states cannot decay. Inform ;I t ion about resonances, 

for example, must be contained within this structure. 

For the case with strong coupling, Figs. (3a) and (3b), a large number of 

states cluster near zero mass, above which sets a relatively large gap. ‘In the 
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Figure 2. Development of N = 3 Spectrum with Increasing A’; \I’eak Coupling. (a) Meson 

Spectrum (B = 0). (b) Baryon Spectrum (B = 1). 
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continuum limit, the number of states in this cluster will become infinite, generating 

a continuum of levels which begins near zero. 

That this method produces an entire spectrum is a great advantage, but it 

can also have its drawbacks. In particular, for very large K the number of eigen- 

states can become enormous. The higher states will in general contain both new, 

excited states as well as states with multiple copies of lighter particles with some 

relative momentum. Developing methods to extract those of interest will become 

particularly important in four dimensions, due to the large number of degrees of 

freedom. In a sense, being able to control the number of states by keeping I( finite 

becomes an advantage. Restricting states by means of a Lorentz-invariant cutoff, 

which will be introduced later, may be even more useful, as a continuum limit 

may be taken while a fixed cutoff is imposed. Finally, it will be essential in four 

dimensions to take advantage of all the residual spacetime and internal symmetries 

in the light-cone Hamiltonian to separate the Fock space into disjoint sectors, as 

was done with baryon number in these cases. 

In Figs. (4&-c), the meson (B = 0), single baryon (B = 1), and double baryon 

(B = 2) spectra are traced from zero coupling (or infinite quark mass) at X = 0 

to infinite coupling (zero mass) at X = 1 with K held fixed. The dimensionless 

coupling A, as well as M* in units of m* + s*/r are quantities employed directly 

in the program. For each of these plots, the Hamiltonian matrices Ho and HI are 

computed once and stored. At each value of A (or m/g), these are added to form 

the full Hamiltonian 

H= m'Ho +g2HI, 
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Figure 4. Development of N = 3 Spectrum with Coupling Constant A. (a) Meson Spectrum 
(B = 0); (b) Baryon Spectrum (B = 1); (c) Two Baryon Spectrum (B = 2). 
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which is then diagonalized. The cost in processor time to diagonalize H is insignifi- 

cant compared to that of computing it once; after computing these spectra at some 

X, the rest come essentially for free. 

At X = 0, the spectrum consists of collections of free massive quarks grouped 

into color singlets, beginning at itI* = m* and 9m2 for B = 0 and 1, respectively. 

Higher states at this coupling have quarks with relative momentum and extra qij 

pairs. For B = 2, fermi statistics prohibit the quarks from having zero relative 

momenta; presumably in the continuum limit, as this restriction becomes less 

important, the lowest mass will drop to 36m*. 

As the interaction in turned on and increased, the degeneracy of the non- 

interacting quarks is split, and a fair number of pseudo-crossings become apparent 

between the weak and strong coupling limits. At infinitely large g, a large number 

of states collapse to zero mass. As will be discussed later, these are composed of 

a single massless meson, baryon, or baryon pairs ( for B = 0, 1, and 2 ) together 

with massless states created by adding extra massless mesons to these. In four 

dimensions, two massless particles can be combined to form a zero mass system 

when collinear; in two dimensions, all particles are collinear. Also, degeneracies 

in the higher states reappear, as might be expected. Combining a massless meson 

with some state can produce a degenerate state in the absence of interactions, as 

will be shown to be the case. 

Spectra with B = 0,1, and 2 are presented here, but systems with arbitrarily 

large numbers of baryons may be studied by selecting the appropriate baryon 

number to see if, among other things, there is interesting nuclear physics in two 

dimensions. In particular, because baryon number is conserved, the lightest B = 2 
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state mass (for example) state mass can be compared to twice that of B = 1 to 

see if quark interactions saturate within each baryon, and if not, to compute the 

nuclear binding energy. 

The masses of the lowest-lying states are generally of the most interest and are 

the quantities most likely available for comparison from other methods, especially 

lattice calculations. The masses of the lowest-lying meson and baryon for N of 

2,3, and 4 at a selected set of couplings are listed in Table [3] and displayed in 

Figs. (5a) and (5b). 

Table [3] 

x 4s 
Mneslg 
N=2 3 4 

Mbar /9 
3 4 

.3325 1.6 4.314(4) 4.618(6) 4.845(2) 

.5763 .8 3.913(4) 4.40(5) 4.743(2) 

.8158 .4 2.61(5) 3.1(5) 3.4(2) 

.9425 .2 1.17(7) 1.5(5) 1.4(l) 

.9847 .l .38( 5) Jw .43(5) 

.9961 .05 .10(l) .2( 2) .12( 1) 

1.0 0 0 0 0 

10.71(‘2) 21.2(3) 

10.4( 1) 20.9(5) 

7.3(6) Wl) 

3.1(2) 6.0(S) 

1.1(3) 1.9(3) 

.31(9) .42(6) 

0 0 

In all cases, that is, at every X and A’, the lightest N = 2 meson and baryon 

have identical masses, and that Mmes/h!bbar = 1 for N = 2 is an exact result. The 

results quoted in Table [3] are extrapolations to continuum results by matching to 

a series in l/K for 2K in the range of roughly 16 to 24, as will be discussed in 

Chapter (3). The numbers in parenthesis give the magnitude of the last term in the 

series fit. For X S .9425, these are reasonable estimates of the actual error. Beyond 
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this, the largest K employed is likely not large enough for these to be more than 

a rough guide, as will be discussed. However, when m/g = 0 (X = 1) identically, 

the lightest state for any N or B is exactly zero, independent of K. The nature of 

solutions in this limit will be discussed below. 

Although the lightest N = 2 meson and baryons have identical mass, the spec- 

tra are not equivalent. In particular the masses of the next lightest N = 2 meson 

and baryon are listed in Table [4], in units of the lightest mass. This ratio measured 

at various I< is more stable than the absolute value, and is likely to give a more 

accurate extrapolation. 

Table [4] 

x ml9 

.3325 1.6 

.5763 .8 

.8158 .4 

.9425 .2 

.9847 .l 

.9961 .05 

q2”dslnte)lq 181) 

B=O 1 

1.33(l) 1.59(3) 

1.73(2) 2.41(2) 

2.4( 1) 3.7(2) 

2.8( 1) 3.7(4) 

2.8( 1) 3.7(3) 

2.6(2) 3.6(3) 

Results for X beyond .9425 should be regarded only as estimates at the values of 

I( used here. In particular, it is not certain that these ratios are actually reaching 

a fixed value. 

It might be worth mentioning that at strong coupling but insufficiently large 

E, the numerical results for masses may be duplicated by using the exact infinite- 
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coupling wavefunctions to compute the Hamiltonian’s expectation value. At in- 

finite coupling (or zero mass) the wavefunctions do not vanish at small x; for 

non-zero mass, the kinetic terms m*/zi will force them to zero. However, the 

smallest available numerical x is l/21<. When n/g is small, the kinetic term will 

not be felt, until K is large enough to compensate. A great deal of information in 

contained in this small-x region, and until this I< is reached the continuum limit 

is still far off for quantities sensitive to this region. 

3- 

s 
2- 

l- 

Figure 6. Comparison of Lightest hleson hlass for N = 2, 3 and 4 with Lattice Calculation for 
N ~2. 

In certain cases, results from this work may be compared with those from other 

sources. In particular, Hamer has computed the mass of the lightest N = 2 meson 

and_ baryon using a Hamiltonian lattice with Wilson IN fermions. His results are 
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plotted in Fig. (6) along with the results from this calculation for N from 2 to 

4, as in Fig. (Sa). For ease of comparison, only his error bars are displayed here. 

Also, the actual data points from this work sit on the same m/g locations as his; 

the curves are fits imended only as guides. 

Clearly the agreement is quite good. This is especially reassuring, as the meth- 

ods employed are very different. In particular, Hamer works in a different gauge 

(A0 = 0 versus A+ = 0), a different space (position rather than momentum), a 

different quantization prescription (equal-time versus light-cone), uses a different 

infrared regulator (lattice size versus isolating by discretization and discarding zero 

momentum states) and takes a different continuum limit (lattice spacing versus box 

size in z-). Both methods find accuracy in the chiral limit (m/g 4 0) increasingly 

difficult, but much less so at m/g = 0 identically. As is well known, implementing 

chiral symmetry in a lattice formulation requires some effort, and is related to 

the difficulty in adequately defining single derivatives for fermions. For light-cone 

quantization, the difficulty is from a seemingly unrelated source. In particular, as 

m/g + 0, the kinetic term m2/x which forces the wavefunction to zero in this limit 

becomes dominant at increasingly smaller values of x; as a result, the wavefunction 

turn-over in x becomes more drastic, and ever larger values of I< are necessary to 

adequately sample this region. However, as will be shown, this severe behavior 

is necessary to compensate for the very asymmetric treatment which $L and +R 

receive during quantization. Although the constraint equation for $L appears to 

condemn it to decouple as m -+ 0, this endpoint behavior for wavefunctions com- 

pensates so that matrix elements with r+l~~ couple symmetrically with those for $R. 

Because the system is quantized in momentum space, there is no difficulty with 
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fermion doubling. Perhaps the price to pay is that the fermion mass must be ini- 

tially finite to ensure that tj~ doesn’t disappear, but that as m * 0, wavefunctions 

become increasingly ill-behaved, making numerical accuracy difficult to obtain. 

The study of SU(N) in 1 + 1 dimensions began with ‘t Hooft1211 who solved the 

meson spectrum in the large-N limit. By solving for these mesons at finite N here, 

it is possible to determine both how good the approximation is at a particular A’ of 

interest (three, for instance) as well as how quickly the large-N limit is approached. 

” ” ’ ““. * ’ ” 
0 0.5 1 1.5 

(271/N)“* m/g 

Figure 7. Comparison of Light.est Meson Mass for N = 2, 3 and 4 with Large-A’ Meson from 

Ref. [21]. 

In Fig. (‘7), the lightest meson masses for JV = 2,3, and 4 are compared with ‘t 

Hooft’s lightest large-N meson. Masses in this plot are resealed into units of gn”“. 

as_this is the expansion parameter considered fixed as IV -+ 00. Even for A’ = 2 
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there is surprisingly good agreement, except for small but finite m/g, where the 

light-cone numerical results are not sufficiently accurate for comparison. Increasing 

N from two to four brings results to almost within errors of the large-N limit for 

most m/g. 

In assessing the large-N approximation, two different questions can be ad- 

dressed. First, how good a description does the leading large-N term provide of 

solutions at a particular finite N; that is, is it accurate? And second, do actual 

measured quantities scale with N as assumed in this scheme; that is, is it con- 

sistent? Evidently, for the lightest meson, it is accurate at all N and m/g. The 

latter is somewhat surprising; because the relevant coupling is really g2N/m2, an 

expansion in this parameter is unreliable at small enough m. 

- Baryon masses are expected to scale proportionally with N, based mainly on 

[29,301 nonrelativistic reasoning. Consequently, baryon masses are infinite in this limit 

and they decouple. From Fig. (5b), unlike Fig. (7), it is clear that two is not a 

large number. In fact, for N = 2, the lightest baryon has the same mass as the 
. 

meson, and so it is not reasonable to neglect it. Nevertheless, for most values of 

m/g, the baryon mass does indeed scale with N. For any finite fixed m/g, the 

baryon will decouple at large enough N. 

In the limit that m/g -+ 0, N fixed, the baryon mass goes to zero; as r-n 

decreases, the N at which this approximation is sensible must increase; or, for 

fixed N, the approximation becomes progressively less accurate as m decreases. 

Also, it will be argued that in the valence quark approximation, the baryon mass 

is proportional to mgN’/2 as 172 --) 0, and so at least in this approximation, the 
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baryon mass grows as N’i2 rather than N. The inclusion of higher-Fock states 

will adjust this, but most likely not enough to restore the power to one. 

The surprisingly good agreement for mesons even at N = 2 may be under- 

stood by noting that the large-N meson Bethe-Salpeter equation derived diagram- 

matically in Ref. [21] is identical to that derived for the light-cone Schrodinger 

equation restricted to the qQ Fock space as in Chapter (3), after replacing the cou- 

pling g2(N2 - 1)/2N by its large-N limit, g2N/2. If the valence approximation 

for mesons is accurate, then, insofar as (N2 - 1)/2N is close to N/2, the large-A’ 

approximation must be accurate as well. For large quark mass m, this is guaran- 

teed to be the case; for identically zero m, it will also be shown that a massless 

meson can be created from only a single qQ pair. It is then not surprising that the 

valence approximation, which is exact at both extremes, is reasonable at all m/g. 

Because this is true regardless of N, the accuracy of the large-N approximation at 

these small N should probably be considered coincidental. 

Finally, converting the program to solve for the gauge group U(N) as opposed 

to SU(N) involves only removing the term in the interaction which cancels the 

trace. This is equivalent to crossing SU(N) with massive electrodynamics, or U(1). 

In the large-N limit, U(N) and SU(N) are identical, and so their actual difference 

at finite N gives another indication of accuracy. The lightest meson masses for 

U(2) and SU(2) are plotted in Fig. (8). In particular, for most values of m/g, 

U(2) is even closer to the large-N meson than SU(2), because in the qq integral 

equation, to be presented in Chapter (3), the factor g2(N2 - 1)/2N is replaced 

by its large-N limit, g2N/2, for U(2). H owever, there is another term which will 

appear in that equation for U(N) proportional to g2/2n, which is a reflection of 
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Figure 8. Lightest Meson hlass for SU(2) and U(2). 

the axial anomaly that gives the Schwinger hlodel boson its mass. In fact, for all 

U(N), the lightest meson at m  = 0 will have a mass of g/(2r)‘i2. Because g’IV is 

considered fixed as N - 00, this mass is neglected to leading order in l/A’. 

As an aside, the particular case of U(l), or the massive Schwinger model. 

was also studied. The program produces results consistent with those of Ref. 

[ZO]. These are themselves consistent with other calculations of this model and, in 

particular, give exact results for massless electrons. 
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2.3. QUARK-ANTIQUARK VALENCE WAVEFUNCTIONS 

Because the wavefunction in the valence approximation involves only a qcj pair, 

it is possible to plot the wavefunction directly. This is done in Figs. (9a-e) for the 

lowest-lying N = 3 meson and the first three excited states as m/g ranges from 

1.6 to .1. In these, 2K = 90, and the corresponding step size in x is l/90. As a 

consequence, the accessible values for x nearest the endpoints are l/90 and 89/90. 

For weak coupling, the wavefunctions are reminiscent of the quantum mechan- 

ical (momentum-space) wavefunctions for a particle in a linear potential, and as 

m/g becomes large, that is what they become. The kinetic term m2/x forces the 

wavefunctions to zero at x = 0 and 1, and as m becomes large relative to g, as in 

Fig. (9a), this endpoint suppression is evident for an increasing range in x. 

_ For highly excited states with a large number of oscillations, the relative im- 

portance of the endpoints decreases. As discussed in Refs. [21] and [30] it is not 

a bad approximation to incorporate the effect of the kinetic term as simply the 

boundary condition 4(O) = 4(l) = 0. The nib excited state tin is analogous to that 

of a free particle in a box in x, 

&I - sin nxx 

with a mass 

(2.2) 

(2.3) 

When m/g is very large, n must be large before the actual form of the kinetic term 

is unimportant. For m/g m 0, this picture will be seen to break down altogether. 

Ffom Fig. (9b), it seems that it is most likely to be accurate for m/g - 1. 
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Finally, in the strong coupling limit, as in Fig. (9e) where m/g = .l, the 

interaction term dominates so much so that the turnover of the wavefunct.ion to 

zero at the ends is not discernable at this resolution in x, that is Ax = l/90. In 

fact, over most of x, the wavefunction is much more like an oscillating string with 

free rather than fixed ends. 

2.4. STRUCTURE FUNCTIONS 

Apart from valence mesons, which involve only two particles, it is not con- 

venient to display wavefunctions directly, due to the large number of potential 

plotting variables and the inability to distinguish quarks with the same quantum 

numbers. The quark (and antiquark) structure functions are defined by 

with c&di replacing bp& for @k. They describe the manner in which the 

momentum K is distributed among the quarks, and have the advantage of being 

functions of a single variable. The Qk automatically satisfy a baryon number sum 

rule 

C( 0 for mesons 
Qk-qk)= 

k N for baryons ’ 

the momentum sum rule 

(2.4) 

C( qk + Qk) = I<, 
k 

(2.5) 

aJzd so on. In the continuum limit, k/K becomes the Bjorken variable x, and the 
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continuum structure function is q(x) = Kqk. These are then normalized such that 

for mesons or baryons. 

1 
J dx (q(x) - ij(x)) = 0 or N 
0 

(2.6) 

Besides being simple to plot, these functions are physically useful, and are 

measurable in deep inelastic scattering, at least in four dimensions. (Note that 

these are related to the commonly used parton model structure functions f(x) 

by xq(x) = f(x).) This p rovides one of the main motivations for attempting to 

solve QCD on the light cone. Apart from the apparent numerical advantages, 

the wavefunctions which result are directly related to experimentally measured 

quantities. . 

2.5. VALENCE STRUCTURE FUNCTIONS 

The structure functions q(x) for the lowest-lying SU(3) meson and baryon are 

displayed in Fig. (lo), at relatively weak (m/g = 1.6) and strong (m/g = .l) 

coupling. These correspond to values of .3325 and .9847 for the dimensionless 

coupling X. Specifically, these are the contributions to q(x) from the valence wave- 

functions. Higher-Fock wavefunctions contribute very little to these states, as will 

be discussed later. 

When m/g is large, Ic+ = (b”+m2)1/2+k . d IS ominated by the quark mass. The 

total Pf is then approximately m times the number of quarks. Consequently, q(x) 

peaks strongly about l/2 and l/3 (or l/N) for the meson and baryon, respectively. 

AS m/g decreases, the effect of the quark mass diminishes, and the distribution 
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in x spreads. As will be shown, at strong coupling q(x) is governed entirely by 

combinatorics; any momentum is as likely as another, subject only to momentum 

conservation, C Xi = 1. In all cases, wavefunctions, and therefore structure func- 

tions, are forced to zero when any quark carries zero momentum due to the kinetic 

term m2/x. The relative strength of g/m, which multiplies the interaction term, 

determines the x at which this suppression sets in. It should be noted that the 

value of q(x) at the data points x = 0 and 1 in these plots are inferred; the smallest 

x actually carried by a quark is l/21{. 

2.6. GENERAL WAVEFUNCTION RESULTS 

Because of the simplicity of the vacuum, all of the quanta appearing in eigen- 

states, or wavefunctions, are directly associated with hadrons. Consequently, the 

nature of a particular state is often relatively simple to deduce from the form of 

the wavefunction. 

In Figs. (lla-c), the valence and four quark cont,ributions to the quark struc- 

ture function for the first three AT = 3 meson (B = 0) states are plotted for relativel? 

weak coupling and 2K of 24. These can be interpreted as the q(1 meson and its first 

two radial (in x-) excitations. Their interpretation is particularly simple because 

the higher-Fock contribution is so strongly suppressed, due, at least in part, to 

the large quark mass. Fig. (lld), the eleventh state in the spect,rum, is composed 

predominantly of two qq pairs, peaked at x = l/4. This evidently corresponds to 

a pair of the lightest mesons, and its mass is twice that of the lightest meson. 

Corresponding plots for the first three SU(3) baryon (B = 1) states are shown 

in Figs. (12a-c). Th ese also represent a predominantly valence (three-quark) 

68 



I 

0.e 
- - 

1 04 OI- 
x - k/K 

I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

--- 
x - k/K x - k/K 

Figure 11. Structure Functions for the Valence a.nd Four-Quark N = 3 Meson Wavefunctions 
at Weak Coupling. (a) Lowest State; (b) Second State; (c) Third State; (d) Eleventh State. 

69 



I 

SlJ(3) SA2YON 

2 

12.5 

10.0 

7.5 

6.0 

2.5 

0.0 

t ml/p 1 .a ml/p 1 .a 
x q-9-9 
* q-q-q q-o (x10’) . 

.I 

(4) (4) 

c -‘.i c -‘.i 
0 0 02 02 0.4 0.4 0.0 0.0 0.8 0.8 1 1 

-2 7.5 
F 

6.0 

2.5 

0.0 Ii f’ ‘\ I \ I 

t- n Ill/p 1.6 
s q-9-9 
e q-q-q q-o (x10*) 

(b) 
i 

\ r \ 
, I-.1. . L.. .i 

0 0.2 0.4 0.8 0.0 1 

150 "","","",'"','"' 
SlJ(3) SANYON m/r=1.s * q-q-q 0 q-q-q q-q (.I07 i 

Figure 12. Structure Functions for the Valence and Five-Quark N = 3 Baryon Wavefunctions 
at Weak Coupling. (a) Lowest State; (b) Second State; (c) Third State. 

70 



I 

SW) BUYON PAIR 

15F n 
h(3) BARYdN PAIR 

m/(-l.8 
x 6-q 
0 o-q q-q (*5.10’) 
0 6-q q-9 (=107 q(d 

25 . . . . I.,. ,.I. ““,““,“.‘, 

w(3) SU?YON PAIR 

I ‘\ 

VI 

m/p 1.6 
20 I x e-q \ 

t 
; \ 

0 8-q q-q (x5=10’) 
0 o-q q-q (.lO') q(x) 

lb ' \ 
I \ 

Figure 13. Structure Functions for the Valence and Eight-Qua& N = 3 Twc+Baryon JI’ave- 
functions at Weak Coupling. (a) Lowest State; (b) Second State; (c) Third State; (d) Fourth 
Stake; (e) Fifth State. Note the change in Scale. 

71 



baryon and its radial excitations, with suppressed contributions from the com- 

ponent with an extra qij. The state with a pair of the lightest baryons may be 

formed as the lightest state in the B = 2 spectrum, Fig. (13a). Included in this 

plot is the antiquark function q(z), which gives an indication of the magnitude and 

momentum distribution for the meson content of the SU(3) baryon. For complete- 

ness, Figs. (13d-e) give the next four B = 2 states. These are easy to interpret as 

various combinations of the first few B = 1 states. 

20 ““,““,““,““,““,“” 20 ““,““,““,““,““,““‘ 

SlJ(3) SARYON PAIR W(3) SARYON PAIR 

m/g- .l m/g- .I 
x 6-q x 6-q 

lb - 0 o-q q-q (x2=10’) 0 o-q q-q (x2x10’) 
0 6-q q-q (810’) q(r) 0 6-q q-q (.2r10’) 3(r) 

. 
L.. .J. ,“I.,.--1 

03 0.4 05 08 -_ _- __ 
x - k/K x - k/K 

Figure 16. Structure Functions for the Valence and Eight-Quark N = 3 TweBaryon Wavefunc- 
tions at. Strong Coupling. (a) Lowest State; (b) Second State. 

In Figs. (14) to (lG), the corresponding first several states’ structure functions 

are plotted at strong coupling, m/g = .l. The connecting curves are simply cubic 

spline fits; the resolution is in some cases not good enough for these to accuratel! 

depict the actual structure. It is apparent from these plots that an interpretation 

of the spectrum in this limit as constructed of various combinations of essentialI). 

valence mesons and baryons and their radial excitations is not as obvious. Such a 
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characterization based on essentially valence hadrons is not even necessarily mean- 

ingful. As will be shown, in the continuum limit for vanishing quark mass, it will 

be possible to append extra m=sless, zero momentum q~ pairs to existing states 

without ‘altering their mass, producing large degeneracies which include states with 

arbitrarily large numbers of quarks. 

. . 
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Figure 17. Contribution to Lightest N = 3 Meson Structure Function from Four-Quark \\‘ave- 

function. 

One of the advantages of this numerical approach is that it is not necessar!. 

to make a priori simplifying assumptions regarding the Fock state structure of the 

eigenstates. In particular, the role which higher-Fock states play in the composi t ioll 

of hadronic light-cone wavefunctions can be studied for arbitrarily fine resolution in 

moDlentum, subject of course to available computing power. This is a potentialI!. 
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rich field for future work, even in two dimensions, and particularly when flavor is 

included. In this section, only the general features of these states will be discussed. 

First, for all couplings g/m, the content of the next higher Fock states is 

strongly suppressed, typically by several orders of magnitude, for the lowest-lying 

mesons and baryons. The SU(3) hadrons in Figs. (17) and (18) are typical. 

Note that in Fig. (lgb), the probability for the state with two extra qg pairs is 

comparably suppressed relative to one extra, and in most cases states with greater 

than one pair could be safely neglected. For very massive quarks this is expected for 

all low-lying states, as more quarks mean more mass. It is not clear why it is true 

when the quark mass is small, although this is only true for the very lightest states 

in this case. Other low-lying states have substantial, even dominant, higher-Fock 

components. 

Second, typical behavior for the lightest meson Fock state with one extra quark 

pair as a function of N is displayed in Fig. (19) for SU( N) and Fig. (20), for 

U(N). For fixed, weak coupling, the content is strongly suppressed but relativel? 

insensitive to N, while at strong coupling it diminishes rapidly as N increases. 

For U(N) in this limit, the higher Fock content vanishes altogether in the strong 

coupling limit; the massive Schwinger meson is known to be composed entirely of a 

*4 pair!23.201 Since in this limit these qg pairs carry a mass-squared of g2/2rr, extra 

pairs cannot mix with the lightest meson without significantly increasing its mass. 
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Table [5] 

2 1.600 .2072 x 1O-3 

3 1.960 .1325 x 1O-3 

4 2.263 .9579 x 1O-4 

2 .lOOO .9889 x 10-2 

3 .1225 .2921 x 1O-3 

4 .1414 .1277 x 1O-3 

In the large-N limit, the higher-Fock content would be expected to vanish, as 

the meson is composed entirely of valence quarks, and meson-meson couplings are 

suppressed by an extra power of N. In this expansion, g2N, rather than g, is held 

fixed. In order to determine the importance of higher-Fock states as a function of N 

with this limit in mind, g should be scaled by N -I/‘. In Table [5], the probability 

for finding the lowest-lying meson in other than its valence wavefunction is listed 

for N = 2,3 and 4 for both weak and strong coupling. For these results, 2A’ is 

fixed at 20. Only states with at most two qq pairs are included, as higher-Fock 

states are negligible relative to these. For the weak and strong coupling cases, m/g 

is set to 1.6 and .l, respectively, for N = 2, and g is scaled to keep g2N fixed for 

N = 3 and 4. 

Clearly the importance of the higher-Fock states diminish with N. Holding 

g2N fixed for increasing N is equivalent to decreasing g or to increasing m, so this 

result is not surprising. Larger N means heavier quarks, and it is kinematically 

m_ore costly to have states with more of them. However, this does not explain why, 
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even for the very small m/g near .l, this probability is so small to begin with. 

Finally, most higher-Fock states share a characteristic, double-bump structure 

in z, regardless of g/m or N. It is likely that there are more peaks in these states, 

but at these values of K the resolution is not high enough to discern any finer 

structure. Because of this characteristic shape, it is not difficult to distinguish by 

shape as well as magnitude, for example, four-quark continuum states made from 

a pair of lighter a~ mesons from the higher-Fock component for a single meson, as 

in Fig. (21). 

2.7. HIGHER-FOCI< WAVEFUNCTIONS 

Many successful approximation schemes such as the l/N expansion for mesons, 

and phenomenological models, such as the nonrelativistic quark model, begin by 

describing hadrons as predominantly composed of valence quarks. This is certainly 

a reasonable assumption for very massive quarks, but there is no good reason to 

believe the same for light quarks. In fact, the probability of finding a hadron com- 

posed of light quarks in its valence state could conceivably be negligible. Because 

no such approximation need be made in the approach here, it is possible to de- 

termine explicitly the importance of higher-Fock states in describing mesons and 

baryons, at least in two dimensions. As the quark mass or coupling constant are 

varied, the region where such a picture breaks down may also be determined. 

A rough estimate of the higher-Fock component to expect in an eigenstate of 

mass M may be made by comparing the invariant mass of these higher states to 

M: Each Fock state of n particles may be assigned a mass-squared based on the 
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light-cone energies of free quarks, 

p&k?, 
i=] Xi (2.7) 

which is minimum when all the xi are approximately l/n; that is, when the light- 

cone momentum is equally distributed. In that case, 

AI z m2 22 

lam lln=n m ’ (2.8) 

A Fock state for which A”, >> M2 should not contribute significantly to a state 

of that mass. States with n quanta should appear prominently in such a state only 

when their minimum invariant masses satisfy 

so that, by Eq. (2.8), 

n - M/in. (2.10) 

This is clearly true when the quark mass m is large. In the opposite limit, as 

the quark mass vanishes, 

kf - (g1n)i (2.11) 

for all hadrons, and therefore 

g 3 n- - . 
( > m (2.12) 

The exponent l/2 is correct in the large-N limit, and it is likely that it provides 

areasonable estimate at finite N, as will be discussed below. In this limit, Fock 
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states with any number of quanta can appear. How many actually do may be 

determined numerically. 

Consider first the lightest meson in SU(2). Th e contribution to the wavefunc- 

tion from higher-Fock states may be measured by how much the probability of 

finding the meson in its valence state differs from one. This has been computed 

numerically for various coupling constants: 

Table [6] 

x m/s 1 - wla 
.3325 1.6 .15(3) x 1O-3 

.5763 .8 .9(l) x 1O-3 

.8158 .4 .30(2) x 1O-2 

.9425 .2 .74(6) x 1O-2 

.9847 .l .111(3) x 10-l 

.9961 .05 .1296(5) x 10-l 

The values and errors were determined using Richardson extrapolation from 

values of 211’ ranging from 10 to 24. The numbers in parentheses give an estimate 

of the uncertainty in the last digit given by the magnitude in the final term in 

the Richardson series. In practice it was possible to restrict the space to at most 

four-quark states. When computed, six-quark and higher states contribut,ed less 

than .l% to these values at any value of K, and so fall below the errors. 

As expected, the probability for higher numbers of quarks is negligible when 

very massive. Their presence increases steadily with decreasing mass (or increasing 

coupling) up to m/g around .2, where it appears to level off at about a per cent. 
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As will be discussed, results for couplings of X beyond .9425 are probably not 

reliable enough to allow any firm conclusions about this region to be drawn. What 

is surprising is that even as the quarks become massless, the contribution from 

one extra quark pair remains extremely small, and that that from more quarks is 

essentially negligible. On the other hand, very light states, which become massless 

with the quark mass, do exist in the spectrum which are in fact dominated by 

higher-Fock states. So states with large numbers of extra quarks do dominate the 

low energy spectrum as the quark mass vanishes, but this cannot be detected in 

the very lightest meson. 

SU(2) MESON 

K- 14/2 x rn/g=l.S (x10’) 

+ m/g=.1 (xlOZ) 

K=20/2 0 rn/g=l.f3 (x10’) 

0 m/g=.1 (x10’) 

5-y 1 ‘,_ 

-1 b . . . 
\ x”o “.x 

3 \ “;r,& d,. 
j \O . 
1 --Q- -~+-CL-+o~--.W 

01’ ’ t ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ A+L 9a-a 
0 0.2 0.4 0.6 0.6 1 

x = k/K 

Figure 22. Dependence of N = 2 Meson Higher-FocL Wavefunction on Momentum Ii. 

Valence wavefunctions, especially for the lowest-lying states, display only mi- 
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nor sensitivity to the numerical momentum, or resolution, K. To estimate the 

sensitivity of higher-Fock state wavefunctions, the four-quark contribution to the 

quark structure function is plotted in Fig. (22) at 2K equal to 14 and 20 for both 

the weakly and strongly coupled SU(2) meson. The curves are cubic spline fits to 

the points from 2K = 14 and are included for ease of comparison. 

Note that in order to meaningfully compare these at different K, it is necessary 

to plot the structure function q(zk) - Kqk = K($bk), which has a sensible contin- 

uum limit, rather than, for example, (brbkj. Even at these relatively low values for 

I(, the curve shapes and magnitudes are fairly stable, differing by, at most, slightly 

less than 30% in the region where x is less than .2 . For larger x the agreement is 

much better. For strong coupling, in fact, the points differ by only a few percent. 

This suggests that the qualitative features of the higher-Fock wavefunctions, and 

in particular their magnitude, can be reliably produced at fairly small I<. 

2.8. HIGHER-FOCI< WAVEFUNCTIONS AT WEAK COUPLING 

The structure functions from the higher-Fock components of the lightest mesons 

and baryons have displayed a fairly universal, roughly double-bump form. For rel- 

atively weak coupling, lower-lying mesons and baryons are dominated by their 

valence wavefunctions, and higher-Fock states may be considered perturbations 

of these. The structure of the leading higher-Fock wavefunction, which contains 

an additional qtj pair, may be understood by following the flow of momentum as 
1311 valence quarks split off extra qij pairs. 

The valence wavefunction for a meson at weak coupling is strongly peaked at 

x= .5. Assuming that upon splitting the momentum is evenly shared, the final 
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Figure 23. Momentum Splitting from gJ to qQqi Fock States in Meson. (a) Quark Splitting; (b) 
Antiquark Splitting. 

four-quark wavefunction might be expected to have momenta distributed accord- 

ing to Fig. (23). For the quark structure function, the sum of equal-magnitude 

functions peaked at .25 and .125 (from Fig. (23a)) and .125 and .5 (from Fig. 

(23b)) would produce a total distribution with essentially two peaks, within the 

resolution of the numerical data. The first would be at roughly .17 (averaging .25, 

.125 and .125) with three times the magnitude of the second peak at .5. This struc- 

ture is evident in Fig. (17) with m/g = 1.6. Apparently, as the coupling constant 

increases, the spreading of the valence distribution toward larger x is reflected in 

the spreading and increased 2 of the second peak of the higher-Fock state. 

For an SU(3) baryon, Fig. (24a) implies a quark distribution with rough13 

equal peaks at x = .33 and x = .13 (averaging .OS3 and .17). An antiquark peak 

should’ appear at x = .083 with about half the height of the quark peaks. Again, 

this provides a fairly accurate description of the weak coupling (nz/g = 1.6) curves 

in Fig. (Isa). For the strongly coupled baryon, there is not only a spreading toward 

larger x, but a factor of greater than ten increase in the total probability for finding 

an extra qo pair; note the change in scale. Because of the lack of resolution, 
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Figure 24. Momentum Splitting in W(3) Baryons. (a) Into Five-Particle State; (b) Into Seven- 
Particle State; (c) Baryon Pair into Eight-Particle State. 

the pairs of peaks anticipated at small x merge into single peaks. These would 

presumably be resolved if I< were sufficiently increased, providing an additional 

test of this general picture. 

As a final exercise Figs. (24b) and (24 ) c may be used to understand the 

structure of the seven-quark Fock state for the A’ = 3 baryon with two additional q(1 

pairs, and the two-baryon state with one extra pair. Following the previous analysis 

and assuming peaks closer than about .l are unresolved, Fig. (24b) predicts peaks 

in the quark structure function at x of about .13 and .33 in a ratio of 4 to 1. Fig. 

(24~) for the two baryon case suggests peaks at .06 and .17 with a ratio of roughl!. 

2 to 5, and also incidentally a single peak for the antiquark at .04 of relative height 

1. Within their resolution, Figs. (1f;b) and (Isa) are consistent with this picture. 

The curves in these plots are drawn to guide the imagination. 
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2.9. A PRELIMINARY LOOK AT RENORMALIZATION 
‘* 

&CD in 1 + 1 dimensions requires no regularization beyond the subtraction of 

the vacuum energy. This is not the case in four dimensions, where an appropriate 

renormalization prescription is essential. In such a scheme, symmetries such as 

Lorentz and gauge invariance must either be preserved during discretization or 

recovered in the continuum limit. 

Although superfluous, renormalizing QCD in two dimensions provides an ini- 

tial example of how this might be approached. Following Ref. [24], an ultraviolet 

cutoff is imposed directly on the Fock space. States are restricted to those whose 

(free) invariant masses satisfy 

m2$ki 1 < A2, 
X i 

(2.13) 

where the cutoff A is much larger than the scale of interest. In four dimensions, this 

regulates both large transverse momentum kl and small x, while in two dimensions, 

kl is absent. This prescription is Lorentz invariant and analogous to a Pauli-Villars 

cutoff in perturbation theory. It will be important in four dimensions to ensure 

that such a cutoff is applied in a way that is also gauge-invariant. 

As A increases, so does the available resolution. In Table [7], the number of 

states in the Fock space with various numbers of particles are listed as a function 

of A for the case where N = 2, B = 0 and the momentum 21< = 14. 
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Table [7] 

(A/m)2 qij states qqqtj qijqijqij Total 

5 3 - - 3 

10 5 - - 5 

20 7 2 - 9 

30 7 14 - 21 

50 7 28 1 36 

As A increases, the number of states available to describe a qq system grows, 

until limited by the scale of discretization I<. Also, contributions from states with 

increasing numbers of extra qq pairs can be resolved. In general, a particular system 

at a mass scale M should be well-described if A >> M, and I< is large enough so 

as not to cut off the states available at that A. . 

The running coupling constant g(A) may be defined by requiring some physical 

quantity, such as a meson mass, to be fixed, presumably by an experiment. At each 

A, this mass is computed with K increasing until convergence. Finally, g is adjusted 

until the computed and physical quantities match, defining g(A). 

Fig. (25) illustrates this for the case where the physical quantity is an Ar = 2 

meson of mass (p’/m)2 = 6. The momentum 2K is fixed at 26, which is reasonably 

close to convergence, but not quite large enough to produce a smooth curve. g(A) 

behaves as might be expected for a finite theory. It has a threshold at (A/m)’ = 4, 

where a qij pair can first be produced, and begins to turn over and flatten when 

the physical scale (A/m)2 = 6 is reached. As A becomes much larger than this 

scale, it approaches a fixed value. 
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Figure 25. Running Coupling Constant Defined by Holding Fixed the N = 2, B = 0 Meson 
Ihiss to M2/rn2 = 6. 

3. ANALYTIC RESULTS 

3.1. VALENCE MESOK INTEGRAL EQUATIOXS 

The momentum-space Schrodinger equation 

p+- Id(J)+)) = AF pb+)) (3.1) 

may be expressed as an infinite set of coupled integral equations by expanding 

I@+)) in a Fock state basis and projecting onto the singlet basis states 

(3.2) 

and so on. Quantizing in a box to discretize the momenta and solving Eq. (3.1) b\ 
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diagonalizing the Hamiltonian is equivalent to evaluating these integral equations 

on a regularly spaced grid. A great deal of information about the continuum limit 

of this numerical approach to solving Eq. (3.1) may be extracted by studying these 

equations. Following Ref. [32], these continuum equations may be derived directly 

from the discretized Hamiltonian in the K + 00 limit. As a bonus, this derivation 

will demonstrate that the limit is sensible. 

As a first step, consider the eigenvalue equation for the meson in the qq sub- 

space. The only relevant interactions in the Harniltonian 

H=(F) (2) P- (3.3) 

are those which connect qij to qQ: 

00 

c[ 1 3 

(1 - X2) $ + ; W-4 ] (@n,c + &d:) , (3.4) 
n=p,5,... 

and -.- 
x2 c ccc13:: [n2 + n41 - n1 - n31 

n 
(3.5) 

The self-energy S(n) here is defined as 

S(k) E 
N2 - (1 - a) 

2N 
k-nln- k] - [k+nj -k-n] 1 (3.6) 

and appears in diagonal terms after putting the Hamiltonian into normal order. 

The instantaneous gluon propagator [mln] and the color tensor C are discussed in 

Chapter (1). Th e p arameter CT allows S(N) and U(N) to be treated simultaneously; 

for SU(N), cy = 0 and Q = 1 for U(N). 
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The eigenstate 14(K)) may, in general, be expanded in this subspace 

(3.7) 
n=i,$,... 

Sandwiching the eigenvalue equation 

with (01 dj’bK-t,c , results in the discrete equation 

[N&X’) (;+A) +; X2N [s(e)+S(I-)]I 41 

+ fX2 N” - (1 - a)) 1 4n (3.8) 

I@ is the numerical mass squared which appears in the program and is hf’/(m’ + g’/r) 

in dimensional units. The singularity at n = f! is excluded by hand in the definition 

of H. 

Using the identity’321 

N2 _ (1 _ a) 

> 

K-f 
S(l) + S(IC -l) = 2 2N c (l--ln)2 ' (3.9) 

-=?,& 

defining the momentum fractions x = e/A’ and y = n/K, converting tip into the 

continuum wavefunction 4(x), and reintroducing dimensional parameters produces 
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in the continuum limit K ---) 00 

+ g*a 

1 

-iii- J 
dy 4(y) = M* 4(x>. 

0 

The principal value prescription is fixed by the infrared regularization of the 

discrete Hamiltonian before the I< 3 00 limit is taken. Specifically, 

j,l ;z ?“+ ) dy, 
0 0 z+c/2 

(3.11) 

where c = l/K. With this prescription, Eq. (3.10) is well-defined, lending con- 

fidence that the regularization adopted for numerical calculations has a sensible 

continuum limit . 

Although this equation is in a severely restricted space, a great deal of infor- sc 

mation about the continuum limit of the model may be extracted from it, beyond 

the observation that such a limit exists. For example, if the quark mass m is set 

to zero, d(x) = 1 is clearly an eigenfunction, with hf2 equal to zero for SU(N) 

(0 = 0). For U(N) (o = l), the presence of the extra term from qq annihilation, 

(g2/W so’ dY 4(Y), is related to the U( 1) anomaly and gives these mesons a mass- 

squared of Al2 = g2/2x. Eq.(3.10) thus reproduces by inspection the masses and 

wavefunctions for SU( N) and U(N) mesons in the m/g + 0 limit. In fact, for 

U(1) (the Schwinger model), it yields the exact mass for the only particle in the 

theoryf?J*201 Because of the Fock space restriction, however, this equation cannot 
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describe states which contain pairs of these mesons, nor the higher Fock content 

of individual mesons. 

The equation also makes apparent the possibly singular nature of the m = 0 

limit. The free Hamiltonian, which is proportional to m2, diverges for quarks 

carrying zero momentum, forcing wavefunctions to vanish at xi = 0. For m2 

identically zero, this restriction disappears; it is not necessarily true that the exact 

solutions at m = 0 are related to those for small, but finite, m. 

Interestingly, this equation contains all of the information necessary to compute 

the spectrum of mesons in the opposite, nonrelativistic, limit where g/m -+ 0. In 

this limit, the large mass of the quark dynamically restricts the states to quark- 

antiquark pairs. The equation and its solutions in this limit, as well as that for 

baryons, will be discussed later in this chapter. 

Finally, in the large-N limit (N + 00, with g2N fixed) retaining only terms of 

order g2N in Eq. (3.10) reproduces the equation derived in Ref. [21] by summing 

the leading planar diagrams which contribute to the valence meson propagator. In 

this limit, the U(N) and SU(N) cases are equivalent. The extra term in the U(X) 

equation which produces the massive Schwinger bosons as m/g + 0 is proportional 

to g2 and so is suppressed by one power of N. As a result, when m/g + 0, the 

large-N limit neglects the leading contribution to the mass of these mesons, and 

they become massless as in SU(N). 

It should be noted that some references, beginning with Ref. [21], discuss a 

finite renormalization of the quark mass m2 --) m2 - (g2N/2x), to order g2 N and in 

my conventions. In these references, a slightly different principal value prescription 
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is used. With that prescription, the second term in the integrand of 

dyd(d - 4(‘> 
(Y - xl2 

0 

in Eq. (3.10) yields 

(3.12) 

(3.13) 

which finitely renormalizes rn’. This is simply a rearrangement of terms and the 

equations are identical. Incidentally, in the space of color singlets, this renormal- 

ization is of no direct physical consequence. In perturbation theory, it alters only 

the gauge-dependent quark propagator!” 

. 

3.2. VALENCE BARYON INTEGRAL EQUATIONS 

The continuum limit integral equation for the baryon, restricted to the mini- 

mum N valence quarks, may be derived in the same manner as the meson equa.tion. 

The relevant terms in the discretized Hamiltonian are 

00 

CC 

x2 

1 3 

(1 - A*): + TS(n)) bFbn,c 
n=z,v,... 

and 

-G CC,ttEi [122 - nrlnl - n3] b~b~bn2,c2bnl,cl- 

n 

(3.14) 

(3.15) 

Consider first the case where N = 3; the generalization to arbitrary N will ‘foIlo\v. 
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A color singlet valence baryon state will have the form 

IKE) = C 6K,Cn dB(ni) ~~c~c3 bglbzbt 10) - 
n 

(3.16) 

As was done for the meson, the Schrodinger equation 

M,2 
H IdB) = I( I+B) (3.17) 

is projected onto the singlet state 

’ (3.18) 

where Eli = I(. Contracting color and momentum indices and taking the contin- 

uum limit I’ + 00 converts Eq. (3.17) into 

N 

c 
i=l 

d&x1 - s, x2 + s, x3) + &3(x1 - s, x2, x3 + 8) - (N - W(1)) 

f/2 

+ ddxl +%x2 - 5,x3) + &(x1,x2 - s,x3 + s) - (N - 1)4&x) 
42 

23 

ds 
+ J ( ,2 #‘11(x1 + s,x2, x3 - S) + h?(x1,x2 + 5,x3 - S) - (N - l>dB(X> 

42 
)I 

= M2&(x). 
(3.19) 

Here r$~(x) E ~B(XI, ~2, ~3) and xi X; = 1. The e/2 cutoff for small x is the same 

principal value prescription employed in the meson equation?*34135J This equation 
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has been derived both by Feynman diagrams in Ref. [33] and by means of an 

equivalent string theory in Ref. [34], and has been studied numerically in Ref. 

I351 * 

In this form the equation is readily extended to arbitrary N. The wavefunction 

takes N arguments, there are N rather than 3 integrals, and in the ifh integral there 

are (N - 1) terms in which momentum is transferred consecutively from the jib 

quark to the remaining N - 1 quarks. 

3.3. MESON WAVEFUNCTION ENDPOINT BEHAVIOR 

The asymptotic behavior of the valence SU(N) meson wavefunction when one 

quark carries momentum fraction z m 0 may be determined using the continuum 

integral equation Eq. (3.10)y6’ The behavior for valence baryons and higher-Fock 

states may also be computed from the relevant integral equations, as will be shown 

later. The wavefunctions in this limit will provide a great deal of information about 

continuum solutions, particularly when m/g is small, or for form factors, when Q’ 

is large. In addition, it will be employed to determine the dependence of numerical 

results on K. 

Assuming the form 4(z) N cxa as x N 0, where c is an undetermined constant, 

Eq. (3.10) becomes 

m2Cxa-l & -- 
lr f 

ldy 4(Y) - cxa N 0 

(Y - d2 
0 

with 

(3.20) 



The integral in Eq. (3.20) must introduce an extra power of l/x to balance the 

kinetic term. This will originate in the y N x region, where 4(y) N cya. Defining 

the integration variable u z y/z - 1 in the region y E [O, x - e] gives, to leading 

order in x 
z-c -C/Z 

J 
dY ;,--;); =x a-l 

J 
& (1 + u)O - 1 

u2 ’ 
0 

-l 

which possesses the appropriate power of x. Repeating for y E [x + c, 11 and taking 

E + 0 prior to x gives for Eq. (3.20) 

f mdu (I+ u)~ - 1 _ rm2 u2 -1 9% * (3.21) 

The integral is evaluated in Appendix B, reproducing the equation in Ref. (211 (for 

large N) 

1 - (a7r) cot(a7r) = z? 
s$ ’ 

(3.22) 

with a E (0,l). Note that this determines, up to a coefficient, the same asymptotic 

small-x behavior for all qq wavefunctions, including excited states. It depends on 

the parameter m/g but is independent of each state’s mass. The coefficient c, 

however, may vary from state to state. 

The exponent a determined implicitly by Eq. (3.22) monotonically increases 

from 0 to 1 as m/g runs from 0 to oo. For strong coupling (small mass) 

while for weak coupling (large mass) 

%7/m-O) 

(3.23) 

(3.24) 



The reasonable approximation for the lightest meson wavefunction, 

4(x) 0; x0(1 - x)a , (3.25) 

provides a fairly accurate mass expectation value at strong coupling. As m/g 3 0, 

the exponent a approaches zero, and d(x) N 1 everywhere except for an increasingly 

narrow region near the endpoints, where it decreases sharply to zero. This behavior 

will make accurate numerical calculations based on a regular grid increasingl) 

difficult. For weaker coupling the wavefunction grows less drastically from zero 

at its endpoints, while the peak at x = l/2 becomes more prominent. Finally, it 

should be mentioned that there do exist other possible asymptotic forms for x m 0 

which may be generated from those above by taking n derivatives with respect to a. 

These go as x” logn x, where a is the same function of m/g as before. Expectation 

values for M2 which have been computed with 4(x) 0: xa(l - 2)’ logn[x(l - x)] lie 

consistently higher than for those discussed above, and the previous form will be 

assumed. 

3.4. BARYON WAVEFUNCTION ENDPOII’U’T BEH.4VIOR 

Just as for the meson, the asymptotic behavior of the baryon wavefunction 

in the valence approximation as one argument approaches zero may be extracted 

from the continuum Eq. (3.19). The case where N = 3 will be considered; again, 

the extension to general N is simple. 

In the limit where x1 + 0 while the other x; are fixed, the form for 4~ 

d’B b> - 2; 4B(X2,53) (3.26) 
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is taken as an ansatz. The kinetic term is then 

HO~B - m2 x;-~c$B. (3.27) 

Also, the first integral in Eq. (3.19), after the change of variables s = -zru, gives, 

to leading order in x, (N - 1) copies of 

-$($)x;-l&& [(l+U)a-l]. 

-1 

(3.28) 

The remaining integrals contain (N - 1) terms, one from each integral, in which 

momentum is exchanged with the first quark; that is, x1 appears in the combination 

21 + s. Defining s = xru, these produce 

(AT--l) [$(s)x;-‘& T; (l+U)a], (3.29) 

while those remaining partially cancel and contribute a term of the same form but 

with (1 + u)’ replaced by -1. 

The net result is that as 21 + 0, a must satisfy 

O”dU f 3 
U’ 

I(1 + uja - l] = 1 - (UT) cot(un) = * . (3.30) 

-1 
gN 

This is the same equation as for the meson wavefunction in the same limit. The 

asymptotic small-x behavior of wavefunctions appears to be universal; this equation 

is valid for mesons and for baryons with any number N of quarks. This result is 

unaffected by permitting higher-Fock states in at least the meson wavefunction, as 

will be shown, and is probably true in general. 
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Finally, this limit was defined such that all but one argument are held fixed. If 

more than one xi is taken to zero simultaneously, the behavior is more complicated. 

For example, for Eq. (3.19), letting x1 and 12 approach zero holding x2/21 = o 

fixed and assuming 

gives the condition 

[m2 - 7(1 - (an) cot(ur))] + i [m2 - 7(1 - (b7r) cot(h))] 

= du 
-7 f 1 212 (1 +u), (1 -u/0,)“- 1 

I 
=o 9 

-1 
(3.31) 

with 

The general behavior of wavefunctions when one argument approaches one and 

the rest approach zero would be particularly useful for determining the behavior 

of form factors at large momentum transfer; this will not be attempted here. The 

specific case of the large-N valence meson is discussed in Ref. [lS]. 

3.5. ESTIMATING NUMERICAL ERRORS 

In the continuum limit, the problem of diagonalizing P- may be cast in the 

form of an infinite set of coupled integral equations. From the derivation of these 

equations in the previous sections, it is clear that diagonalizing P- in the discrete, 

denumerable Fock space specified by imposing antiperiodic boundary conditions is 
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equivalent to solving these equations numerically, with the integrals evaluated on 

a regularly spaced grid. For example, in the valence meson equation. Eq. (3.10), 

0 

(3.32) 

Figure 2G. Numerical Approximation of Principal-Value-Regulated Integral. 

For finite II’, the sum approximates the integral by summing rectangles of 

width e= l/A’ as in Fig. 26. The contribution from n = 4’ (= 9/2 in this figure) is 

excluded. The error typically induced by approximating the integral of f(y) from 

Y = a to b in this way is 

2 g(b) - ml + W3) - (3.33) 

This is normally not a good scheme for approximating an integral, and much 

faster methods exist. The case considered above, however, is not even normal. 
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First, because d(z) cx Z* as z w 0, with a E (0, l), the derivative of the integrand 

appearing in the error estimate contains terms which diverge at the endpoints as 

p-1 . Second, the singularity regulated by the principal value induces an additional 

error when discretized. 

To determine the discretization error in the valence meson integral, consider 

the regions [O, c], and [l - c, l] about the endpoints, and [c, x - c/2], and 

[Z + c/2, 1 - c] near x, separately; x will be assumed as fixed and finite. 

First, computing the integral (with 4(y) m cy”) 

26 

J dy (yc_y:)2 
0 

(3.34) 

and subtracting that approximated by sampling at the first grid point at y = c/2, 

produces a leading error of 

$[& - l]C’+a (3.35) 

with higher terms of order en+‘, with n > 1. The contribution from the term with 

-4(x) in the numerator produces errors of order E” with n 2 3 in this region. 

The region near y N 1 should produce the same order errors. In [c, x - c/2] and 

[a: + 4, 1 - E] the integrand and its derivatives are finite and the usual error 

estimate applies. The endpoints neighboring the excluded region around y = z 

contribute errors of order en, n 1 3 to Eq. (3.33). Those near y = 0 and 1 yield 

errors of order @a and en+], with n 2 1. 

Finally, eliminating the point from the sum in Eq. (3.32) where n = P (that is, 

Y= x) effectively excludes the region Ix - c, x + c] from the integration over y; (cf. 
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Fig. (26)). Th e error induced is 

Z+E 

f 
dy 4(Y) - d(x) 

(Y -xl2 ’ 
(3.36) 

t--t 

where e is fixed at l/K while the principal value limit is taken. Assuming 4(y) is 

sufficiently smooth and expanding around x gives for Eq. (3.36) 

qY’(x), + &$““(r)c3 + . . . . (3.37) 

Although in the limit I< + 00 (e ---) 0) the discrete infrared regularization employed 

reduces to a well-defined principal value prescription, it reduces at a leisurely pace; 

for finite K it is the source of the leading O(c) error. 

Combining contributions from these various terms gives a series in c for the 

total error in Eq. (3.32) of 

ClC + cgc I+= + c32 + cqc2+= + . . . , (3.3s) 

in contrast with terms of order en, n 2 2 which would occur were the integrand _- 

analytic. 

Because the endpoint behavior a is apparently general, physical quantities AI, 

such as meson and baryon masses, measured at finite but sufficiently large II’, 

should behave as 

hI(l/K) = hl(0) + g + & + g + & + . -. , (3.39) 

with M(0) the continuum limit. The leading error is of order l/K, so that hf(l/A’) 

converges painfully slowly. The discretization scheme used to quantize this the- 

ory then ends up effectively evaluating integrals in a way which is simple but 
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inefficient. However, knowing Eq. (3.39), th is may be turned to advantage, and 

convergence may be improved significantly by Richardson extrapolation. In this 

method, hf(l/l i is computed at n different finite values of I<, to which the first ) 

n coefficients of the series are fit. This technique is commonly applied to improve 

numerical calculations of integrals, although the dependence of the series behavior 

on the coupling and mass through the exponent a is peculiar to this case. The 

error to the fit of hf(0) is of the order of the term n + 1. A rough estimate of the 

error in this procedure is given by the last. term retained. This technique was used 

in the results previously quoted to allow for a meaningful comparison with other 

techniques, and to give some idea of their uncertainties. 

3.6. ESTIMATE OF NECESSARY RESOLUTION 

In order to know when this extrapolation procedure may be reliably applied, it 

is useful to know how large I< must be before results begin to exhibit the behavior 

in Eq. (3.39). 

The approximate valence wavefunction for the light,est meson 

tgx) 0: x= (1 - x)a, 

where a is defined in Eq. (3.22), provides a model for estimating the size of 1< 

needed for reasonable numerical results. This is especially important to know in 

the case of strong coupling (small quark mass). As has been seen, u becomes small 

and d(x) turns over sharply at its endpoints. I( will most likely be large enough 

when it allows these regions to be adequately sampled. 
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When discretized, xk = k/K, where k is the numerical quark momentum. If 

the first point in x is required to be small enough to sample d(x) before the point 

where d(x) reaches half its maximum, then 

with 

IC22x1 , 
hmaz 

1 1 
1 

1 
2 2 ( > 

112 
xhmaz = - - - -- 

p/a * 

The minimum I< estimated in this way is listed in Table [6] as a function of X for 

N from 2 to 4. 

Table [8] 

. 

I 
Kmin : 

X m/g hr=2 3 4 

.3325 1.6 8 8 10 

.5763 .8 10 12 15 

.815S .4 20 30 50 

.9425 .2 90 250 500 

.9847 .l 2000 15000 7 x lo4 

-9961 .05 106 5 x 10’ log 

These estimates are probably overly conservative for computations of quantities 

which are not sensitive to the endpoint behavior of the wavefunctions. It does, 

however, indicate that numerical precision becomes increasingly difficult as the 

coupling strength grows; the K considered in actual computations are generally 

below 50, so results for X > .9425 should be eyed suspiciously. 
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I * l I I (11 I I I II, I I, l ,.,,,,,‘j 

SU(2) B=O and 1 SU(2) B=O and 1 4 
-- A=.9425 m/g=.2 

1 I I 1 I I I I 1 I 1 I I 1 I I 1 I k I I h 
0 0 0.02 0.02 0.04 0.04 0.06 0.06 0.08 0.08 0.1 0.1 
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Figure 27. Extrapolation Fit to SU(2) Lightest Meson hlass. (a) Fits from Last Two to Last 
Six Points; (b) Fit to Last Six Points, Isolated. 
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Fig. (27) provides an example of a fit of this kind. Eight values for the lightest 

meson mass-squared Mi in units of m2 +g2/n are plotted versus l/21(, where 211’ 

ranges from 10 to 24. Here N = 2 and X = .9425, corresponding to m/g = .2 . 

For Su’(2), the lightest meson and baryon masses are identical at all values of I<, 

so these apply as well to the baryon. Also, the Fock space was restricted to four 

quarks; the resulting error is negligible for this case. 

These points are used to determine the coefficients in the series expected to 

describe the behavior of Mi as a function of l/21<, as in Eq. (3.39). For this case, 

a = .222 for X = .9425. This function is plotted in Fig. (27a) for the cases where 

the left-most n points are used to determine the first n coefficients in Eq. (3.39), 

and n ranges from two to six. Fig. (27b) isolates the six-term series. The vertical 

intercept is fVi (0). 

From these plots, it is clear that extrapolation substantially improves, or at 

least alters, the best measured value for i@ at 211’ = 24. In fact, the X in this 

case is probably close to the upper limit for which computations at this K are 

reliable. In spite of the rather large extrapolation, the curves are both smooth, 

that is devoid of oscillations between points, and stable as the number of included 

points increases. Also, the curve in Fig. (27b) is fit to only the six points nearest 

the continuum, but nevertheless runs through the next two points to the right. 

These suggest that this fit is reasonably reliable. 

The value of the last term retained in the series (computed at the smallest 

value of K used in the fit) provides an indication of the error. For n = 2 to 6, these 

are .14, .42, .OSO, .39, and .078, respectively. These error estimates are admittedl) 

crude; a much better method could certainly be devised. This would probably be 
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warranted if these calculations were being compared with actual physical (that is, 

four-dimensional) quantities. 

3.7. HIGHER-FOCI< EQUATIONS: ENDPOINTS AND ERRORS 

Because the endpoint behavior of meson and baryon wavefunctions ,derived 

above from integral equations in the valence approximation, play an important 

role in both analytic and numerical results, it is important to know what effect the 

inclusion of higher-Fock components might have. 

Just as in the valence approximation, integral equations which incorporate 

higher-Fock wavefunctions may be derived from the discretized Hamiltonian by 

contracting the Schrodinger equation with appropriate color singlets. For example, 

for B = 0, contracting Eq. (3.17) on the left with a qij singlet at fixed momentum 

and taking I< (or L) to infinity produces an integral equation which incorporates 

the qq and qqqij meson wavefunctions. Because H can change particle number by 

at most two, no others are involved in this case. 

The result is the complete equation for 42(x) E 42(x, 1 - x): 
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M2&(x) = 7-n2 (; + 342(4 

-I(N;ia)]~y (y-xl)2 .(+q,,,,, 
h(Y) - d2(x) + g2 1 

0 0 

(3.40) 

1 

a J 
k’l64h Y2; y3, Y4) 

KY) (x2-1yr)2 - (3 (x2!y2)2] 
0 

2 l 

+4$ 
J 

[&]d4(Yl,x2; Y3, Y4) 
- (9) (21 :yl)2]* 

0 

Here [dy] is short-hand for nj dyi, with the yi those appearing in 44, multiplied 

by a delta function which restricts all the arguments of 44 to sum to one. The 

variables z1 and x2 are the fractional momenta of the Q and 2j which contracted 

Eq. (3.17), with 21 + x2 = 1. Finally, the continuum n-particle wavefunctions 

$n(+i) are constructed from the discrete 4,(li) according to 

(3.41) 

Eq. (3.40) is the first of an infinite set of coupled integral equations. The next 

may be derived by contracting Eq. (3.17) on the left with two qQ pairs with frac- 

tional momenta of x1 to x4. This equation will couple $2, $4, and 46. Neglecting 

&j, it is 
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d2(xl) - 42(X4) 42(X1) - $2(X4) 

-h:(“;ia)[ (~-XI-X~)~ + (1-X1-X4)2] 

h(xd - 42(X2) + 42(X3) - 42(X4) 

(1 - Xl - x2)2 (1 - x3 - x4)2 1 
-$(“‘; “) /‘dyl[ (33 - y~)~ 

+4(yl,y2;X3,X4) - 44(X) + $4(Xl,X2;y3,y4) -+4(X) 
(23 - y3)2 

+ (b4(yl,y2;Xl,X4) - 454(z) + 44(X3,X2;y3,y4) - d4(5) 

( X3 - Yl)? ( x1 - Y3)2 

+ ~4(y1,22;21,y4) 

( 

- $4(5) + 44(X3, y2; Y3,X4) - 64(5) 

X3 - Yd2 ( Xl - Y3)2 

_ 44(X1, y2; X3, Y4) - d4(5) 64(yl,X2; y3,X4) - 44(z) 

( X2-y4)2 - ( Xl - Y3)2 I 

+; (T) JidYl[ 
$4(yl,y2;X3,X4) - d4(yl,X4;X3,y2) 

(Xl + X2)2 

+ d4(Xl,X2;y3,y4) - 954(X17y2;y3,X4) 

(X3 + X4)2 

_ 44(X3, X2; Y3, Y4) d4(51,54; Y3, Y4) 

(Xl +X4)2 - (X2 + X3)2 

+ d4(yl,X2;y3,X4) - d4(yl,X2;X3,y4) 

( Xl - Yd2 

(3.42) 

+ $4(X],y2;X3,y4) - $4(Xl,y2;y3,X4) 

(X2 - Y2)2 I 
, 
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with the wavefunctions defined such that &(xi) E &(xi, l-x;), 44(x) s 44(x1, x2; x3, x4), 

44(z) E 44(x3, ~2; x1,54), and C xi = 1. Repeating this procedure would produce 

equations which relate the infinite set of wavefunctions. 

Having continuum integral equations which include higher-Fock wavefunctions, 

it is possible to determine if in accounting for these, conclusions drawn from the 

valence wavefunctions are altered. From Eq. (3.40), $4 could affect the small-x 

behavior of $2. 

Figure 28. Typical Diagrams which Contribute to the Integral Equation for #Q(Z). 

That. the endpoint behavior of the valence wavefunction is unmodified by in- 

cluding higher-Fock states may be understood by tracing the source of the leading 

term. For x1 w 0, the leading kinetic term, Fig. (2Sa) goes as m2/xl. (The modi- 

fication from the endpoint behavior of #z(x) may be ignored for now.) This must 

be matched by the leading term from the exchange of an instantaneous gluon , Fig. 

(2Sb). The dominant contribution from the y1 integration comes from the region 

where y1 is near xl. Taking Ayr w xl, and g2/x: from the gluon suggests a leading 

contribution which goes as g’/xl, matching the kinetic term. The variable.yr is 

fixed by momentum conservation, and so contributes nothing further. 
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Higher-Fock wavefunctions will appear in interactions of which Fig. (2s~) is 

typical. Again, the yl integral is dominated by the region y1 N x1, and with the 

propagator contributes g2/x1. Because y2 = x2 = 1 - x1, the integration variable 

y3 is restricted to be less than x1 by C yi = 1, contributing another factor of x1. 

This diagram will be of order zero in x1 and as a consequence, 44 does not affect 

the leading behavior of $2. 

This may be seen explicitly in Eq. (3.40) (for SW(N)). The valence terms have 

already been discussed. The 44 term, 

1--21--y, 

-4 s5 ‘-7-‘dY4 / dy3’4(x”1(; yx;y_3iF;y3,y4), T 
0 0 

(3.43) 

(with $4 approximated by one) would contribute +4(gi/x)ln(c/(g-1)x1) from the 

region y E [1-0x1, l-xl- e], while the second 44 term would add -4(g%/z)ln(e/xl). 

The combination is finite in L and order zero in x1, as anticipated. As long as 44 

does not in reality diverge for small x1, allowing it non-trivial behavior does not 

alter the conclusion. 

There is nothing in this discussion which is specific to two and four particle 

wavefunctions. In general, the leading endpoint behavior is determined by two-to- 

two quark interactions, regardless of the presence of spectators. This has already 

been observed for baryon valence wavefunctions, which were shown to possess the 

same asymptotic small-x behavior as the valence meson. 

Furthermore, this also appears to hold for higher-Fock wavefunctions. Consider 

Eq. (3.42) for 44. As argued above, 9s does not influence the behavior of 44 as 

x1 + 0. Also, the momenta appearing in terms with #9 are fixed and cannot 
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I . \ I\ ., \ - , / (4 / 
. \ / I :: Es0 

Figure 29. Terms in the Integral Equation for 44 which Contribute to the Leading Small- 
t Behavior. (a) Order 1; (b) Order l/N; (c) Order g2A’; (d) Order g*; (e) Order 92 OnI> 
Appearing for U(N). 
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match the kinetic term singularity of m2/xl. The terms which do contribute are 

illustrated diagrammatically in Fig. (29). C 1 o or fl ow is explicitly indicated. 

Only gluon exchange terms involving 11 are relevant. Of these, two of the 

order-g? interactions cancel, as do the U(N) t erms. As a result, as 21 + 0 with 

the other x; fixed, 44 the other x; fixed, 44 w xyf(x2, x3, x4) with the same exponent a as for the valence w xyf(x2, x3, x4) with the same exponent a as for the valence 

meson and baryon. meson and baryon. 

(4 (4 

(b) . . 
Figure 30. Leading Terms in Large-N Limit for the 44 Integral Equation. (a) Diagonal Terms, 
Including Normalization; (b) Interactions. 

Eqs. (3.42) and (3.40) may be used to demonstrate explicitly how q4 meson 

decouple in the large-A’ limit. From Eq. (3.42), only the terms which correspond to 

planar diagrams illustrated in Fig. (30) contribute to leading order. Rote that the 

pairs of color singlets act independently to this order, even in the wavefunction nor- 

malization, and it is reasonable to expect a product of $2 wavefunctions to form a 

solution for 44. For example, consider the case where momentum is equally shared, 

Xl + 22 = 53 -I- x4 = l/2. Define new momenta u~,u~,zJ~,u~ as twice xr,~,rs,x4 

116 



respectively, so as to range from zero to one. Substituting &(ul, u~)&(Q, ~2) for 

&(zr , 32; 23, zq) factorizes Eq. (3.42) to leading order in N: 

2 [ m2(i + $)42@) - $J J dY l 42(Y) -b(Y) 42(v) 
L (Y - u12 1 

0 (3.44) 

l $2 m2(i + ;)d2@) - g Jdy (y _ 42 
[ 

dP(Y)--42(Y) (j2@) 1 * 

0 

Evidently, if ~$2 is an eigenstate of the large-N qq equation with mass squared of 

p2, then AI’ for 44 is just 4~“; that is, the mass of two non-interacting mesons at 

zero relative momentum. 

Note that in Eq. (3.40), 44 appears coupled to $2 even to leading order in N. 

However, for the particular case where 44 = 42 x 42, these terms cancel, and 42 

satisfies the large-N valence Fock state equation, uncoupled to either higher-Fock 

wavefunctions or meson pairs. 

Meson and baryon wavefunctions in the valence approximation exhibit a uni- 

versal asymptotic behavior as a single variable approaches zero while the others 

remain fixed, 

with a given in Eq. (3.22). This holds for all N. Furthermore, mesonic integral 

equations which incorporate the four-quark Fock state show both that its inclusion 

does not alter this property for the valence wavefunction, and that it shares the 

same small-x form. This holds whether this four-quark state represents .a pair 
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of valence mesons, in which case the behavior is required for consistency, or the 

higher-Fock contribution to a single meson. 

The interaction that provides the g2/x to match the kinetic m2/x term as 

2 ---) 0, two-quark to two-quark instantaneous gluon exchange, preserves quark 

number. Because this interaction appears in essentially the same way in all integral 

equations, it is likely that Eq. (3.22) h o s Id f or all wavefunctions, whether valence 

or higher-Fock, and that this behavior is unaffected by interaction with states of 

higher or lower quark number. 

Numerical errors are due to both the endpoint behavior and the principal value 

prescription for the gluon propagator, as well as those usually associated with 

numerical integration. The principal value prescription provides the same order 

l/K error in all cases. If the endpoint wavefunction behavior is also universal, 

then for a given g/m, the errors for all quantities computed will behave in the 

same manner as that described for the valence meson, Eq. (3.39). In any case, 

it has been shown to be true generally enough to make Richardson extrapolation 

applicable in most cases of interest. In particular, the lightest meson and baryon 

are dominated by their valence wavefunctions up to fairly strong coupling, and it 

is certainly applicable there. 

3.8. HEAVY-QUARK LIMIT FOR MESONS 

In order to understand the large quark mass limit of low-lying meson masses 

and wavefunctions, the large mass limit of the meson integral equation 

9% l #J(Ga,xb) - -;;- f dy , (3.45) 
0 
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with 
\ 

and %+xt,=1, 

may be taken directly. In this limit, higher-Fock components may be neglected, 

as they contain a larger number of the very massive quarks. Were there physical, 

propagating gluons, higher states containing arbitrary numbers of gluons in addi- 

tion to the heavy quark pair would either be included explicitly or incorporated 

into an effective qq potential. Unlike the formulation in the infinite momentum 

frame, no special frame has been selected, and a nonrelativistic limit of Eq. (3.45) 

is perfectly sensible. 

Furthermore, such a reduction should help to clarify the connection between 

wavefunctions in nonrelativistic quantum mechanics and those on the light cone. 

Following Ref. [24], the expansion may be performed by counting powers of quark 

velocity (small) and mass (large). Let k, and kb be the equal-time momentum in 

the x1 direction, of order mv. Then 

(3.46) 

with terms of order m, mv and mv2, respectively. After dividing Eq. (3.45) through 

by the total light-cone momentum I’+ to convert xa and xb to kz and kb+ from 

k+ = xP+, then, in terms of the equal-time momentum sum and difference, 

k s k, + kb and q f k, - kb, 
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the expanded kinetic term is 

- 2m-k+& (k2+q2)+... . 

Defining the binding energy E by 

EE itI - 2772 = O(mv2), 

the right-hand side of Eq. (3.45) reduces to 

- 2m-K+2E+ (k2 - q”> + . . . 4m 
> 

4(x). 

(3.48) 

(3.49) 

(3.50) 

Note that the arguments of 4( ) x in this limit, x0 and Xb, become 

Xa N ;+2+... , 

(3.51) 
1 

Xb - -- Q+... . 
2 4in 

As discussed in Ref. [24], light-cone wavefunctions involving n heavy quarks will 

be strongly peaked around x w l/n, or l/2 in this case. The nonrelativistic wave- 

function is then 

(3.52) 

Finally, the potential term becomes, after replacing y with l/2 + q’/4m and 
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letting p = q’ - q, 
2m 

4&m dp -- 
7rP-t f --g [4(P + q> - 4kdl. (3.53) 

-2m 

Keeping the leading term from Pf, and assuming that the wavefunctions fall off 

quickly enough to extend the integration to infinity, Eq. (3.45) is finally 

(3.54) 

In terms of the position-space wavefunction 

(3.55) 

the interaction term transforms into the local potential 

Co& V(2) E _ f 7 [em+’ - l] = -7rl.71 . 
-03 

(3.56) .- 

Note that this principal value prescription does not generate an additional finite 

renormalization of the quark mass. Eq. (3.54) becomes the Schrodinger equation 

This derivation required the relevant momenta in the wavefunction to be much 

less than twice the quark mass; for example, it was used to obtain Eq. (3.54) from 

Eq. (3.53). In other words, the position-space wavefunction is sensible as long as 

distances as small as the Compton wavelength of the quarks are not probed, where, 

for example, pair production would foil a probabilistic interpretation of 4(z). 

121 



I 

This equation and its solutions are discussed in Ref. [37]. Introducing dimen- 

sionless variables 

‘II s (4g$n2)‘/3 z and Xr , 

the equation becomes 

(3.58) 

(3.59) 

The solutions are Airy functions, 

dnb) = A;@ - x,) , (3.60) 

with eigenvalues given by 

A;(-Ali) = 0 (3.61) 

for symmetric (parity odd) states, and 

Ai(-X,) = 0 

when antisymmetric (parity even). 

The lowest meson mass 

Afl 
s = T + (2J3 (“i, 1)2’3 x1 

(3.62) 

(3.63) 

is plotted in Fig. [31] for N = 2, 3 and 4 and compared with the actual output. 

Note that in all cases, the binding energy E is positive. The actual data asymp- 

totically approaches the nonrelativistic limit from below, reaching to within about 

5% for m/g = 1.6. 
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Figure 31. 
Solutions. 

OV,“““““““““’ 
0 0.5 1 1.5 2 

m/t3 

Comparison of Lightest Meson Mass for N = 2, 3, and 4 with h’onrelativistic 

3.9. HEAVY-QUARK LIMIT FOR BARYONS 

The same nonrelativistic reduction may be applied to the minimum Fock state 

equation for the baryon. Three colors will be considered here, although the ex- 

tension of the nonrelativistic Schrodinger equation to baryons of larger N will be 

evident. As a consequence, the confining potential for three (or more) very massive 

quarks may be derived from first principles. 

The light-cone eigenvalue equation for the N = 3 baryon restricted to three 

quarks is 
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m2 

- s, xb, xc + s) + d(% - S, xb + s, xc) - (N - l)d(x)] 

zb 

+ 
J 

$[~(GI + s, xb - WC) + d’(%xb - s,xc + s) - (N - 1)4(x>] 
(3.64) 

E 

zc 
+ / Xa, xb + S, Xc - S) + +a + s, 26, xc - s) - (N - I)+)] 

f I 

where x0 + Xb + xc = 1. Proceeding as for the meson, the equation is divided 

through by P +, the kf are expanded in powers of velocity over mass, and the 1 

binding energy is defined to be 

EEM-3m. 

In terms of the relative momenta 

K = k, + kb + kc, 

p = k, - kb, 

q = kb - kc, 

p+q=h,-I;,, 

where the ki are the equal-time spatial momenta, Eq. (3.64) reduces to 

(3.65) 

(3.66) 

& [P’ + q2 + (P + d2] b(z) + W(x) = 2E dW , (3.67) 
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with the potential V still to be computed. As before, the total momentum K has 

dropped out. 

The arguments of the wavefunction, x;, to leading nontrivial order in p and q, 

become 
1 2P+q 2, - - 
3+x’ 

(3.6s) 

1 xc--- Pq + PI 
3 3m * 

The nonrelativistic momentum-space wavefunction is then determined from the 

light-cone wavefunction by 

To compute the potential V, consider the first potential term of Eq. (3.64). Ex- 

panding the arguments of $(x) as in Eq. (3.69), and defining a new integration 

variable t = ms, the leading contribution from this integral is 

43 
m 

/ 
$ d(P - t, Q - t) * (3.70) 

c 

Including the term where s appears with the opposite sign, as well as the terms 

necessary to keep the integral well-defined gives an interaction of the form 

43 
m 

f 
f$ [qqp - t, q - t> - 4(P? 41. 

-m /3 

(3.71) 

To develop a position-space equation, define za, b, z and zc to be the variables cou- 

125 



I 

jugate to k”, kb, and kc. Then the variables conjugate 

are 

.? = &a + zb + zc), 

+22. - %b - zc), %P = 3 

‘(Za + Zb - 22,). %I = 3 

Defining the position-space wavefunction by 

to K,p, and q, respectively, 

(3.72) 

-=d dz q$(p, q) = J * e-i(pzp+qrq) 4(zp, fq) 
-00 

(3.73) 

and converting Eq. (3.71) into a position-space potential, the Schrodinger equation 

for f$(z) is . 

= EqQ) . 

The variables za, Zb, and zc are understood to be functions of zp and zq. The 

extension of this equation to N other than three is now straightforward. 

To sketch the method for solving Eq. (3.74), rewrite it in terms of the variables 

t.“(zp+zq) and t=zp-.zq. (3.75) 
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These diagonalize the derivatives, and Eq. (3.74) is now 

This may be solved by separation of variables 

e, t) = m-Pw 7 

yielding the equations 

(3.77) 

-LR”+i+ 2N 2 hr+l rR=XR 
27m ( ) 

(3.7s) 

tT=(E-X)T, 

where /3 = 0, fl and Q = fl, f2 depending on the region of r and t. The solutions 

are again Airy functions , except when p = 0, and eigenvalue conditions may be 

derived by matching solutions at the various boundaries of r and t. 

3.10. MASSLESS MESONS AND BARYONS AT STRONG COUPLIKG 

As discussed previously, the momentum space transforms of the SU(hr) cur- 

rents (at x+ = 0) 

L 

vk” = f J dx- e-’ L ‘~“-j+a(,-) 

. 
(339) 

-L 

satisfy the algebra of Eq. (1.140). Th is may be extended to include the V(1) 
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current 

j+(O) = 2 : yqpJ$R : (3.80) 

with To = -& 1. The transformed operator Vi commutes with the other SU(A’) 

elements, and satisfies 

[Vi! , hOI= +,+,,o * (3.81) 

Noting that V,$ = Vjk, this may be rewritten 

[ v,O+ , ho] = iG,t,t - (3.82) 

The interacting part of the Hamiltonian is greatly simplified when expressed 

in terms of these operators: 

becomes 

(3.84) 

Because Vt = Q”, the contribution at k = 0 is proportional to the total charge 

Q”Q” and so may be discarded. 

The V’ are color-singlet bilinears in $JR, and so may be used to create mesonic- 

like states. Specifically, the related operators (for k > 0 by definition) 

(3.85) 
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satisfy standard free boson commutation relations 

[Qk ,a:]=6k,L (3.86) 

and so ‘Vi creates a boson with momentum Ps 

is zero, the entire Hamiltonian is given by Eq. 

with the vi which appear in Py, 

= 2nk/L. In the limit where m/g 

(3.84). Because the vko commute 

M2V,o (0) +P- ,V2](0)=0. (3.87) 

Not only is the state created by acting with Vf on the vacuum an exactly massless 

eigenstate in this limit, but states formed by repeated applications are also exactly 

massless. Furthermore, acting with v: on an eigenstate of non-zero mass produces 

a degenerate state of opposite parity, as will be demonstrated. This argument is 

independent of the value of the numerical momentum A’ and so gives an exact 

continuum result!” 

The finiteness of I< becomes relevant, however, when counting the number of 

massless mesons which can be produced. Massless mesonic states of total numer- 

ical momentum K of 10/2, for example, may be constructed by from one to five 

applications of Vi on the vacuum, with momentum distributed as (5), (1,4), (2,3), 

(1,1,3),(1,1,2),(1,1,1,2)and(1,1,1,1,1). ComparingwithFig. (4a),theseac- 

count for all seven of the states whose masses vanish in this limit. Increasing I< 

permits an increasing number of massless states, which becomes infinite in the 

continuum limit. 

Just as the existence and number of massless states is most simply discussed 

in terms of the Vi, so also are the wavefunctions of these states. Applying one Vi 
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to the vacuum 

yields a continuum wavefunction of d(z) = 1; in the continuum, n/K becomes r. 

Because C$ is even under the interchange of x and 1 -5, this state is a pseudoscalar. 

The wavefunctions of momentum I< created by applying V” twice are, for any 

e < Ii’, 

(3.89) 

The qij piece is odd and so this state is a scalar, as a product of pseudoscalars 

must be. All the massless meson wavefunctions for a given K may be constructed 

in this manner, and parity will alternate with each additional V”. 

Two further comments should be made. First, each additional V” increases 

the particle number of the highest Fock state, which has a coefficient of order one, 

by one qq pair. Because these states are degenerate as m/g + 0, it is possible that 

a great deal of mixing occurs, and Fock states with any number of quanta might 

be expected to appear with arbitrary strength in any wavefunction. In fact, for 

finite but small m/g, the lower states are approximately ordered according to the 

number of VO’s. The first state is almost entirely composed of Vi IO), the second 

by V” P- IO), and so on. There is however a small but persistent four-quark K/2 h/2 
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component for the lightest meson which is given in Table [5]. This component 

drops rapidly with N, decreasing by a factor of ten from N = 2 to 3, and again to 

N = 4, as in Fig. (19a). 

Second, these states are massless and described in terms of the bosonic op- 

erators vt only when m/g is identically zero. For small but finite m/g, the free 

Hamiltonian contains terms like m2/zi, and so is singular when constituent i carries 

zero momentum. Wavefunctions must therefore vanish at these endpoints, whereas 

those described above for m/g identically zero do not; m/g -+ 0 is evidently a sin- 

gular point in this formalism and perhaps in the theory!” Although it need not 

have been the case, it will be shown that m/g finite but approaching zero, the so- 

lutions for m/g = 0 provide an accurate description of both the spectrum and the 

wavefunctions, apart from small regions around xi = 0, where the wavefunctions 

must vanish. 

If the gauge group were U(N) rather than SU(N)““’ the additional term asso- 

ciated with the extra U(l), 

Lg2 O” 1 
A 47r c 

Lg2 O” 1 -- FvfvJk = - - x pL!ak $ constant 
7r 4x 

(3.90) 
k=-m - k=l 

appears in P-. The ek satisfy free bosonic commutation relations, and this addi- 

tional interaction is therefore the discrete light-cone Hamiltonian for free bosons 

of mass squared g2/2n. These formerly massless states created by the C.I~ are pro- 

moted to the free massive bosons found in the Schwinger model and discussed Refs. 

[23] and [20]. Th e wavefunctions for these states however are unchanged. 

Note that while the entire U(1) spectrum may be built up from these non- 

pol interacting bosons, for U(N) or SU(N) they describe only part of the spectrum; 
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these are the massless mesons for SU(N). I n addition there are massive states 

composed predominantly of excited qq pairs. 

The U(1) (S h * g ) c wm er model has been solved exactly by establishing a corre- 

spondence between the current j”(O) and a scalar field’“’ 

yqx) G -L’“&~“(x) . 
6 

(3.91) 

By means of the axial anomaly, this field may be shown to satisfy the equation 

of motion for a free massive scalar 

surprisingly, the operators cl and L4k 

field, with a mass squared of g2/2x. Not 

discussed above are the creation and annihi- 

lation operators which result from quantizing 4’(x) on the light cone with periodic 

boundary conditions in x-. The scalar 4’(x) expanded in these operators, 

(3.92) 

satisfies the standard light-cone commutation relation -: 

[do(x) 1 WO(Yl lz+=gl+=o = +c,- - Y-). (3.93) 

For a discussion of bosonization for the non-Abelian currents, see Ref. [42]. 

A similar argument may be advanced to show that in this limit there are mass- 

less baryons as well. The commutator of the Vt which appear in the interacting 

part of the Hamiltonian, and N products of the field $L(x) at the point (0,~~) is 

[v&k”, ~fi”‘(x-).“&N(x-)]= 

e-i+- ([TO]: @(x-) . . . $f;N(x-) + (3.94) 

. . . + [T”]~%&‘(x-) . . . &x-)) . 
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The fields multiplied at the same point are all adjoints, and singularities which are 

regulated by point splitting should be absent. 

The entire k dependence appears in the overall factor eDiF’-. Consequently, 

noting that Vt at k = 0 is the charge operator Q”, 

[J/y, ?+$.fl...@” I =e -‘+-[ Q” , ,+$I.. . ,&N] . (3.95) 

If the fields are contracted with ccl...CN to form an SU(N) singlet, this commutator 

will vanish. 

In particular, the composite baryon field 

commutes with the r/k”, and, in the limit m/g -t 0, with the Hamiltonian P-. As 

in the case for mesons, this field creates an identically massless baryon. Repeated 

applications on the vacuum produce a massless state with arbitrarily desired baryon 

number. Furthermore, degenerate states with the same baryon number may be 

created by acting with the massless mesonic operators Vf in conjunction with Bk. 

Again, these results are independent of K and are true in the continuum limit. 

The (unnormalized) wavefunction associated with this massless baryon is 

(3.97) 

Whether this state is a fermion or boson depends on N being odd or even. 
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As an illustration, the normalized state for N = 3 obtained from Bk IO) is 

'clc2c3 

c 

bt'lbtCZbt~3 

[18(K + 3 )(K - 4 )]i nl n2 n1 n2 h-n1-n2 
IO> - 

The quark structure function derived from this wavefunction, 

q(xf) E K (BI @be,c IB) = 
6( 1 - t/K) 

(1+1/2K)(1+ l/21<) ’ 

(3.98) 

(3.99) 

becomes 6(1- x) in the continuum limit. This is the x dependence clearly evident 

in Fig. (10). Note that this satisfies the baryon number sum rule 

1 

J 
dx 6(1 - x) = 3 . (3.100) 

0 

The general expression for the quark structure function for a single baryon in the 

m/g --) 0 limit is 

q(x) = N(N - l)(l - x)~-’ . (3.101) 
t- 

For N = 2, q(x) = 2, which apart f rom the normalization, is identical to the meson 

structure function for all N. 

3.11. EXCITED MESON STATES AT STRONG COUPLING 

In the limit of vanishing quark mass, the presence of massless decoupled mesons 

allows the lightest sector of the meson spectrum to be interpreted simply, but it 

enormously complicates the excited states. For weakly interacting states, the sepa- 

ration of the spectrum into states with several mesons, as opposed to single excited 

q?j states was obvious. Excited meson wavefunctions are composed predominantly 

134 



of two quarks, while meson-pair wavefunctions, by contrast, are products of two 

single meson wavefunctions which are also individually present in the spectrum. 

Meson-.pair wavefunctions contain predominantly two quark and antiquark pairs, 

and their masses begin at the sum of the single meson masses and increase with 

relative velocity, and so are easy to discriminate. 

The situation is quite different as the quark, (and meson) mass vanishes. In 

two dimensions, two massless particles may be combined while leaving the total 

invariant mass zero, even when they possess a nonzero relative momentum. One 

consequence discussed earlier was the large number of massless states, limited only 

by the ability to subdivide a finite momentum K, created by repeatedly acting on 

the vacuum with the composite pseudoscalar field Vf which commutes with the 

Hamiltonian. 

Furthermore, excited, finite-mass states will occur in clusters of nearly equal 

mass and alternating parity as the quark mass vanishes. The same pseudoscalar 

fields which create the cluster of massless mesons can also be added to excited qq 

states. As k vanishes, their masses become degenerate. It is, in general, difficult 

and perhaps not meaningful to try to distinguish an excited quark-antiquark stat,e 

from one with additional massless mesons, or from pairs of mesons. As the quark 

mass diminishes there is, in general, a large degree of mixing, and Fock states with 

all number of quarks give non-negligible contributions to almost all wavefunctions. 

It is possible, however, to present a fairly simple picture of the total spectrum 

in this limit, even while difficult to characterize individual states by their wave- 

functions. Consider first the spectrum of states when the Fock space is restricted 
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to a qij pair. The wavefunctions for the first four states are pictured in Fig. (9e ) 

for very strong coupling or small mass, m/g = .l . 

These states c&( x are clearly well described, except at the endpoints, by ) 

q&(x) N cosn7rx . (3.102) 

An argument from Refs. [36] and [30] which applies to excited states at moderate 

couplings may be adapted to explain why a wavefunction of the form in Eq. (3.102) 

might be expected. The variable x in the qq equation for d(x), 

l m2 4h> - $ fdy (y-x)2 x(1 - x) 
4(Y) - w = &#4x) 7 (3.103) 

0 
may be reinterpreted as a position variable restricted to x E [0, l] , and m2/[x(l - 

z)] as a confining potential. The convolution integral would be roughly equivalent 

to 9% Id dJ(4 if Y were integrated to infinity, with $ acting as the momentum 

operator conjugate to x. ‘t Hooft and Coleman argue that for highly excited states 

the (pseudo)potential m2/x( 1 - x) could be ignored, apart from requiring that 

d(x) vanish at the endpoints. The eigenstates are then 

q&(x) - sinnnx , (3.101) 

with 

n42 2 x gArxn . (3.105) 

However, for the strong coupling case above, while 4(x) must vanish at the end- 

points for any finite m, to understand the wavefunctions and eigenvalues, it is ap- 

parently more appropriate to ignore the extreme endpoint behavior and to require 
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instead that c$‘( x vanish there. To see why this is the case, consider computing ) 

M2 by taking the expectation value of the Hamiltonian in an eigenstate 4(x). The 

kinetic term endpoint singularities will be shown to cancel one power of m, and 

J42 for’ a massless meson will go to zero as approximately a single power of m. 

However, since this kinetic contribution still vanishes with m, both the wavefunc- 

tion, apart from the very ends, and the mass M for massive states are governed 

by the interaction term proportional to g 2. The endpoint contributions to this 

integral are potentially singular. It is energetically favorable, then, for 4(x) to go 

to a constant in this region to cancel one power of the denominator; that is, for 

4’(x) to vanish. Eigenstates are then given by cosines rather than sines. 

An estimate of III2 based on this picture may be obtained by computing the 

expectation value numerically, using d(x) = fi cos nzx. The estimates for the 

first few states, given in Table [9], d escribe the spectrum to within about 10%. 

Table [9] 

n M2/& 

0 0 

1 5.9 

2 14.3 

3 23.4 

4 32.7 

This qQ spectrum, augmented by clusters of nearly equal-mass states by the addi- 

tion of massless, low-momentum, mesons, provides a fairly accurate characteriza- 

tion of the full strong-coupling spectrum. 
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3.12. HADRON MASSES AT SMALL QUARK MASS 

In the limit of vanishing quark mass, a great deal of information about the de- 

pendence of the meson and baryon masses as a function of the quark mass can be 

extracted from the small-z behavior of their wavefunctions. Consider first the me- 

son wavefunction 4(x) in the valence, or equivalently, the large-N approximation, 

which obeys the eigenvalue equation 

(3.106) 

The. wavefunction 4(x) is normalized to one, and therefore 

1 
M2 =m2 dx 

J 
(3.107) 

0 0 0 

The form of d( ) t x a small x is understood, and this can be exploited by examining 

quantities which are sensitive to this region, as in Refs. [22], [IS] and (431. A 

particularly useful trick is to express the dependence of hf2 on the quark mass m2 

in terms of the free Hamiltonian. By the Hellmann-Feynman theorem, 

.: 

a,,,, M’ = am2(M2) = (&&2M2) , (3.109 

and since 

M2 = m2Ho + g2Hl , (3.109) 

then 

&,,zM2 = (Ho) . (3.110) 

The brackets here indicate the expectation value within the meson. This is espe- 

138 



cially useful, as it relates d,,.,lM2 to the expectation value of a simple, diagonal 

operator. In the valence approximation, 

1 

&,,dd2 = 
/ 

dx ‘2(x) 
t(1 -2) * 

(3.111) 
0 

Though generally true, it is useful in the m/g + 0 limit. For x + 0 (or l), 

$J(x) 4 cx* (or c(1 - CC)‘), with c independent of x and equal in magnitude at 

both endpoints by parity. As m + 0, a 4 (3/7r)‘/2(m/9~). In this limit, d(x) 

in Eq. (3.111) is approaching a constant at the endpoints and these regions then 

dominate the integral. In this limit 

&2M2 + ; - “-q373 , 

or, integrating, 

M2 = h4&=oj + 2c2 (5) ’ go m 

(3.112) 

(3.113) 

to leading order in m. The mass M$.,,oj is independent of m, and so must be 

proportional to g 2, if not zero. For lightest meson, Mtm,O) is known to be zero. 

In the valence approximation, 4(x), and therefore c, approaches one as m/g 4 0, 

and therefore the leading term for the lightest meson is 

h42=2 ; ‘gpn. 
0 

Also, it might be noted that because in general 

!. 

m’(Ho) = c2 $ 2 0 gNm=$M2, 

(3.114) 

(3.115) 
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then in this limit 

The same argument may be advanced for U(N), except that 9% is replaced by 

9(W) ‘j2. For the lightest meson, Mtm,o) =g2/2r, and c= 1. This is true even 

without restricting to the valence wavefunction, as this occurs dynamically. Then, 

for U(N) 

(3.116) 

This discussion applies to the SU(N) baryon as well as to the meson as m/g + 

0, since the wavefunction behaves in the same way as each argument x; w 0. For 

each xi there is a term m’/zi in Ho which picks it out in the region near zero. As 

a result, 

hl; = M&,=,, + 2 c; (i)” (:)‘gm+... . (3.117) -1 

for valence B = 1 states. The coefficient ci here is given by the integral 

J dx2.. - dXN a(1 - C Xi) 45(X2 * * * Xbr) , (3.11s) 
i#l 

where 

&3(&-O 4 2; &(x2-q) - (3.119) 

For the lightest state, I$$,,,.,=,, = 0, and cg = 1, so the baryon mass-squared, like 

the meson, goes to zero as a single power of m, but with a different N dependence. 
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Because this discussion relies only on the small-x behavior of the wavefunctions, 

and because Ho is diagonal, it is simple to extend it to the case where higher-Fock 

states are included. Each n-particle state contributes a term 24 (i) i ($) gN m, 

with c,, defined as for the baryon. A great deal of interesting physics for finite N is 

tucked away into the coefficients c,,, which may at least be extracted numerically, 

although with some effort, and possibly analytically. 

3.13. COMPARISON WITH RESULTS FROM BOSONIZATJON 

As has been seen, the dependence of the mass of the lightest meson and baryon 

states on the quark mass and coupling in the limit m/g 4 0 may be related to the 

asymptotic small-x behavior of wavefunctions. This behavior is shared by both the 

valence and higher-Fock states of mesons and baryons, lowest-lying and excited. 

As a result, all hadron masses obey 

&2M’= [ &-(n/2)c’] (f)’ ff , (3.120) 

where n runs over the particle number of each wavefunction. That is, n = 2,4,6,. . . 

for a meson, and n = N, N + 2, N + 4,. . . for a baryon. The coefficients ci are 

defined as in the previous section. 

In the valence or large-N approximation, only the leading cz is ret,ained, which, 

for the lowest-lying meson or baryon, approaches one as m/g -+ 0. The result for 

the lightest meson at large N, Eq. (3.114), h as b een derived by several methods, 

beginning with ‘t Hooft!1’3611 

Accurate measurements of meson and baryon masses as functions of m and g 

in the m/g 4 0 limit for arbitrary N are of particular value in checking analytic 
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144,451 results obtained by several authors by means of bosonization. These yield a  

mass for both the lightest baryon and meson (for one flavor) which goes to zero 

with m as 

M2 o( [m’] fr+6 [g’] iD6 , 

with 

1  
’ = 2(2N - 1) * 

(3.121) 

Clearly in the large-N lim it, 6  vanishes, consistent with the results above. However, 

for N finite, 6  can be checked numerically. 

The valence approximation produces the large-N result 6  = 0  for all hadrons; 

therefore, non-zero 6  must be due to the presence of higher-Fock states. Further- 

more, Eq. (3.120) depends only on the universal small-x behavior of wavefunctions 

and is true in general. To produce a relation such as Eq. (3.121) upon integrating 

Eq. (3.120), the coefficients cn, which are independent of x, must however depend 

on m /g according to 

c’, 0~ (m/9)6 ; (3.122) 

that is, as x  + 0, the leading dependence of 4(x) on both x and m /g must be such 

that 

(3.123) 

where only the leading behavior of the power of x; is retained. The suppression 

by the factor (m/g)6 f or small m  is extremely m ild, and is not significant until 

m l9 -e -‘la. If 6  is given by Eq. (3.121), then eW1 j6 = e-2(2N-1) which decreases 

rapidly with N, going from 2 x 10-l at N = 2, to 8  x  10m5 at N = 4. 
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Certain qualitative features should be observed in the wavefunctions if 6 is given 

by Eq. (3.121). First, including higher-Fock states should suppress the valence 

wavefunction &(x) near x - 0, m - 0 by roughly a factor of (m/g)6 relative to 

the valence approximation. In Table [lo], the decrease of the @ j wavefunction for 

the N = 2 meson at 2K = 24, after including qijqtj higher-Fock states, is given 

for several m/g and x in this region, qualitatively confirming this. For N = 2: 

Eq. (3.121) gives 6 = l/6. 

Table [IO] 

I ml9 (m/9)6”i6 x ~2(4/~2wxaz apprz 

.4 

.2 

.a6 

.‘76 

S/24 .9a 

3124 .96 

l/24 .91 

S/24 .99 

3/24 .95 

l/24 .a9 

Second, this suppression and the importance of higher-Fock states should di- 

minish for larger N. - - As is evident in Fig. (19b), the magnitude of the qqqq 

higher-Fock state decreases by two orders of magnitude from R = 2 to 4. The con- 

current loss of probability from the ends of the valence wavefunction diminishes 

comparably. 

The exponent p for the general case M2 CK rnp as m -+ 0 can be extracted 

numerically by measuring p = M -2mdmhf2. Attempts at this have produced 

results which, although consistent, have large errors, and a realistic check on p, 
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while worthwhile, will require much larger values of I<. 

Another general bosonization result for the lightest meson and baryon masses 

as mJg -+ Otral 

M meson/Afbbaryon =2sin [ 2(2l- I,] ’ (3.124) 

has been checked with slightly greater success. In particular, hfm,,/nfbar was 

computed for N from 2 to 4 at several values of 211’ up to about 20 and then 

extrapolated. Computing the ratio at each K prior to extrapolation proved more 
. 

accurate than extrapolating the baryon and meson masses independently. 

Table [ll] 

N 2W2(&9 2/N 

2 1 1 

3 .61SO .6667 

4 .4450 .5 

For N = 2, the ratio is exactly one at all K and m/g, while the results for 

N = 3 and 4 are presented in Table [12]. Th ese are clearly consistent, although 

with large errors, with those of Eq. (3.124) (Table [ll]), approaching it from the 

nonrelativistic value of 2/N obtained by adding quark masses. The numbers in 

parentheses are the uncertainties in the final digit, estimated by the last term 

retained in the extrapolation series. 
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Table [12] 

m/g 

cm 

1.6 

.8 

.4 

.2 

.l 

.05 

2/3 l/2 

.656( 5) .48( 1) 

.647(3) .477(6) 

.639( 7) .468(3) 

.64(7) .46(2) 

.63(4) .46(4) 

.62(5) .46(4) 

3.14. MATRIX ELEMENTS FOR SMALL QUARK MASS 

Once having computed the full set of wavefunctions, not only masses but any 

other quantity desired (and well-defined) can be obtained simply by computing 

integrals. In this section, several analytic results for matrix elements, mainly 

vacuum-to-one-meson, will be presented, specifically for small quark mass, as an 

illustration. 

The small-mass limit is of particular interest because several exa.ct (mainly 

large-N) results become accessible, while numerical accuracy becomes increasingly 

difficult. Furthermore, certain anxieties about this region potentially provoked by 

previous discussions may be addressed First, for finite quark mass, boundary terms 

are neglected, and 

L 
$t(O, 2-) = -$ 

J dy-+- - !r)hi(O , Y-J - (3.125) 

-L 
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Only $R is treated as a dynamical degree of freedom, and for vanishing quark mass, 

~J!JL apparently decouples, leading to an unacceptable loss of degrees of freedom. 

Second, mesons and baryons become massless simultaneously, giving conflicting 

suggestions about chiral symmetry. 

Using the continuum forms for the fields, wavefunctions, and commutation 

relations, the matrix elements 

1 

(01 $p(t-)$g(*-) (qi(k+)) = -m 6:: e-f lit’- o 
J 

(3.126) 

1 
(01 t+b~(r-)$~(z-) If#(k+)) = rnb,Cf e-h k+z- 

J 
dx d2b) 

o (47rN); 1-x ’ 
(3.127) 

and 

1 

(01 $jf’(z-)ti~(~-) ]$(k+)) = 6:3k+ e-f k+z- o 
J 

(3.128) -1 

Directly from these, the scalar, pseudoscalar, and gauge-current matrix elements 

are 

(01 $(Z-)+(Z-) I$(k+)) = -m f5Ef e-‘i ‘+‘- 
1 1 
--- 
2 1 -x 

1 
’ 

(3.129) 

(01 $(*-)+f5$(z-) Ic#(k+)) = -m f5E: e-i ‘+‘- 

(3.130) 
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and 

1 

(01 j+"(z-) (f$(k+)) = 2 Tr(P] k+ e-i k+z- J dx L d2b) * o WV (3.131) 

The last vanishes, except for the U(1) current for which Tr[T’] = (N/2)‘i2. In 

accordance with the discussion on parity, only pseudoscalar states (952 odd under 

x-l- x ) couple to &y5$, and scalar states (even under x t+ 1 - x) to $$, as 

would be expectedr2’ 

+!JL is proportional to the quark mass m, and is responsible for the m in front of 

Eqs. (3.129) and (3.130). Th ese matrix elements appear to vanish with m, and were 

this the case, it would be an unwelcome symptom that $JL decouples. However, 

as discussed previously, as m + 0, the integrals over 42(x) are dominated by the 

endpoints, where ~LJ~(x)~+o N cx”, and similarly for 1 - x N 0. 

A factor of l/m from the integral exactly cancels the m from $L. The result 

is a well-defined limit, 

(01 ~(z-)T~$(z-) (tick+)) + c(N/3)igNe-i ktr- (3.132) 

when IWO) is a pseudoscalar, with the same result for $11, and a scalar state. 

Apparently, the asymmetric treatment of $L and $R in quantization is exact13 

compensated for dynamically. In particular, the singular l/p+ in the expansion for 

$L prevents it from vanishing with m in matrix elements. 

This provides fairly convincing evidence that the standard light-cone quanti- 

zation is adequate for finite quark mass, and that the limit m + 0 is sensible, 
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but also that for m = 0 identically, special care is required during quantization to 

retain $JL. 

The singular m/p+ in $L, as in Eq. (1.105), and the corresponding kinetic term 

m2/x in the Hamiltonian, while potentially ticklish, have actually proven advanta- 

geous in extracting the small-x behavior of wavefunctions and understanding the 

theory for small quark mass. Also, as discussed in Ref. [IS], the leading behavior 

for the large-N meson form factor is also governed by this region of the wave- 

function. Numerical and analytic results for form factors at finite N, including 

counting rules at large Q2, will be presented in subsequent work. 

The behavior of the lightest meson as the quark mass vanishes is of particular 

interest and has been studied in the large-N limit extensively!36~2211*~3s~4~~431 It has 

already been noted that this particle is a pseudoscalar whose mass squared goes 

to zero with the quark mass as 

(3.133) 

with c w 1 in the large-N or valence approximation. This is all suspiciously sug- 

gestive of a two-dimensional pion; that is, the Goldstone boson associated with the 

spontaneous breakdown of chiral symmetry. Furthermore, from Eq. (3.117)and 

Fig. (lo), if N is taken to infinity before m is allowed to vanish, the mass of 

the lowest-lying baryon is infinite, another indication of symmetry breaking. As 

frequently pointed outt36*3s’43* the order of limits is important. Finally, repeating 

the standard derivation for the chiral condensate ($$), beginning with a pion 

interpolating field & from the divergence of the U(1) axial current 

(3.134) 
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and using Eq. (3.132) with c = 1 yields”” 

fir = (N/274 , (3.135) 

and 

(3.136) 

This is very curious. By the nature of the light-cone formalism, no non-trivial 

vacuum behavior is permitted with any non-zero quark mass. Nevertheless, formal 

arguments in the large-N limit which depend only on the nature of the pseudoscalar 

meson wavefunction at small x yield a non-zero (in fact, infinite for N --t m) value 

for (41L) as m vanishes?” 

This seems to directly conflict with Coleman’s theorem “I that Goldstone bosons 

cannot exist in two dimensions, due to the severe infrared divergences from the 

ill-defined delta function 6(k2) = 6(Lslc-) associated with massless scalars. An 

allowed exception in Ref. [7] is one which decouples, such as a scalar constructed 

from a pair of non-interacting massless fermions, 

The scalar tc($, for example, does have zero probability to create such a pair; 

that is (ignoring color) 

(Ol5WW ~fI-z~p+d~p+ 10) = 7-f-h Cp * ‘. [ (& - (Jy)‘] , (3.13i) 

which vanishes as m + 0. However, the large-N pseudoscalar does not decouple 

in this manner, as evidenced by Eq. (3.132) (with c = 1). On the other hand, 

the operators which create this pion have been shown to satisfy free commutation 
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relations, and they commute with the operators in the Hamiltonian. Finally, in 

at least one case where a term which couples to these operators is added to PI 

by introducing an extra U(1) in t eraction, these pions acquire a mass, g/(27r)‘j2, 

obviating this dilemma. 

As a final curiosity which illustrates the importance of the order of limits, 

note that for U(N), the U(1) h c ira anomaly produces an additional contribution 1 

of g2/(Sam) for (+@). In the large-N limit this vanishes, while for finite A’, it 

diverges as m + 0. 

For finite values of IV, the situation is somewhat clearer. When m ---t 0, the 

lightest baryon mass also vanishes. Also, acting on existing states with the operator 

Vko, which creates the massless pseudoscalar meson, can flip parity without altering 
. 

mass if k is zero. As a result, parity doublets are trivial to generate. These would 

seem to indicate that chiral symmetry is restored as the quark mass vanishes. 

Furthermore, bosonization results imply that the asymptotic coefficients c 

which appears in, for example Eqs. (3.132) and (3.133), vanish slowly with quark 

mass as (m/g)6, with 6 = 1/[2(2N - l)]. N umerical results have been presented 

which indicate that this is likely the case. As a consequence, even though the 

meson mass still vanishes, it vanishes proportionally with m1+6 rather than m. If 

this is correct, operators such as &y’$~ do indeed have zero probability of creating 

a massless meson from the vacuum, although the probability vanishes extremely 

slowly in m for any sizable Iv. 
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CONCLUSIONS 

In this work, QCD in 1+ 1 dimensions was quantized on the light-cone, and the 

role of boundary terms clarified. By imposing antiperiodic boundary conditions in 

x-9 a discretized Hamiltonian was constructed and diagonalized for several num- 

bers of color IV and one quark flavor. At relatively little cost in computer time, the 

full spectra and wavefunctions were produced, and these were in agreement with 

results from other calculations when available. Finally, the nature of solutions in 

the limits of both strong and weak coupling was discussed. 

Even in two dimensions, there is still a great deal that might be done to extend 

these results. By studying systems with higher baryon number, the nuclear poten- 

tial that results from the linear interquark potential could be determined. Form 

factors for baryons and higher-Fock states could be computed and counting rules 

at large momentum transfer derived. Finally, the inclusion of several flavors would 

bring the model closer to reality. It would allow for a more general study of chiral 

symmetry and for the calculation of such things as the strangeness content of the 

proton, at least in two dimensions. 

Of course, physics is conducted in (at least) four dimensions, where this numer- 

ical quantization scheme may or may not provide a successful approach to &CD. 

It was, however, the way to solve it in two dimensions, and there is as yet no reason 

to be discouraged. 
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APPENDIX A 

MATRIX ELEMENTS AND COLOR CONTRACTIONS 

A typical matrix element of creation and annihilation operators which must be 

computed both for normalization and for evaluating the Hamiltonian is (for N = 3) 

where q and a; are color indices, ki and ei are momenta, with f some function of 

these such as the photon propagator. Baryonic and mesonic singlets are formed 

by contraction of color indices with epsilon and delta tensors. In all matrix ele- 

ments color indices will be completely contracted, since the Hamiltonian as well 

as the Fock space are color singlets. A small amount of reflection indicates (and 

many minutes of wasted CPU confirm) that it would be advantageous to compute 

the contribution from contracting color indices diagrammatically rather than it,- 

eratively, especially for large N. That is, to follow the flow of color through the 

epsilon and delta tensors, count closed loops, and assign factors of N rather than 

assign specific numbers to color indices and then sum. 

The operators which carry color indices also depend on momentum. Before 

computing color factors, particular values for momenta are assigned, and the vac- 

uum expectation of these operators converted into products of delta functions in 

color. In this appendix, the algorithm used by the program to evaluate general 

matrix elements and color sums is presented. 
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A.l. A SIMPLE ALGORITHM FOR THE EVALUATION OF 

CREATION AND ANNIHILATION MATRIX ELEMENTS 

Matrix elements such as 

(01 bile bi, btis bi, b,, bt’” b;, bt’” bt’2 btil lo> , (A.?) 

where il to ilo may incorporate a set of indices such as color, momentum, or 

spin, may be computed using Wick’s theorem. A recipe which is more efficient 

and compact for both mechanical and human computers takes advantage of the 

symmetries due to the anticommutation of the operators to generate all the possible 

contractions with appropriate signs from one initial product of delta functions. To 

compute an element such as Eq. (AZ): 

Construction of Initial Term 

Proceeding from right to left, skip creation operators and stop at the first 

annihilation operator. Pair this wit.h the creation operator to its immediate right to 

form a delta (6:: in this case) and remove these from the matrix element. Continue 

left, pairing and removing operators until only the product 

remains. The overall sign of this term is positive since no operators were permuted. 
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I , 

Construction of Permutation Operators 

Beginning again with the matrix element Eq. (A.2), proceed left until hitting 

the first annihilation operator. The first permutation operator 

1 - p3,2 - p3,l , (-4 

which will permute indices in Eq. (A.3), is built by subtracting from 1 operators 

which independently swap the index of the creation operator to the immediat.e right 

of the current annihilation operator with each subsequent creation operator index 

to its right. Remove from Eq. (A.2) th is annihilation operator and the creation 

operator to its immediate right and proceed left to the next annihilation operator, 

repeating the procedure. The next permutation is 

1 - 42 - P5,l * 

This second operator is placed to the right of operator Eq. (A.4). Continue left 

until all annihilation operators are exhausted. The final result is 

[l - p3,2 - p3,d1 - p5,2 - p5,1][1 - p2,1][1 - p,,,] , (A.51 

which then acts upon the indices of the initial term Eq. (A.3), giving the 36 terms 

with appropriate signs: 

(A-6) 

+ . . . 

One of the advantages of this procedure is that all the information is contained 
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compactly in the operator Eq. (A.5) acting on Eq. (A.3) with the symmetries 

manifest. In cases, for example, when operators are contracted into epsilon ten- 

sors, many of the permutations are clearly redundant and may be converted into 

numerical factors. 

Finally, matrix elements in general will include creation operators and anni- 

hilation operators which cannot be contracted with one another, as for example, 

antiquark versus quark, or operators where some types of indices such as flavor are 

fixed and different. In these cases, an overall sign is computed by determining the 

operator interchanges needed to construct an initial term such as in Eq. (A.3). 

4.2. COLOR SUMS 

The vacuum expectation value of creation and annihilation operators has been 

converted into a sum of products of kronicker deltas in color indices. In each term 

these deltas are entirely contracted with the delta and epsilon tensors used to form 

the color singlet Fock states, and the deltas which appear contracted with the 

operators in the Hamiltonian, of the form SE: 6:: - (l/N)6,Zi SE: in HI, and 6,‘: in 

Ho. 

Computing the color factor has now been reduced to contracting a product of 

an arbitrary number of epsilon and delta tensors. For the case with only deltas, it 

is necessary only to associate a factor of N with each closed color loop. Loops are 

formed by products of deltas such as 6:; 6:: 6:;. 

* This is implemented in the program by constructing a vector V(n) where each 
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6 $ is represented by an m in the n ” location. A closed loop is traced by moving 

from location n to V(n) = m and so on until finally returning to n. 

For contractions which include epsilons, any deltas present are first traced 

through and eliminated. The fully contracted products of epsilons which remain 

are then converted into a sum of products of deltas by the identity (for IL’ colors) 

where the elipses include permutations of the bi with appropriate signs. The re- 

sulting deltas are then contracted as before. For a general discussion on computing 

color factors diagrammatically, see Ref. [48]. 
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APPENDIX B 

EVALUATION OF INTEGRAL IN SECTION 3.3 

This appendix presents a c.alculation of the integral 

f 05& (1 + qa - 1 IL2 -1 
which appears in Eq. (3.21). 

Figure 32. Int,egration Contour 

Consider the closed contour of Fig. (32). A s no poles are enclosed, the int.egral 

along contours Cl, Cz and C3 plus the desired integral along C sum to zero. 

The leading contribution from C? is proportional to ( l/IX)‘-a, which vanishes for 

u f (0,l). From Cl, -ialr survives when c is taken to zero. Finally,.the integral 
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along Cs is 

J du (1 + 21)O - 1 = mdt taeia* - 1 
U2 J (1+t)2 . P.2) 

c3 0 

The second term in the integrand contributes -1, while, by defining s = l/(1 + t), 

the first term may be rewritten as 

1 

e ia= 
J 

ds P(1 - q . (B-3) 
0 

By the T+ function relations’4g1 

1 

J 
dz z&(1 - .)a = r(1 + Q(1+ P) 

ry2 + a + P) (B-4) 
0 

and 

rppyi - z) = x CSC(Tz) , P.5) 

the total for contour C3 is 

-[l+ e ia”u7r csc(ax)] . P.6) 

Next, the same analysis is applied to the closed contour which reflects the 

contour in Fig. (32) across the real axis. Adding the two, the contribution from 

Cl is cancelled, the reflection of C3 gives 

-[l -e -ia”a7r csc( cm)] ) P.7) 

and the final result by Cauchy’s theorem is 

f 
=& (1+ qa - 1 

U2 
= 1 - axcot(a7r) . P.8) 

-1 
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