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Efficient micromirror confinement of 
sub-teraelectronvolt cosmic rays  
in galaxy clusters
 

Patrick Reichherzer    1,2  , Archie F. A. Bott1,3, Robert J. Ewart    1,4, 
Gianluca Gregori    1,5, Philipp Kempski6, Matthew W. Kunz    6,7 & 
Alexander A. Schekochihin1,8

Cosmic rays (CRs) play a pivotal role in shaping the thermal and dynamical 
properties of astrophysical environments, such as galaxies and galaxy 
clusters. Recent observations suggest a stronger confinement of CRs in 
certain astrophysical systems than predicted by current CR-transport 
theories. Here, we show that the incorporation of microscale physics into 
CR-transport models can account for this enhanced CR confinement. We 
develop a theoretical description of the effect of magnetic microscale 
fluctuations originating from the mirror instability on macroscopic CR 
diffusion. We confirm our theory with large-dynamical-range simulations 
of CR transport in the intracluster medium (ICM) of galaxy clusters and 
kinetic simulations of CR transport in micromirror fields. We conclude that 
sub-teraelectronvolt CR confinement in the ICM is far more effective than 
previously anticipated on the basis of Galactic-transport extrapolations. The 
transformative impact of micromirrors on CR diffusion provides insights 
into how microphysics can reciprocally affect macroscopic dynamics and 
observable structures across a range of astrophysical scales.

A good theory of cosmic-ray (CR) transport is crucial for advancing our 
understanding of phenomena in the Universe, including the forma-
tion and evolution of galaxies and galaxy clusters. CRs, through their 
transport characteristics, not only influence their environment but 
also modulate their own (re)acceleration and confinement efficiency 
as well as the observable photon and neutrino emission.

The transport characteristics of CRs in magnetic-field structures 
depend on the scattering efficiency and mechanism, both of which are 
influenced by the properties of the ambient plasma. Specifically, within 
a weakly collisional, high-β plasma, that is, one in which the thermal 
pressure greatly exceeds the magnetic pressure, deviations from local 
thermodynamic equilibrium provide free energy for fast-growing 
Larmor-scale instabilities, leading to distortions in magnetic fields on 
thermal-ion kinetic scales. In such a high-β plasma, two characteristic 

scales are relevant for describing the global transport of CRs: the mac-
roscale of the magnetic turbulence, characterized by the correlation 
length lc or the ‘Alfvén scale’ lA, and the microscale lmm of the micro-
mirrors created by the mirror instability1,2. The prefix ‘micro’ refers 
to scales much smaller than the ≳μpc gyroradii of ≳100 MeV CRs, and 
serves to distinguish the plasma-kinetic-scale ‘micromirrors’ (denoted 
by subscript mm) from the large-scale magnetic mirrors that also 
influence CR transport3–5. While there are other micro-instabilities, the 
magnetic fluctuations created by the mirror instability are stronger 
and thus more influential for CR transport6,7. The physics associated 
with these micro- and macroscales introduces three distinct transport 
regimes, which depend on the CR energy.

First, in the high-energy (subscript he) limit, CRs with gyrora-
dii rg ≫ lc (energies E ≳ 100 EeV for typical turbulence-driving scales 
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under ICM conditions: δBf ≈ (τΩi)
−1/4B (refs. 6,7), where τ is the timescale 

over which a firehose-susceptible plasma evolves macroscopically, and 
Ωi ≈ 0.01(B/3 μG) s−1 is the non-relativistic thermal-ion gyrofrequency. 
In the ICM, τΩi ≈ 1011 (ref. 31), so δBf ≈ 10−3B. By analogy to equation (3), it 
follows that the scattering rate νf of CRs off firehoses in the ICM is much 
smaller than that off the mirrors: νf/νmm ≈ 10−7, with the firehose scale 
taken to be comparable to the thermal-ion gyroradius6,7.

To determine the impact of these micromirrors on CR transport, 
we begin by working out the relevant theoretical predictions for dif-
fusion coefficients of CRs scattering at such strong fluctuations. Note 
that a previous assumption of weaker micromirror fluctuations led to 
a different, much larger diffusion coefficient based on calculations 
using quasilinear theory32. The velocity change δv of a relativistic 
CR with gamma factor γ = (1 − v2/c2)−1/2, charge q = Ze and mass m in a 
magnetic-field structure of scale lmm ≪ rg and vector amplitude δBmm 
is given in the small-angle limit ∣δv∣ ≪ v by integrating the equation of 
motion γm dv/dt = q(v/c) × δBmm along the CR path:

δv ≈ q
γmcv ∫

lmm

0
dlv × δBmm. (1)

Assuming relativistic CRs with v ≈ c, E = γmc2 and rg = γmc2/qB deter-
mined by B ≳ δBmm, the scattering angle at δt ≈ lmm/c is

δΘ ≈ |δv|
c ∼ lmm

rg
δBmm
B . (2)

Assuming that these small-angle deflections add up to a correlated 
random walk, the scattering rate is

νmm ∼ δϴ2

δt
≈ c lmm

r2g
(δBmm

B )
2

, (3)

which implies a spatial diffusion coefficient of

κmm ≈ c2
νmm

≈
cr2g
lmm

(δBmm
B )

−2

∝ E2l−1mm. (4)

As usual, more energetic CRs diffuse much faster.
In arriving at equation (4), we effectively assumed that micromir-

rors are described by only one characteristic scale, lmm. In reality, micro-
mirrors are anisotropic (see ellipsoid-like shapes in Fig. 1) with scales 
perpendicular (⊥) and parallel (∥) to the ambient magnetic field that 
satisfy l⊥,mm ≪ l∥,mm. While gyrating through this field, CRs with rg ≫ lmm 
mostly traverse micromirrors perpendicularly. Only low-energy CRs 
satisfying rgv⊥/c ≲ l⊥,mm ≪ l∥,mm are an exception, and should be treated 
analogously to thermal electrons with negligible rg being scattered29,33 
and trapped34 in the micromirrors. This subpopulation makes a neg-
ligible contribution to the overall transport of CRs with rg ≫ l⊥,mm con-
sidered here.

For rg ≫ l⊥,mm, CRs will sample many different micromirrors, 
with deflections adding up to a correlated random walk. During 
one gyro-orbit, CRs will travel Δl∥ ≈ 2πrgv∥/c in the field-parallel 
direction. CRs with large pitch angles satisfying Δl∥ ≲ l∥,mm, that is, 
v⊥/v∥ ≈ c/v∥ ≳ 2πrg/l∥,mm, that sample the same micromirror repeatedly, 
may become relevant only at low energies rg ≲ l∥,mm/2π, not considered 
in this study. The scattering rate associated with the parallel micromir-
ror perturbation δB∥ ≈ Bmm decreases with decreasing pitch angle, but 
this is overcome by scattering at the perpendicular micromirror com-
ponent δB⊥ ≈ δB∥l⊥,mm/l∥,mm for v⊥/v∥ ≲ l⊥,mm/l∥,mm ≪ 1. Except for this cone 
containing CRs with small pitch angles, from which they escape quickly 
on the timescale tesc ≈ νmm

−1l⟂,mm/l∥,mm, gyrating CRs cross micromirrors 
perpendicularly faster than they traverse them in the parallel direction, 
implying lmm ≈ l⊥,mm to be the relevant scale.

in galaxy clusters) undergo scattering by small angles of order 
δΘ ≈ lc/rg at characteristic times δt ≈ lc/c, leading to a scattering rate 
νhe ≈ δΘ2/δt ≈ clc/rg

2 and, therefore, to a CR diffusion coefficient 
κhe ≈ c2/νhe ≈ crg

2/lc∝ E2/lc (see, for example, ref. 8). This scaling is indeed 
observed in both numerical simulations (for example, refs. 9–11) and 
(scaled) laboratory experiments12 and serves as input for propagation 
models of ultrahigh-energy CRs in galaxy clusters13.

As the high-energy regime is, thus, believed to be understood, 
recent studies of CR transport have predominantly focused on the 
second, mesoscale regime, rg ≲ lc, in which CRs scatter resonantly off 
inertial-range turbulent structures14–17. This second regime is prob-
ably relevant for explaining CR spectra18: for example, the steepening 
of the CR spectrum in the Galactic Centre from gigaelectronvolt to 
petaelectronvolt energies11,19–21.

We argue, and confirm numerically, that in high-β plasmas the 
presence of microstructures caused by plasma instabilities introduces 
a third regime, whose physics is similar to that of the first, but with 
the micromirror scale lmm playing the role of lc and the requirement 
that rg ≫ lmm (E ≫ 100 MeV). We show that this microscale physics 
largely overrides the mesoscale resonant scattering and streaming. 
We apply our theory to the intracluster medium (ICM), a representa-
tive high-β plasma, and determine the transition between micro- and 
macrophysics-dominated transport to be at teraelectronvolt energies, 
only weakly influenced by mesoscale physics. We confirm this theory 
with a novel method (Methods) that incorporates the microscales 
(lmm ≈ 100 npc), the macroscales (lc ≈ 100 kpc) and the vast range in 
between.

Results
Effect of micromirrors on large-scale CR transport
It has long been realized that plasma instabilities may dominate the 
transport of low-energy CRs. However, the instabilities most often high-
lighted in the literature arise from the CRs themselves, rather than from 
the thermal plasma. One prominent example, especially for Galactic 
transport of CRs below 100 GeV, is the streaming instability22. This insta-
bility generates fluctuations in the magnetic field that in turn scatter 
the CRs and thereby reduce their streaming velocity to be comparable 
to the Alfvén speed in the plasma22–25. In high-β, weakly collisional plas-
mas, there also exist a variety of instabilities that are driven by pressure 
anisotropies and generate magnetic fluctuations on ion Larmor scales 
(see ref. 2, and references therein). The pressure anisotropies arise from 
the (approximate) conservation of particles’ adiabatic invariants during 
the local stretching and compression of magnetic fields26. In the present 
context, the mirror instability27,28 is of particular interest because its 
saturated amplitude δBmm ≈ B/3 is of the same order of magnitude as 
the ambient magnetic field B (refs. 6,29,30). The other well-known 
instability arising in such plasmas, the firehose instability, is unlikely to 
affect CR transport because its expected saturation amplitude is small 
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Fig. 1 | Micromirror field generated by the PIC simulation. Colour shows 
fluctuations δB∥ along the field B, which is aligned with the x axis. We show two 
snapshots of the 3D field during its secular evolution, characterized by different 
δB/B, as indicated in the plots (the right-hand snapshot is later in the evolution).
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For application to the ICM, we estimate lmm using an asymptotic 
theory of the mirror instability’s nonlinear evolution35 supported by 
previous numerical studies6,36: lmm ≈ (τΩi)

1/8rg,i, where τ is the timescale 
over which a micromirror-susceptible plasma evolves macroscopi-
cally. Applying the theory to an ICM2,37 with B ≈ 3 μG, the thermal-ion 
gyroradius rg,i ≈ (2T/mi)

1/2/Ωi ≈ 1 npc, the mean galaxy cluster tempera-
ture T ≈ 5 keV, the thermal-ion mass mi and τ ≈ 1012 s (refs. 31,35) yields 
lmm ≈ l⊥,mm ≈ 100rg,i ≈ 100 npc (ref. 36), only a factor of a few smaller than 
the gyroradius of a gigaelectronvolt CR. In combination with equation 
(4), this gives us the estimate

κmm ≈ 1030 Z−2 ( lmm
100npc

)
−1
( B
3μG

)
−2
( δBmm/B

1/3
)
−2
( E
TeV

)
2
cm2 s−1,

≈ 1030 Z−2 ( T
5 keV

)
−1/2

( B
3μG

)
−1
( δBmm/B

1/3
)
−2
( E
TeV

)
2
cm2s−1.

(5)

This estimate is valid provided that lmm ≪ rg and δt νmm ≈ (lmm/rg)2 
(δBmm/B)2 ≪ 1 (E ≫ 100 MeV).

We now show that the diffusion coefficient (5) is associated with 
parallel transport along field lines by demonstrating that the perpen-
dicular diffusion coefficient is negligible. Each scattering at δt ≈ lmm/c 
moves the gyrocentre by a distance Δr⊥ ≈ rg δΘ in the plane perpen-
dicular to the local magnetic-field line. Using the estimate (2) for the 
scattering angle leads to the perpendicular diffusion coefficient

κ⟂,mm ≈
Δr2⟂
δt

≈
r2g δϴ2

lmm/c
≈ clmm(

δBmm
B )

2

≈
l 2mm

r2g
(δBmm

B )
4

κmm. (6)

Since κ⊥,mm ≪ κmm for rg ≫ lmm and δBmm ≲ B, it is the parallel diffusion 
κ∥,mm ≈ κmm along field lines that dominates. The smaller perpendicular 
diffusion coefficients arise from anisotropic scattering. The degree 
to which this anisotropy enhances the parallel diffusion coefficient 
depends on the specifics of pitch-angle scattering and the properties 
of B⊥, both of which warrant further investigation.

To validate our theoretical prediction for the diffusion coefficients 
(5) and (6), we performed a numerical experiment in which a spectrum 
of CRs was integrated in a magnetic field containing micromirrors gen-
erated self-consistently via a particle-in-cell (PIC) simulation (‘Micro-
mirror field from PIC simulations’). For our numerical experiment, 
we selected two representative realizations of the three-dimensional 
(3D) field during its secular evolution, visualized in Fig. 1. We then 
determined the diffusion coefficients of the CRs in both fields by inte-
grating the CR equation of motion. The results are shown in Fig. 2. The 
diffusion coefficients in the micromirror fields show good agreement 
with equations (5) and (6).

The micro–macrophysics transition is at teraelectronvolt CR 
energies
In ‘Effect of micromirrors on large-scale CR transport’, we derived 
the diffusion coefficient κmm ∝ lmm

−1E2 associated with CR scattering 
at micromirrors of scale lmm. To determine the upper bound for the 
energies at which the scattering off micromirrors dominates CR 
transport, we need a model of the competing contribution from the 
resonant scattering off mesoscale magnetic turbulence. In ‘Model 
of CR scattering at mesoscales’, we present models of CR diffusion 
based on resonant scattering in the (mesoscale) inertial range of mag-
netic turbulence stirred at the macroscale lc, leading to the diffusion 
coefficient

κres ∼ c lc(
rg
lc
)
δ
∝ Eδl−δ+1c , (7)

where the model-dependent exponent is 0 ≤ δ ≤ 1/2. The mechanism 
with the smallest diffusion coefficient dominates CR transport.  

The transition between the micromirror and resonant-scattering  
transport regimes occurs when κmm ≈ κres. Equating (4) and (7) deter-
mines the gyroradius corresponding to this transition:

rg ≈ lc(
δBmm
B )

2/(2−δ)

( lmm
lc

)
1/(2−δ)

. (8)

This translates into a δ-dependent estimate for the transition 
energy:

E ≈ Z ( B
3μG

) ( lc
100kpc

)

×

⎧
⎪
⎪
⎨
⎪
⎪
⎩

300 ( δBmm
B

)
2/(2−δ)

( lmm
lc
)
1/(2−δ)

EeV , general δ,

5 ( δBmm/B
1/3

)
6/5
( lmm/lc

10−12 )
3/5

TeV , δ = 1/3 ,

600 ( δBmm/B
1/3

)
4/3
( lmm/lc

10−12 )
2/3

GeV , δ = 1/2.

(9)

Below this energy, magnetic micromirrors dominate CR diffusion. 
The factor involving the ratio lmm/lc accounts for the scale separation 
between micro- and macrophysics, which is ~10−12 in our fiducial ICM 
under the same assumptions as in ‘Effect of micromirrors on large-scale 
CR transport’.

To test this prediction, we performed numerical simulations of 
CR transport in the ICM (detailed in Methods), modelling the effects 
of both the micromirrors (‘Model of small-angle scattering in magnetic 
micromirrors’) and of the turbulent cascade up to lc ≈ 100 kpc (‘Model 
of CR scattering at mesoscales’). Figure 3 summarizes our results by pre-
senting the CR diffusion coefficient as a function of energy. The vertical 
light-blue bar indicates our estimate (9) for the micro–macro transition 
assuming the most likely range of δ ∈ [1/3, 1/2]. While this estimate of 
the micro–macrophysics transition at teraelectronvolt CR energies 
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Fig. 2 | Diffusion coefficients of CRs in micromirror fields. Our predictions (5) 
(grey dashed line) and (6) (grey dash–dotted line), valid for lmm ≪ rg, agree well 
with the computed diffusion coefficients. κ is dominated by the parallel diffusion; 
the perpendicular diffusion coefficient κ⊥ is negligible. Note that κ decreases with 
δBmm/B (triangles versus stars). We include results for CRs with gyroradii smaller 
than lmm (vertical orange line) to highlight the change in transport regimes, which 
follows from our theory. The grey markers show the transport of CRs through the 
residual field that results after filtering out the wavenumbers associated with the 
micromirrors, leaving only numerical noise. The purple vertical (dash–)dotted 
lines show grid resolution and box sizes along the three axes. Z = 1 is used for the 
energy scale.
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is numerically confirmed using synthetic turbulence, we also used 
magnetic fields from direct PIC and magnetohydrodynamic (MHD) 
simulations to validate the consistency of our numerical approach at 
micro- and macroscales, respectively, and capture all relevant diffu-
sion coefficients discussed in the literature, detailed as points (1)–(3) 
in ‘Model of CR scattering at mesoscales’.

The case of spatially intermittent micromirrors
Thus far, we have effectively assumed that the micromirrors permeate 
the plasma uniformly. In reality, the situation is more complicated: 
micromirrors will most probably appear in spatially intermittent 
and temporally transient patches wherever turbulence leads to local 
amplification of the magnetic field at a rate that is sufficiently large to 
engender positive pressure anisotropy exceeding the mirror-instability 
threshold (~1/β; see, e.g., refs. 36,38 and references therein). This gives 
rise to an effectively two-phase plasma (see Fig. 4 for an illustration), 
with two different effective scattering rates: νmm ≈ c2/κmm in micromir-
ror patches and νres ≈ c2/κres elsewhere (instead of κres, one could also 
use κst associated with the streaming instability—‘Discussion’). For the 
purpose of modelling CR scattering in such a plasma, we introduce the 
effective micromirror fraction fmm to quantify the probability of CR 
being scattered by the micromirrors.

By definition, the effective scattering rate in a two-phase medium 
is39,40

νeff = fmm νmm + (1 − fmm) νres. (10)

The effective diffusion coefficient is then

κeff ≈
κmm

fmm + (1 − fmm)κmm/κres
. (11)

The transition at which micromirror transport takes over from resonant 
scattering is entirely independent of fmm: κeff ≈ κres when κmm ≈ κres. How-
ever, the asymptotic scaling κeff ≈ κmm/fmm is only reached at CR energies 
for which κmm/κres ≲ fmm/(1 − fmm), pulling the transition energy down by 
a factor of fmm

1/(2−δ). This is not a very strong modification of our cruder 
(fmm = 1) estimate (9) unless fmm is extremely small.

The most intuitive interpretation of fmm is that it is the fraction 
of the plasma volume occupied by the micromirrors. This, however, 
requires at least two caveats. (1) The lifetime of micromirror patches, 
determined by the turbulent dynamics, can be shorter than the time 
for a CR to diffuse through the patch. (2) If the micromirror patches 
form solid macroscopically extended 3D blobs, it is possible to show 
that CRs typically do not penetrate much farther than the mean free 
path λmm = c/νmm into the patches. This leaves the patch volume largely 
uncharted (Appendix 3 of ref. 40). The second concern obviates the first 
(‘Model of a static two-phase inhomogeneous medium’). Under such a 
scenario, the effective CR diffusion in the ICM might be determined pri-
marily by such factors as the typical size of the patches and the distance 
between them41. However, the scenario of micromirror-dominated 
transport is made more plausible as the diffusion is mostly along the 
field lines. In this one-dimensional (1D) problem, CRs bounce between 
mirror patches on the same field line until they have a lucky streak in 
diffusion and pass directly through a micromirror patch. This trap-
ping effect leads to efficient confinement, if the influence of potential 
field-line separation and cross-field diffusion is found to be negligible, 
though this remains subject to further research.

Our model formula (11) proves to be a good prediction even in a 
simple modification of our numerical experiment with synthetic fields, 
designed to model micromirror patches (‘Model of a static two-phase 
inhomogeneous medium’). Its results are shown in Fig. 5. It is a matter 
for future work to determine the precise dependence of fmm on the mor-
phology and dynamics of magnetic fields and micromirror-unstable 
patches in high-β turbulence—itself a system that has only recently 
become amenable to numerical modelling38,42,43. Here, we proceed to 
discuss the implications of dominant micromirror transport, assum-
ing that fmm is not tiny, namely, fmm ≳ 0.1, as indeed observed in recent 
numerical simulations33,43–45. Studies of Faraday depolarization of radio 
emission from radio galaxies could be in principle used to constrain 
the volume-filling fraction of micromirrors, because depolarization 
increases proportionally to fmm. We tested the expected Faraday depo-
larization arising from micromirrors within galaxy clusters in a numeri-
cal experiment using our PIC simulations (‘Micromirror field from PIC 
simulations’). The expected depolarization angles due to micromirror 
fluctuations for wavelengths observed with the Very Large Telescope 
(VLT) and the Low-Frequency Array (LOFAR) are too small to constrain 
fmm. Details of the resolution element in radio telescope observations 
may affect this result, an issue reserved for future studies.

Discussion
We have argued that CR diffusion in the ICM is determined by micro-
scale (lmm) mirrors at CR energies GeV ≲ E ≲ TeV and by macroscale (lc) 
turbulence at E ≳ TeV. Although the micro–macrophysics transition 
mainly depends on these two scales, there is a degree of fine-tuning at 
mesoscales. This refers to the role played in equation (9) by the expo-
nent δ, which depends on the details of the scattering mechanism and 
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Fig. 3 | Diffusion coefficients of CRs in the ICM as functions of CR energy. The 
black stars show the diffusion coefficients in the micromirror field generated 
by a PIC simulation (‘Micromirror field from PIC simulations’). The olive open 
crosses show the diffusion coefficients of CRs in MHD turbulence without a 
guide field (‘Turbulence from MHD simulations’). The other open markers 
show the diffusion coefficients computed in isotropic synthetic turbulence 
with a large inertial range (‘Model of synthetic magnetic turbulence’), together 
with our stochastic micromirror-scattering model (‘Model of small-angle 
scattering in magnetic micromirrors’), assuming the volume-filling fraction 
fmm of micromirrors indicated in the legend (‘The case of spatially intermittent 
micromirrors’). The grey dash–dotted lines represent theories for CR transport 
depending on the macroscale lc according to equation (7), including the 
most efficient (Bohm) and the least efficient (energy-independent) diffusion 
scenarios. The grey dotted line represents the diffusion due to streaming 
instability, according to equation (18) in ‘Model of CR streaming’. The grey 
dashed line represents our prediction of the diffusion due to micromirrors 
according to equation (5). The vertical light-blue bar indicates our estimate (9) 
for the micro–macro transition for the most likely range of δ between 1/3 and 1/2. 
Simulation results from refs. 10 and 106 illustrate the best resolution towards 
the limit rg ≪ lc achieved before the present results with synthetic turbulence on 
a grid (2,0483 grid points) and nested grids, respectively. The effects of field-line 
tangling are not considered, which is expected to reduce the global CR diffusion 
coefficients by a factor of three.
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of the turbulent cascade (‘Model of CR scattering at mesoscales’). While 
our study is tailored to the ICM, it can be adapted to other nearly col-
lisionless high-β plasmas, such as the hot interstellar medium and the 
Milky Way halo. In what follows, we discuss what this revised picture of 
CR diffusion in the ICM implies for our understanding of (Fermi/radio) 
bubbles and other similar large-scale morphologies.

The reduction of CR diffusion caused by micromirrors may 
act as a transport barrier in the ICM, reducing the escape of 
sub-teraelectronvolt CRs from their sources. For example, as radio 
bubbles rise through the ICM, their confinement of CRs may be domi-
nated by micromirror confinement rather than by the conventional 
mechanism of magnetic draping; this depends on the details of diffu-
sion coefficients both parallel and perpendicular to the mean magnetic 
field (see, for example, refs. 46–48). Reference 49 considered the CR 
transport in such systems, and showed that the sub-teraelectronvolt 
CRs form a thin layer on the surface of the bubble and acquire hardened 
spectral-density distributions. Such sharp boundaries and hardened 
CR spectra, which translate into hardened photon spectra, are indeed 

observed in popular morphologies such as the Fermi bubble50 and the 
radio bubble in the Ophiuchus galaxy cluster51. The decreased diffusion 
coefficients of sub-teraelectronvolt CRs could also be relevant in high-β 
regions within galaxies. One possible example is the Cygnus Cocoon, 
a Galactic PeVatron, located within a star-forming region, where the 
observationally constrained suppressed CR diffusion coefficients52,53 
may be explained by the additional collisionality due to micromirrors.

We have shown that micromirror diffusion substantially reduces the 
CR mean free path, thus in principle making CR coupling to the ambient 
motions tighter. However, to assess what this does to the efficiency (or 
otherwise) of the (re)acceleration54–60, we must have a somewhat more 
detailed picture than we currently do of the nature of the ICM turbulence 
(that is, of turbulence in a weakly collisional, high-β plasma—a topic of 
active current investigations38,42,43) and of how the micromirror patches 
might be shaped and spatially distributed in this turbulence. This will 
require further study before the (re)acceleration question is settled.

A further example of how micromirror diffusion may impact the 
surrounding plasma arises from the observation that, as the scattering of 
sub-teraelectronvolt CRs at micromirrors increases the effective CR colli-
sionality in high-β environments, the effective operation of the CR stream-
ing instability within micromirror patches is put into doubt (‘CR streaming 
instability’). Note that a patchy distribution of the micromirrors may allow 
for the existence of regions where the streaming instability remains active—
indeed, possibly more so than usually expected, as those micromirror-free 
regions are likely to feature negative pressure anisotropies and, therefore, 
reduced effective Alfvén speeds. Models designed to explain the thermal 
balance between heating and cooling of galaxy clusters based on collision-
less, resonant mechanisms61–63 thus become less plausible.

Finally, the micromirror scattering matters for cosmological stud-
ies of the evolution of the ICM and galaxy clusters. The suppressed CR 
diffusion coefficients offer a compelling justification for how CRs can 
be effectively ‘frozen’ within the ICM as key parameters such as gas den-
sity and magnetic-field intensity evolve—an assumption fundamental 
to recent models of the dynamical evolution of galaxy clusters and their 
surroundings59,64,65. This impacts the interplay between CRs and other 
astrophysical processes within these massive cosmic structures66,67.

While it is well established that macroscopic dynamics can trigger 
microscopic phenomena, the potentially transformative impact of 
micromirrors on CR diffusion provides a lesson that microphysics can 
reciprocally affect macroscopic dynamics and observable structures 
across a range of astrophysical scales.

Methods
Modelling CR transport across a wide energy spectrum from gigaelec-
tronvolt to exaelectronvolt energies in a multiscale high-β plasma pre-
sents methodological and computational challenges. For our numerical 
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Fig. 4 | Visualization of example CR trajectories through spatially intermittent 
micromirror patches. The numerical experiment to study the effective 
CR transport in a two-phase medium is described in ‘Model of a static two-
phase inhomogeneous medium’. The grey surfaces are the isosurfaces of a 
threshold field strength B>. In our simplified numerical experiment, these 
isosurfaces are assumed to enclose the micromirror patches, inside which 
the diffusion coefficient is much smaller than it is outside. Therefore, a given 

choice of B> corresponds to a certain value of fmm (‘Model of a static two-phase 
inhomogeneous medium’). Example CR trajectories show increased deflections 
within the micromirror patches (see, for example, the lower right corner of the 
left panel and the zoom into a micromirror patch in the right panel). Taking the 
patches to be static is suitable for small fmm as demonstrated in ‘Model of a static 
two-phase inhomogeneous medium’.
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Fig. 5 | Effective diffusion coefficient of CRs in a two-phase medium versus 
the effective micromirror fraction fmm. We model the CR transport through 
a two-phase medium in 3D and 1D (to reduce simulation costs), as explained 
in ‘Model of a static two-phase inhomogeneous medium’. The 3D case (red 
diamonds) shows the diffusion coefficient of 300 GeV CRs computed at their 
trajectory lengths of ~10lc. The blue and grey lines show the 1D results on 400 test 
trajectories using our recurrent neural network (RNN) and the classical analysis 
method. Error bars for the 3D data represent the s.d. across different realizations 
of patches for each fmm, while for the 1D cases the coloured contours show the s.d. 
across 400 CRs from a single realization. The black dash–dotted line represents 
expected values for averaged scattering frequencies of CRs in the two-phase 
plasma, formally expressed in equation (11). κmm and κres are recovered for fmm = 1 
and fmm = 0, respectively.
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simulations, we choose parameters from the ICM, a high-β plasma. 
Rotation-measure data indicate magnetic-field strengths of ~0.1–1 μG 
averaged over a cubic megaparsec ICM volume37,68, with typical field 
strengths of several microgauss in central regions (see, for example, 
ref. 69). Numerical simulations support these estimates (for example, 
ref. 70). We choose B ≈ 3 μG, δBmm/B ≈ 1/3, lmm ≈ 100 npc and turbulence 
lc ≈ 100 kpc (ref. 2). Simulations are performed using the publicly avail-
able tool CRPropa 3.2 (ref. 71) with additional extensions and modelling 
choices described below.

Model of synthetic magnetic turbulence
Modelling the competing micro- and macrophysical transport effects 
requires resolving turbulence over at least ten decades in scale. Current 
MHD and PIC simulations are unsuitable for this as they only allow for 
limited scale ranges72. Even the current best grid resolutions of more 
than 1012 cells resolve less than four decades of scale separation. Syn-
thetic turbulence, on the other hand, can be generated by summing 
over nm plane waves at an arbitrary particle position r as follows15,73:

δB(r) = Re (
nm

∑
n=1

δB∗
n eikn⋅r) = √2δB

nm

∑
n=1

ξnAn cos (kn k̂n ⋅ r + ϕn) , (12)

with normalized amplitudes An determined by the assumed turbulent 
energy spectrum, uniformly distributed phase factors ϕn ∈ [0, 2π], unit 
wavevectors k̂n and polarizations ξn, satisfying k̂n ⋅ ξn = 0. We employ 
the performance-optimized method described in ref. 74. We investi-
gated the number of wavemodes nm needed by analysing turbulence 
characteristics and diffusion coefficients of CRs and found that 
nm = 1,024 log-spaced wavemodes are sufficient for diffusion coeffi-
cients to converge.

We compared our key results on CR transport obtained with the 
above method with those obtained with an alternative method for 
synthetic turbulence, where we followed the approach proposed, 
for example, in refs. 75 and 72. In this alternative method, synthetic 
turbulence is precomputed and stored on many discrete nested grids 
at different scales, with magnetic fluctuations between scales lmin,i and 
lmax,i with individual magnetic-field strengths δBi

2 = δB2(lmax,i
ξ−1 − lmin,i

ξ−1)/ 
(lmax

ξ−1 − lmin
ξ−1) and lmax ≈ 5lc. We found agreement between results 

obtained using the two methods.
Note that CRs below petaelectronvolt energies diffuse on time-

scales smaller than the typical timescale of large-scale turbulence 
motions, justifying our modelling turbulence as static. CRs are frozen 
within the ICM as the plasma evolves (‘Discussion’).

CR trajectories
Computing CR trajectories in magnetic fields involves solving the 
equation of motion for charged particles. These are then used to 
calculate the statistical transport characteristics of CRs. We use the 
Boris-push method for this task, as implemented in ref. 71. This captures 
the dynamics of charged particles in magnetic fields while preserving 
key properties, such as CR energy.

Model of small-angle scattering in magnetic micromirrors
We model the effect of magnetic micromirrors as a change of propa-
gation after a distance s by an angle δθ given νmm = δθ2 c/s. Particles 
travelling the mean free path λmm = c/νmm will have lost the information 
of their original direction. At each step s, chosen to be smaller than λmm, 
we introduce a small deflection

δθ = X√
sνmm
c , (13)

where the random Gaussian variable X with mean 0 and s.d. 1 represents 
the assumption that CRs random-walk their way through the magnetic 
micromirrors. Alternatively, micromirrors could be directly modelled 

in the magnetic field, which would, however, necessitate step sizes 
s ≲ lmm ≪ λmm, leading to significantly longer simulation times.

Model of CR scattering at mesoscales
There is an ongoing debate about the dominant mechanism of CR 
scattering off mesoscale fluctuations, with theories including ‘extrin-
sic’ (cascading) turbulence and ‘self-excitation’ (by kinetic CR-driven 
instabilities) scenarios (see refs. 76,77 for recent overviews). Here we 
focus on the extrinsic scenario, with the self-excitation described in 
‘CR streaming instability’.

The CR diffusion coefficient due to resonant scattering is, by 
dimensional analysis,

κres ≈
c rg
f(rg)

, (14)

where f(rg) is a dimensionless model-dependent numerical factor 
expressing the efficiency of the resonant scattering off turbulent mag-
netic structures at the scale l ≈ rg. We assume diffusion rather than 
superdiffusion, which would increase diffusion coefficients with time. 
This serves as a conservative estimate. Quasilinear theory14 determines 
f(rg) for isotropic turbulence as the fraction of the parallel turbulent 
power located at the gyroresonant scales l = 2π/k∥ ≈ rg, namely, 
f(rg) ≈ ∫∞

2π/rg dk∥ P(k∥)/(B
2/8π) ≤ 1, where k∥ is the parallel wavenumber 

and P(k∥) is the parallel magnetic-energy spectrum. Assuming an 
undamped turbulent cascade with P(k∥) ∝ k∥

−ξ gives f(rg) ≈ (rg/lc)ξ−1, 
where lc is the energy-containing scale. Therefore,

κres ≈ c lc(
rg
lc
)
2−ξ

∝ E2−ξlξ−1c = Eδl−δ+1c , (15)

where δ = 2 − ξ is defined for convenience. In ‘The micro–macrophysics 
transition is at teraelectronvolt CR energies’, we confirmed this scaling 
via numerical simulations with unprecedented spatial resolution for a 
synthetic turbulence composed of plane waves.

An important qualitative result is that the cases δ = 2 (ξ = 0) and 
δ = 1 (ξ = 1) apply only to rg ≫ lc and rg ≈ lc, respectively. While there is no 
realistic turbulence model with ξ = 0, this case formally corresponds 
to the small-angle scattering limit of CRs with rg ≫ lc: equation (7) then 
yields κ ≈ crg

2/lc, which is identical to equation (4) if we replace lmm and 
δBmm with lc and B, respectively. This is the standard theory for the 
high-energy regime referred to in the introduction.

In fact, only scalings with weaker energy dependence for rg ≪ lc are 
typically considered. In this limit, three popular choices for this scaling 
have appeared in the literature: (1) δ = 1/3, corresponding to isotropic 
turbulence with a ref. 78 spectrum (ξ = 5/3); (2) δ = 1/2, corresponding 
to ξ = 3/2, which in the past was associated with the theory by refs. 
79 and 80 for weak, isotropic Alfvénic MHD turbulence (now known 
not to exist); (3) δ = 0, corresponding to the ξ = 2 Goldreich–Sridhar 
parallel spectrum of critically balanced Alfvénic turbulence81 (see 
ref. 82 for a review) by adhering to equation (7) (note that this is not 
observed: see, for example, ref. 83); nevertheless, this spectrum pro-
vides a simple way to estimate the decreased CR-scattering efficiency 
expected for the anisotropic turbulent cascade). Historically, Alfvénic 
turbulence was favoured until it was realized that scale-dependent 
anisotropy84–86, damping77,87 and intermittency88,89 might lead to inef-
ficient gyroresonant scattering. A putative ξ = 3/2 cascade of fast MHD 
modes, if isotropic and robust against steepening76,90 and various 
damping mechanisms, may help by generating fluctuations with large 
enough frequencies and amplitudes to scatter CRs efficiently91,92. More 
recently, the exponents δ = 1/3 and δ = 1/2 were ascribed to CR scat-
tering in intermittent distributions of sharp magnetic-field bends in 
Goldreich–Sridhar turbulence16 and in an MHD turbulent dynamo17. 
Scaling exponents in the range 0.3 ≲ δ ≲ 0.5 are in broad agreement 
with constraints from Galactic observations (see ref. 93, for a review).
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An additional process that may contribute to the diffusion of 
low-energy CRs arises from CRs following diffusing magnetic-field 
lines. The Alfvénic scale lA ≳ 1 kpc (ref. 94) approximates the mean free 
path of CRs following these field lines95. The associated CR diffusion 
coefficient κflrw ≈ clA ≳ 1032 cm2 s−1 does not fall significantly below κres 
for rg ≪ lc. Given this estimate, we neglect this transport process in our 
simulation set-up, but indicate the value of the diffusion coefficient 
corresponding to it as an upper boundary in Fig. 3.

CR streaming instability
Let us now explain why the streaming instability can be ignored in our 
multiscale model of CR transport within micromirror patches. The 
self-confinement of CRs due to the streaming instability is believed 
to play an important role in the Galaxy24 and in galaxy clusters62. In 
this picture, the streaming instability generates fluctuations of the 
magnetic field, which in turn can scatter CRs. It is believed that this 
mechanism may take over at lower CR energies, with details depend-
ing on the instability’s growth rate at wavenumber k. At gyroscale22,

γSI ≈ Ωi
nCR(>E )

ni
( vstvA

− 1) ≈ 10−14 ( B
3μG ) (

E
TeV )

−1.6
s−1, (16)

where nCR(>E) is the density of CRs with energies above energy E corre-
sponding to the resonance condition that can interact resonantly with 
waves with wavenumber k, ni is the ambient ion density, vA is the Alfvén 
speed and vst is the streaming speed, believed to be of the order of vA 
in saturation for the ~GeV CRs62,96. In the second estimate in equation  
(16), we employed the common assumptions (see, for example,  
refs. 97,98, and references therein) that (vst/vA − 1) ≈ 1 and nCR 
(>E)/ni ≈ 10−7(E/GeV)1−α in galaxy clusters, with α ≈ 2.6.

Scattering of sub-teraelectronvolt CRs at micromirrors increases 
the effective CR collisionality in high-β environments. A comparison 
of the gyroscale growth rate (16) with the scattering rate at micromir-
rors (3) gives

γSI
νmm

≈ 10−5 Z−2( T
5 keV

)
−1/2

(δBmm/B
1/3 )

−2

( E
TeV )

0.4
. (17)

With such a large effective collisionality isotropizing and homogenizing 
CRs, it is doubtful that this gyroscale, resonant instability can operate.

Another way to gauge the importance of the streaming instability is 
to imagine that it is not suppressed and then check for self-consistency. 
In particular, for self-confined CRs, the CR-density scale height H is set 
by the properties of the ambient thermal gas and is of the order of the 
thermal-gas-density scale height Hρ. If scattering by micromirrors is 
present with diffusion coefficient κmm, the associated diffusive flux is 
smaller than the minimum flux required for the streaming instability 
to operate if κmm/H ≲ vA. This corresponds to scattering by micromir-
rors suppressing the anisotropy in the CR distribution function to 
levels below ~vA/c, which is the threshold anisotropy for the streaming 
instability to operate in the first place. Thus, because κmm/H ≲ vA for 
sub-teraelectronvolt CRs, where H ≈ Hρ ≳ 10 kpc (refs. 99,100), CRs 
may not self-confine in a self-consistent manner.

Model of CR streaming
Let us imagine that the instability is not suppressed, despite the argu-
ments made in ‘CR streaming instability’, and estimate95

κst ≈ lAvst ≳ lAvA ≳ 3 × 1028 ( lA
1 kpc ) (

vA
100kms−1

) cm2s−1, (18)

where we have used vA ≈ 100 km s−1 as the lower limit of the streaming 
speed. We also assumed that the magnetic-field lines stochastically 
tangled on the scale lA. In super-Alfvénic turbulence, this marks the 
transition towards fully MHD turbulence (see, for example, ref. 95), as 

it is the scale at which the turbulent velocity matches the Alfvén speed. 
lA ≳ 1 kpc under typical ICM conditions94.

Comparing this CR diffusivity with the one caused by micromir-
rors (5) gives

κmm

κst
≲ Z−2( E

100GeV
)
2
( lA
1 kpc

)
−1

( T
5 keV

)
−1/2

( B
3μG

)
−1
( δBmm/B

1/3
)
−2
( vA
100kms−1 )

−1
,

(19)

demonstrating that κmm dominates CR transport in the ICM up to almost 
teraelectronvolt energies. This comparison, together with the argu-
ments for the suppression of the streaming instability (‘CR streaming 
instability’), justifies neglecting CR streaming in our numerical experi-
ments. Nevertheless, we show this estimate in Fig. 3.

Computation of CR diffusion coefficient
We use the CR propagation software CRPropa 3.2 (ref. 71) and extend 
the framework with our custom modules for the generalized nested 
turbulence, different turbulence geometries and micromirror scat-
tering. We choose sufficiently small step sizes sstep ≈ min{λmm/103,  
λres/103, λhe/103}, with mean free path λi ≈ κi/c to resolve the small-angle 
scattering at micromirrors, the resonant scattering in the extrinsic 
turbulent cascade and the small-angle scattering in the high-energy 
limit, respectively. The option λhe/103 is only included for CR energies 
above 10 EeV, as the high-energy limit is not valid below that energy. We 
compute sufficiently long CR trajectories d ≈ min{103λmm, 103λres, lmax} 
(min is used here to save computation resources as only the more 
efficient scattering process needs to be resolved) for E ≲ 10 EeV and 
d ≈ max{103λhe, lmax} otherwise. The time-dependent diffusion coef-
ficient κ(t) for CRs performing a correlated random walk is101

κ(t) =
⟨Δr2⟩
2t (1 + 2 ⟨cosϴ⟩

1 − ⟨cosϴ⟩ )
t≫λ/c
≈

⟨Δr2⟩
2t , (20)

with r representing the CR spatial displacement and the operation 
〈…〉 averaging over CRs. The approximation for t ≳ λ/c stems from the 
convergence to central-limit behaviour, assuming that the deflection 
angles Θ are uniformly distributed after CRs travel a distance equivalent 
to their mean free path λ. We compute the steady-state diffusion coef-
ficient κ by averaging κ(t) for 103 CRs. When using synthetic turbulence, 
we average this quantity over ten different realizations.

To compute the CR diffusion coefficients efficiently, we have 
developed a recurrent neural network that comprises a long short-term 
memory layer followed by a fully connected layer, linking the output of 
the long short-term memory to our output size, which is the predicted 
diffusion coefficient. This architecture allows us to capture the tem-
poral dependence in our data, making the network well suited to use 
the CR trajectories as input for the model. For training data, we used 
trajectories generated by Monte Carlo simulations with the method 
described in ‘Model of a static two-phase inhomogeneous medium’, 
using various different effective diffusion coefficients. These effec-
tive diffusion coefficients served as labels for the training process. 
We chose low statistics of only 400 CRs for the 1D cases to illustrate 
the superiority of our neural network (trained on only 1,600 CR tra-
jectories in less than a minute on a conventional CPU) over the clas-
sical computation of the running diffusion coefficient. We tested the 
convergence of the latter method to the theoretical expectation in the 
limit of large times and CR numbers and found good agreement. We 
demonstrate the capabilities of the model in Fig. 5. The good perfor-
mance of the network is primarily attributable to its capacity to learn 
efficiently that the diffusion coefficients can be predicted accurately 
by the frequency of small-angle scattering, which becomes evident in 
a relatively small number of steps. Additionally, the ability to distin-
guish signal (deflection caused by fluctuations) from noise (constant 
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gyration) further contributes to the network’s superior performance. 
These abilities indicate that the network could also be employed as a 
robust framework to assess fmm in MHD turbulence by propagating 
charged particles through the magnetic field. Reliable computation 
of the mean-squared diffusion coefficient requires many trajectories, 
necessary to deduce fmm. Our use of a neural network demonstrates a 
concept for efficient trajectory classification and the computation of 
transport characteristics in astrophysical systems.

Micromirror field from PIC simulations
The micromirror field shown in Fig. 1 was self-consistently generated 
using the hybrid kinetic code PEGASUS++, which models the collision-
less ions using a PIC method and the electrons as an isotropic, isother-
mal fluid. The code can simulate a plasma’s expansion or contraction 
using a coordinate transform method (see ref. 102 for further details), 
which, via double-adiabatic conservation laws, produces an ion pres-
sure anisotropy that becomes mirror unstable.

In our simulation, we initialized a uniformly magnetized plasma 
(B0 = B0x̂) with a Maxwellian population (3,000 ion macroparticles 
per cell) on a cubic domain. Its size is L0

3 = (76.0rg,i0)3, where rg,i0 is the 
initial gyroradius of thermal ions, and the grid resolution is Δx = 0.1rg,i0, 
Δy = Δz = 0.3rg,i0. The initial ion plasma beta is βi0 = 50. The scale L⊥ of 
the plasma in the direction perpendicular to the background field then 
evolves as L⟂ = L0(1 + t/τcrt)−2, with a contraction timescale of 
τcrt = 5 × 103Ωi0

−1, while the parallel scale remains fixed. This gives rise 
to an ion pressure anisotropy Δi ≡ T⟂,i/T∥,i − 1 = (1 + t/τcrt)

2 − 1 that 
increases with time. The mirror instability is triggered at 
t ≈ τcrt/2βi0 ≃ 0.01τcrt, and then back-reacts at t ≈ 0.1τcrt, entering the 
secular (that is, power-law) phase of growth6,35. The simulation is then 
run until tend ≈ 0.25τcrt. The snapshots of the field shown in Fig. 1 were 
taken at t ≈ 0.15τcrt and t = tend, respectively.

As in all PIC simulations, the finite number of macroparticles in 
PEGASUS++ leads to grid-scale noise in the electromagnetic fields. To 
diagnose the influence of this noise on our calculation of CR propaga-
tion, we performed an experiment in which we removed the micro-
mirrors from our PEGASUS++ simulation using a Fourier filter, and 
integrated CRs through the residual magnetic field. While the resulting 
diffusion coefficients show that PIC noise also leads to diffusive CR 
transport, their values are much larger than those associated with the 
micromirrors and so can be safely ignored (Fig. 2).

Turbulence from MHD simulations
At macroscales, we computed CR diffusion coefficients in forced 
incompressible MHD turbulence from the John Hopkins Turbulence 
Databases103,104 to validate the consistency of our numerical approach 
that relies on synthetic turbulence. The MHD turbulence was gener-
ated in a direct numerical simulation of the incompressible MHD sys-
tem of equations without guide fluid using 1,0243 nodes, employing a 
pseudospectral method, with energy input from a Taylor–Green flow 
stirring force. CR diffusion coefficients in this field are shown in Fig. 3.

Model of a static two-phase inhomogeneous medium
We model the CR transport through a two-phase inhomogeneous 
medium in 1D and in 3D (see a visualization in Fig. 4). In 3D, we modi-
fied the computationally intensive numerical experiment described 
in the previous subsections as follows: instead of imposing an addi-
tional effective νmm on all CRs propagating through our turbulent 
field at all times and places, we now turn this scattering on only if the 
CR is seeing a magnetic field above B>. This models qualitatively the 
fact that micromirrors are likely to appear in regions of more vigor-
ous magnetic-field amplification. By varying B> between 0 and ∞, we 
effectively vary the micromirror volume-filling fraction between 1 and 
0, respectively. We assume the most intuitive interpretation that this 
volume-filling fraction is the effective micromirror fraction fmm in equa-
tion (10). As our estimate of the effective diffusion coefficient works 

in all dimensionalities, we also model the CR transport in a two-phase 
inhomogeneous medium in 1D. This allows us to compute diffusion 
coefficients effectively for many different values of fmm. In doing so, we 
employ a simplified Monte Carlo model with ν(x) = νmm for x mod 1 ≤ fmm 
and ν(x) = νres otherwise.

We now justify modelling micromirror patches experienced by 
diffusing CRs as static, based on the assumption of the short residence 
time of CRs in patches

Δtp ≈
lp
c , (21)

where lp is the characteristic size of the patch. The residence time of CRs 
in a patch can be understood intuitively: when CRs penetrate a patch, 
they do so ballistically up to λmm ≈ κmm/c for a time Δtbal ≈ λmm/c, followed 
by isotropic diffusion over a time Δtdiff. To obtain a rough estimate for 
Δtdiff, we can consider the simplified 1D case, where CRs exit either 
at the point of entry or at the point on the opposite end of the patch, 
with probabilities p1 ≈ (lp − λmm)/lp and p2 ≈ λmm/lp, respectively. The 
corresponding times needed to exit the patch via diffusive transport 
are Δt1 ≈ λmm

2/κmm and Δt2 ≈ (lp − λmm)2/κmm. Note that in the limit λmm ≪ lp, 
Δt2 ≈ lp

2/cλmm can be larger than Δtlifetime, meaning that patches cannot 
be treated as being static anymore. However, this only affects a small 
fraction p2 ≈ λmm/lp ≪ 1 of CRs. The mean time duration of the diffusive 
transport is then given by

Δtdiff ≈ p1 Δt1 + p2 Δt2 ≈
lp − λmm

lp
λ2mm
cλmm

+ λmm
lp

(lp − λmm)
2

cλmm
=

lp − λmm
c ,

(22)

resulting in Δtp ≈ Δtbal + Δtdiff ≈ lp/c. Reference 40 obtained this result 
by a more general method of solving the time-dependent diffusion 
equation. It means that CRs with small diffusion coefficients, corre-
sponding to short mean free paths, will exit the patch predominantly 
near their point of entry. In contrast, CRs with large diffusion coeffi-
cients traverse the patch (quasi)ballistically in time Δtp ≈ Δtbal ≈ lp/c. As 
Δtdiff ≪ Δtlifetime, micromirrors can be treated as being static for most CRs.

Data availability
The primary data, including diffusion coefficients, energies and simula-
tion parameters, are available in ref. 105. The magnetic-field data will 
be made available on reasonable request to the corresponding author.

Code availability
CR simulations were performed with CRPropa3, specifically with the 
version https://github.com/reichherzerp/CRPropa3.
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