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Abstract

Correlation functions in four-dimensional Euclidean conformal field theories are expressed in terms of
representations of the conformal group SL(2, H), H being the field of quaternions, on the configuration
space of points. The representations are obtained in terms of a Lauricella system derived using quaternions.
It generalizes the two-dimensional case, wherein the N-point correlation function is expressed in terms of
solutions of Lauricella system on the configuration space of N points on the complex plane, furnishing
representation of the conformal group SL(2, C).
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Correlation functions in conformal field theories in various dimensions have been studied
extensively. Recent impetus to this field came from the conformal bootstrap programme [1-4].
Correlation functions of conformal fields at different points in a geometric space are obtained
as equivariant quantities under the conformal group of the space. That is, correlation functions
are appropriate representations of the conformal group. A representation of a group acting on
a topological space is given by the lift of the group action to the space of regular functions
on the topological space, or their appropriate generalizations. If the topological space is non-
compact, functions on some form of completion of it is considered in order to ensure convergence
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of various functions and integrals. For conformal groups it is customary to use a conformal
compactification. From now on we shall restrict our discussion to the n-dimensional Euclidean
spaces, R". In this case a popular scheme is to consider the action of the conformal group of R"
isomorphic to SO (1, n + 1) on the light cone of R"t2 with a metric of signature (—, +, +, - --).
The light cone is stabilized by the conformal group. The Euclidean space R” is embedded into
the light cone by an injective map. Its completion to include the conformal infinity is then used
to construct representations of the conformal group. For example, in order to obtain the corre-
lation functions of conformal fields on the complex plane C, one first obtains the representation
of the global conformal group SO(1,3) or SL(2, C), on the conformal compactification of C,
namely, P!, the complex projective line embedded into the light cone in R*. Functions on the
completion obtained by restriction from the light cone in two higher dimensions are acted on by
the conformal group, thereby furnishing its representation. This picture, however, pertains to a
single field in R". Correlation functions for a multitude of fields are obtained by tensoring such
representations. The correlation functions are then arranged into conformal blocks, the eigen-
functions of the quadratic Casimir, expanded in the basis of asymptotic plane waves. Since the
conformal group includes scaling, construction of such a representation is often facilitated by
considering the Mellin transforms [5—10]. While the two-point and three-point functions are de-
termined by the conformal group and the structure constants, higher point correlation functions
require further restrictions to be imposed. The bootstrap constraint, which has been a topic of
extensive discussion recently, is one such [11,12], which restricts the correlation functions by its
properties under the permutation of the points.

The representations, equivariant as they are, do not capture the nuances of various conformal
field theories. These are incorporated by inserting projectors in the correlation functions such
that higher point functions are expressed in terms of three-point functions. The projectors are
made up of fields in a specific field theory. Hence the three point functions carry the structure
constants of the operators of the same theory. We shall make extensive use of this formalism,
called the shadow operator formalism [15-17].

In this article we obtain the multi-point correlation functions of conformal field theories in
two- and four-dimensional Euclidean spaces in terms of representations of the corresponding
conformal groups. Instead of tensoring the “single-particle” representations of the Lie algebra of
the conformal group, we approach the computation of N-point correlation functions by looking
at the representation of the M&bius group on the configuration space of N marked points on the
Euclidean space. Among the various models of the configuration space the one we use is the
Fulton-Macpherson compactification of the space of N pairwise distinct points.

In two dimensions we consider N points on the complex plane C. The representation of the
conformal group SL(2, C) is then sought among the germ of functions, described by a Lauri-
cella system, on the configuration space. The Lauricella system is given by the solutions of a
system of differential equations in terms of the positions of the N points. The correlation func-
tions are furnished by the ones equivariant under SL(2, C). At this level, the completion of the
configuration space is brought about by demanding that the functions are regular at infinity. The
two-dimensional conformal group generalizes to the Mobius group SL (2, H) in four dimensions,
where H denotes the field of quaternions [20—22]. We show that the Lauricella system has an ap-
propriate generalization in terms of quaternionic variables. The correlation functions are once
again given by the equivariant ones, regular at infinity. In both cases we deal with the conformal
group, rather than the algebra. Higher point functions are split using the projectors and related
to integrals over the N-variable Lauricella functions, dispensing with the point-wise insertion of
“single-particle” Casimirs which proved to be useful too [13,17,23-26]. The integrals involved
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in the correlation functions appeared earlier literature [26-31]. These are similar to Feynman
integrals in higher dimensions. However, direct evaluation of the integrals is rendered difficult
by their multi-valued nature and is greatly facilitated by writing them as solution to differential
equations. We find that the differential equations of the Lauricella system have a close analogue
in four dimensions in terms of matrix-valued quaternions. The equation for the general case with
an arbitrary number of points has been written down.

In the next section we describe the Lauricella system on the configuration space of marked
points in the two-dimensional case [32,33] and their appearance in the computation of chiral
correlation functions through representation of the Mdbius group. The projector is given by a
two-point Lauricella function too. We explicitly evaluate the four and five point integrals and ex-
press the corresponding correlation functions in terms of integrals involving them, reproducing
previously known results, as expected. The four-point function is expressed in terms of the Gauss
hypergeometric function, while the five point function is expressed in terms of the Appell func-
tion F3. In the third section generalization to four dimensions is carried out. First, the complex
integrals are generalized to integrals over quaternions, which generalize the field-theoretic Feyn-
man integrals in four-vectors. By taking derivatives with respect to the matrix-valued quaternions
we then obtain differential equations generalizing the Lauricella system to four dimensions. Let
us stress that while the integrals appearing in the correlation functions have long been known [27]
as integrals over four-vectors, Lauricella-type differential equations to evaluate them, to the best
of our knowledge, have not appeared earlier. Let us also point out that the multi-valued integrals
are expressed in terms of linear combinations solutions of the Lauricella system. As has been ex-
perienced in the evaluation of period integrals in the studies of mirror symmetry, obtaining them
as solutions to differential equations may be more efficient for the evaluation of the integrals
compared to direct computation. We then show that these integrals furnish representation of the
four-dimensional Mobius group SL(2, H) by enumerating their transformation under the group.
Equations for the invariant part of the integrals, which may be related to the conformal block,
expressed in terms of cross-ratios defined as determinants of a product of a quartet of quaternions
and then obtained by taking traces of the matrix equations. We present the results for the case of
four points, where the Lauricella system is solved with the Appell function Fj.

2. Two dimensions
2.1. Functions on the configuration space of points

Let us begin with a description of the functions on the configuration space of N distinct points

{z1,z2, -+, zn} on the complex plane C. The configuration space is

Cn(C)=CN\ Ui j<nAij, (1)
where

Aij={G1.22.- . 2n) € CNizi =25} )
is called the fat diagonal. On the configuration space one considers integrals of the form

dz
IN(z) = / : 3
v (z—z)M(z—z2)#2 - (2 — NN )

where vectors in boldface denote the N-tuples. The vector z = (z1, 22, - -+ , zn) collects the po-
sitions of the N points and g = (1, 12, -+, ) is the N-tuple of parameters, called weights.
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The integral is defined over an arc in the plane connecting a pair of zeroes of the denominator of
the integral, avoiding encircling any other zero and 0 < u; < 1 foreachi =1,2,---, N. This in-
tegral defines a local system of C-vector spaces over Cy (C), whose stalk at a point z will also be
denoted / x (z) by abuse of notation. Then / x (z) is invariant under translation of z by a constant,

is homogeneous of degree 1 — |u|, where |p| = ZlNzl Wi, and satisfies the differential equations
[33]

Py BN@ AN
Zij 3Zi3Zj - 3Zi ' BZ]' ’

“

where we used z;; = z; — z;. This equation is obtained by differentiating (3) with respect to the
z; under the integral sign and using the identity

1 1 1
=0
G0 -2  0-2G-n  G—DG—»

of three complex numbers x, y, z. The germs of Ix (z) are expressed as the germs of the Lauri-
cella functions [33], determined uniquely by (4). We refer to equation (4) and its solutions as the
Lauricella system. In mundane terms, the solutions of equation (4) are “good functions” on the
completion of the configuration space Cy (C).

Invariance under translation by a constant implies that / x(z) depends only on the differences
z;j and not separately on z; themselves. The integral is well-behaved at infinity provided |p| = 2,
as can be checked by changing the integration variable z to 1/z. The case of N = 2 require special
treatment. Let us discuss it first. Since the integral involves only two marked points, z; and z,
we can take the path over any arc joining these two points, which is in fact homotopic to the line
joining them. Thus,

&)

22
(m1,m2) _ dz
B e = [ e ©)
21

Parametrizing the line joining the two points as z = tz2 + (1 — #)zy, such that 0 <t < 1, the
integral is evaluated to be

1 A —pu)T'(1 = p2)
dutiesl TQ—pr—pa)

(N

12(M1 JU2) (Zl , ZZ) —

Here and in the following we ignore factors of powers of —1, which can be absorbed in the
normalization of the correlation functions. As mentioned before, the integral depends only on the
difference z1» rather than on the points individually and is homogeneous of degree 1 — 1 — wo.
The integral is, on the other hand, not well-behaved at infinity unless w1 + up = 2, a feature to
be called on later. When w1 + @y = 2, it becomes

I T'A =)l — 1)

(1, m2)
I , = — , 8
2 (z1,22) S T'(0) ¢))

where the singular piece I'(0) is to be understood in a limiting sense. Demanding the integrals
to be regular at infinity is equivalent to considering a completion of the configurations space. We
work with the Fulton-Macpherson compactification [34,35] as discussed in section 4.

4
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2.2. Representation of the Mobius group

Let us now obtain the representations of the conformal group SL(2, C) on the configuration
space of N points on the plane. The group acts by Mobius transformation on the space, that is as

, az+b
iz = ,
cz+d

with a similar action on the conjugate variable z. In two dimensions the actions on z and 7 may
be treated independently. We shall display formulas for the holomorphic part only.

A holomorphic representation of the Mobius group is furnished by the regular functions on
CV which transform under SL(2, C) as

a,b,c,d,z€C, ad —bc=1, 9)

fQ@i 2o, an) — f (@, 25,0, 2y) (10)
=(cz1 +d) M (cza + )2 -+ (can + DAY f(z1,22, -+, ZN)s

with A = (A1, A, -+, Ay) an N-tuple of real numbers.
Let us first note that the quantities z;; are equivariant under the Mobius transformation (9),

Zij+—>Z§j=(CZi+d)_l(CZj +d) 'z (11)
From (9) we also have

d7' = (cz+d)"2dz. (12)
The integral (3) is equivariant with respect to (9) with degree of homogeneity —1 provided |u| =
2. In this case it transforms under the Mobius group as

IN@) — IN@) = (cz1 +d)!" (cza +d)*2 - (czn + VIR (). (13)

Holomorphic representations of the Mobius group may thus be constructed out of z;; and / x (2).
We have discussed above the form of [/ x(z) for N = 2. The expression (7) with arbitrary
parameters does not transform under SL(2, C), while (8) does. Equation (13) requires w1 and
W2 to be equal. Thus, from (8)
o)

B2y, 20) = —. (14)
212

For the other special case N = 3 equation (4) is solved with

_pitpo—p3 potps—pr p3tpi—p
2

(i1, p12,13) 2 2
I (z1,22,23) =21 23 2 , 15)

for |w| = @1 4 p2 + pu3 =2 up to a multiplicative constant. This can be verified by plugging the
expression into (4) and appealing to the uniqueness of its solution.

For N > 3 complications arise due to the fact that there exist invariants of the M&bius transfor-
mation, known as cross ratios, which may be multiplied to any function with arbitrary exponents
without altering the transformation property of / x(z). This, however, may change the behavior
of functions at infinity on the configuration space. A cross ratio has the form

(16)

its invariance under Mdobius transformation follows from (11). It will turn out convenient to
denote the cross ratios by
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ga= [ = (17)
ij
1<i<j<N
with
N
A A .. A .
o =0, 1< J; Zaijzo,‘v’l (18)

j=1

for each A. This will allow treating them rather symmetrically. Then, in view of the equivariance
(13), the integral 1 5 (z) can be written as products of z;; with appropriate indices and a function
of the cross ratios as

o= ] «4/1e. (19)
15il<’]j§N

where Io(€) is a function of the cross ratios & = (&1, &, ---) and

N
Zﬁij=—,ui; Bji = Bij, i < J, (20)
j=1
foreachi=1,2,---, N. Since || = 2, we also have
> Bii=-1 1)
i,j
I<i<j<N

Plugging in (19) with (17) and (16) in (4), we obtain a differential equation for the invariant
function Iy of the cross ratios as

Z af}gaﬁ)(ijkl §a6p0a0dp10(8)

+ E afi + E (aif}gaﬁ-i'af}{ﬁjl +05?1/3ik> Xijki | §49410(8) (22)
A k.l
1<k,I<N
K2

+Bii+ Y. BuBixiu | 1o =0,
ol

1<k,J<N
Kk,

where d4 denotes differentiation with respect to £4. This equation is valid for arbitrary N.

6
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2.2.1. Four points
For four points in two dimensions there is but a single independent cross ratio which we
choose to be & = x1234. The non-vanishing exponents « for this choice are

Q=034 =—Q13 =—04 =1, (23)

where we have suppressed the superscript A, which is unity in this case. Equation (22) then leads
to

d21() dly
h© Gz + hO G+ h®lh =0, (24)
where
LE) =E*E-1) (25)
F1E) =&((B13 + Bia + Ba3 + Boa) + £(1 — P13 — Boa)) (26)
fo€) = —Biapss + 55“%’3123 + £Biabos @7)

This is solved with

Io() =& P2(1 — &) PBCIF(—Bi1a — Bi3 — P23, — P12 — Bas — Poa, | — Bio + Paas &)
+ e — ) PBCF(1 + Bra+ Bis + Bras | (28)
+ B12 + Bia + Boa, 1 + B12 — B3a; &),

where F denotes the Gauss hypergeometric function and C; and C; are arbitrary constants. The
six parameters 8 are related to the weights by the four equations (20) through

Biz=1— 1 — uz + B34,
B3 =n2—1— P14 — B4,

(29)
P23 =1—p2—p3+ P,
Boa = —p4 — Bra — B34
Plugging in these values along with (28) in (19) yields the four-point integral
l—y— 1 l—pr— _
@) =20, T TR (CLF (L = pa, s 3 + s §) (30)

+ oM R (g, 1 — pugs g + pas 6)),

with & = 712234/213224, Where we used |p| = 2.

2.2.2. Five points
Two independent cross ratios exist for five two-dimensional points which we choose to be
A = XA A+1,4+2,4+3 for A =1,2. The non-vanishing exponents are

ajy =y = —ajy = —ay =1 (31
a3y = s =~z = o35 = 1. (32)
Equation (22) gives rise to ten equations for the ten independent choices of the pairs {(i, j)|i <

Jii,je(1,2,3,4,5)}. Instead of solving them generally, equation (20) may be exploited to set
five of the s to zero. We choose
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Bi2 = Pia = P15 = Pos = Pas = 0. (33)
The rest are related to the weights by (20) as

Biz=—u1, fp3=1—p2—u3, fpa=puz —1,

B3a=1—p3— pa, B35 = —s.

The equations corresponding to the choices (i, j) = (1, 2) and (i, j) = (4, 5) ensuing from (22)
are

(34)

321y 321y alo
§1(1—-461) —&1& —(l+a+bné blé“z % —abiIy=0,
O} 981 35 *le ) 981 E (35)
52 2
91y 971 aly
£(1—8) —&1& —(l+a+b)é b2§1 Y —abyly =0,
13 951052 * (e ) 082 "?
where & = 2?23 &= 2};‘: are the cross ratios corresponding to (31) and (32). The parameters
are related to the scaling exponents
a=1—u3, by =p1, by =ps, c1 = pu1 + p2, c2 = pa + ps, (36)

where the sum of the scaling exponents || = 2. These are the equations satisfied by the second
Appell hypergeometric function F,. The most general solution, obtained using (34) in (19) is

1—- 1 1—
1 é = Z]3 Zzg = M3Z§L£ i34 e M4Z35 510(51 &), 37
where the invariant is

lo(§1,82) = C1Fa(1 — 3, p1, s, 1 + pa, pa + ps; 61, 62)
+ CzE]l_m_sz(/m +us, I — po, (s, w3 + pa + ps, pa + ps; 1, &2)
+ C3$21_“4_“5F2(M1 +po, s U — g, oy + po, o + po + pss 1, 82) (38)
Caf| TR TS B (11 — o, | — g, 103+ g + s, 101+ 12
+ u3; 61, 62),

where C1, C», C3 and C; are arbitrary constants. As in the case of four points, the final result does
not depend on the choice of 8’s in (33). The other eight equations obtained from (22) pairwise
yield the equations for the Appell function F» in other domains, related to the present one by
analytic continuation.

Above considerations as well as all the expressions have anti-holomorphic counterparts with
w changed to /.

2.3. Correlation functions

Correlation functions in two-dimensional conformal field theories are well-known. We re-
peat some of the computations here in order to bring out the analogy with the four-dimensional
counterpart. For this purpose it suffices to consider chiral primary scalar fields {¢; (z;)} with con-
formal dimensions A in line with (10). The correlation function of N chiral scalar primaries is
given by a holomorphic representation (10) on the configuration space Cy (C). In particular, it is
invariant under translation. The anti-holomorphic part follows suit with conjugated coordinates
and primed weights. It then follows from the preceding discussion that a correlation function for
chiral primaries can be expressed in terms of the differences z;; and the integrals / x (z). Since

8
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SL(2,C) equivariance restricts the degree of homogeneity of the integrals to be —1 by con-
straining || = 2, we can write down correlation functions of a set of primary fields with given
conformal dimensions by simply multiplying the integrals by powers of z;; so as to satisfy (10),

Ap, Ay, A Lij
Gy Y oo =F | [T wfIN@ |, (39)
15[?/51\/
where F indicates a functional involving sums and integrals of / with respect to its parameters,
transforming appropriately under the Mobius group. We use the shorthand ¢; for ¢ (z;). The
parameters £ are related to the weights and conformal dimensions of fields as

N

- Z Lij +pi = A, ZMi=2 (40)
. =

lsfsN ez l
for each i =1,2,---, N and we have defined £;; = ¢;; if j > i. The product in front of the
integral in (39) is referred to as the leg factor. We shall suppress the superscripts in Gy if the
conformal dimensions involved are clear from the context.

The correlation functions for N = 2 and N = 3, the two-point and three-point functions,
respectively, are fixed up to a constant by their SL(2, C) equivariance. For example, by (39),

GEV22 (g, o) = 2211V (24, 20), (41)
and we have, by (40),

Lip=1—A1=1—-As. (42)
It follows, in accordance with (10), that A1 = A,. Using (14) we thus obtain
Ca,T(0)
Gy (g1, ¢2) = =6 a0, 3)
212

where Cp, is an arbitrary constant for each field of conformal dimension A. Similarly, for the
three-point function

G518 (1, ¢, 03) = Capny, e 21825 23 121 (21, 22, 23). (44)
Then by (40) the exponents of the leg factor satisfy the three equations

bio+liz=p1 — Ay,

bin+ 03 =p2 — Ag, (45)

13 + €3 = u3 — A3,

which are solved to obtain
1 1
Ly = _E(Al + Ay — Az) + E(Ml + w2 — u3)

1 1
513=—§(A1+A3—A2)+5(M1+M3_M2) (46)

1 1
£y = _§(A2 +A3— A+ E(M + U3 — p11).
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Using (15) for I5 then yields the three-point function

GAIrA28 () 6y ) = CAIA2A3Z1_2%(A1+A2_A3)Zl_3%(Al+A3_A2)Z;3%(A2+A3_Al)- @7
Let us remark that in these two cases the integrals did not have a role to play. The leg factor
in both cases were so arranged as to obviate the u’s, thereby effacing the trace of the integrals.
Thus, the two- and three-point correlation function of primaries are completely determined by
their equivariance under the Mobius group and the given conformal dimensions. This does not
generalize to higher point functions, however. While the leg factors could be so arranged as to
annul the contributions of B’s in (19), the cross ratios introduce arbitrariness in the leg factors.
This calls for further restrictions on the correlation functions. One such stipulation arises from
requiring that higher point functions can be pared down to products of three-point functions,
which we now proceed to discuss.

2.4. Projectors

Parsing of higher point correlation function in terms of the three-point function is effected by
using projectors [15,16,26]. There is an appropriate set of projectors {I1a} summing up to the
identity operator 7

7= 1, (48)
A

such that, the N-point function can be parsed as
= ($102LP3L s - pN-2LPN-10N)
= Z (P12 1IAP3 TN Pa - pN2TIA PN 10N ),

A,A/,"' ’A//

(49)

where ¢ (x) denotes a primary field of conformal dimension A at x € C. The operator I, is
defined as

1 X
My— o Al )¢A(y)dxdy, (50)
NaJ (x—y)>=2
where N is a constant and the path of integration, written formally in this expression, is fixed
only when used in conjunction with a correlation function. By (11) and (12), ITx is invariant
under the Mobius group. The constant is determined by requiring the projector to be consistent

with two point functions. The composition of the projectors is defined as

1 Pa(0)G2 (pa (NP (x) par (v

[MAoIlp = dxdydx'dy’, 51
AT NaNa ] TGy — TR eb
which also defines their action on fields in parsing the correlation function. Using (43) this yields
Cal'(0) Pa()Pa(Y) '
[TA o TTar =84 A dxdydx'dy’. 52
AT IANTINET | A — A (y —x)h T 42

The integral over x’ can be performed using (8). This leads to
CAT(1 —AT(A -
Ni

1) / — /
Ma oM = 8a.n f 68 da()dxdy 182D,y (53)

10
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Let us note that the integral 12(2_A’1)(x, y') appearing in this expression does not have |p| =2
Hence it is not well-behaved at infinity. The final result is indeed conformal invariant. Using (7),
we evaluate the above product to be

CAT(OI(1 = ATA -1 [ ¢a(x)day")

!/
HAOHA/ :(SA,A’ Ni (x _y/)Z—A dxdy (54)
Since a projector is idempotent, equating to (50) we obtain
NA=CAT(O)T(1 — AT (A -1). (55)

We have absorbed factors of powers of (—1) in the constant Ca. The apparent lack of conver-
gence of the projector is due to the unspecified nature of the sum over A in (48).

2.5. Higher points correlation functions

Let us now use the projectors to express higher point correlation functions in terms of the
Lauricella functions. We shall demonstrate this for N =4 and N = 5.

The four point correlation function G4(z1, z2, 23, 74) = (P10203¢4) is written by inserting the
projector (48) with (50) as

dxdy
Ga(@1, P2, h3. ¢4) = Z /m(¢1¢2¢A(x))(¢A(y)¢3¢4>

dxdy Al,Az,A A Ay Ay
_ZNA/(x_y)z 203 (21,22, x)Gy (y, 23, 24).

(56)

We have thus expressed the four point function in terms of the three point functions. Expanding

the latter using (47) we first collect all the terms containing the integration variable x. They
(2—A A+A1—Ar A2+A7A1)
) 2 k)

combine into A 2 (v, z1, 22), whose weights add up to 2. Using (15) this
furnishes powers of two linear forms in y, which combined with the two more from the second
G factor in the last integral leaves us with an integral in y with a total of four factors of powers
of linear forms in y in the integrand. Collecting all yields

A+A+A-2 A3+A4—A

CaaonCansngy — -=
A Na
2—A+A1—Ay 2—A+A2—A1 A+A3—A4 A+A4—A
2 ’ 2 ’ 2 ’ 2
x Iy (21,22, 23, 24).

(57)
The five point function is similarly parsed as

11
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Gs5(¢1, 92, 93, P4, P5)

_ 1 / (D1920A (X)) PA ) P3DA (X)) (DA (V) Paths) dxdvdx'dy'

= — NANA/ (_x — y)27A(x/ _ y/)2,A/ y y

_ 1 (58)
A,A’ NA NA’

/ /
(x — y) 2B — y)2-2 dxdydx'dy’.

Using (15) repeatedly and performing integrals in turn until the integration over only a single
variable is left, this is finally written in terms of /5 as

Gs(¢1, 2, 93, P4, P5)

3 1 1
(1 Z Ca naCansaCaragas Z—Q(Al+A2—A)Z—§(A4+A5+A’—2)
2mi NANA/ 12 4

AN
C(—s)T (=s2)T(—s3)I'(m + s)T (n + s2)T (p + 53)
Cm)C () (p)

X /dsldszdS3 (59)

X /df(_T)f(swszﬂngz)

1 1 1
(7 (A1=22+4), 5 (A=A +A), 5 2+A3—A=A) =51, —52,~53)

x I (21,22, 23,24, 25),

where the quantities
1

1 1
m:E(Ag—i—A—i-A’—Z), n:E(A4—A5+2—A’), p:E(A5—A4+2—A’) (60)

have been defined and repeated use of the integral

1
(1—=x)"  27i C(n)

ioo
/ ds(—x)’T(=s)['(n + ) 61)
—ioo
has been made.
Correlation functions with more number of points can be similarly written down in terms of
the Lauricella functions /. We have thus related the conformal correlation functions of scalar

primaries to the Lauricella system, defined on the configuration space of points in two dimen-
sions.

3. Four dimensions

The conformal or Mobius group of the compactified four-dimensional Euclidean space M =
R*U {oo}is SL(2, H) [21,22]. The correlation functions of scalar primaries of a four-dimensional
conformal field theory are obtained as representations of SL(2, H) on the configuration space of
N points in M. In this section we show that the considerations of the previous section carry
over mutatis mutandis to the four-dimensional Euclidean conformal field theories. In order to fix
notations let us begin by recalling some facts about quaternions and the Mobius transformations
[18=20].

12
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3.1. Quaternions

A quaternion can be written as a 2 x 2 matrix with a pair of complex numbers U and V and
their respective complex conjugates U and V as

QZ(_U‘7 l‘;)eH vvec, (6

The norm squared of a quaternion is
IQI*=00"=101=UU+VV, (63)
where Q7 denotes the Hermitian conjugate and |Q| denotes the determinant of the matrix (62).

The inverse of the matrix Q is

1
-1_ 1
¢ 10|

A quaternion can also be looked upon as a Euclidean real four-vector q = (qo, 91, g2, q3) by
writing U = go + ig3 and V = g1 + ig2. From (62), then,

qo+iqs q1+iq
= . . 65
¢ (—611 +iq2 ro—ZCI3> ©5)

o', (64)

The norm-squared of the quaternion Q is the Euclidean norm-squared of the four-vector,

I10I° =101=¢>=q-a=q; +4qi +43 +45. (66)
The volume form of the four-dimensional Euclidean space is then written as the wedge product
of the column vectors of the differential of Q divided by 24,

d*Q =d*q=dgo ndq) Adgz Adgs. (67)

This generalizes the two-dimensional volume form dz A dz. In the previous section we chose
to only write the holomorphic parts to leave provision for spin. In four dimensions we need to
consider four-dimensional integrals. We consider integrals similar to (3) in four dimensions. We
shall denote these by the same symbol as in (3). Let us define

4
N = [ 40 :
1Q — Q11"MQ — Qaf#2---|Q — ONIHN
where Q denotes the N-tuple of quaternions, Q = (Q1, Q2, -+, On). From (64) we have
9101 _
0
For the following it is useful to indicate the matrix indices of the quaternions, Q = (Q)4p and
0~ '=(0)", 1<a,b<2.Then (Q)u(Q)" = 8¢ and the last equation becomes

3|0l

(68)

o'=10/107". (69)

= ba, 70

RO 101(Q) (70)
Using this expression for the derivative of the determinant and the identity

Q=000 =00~ '=@-0)"'—(@-0n7", (71)

13
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which generalizes (5), we obtain, by differentiating under the integral sign in (68) a differential
equation

2 9 AN AIMQ)  AINQ)
> (Qije =) — i : (72)

bt 3(Qi)ba 3(Q j)dc 3(Qi)da 3(Qj)da
where i, j =1,2,---, N and we used the abbreviation Q;; = Q; — Q. This equation general-

izes (4). We refer to this as the quaternionic Lauricella system. Let us stress that the order of
quaternions are important in these formulas, since they are non-commutative and represented
here as complex matrices.

As in two dimensions, N =2 and N = 3 are special. Let us discuss them first. We have, using
(66) in (68)

4

Ié“""”(Ql,Qz)=/ da (73)

(g —gq1)7(g —q2)™2
which is evaluated using Feynman parametrization of the integrand to be
2
, 7 TQ2— )2 —pu)l (e + p2 —2) 1
(04, 0)) = —. (74)
C(pup)T(u2)T' (4 — g — u2) |Qp|1TH2

It can be verified that this satisfies (72). Let us note that it is translation invariant and homoge-
neous with degree 2 — |u|. This expression generalizes (7) with doubled numbers reflecting the
doubling of dimension from two to four.

3.2. Representation of the Mobius group

The conformal group of R* U {00} is isomorphic to the group of 2 x 2 matrices whose blocks
are quaternions, namely, SL(2, H) [20,21]. We have,

SL(2,H) = { (2 g)

The matrix whose determinant is set to unity in this definition can be written in seven alternative
forms [20]. We shall have occasion to use only the present one. The Mobius group acts on a
quaternion Q similarly as the fractional linear transformation (9),

Q' =(AQ+B)(CQO+ D)L (76)

Representation of the Mobius group is furnished by complex-valued functions of quaternions
transforming as,

f(Q1, 02, -+, ON) —> (O}, O+, Q)
=|CQ1+ D|*|CQy+ D|*?---|CQON + DI*Y (01, Q2.+, ON),

where A = (A1, Aj, .-+, Ay) denotes the N-tuple of weights, as before. Generalizing the trans-
formation (11) of z;;, the difference of two quaternions transforms under the Mobius group as

Q;;=(AQi+B)(CQi+ D)™ —(AQ; + B)(CQ; + D)!
= ((40i +B) = ACTH(C Qi + D)) (CQi + D)!

|AC‘1DC—BC|=1;A,B,C,DEH}. (75)

(77

(78)
_ ((AQ,- +B)—ACTN(CQ; + D)) (CQ;+ D)

=(ACT'D-B)(CQ;+D)"'CQ;;(CQ: + D),

14
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where we used the identity (71) in the last step. Taking the determinant of the matrices on both
sides and using the fact that the determinant in (75) is unity, we obtain [20]

|Q§j|:|CQ,'+D|7]|CQj+D|7]|Qij|~ (79

Let us derive the transformation of the volume element, generalizing (12). The differential of Q’,
obtained from (76) is

dQ'=AdQ(CQ+D)"'+(AQ + B)d(CQ+ D)™! (80)
Since dM~! = —M~'dM M~ for any matrix M, we obtain
dQ' = (A —(AQ+ B)(CQO+ D)‘1C>dQ(CQ + D)~ !

=(4CT'(CQ+ D)~ (40 +B)) (CQ+D)~'CdQ(CQ + D)~ @D
=(AC™'D—B)(CQ+D)"'CdQ(CQ+ D)™
=(AC™'DC-BCO)CTH(CQ+D)'cdo(Cco+ D).
We have thus a relation between the quaternion differentials as
dQ' =XdQY, X,YeH, (82)

where the quaternions are expressed as 2 x 2 matrices. In order to obtain the transformation of
the volume form (67) it is convenient to go over to the four-vector q, written as a column matrix.
A transformation of a quaternion by another d 0 — Xd Q given in the 2 x 2 form can be written
as a transformation of a four-vector as

dqo xo —x1 —x2 —x3\ (dqo
dq) X3 —X2 X1 Xo dqi

— . 83
dqs Xy X0 —X3 X2 dqo (83)
dqs; X2 X3 X —X] dqs

The determinant of the 4 x 4 transformation matrix equals | X |>. The volume form (67) obtained
by taking wedge product of the components, transforms under this as

d*q' =X 2 d%g. (84)

Similarly, a transformation of a quaternion by another d Q —— d QY from the right, given in
the 2 x 2 form can be written as a transformation of the four-vector as

dqo Yo —=y1 —y2 —y3\ [dqgo
dqi N IR T - T TR 1) dqi . 85)
dqa yio Yo y3 —»n||de
dqs Y2 —¥3 Yo ) dqs

The determinant of the 4 x 4 transformation matrix equals |Y|?. Hence the volume form (67)
transforms as

d*q' =1y ’dq. (86)
Thus, under a transformation (82) the volume form transforms as
d*q' =Xy Pdq. 87)

15
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Using this for the transformation (81) along with the unity of the determinant of the first factor
as in the definition (75), we obtain

d*q'=1C0 + D|™*d%. (88)

The exponent 4 is the dimension of the space, as did was 2 in (12). Using (79) and (88) we con-
clude that the integral (68) is equivariant with degree of homogeneity —2, equal to the dimension
of the space, provided || =4, as can be verified by transforming the Q; as well as the variable
of integration Q in (68) according to (76), yielding

1“(Q")=1CQ1 + DI'|C Qs+ D|*---|CQx + D"V I (@), (89)

with || = 4. Representations of the Mobius group SL(2, H) may thus be constructed out of
|Qijl and I§(Q).

As in the two-dimensional case, (89) requires equality of p; and u, for N = 2, along with
U1+ pp =4, to be equivariant. Thus, from (74) we derive the equivariant expression

2
1,1) T F(O)
L (Q1,02) = —— (0)
2 101212
For the other special case N = 3, the equation (72) is solved with
_ M1Fpo—p3 _ MoFp3—p M3 FHI—H2
LI ) =100l 2 10slT 2 1ealT 2, oD

up to a multiplicative constant and w1 + 2 + u3 = 4. As in the two-dimensional case, this can
be verified by plugging the solution into (72).

For N > 3 complications as in two dimensions arise due to the existence of cross-ratios. These
are invariants of the SL(2, H) transformation. Considering a product of the determinants of the
quaternions ]—[f?]jzl |Qijl, we recall that it transforms according to (79). Writing a matrix with
entries showing the order of transformation of Q;; in Q; along the rows, the invariants are given
by the vectors in its kernel. For example, for N = 4 the matrix of exponents is

O Qi3 Q4 023 Q24 0Omn

oo({1 1 1 0 0 0
M@ 1 0 0 110 )
osl o 1 o 1 o 1
o,\0 0o 1 o0 1 1

The kernel of this matrix is two-dimensional. We can choose the basis vectors of the kernel as
the transpose of

O Q13 Qi 023 0 0Omn
1 —1 0 0 —1 1 ’ 93)

0 -1 1 1 -1 0
[012]1034]
[013]]Q24]

1914]1023] Generally, for N quaternions, the matrix of exponents is N x w Its kernel has

02410131
dimension M which is the number of independent invariants that can be constructed from

the determinant of the quaternions. The counting in two dimensions was similar, but the Pliicker
relations among the invariants further reduced their number. Thus, for N = 4 there was but a

where we indicated the quaternions. Two invariants are correspondingly given by and
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single invariant, as we dealt with before, but in four dimensions there are two invariants for
N =4. Let us first define another set of quaternions

Xijk = Qij Qi Qu Q7' (94)

The determinants of these matrices are invariant under SL (2, H) thanks to (79). Determinants
of all the x’s are, however, not independent. A choice for the independent ones is to be made,
thereby fixing the asymptotic behavior of the integrals. These are taken to be the cross ratios, the
rest being functions of them. We shall denote the cross ratios as before

A
ta= ] 1041, 95)
151'2/5N

where a” for each A designates a basis vector in the kernel of the matrix M, as the rows in (93),
for example. These satisfy (18) as before.
Let us denote the trace of the 2 x 2 matrices x by

Tijki = Tt Xijki- (96)

Then, in view of the equivariance (89) of Ix(Q), it can be written as products of |Q;;| with
appropriate indices and a function of the cross ratios as

=[] 104f1e), 97
15il<’§'5N

where Io(§) is a function of the N(N — 3)/2 cross ratios § = (§1, &, --- , Ey(nv—3)) and the B’s
2

satisfy (20), while (21) is replaced with
> Bi=-2 (98)
iJ
I<i<j<N

Plugging in (97) with (95) and (94) in (72), we obtain an equation for / x (&) similar to (22) in
terms of the quaternions y. It is equivariant under SL(2, H). An invariant set of equations is
obtained by taking trace of the matrices involved. Taking trace on both sides the equations are
expressed in terms of the quantities (96). We have, for each pair (i, j),

Z af}caﬁ Tijxi | £4EB0A0BI0(E)

A,B k,l
1<k,I<N
kA2 ]
3 [+ 3 (o + i+ oiBin) Tu | €404 T0(®) (99)
A k,l
1<k,I<N
ki 2
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+ 4B+ Y BuBitiju | Io§) =0,
k.l

I<k,I<N
ki l1#j

which generalizes (22). In order to write the equations in terms of cross ratios we need to relate
the trace and determinant of x;jx;. To this end let us first note that

Xijk Xijik = Qi Qi Qua Qﬁ]&Qﬁl Qix Q;kl
=0;; 05 kaQﬁ](Qiz - 000y QZkQ;k]
=00 0u Q7' Qu Q7 — Qij Qi Qu Q' O 0
= 0ij 0 Qu Q3 (Qjk — QN0 — Qij Qi (Qi — Qi) 0y Qu 0
= Xijkl + Xijlk>
(100)

where the underlined terms indicate the replacements made at various intermediate stages. Since
Xijki defined in (94) is a quaternion, this is an equation of 2 x 2 complex matrices. Let us rewrite
it as

Xijkt = — {2 — Xijk1) Xijik (101)
where I, denotes the 2 x 2 identity matrix. We further note that for any 2 x 2 matrix M the
identity

detlo +M)=1+Tr M +detM (102)

holds. Taking determinant of both sides of (101) and using this identity we derive

Tijkt = 1 — Ixuiji| + I Xijkt |- (103)

This relation will be used to express ;4 in terms of the cross ratios in equation (99).
3.3. Four points

Let us write down the invariant case of four points N = 4 explicitly. Since the equations
are rather cumbersome, we present the forms obtained by choosing 814 = B34 = 0, a freedom
allowed by (20). We choose the independent cross ratios as in (93), namely,

X =|[x1234], ¥y =Ix4123l (104)
In terms of these the equation (99) yields two equations for the invariant Iy, for (i, j) = (1,2)
and (1, 3), namely,
(x +y = DOZIo(x, y) + 2x0xy Io(x, ) = (x(B13 + 24) + (1 = y)B12) Ox o (x, y)
+x@2+ B12)0yIo(x, y) + xB13paalo(x, y) =0,
(x+y = DO Io(x, y) + 2y0uy Io(x. ) — (y(B13 + B24) + (1 — x)Ba3) Py Io(x, y)
+ Y2+ B23)ylo(x, y) + yB13Baalo(x, y) =0,

(105)
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WNEIe vy = X 57— enotes the logarithmic derivative. €S¢e are Solve the fourt c unc-
here 9, = x - d he logarithmic derivative. Th lved by the fourth Appell f
tion [14,36], F4. The general solution is
Io(x,y) =C1F4(2 — o, g, 03 +pa — 1, oy + g — 1 x, y)+
Cox? M3 Fy (i, 2 — pa, jr + o — 1, g + s — 1 x, y)+
C3y? MM Fy(u3, 2 — g, s + pa — 1o + s — L x, y)+
Cax?H3THaNITIMTHAEY (D — g o, g+ o — 1, o + s — 15 x, ),

(106)

where C1, Ca, C3, C4 are arbitrary constants and we used solutions of (20) with 14 = 34 =0
and |u| = 4. Plugging in the four solutions in terms of this for 14(x, y), (97) gives the complete
expression for 7 f (@). Equations ensuing from the other choices of the indices are either not
independent, as for (i, j) = (1, 4), for example, or related to it by analytic continuation.

3.4. Correlation functions

The correlation functions are related to the integrals / x( Q) exactly as in the two-dimensional
case, (39), namely,

i
Gﬁl,Az, ,AN(¢1’¢2’...¢N)=f 1_[ lejlx(Q) P (107)
15[2’}5N

satisfying (40). Here we use ¢; = ¢ (Q;). Considerations same as before lead to the two and three
point functions,

1
Gy (@1 92) =77 Co 88,0 O 75— (108)

G128 () s, )

109
|Q12|*%(A1+A2*A3)|inf%(A1+A3*A2)|Q23|*%(A2+A3*A1)‘ (109

= CA] Ay A3

Let us point out that while in the two-dimensional case we considered only chiral fields, in here
we consider a general scalar field although we retain the same notation for the constants as in the
two-dimensional case. The integrations are thus over the four-dimensional space rather than on
contours now.
For the higher ones we need, once again, a projector. The projector in four dimensions is given
by (48) with
/!
HA:L ¢A(Q)¢A(Q)d4Qd4Q/’ (110)
NaJ 1Q—Q+4

where the constant of normalization is given by

N 7OCAT(O)T(A —2)T(2 — A)
A T(A)T @ — A)

The expressions for the correlation functions assume exactly the same form as in two dimen-

sions, with quaternions in the integrals in lieu of complex variables and the values of Na changed

to (111) and Iy taken to be a solution of (99). For example, the four-dimensional four-point func-
tion is given with such changes from (57) by

(111)
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G AN R () b, b3, )

CAlAzACA,A3,A4 _A+A—-A _A3+A4+A4
=) SRS RonT 2 |0l 2
Na (112)
A
<A1+A7A2 Ar+A—A] 44+A3—A4—A 4+A4—A3—A>
2 J 2 ’ 2 ’ 2
X 14 (le Q2’ Q3’ Q4)5

where Ny is given by (111) and Iy is given by (97) with f14 =B34 =0, B2 =2 — A, B3 =

Ar—A+A—4 Al+A3—Ay—A Az—Ay+A4 X
Do MIATA g,y — BitBa- Lol gy — M Bat AT 454 (105) with & = x and & = y.

4. Discussion and summary

To summarize, in this article we study N-point correlation functions of conformal primaries
of conformal field theories in two- and four-dimensional Euclidean spaces. In the former case
the conformal group is SL(2, C), while in the latter case it is SL(2, H). We demonstrate the
semblance of the computations in the two cases.

Instead of copies of the conformal compactification of the Euclidean space within the light
cone in two higher dimensions, we choose to work directly with the Fulton-Macpherson com-
pactification of the N-point configuration space. For the four-dimensional Euclidean space with
infinity adjoined, M = R* U {oc}, the configuration space of N points is

Cn(M)=MN\{gieM, gi#q;; i,j=1,2,---,N} (113)

The Fulton-Macpherson completion is achieved by considering the embedding [34,35]

) N 31 ()) (9]
y :Cn(M) — MY x ($7)* x [0,00]'3, (114)
(611,612, s J]N) '—>(611,612, 5, gN,> V12, UUN=1)N, @123, " * sa(N—Z)(N—l)N)v

where each of

vij = (qi —q;)/19i — q;l (115)

describes a three-sphere 3 and the scalars

(116)

assume values in the non-negative real line. Representations of the conformal group, in particular,
the integral 1%, is to be chosen from among the functions of these variables. Invariance under
translation bars a representation to depend on g; alone and rotational invariance keeps it from
having dependence on v;;. The difference |g; — q;|, however, is allowed. Let us note that v;;
will appear in the correlation functions of higher rank tensor fields. The expression (97) is thus a
regular function on the Fulton-Macpherson compactification of the configuration space with the
cross-ratios expressed as

| Xijkt| = aijka;- (117)

Correlation functions are given by representations of the conformal groups on the configuration
space. We obtain the representations of the groups directly without recourse to the corresponding
Lie algebras. Consistency of the expressions can be verified by writing down the generators of
the groups as differential operators. The integrals then get related to conformal blocks. While
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using the conformal algebra is effective in two dimensions, non-commutativity of the quaternions
render the computations difficult in the four dimensional case. This approach also avoids building
the N-point functions from the “single-particle” representations by tensoring and eschews the
insertion of “single-particle” Casimirs.

In two dimensions, the representation of the conformal or the Mobius group is obtained in
terms of a Lauricella system. A differential equation for the invariant part is derived for N > 3
from the Lauricella system. We present solutions for N = 4,5, the former in terms of Gauss
Hypergeometric function and the latter in terms of the Appell function F». Parsing the correlation
functions into three-point functions by inserting projectors we write integral formulas for the
correlation functions from the representations. The projectors themselves are expressed in terms
of the two-point Lauricella system.

These considerations directly generalize to the four-dimensional case. We define integrals in
terms of determinants of quaternions. Differentiating with the complex 2 x 2 matrices repre-
senting quaternions we then set up a generalized Lauricella system of differential equations for
the integrals. Representations of the conformal group SL(2, H) are then obtained from the so-
lutions of the differential equation. The invariant cross-ratios are given by the determinant of
quaternions. In order to write the equations for the invariant part we use the relation between
the trace and determinant of 2 x 2 matrices. While the equations are obtained for an arbitrary
N, we present the computation for N = 4, in which case the integral is given by the Appell
function Fy. As in the two dimensional case, the correlation functions are parsed using projec-
tors obtained as solutions to the Lauricella system for N = 2, without requiring it to transform
under the conformal group. Let us stress that the correlations functions in the two-dimensional
case have been known for decades. The four-dimensional four-point function in the comb chan-
nel has been worked out earlier [23] and our results match these expressions. It is their direct
connection with the Fulton-Macpherson compactification of configuration spaces of N marked
points and the quaternionic Lauricella system that governs them in four dimensions that is novel
in here.

Let us also point out that the projectors (50) and (110) can be expressed in terms of the so-
called shadow operator by choosing to perform the integration over y first [16]. We have chosen
to postpone it to a later stage of the computation in order to relate to the integrals I]{,L. Further, we
have presented the most general expressions for the solutions of the Lauricella systems. However,
the correlation functions were parsed in terms of three-point functions. In order to be concomitant
with the operator product expansion some of the terms must be discarded in the final expressions
for the correlation functions by the monodromy projection [16]. For example, only one of the
two terms in (28) is to be retained in (57), namely,

(2—A+A1—A2 2—A+A—A| A+A3—Ay A+A4—A3
2 ) 2 ) ’

2 2
1, (z1, 22,23, 24)
Projected (118)
Ap=A|=A  Aj—Ay—Az+Ay A3—D4—A
_ _A-1 2 2 2 A+A1—Ary A+A4—A3 .
=Zpp 23 23 24 F( T Y ,A,$)~

Similarly, only two of the four terms in (106) survive the monodromy projection. The integral 14
to be used in (112) is
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2

I, > (01,0105 04

Projected
A2 1_A Ar—A1+A=2 Al—Ar—A3+Ay4 Ay—AgtA—4
=x""710121" 7 Qusl 2 | Q23] 2 |04 5 «

A+A1—Ay A+A4—A A1—Ar—A3+A
(CoFy (Aoymte, AEMmt Ay Simtoshoths gy y)

—A1+A+A3—Ay
BT, E— A+A3—A — Ay—A1+A3—A
+C4y 2 F4( +23 4’A+A22 AI,A—l,%+1;X,y>).

(119)

(A1+A—A2 Ar+A—A] 4+A3—A4—A 4+A4—A3—A)
E) 2 ) 2 E)

In all the cases the monodromy considerations project out part of the basis of the Lauricella sys-
tem. The integrals entering the expressions for correlation functions are generically multi-valued,
rendering their direct evaluation complicated. Expressing these as solutions to differential equa-
tions may be very useful in this regard. The situation is similar to the evaluation of periods of
algebraic varieties, whose evaluation in various domains of convergence is substantially facili-
tated by expressing them as solutions Picard-Fuchs differential equations. The Lauricella system
developed here in terms of quaternions are quite general. We expect this formalism to be use-
ful in computing the correlation functions in four dimensions as well as in computing Feynman
integrals in quantum field theories.
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