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Abstract

Correlation functions in four-dimensional Euclidean conformal field theories are expressed in terms of 
representations of the conformal group SL(2, H), H being the field of quaternions, on the configuration 
space of points. The representations are obtained in terms of a Lauricella system derived using quaternions. 
It generalizes the two-dimensional case, wherein the N -point correlation function is expressed in terms of 
solutions of Lauricella system on the configuration space of N points on the complex plane, furnishing 
representation of the conformal group SL(2, C).
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Correlation functions in conformal field theories in various dimensions have been studied 
extensively. Recent impetus to this field came from the conformal bootstrap programme [1–4]. 
Correlation functions of conformal fields at different points in a geometric space are obtained 
as equivariant quantities under the conformal group of the space. That is, correlation functions 
are appropriate representations of the conformal group. A representation of a group acting on 
a topological space is given by the lift of the group action to the space of regular functions 
on the topological space, or their appropriate generalizations. If the topological space is non-
compact, functions on some form of completion of it is considered in order to ensure convergence 
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of various functions and integrals. For conformal groups it is customary to use a conformal 
compactification. From now on we shall restrict our discussion to the n-dimensional Euclidean 
spaces, Rn. In this case a popular scheme is to consider the action of the conformal group of Rn

isomorphic to SO(1, n + 1) on the light cone of Rn+2 with a metric of signature (−, +, +, · · · ). 
The light cone is stabilized by the conformal group. The Euclidean space Rn is embedded into 
the light cone by an injective map. Its completion to include the conformal infinity is then used 
to construct representations of the conformal group. For example, in order to obtain the corre-
lation functions of conformal fields on the complex plane C, one first obtains the representation 
of the global conformal group SO(1, 3) or SL(2, C), on the conformal compactification of C, 
namely, P1, the complex projective line embedded into the light cone in R4. Functions on the 
completion obtained by restriction from the light cone in two higher dimensions are acted on by 
the conformal group, thereby furnishing its representation. This picture, however, pertains to a 
single field in Rn. Correlation functions for a multitude of fields are obtained by tensoring such 
representations. The correlation functions are then arranged into conformal blocks, the eigen-
functions of the quadratic Casimir, expanded in the basis of asymptotic plane waves. Since the 
conformal group includes scaling, construction of such a representation is often facilitated by 
considering the Mellin transforms [5–10]. While the two-point and three-point functions are de-
termined by the conformal group and the structure constants, higher point correlation functions 
require further restrictions to be imposed. The bootstrap constraint, which has been a topic of 
extensive discussion recently, is one such [11,12], which restricts the correlation functions by its 
properties under the permutation of the points.

The representations, equivariant as they are, do not capture the nuances of various conformal 
field theories. These are incorporated by inserting projectors in the correlation functions such 
that higher point functions are expressed in terms of three-point functions. The projectors are 
made up of fields in a specific field theory. Hence the three point functions carry the structure 
constants of the operators of the same theory. We shall make extensive use of this formalism, 
called the shadow operator formalism [15–17].

In this article we obtain the multi-point correlation functions of conformal field theories in 
two- and four-dimensional Euclidean spaces in terms of representations of the corresponding 
conformal groups. Instead of tensoring the “single-particle” representations of the Lie algebra of 
the conformal group, we approach the computation of N -point correlation functions by looking 
at the representation of the Möbius group on the configuration space of N marked points on the 
Euclidean space. Among the various models of the configuration space the one we use is the 
Fulton-Macpherson compactification of the space of N pairwise distinct points.

In two dimensions we consider N points on the complex plane C. The representation of the 
conformal group SL(2, C) is then sought among the germ of functions, described by a Lauri-
cella system, on the configuration space. The Lauricella system is given by the solutions of a 
system of differential equations in terms of the positions of the N points. The correlation func-
tions are furnished by the ones equivariant under SL(2, C). At this level, the completion of the 
configuration space is brought about by demanding that the functions are regular at infinity. The 
two-dimensional conformal group generalizes to the Möbius group SL(2, H) in four dimensions, 
where H denotes the field of quaternions [20–22]. We show that the Lauricella system has an ap-
propriate generalization in terms of quaternionic variables. The correlation functions are once 
again given by the equivariant ones, regular at infinity. In both cases we deal with the conformal 
group, rather than the algebra. Higher point functions are split using the projectors and related 
to integrals over the N -variable Lauricella functions, dispensing with the point-wise insertion of 
“single-particle” Casimirs which proved to be useful too [13,17,23–26]. The integrals involved 
2
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in the correlation functions appeared earlier literature [26–31]. These are similar to Feynman 
integrals in higher dimensions. However, direct evaluation of the integrals is rendered difficult 
by their multi-valued nature and is greatly facilitated by writing them as solution to differential 
equations. We find that the differential equations of the Lauricella system have a close analogue 
in four dimensions in terms of matrix-valued quaternions. The equation for the general case with 
an arbitrary number of points has been written down.

In the next section we describe the Lauricella system on the configuration space of marked 
points in the two-dimensional case [32,33] and their appearance in the computation of chiral 
correlation functions through representation of the Möbius group. The projector is given by a 
two-point Lauricella function too. We explicitly evaluate the four and five point integrals and ex-
press the corresponding correlation functions in terms of integrals involving them, reproducing 
previously known results, as expected. The four-point function is expressed in terms of the Gauss 
hypergeometric function, while the five point function is expressed in terms of the Appell func-
tion F2. In the third section generalization to four dimensions is carried out. First, the complex 
integrals are generalized to integrals over quaternions, which generalize the field-theoretic Feyn-
man integrals in four-vectors. By taking derivatives with respect to the matrix-valued quaternions 
we then obtain differential equations generalizing the Lauricella system to four dimensions. Let 
us stress that while the integrals appearing in the correlation functions have long been known [27]
as integrals over four-vectors, Lauricella-type differential equations to evaluate them, to the best 
of our knowledge, have not appeared earlier. Let us also point out that the multi-valued integrals 
are expressed in terms of linear combinations solutions of the Lauricella system. As has been ex-
perienced in the evaluation of period integrals in the studies of mirror symmetry, obtaining them 
as solutions to differential equations may be more efficient for the evaluation of the integrals 
compared to direct computation. We then show that these integrals furnish representation of the 
four-dimensional Möbius group SL(2, H) by enumerating their transformation under the group. 
Equations for the invariant part of the integrals, which may be related to the conformal block, 
expressed in terms of cross-ratios defined as determinants of a product of a quartet of quaternions 
and then obtained by taking traces of the matrix equations. We present the results for the case of 
four points, where the Lauricella system is solved with the Appell function F4.

2. Two dimensions

2.1. Functions on the configuration space of points

Let us begin with a description of the functions on the configuration space of N distinct points 
{z1, z2, · · · , zN } on the complex plane C. The configuration space is

CN(C) = CN \ ∪1≤i,j≤N�ij , (1)

where

�ij = {(z1, z2, · · · , zN) ∈ CN ; zi = zj } (2)

is called the fat diagonal. On the configuration space one considers integrals of the form

I
μ
N(z) =

∫
dz

(z − z1)μ1(z − z2)μ2 · · · (z − zN)μN
, (3)

where vectors in boldface denote the N -tuples. The vector z = (z1, z2, · · · , zN) collects the po-
sitions of the N points and μ = (μ1, μ2, · · · , μN) is the N -tuple of parameters, called weights. 
3
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The integral is defined over an arc in the plane connecting a pair of zeroes of the denominator of 
the integral, avoiding encircling any other zero and 0 < μi < 1 for each i = 1, 2, · · · , N . This in-
tegral defines a local system of C-vector spaces over CN(C), whose stalk at a point z will also be 
denoted Iμ

N(z) by abuse of notation. Then Iμ
N(z) is invariant under translation of z by a constant, 

is homogeneous of degree 1 − |μ|, where |μ| = ∑N
i=1 μi , and satisfies the differential equations 

[33]

zij

∂2I
μ
N(z)

∂zi∂zj

= μj

∂I
μ
N(z)

∂zi

− μi

∂I
μ
N(z)

∂zj

, (4)

where we used zij = zi − zj . This equation is obtained by differentiating (3) with respect to the 
zi under the integral sign and using the identity

1

(x − y)(y − z)
+ 1

(y − z)(z − x)
+ 1

(z − x)(x − y)
= 0 (5)

of three complex numbers x, y, z. The germs of Iμ
N(z) are expressed as the germs of the Lauri-

cella functions [33], determined uniquely by (4). We refer to equation (4) and its solutions as the 
Lauricella system. In mundane terms, the solutions of equation (4) are “good functions” on the 
completion of the configuration space CN(C).

Invariance under translation by a constant implies that Iμ
N(z) depends only on the differences 

zij and not separately on zi themselves. The integral is well-behaved at infinity provided |μ| = 2, 
as can be checked by changing the integration variable z to 1/z. The case of N = 2 require special 
treatment. Let us discuss it first. Since the integral involves only two marked points, z1 and z2, 
we can take the path over any arc joining these two points, which is in fact homotopic to the line 
joining them. Thus,

I
(μ1,μ2)
2 (z1, z2) =

z2∫
z1

dz

(z − z1)μ1(z − z2)μ2
. (6)

Parametrizing the line joining the two points as z = tz2 + (1 − t)z1, such that 0 ≤ t ≤ 1, the 
integral is evaluated to be

I
(μ1,μ2)
2 (z1, z2) = 1

z
μ1+μ2−1
12

�(1 − μ1)�(1 − μ2)

�(2 − μ1 − μ2)
. (7)

Here and in the following we ignore factors of powers of −1, which can be absorbed in the 
normalization of the correlation functions. As mentioned before, the integral depends only on the 
difference z12 rather than on the points individually and is homogeneous of degree 1 −μ1 − μ2. 
The integral is, on the other hand, not well-behaved at infinity unless μ1 + μ2 = 2, a feature to 
be called on later. When μ1 + μ2 = 2, it becomes

I
(μ1,μ2)
2 (z1, z2) = 1

z12

�(1 − μ1)�(μ1 − 1)

�(0)
, (8)

where the singular piece �(0) is to be understood in a limiting sense. Demanding the integrals 
to be regular at infinity is equivalent to considering a completion of the configurations space. We 
work with the Fulton-Macpherson compactification [34,35] as discussed in section 4.
4
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2.2. Representation of the Möbius group

Let us now obtain the representations of the conformal group SL(2, C) on the configuration 
space of N points on the plane. The group acts by Möbius transformation on the space, that is as

z �−→ z′ = az + b

cz + d
, a, b, c, d, z ∈ C, ad − bc = 1, (9)

with a similar action on the conjugate variable z̄. In two dimensions the actions on z and z̄ may 
be treated independently. We shall display formulas for the holomorphic part only.

A holomorphic representation of the Möbius group is furnished by the regular functions on 
CN which transform under SL(2, C) as

f (z1, z2, · · · , zN) �−→ f (z′
1, z

′
2, · · · , z′

N)

= (cz1 + d)�1(cz2 + d)�2 · · · (czN + d)�N f (z1, z2, · · · , zN ),
(10)

with � = (�1, �2, · · · , �N) an N -tuple of real numbers.
Let us first note that the quantities zij are equivariant under the Möbius transformation (9),

zij �−→ z′
ij = (czi + d)−1(czj + d)−1zij . (11)

From (9) we also have

dz′ = (cz + d)−2dz. (12)

The integral (3) is equivariant with respect to (9) with degree of homogeneity −1 provided |μ| =
2. In this case it transforms under the Möbius group as

I
μ
N(z) �−→ I

μ
N(z′) = (cz1 + d)μ1(cz2 + d)μ2 · · · (czN + d)μN I

μ
N(z). (13)

Holomorphic representations of the Möbius group may thus be constructed out of zij and Iμ
N(z).

We have discussed above the form of Iμ
N(z) for N = 2. The expression (7) with arbitrary 

parameters does not transform under SL(2, C), while (8) does. Equation (13) requires μ1 and 
μ2 to be equal. Thus, from (8)

I
(1,1)
2 (z1, z2) = �(0)

z12
. (14)

For the other special case N = 3 equation (4) is solved with

I
(μ1,μ2,μ3)
3 (z1, z2, z3) = z

−μ1+μ2−μ3
2

12 z
−μ2+μ3−μ1

2
23 z

−μ3+μ1−μ2
2

31 , (15)

for |μ| = μ1 + μ2 + μ3 = 2 up to a multiplicative constant. This can be verified by plugging the 
expression into (4) and appealing to the uniqueness of its solution.

For N > 3 complications arise due to the fact that there exist invariants of the Möbius transfor-
mation, known as cross ratios, which may be multiplied to any function with arbitrary exponents 
without altering the transformation property of Iμ

N(z). This, however, may change the behavior 
of functions at infinity on the configuration space. A cross ratio has the form

χijkl = zij zkl

zikzjl

, (16)

its invariance under Möbius transformation follows from (11). It will turn out convenient to 
denote the cross ratios by
5
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ξA =
∏
i,j

1≤i<j≤N

z
αA

ij

ij , (17)

with

αA
ji = αA

ij , i < j ;
N∑

j=1

αA
ij = 0,∀i (18)

for each A. This will allow treating them rather symmetrically. Then, in view of the equivariance 
(13), the integral Iμ

N(z) can be written as products of zij with appropriate indices and a function 
of the cross ratios as

I
μ
N(z) =

∏
i,j

1≤i<j≤N

z
βij

ij I0(ξ), (19)

where I0(ξ ) is a function of the cross ratios ξ = (ξ1, ξ2, · · · ) and

N∑
j=1

βij = −μi; βji = βij , i < j, (20)

for each i = 1, 2, · · · , N . Since |μ| = 2, we also have∑
i,j

1≤i<j≤N

βij = −1 (21)

Plugging in (19) with (17) and (16) in (4), we obtain a differential equation for the invariant 
function I0 of the cross ratios as

∑
A,B

⎛
⎜⎜⎜⎜⎝

∑
k,l

1≤k,l≤N
k 
=i,l 
=j

αA
ikα

B
jlχijkl

⎞
⎟⎟⎟⎟⎠ ξAξB∂A∂BI0(ξ )

+
∑
A

⎛
⎜⎜⎜⎜⎝αA

ij +
∑
k,l

1≤k,l≤N
k 
=i,l 
=j

(
αA

ikα
A
jl + αA

ikβjl + αA
jlβik

)
χijkl

⎞
⎟⎟⎟⎟⎠ ξA∂AI0(ξ )

+

⎛
⎜⎜⎜⎜⎝βij +

∑
k,l

1≤k,l≤N
k 
=i,j 
=l

βikβjlχijkl

⎞
⎟⎟⎟⎟⎠ I0(ξ) = 0,

(22)

where ∂A denotes differentiation with respect to ξA. This equation is valid for arbitrary N .
6
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2.2.1. Four points
For four points in two dimensions there is but a single independent cross ratio which we 

choose to be ξ = χ1234. The non-vanishing exponents α for this choice are

α12 = α34 = −α13 = −α24 = 1, (23)

where we have suppressed the superscript A, which is unity in this case. Equation (22) then leads 
to

f2(ξ)
d2I0

dξ2 + f1(ξ)
dI0

dξ
+ f0(ξ)I0 = 0, (24)

where

f2(ξ) = ξ2(ξ − 1) (25)

f1(ξ) = ξ
(
(β13 + β14 + β23 + β24) + ξ(1 − β13 − β24)

)
(26)

f0(ξ) = −β12β34 + ξβ14β23

ξ − 1
+ ξβ13β24 (27)

This is solved with

I0(ξ) = ξ−β12(1 − ξ)−β23C1F(−β12 − β13 − β23,−β12 − β23 − β24,1 − β12 + β34; ξ)

+ ξ−β34(1 − ξ)−β23C2F(1 + β12 + β13 + β14,1 (28)

+ β12 + β14 + β24,1 + β12 − β34; ξ),

where F denotes the Gauss hypergeometric function and C1 and C2 are arbitrary constants. The 
six parameters β are related to the weights by the four equations (20) through

β12 = 1 − μ1 − μ2 + β34,

β13 = μ2 − 1 − β14 − β34,

β23 = 1 − μ2 − μ3 + β14,

β24 = −μ4 − β14 − β34.

(29)

Plugging in these values along with (28) in (19) yields the four-point integral

I
μ
4 (z) = z

1−μ1−μ2
12 z

μ2−1
13 z

1−μ2−μ3
23 z

−μ4
24

(
C1F(1 − μ2,μ4;μ3 + μ4; ξ)

+ C2ξ
μ1+μ2−1F(μ1,1 − μ3;μ1 + μ2; ξ)

)
,

(30)

with ξ = z12z34/z13z24, where we used |μ| = 2.

2.2.2. Five points
Two independent cross ratios exist for five two-dimensional points which we choose to be 

ξA = χA,A+1,A+2,A+3 for A = 1, 2. The non-vanishing exponents are

α1
12 = α1

34 = −α1
13 = −α1

24 = 1 (31)

α2
23 = α2

45 = −α2
24 = −α2

35 = 1. (32)

Equation (22) gives rise to ten equations for the ten independent choices of the pairs {(i, j)|i <

j ; i, j ∈ (1, 2, 3, 4, 5)}. Instead of solving them generally, equation (20) may be exploited to set 
five of the β’s to zero. We choose
7
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β12 = β14 = β15 = β25 = β45 = 0. (33)

The rest are related to the weights by (20) as

β13 = −μ1, β23 = 1 − μ2 − μ3, β24 = μ3 − 1,

β34 = 1 − μ3 − μ4, β35 = −μ5.
(34)

The equations corresponding to the choices (i, j) = (1, 2) and (i, j) = (4, 5) ensuing from (22)
are

ξ1(1 − ξ1)
∂2I0

∂ξ2
1

− ξ1ξ2
∂2I0

∂ξ1∂ξ2
+ (

c1 − (1 + a + b1)ξ1
)∂I0

∂ξ1
− b1ξ2

∂I0

∂ξ2
− ab1I0 = 0,

ξ2(1 − ξ2)
∂2I0

∂ξ2
2

− ξ1ξ2
∂2I0

∂ξ1∂ξ2
+ (

c2 − (1 + a + b2)ξ2
)∂I0

∂ξ2
− b2ξ1

∂I0

∂ξ1
− ab2I0 = 0,

(35)

where ξ1 = z12z34
z13z24

, ξ2 = z23z45
z24z35

are the cross ratios corresponding to (31) and (32). The parameters 
are related to the scaling exponents

a = 1 − μ3, b1 = μ1, b2 = μ5, c1 = μ1 + μ2, c2 = μ4 + μ5, (36)

where the sum of the scaling exponents |μ| = 2. These are the equations satisfied by the second 
Appell hypergeometric function F2. The most general solution, obtained using (34) in (19) is

I
μ
5 (ξ) = z

−μ1
13 z

1−μ2−μ3
23 z

μ3−1
24 z

1−μ3−μ4
34 z

−μ5
35 I0(ξ1, ξ2), (37)

where the invariant is

I0(ξ1, ξ2) = C1F2(1 − μ3,μ1,μ5,μ1 + μ2,μ4 + μ5; ξ1, ξ2)

+ C2ξ
1−μ1−μ2
1 F2(μ4 + μ5,1 − μ2,μ5,μ3 + μ4 + μ5,μ4 + μ5; ξ1, ξ2)

+ C3ξ
1−μ4−μ5
2 F2(μ1 + μ2,μ1,1 − μ4,μ1 + μ2,μ1 + μ2 + μ3; ξ1, ξ2)

+ C4ξ
1−μ1−μ2
1 ξ

1−μ4−μ5
2 F2(1,1 − μ2,1 − μ4,μ3 + μ4 + μ5,μ1 + μ2

+ μ3; ξ1, ξ2),

(38)

where C1, C2, C3 and C4 are arbitrary constants. As in the case of four points, the final result does 
not depend on the choice of β’s in (33). The other eight equations obtained from (22) pairwise 
yield the equations for the Appell function F2 in other domains, related to the present one by 
analytic continuation.

Above considerations as well as all the expressions have anti-holomorphic counterparts with 
μ changed to μ′.

2.3. Correlation functions

Correlation functions in two-dimensional conformal field theories are well-known. We re-
peat some of the computations here in order to bring out the analogy with the four-dimensional 
counterpart. For this purpose it suffices to consider chiral primary scalar fields {φi(zi)} with con-
formal dimensions � in line with (10). The correlation function of N chiral scalar primaries is 
given by a holomorphic representation (10) on the configuration space CN(C). In particular, it is 
invariant under translation. The anti-holomorphic part follows suit with conjugated coordinates 
and primed weights. It then follows from the preceding discussion that a correlation function for 
chiral primaries can be expressed in terms of the differences zij and the integrals Iμ

(z). Since 
N

8
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SL(2, C) equivariance restricts the degree of homogeneity of the integrals to be −1 by con-
straining |μ| = 2, we can write down correlation functions of a set of primary fields with given 
conformal dimensions by simply multiplying the integrals by powers of zij so as to satisfy (10),

G
�1,�2,··· ,�N

N (φ1, φ2, · · ·φN) = F

⎛
⎜⎜⎝ ∏

i,j
1≤i<j≤N

z

ij

ij I
μ
N(z)

⎞
⎟⎟⎠ , (39)

where F indicates a functional involving sums and integrals of I with respect to its parameters, 
transforming appropriately under the Möbius group. We use the shorthand φi for φ(zi). The 
parameters 
 are related to the weights and conformal dimensions of fields as

−
∑

j

1≤j≤N;j 
=i


ij + μi = �i,

N∑
i=1

μi = 2 (40)

for each i = 1, 2, · · · , N and we have defined 
ji = 
ij if j > i. The product in front of the 
integral in (39) is referred to as the leg factor. We shall suppress the superscripts in GN if the 
conformal dimensions involved are clear from the context.

The correlation functions for N = 2 and N = 3, the two-point and three-point functions, 
respectively, are fixed up to a constant by their SL(2, C) equivariance. For example, by (39),

G
�1,�2
2 (φ1, φ2) = z


12
12 I

(1,1)
2 (z1, z2), (41)

and we have, by (40),


12 = 1 − �1 = 1 − �2. (42)

It follows, in accordance with (10), that �1 = �2. Using (14) we thus obtain

G
�1,�2
2 (φ1, φ2) = C�1�(0)

z
�1
12

δ�1,�2 , (43)

where C�1 is an arbitrary constant for each field of conformal dimension �. Similarly, for the 
three-point function

G
�1,�2,�3
3 (φ1, φ2, φ3) = C�1,�2,�3z


12
12 z


13
13 z


23
23 I

(μ1,μ2,μ3)
3 (z1, z2, z3). (44)

Then by (40) the exponents of the leg factor satisfy the three equations


12 + 
13 = μ1 − �1,


12 + 
23 = μ2 − �2,


13 + 
23 = μ3 − �3,

(45)

which are solved to obtain


12 = −1

2
(�1 + �2 − �3) + 1

2
(μ1 + μ2 − μ3)


13 = −1

2
(�1 + �3 − �2) + 1

2
(μ1 + μ3 − μ2)


23 = −1
(�2 + �3 − �1) + 1

(μ2 + μ3 − μ1).

(46)
2 2

9
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Using (15) for I3 then yields the three-point function

G
�1,�2,�3
3 (φ1, φ2, φ3) = C�1�2�3z

− 1
2 (�1+�2−�3)

12 z
− 1

2 (�1+�3−�2)

13 z
− 1

2 (�2+�3−�1)

23 . (47)

Let us remark that in these two cases the integrals did not have a role to play. The leg factor 
in both cases were so arranged as to obviate the μ’s, thereby effacing the trace of the integrals. 
Thus, the two- and three-point correlation function of primaries are completely determined by 
their equivariance under the Möbius group and the given conformal dimensions. This does not 
generalize to higher point functions, however. While the leg factors could be so arranged as to 
annul the contributions of β’s in (19), the cross ratios introduce arbitrariness in the leg factors. 
This calls for further restrictions on the correlation functions. One such stipulation arises from 
requiring that higher point functions can be pared down to products of three-point functions, 
which we now proceed to discuss.

2.4. Projectors

Parsing of higher point correlation function in terms of the three-point function is effected by 
using projectors [15,16,26]. There is an appropriate set of projectors {��} summing up to the 
identity operator I

I =
∑
�

��, (48)

such that, the N -point function can be parsed as

GN(φ1, φ2, · · · , φN) = 〈φ1φ2 · · ·φN 〉
= 〈φ1φ2Iφ3Iφ4 · · ·φN−2IφN−1φN 〉
=

∑
�,�′,··· ,�′′

〈φ1φ2��φ3��′φ4 · · ·φN−2��′′φN−1φN 〉,
(49)

where φ�(x) denotes a primary field of conformal dimension � at x ∈ C. The operator �� is 
defined as

�� = 1

N�

∫
φ�(x)φ�(y)

(x − y)2−�
dxdy, (50)

where N� is a constant and the path of integration, written formally in this expression, is fixed 
only when used in conjunction with a correlation function. By (11) and (12), �� is invariant 
under the Möbius group. The constant is determined by requiring the projector to be consistent 
with two point functions. The composition of the projectors is defined as

�� ◦ ��′ = 1

N�N�′

∫
φ�(x)G2

(
φ�(y)φ�′(x′)

)
φ�′(y′)

(x − y)2−�(x′ − y′)2−�′ dxdydx′dy′, (51)

which also defines their action on fields in parsing the correlation function. Using (43) this yields

�� ◦ ��′ = δ�,�′
C��(0)

N2
�

∫
φ�(x)φ�(y′)

(x − y)2−�(x′ − y′)2−�(y − x′)�
dxdydx′dy′. (52)

The integral over x′ can be performed using (8). This leads to

�� ◦ ��′ = δ�,�′
C��(1 − �)�(� − 1)

2

∫
φ�(x)φ�(y′)dxdy′I (2−�,1)

2 (x, y′) (53)

N�

10
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Let us note that the integral I (2−�,1)
2 (x, y′) appearing in this expression does not have |μ| = 2. 

Hence it is not well-behaved at infinity. The final result is indeed conformal invariant. Using (7), 
we evaluate the above product to be

�� ◦ ��′ = δ�,�′
C��(0)�(1 − �)�(� − 1)

N2
�

∫
φ�(x)φ�(y′)
(x − y′)2−�

dxdy′ (54)

Since a projector is idempotent, equating to (50) we obtain

N� = C��(0)�(1 − �)�(� − 1). (55)

We have absorbed factors of powers of (−1) in the constant C�. The apparent lack of conver-
gence of the projector is due to the unspecified nature of the sum over � in (48).

2.5. Higher points correlation functions

Let us now use the projectors to express higher point correlation functions in terms of the 
Lauricella functions. We shall demonstrate this for N = 4 and N = 5.

The four point correlation function G4(z1, z2, z3, z4) = 〈φ1φ2φ3φ4〉 is written by inserting the 
projector (48) with (50) as

G4(φ1, φ2, φ3, φ4) =
∑
�

1

N�

∫
dxdy

(x − y)2−�
〈φ1φ2φ�(x)〉〈φ�(y)φ3φ4〉

=
∑
�

1

N�

∫
dxdy

(x − y)2−�
G

�1,�2,�
3 (z1, z2, x)G

�,�3,�4
3 (y, z3, z4).

(56)

We have thus expressed the four point function in terms of the three point functions. Expanding 
the latter using (47) we first collect all the terms containing the integration variable x. They 

combine into I

(
2−�,

�+�1−�2
2 ,

�2+�−�1
2

)
3 (y, z1, z2), whose weights add up to 2. Using (15) this 

furnishes powers of two linear forms in y, which combined with the two more from the second 
G3 factor in the last integral leaves us with an integral in y with a total of four factors of powers 
of linear forms in y in the integrand. Collecting all yields

G4(φ1, φ2, φ3, φ4) =
∑
�

C�1�2�C�,�3,�4

N�

z
−�1+�2+�−2

2
12 z

−�3+�4−�
2

34

× I

(
2−�+�1−�2

2 ,
2−�+�2−�1

2 ,
�+�3−�4

2 ,
�+�4−�3

2

)
4 (z1, z2, z3, z4).

(57)

The five point function is similarly parsed as
11
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G5(φ1, φ2, φ3, φ4, φ5)

=
∑
�,�′

1

N�N�′

∫ 〈φ1φ2φ�(x)〉〈φ�(y)φ3φ�′(x′)〉〈φ�′(y′)φ4φ5〉
(x − y)2−�(x′ − y′)2−�′ dxdydx′dy′

=
∑
�,�′

1

N�N�′

×
∫

G
�1,�2,�
3 (z1, z2, x)G

�,�3,�
′

3 (y, z3, x
′)G�′,�4,�5

3 (y′, z4, z5)

(x − y)2−�(x′ − y′)2−�′ dxdydx′dy′.

(58)

Using (15) repeatedly and performing integrals in turn until the integration over only a single 
variable is left, this is finally written in terms of I5 as

G5(φ1, φ2, φ3, φ4, φ5)

=
(

1

2πi

)3 ∑
�,�′

C�1�2�C��3�
′C�′�4�5

N�N�′
z
− 1

2 (�1+�2−�)

12 z
− 1

2 (�4+�5+�′−2)

45

×
∫

ds1ds2ds3
�(−s1)�(−s2)�(−s3)�(m + s1)�(n + s2)�(p + s3)

�(m)�(n)�(p)

×
∫

dτ(−τ)−(s1+s2+s3+2)

× I

( 1
2 (�1−�2+�),

1
2 (�2−�1+�),

1
2 (2+�3−�−�′)−s1,−s2,−s3

)
5 (z1, z2, z3, z4, z5),

(59)

where the quantities

m = 1

2
(�3 +�+�′ −2), n = 1

2
(�4 −�5 +2−�′), p = 1

2
(�5 −�4 +2−�′) (60)

have been defined and repeated use of the integral

1

(1 − x)n
= 1

2πi

1

�(n)

i∞∫
−i∞

ds(−x)s�(−s)�(n + s) (61)

has been made.
Correlation functions with more number of points can be similarly written down in terms of 

the Lauricella functions IN . We have thus related the conformal correlation functions of scalar 
primaries to the Lauricella system, defined on the configuration space of points in two dimen-
sions.

3. Four dimensions

The conformal or Möbius group of the compactified four-dimensional Euclidean space M =
R4 ∪{∞} is SL(2, H) [21,22]. The correlation functions of scalar primaries of a four-dimensional 
conformal field theory are obtained as representations of SL(2, H) on the configuration space of 
N points in M . In this section we show that the considerations of the previous section carry 
over mutatis mutandis to the four-dimensional Euclidean conformal field theories. In order to fix 
notations let us begin by recalling some facts about quaternions and the Möbius transformations 
[18–20].
12
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3.1. Quaternions

A quaternion can be written as a 2 × 2 matrix with a pair of complex numbers U and V and 
their respective complex conjugates Ū and V̄ as

Q =
(

U V

−V̄ Ū

)
∈ H, U,V ∈ C. (62)

The norm squared of a quaternion is

‖Q‖2 = QQ† = |Q| = UŪ + V V̄ , (63)

where Q† denotes the Hermitian conjugate and |Q| denotes the determinant of the matrix (62). 
The inverse of the matrix Q is

Q−1 = 1

|Q|Q
†. (64)

A quaternion can also be looked upon as a Euclidean real four-vector q = (q0, q1, q2, q3) by 
writing U = q0 + iq3 and V = q1 + iq2. From (62), then,

Q =
(

q0 + iq3 q1 + iq2
−q1 + iq2 q0 − iq3

)
(65)

The norm-squared of the quaternion Q is the Euclidean norm-squared of the four-vector,

‖Q‖2 = |Q| = q2 = q · q = q2
0 + q2

1 + q2
2 + q3

3 . (66)

The volume form of the four-dimensional Euclidean space is then written as the wedge product 
of the column vectors of the differential of Q divided by 24,

d4Q = d4q = dq0 ∧ dq1 ∧ dq2 ∧ dq3. (67)

This generalizes the two-dimensional volume form dz ∧ dz̄. In the previous section we chose 
to only write the holomorphic parts to leave provision for spin. In four dimensions we need to 
consider four-dimensional integrals. We consider integrals similar to (3) in four dimensions. We 
shall denote these by the same symbol as in (3). Let us define

I
μ
N(Q) =

∫
d4Q

|Q − Q1|μ1 |Q − Q2|μ2 · · · |Q − QN |μN
, (68)

where Q denotes the N -tuple of quaternions, Q = (Q1, Q2, · · · , QN). From (64) we have

∂|Q|
∂Q

= Q† = |Q|Q−1. (69)

For the following it is useful to indicate the matrix indices of the quaternions, Q = (Q)ab and 
Q−1 = (Q)ba , 1 ≤ a, b ≤ 2. Then (Q)ab(Q)bc = δc

a and the last equation becomes

∂|Q|
∂(Q)ab

= |Q|(Q)ba. (70)

Using this expression for the derivative of the determinant and the identity

(Q − Qi)
−1(Qi − Qj)(Q − Qj)

−1 = (Q − Qi)
−1 − (Q − Qj)

−1, (71)
13
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which generalizes (5), we obtain, by differentiating under the integral sign in (68) a differential 
equation

2∑
b,c=1

(Qij )bc

∂

∂(Qi)ba

∂I
μ
N(Q)

∂(Qj )dc

= μj

∂I
μ
N(Q)

∂(Qi)da

− μi

∂I
μ
N(Q)

∂(Qj )da

, (72)

where i, j = 1, 2, · · · , N and we used the abbreviation Qij = Qi − Qj . This equation general-
izes (4). We refer to this as the quaternionic Lauricella system. Let us stress that the order of 
quaternions are important in these formulas, since they are non-commutative and represented 
here as complex matrices.

As in two dimensions, N = 2 and N = 3 are special. Let us discuss them first. We have, using 
(66) in (68)

I
(μ1,μ2)
2 (Q1,Q2) =

∫
d4q

(q − q1)2μ1(q − q2)2μ2
, (73)

which is evaluated using Feynman parametrization of the integrand to be

I
(μ1,μ2)
2 (Q1,Q2) = π2�(2 − μ1)�(2 − μ2)�(μ1 + μ2 − 2)

�(μ1)�(μ2)�(4 − μ1 − μ2)

1

|Q12|μ1+μ2−2 . (74)

It can be verified that this satisfies (72). Let us note that it is translation invariant and homoge-
neous with degree 2 − |μ|. This expression generalizes (7) with doubled numbers reflecting the 
doubling of dimension from two to four.

3.2. Representation of the Möbius group

The conformal group of R4 ∪ {∞} is isomorphic to the group of 2 × 2 matrices whose blocks 
are quaternions, namely, SL(2, H) [20,21]. We have,

SL(2,H) =
{(

A B

C D

)∣∣∣∣ |AC−1DC − BC| = 1;A,B,C,D ∈ H
}

. (75)

The matrix whose determinant is set to unity in this definition can be written in seven alternative 
forms [20]. We shall have occasion to use only the present one. The Möbius group acts on a 
quaternion Q similarly as the fractional linear transformation (9),

Q′ = (AQ + B)(CQ + D)−1. (76)

Representation of the Möbius group is furnished by complex-valued functions of quaternions 
transforming as,

f (Q1,Q2, · · · ,QN) �−→ f (Q′
1,Q

′
2, · · · ,Q′

N)

= |CQ1 + D|�1 |CQ2 + D|�2 · · · |CQN + D|�N f (Q1,Q2, · · · ,QN),
(77)

where � = (�1, �2, · · · , �N) denotes the N -tuple of weights, as before. Generalizing the trans-
formation (11) of zij , the difference of two quaternions transforms under the Möbius group as

Q′
ij = (AQi + B)(CQi + D)−1 − (AQj + B)(CQj + D)−1

=
(
(AQi + B) − AC−1(CQi + D)

)
(CQi + D)−1

−
(
(AQj + B) − AC−1(CQj + D)

)
(CQj + D)−1

= (AC−1D − B)(CQ + D)−1CQ (CQ + D)−1,

(78)
j ij i

14
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where we used the identity (71) in the last step. Taking the determinant of the matrices on both 
sides and using the fact that the determinant in (75) is unity, we obtain [20]

|Q′
ij | = |CQi + D|−1|CQj + D|−1|Qij |. (79)

Let us derive the transformation of the volume element, generalizing (12). The differential of Q′, 
obtained from (76) is

dQ′ = AdQ(CQ + D)−1 + (AQ + B)d(CQ + D)−1 (80)

Since dM−1 = −M−1dMM−1 for any matrix M , we obtain

dQ′ =
(
A − (AQ + B)(CQ + D)−1C

)
dQ(CQ + D)−1

=
(
AC−1(CQ + D) − (AQ + B)

)
(CQ + D)−1CdQ(CQ + D)−1

= (AC−1D − B)(CQ + D)−1CdQ(CQ + D)−1

= (AC−1DC − BC)C−1(CQ + D)−1CdQ(CQ + D)−1.

(81)

We have thus a relation between the quaternion differentials as

dQ′ = XdQY, X,Y ∈ H, (82)

where the quaternions are expressed as 2 × 2 matrices. In order to obtain the transformation of 
the volume form (67) it is convenient to go over to the four-vector q, written as a column matrix. 
A transformation of a quaternion by another dQ �−→ XdQ given in the 2 ×2 form can be written 
as a transformation of a four-vector as⎛

⎜⎜⎝
dq0
dq1
dq2
dq3

⎞
⎟⎟⎠ �−→

⎛
⎜⎜⎝

x0 −x1 −x2 −x3
x3 −x2 x1 x0
x1 x0 −x3 x2
x2 x3 x0 −x1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dq0
dq1
dq2
dq3

⎞
⎟⎟⎠ . (83)

The determinant of the 4 × 4 transformation matrix equals |X|2. The volume form (67) obtained 
by taking wedge product of the components, transforms under this as

d4q ′ = |X|2d4q. (84)

Similarly, a transformation of a quaternion by another dQ �−→ dQY from the right, given in 
the 2 × 2 form can be written as a transformation of the four-vector as⎛

⎜⎜⎝
dq0
dq1
dq2
dq3

⎞
⎟⎟⎠ �−→

⎛
⎜⎜⎝

y0 −y1 −y2 −y3
y3 y2 −y1 y0
y1 y0 y3 −y2
y2 −y3 y0 y1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dq0
dq1
dq2
dq3

⎞
⎟⎟⎠ . (85)

The determinant of the 4 × 4 transformation matrix equals |Y |2. Hence the volume form (67)
transforms as

d4q ′ = |Y |2d4q. (86)

Thus, under a transformation (82) the volume form transforms as

d4q ′ = |X|2|Y |2d4q. (87)
15
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Using this for the transformation (81) along with the unity of the determinant of the first factor 
as in the definition (75), we obtain

d4q ′ = |CQ + D|−4d4q. (88)

The exponent 4 is the dimension of the space, as did was 2 in (12). Using (79) and (88) we con-
clude that the integral (68) is equivariant with degree of homogeneity −2, equal to the dimension 
of the space, provided |μ| = 4, as can be verified by transforming the Qi as well as the variable 
of integration Q in (68) according to (76), yielding

I
μ
N(Q′) = |CQ1 + D|μ1 |CQ2 + D|μ2 · · · |CQN + D|μN I

μ
N(Q), (89)

with |μ| = 4. Representations of the Möbius group SL(2, H) may thus be constructed out of 
|Qij | and Iμ

N(Q).
As in the two-dimensional case, (89) requires equality of μ1 and μ2 for N = 2, along with 

μ1 + μ2 = 4, to be equivariant. Thus, from (74) we derive the equivariant expression

I
(1,1)
2 (Q1,Q2) = π2�(0)

|Q12|2 . (90)

For the other special case N = 3, the equation (72) is solved with

I
(μ1,μ2,μ3)
3 (z1, z2, z3) = |Q12|−

μ1+μ2−μ3
2 |Q23|−

μ2+μ3−μ1
2 |Q31|−

μ3+μ1−μ2
2 , (91)

up to a multiplicative constant and μ1 + μ2 + μ3 = 4. As in the two-dimensional case, this can 
be verified by plugging the solution into (72).

For N > 3 complications as in two dimensions arise due to the existence of cross-ratios. These 
are invariants of the SL(2, H) transformation. Considering a product of the determinants of the 
quaternions 

∏N
i,j=1 |Qij |, we recall that it transforms according to (79). Writing a matrix with 

entries showing the order of transformation of Qij in Qi along the rows, the invariants are given 
by the vectors in its kernel. For example, for N = 4 the matrix of exponents is

M =

⎛
⎜⎜⎜⎝

Q12 Q13 Q14 Q23 Q24 Q34

Q1 1 1 1 0 0 0

Q2 1 0 0 1 1 0

Q3 0 1 0 1 0 1

Q4 0 0 1 0 1 1

⎞
⎟⎟⎟⎠. (92)

The kernel of this matrix is two-dimensional. We can choose the basis vectors of the kernel as 
the transpose of

( Q12 Q13 Q14 Q23 Q24 Q34

1 −1 0 0 −1 1

0 −1 1 1 −1 0

)
, (93)

where we indicated the quaternions. Two invariants are correspondingly given by |Q12||Q34||Q13||Q24| and 
|Q14||Q23||Q24||Q13| . Generally, for N quaternions, the matrix of exponents is N × N(N−1)

2 . Its kernel has 

dimension N(N−3)
2 , which is the number of independent invariants that can be constructed from 

the determinant of the quaternions. The counting in two dimensions was similar, but the Plücker 
relations among the invariants further reduced their number. Thus, for N = 4 there was but a 
16
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single invariant, as we dealt with before, but in four dimensions there are two invariants for 
N = 4. Let us first define another set of quaternions

χijkl = QijQ
−1
ik QklQ

−1
j l . (94)

The determinants of these matrices are invariant under SL(2, H) thanks to (79). Determinants 
of all the χ ’s are, however, not independent. A choice for the independent ones is to be made, 
thereby fixing the asymptotic behavior of the integrals. These are taken to be the cross ratios, the 
rest being functions of them. We shall denote the cross ratios as before

ξA =
∏
i,j

1≤i<j≤N

|Qij |α
A
ij , (95)

where αA for each A designates a basis vector in the kernel of the matrix M, as the rows in (93), 
for example. These satisfy (18) as before.

Let us denote the trace of the 2 × 2 matrices χ by

τijkl = Tr χijkl . (96)

Then, in view of the equivariance (89) of Iμ
N(Q), it can be written as products of |Qij | with 

appropriate indices and a function of the cross ratios as

I
μ
N(Q) =

∏
i,j

1≤i<j≤N

|Qij |βij I0(ξ), (97)

where I0(ξ) is a function of the N(N − 3)/2 cross ratios ξ = (ξ1, ξ2, · · · , ξN(N−3)
2

) and the β’s 

satisfy (20), while (21) is replaced with∑
i,j

1≤i<j≤N

βij = −2. (98)

Plugging in (97) with (95) and (94) in (72), we obtain an equation for Iμ
N(ξ ) similar to (22) in 

terms of the quaternions χ . It is equivariant under SL(2, H). An invariant set of equations is 
obtained by taking trace of the matrices involved. Taking trace on both sides the equations are 
expressed in terms of the quantities (96). We have, for each pair (i, j),

∑
A,B

⎛
⎜⎜⎜⎜⎝

∑
k,l

1≤k,l≤N
k 
=i,l 
=j

αA
ikα

B
jlτijkl

⎞
⎟⎟⎟⎟⎠ ξAξB∂A∂BI0(ξ)

+
∑
A

⎛
⎜⎜⎜⎜⎝4αA

ij +
∑
k,l

1≤k,l≤N

(
αA

ikα
A
jl + αA

ikβjl + αA
jlβik

)
τijkl

⎞
⎟⎟⎟⎟⎠ ξA∂AI0(ξ ) (99)
k 
=i,l 
=j

17
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+

⎛
⎜⎜⎜⎜⎝4βij +

∑
k,l

1≤k,l≤N
k 
=i,l 
=j

βikβjlτijkl

⎞
⎟⎟⎟⎟⎠ I0(ξ) = 0,

which generalizes (22). In order to write the equations in terms of cross ratios we need to relate 
the trace and determinant of χijkl . To this end let us first note that

χijklχij lk = QijQ
−1
ik QklQ

−1
j l QijQ

−1
il QlkQ

−1
jk

= QijQ
−1
ik QklQ

−1
j l (Qil − Qjl)Q

−1
il QlkQ

−1
jk

= QijQ
−1
ik QklQ

−1
j l QlkQ

−1
jk − QijQ

−1
ik QklQ

−1
il QlkQ

−1
jk

= QijQ
−1
ik QklQ

−1
j l (Qjk − Qjl)Q

−1
jk − QijQ

−1
ik (Qil − Qik)Q

−1
il QlkQ

−1
jk

= χijkl + χijlk,

(100)

where the underlined terms indicate the replacements made at various intermediate stages. Since 
χijkl defined in (94) is a quaternion, this is an equation of 2 × 2 complex matrices. Let us rewrite 
it as

χijkl = −(I2 − χijkl)χij lk, (101)

where I2 denotes the 2 × 2 identity matrix. We further note that for any 2 × 2 matrix M the 
identity

det(I2 + M) = 1 + Tr M + detM (102)

holds. Taking determinant of both sides of (101) and using this identity we derive

τijkl = 1 − |χlijk| + |χijkl |. (103)

This relation will be used to express τijkl in terms of the cross ratios in equation (99).

3.3. Four points

Let us write down the invariant case of four points N = 4 explicitly. Since the equations 
are rather cumbersome, we present the forms obtained by choosing β14 = β34 = 0, a freedom 
allowed by (20). We choose the independent cross ratios as in (93), namely,

x = |χ1234|, y = |χ4123|. (104)

In terms of these the equation (99) yields two equations for the invariant I0, for (i, j) = (1, 2)

and (1, 3), namely,

(x + y − 1)ϑ2
x I0(x, y) + 2xϑxyI0(x, y) − (

x(β13 + β24) + (1 − y)β12
)
ϑxI0(x, y)

+ x(2 + β12)ϑyI0(x, y) + xβ13β24I0(x, y) = 0,

(x + y − 1)ϑ2
y I0(x, y) + 2yϑxyI0(x, y) − (

y(β13 + β24) + (1 − x)β23
)
ϑyI0(x, y)

(105)
+ y(2 + β23)ϑyI0(x, y) + yβ13β24I0(x, y) = 0,
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where ϑx = x ∂
∂x

denotes the logarithmic derivative. These are solved by the fourth Appell func-
tion [14,36], F4. The general solution is

I0(x, y) =C1F4(2 − μ2,μ4,μ3 + μ4 − 1,μ1 + μ4 − 1;x, y)+
C2x

2−μ3−μ4F4(μ1,2 − μ3,μ1 + μ2 − 1,μ1 + μ4 − 1;x, y)+
C3y

2−μ1−μ4F4(μ3,2 − μ1,μ3 + μ4 − 1,μ2 + μ3 − 1;x, y)+
C4x

2−μ3−μ4y2−μ1−μ4F4(2 − μ4,μ2,μ1 + μ2 − 1,μ2 + μ3 − 1;x, y),

(106)

where C1, C2, C3, C4 are arbitrary constants and we used solutions of (20) with β14 = β34 = 0
and |μ| = 4. Plugging in the four solutions in terms of this for I4(x, y), (97) gives the complete 
expression for Iμ

4 (Q). Equations ensuing from the other choices of the indices are either not 
independent, as for (i, j) = (1, 4), for example, or related to it by analytic continuation.

3.4. Correlation functions

The correlation functions are related to the integrals Iμ
N(Q) exactly as in the two-dimensional 

case, (39), namely,

G
�1,�2,··· ,�N

N (φ1, φ2, · · ·φN) = F

⎛
⎜⎜⎝ ∏

i,j

1≤i<j≤N

z

ij

ij I
μ
N(Q)

⎞
⎟⎟⎠ , (107)

satisfying (40). Here we use φi = φ(Qi). Considerations same as before lead to the two and three 
point functions,

G
�1,�2
2 (φ1, φ2) = π2C�1δ�1,�2�(0)

1

|Q12|�1
, (108)

G
(�1,�2,�3)
3 (φ1, φ2, φ3)

= C�1�2�3 |Q12|− 1
2 (�1+�2−�3)|Q13|− 1

2 (�1+�3−�2)|Q23|− 1
2 (�2+�3−�1).

(109)

Let us point out that while in the two-dimensional case we considered only chiral fields, in here 
we consider a general scalar field although we retain the same notation for the constants as in the 
two-dimensional case. The integrations are thus over the four-dimensional space rather than on 
contours now.

For the higher ones we need, once again, a projector. The projector in four dimensions is given 
by (48) with

�� = 1

N�

∫
φ�(Q)φ�(Q′)
|Q − Q′|4−�

d4Qd4Q′, (110)

where the constant of normalization is given by

N� = π6C��(0)�(� − 2)�(2 − �)

�(�)�(4 − �)
(111)

The expressions for the correlation functions assume exactly the same form as in two dimen-
sions, with quaternions in the integrals in lieu of complex variables and the values of N� changed 
to (111) and I0 taken to be a solution of (99). For example, the four-dimensional four-point func-
tion is given with such changes from (57) by
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G
�1,�2,�3,�4
4 (φ1, φ2, φ3, φ4)

=
∑
�

C�1�2�C�,�3,�4

N�

|Q12|−
�1+�2−�

2 |Q34|−
�3+�4+�−4

2

× I

(
�1+�−�2

2 ,
�2+�−�1

2 ,
4+�3−�4−�

2 ,
4+�4−�3−�

2

)
4 (Q1,Q2,Q3,Q4),

(112)

where N� is given by (111) and I4 is given by (97) with β14 = β34 = 0, β12 = 2 − �, β13 =
�2−�1+�−4

2 , β23 = �1+�4−�2−�3
2 , β24 = �3−�4+�−4

2 and (105) with ξ1 = x and ξ2 = y.

4. Discussion and summary

To summarize, in this article we study N -point correlation functions of conformal primaries 
of conformal field theories in two- and four-dimensional Euclidean spaces. In the former case 
the conformal group is SL(2, C), while in the latter case it is SL(2, H). We demonstrate the 
semblance of the computations in the two cases.

Instead of copies of the conformal compactification of the Euclidean space within the light 
cone in two higher dimensions, we choose to work directly with the Fulton-Macpherson com-
pactification of the N -point configuration space. For the four-dimensional Euclidean space with 
infinity adjoined, M = R4 ∪ {∞}, the configuration space of N points is

CN(M) = MN \ {qi ∈ M, qi 
= qj ; i, j = 1,2, · · · ,N} (113)

The Fulton-Macpherson completion is achieved by considering the embedding [34,35]

γ : CN(M) −→ MN × (
S3)(N

2) × [0,∞](p
3),(

q1, q2, · · · , qN

) �−→(
q1, q2, · · · , qN , v12, · · · , v(N−1)N , a123, · · · , a(N−2)(N−1)N

)
,

(114)

where each of

vij = (qi − qj )/|qi − qj | (115)

describes a three-sphere S3 and the scalars

aijk = |qij |
|qik| (116)

assume values in the non-negative real line. Representations of the conformal group, in particular, 
the integral Iμ

N , is to be chosen from among the functions of these variables. Invariance under 
translation bars a representation to depend on qi alone and rotational invariance keeps it from 
having dependence on vij . The difference |qi − qj |, however, is allowed. Let us note that vij

will appear in the correlation functions of higher rank tensor fields. The expression (97) is thus a 
regular function on the Fulton-Macpherson compactification of the configuration space with the 
cross-ratios expressed as

|χijkl | = aijkalkj . (117)

Correlation functions are given by representations of the conformal groups on the configuration 
space. We obtain the representations of the groups directly without recourse to the corresponding 
Lie algebras. Consistency of the expressions can be verified by writing down the generators of 
the groups as differential operators. The integrals then get related to conformal blocks. While 
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using the conformal algebra is effective in two dimensions, non-commutativity of the quaternions 
render the computations difficult in the four dimensional case. This approach also avoids building 
the N -point functions from the “single-particle” representations by tensoring and eschews the 
insertion of “single-particle” Casimirs.

In two dimensions, the representation of the conformal or the Möbius group is obtained in 
terms of a Lauricella system. A differential equation for the invariant part is derived for N > 3
from the Lauricella system. We present solutions for N = 4, 5, the former in terms of Gauss 
Hypergeometric function and the latter in terms of the Appell function F2. Parsing the correlation 
functions into three-point functions by inserting projectors we write integral formulas for the 
correlation functions from the representations. The projectors themselves are expressed in terms 
of the two-point Lauricella system.

These considerations directly generalize to the four-dimensional case. We define integrals in 
terms of determinants of quaternions. Differentiating with the complex 2 × 2 matrices repre-
senting quaternions we then set up a generalized Lauricella system of differential equations for 
the integrals. Representations of the conformal group SL(2, H) are then obtained from the so-
lutions of the differential equation. The invariant cross-ratios are given by the determinant of 
quaternions. In order to write the equations for the invariant part we use the relation between 
the trace and determinant of 2 × 2 matrices. While the equations are obtained for an arbitrary 
N , we present the computation for N = 4, in which case the integral is given by the Appell 
function F4. As in the two dimensional case, the correlation functions are parsed using projec-
tors obtained as solutions to the Lauricella system for N = 2, without requiring it to transform 
under the conformal group. Let us stress that the correlations functions in the two-dimensional 
case have been known for decades. The four-dimensional four-point function in the comb chan-
nel has been worked out earlier [23] and our results match these expressions. It is their direct 
connection with the Fulton-Macpherson compactification of configuration spaces of N marked 
points and the quaternionic Lauricella system that governs them in four dimensions that is novel 
in here.

Let us also point out that the projectors (50) and (110) can be expressed in terms of the so-
called shadow operator by choosing to perform the integration over y first [16]. We have chosen 
to postpone it to a later stage of the computation in order to relate to the integrals Iμ

N . Further, we 
have presented the most general expressions for the solutions of the Lauricella systems. However, 
the correlation functions were parsed in terms of three-point functions. In order to be concomitant 
with the operator product expansion some of the terms must be discarded in the final expressions 
for the correlation functions by the monodromy projection [16]. For example, only one of the 
two terms in (28) is to be retained in (57), namely,

I

(
2−�+�1−�2

2 ,
2−�+�2−�1

2 ,
�+�3−�4

2 ,
�+�4−�3

2

)
4 (z1, z2, z3, z4)

∣∣∣∣∣∣
Projected

= z�−1
12 z

�2−�1−�

2
13 z

�1−�2−�3+�4
2

23 z
�3−�4−�

2
24 F

(
�+�1−�2

2 ,
�+�4−�3

2 ,�; ξ
)

.

(118)

Similarly, only two of the four terms in (106) survive the monodromy projection. The integral I4

to be used in (112) is
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I

(
�1+�−�2

2 ,
�2+�−�1

2 ,
4+�3−�4−�

2 ,
4+�4−�3−�

2

)
4 (Q1,Q2,Q3,Q4)

∣∣∣∣∣∣
Projected

= x�−2|Q12|2−�|Q13|
�2−�1+�−2

2 |Q23|
�1−�2−�3+�4

2 |Q24|
�3−�4+�−4

2 ×(
C2F4

(
�+�1−�2

2 ,
�+�4−�3

2 ,� − 1,
�1−�2−�3+�4

2 + 1;x, y
)

+ C4y
−�1+�2+�3−�4

2 F4

(
�+�3−�4

2 , �+�2−�1
2 ,� − 1,

�2−�1+�3−�4
2 + 1;x, y

))
.

(119)

In all the cases the monodromy considerations project out part of the basis of the Lauricella sys-
tem. The integrals entering the expressions for correlation functions are generically multi-valued, 
rendering their direct evaluation complicated. Expressing these as solutions to differential equa-
tions may be very useful in this regard. The situation is similar to the evaluation of periods of 
algebraic varieties, whose evaluation in various domains of convergence is substantially facili-
tated by expressing them as solutions Picard-Fuchs differential equations. The Lauricella system 
developed here in terms of quaternions are quite general. We expect this formalism to be use-
ful in computing the correlation functions in four dimensions as well as in computing Feynman 
integrals in quantum field theories.
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