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Abstract. What decides the laws of physics? Geometry, at least largely. Its transforma-
tion groups (which may not be symmetry groups) greatly limit physical laws. For mass-
less objects, electromagnetism and gravitation that can couple to massive matter, these are
completely determinative [3]. Here we only outline reasons and derivations. Details, and
discussions of related subjects, are elsewhere.

7.1 Transformation groups

A fundamental transformation group of our geometry is the Poincaré group ([1]],
sec. IL.3.h, p. 45), the rotations in 3+1 space (the Lorentz group) and the transla-
tions (given by the momentum operators). Whether space is invariant under it
is irrelevant. It is a transformation group, a subgroup of the complete one: the
conformal group [6] of a 3+1 (locally) flat real space. This is true even if directions
(simulated by the vertical) were different. Neither points nor directions need be
identical. (With the earth the vertical and its center appear different — because
there is a material body.)

An example of a transformation group is the rotation group (for any dimen-
sion), which we consider in a space with a direction different, simulated by a
magnetic field. Functions of angles can be written as sums of basis vectors of the
rotation group — spherical harmonics for our space — these forming sets called
representations of the group (for 3-space labeled by the total angular momen-
tum). A rotation changes each function — basis vector — in a sum replacing it
by a sum of basis vectors. Each basis vector is replaced only by a sum of vec-
tors of the same representation. States of a representation are mixed with states
of the same representation — of the transformation group — but not with states
of another. This cannot be done using states of unitary groups. Rotations are fun-
damental properties of real spaces, ones whose coordinates are real numbers, so
more intrinsic than symmetries. It is however provocative that they are symme-
tries also.
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The Poincaré group is an inhomogeneous group ([, sec. I1.3.h, p. 46, one
with a semisimple part — the simple Lorentz group ([T, sec. IL.3.e, p. 44) — and
an Abelian invariant subgroup, the translations ([1I], sec. IL3.f, p. 44), this trans-
forming under the regular representation of the semisimple part ([1]], chap. VI,
p- 170). Inhomogeneous groups are far richer than semisimple ones (like the ro-
tation group) with which we are more familiar. Prejudices from the latter may be
completely wrong for richer groups.

7.2 Labeling representations and states

States of a group representation are labeled by eigenvalues of a set of opera-
tors invariant under all group operations — these giving representations — plus
eigenvalues labeling states. For the rotation group these are the total angular mo-
mentum, and its component along some axis. These operators are completely de-
termined (up to isomorphism) but for inhomogeneous groups there are choices
(thus richness). Which operators shall we take diagonal: semisimple ones, Abelian
ones or combinations? These give representations of different forms. Here we
consider only (as is usual, but not usually explicit) representations with all mo-
mentum operators diagonal (thus no others, which are all semisimple, can be).

Rotation representations have one label, those of SU(3) two, and so on. The
Poincaré group requires two labels. For an object at rest these — its mass and total
spin — are needed to specify the object. There can be no more (internal labels
are not relevant to these transformations of geometry). For free objects there is
nothing more to say.

Representations with all momentum operators diagonal break into four sets,
those with real mass, m2 > 0 (to which we belong); imaginary mass, m2 < 0; zero
mass m = 0 so m2 = 0; and momentum 0 representations, to which coordinates
and momenta belong. Momentum has no momentum.

Here we consider just massless representations; for these we can say the
most. There is then one more label, the helicity. Representations with helicity 1
give electromagnetism, with helicity 2 gravitation. (Neutrinos cannot be mass-
less ([B], sec. 4.4.4, p. 70]).)

There is one further condition — obvious although its mathematical impor-
tance may not be. These objects must couple to massive matter else we could not
know of them — they would not exist. This is very difficult, so very determina-
tive. Massive and massless objects are really quite different.

7.3 Little groups

Representations are found using a little group ([B], sec. 1.1.3, p. 4; sec. 2.2, p. 12),
a subgroup whose representations are known. We need only the action of the
remaining operators on its states. Then we know all states of the full group, and
the action of all operators on them.

For a massive object, which we can take at rest, the little group is the (simple)
rotation group. Its representations, including explicit expressions for its states,
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are known. On these we calculate the action of the boosts giving the (pseudo-
orthogonal) Lorentz group. On its states we find the effect of the momentum gen-
erators, and then have all representations (of this type) of the (inhomogeneous)
Poincaré group.

Massless objects, like the photon, cannot be at rest. Their little groups are the
subgroups leaving invariant a momentum component. Such little groups are not
semisimple ([[1], sec. IV.9.a, p. 144), but solvable ([1]], sec. XIIL.3.a, p. 376). These
types of groups are quite different. Hence it is almost impossible to construct
interactions between (massive) semisimple objects and (massless) solvable ones.
Thus electromagnetism and gravitation are fully determined. Restrictions are so
great that there is no choice. We might expect that coupling two such different
objects is impossible. Fortunately it is in two cases, helicity 1 and 2 (perhaps 0).

7.4 All terms must transform the same

In an equation all terms (in the sum) must transform as (perhaps different real-
izations ([]], sec. V.3.c, p. 157) of the same state of the same representation else it
would be different in different systems — inconsistent. Dirac’s equation is a sum
of terms one the mass (a scalar) times the solution, the statefunction. Hence all
terms must transform as the solution (a bispinor). These include interactions be-
tween the massive object and electromagnetic and gravitational fields. For cou-
pling such interactions have to transform as the solution. They are products of
semisimple terms and solvable ones (actually functions found from these by the
remaining Poincaré transformations, these different for different types of objects).

This is actually not difficult for electromagnetism. It requires minimal cou-
pling, the reason that the photon couples this way ([B]], sec. 5.3, p. 81). For helicity-
2 gravitation it is much harder, almost impossible, to couple.

Helicity-2 has five states. Products of it with (massive) Lorentz group states
must transform properly under all groups. We need scalars formed from prod-
ucts of interaction terms with a Lorentz basis vector (which solutions of Dirac’s
equation, massive statefunctions, are). However there is no irreducible Lorentz
representation with five states ([3], sec. 4.4, p. 67). There can be no such scalar,
just as there cannot be one constructed from angular momentum 1 and 2 repre-
sentations.

The number of components must be reduced requiring relations between
them, nonlinear ones. Fortunately the helicity-2 representation has such: the Bian-
chi identities. Hence massive objects and gravitation can interact.

A gravitational field is produced by energy, and has energy. Thus a gravi-
tational field produces a gravitational field — it is nonlinear. This argument is
correct but it hides the underlying mathematics. Gravitation must be nonlinear
since only that non- linear representation can couple to matter. Fortunately both
arguments give the same condition.

Also the gravitational field is attractive ([3], sec. 4.2.5, p. 60) while the elec-
tromagnetic charge can have either sign.



7 Geometry Decides Gravity 87

7.5 Objects for massless representations

Before outlining the derivation of Einstein’s equation we need certain aspects of
massless representations: connections ([3]], sec. 3.2 p. 33), why they are the basis
states of massless representations (and only these), what gauge transformations
are ([3], sec. 3.4 p. 43), why massless representations (only) have them, and what
the fundamental fields are ([3]], sec. 3.3 p. 37).

That gauge transformations are Poincaré transformations for massless ob-
jects, and only these, is clear. Take an electron and photon with momentum and
spin parallel (so both spins are parallel to the momentum). Lorentz transform
to a system in which both momenta remain the same but the electron’s spin is
changed. Its spin and momentum are no longer along the same line, but those of
the photon must be — it is transverse. Thus there are transformations that act on
the electron but not on the photon (?). This cannot be. Poincaré transformations
do not depend on the object acted on. What are these extra transformations? Of
course gauge transformations. Their properties are given by the Poincaré group.

Gauge transformations are neither rotations nor boosts but products. Go to
the electron’s rest frame, rotate its spin, then reversing the first transformation
go the frame with the original momenta. The momenta remain the same but the
spin direction of the electron is different. Gauge transformations for the photon
are given by this product acting on it.

It is important to understand that the electromagnetic field is not transverse
because of gauge invariance. The form of group operators is determined by its
structure. Generators of the rotation group are fixed by their commutation rela-
tions, not by the hydrogen atom for example. Thus the commutation relations of
the Poincaré group require that the basis states of its massless representations be
connections and undergo gauge transformations. And clearly these are possible
only for massless representations.

What is the difference between a connection and a tensor? Transformations
of a tensor are homogeneous (with an a for each index), schematically,

T =ay...Tj. (7.1)
Transformations of a connection are inhomogeneous,
Mo=ay. N+ AL (7.2)

A does not depend on I but is a function of the transformation (the a’s). A tensor
transformation changes two components simultaneously, for a connection only
one need be. An example of a tensor transformation is

x' =xcos®+ysin®, y' = —xsind+ycosH, (7.3)
while for a connection (here the electromagnetic vector potential),
A; - AX + /\x, (74)

where A is arbitrary, and similarly for the gravitational I'.



88 R. Mirman

The finite-dimensional representations of the Euclidean group SE(2), the lit-
tle group for massless representations with rotation operator M diagonal, are not
unitary as the algebra matrices are not hermitian. They consist of blocks of the
form, say, with the N’s the other two generators,

m 0
M= (5 75)

Ou 0iu 00 00
Nl_(oo)‘N2_<OO>,OrN1_<VO>,N2_<—i\)0), (76)

u, v arbitrary (N’s give arbitrary gauge transformations — these also depending
on group parameters, add arbitrary functions to representation basis vectors).
There are two representation forms, upper and lower.

For semisimple algebras for each off-diagonal entry there is a corresponding
one across the diagonal, but with solvable algebras this is not true for all en-
tries. Thus, as easily seen from this simple example, there are transformations of
a solvable group that add terms to basis states, as we are quite familiar for elec-
tromagnetism and gravitation. That is why their states are connections, and only
their states. For other classes of (momentum-diagonal) representations the little
group is semisimple.

We thus see what connections and gauge transformations are, how they are
related, are required by the little group being solvable, and why they are proper-
ties of massless representations, and possible only for them.

and

7.6 Fundamental fields

Equations to determine the electromagnetic and gravitational fields are needed.
But which fields? They are connections, the gravitational connection (not the met-
ric which transforms under a momentum-zero representation) and the electro-
magnetic connection, the potential A. These are massless objects, and connections
are the massless states.

Electromagnetic fields E and B are not physical objects, not gauge invari-
ant ([B]], sec. 3.3.1, p. 37) and do not transform under a proper representation.
They are products of states of massless and of momentum-zero representations.
For rotation groups a product of representations can be written as a sum. How-
ever this product is of representations of different types (there is only one type
for the rotation group). Such products have not been characterized, and perhaps
cannot be. There may be nothing further to be said about them. This has to be
looked at.

That the electromagnetic field is not a physical object and can- not be mea-
sured is trivial. How do we measure a field? We observe the behavior of a charged
object in it. In elementary physics we use pith balls. But there are no such things.
These are merely collections of electrons, protons and neutrons (and so on), as are
we. Fields act on these.
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What acts on a electron? From Dirac’s equation clearly the potential. The
behavior of the electron then gives that, and that is what is measured. Other fields
are merely functions of it, unmeasurable thus without basic significance (for this
reason also).

We can now outline derivations of the equations for gravitation and electro-
magnetism. These are standard. What is different is the context. The theories are
derived from the Poincaré group thus are unique. Electromagnetism and gravita-
tion are what they are because that is what geometry wants them to be. They are
not guesses that happened to be correct. And gravitation is not determined by
the equivalence principle — that is a consequence. Too many believe that clues
leading to the discovery of a theory are the reason for it. But how we discover
does not underlie physics. There are reasons for the way physics is. We generally
do not know them (geometry is highly suspect) but for massless representations
we do.

7.7 Electromagnetism and what it must be

Details for the electromagnetic case can easily be worked out ([B]], sec. 7.2, p. 124)
so we just summarize. One Maxwell equation is the Bianchi identity, the other
is the trace of the electromagnetic tensor; this is equal to the current. Since the
electromagnetic tensor is not a physical object we need an expression for the po-
tential. This is given by its covariant derivative, the momentum operator acting
on the electromagnetic statefunction,
2ie, 4

Auv =Ap~y — E(q—’ Yub v+ ll),qull)J- (7.7)
The second covariant derivative is zero; the momentum belongs to the momentum-
zero class, so its momentum — its covariant derivative — is zero. The covariant
derivative of a spinor gives minimal coupling.

The equations are for the potential giving it in terms of the statefunctions of
the charged objects; their equations include it. These equations govern. Maxwell’s
equations are classical, and for a nonphysical object: the electromagnetic field.
Thus they are only of calculational use, they are not fundamental. Since neither
the electric nor the magnetic field really exists that Maxwell’s equations seem to
distinguish between them is meaningless. It is purely a matter of notation. Hence
for example a magnetic monopole cannot exist ([3], sec. 7.3, p. 131). There is no
way of putting one in.

7.8 Gravitation

These objects are determined by the Poincaré group so we need expressions for
its generators, here for the Abelian part, the momentum operators, the covariant
derivatives ([3], sec. 1.2.2, p. 8). Thus we have to find the covariant derivative of,
the momentum acting on, the connection — the gravitational statefunction. There
are two ways of finding it ([3], sec. 8.2.1, p. 146), using the covariant derivative
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of the covariant derivative, and the ordinary derivative of a vector whose a co-
variant derivative is given by the usual rules for that of a tensor. These must be
the same. So we get the covariant derivative of the gravitational statefunction, the
connection. Thus

Py =My =Ty + TS, — T Thy — T (7.8)

Wv;K Hv, K

From this we get the second covariant derivative, then the commutator of mo-
mentum operators (0 since momenta form an Abelian subgroup), and the expres-
sions for the Casimir invariants and curvature tensor. Einstein’s equation for free
gravitation then follows using any standard derivation.

With matter present a term has to be added to the covariant derivative. This
gives the energy-momentum tensor. It is here that there may be some freedom.
What is the energy-momentum tensor? There are expressions for scalars, spin-J
objects and the electromagnetic field ([3], sec. 9.2, p. 153). (There is no such thing
as dust.) While these are reasonable it is not clear there are no other possibilities.
This remains to be looked at. These give the equations for the fields as determined
by the sources.

This raises a problem for scalar objects ([3], sec. 4.2.7, p. 61).Do they interact
with gravity? There is no reason to believe so. It is an article of faith that gravita-
tion is universal, interacting with all objects, and in the same way. Actually it has
only been tested in two cases, collections of spin-J objects and the electromag-
netic field. An open mind can be useful.

7.9 Trajectories are geodesics

What determines the behavior of objects in fields? Interaction terms ([3], sec. 5.3,
p- 81). For a scalar, trajectories are geodesics ([3], sec. 5.2, p. 74). Coordinates,
velocities, momenta and the metric all belong to the momentum-zero class of
representations. Their momenta — covariant derivatives — are thus 0. Setting
the covariant derivative of the velocity to 0 gives the geodesic. This can also be
found quantum mechanically.

7.10 A cosmological constant must be 0

It is traditional to include in Einstein equation a cosmological constant. Clearly
that must be 0 ([3]], sec. 8.1.4, p. 139). It sets a constant equal to a function of space
and time, and a real number, the cosmological constant, equal to a complex one
G, obviously wrong. Why is a gravitational field complex? Regarding it as due to
curvature of space can be misleading. Mathematically it is possible to write metric
g and I' as spacetime functions giving the geometry of the entire 3+1- dimensional
space. But fields depends on matter and its behavior. These are arbitrary and can
be varied at will (unless the statefunction of the entire universe for all time is
known). Thus the field is a function of time. From the field at one time we get it
at all times using (as usual) the equation for the statefunction (schematically)

dar
— = HI; 7.9
i = HI; 79)
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H is the gravitational Hamiltonian which includes arbitrary matter. Thus I' is a
gravitational wave. Solving we get that ', the gravitational field, is complex. A
physical field, a physical wave, must be complex. More fundamentally G is a
function of massless basis vectors, while the cosmological constant belongs to
the momentum-zero representation. Setting them equal is like equating a vector
and a scalar. And with a cosmological constant gravitational waves would have
the fascinating property that the metric, thus detectors, react to them, not only
an infinitely long time before they arrive, but even an infinitely long time before
they are emitted. The argument is the same, but here stronger, as that showing
classical physics is inconsistent and quantum mechanics necessary ([2], chap. 1,
p-1).

Taking the gravitational field as a purely geometric object is not fully useful,
and likely not fully possible because it is determined by physics and physical
objects have arbitrariness. This is not surprising since the gravitational field is
massless and that has no meaning for geometrical objects.

Geometry then, through its transformation group — the Poincaré group —
determines what gravitation is: knowing that it is a massless helicity-2 object.
What is left? First the functions of the matter statefunctions that gives it — energy-
momentum tensors might still have some freedom, although perhaps not. This
should be looked at. More mysterious is the value of the coupling constant, the
gravitational constant (perhaps more than one ([B], sec. 9.3.4, p. 162)). Yet the
most fundamental question is why gravitation exists. If it does, and fortunately
it does, it is determined. But the Poincaré group does not require its existence.
What does?

711 General relativity is quantum gravity

Can there then be a quantum theory of gravity? There is: general relativity. It is
the first complete, consistent quantum theory. What is a quantum theory and why
do people dislike general relativity?

A quantum theory ([2], chap. 1, p. 1; [B], chap. II, p. 54) is a consistent the-
ory that includes (at least) proper definitions of the Poincaré generators ([I,
sec. XIIL.4.b, p. 382), those of the Lorentz transformations and of translations (thus
momentum operators). This is necessary else it would be impossible to trans-
form to different systems, but transformations are possible and necessary. With-
out these physics cannot be. Beyond that what else is there to require? What else
is possible? General relativity satisfies these requirements, there are strong rea-
sons to believe it is consistent, and is unique. Thus it is the quantum theory of
gravity. There is nothing that can be done to “quantize” it.

There is confusion abut quantum mechanics [5]. Both this name and wave-
function are unfortunate. Discreteness is neither universal nor fundamental. For
angular momentum it is a property of the rotation group (and forms of represen-
tations of semisimple groups in general). For atoms it comes from requirements
such as that there be no infinities. But there is no quantitization for a free particle,
one tunneling through a barrier, or for a huge number of other cases.
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Nor does quantum mechanics lead to objects fluctuating. The gravitational
field does not fluctuate. If an experiment is redone many times the results are
different (usually only a little) for each repetition. For a box of neutrons the num-
ber decaying in each second varies. But the neutrons do not vary, they do not
oscillate.

There are also fears of infinities. But these occur for intermediate steps in a
calculational procedure: perturbation theory. They are regarded as due to point
particles. But there are no such objects as point particles, even classically. There is
nothing in any fundamental equation of physics that even hints of them. Overem-
phasis on infinities is based of a belief that the universe is carefully designed to
make physicists’ favorite approximation method work. That is not likely. What
they show is that perturbation theory has problems, not electromagnetic theory
or gravitation.

There is no reason to think either is inconsistent, but rather there are strong
reasons to believe both are consistent.

If general relativity is a quantum theory does it have uncertainty relations?
As with any field theory it does. But they are different from those we are more fa-
miliar with — for which the product of uncertainties is greater than some number.
But gravitation is, necessarily, nonlinear. Thus for it the product of uncertainties
is greater than a function of the statefunction (the connection). They are far more
complicated and depend on the physical situation. It would be interesting find
these for some cases.

There is much understood but still much to be learned about gravitation.
Perhaps these comments can stimulate further thought about such questions. We
see again that geometry imposes its will on physics [1J2)3/45)6]. For massless rep-
resentations this is particularly clear, for others less so — but perhaps only for
now.

Some of these topics will be discussed elsewhere [Z], for some in greater
depth and in a more elementary manner.
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