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ABSTRACT

The Gram-Charlier series of type A is discussed in terms of deviants
which are relat>ed to moments in a way similar to the Hermite polynomials being
related to the powers. Distribution functions are also expressed in terms of
the mode and moments (cumulants or deviants), which are useful expansions
when the distributions are approximately normal. It is shown that such expan-
sions as well as the Gram-Charlier series are valid asymptotically for discrete

distributions defined on the semi-infinite interval [0, ].
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I. Introduction

It is an interesting mathematical problem to express distribution functions
in terms of various moments or cumulants. The Gram-Charlier (GC) series1
of type A is one of the solutions which is useful if the distribution is approximately
normal (Gaussia.n).2 3 One of the characteristics of such a distribution — which

we may call a quasi-normal distribution — is that it has a unique maximum, the

so-called mode. In this article we will show that knowledge of the mode enables
us to derive a useful expansion for the distribution function.

The GC series and the expansion around the mode are obtained for a con-
tinuous distribution in the range [- =,«]. In physics problems, however, we
often encounter discrete distributions which are defined in the range [0, =] .

For example, the cross sections T for producing extra n particles in high energy
collision are defined for the multiplicityn =0, 1, 2.... A characteristic feature
of the experimental data on multiplicity distributions is that they are quasi-
norma14_8 and the mode and the width become larger as the energy increases.

It appears, therefore, that the expansions which we mentioned earlier are useful
for these problems, at lease in an asymptotic sense. We shall show that this is
indeed the case and shall describe the condition for the validity of the asymptotic
expansions.

In Section II, the GC series for distributions defined in the range [~#0, «]
is discussed by introducing deviants which are functions of moments or cumulants.
It is pointed out that the relationship between the deviants and the moments is
similar to that between the Hermite polynomials and the powers. Section III deals
with expansions at the mode, and Section IV deals with the problem of discrete

distributions in the semi-infinite range.



II. Deviants and the Gram-Charlier Series

Moments Mk and cumulants Ky for a distribution function f(x) normalized

in the range -~ < x < = are defined through the characteristic function (c.f.)
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It is convenient, for our purpose, to introduce deviants1 Ak’ k = 3), by
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deviants }\k or Xk give the measure of deviation from the normal distribution
(as do the cumulants Kk, k = 8). Deviants are related to moments and cumulants

in the following way:
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1. This name was suggested to me by G. West.
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Using Eq. (10) and the similar notation (a{ = Kk / sz , etc.), we may rewrite

Egs. (14) and (15) as
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We notice that in Egs. (14) and (16), we have the identity

p® = ® =0

by definition, and that the series in Egs. (15) and (17) terminates with the

[k/3] -th sum. The inverse of Eq. (16) is given by
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with the constraints
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With these preparations, we express the distribution function f(x) in

terms of deviants: Using Egs. (1), (8) and (9), and defining
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has been used. Eq. (23) is the Gram-Charlier series of type A.

We point out that the reciprocal relation between moments and deviants,
Eqgs. (16) and (19) resembles that between the powers and the Hermite polynomials
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which follows from the generating function
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The only difference is that in the former the first few terms of moments and
deviants are missing by definition (Egs. (8) and (20)). Using Eqgs. (25), we

recast the CG series into the form
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Finally we note the further relations
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which are reciprocal to Egs. (8) and (24) respectively. Eg. (31) can be

obtained from Egs. (8) and (26), and Eq.

Eq. (24). From Egs. (22), (31) and (32), it follows that
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which is identical to Eq. (28).

The mode m is the stationary point of distribution functions and is deter-
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mined as the solution of the equation

Mode and Quasi-normal Expansion

(32) is the Fourier transform of

~ k
V1%
k!

-z
2
e

~\ 2 k+1  Yk-1\ k
_Vl)z +... +< el =y 1] KRR

(2.31)

@.32)

@2.33)

3.1)



This can be solved only if a few terms in the series are important, or if

Eqg. (1) is summable in a compact form. The former case was discussed in
references 1-3, and 9. In this article, instead, we consider the case where
the mode is known. This simplifies the problem enormously as far as a formal
manipulation is concerned, as will be seen below.

In terms of the mode, we anticipate the expansion
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These expansion formulae were discussed previous1y3 for the Poisson distribution

and temperate correlation models which are characterized by the condition
< :
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where
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In the latter case, we can prove that3
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thus the coefficients of higher powers in (x-m)/y are successively smaller.
The distribution clearly exhibits a quasi-normal behavior. The mode and the

width are also calcv.lla’cedz’3 as expansions in €

K
m = -3} -i (1 +O(£2)) 3.7)
and
y = K (1 + 0(e2)) : (3.8)

The aim of this section is to derive expansion formula (2) in a more general
case.
Assuming that the mode m is already known, the width may be computed

by the formula
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In order to compute the other parameters in the expansion formula (2), it would be

more convenient to use the expansion of the c. f.
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An alternative expression of the c.f., which is analogous to Eq. (2.31),

is given by
A2
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As was done previously, the distribution function is obtained as the Fourier trans-

form of Eq. (19),
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and Eq. (22) can be written in the form (2a) with the parameter

B = XL (3.25)
To

and

, k=3 . (3.26)

The coefficients bk in Eq. (2b) can be expressed in terms of & and vice versa:
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The series in Eqs. (27) and (28) terminates with the [3315:\ -th sum as in Eq. (2.17).
This completes the formal derivation of the quasi-normal expansion, Eg. (2).
Needless to say, such expansions are most effective if a or bk decrease very

quickly as k — o,
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IV. Discrete Distribution in the Semi-Infinite Rangez

For a discrete distribution Pn which is normalized by

[>o]
Z P = 1 s (4'1)
n=0 n

we proceed in a way similar to the preceding sections. The c.f. is defined by

o) = 2 etp | 4.2)

n=0

and most of the formulae concerning the moments, cumulants, deviants, and the
like, are valid also in this case except that the integral in x is replaced by the

sum over n. For example, the moments are given by

p@ = @-af = 2. @l . (4.3)
n=0

Using Egs. (2.8)-(@2.10) and (2.31), we invert Eq. (2) to obtain

2. The basic argument in this section is the same as in reference 3. We present
it for completeness to include the case of the general expansion formula

discussed in the previous sections.
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In the 1limit Ko = %, therefore, we get the asymptotic expression for ¥ (n)
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The second term in the parentheses of Eq. (11) is negligible in the 1imit

Kg = <, provided

| n—Kl

| <71 .

K9

Hence, Egs. (4) and (5) coincide with Egs. (2.23) and (2.33) asymptotically.

It is easy to see also that the asymptotic expansion
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is valid in the limit  — <, provided the condition
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is satisfied. The formulae expressing the parameters of the asymptotic
expansions (13) and (14) in terms of the mode and the moments are identical

to those in Section III.
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