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Abstract:

In this thesis we study holographic correlators in three different examples of the

AdS/CFT correspondence. In particular, we consider the low-energy effective actions

of quantum gravity, where the leading term describes supergravity and the corrections

correspond to higher-derivative interactions. Firstly, we consider the duality between

string theory in AdS5×S5 and 4d maximally supersymmetric Yang-Mills theory

(N = 4 SYM). We propose a systematic procedure for obtaining all single-trace half-

BPS correlators in N = 4 SYM corresponding to the four-point tree-level amplitude

for type IIB string theory in AdS5×S5. The underlying idea is to compute generalised

ten-dimensional contact Witten diagrams, treating AdS and S on equal footing, which

are obtained from a 10d scalar effective field theory in AdS5×S5. Next, we study

holographic correlators in AdS7×S4. M-theory in this background is dual to the

6d (2,0) theory. In particular, we derive recursion relations for the anomalous

dimensions of double-trace operators occurring in the conformal block expansion

of four-point stress tensor correlators in the 6d (2,0) theory. These anomalous

dimensions encode higher-derivative corrections to supergravity in AdS7×S4 arising

from M-theory. Finally, we consider quantum gravity in AdS2×S2 whose dual CFT



has superconformal group SU(1,1∣2). Firstly, we propose an AdS2×S2 effective action

which describes both supergravity and higher-derivative corrections and compute the

four-point half-BPS correlators using generalised 4d Witten diagrams, analogous to

AdS5×S5 above. Moreover, it was recently shown that IIB supergravity in AdS5×S5

enjoys 10d conformal symmetry. We adapt this approach, which is complementary

to the effective action approach, to quantum gravity in AdS2×S2. We show that

the 1d supergravity and free theory correlators exhibit 4d conformal symmetry

and discuss implications for higher-derivative corrections where the symmetry is

generically broken, except for specific cases.
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Chapter 1

Introduction

Correlation functions are amongst the most fundamental observables in quantum

field theories (QFTs). They characterise the theory and once all correlation functions

of gauge invariant operators are known, the theory is considered solved. Conformal

correlators, correlation functions in conformal field theories (CFTs), are especially in-

teresting. In addition to Poincaré invariance, conformal correlators are also invariant

under scaling and special conformal transformations. Therefore, these observables

are strongly constrained by symmetries and show interesting structures.

In particular, conformal correlators can be studied through the AdS/CFT corres-

pondence [1]. This is a remarkable duality between certain conformal field theories

and quantum gravity in a specific curved background. The starting point is a stack

of N D- or M-branes and in the low-energy limit the worldvolume theory describing

this stack of branes is a conformal field theory. On the other hand, the stack of

branes curves the spacetime and in the near-horizon limit the resulting geometry

is Anti-de Sitter-space times a sphere (AdS×S) where the stack of branes is in the

boundary of AdS. Therefore, string theory or M-theory in AdS×S is dual to the CFT

in the boundary. This correspondence is very powerful as it relates quantum gravity

in AdS to a non-gravitational theory in the boundary, and is therefore holographic.

Gravity amplitudes in the so-called bulk are dual to stress tensor correlators in the

boundary CFT. Studying these so-called holographic correlators can be of great
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interest from the point of view of both sides of the duality. In theories with enough

supersymmetry, which will be the focus of this thesis, stress tensor correlators can

be related to certain scalar operators using supersymmetry. This is technically ad-

vantageous since correlators of scalars are much simpler than those of tensors. In

this thesis, we will investigate different aspects of holographic correlators in three

different examples of the AdS/CFT correspondence. In all of the considered ex-

amples the boundary theory is a supersymmetric CFT (SCFT) and in particular,

we study four-point functions of half-BPS operators. These are operators in special

representations of the superconformal group which are annihilated by half of the

supersymmetry generators.

In the low-energy limit, quantum gravity can be described by an effective action,

where the leading contribution is Einstein gravity coupled to matter. The matter

and couplings can be chosen to give supergravity, which generally arises from the

low-energy limit of string theory or M-theory. The subleading corrections take

the form of interaction terms with derivatives and we will refer to them as higher-

derivative corrections. In this thesis, we will study these effective actions and

in particular the higher-derivative corrections in three different examples of the

AdS/CFT correspondence. In the original AdS/CFT paper [1], three canonical

examples of the correspondence are considered:

• CFT on D3-branes ↔ type IIB string theory in AdS5×S5 ,

• CFT on M2-branes ↔ M-theory in AdS4×S7 ,

• CFT on M5-branes ↔ M-theory in AdS7×S4 .

In each of these dualities, the number of branes on the CFT side is N and moreover,

there are N units of flux through the sphere on the gravity side. The first canonical

example is the most studied and best understood of the three. It is a duality

between type IIB superstring theory in AdS5×S5 and maximally supersymmetric

Yang-Mills theory in four dimensions (N = 4 SYM). We will consider holographic
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correlators in this duality in chapter 3. In particular we consider a 10d effective

action describing higher-derivative corrections to the supergravity approximation

arising from tree-level string theory.

The second canonical example is a duality between the worldvolume theory of N

M2-branes and M-theory in AdS4×S7. M-theory is not well understood yet, but in

the low-energy limit it can be described by 11d supergravity [2]. Its fundamental

degrees of freedom are 2d and 5d objects, the M2- and M5-branes. The M2-brane

worldvolume theory is understood by the ABJM theory, a 3d CFT that is dual to M-

theory in AdS4×S7 [3], while the worldvolume theory of M5-branes is still mysterious.

It is expected to be a 6d conformal field theory with (2,0) supersymmetry, the 6d

(2,0) theory. We study aspects of holographic correlators in AdS7×S4 in chapter 4,

which is the third of the canonical examples of the AdS/CFT correspondence. In

particular we focus on higher-derivative corrections to the low-energy effective action

of M-theory. This duality is less well understood than the previous examples since

the boundary theory has no Lagrangian description and the bulk theory is not known

beyond the supergravity approximation.

Finally, in chapter 5 we will apply the knowledge and techniques from previous

considerations to the study of holographic correlators in AdS2×S2 which is expected

to be dual to a one-dimensional SCFT in the boundary. We use superconformal

symmetry, crossing and higher-dimensional symmetries to reconstruct tree-level

supergravity and higher-derivative corrections which describe the low-energy limit

of any theory of quantum gravity in this background. This duality is less well

understood but of great interest because AdS2×S2 is the near-horizon geometry of

extremal black holes in four dimensions [4, 5] and thus by studying holographic

correlators in this background one can hope to gain insight that could be adapted

to real world physics.

Note that in each of these examples we restrict to tree-level correlators, therefore we

suppress all loop corrections by taking the Newton constant GN → 0. Trough the

AdS/CFT correspondence GN ∼ 1/c where c is the central charge of the boundary
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CFT. The central charge is proportional to positive powers of N depending on the

CFT, where N is the number of branes, therefore taking N →∞ suppresses all loop

corrections. We will now briefly motivate the main ideas of each of the three main

chapters, followed by a description of the structure of this thesis. More detailed

introductions will then be given at the beginning of each chapter.

Holographic correlators in AdS5×S5

First, we study holographic correlators in AdS5×S5 which is the most studied canon-

ical example of the AdS/CFT correspondence. Half-BPS correlators in N = 4 SYM

are dual to type IIB string theory scattering amplitudes in AdS5×S5. In flat space,

the four-point tree-level amplitude of closed string theory takes a very compact form

known as the Virasoro-Shapiro (VS) amplitude1 [6, 8]. This formula encodes many

essential properties of string theory such as a Regge trajectory describing massive

states with arbitrarily high spin, and exponential suppression at high-energy which

was one of the earliest indications that string theory could be a promising candidate

for quantum gravity. Given that the effects of quantum gravity are expected to

become most important in curved backgrounds like the interior of black holes and

the early Universe, it is therefore very important to understand how to generalise the

VS amplitude beyond the flat space limit. At present it is technically challenging to

calculate string amplitudes in curved backgrounds from first principles, but progress

can be made in AdS backgrounds using holographic methods. In the limit α′ → 0,

where α′ is related to the square of the string length, string theory in AdS5×S5 can

be approximated by supergravity. The subleading terms describe string corrections

and take the form of higher-derivative interactions. We can also write the flat space

VS amplitude as an infinite series in α′, where the leading term will describe su-

pergravity while higher-order terms describe string corrections. These corrections

1The Virasoro amplitude is the amplitude for four tachyonic scalars in bosonic string theory found
by Virasoro [6] and generalised to n points by Shapiro [7]. The tree-level four-point amplitude in IIB
string theory [8] which we will be considering here is given by the Virasoro amplitude multiplied
by a kinematic factor and it has become the convention to refer to it as the Virasoro-Shapiro
amplitude.
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can be derived at all orders in α′ from a simple effective field theory consisting of a

scalar field with quartic interactions where the coefficients are fixed by comparing

to the VS amplitude.

The goal is to generalise this to curved spacetime and remarkably, we will find

that the interacting part of all single-trace half-BPS correlators in N = 4 SYM can

be obtained from a similar scalar effective action describing tree-level IIB string

theory on AdS5×S5 (rather than a flat) background. The key idea that allows us

to derive correlation functions from the 10d effective field theory is the use of a

natural generalisation of contact Witten diagrams [9] (which are integrals over AdS

space) to integrals over the full AdS×S space, treating AdS and S on equal footing.

These manifestly 10d contact diagrams generate all four-point half-BPS correlators

described by tree-level string theory, corresponding to string corrections at any order

in α′. Note that we do not prove the existence of this 10d effective field theory in

AdS5×S5. We propose its existence and derive the four-point correlators of single-

trace half-BPS operators at different orders in α′. We show that it reproduces the

known results for α′3 and α′5 corrections, which were previously obtained in [10–

15] using constraints imposed by superconformal and crossing symmetry as well as

simplifications of the spectrum predicted by AdS/CFT. We also present a general

algorithm for extending these predictions to arbitrarily high order in α′ and use it

to obtain new predictions at α′6 and α′7. At the same time as we completed our

work, the authors of [16] also obtained higher-order α′ corrections in AdS5×S5, which

nicely complements our results.

Holographic correlators in AdS7×S4

Next, we consider the correspondence between the M5-brane worldvolume theory,

the 6d (2,0) theory, and M-theory in AdS7×S4. Correlators in the 6d (2,0) theory

are dual to M-theory amplitudes in AdS7×S4. The formulation of M-theory is one

of the most important open questions in string theory and it is not well understood

yet. It is an 11-dimensional theory of quantum gravity which, as mentioned before,
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is approximated by 11d supergravity in the low-energy limit. It arises in the strong

coupling limit of type IIA string theory, where the size of the 11th dimension is

proportional to the string coupling [17, 18]. Therefore, there is no tunable coupling

constant and the only tunable parameter is the number of branes N . Further,

there are no strings but its fundamental degrees of freedom are believed to be

2d and 5d objects, the M2- and M5-branes. Since there is no string length in

this theory, the only length scale is the Planck length lP which is related to the

Newton constant as GN ∼ l9P . And because of the AdS/CFT identification GN ∼ 1/c,

where c ∼ N3 is the central charge, the supergravity approximation N → ∞ is

also like taking lP → 0 which is like a low-energy limit. Moreover, this limit also

implies GN → 0 which suppresses all loop corrections. Therefore, both, higher-

derivative corrections and loop corrections are suppressed by N →∞ and the leading

contribution is tree-level supergravity. Understanding the worldvolume theory of a

stack of M5-branes is an important open question in string theory and very little is

known about it since it is intrinsically strongly coupled and it is believed to have no

Lagrangian description in six dimensions. In [19] a 5d Lagrangian was proposed which

is believed to describe the full 6d physics of the theory. Furthermore, the 6d (2,0)

theory is also important because dimensional reduction along various manifolds gives

various lower-dimensional theories, such as N = 4 SYM. It also provides a geometric

interpretation for their dualities, like S-duality in N = 4 SYM [20]. A lot of progress

in understanding the 6d (2,0) theory has been made by dimensionally reducing the

theory or computing quantities protected by supersymmetry, but ultimately one

wants to compute unprotected quantities in six dimensions.

A promising strategy to study the 6d (2,0) theory is the conformal bootstrap, where

we try to use principle properties of the theory such as superconformal and crossing

symmetry to constrain the correlators. This program was originally proposed in [21–

23] and brought back more than 30 years later in [24]. This approach was first

applied to the 6d (2,0) theory in [25]. Our goal is to study the 6d (2,0) theory away

from the strict large-N (or large central charge c) limit and thus study M-theory
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beyond the supergravity approximation. Important recent progress in this research

area has been made in [26–28]. Moreover, the M-theory effective action can also

be deduced from correlators of the ABJM theory [3], which is dual to M-theory in

AdS4×S7 [27, 29].

We analyse four-point correlation functions of stress tensor multiplets in the 6d (2,0)

theory in the large-c limit. The main aim is to derive the higher-derivative corrections

to the effective action using conformal bootstrap methods without requiring know-

ledge of the explicit form of the correlators, which gives a very direct way of deriving

higher-derivative corrections. We follow the strategy described in [30]. Starting

from a 1/c expansion of the crossing equations, we derive recursion relations for the

anomalous dimensions (1/c corrections to the scaling dimensions) of the operators

in the conformal block expansion of the correlators. These anomalous dimensions

encode the higher-derivative corrections to the supergravity effective action arising

from M-theory.

Holographic correlators in AdS2×S2

Finally, we investigate holographic correlators in AdS2×S2 where the superconformal

group of the boundary theory is SU(1,1∣2). Hence, the 1d boundary SCFT is

quarter-maximal. We will apply techniques from other examples of the AdS/CFT

correspondence to this less well studied case. AdS2×S2 is of great interest because it

is the near-horizon geometry of extremal black holes in four dimensions as mentioned

before. Hence, understanding holographic correlators in this background can help

to develop a description of quantum gravity in the real world. The AdS2/CFT1

correspondence has been studied e.g. in [31, 32]. More recently there has been a lot

of interest in AdS2/CFT1 due to the relation between the 2d Jackiw-Teitelboim (JT)

gravity [33, 34] and the 1d Sachdev-Ye-Kitaev (SYK) model [35, 36], e.g. in [37, 38],

see [39] for a review. The relation to black holes in nature has been discussed in [40].

Another motivation to study holographic correlators in AdS2×S2 is that they are in

many ways simpler than higher-dimensional analogues and hence, AdS2×S2 can act
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as a toy model for various aspects of holography.

It was recently observed in [41] that four-point tree-level correlators in AdS5×S5

exhibit a ten-dimensional conformal symmetry. The conjecture is that free theory

and supergravity correlators can be obtained from a single object invariant under 10d

conformal symmetry. This is a consequence of the fact that AdS5×S5 is conformally

flat and further that the four-point tree-level supergravity amplitude is scale invari-

ant and can therefore be transformed to flat space by conformal transformation. We

aim to understand this higher-dimensional conformal symmetry more systematically

and will start by showing that free theory and supergravity holographic correlators

in AdS2×S2 exhibit 4d conformal symmetry. Furthermore we investigate higher-

derivative-corrections. For both, supergravity and higher-derivative corrections, we

perform conformal block analyses of four-point half-BPS correlators. Generally, there

are many different operators contributing to the same conformal block, i.e. there

are many operators with the same scaling dimension and R-symmetry charge con-

tributing to the spectrum. Thus the conformal block coefficients, and in particular

the anomalous dimensions of exchanged operators, are degenerate and when unmix-

ing these contributions one lifts the degeneracy which is called solving the mixing

problem. After unmixing, the anomalous dimensions of double-trace operators in

the spectrum exhibit a simple structure which can be interpreted in terms of the

4d conformal symmetry. The higher-dimensional conformal symmetry is generally

broken for higher-derivative corrections, as was observed in [14] in the context of

unmixing anomalous dimensions. We show that nevertheless an infinite set of specific

correlators can be constructed from it.

On the other hand, we obtain all higher-derivative corrections from a 4d scalar

effective action analogous to the one proposed above for AdS5×S5. We assume the

existence of this effective action which, in the AdS2×S2 case, describes supergravity

as well as higher-derivative corrections and justify it by comparing the results to

ones obtained from other methods like the 4d conformal symmetry. These two

approaches are complementary, as the 4d conformal symmetry describes all free
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theory and supergravity tree-level half-BPS four-point correlators but not general

higher-derivative corrections, while the 4d effective action generates all supergravity

correlators and all higher-derivative corrections but does not describe free theory.

Note that the effective action we found for AdS5×S5 describes higher-derivative

corrections but not supergravity. In contrast, the effective action proposed for

AdS2×S2 treats supergravity and higher-derivative corrections on equal footing.

Structure of this thesis

We begin with a review of important concepts in chapter 2, starting with a review

of conformal correlators and the conformal bootstrap in section 2.1. Next, we will

briefly review the AdS/CFT correspondence in section 2.2 followed by a discussion

of holographic correlators in section 2.3. Specifically we review the evaluation of

correlators from Witten diagrams in AdS and discuss higher-derivative corrections

to the supergravity approximation. There is one appendix related to this chapter,

appendix A, where we review some important concepts in Mellin space, in particular

contact Witten diagrams.

The rest of this thesis consists of three chapters, each of which focusing on one of

the examples of the AdS/CFT correspondence introduced above. In general, each

of the chapters can be read independently, however some sections of chapter 5 make

use of material presented in chapter 3. Where this is the case we will clearly refer

to the relevant sections.

Chapter 3 is based on [42] and is organised as follows. In section 3.1 we provide

an overview of the general strategy including a general discussion of the effective

action and define generalised contact diagrams in AdS×S as well as their Mellin

transforms. In section 3.2 we use these techniques to compute the leading correction

to half-BPS correlators which occurs at α′3. In section 3.3 we develop an algorithm

for extending these calculations to arbitrary order in α′. Using this algorithm, we

reproduce previous results at α′5 in section 3.4, and obtain new predictions at α′6
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and α′7 in sections 3.5 and 3.6, respectively. We present conclusions and future

directions in section 3.7. There are also several appendices related to this chapter.

In appendix B, we present more details about the parametrisation of half-BPS

correlators. In appendix C we discuss a relation between contact diagrams in AdS×S

and AdS and present its implications for the tree-level supergravity prediction and

in appendix D we list further results at order α′7.

Chapter 4 is based on [43] and its structure is described in the following. To start

with, we review some important concepts, including M-theory and 11d supergravity,

in section 4.1. In section 4.2 we derive recursion relations for anomalous dimensions

in a toy 6d model and match the solutions against the conformal block expansion

of Witten diagrams in AdS7. In section 4.3, we then adapt this analysis to the 6d

(2,0) theory, and match the solutions of the supersymmetric recursion relations with

the results obtained in [26]. In section 4.4 we present our conclusions and future

directions. There are also several appendices. In appendix E, we provide formulas

for the conformal blocks in terms of hypergeometric functions and in appendix F we

derive inner products for these functions. Furthermore, in appendix G we perform

the conformal block analysis of the supergravity solution.

Chapter 5 is based on [44], which at the time of submission of this thesis is in

preparation for publication. We start by reviewing the ten-dimensional hidden

conformal symmetry of AdS5×S5 in section 5.1 before going on to introduce the

formalism for 1d superconformal correlators studied throughout this chapter in

section 5.2. We will review the half-BPS correlators considered, the conformal blocks

and conformal Casimirs relevant for the subsequent sections as well as propose a

4d scalar effective action from which we deduce the higher-derivative corrections to

supergravity in AdS2×S2, similar to the one in chapter 3. Next, we discuss the free

disconnected theory in the context of the higher-dimensional conformal symmetry in

section 5.3. In section 5.4 we derive the supergravity correlator of lowest charge and

then obtain all higher-charge correlators from the 4d conformal symmetry as well as

from the 4d effective action point of view. In section 5.5 we discuss the double-trace
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spectrum of the conformal block decomposition of half-BPS correlators and then

explain how to solve the mixing problem at different orders in the central charge

and for higher-derivative corrections. In section 5.6 we solve the mixing problem for

supergravity. Finally, we study higher-derivative corrections in section 5.7, where we

derive general higher-derivative corrections from crossing symmetry before obtaining

predictions for the correlators from the effective action approach. We also discuss

the breaking of the four-dimensional conformal symmetry. In section 5.8 we solve

the mixing problem for the four-derivative corrections, we can then analyse the

anomalous dimensions in terms of a 4d effective spin. There are two appendices

for this chapter. In appendix H we describe the derivation of the quadratic super

Casimir of SU(1,1∣2), which plays an important role in the 4d conformal symmetry,

and will compute the correlator of descendants of the superconformal primaries.

Finally, in appendix I we present further result from unmixing of four-derivative

corrections.





Chapter 2

Review

In this chapter we review several concepts which play an important role throughout

this thesis where the focus lies on four-point correlation functions. We start by

reviewing conformal correlators, the operator-product expansion and the conformal

bootstrap. Subsequently, we briefly review the AdS/CFT correspondence and then

discuss holographic correlators including higher-derivative corrections, in particular

their evaluation from Witten diagrams in AdS.

2.1 Conformal Correlation Functions

Firstly, let us review correlation functions in conformal field theories in more than

two dimensions, for a more detailed review see e.g. [45]. For simplicity, we will

consider scalar operators φi with scaling dimension ∆i in what follows. The two-

point functions are completely fixed by the symmetries of the theory, i.e. Poincaré

invariance, scaling invariance and invariance under special conformal transformations.

They are given by

⟨φi(x)φj(y)⟩ =
δij

(x − y)2∆ , (2.1.1)
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if φi and φj have the same scaling dimension ∆ and zero otherwise. Similarly,

three-point functions can be fixed by symmetries up to a constant as follows

⟨φ1(x1)φ2(x2)φ3(x3)⟩ =
λ123

∣x12∣2α123 ∣x13∣2α132 ∣x23∣2α231
, (2.1.2)

where xij = xi − xj and αijk = ∆i+∆j−∆k

2 .

The four-point functions can no longer be fixed by symmetries but they can be

significantly reduced to a function of only two conformally invariant variables u and

v. Let us consider correlators of four identical operators for simplicity, the four-point

functions are then given by

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ =
f(u, v)
x2∆

12 x
2∆
34

, (2.1.3)

where u and v are conformal cross-ratios defined as

u = zz̄ = x
2
12x

2
34

x2
13x

2
24
, v = (1 − z)(1 − z̄) = x

2
14x

2
23

x2
13x

2
24
. (2.1.4)

It is useful to introduce the parameters (z, z̄) and we will use (u, v) and (z, z̄)

interchangeably in later chapters. Note that in one-dimensional conformal field

theories, which we discuss in chapter 5, the cross-ratios are not independent and

reduce to

uz̄→z = z2 , vz̄→z = (1 − z)2 , (2.1.5)

see section 5.2.1 for more details. The rest of the discussion in this section is still

valid for 1d CFTs if one keeps in mind that the cross-ratios are not independent and

can be written in terms of a single variable z.

Importantly, the four-point function (2.1.3) is crossing symmetric, i.e. it is invari-

ant under transformations of the four-point crossing symmetry group S3 which is

generated by

(u, v) → (v, u) , (u, v) → (u
v
,
1
v
) . (2.1.6)

Note that this follows from the fact that we consider four identical operators. As



2.1. Conformal Correlation Functions 15

a consequence also f(u, v) has to satisfy a specific crossing constraint. This can

easily be seen by considering (2.1.3) which groups the external points (12) and (34)

together. However, this choice is not unique and one can just as well group together

(14) and (23). From (2.1.4) it is obvious that the exchange of 2↔ 4 corresponds to

(u↔ v) and thus

1
x2∆

12 x
2∆
34
f(u, v) = 1

x2∆
14 x

2∆
23
f(v, u) . (2.1.7)

Multiplying this by x2∆
14 x

2∆
23 yields the following crossing equation for f(u, v):

(v
u
)

∆
f(u, v) = f(v, u) , (2.1.8)

which will play an important role in the following.

2.1.1 Operator-Product Expansion, Conformal Blocks and

Bootstrap

An important concept in conformal field theories is the operator-product expansion

(OPE). First, recall that primary operators are the lowest-weight operators in a

representation of the conformal algebra, they are local operators annihilated by all

generators of special conformal transformations and acting with translation generat-

ors on them gives the so-called descendants (derivatives of primaries)1. A product of

two primary operators can be expanded as a sum of all the primaries and descendants

in the theory as follows:

φ1(x)φ2(0) ∣0⟩ = ∑
O
λ12OCO(x, ∂y)O(y)∣y=0 ∣0⟩ , (2.1.9)

where we sum over all primary operators of the CFT. The coefficients λ12O are

called OPE coefficients and are the same as the constants λ123 in the three-point

function (2.1.2). Furthermore, CO(x, ∂y) are polynomials of partial derivatives with

1In fact we will study superconformal theories in this thesis, hence the operators we consider
are superconformal primaries which in addition to the conformal symmetries are also annihilated
by half of the supersymmetry generators.
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respect to y acting on the primaries, which will generate all the descendants in the

theory. Note that one can perform an OPE in any quantum field theory, but in

general (2.1.9) only holds in the limit where the operators are close together, i.e.

when x → 0 whereas for a CFT the statement is much stronger. Since CFTs are

scale-invariant we do not have a notion of distance and the OPE is valid for finite x.

Conformal field theories can be defined by its so-called CFT data which consists

of a list of scaling dimensions ∆i of all local primaries of the theory together with

all OPE coefficients λijk for any three primaries. Once one knows the whole CFT

data one has solved the CFT in question. In principle we can construct all n-point

correlation functions from the three-point functions, which are completely fixed up

to coefficients, using the OPE expansion. In practice this is very difficult to realise

and this is why we have to use other methods to constrain the CFT data. One such

method is the conformal bootstrap which uses fundamental properties of the CFT,

such as crossing symmetry and conformal invariance, to constrain the CFT data and

fix the correlation functions.

The starting point is the four-point function, where we again consider four identical

fields, written in terms of OPEs of two pairs of primaries as

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ = ∑
O
λ12O λ34O[CO(x12, ∂y)CO(x34, ∂z)⟨O(y)O(z)⟩] ,

(2.1.10)

where y = x1+x2
2 , z = x3+x4

2 and the functions in the square brackets are completely

fixed by conformal symmetry. Since the form of the four-point function is known

to be f(u,v)
x2∆

12 x
2∆
34
, it follows that the right hand side of (2.1.10) has to have the same

transformation properties which yields

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ = ∑
O
λ12O λ34O

GO(u, v)
x2∆

12 x
2∆
34

. (2.1.11)

The conformally invariant functions GO(u, v) are called conformal blocks. Decompos-

ing a four-point function into conformal blocks, the blocks represent the contributions

of the separate conformal primary operators in the theory together with their des-
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cendants, where the operators and their corresponding blocks are labelled by their

scaling dimension and spin. To make this more precise, the conformal block expan-

sion of a correlator of four operators with scaling dimensions ∆i, where i = 1, . . . ,4,

can be written as

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ = P∆i∑
∆,l
A∆i

∆,lG
∆i

∆,l(u, v) , (2.1.12)

where G∆i

∆,l(u, v) are the conformal blocks describing the contributions of operators in

the theory belonging to a multiplet whose conformal primary has scaling dimension ∆

and spin l. The coefficients A∆i

∆,l are squares of OPE coefficients and P∆i is a prefactor

depending on the spacetime coordinates. The labels ∆i indicate a dependence on

the scaling dimensions of the four external operators. As an example of operators

contributing to the conformal block expansion, consider double-trace operators which

will be studied in detail in later chapters. These operators are constructed from two

half-BPS operators with dimensions p, q and have the schematic form Op∂l ◻n Oq.

Their classical scaling dimension is p+ q + 2n+ l, where the spin l counts the number

of partial derivatives and n counts the number of boxes acting on one of the half-BPS

operators. It is also common to refer to the twist of the exchanged operator which is

defined as its scaling dimension minus its spin. Double-trace operators of the above

form have twist p + q + 2n.

Conformal blocks have been computed explicitly for many theories. For four-point

correlators of scalar operators of arbitrary scaling dimensions in any even dimension

they were derived in [46]. The authors obtained the conformal blocks by solving

for the eigenfunctions of the Casimir operator of the conformal group SO(d,2) in d

dimensions. The blocks for d = 4 and d = 6 can be written in terms of hypergeometric

functions in a simple way (see e.g. section 5.4.2 for 4d blocks and appendix E for

blocks in 6d), whereas the blocks for general even dimensions are given as an infinite

sum of so-called Jack polynomials. Superconformal blocks in six dimensions were

given in [25, 47]. Conformal blocks for odd dimensions were obtained in [48]. Finally,

the superconformal blocks relevant for 1d supersymmetric CFTs which we study in
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chapter 5 were derived in [49] (see section 5.2.2).

Once the blocks are known, this allows us to perform a so-called conformal block

analysis of the theory. Decomposing the four-point correlators into conformal blocks

gives information about the spectrum of operators in the theory, their scaling di-

mensions and spins. We will perform conformal block analyses of correlators in

1d CFTs in chapter 5 where we compute three-point coefficients and anomalous

dimensions of operators in the double-trace spectrum of the theory in the context

of a higher-dimensional conformal symmetry as mentioned in the introduction. We

also perform a conformal block analysis of correlators in a 6d SCFT in chapter 4

where we compute anomalous dimensions which encode information about higher-

derivative corrections to the bulk low-energy effective action. However, the main

focus of chapter 4 is to compute anomalous dimensions of double-trace operators in

the spectrum of half-BPS correlators without requiring knowledge of the explicit form

of the four-point functions but rather deriving a recursion relation for anomalous

dimensions using the conformal bootstrap, which we describe in the following.

Let us start by writing the above equation (2.1.11) diagrammatically:

⟨φ1(x1)φ2(x2)φ3(x3)φ4(x4)⟩ = ∑
O
λ12Oλ34O .

O

1

2 3

4

Notice that in the double OPE of the four-point function we chose the OPE channel

(12)(34), we could as well have chosen the channel (14)(23) and the result must be

the same. This leads to the conformal bootstrap or crossing symmetry condition

∑
O
λ12O λ34O

GO(u, v)
x2∆

12 x
2∆
34

= ∑
O′
λ14O′ λ23O′

GO′(v, u)
x2∆

14 x
2∆
23

, (2.1.13)

or diagrammatically:
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∑
O
λ12Oλ34O

O

1

2 3

4

= ∑
O′
λ14O′λ23O′ O′ .

1

2 3

4

After imposing these conditions on all four-point functions of a theory no more

conditions will arise from higher-point functions. The bootstrap conditions (also

called OPE associativity or crossing equations) are used to classify CFTs using the

following statement.

A CFT is a set of CFT data which satisfies the crossing equations for all four-point

functions [21, 23].

To summarise, crossing and (super)conformal symmetry impose powerful constraints

on four-point correlators which can be used to determine CFT data analytically or

numerically. When a holographic dual exists, the CFT data can be constrained even

more by combining the conformal bootstrap with knowledge about the holographic

dual.

2.2 The AdS/CFT Correspondence

In this section, we briefly review the AdS/CFT correspondence [1, 9, 50]. For a

detailed review see e.g. [51, 52].

Through the AdS/CFT correspondence quantum gravity in AdS is described by a

CFT in the boundary. Considering a stack of D- or M-branes, in the low-energy

limit, the worldvolume quantum field theory describing the stack of branes is a CFT.

Besides, the stack of branes warps the surrounding spacetime and in the near-horizon

limit the geometry of this curved space is AdSp×Sq and the stack of branes is located

in the boundary of AdS. Hence, the boundary CFT is dual to string or M-theory
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in AdSp×Sq, which is a very remarkable duality between a theory of gravity and

a quantum field theory without gravity in different dimensions. It is conjectured

that the two theories in the duality are equivalent to each other, i.e. its operator

observables, states, correlation functions as well as the full dynamics of the theories

are equivalent. This means that each of these objects can be computed from two

completely different calculations and both will lead to the same result. Because the

correspondence is between a theory in AdS×S and a CFT on the boundary of AdS, it

is also called a holographic duality. The stack of N branes creates a flux through the

sphere, thus integrating the flux and using Gauss’ law gives the number of branes.

When the stack is coincident and in flat space, the gauge group of the boundary

theory is expected to be SU(N) in the case of N = 4 SYM.

In Maldacena’s original paper [1] there are three canonical examples, as we have

seen in the introduction. The most well studied duality is between type IIB string

theory in AdS5×S5 and N = 4 SYM in the boundary which we study in chapter 3.

Another canonical example is the focus of chapter 4, the correspondence between the

worldvolume theory of N M5-branes and M-theory in AdS7×S4. The third canonical

example is a duality between M-theory in AdS4×S7 and the worldvolume theory of N

M2-branes which can be described by a 3d CFT, the ABJM theory [3]. In chapter 5

we focus on quantum gravity in AdS2×S2 which is expected to be dual to a 1d SCFT

with superconformal symmetry group SU(1,1∣2).

Let us have a closer look at the two canonical examples we study in later chapters

and their parameters, starting with N = 4 SYM and string theory in AdS5×S5. The

parameters of the two theories are identified with one another as

g2
YM = 4πgs , R4 = 4πgsN(α′)2 , (2.2.1)

where gYM is the Yang-Mills coupling, gs is the closed string coupling, R is the

curvature radius of the AdS5 space and the S5 sphere and α′ is related to the string
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length ls as α′ = l2s . With the ’t Hooft coupling λ = g2
YMN this yields

R = λ1/4ls , (2.2.2)

which relates R/ls, the AdS and S radius in units of string length, on the bulk side

of the duality to the ’t Hooft coupling of the boundary CFT on the other side. This

makes the duality very powerful since it relates a weakly coupled field theory which

can be studied perturbatively to a string theory in a strongly curved background

which makes computations very difficult. On the other hand, when the string theory

is in a weakly curved background and thus calculations are simpler because it can

be approximated by supergravity, the boundary CFT is strongly coupled. Thus,

problems that are intractable on the one side of the correspondence can be much

simpler to compute on the other side. Note that even when both sides of the duality

are non-perturbative, as is the case in the M5-brane case (see chapter 4), this duality

is very useful as for example in the CFT we can use conformal bootstrap methods

to study correlation functions which in turn gives insight into the dual quantum

gravity theory where computations are very difficult.

The second relation in (2.2.1) is derived by constructing extremal black D3-brane

solutions, where the near-horizon geometry of N coincident D3-branes is AdS5×S5. A

similar relation for M5-branes is obtained by constructing extremal black M5-brane

solutions:

r3
5 = πN5l

3
P . (2.2.3)

The near-horizon geometry of N5 coincident M5-branes is AdS7×S4, where the radius

of the four-sphere is r5 and the radius of AdS7 is 2 r5. Note that there are no strings

in M-theory and thus no concept of string length, therefore M-theory is manifestly

non-perturbative and has only one length scale, the Planck length lP .

The AdS/CFT correspondence is complicated when considering the full quantum

gravity theory in the bulk, however there are significant simplifications when con-

sidering certain limits. Taking the limit N →∞ is like taking the Newton constant

GN → 0 and therefore this limit suppresses all loop corrections and restricts to tree-
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level gravity. This can be seen from the AdS/CFT identification GN ∼ 1/c, where

c is the central charge of the CFT which is proportional to positive powers of N

depending on the theory. In all of the following chapters we will restrict to this limit

and only consider tree-level correlators.

Note that in the case of N = 4 SYM one can take N →∞ while keeping the ’t Hooft

coupling λ constant, this corresponds to a topological expansion in 1/N where the

leading contribution is the planar limit. Furthermore, it restricts to tree-level string

theory where quantum corrections described by string loops are suppressed since

gs → 0. Additionally, one can consider the low-energy limit α′ → 0 which corresponds

to the strong-coupling limit of N = 4 SYM, where λ→∞, and describes supergravity

with all stringy corrections suppressed. When studying N = 4 SYM away from the

strict α′ → 0 limit one adds stringy corrections to the supergravity approximation.

Hence, a particularly simple limit of the duality is accessible in N = 4 SYM, a duality

between a strongly coupled planar CFT and weakly coupled classical supergravity.

In the case of M-theory, these limits are not available separately since there is

only one length-scale, the Planck length lP . As described before, taking N → ∞

suppresses all loop corrections. Since the Newton constant is proportional to lP ,

G11d
N ∼ l9P in eleven dimensions, the N → ∞ limit also corresponds to lP → 0 and is

thus a low-energy limit. Further, M-theoretic corrections are also suppressed in the

limit lP → 0 (or N → ∞), since this is the only length scale available. Therefore,

both, loop corrections and higher-derivative corrections are described by a large-N

expansion and N →∞ corresponds to the tree-level supergravity approximation. In

this thesis we will not discuss loop corrections but focus on tree-level supergravity

and higher-derivative corrections arising from quantum gravity.
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2.3 Holographic Correlators and Witten

Diagrams

In each of the following chapters we consider four-point correlation functions of

half-BPS operators, which are annihilated by half of the supercharges and thus form

a short multiplet. On the quantum gravity side, in the large-N limit, these short

multiplets correspond to supergravity multiplets plus an infinite tower of Kaluza-

Klein (KK) excitations on the sphere. These excitations arise from dimensionally

reducing the corresponding theory of quantum gravity on the sphere. Thus, in the

4d, 6d and 1d examples considered in the chapters below the half-BPS operators

are dual to harmonics on the S5, S4 and S2 sphere respectively. These spherical

harmonics transform as totally symmetric and traceless rank-n tensors under SO(6),

SO(5) and SO(3) transformations in the case of AdS5×S5, AdS7×S4 and AdS2×S2

respectively.

A supermultiplet can be characterised by its primary operator, which is annihilated

by all generators of special conformal transformations and conformal supercharges.

The descendants in the supermultiplet are obtained by acting on the primary with

Poincaré supercharges. In the case of short multiplets, the primary operators, in

addition to being annihilated by the conformal symmetries, are also annihilated

by half of the supercharges. These primaries are called chiral primary operators

(half-BPS operators). It will be useful to describe schematically how chiral primary

operators are constructed in general superconformal theories. To construct a chiral

primary operator, consider the trace of a product of n scalar operators

OI1I2...In = Tr(φI1φI2⋯φIn) , (2.3.1)

with R-symmetry indices Ii, where in supersymmetric theories R-symmetry trans-

forms different supercharges into each other. Next, symmetrise all n indices in (2.3.1)

and remove all traces to make a traceless symmetric tensor. Thus, consider operators

of the form φ(I1φI2⋯φIn), which are totally symmetric and it is understood that all
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traces are removed. More precisely, in the case of N = 4 SYM the scalar operators

φIi are the six real scalars of N = 4 SYM (see subsection 3.1.1) where the interacting

fields can be written as perturbations around the free fields. Moreover, the trace

in N = 4 SYM is defined in terms of the gauge group SU(N). In the 6d (2,0)

theory on the other hand, there is no gauge group and there is no expression for

the interacting fields in terms of the free fields due to the lack of a small coupling

constant, nevertheless these operators are expected to exist. Importantly, nowhere

in chapter 4 is the definition of these operators required and it will be enough to

know the superconformal blocks for this theory. Let us now go back to the general

case.

The operator φ(IφJ) is the superconformal primary of the stress tensor multiplet

and, through the AdS/CFT correspondence, encodes the graviton in AdS. Traceless

symmetric operators of the form φ(I1φI2⋯φIn) with more than two indices are higher-

charge operators which encode higher KK modes on the sphere. These operators

are so-called single-trace operators and (2.3.1) forms a complete list of single-trace

chiral primary operators for n ≤ N . For n > N they can be related to so-called

multi-trace operators which are products of single-trace operators. We will study

correlation functions of single-trace chiral primary operators in the large-N limit in

the following chapters.

Through the AdS/CFT correspondence, the dimensions ∆ of any scalar operator on

the conformal field theory side correspond to the mass of the dual bulk state on the

gravity side. The relation between these quantities is given by

∆(∆ − d) =m2R2 , (2.3.2)

where m is the mass of the scalar field in the bulk, R is the AdS radius and d is the

spacetime dimension of the CFT. Considering the masses of Kaluza-Klein excitations

on the sphere and comparing to the dimensions of the chiral primary operators in

the dual conformal field theory will satisfy this relation.

Finally, correlation functions of half-BPS operators correspond to scattering amp-
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litudes of scalar fields in the bulk with mass m (2.3.2). Therefore, by studying AdS

scattering amplitudes we can learn more about CFT correlation functions and vice

versa [53–56]. As mentioned before, we are interested in studying the tree-level

supergravity approximation of quantum gravity. This is described by an effective

action whose leading contribution describes supergravity and the subleading correc-

tions are contained in an infinite tower of higher-derivative terms. These corrections

correspond to local interaction vertices in the tree-level low-energy effective action in

AdS, where we focus on quartic interactions in this thesis. These quartic interactions

can be computed from contact Witten diagrams in AdS and we will review them

in the following subsections starting with interaction vertices without derivatives

followed by a discussion of Witten diagrams for higher-derivative corrections.

2.3.1 Contact Witten Diagrams

Supergravity scattering in AdS can be computed from Witten diagrams. They are

most conveniently expressed using embedding coordinates for AdS:

X̂2 = −(X̂−1)2 − (X̂0)2 +
d

∑
i=1

(X̂ i)2 = −1 , (2.3.3)

where d is the spacetime dimension of the boundary CFT. In terms of these coordin-

ates, covariant derivatives can be defined using projection tensors

PBA = δBA + X̂AX̂
B , (2.3.4)

which satisfy the useful identities

PBA X̂A = 0 , PBAPCB = PCA . (2.3.5)

In particular, the covariant derivative of a tensor is given by [57, 58]

∇ATA1...AN = PC
APC1

A1
...PCN

AN

∂

∂X̂C
(PE1

C1
...PEN

CN
TE1...EN) . (2.3.6)
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As an application, let us consider two transverse tensors T and U of rank N + 1 and

N , respectively. Using the chain rule, we see that

TBA1...AN∇BUA1...AN = −∇BTBA1...ANUA1...AN + ... (2.3.7)

where the ellipsis denotes

∂C (TBA1...ANPC
B UA1...AN) −TBA1...AN∂C (PC

BPC1
A1
...PCN

AN
)UC1...CN . (2.3.8)

When we act on projection tensors with derivatives, this gives terms which vanish

when contracted with the transverse tensors, so the second term vanishes. Since the

first term is a total derivative, (2.3.7) implies that Lagrangians written in embedding

coordinates enjoy the same equivalence relations as flat space Lagrangians under

integration by parts.

The AdS contact Witten diagrams in embedding space are defined as integrals over

AdSd+1 of products of bulk-to-boundary propagators. These propagators are given

by

G(X̂,Xi) =
C∆i

(−2X̂.Xi)∆i

, (2.3.9)

properly normalised to yield a delta-function at the boundary, the bulk-to-boundary

propagator will include a normalisation2 [57, 59]

C∆ = Γ(∆)
2π d

2 Γ(∆ − d
2 + 1)

. (2.3.10)

Note that x2
ij = −2Xi.Xj and the Xi are boundary points which satisfy

X2
i = 0 . (2.3.11)

Using the definition (2.3.6) and acting on the bulk-to-boundary propagator we get

the equations of motion

∇2G = ∆ (∆ − d)G , (2.3.12)

2These are normally omitted from the definition of the contact diagrams or D-functions and we
do so here. We will also later absorb factors of C∆i

into the definition of the Mellin amplitude in
chapter 3.
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X̂

X1 X2

X3 X4

Figure 2.1: Contact Witten diagram for a conformal four-point func-
tion dual to a quartic contact interaction of the bulk
scalar fields. Bulk-to-boundary propagators G(X̂,Xi)
connect the boundary points Xi to the bulk interaction
point X̂. A general quartic interaction vertex includes
derivatives acting on the bulk-to-boundary propagators
(see section 2.3.2).

which agrees with the mass from the AdS/CFT prediction (2.3.2) (where we set

R = 1). For d = ∆ the propagator obeys massless equations of motion ∇2G = 0.

To compute a four-point function associated with a φ4 quartic interaction in AdS,

we take the AdS integral over four bulk-to-boundary propagators as follows:

D
(d)
∆1∆2∆3∆4

(Xi) =
1

(−2)2Σ∆ ∫AdS
dd+1X̂

(X̂.X1)∆1(X̂.X2)∆2(X̂.X3)∆3(X̂.X4)∆4
, (2.3.13)

where Σ∆ = (∆1+∆2+∆3+∆4)/2. This is the definition of the D-functions. They

describe quartic contact diagrams and will play an important role in each of the

following chapters. The powers of minus 2 can be absorbed into the propagators as

(−2X̂.Xi), but for notational simplicity we pull them out. In figure 2.1 a general

four-point Witten diagram is illustrated.

There is a particularly useful representation for contact diagrams, the Mellin repres-

entation. The above D-functions have the following form in Mellin space [57] (see

appendix A for more details on Mellin space and contact diagrams)

D
(d)
∆1∆2∆3∆4

(Xi) = NAdSd+1
∆i

× ∫
dδij

(2πi)2∏
i<j

Γ(δij)
(Xi.Xj)δij

, with ∑
i<j
δij = ∆j , (2.3.14)

where the normalisation is given by

NAdSd+1
∆i

=
1
2π

d/2Γ(Σ∆ − d/2)
(−2)Σ∆∏i Γ(∆i)

. (2.3.15)
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For later use we define normalised D-functions without the factor NAdSd+1
∆i

as

D∆i
(Xi) =

1
NAdSd+1

∆i

D
(d)
∆i

(Xi) . (2.3.16)

Note that the normalised D-functions are independent of the spacetime dimension

d as can be seen from (2.3.14) and they are distinguished by the presence or not of

the superscript (d).

To perform explicit calculations in position space it is useful to rewrite the D(d)-

functions in terms of D̄-functions, which only depend on the conformal cross-ratios

u, v [60]:

∏4
i=1 Γ(∆i)

Γ(Σ∆ − d
2)

2

π
d
2
D

(d)
∆1∆2∆3∆4

(xi) =
(x2

14)
Σ∆−∆1−∆4 (x2

34)
Σ∆−∆3−∆4

(x2
13)

Σ∆−∆4 (x2
24)

∆2
D̄∆1∆2∆3∆4(u, v) .

(2.3.17)

The simplest of these functions D̄1111 is given by the standard four-dimensional box

integral which can be written explicitly in terms of dilogarithms depending on u, v.

Higher D̄-functions can be computed by acting with differential operators on the

box integral. For more details on these functions we refer the reader to e.g. [60].

2.3.2 Higher-Derivative Corrections

In this subsection we discuss higher-derivative corrections to the low-energy effect-

ive action of the quantum gravity theory under consideration which correspond to

subleading terms in the low-energy expansion of correlators in the boundary CFT.

Let us illustrate this with a schematic low-energy effective action. Supergravity is

described by a supersymmetric version of the Einstein-Hilbert action which contains

the Riemann curvature tensor R. Including quantum gravity corrections corres-

ponds to including higher-derivative interaction terms where we restrict to quartic

interactions of the schematic form D2kR4:

L ∼ 1
GN

(R +∑
k

ckD2kR4 + . . .) , (2.3.18)
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with the Newton constant GN . Recall that the Riemann tensor contains two deriv-

atives, therefore the first correction R4 has six more derivatives than supergravity.

Note that in later chapters R4 will be referred to as the zero-derivative correction,

even though it has more derivatives than supergravity, as we label the corrections

in terms of the number of derivatives acting on R4.

In [30] the authors considered higher-derivative corrections for generic 2d and 4d

CFTs in the large-N expansion at first subleading order which corresponds to tree-

level supergravity plus higher-derivative corrections. Their strategy was to solve

the crossing equations for four-point correlators by performing a conformal block

analysis (as in (2.1.12)) and truncating the expansion to spin L. They found that

there are (L+2)(L+4)/8 solutions to the crossing equations for each spin-L truncation.

Furthermore, they provided holographic arguments and came to the same conclusion

from a bulk point of view. In particular, the authors considered a massive scalar field

in AdS with local quartic interactions (which can be thought of as a toy model for

the low-energy effective action of quantum gravity in AdS, schematically described

in (2.3.18)) and showed that, up to integration by parts and equations of motion,

the quartic bulk interactions are in one-to-one correspondence with the solutions to

the crossing equations described above. There are L/2 + 1 independent interactions

which can create or annihilate a state of at most spin L, with the total number of

derivatives ranging from 2L to 3L in intervals of two. These can be written as

(∇L/2
µ
φ) (∇L/2

ν
φ) (∇k

ρφ) (∇L+k
µνρφ) , k = 0,1, . . . , L/2 , (2.3.19)

where the underscores denote sets of Lorentz indices. Note that the first two scalars

in isolation have L free Lorentz indices as do the last two and so they can create

a spin-L state. Hence, there is for example one spin-0 interaction vertex φ4, and

two spin-2 interaction vertices equivalently written φ2 (∇µ∇ν φ)2 and φ2 (∇µ∇ν∇ρ φ)2

which contain four and six derivatives, respectively. The total number of interactions

up to spin L is then given by ∑L/2l=0 (l + 1) = (L+ 2)(L+ 4)/8. The diagram in (2.3.13)

describes a zero-derivative interaction and thus corresponds to a spin-0 interaction
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vertex φ4 (or to R4 in (2.3.18)).

The counting of independent interaction vertices can be nicely seen in Mellin space.

In [61] a basis of solutions for higher-derivative corrections is given in Mellin space

by

Pp,q = σp2σ
q
3 , with σ2 = s2 + t2 + u2 , σ3 = s3 + t3 + u3 , (2.3.20)

with non-negative integers p, q and s, t, u are Mellin variables, analogous to Man-

delstam variables for four-particle scattering. The solutions Pp,q correspond to

solutions of the crossing equations with conformal block expansions truncated to

spin L = 2(p + q), hence for each L there are L/2 + 1 solutions.

Remarkably, in [30] the authors argued that the number of derivatives in the bulk

interaction vertex can be deduced from the large-twist behaviour of the anomalous

dimensions of double-trace operators in the conformal block expansions of half-BPS

correlators. From this analysis it is possible to obtain the large-N scaling of the

solutions to the crossing equations by dimensional analysis from comparing the large-

twist limit of the anomalous dimensions corresponding to spin-L corrections to those

of supergravity. This was implemented for N = 4 SYM in [61] and for the 6d (2,0)

theory in [26, 43] (see chapter 4 for more details).

In the previous subsection we have seen how to obtain contact Witten diagrams

corresponding to a quartic bulk interaction with no derivatives (2.3.14). Let us

illustrate the evaluation of contact diagrams with covariant derivatives acting on the

bulk-to-boundary propagators in a couple of simple examples. The first non-trivial

quartic interaction with derivatives has four derivatives

(∇φ)2 (∇φ)2
, (2.3.21)

which corresponds to a spin-2 solution, see (2.3.19). This is a correction with four

more derivatives than the φ4 interaction and thus corresponds to the D4R4 term in

the low-energy effective action. The interaction with two derivatives can be reduced

to φ4 by using integration by parts and equations of motion (2.3.12). The contact
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diagram for a quartic interaction with four derivatives acting on the bulk-to-boundary

propagator is then

∑
perms

∫AdS
dX̂∇A (−2X̂.X1)

−∆
∇
A (−2X̂.X2)

−∆
∇B (−2X̂.X3)

−∆
∇
B (−2X̂.X4)

−∆

∝∫AdS
dX̂

4
∏
i=1

(−2X̂.Xi)
−∆
∑

perms
(

X1.X2X3.X4

X̂.X1X̂.X2X̂.X3X̂.X4
+ . . .) , (2.3.22)

where we use (2.3.6) and the ellipsis denotes terms that can be reduced to φ4 by

use of integration by parts and equations of motion.3 The new contribution can be

written in terms of D̄-functions as

(1 + u + v)D̄∆+1 ∆+1 ∆+1 ∆+1 . (2.3.23)

Performing a conformal block analysis of this correlator one finds that indeed the

sum truncates to spin-2. Furthermore, analysing the large-twist behaviour of the

anomalous dimensions gives insight into the large-N scaling of this solution to the

crossing equations, see chapter 4.

The next higher-derivative correction is given by a six-derivative interaction vertex

(∇φ)2 (∇µ∇νφ)2 which corresponds to another spin-2 solution as explained above.

The contact diagram is

∑
perms

∫AdS
dX̂∇A (−2X̂.X1)

−∆
∇
A (−2X̂.X2)

−∆
∇B∇C (−2X̂.X3)

−∆
∇
B
∇
C (−2X̂.X4)

−∆

∝∫AdS
dX̂

4
∏
i=1

(−2X̂.Xi)
−∆
∑

perms

⎛
⎜
⎝

X1.X2 (X3.X4)
2

X̂.X1 X̂.X2 (X̂.X3)
2
(X̂.X4)

2 + . . .
⎞
⎟
⎠
, (2.3.24)

where the ellipsis denotes terms that can be reduced to the zero- and four-derivative

contributions. The new six-derivative contribution is given in terms of D̄-functions

as follows

D̄∆+2 ∆+1 ∆+2 ∆+1 + D̄∆+1 ∆+2 ∆+1 ∆+2 + u2 D̄∆+2 ∆+2 ∆+1 ∆+1

+ u D̄∆+1 ∆+1 ∆+2 ∆+2 + v2 D̄∆+1 ∆+2 ∆+2 ∆+1 + v D̄∆+2 ∆+1 ∆+1 ∆+2 . (2.3.25)

3These additional terms will become important in chapter 3 where we introduce higher-
dimensional generalised bulk-to-boundary propagators which treat AdS and S on equal footing.
These propagators lead to new AdS×S contact Witten diagrams and the corresponding covariant
derivatives no longer commute, therefore ambiguities appear in the place of the ellipsis above and
they can no longer be disregarded.
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Again, performing the conformal block expansion one finds that indeed the sum

truncates to spin-2. This analysis can be generalised to higher derivatives by act-

ing with the appropriate number of covariant derivatives on the bulk-to-boundary

propagators as in the above example. The results can be represented in position

space in terms of D-functions or in Mellin space according to appendix A.

We will encounter such local quartic bulk interactions dual to conformal correlators

with spin-truncated conformal block expansions again in all three main chapters.

Such correlators can be obtained from contact Witten diagrams only and no exchange

diagrams need to be considered to compute higher-derivative corrections [30]. This

makes the calculation much simpler and all Witten diagrams (with any number of

derivatives) are given in terms of D-functions (or their Mellin transforms). Note

that for supergravity the conformal block expansion does not generally truncate in

spin and therefore it is not included in the above discussion. However, in the 1d case

considered in chapter 5 supergravity is actually described by a φ4 bulk interaction

and can thus be obtained from contact diagrams.

We have now reviewed important concepts which will play a role in the follow-

ing chapters. In the next chapter we discuss higher-derivative corrections to the

low-energy effective action of type IIB string theory in AdS5×S5 dual to half-BPS

correlators in the small α′ expansion in N = 4 SYM.



Chapter 3

Towards the Virasoro-Shapiro

Amplitude in AdS5×S5

This chapter is based on [42] and we follow the paper closely. As explained in the

introduction 1, in flat space, four-point amplitudes of closed strings are given by

the Virasoro-Shapiro amplitude. It is of great interest to generalise this to curved

spacetime and our aim is to obtain an analogue of the flat space VS amplitude in

AdS5×S5.

The AdS/CFT correspondence relates IIB gravity amplitudes to N = 4 SYM single-

trace1 half-BPS correlators. From the early days of the AdS/CFT correspondence,

many direct calculations of four-point AdS amplitudes at tree-level and in the su-

pergravity limit have been performed, resulting in predictions for the corresponding

correlators on the CFT side [60, 63, 65–74]. Although the action for superstrings in

AdS5×S5 is known using the Green-Schwarz [75, 76] and pure spinor [77] formalisms,

explicit construction of vertex operators is not fully understood. Hence, computing

amplitudes beyond the supergravity approximation in this background directly from

string theory remains challenging (see [78–80] for recent progress). On the other

1In fact the operators dual to supergravity are only single-trace in the large-N limit but have
multi-trace corrections at subleading order [62, 63]. These have recently been given explicitly to
all orders in N [64]. Here however, we work at leading order and so these multi-trace corrections
will not play a role.
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hand, a great deal of progress has recently been achieved on the CFT side despite

the CFT being strongly coupled, using the constraints imposed by superconformal

and crossing symmetry as well as the simplification of the spectrum predicted by

AdS/CFT (hereby summarised as ‘bootstrap methods’). All tree-level single-trace

half-BPS correlators in the supergravity limit have been obtained in this way [81–

83] and more recently string corrections have also been bootstrapped [10–16] with

groundwork laid in [30, 61]. Loop corrections to four-point AdS amplitudes have

also been obtained via bootstrap methods both in the supergravity limit [84–89] as

well as string corrections [11, 90–92]. The more recent of these works have also made

use of a hidden 10d conformal symmetry [41] which we will discuss further in the

context of AdS2×S2 in chapter 5.

The program in this chapter can be viewed as partly going back to the direct

calculation approach but in a hugely simplified form. We notice that the tree-level

string corrections obtained via bootstrap methods can be obtained via AdS×S contact

diagrams arising from a simple 10d scalar effective action. The starting point is

the observation that if we write the flat space VS amplitude as an infinite series

in α′, the leading term will describe supergravity while higher-order terms describe

string corrections. These corrections can be derived from a simple effective field

theory consisting of a scalar field with quartic interactions. For example, the first

string correction is simply a constant proportional to α′3 which arises from a φ4

interaction, and the next correction is O(α′5) and quadratic in the Mandelstam

variables so can be derived from a four-derivative interaction (∂φ.∂φ)2. In this way,

we can construct the four-field piece of the linearised (about flat space) effective

action at all orders in α′, fixing coefficients by comparing to the VS amplitude. This

can be made more precise. All the fields of type IIB supergravity can be described

with a chiral scalar superfield, φ, in 10d N = 2 superspace [93], and it is this scalar

superfield that appears in the superaction. The Virasoro-Shapiro amplitude for IIB

string theory is a superamplitude containing a factor δ16(Q) [94]. Similarly the

corresponding linearised effective action is a superaction and one integrates a scalar
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superfield (prepotential) over 16 Grassmann odd variables ∫ d16θ [95]. The action of

four Grassmann derivatives on the scalar produces the Riemann curvature and so φ4

in the effective superpotential produces the familiar R4 correction to supergravity.

We propose a generalisation of the flat space VS amplitude by uplifting its small

α′ expansion to AdS5×S5 by replacing the derivatives in flat space by covariant

derivatives in AdS5 and S5. We will find that this 10d scalar effective action describing

tree-level string theory in AdS5×S5 generates the interacting part of all single-trace

half-BPS correlators. The resulting correlators are naturally packaged together into

a 10d structure. This 10d structure is very reminiscent of and indeed was partly

inspired by the 10d conformal structure of these correlators observed in [41]. However,

here the 10d conformal structure is not apparent and does not play a role. We can

read off some coefficients of the AdS×S effective action directly from the flat space

one, but not all terms can be read off in this way. Firstly, since covariant derivatives

will no longer commute in general, there is the possibility of commutator terms which

vanish in flat space. Furthermore, it is also possible to add terms proportional to

the curvature which vanish in the flat space limit. The effective action will therefore

have additional terms with unfixed coefficients.

We do not here prove the existence of the effective field theory in AdS5×S5, but

justify it a posteriori by showing that it reproduces all known results for four-point

correlators of single-trace half-BPS operators at orders α′3 and α′5, which were

previously obtained via bootstrap methods in [10–15]. Furthermore, we present

a general algorithm to obtain four-point correlators to any order in α′ and use it

to derive new predictions at α′6 and α′7. At the same time as we completed our

work, the authors of [16] also obtained higher-order α′ corrections in AdS5×S5, using

bootstrap methods in Mellin space to arrive at the higher-derivative corrections.

Their results nicely complement ours.

As mentioned in the introduction, the key technical tool to derive correlation func-

tions from the 10d effective field theory in AdS5×S5 are generalised 10d Witten

diagrams which treat AdS and S on equal footing. Usual contact Witten diagrams



36 Chapter 3. Towards the Virasoro-Shapiro Amplitude in AdS5×S5

describe supergravity scattering and are defined as integrals over AdS space, we

will generalise them to integrals over the full AdS×S space to manifestly include the

spherical harmonics on the five-sphere. We are not aware of such generalised Witten

diagrams directly appearing in the literature before, although similar structures on

the sphere are given in [96] where analogues of geodesic Witten diagrams (which give

conformal blocks) on the sphere were considered. The generalised Witten diagrams

involve introducing propagators connecting the (5+ 5)-dimensional bulk of AdS5×S5

to a generalised notion of a boundary. Although the five-sphere is compact, we

can formally define its boundary using embedding coordinates analogous to those

of AdS5. This definition is physically sensible when describing half-BPS operators

since it essentially encodes the condition that they are traceless and symmetric in

R-symmetry indices. Expanding the 10d Witten diagrams in modes on the S5 then

gives a prediction for all four-point correlators of single-trace half-BPS operators cor-

responding to a fixed order in the α′ expansion of tree-level string theory in AdS5×S5.

Comparing these results to those obtained using localisation techniques2 [12, 97, 98]

allows us to fix some ambiguities in the effective action.

Before we go on and compute these higher-derivative corrections from the effective

action we describe the general setup for our analysis in the following section.

3.1 General Setup

In this section we describe the basic ingredients that we will use in this chapter.

We start with a review of N = 4 super Yang-Mills theory, type IIB string theory

and the corresponding holographic correlators. This is followed by a review of half-

BPS correlators in N = 4 SYM, which will be the analogue of the Virasoro-Shapiro

amplitude in AdS5×S5. Next, we describe our strategy for deducing an effective action

from the VS amplitude in flat space and translating it to AdS5×S5. Subsequently, we

2Supersymmetric localisation is a method to exactly compute correlation functions of supersym-
metric operators in certain supersymmetric quantum field theories by reducing the path integral
to finite-dimensional integrals.
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introduce embedding space formalism for the sphere together with sphere-analogues

of AdS contact diagrams. In the next subsection we then show how to compute

contact diagrams directly in AdS×S using novel bulk-to-boundary propagators which

are manifestly ten-dimensional. For a given order in the α′ expansion of the VS

amplitude, this will allow us to compute the infinite tower of half-BPS correlators

by computing Witten diagrams from a 10d effective action and expanding them in

modes on the sphere. The correlators are most elegantly expressed in Mellin space,

which we review in the last subsection. In particular, we find that expanding our 10d

Witten diagrams in terms of spherical coordinates gives rise to a spherical analogue

of the Mellin transform and implies a generalised Mellin amplitude where AdS5 and

S5 are on equal footing. The question of stringy corrections will be addressed in

subsequent sections.

3.1.1 Review: N = 4 SYM/IIB Superstring Theory in

AdS5×S5

Let us start by reviewing the ingredients of the correspondence between N = 4 SYM

and string theory in AdS5×S5. We start by introducing the field content and action

of N = 4 SYM before considering type IIB supergravity. For more detailed reviews

of these concepts see e.g [52, 99, 100]. Finally, we discuss holographic correlators in

this example of the AdS/CFT correspondence.

N = 4 super Yang-Mills theory

The conformal field theory we study in this chapter, N = 4 supersymmetric Yang-

Mills theory, is a theory of great interest to the scientific community. On the one

hand, it is the interacting four-dimensional gauge theory with the highest amount of

supersymmetry and it is conformal even at the quantum level [101, 102]. It is also

dual to IIB string theory in AdS5×S5 and is the classical example of the AdS/CFT

correspondence. Moreover, it is believed to be integrable, i.e. exactly solvable at all
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values of the coupling constant, at least in the planar limit [103]. On the other hand,

N = 4 SYM is a four-dimensional interacting theory and its tree-level scattering

amplitudes are equivalent to those of massless QCD [104], therefore it is a useful toy

model for developing techniques that can be applied to less symmetric QFTs, such

as QCD. We will briefly introduce the field theory in the following.

Denoted by N = 4 SYM is the maximally supersymmetric four-dimensional Yang-

Mills theory with gauge group SU(N). The field content of N = 4 SYM consists of

one gluon field Aaµ, with a = 1, . . .N2−1 with four fermions as superpartners, ψaαA, ψ̄α̇ aA
with α, α̇ = 1,2 and A = 1,2,3,4. Additionally, closure of the supersymmetry algebra

requires that there are six real scalars φa IYM, with I = 1, . . . ,6, transforming in the

fundamental representation of SO(6) ∼ SU(4). Hence, there are 4 × 2 fermionic and

6+ 2 bosonic degrees of freedom. Due to supersymmetry, all fields have to transform

in the adjoint representation of SU(N). The action of N = 4 SYM was obtained

in [105]

S =∫ d4xTr ( − 1
4g2

YM
FµνF

µν + θ

16π2FµνF̃
µν − (DµϕAB)(DµϕAB) + iψ̄Aα̇σα̇αµ DµψαA

− i gYM2 ψαA[ϕAB, ψαB] −
i gYM

2 ψ̄Aα̇ [ϕAB, ψ̄α̇B] −
g2
YM
2 [ϕAB, ϕCD][ϕAB, ϕCD]) ,

(3.1.1)

where we grouped the six real scalar fields φa IYM into six complex scalar fields ϕaAB =

−ϕaBA which transform in the fully antisymmetric two-index representation of SU(4).

The field strength is defined as Fµν = ∂µAν − ∂νAµ + i gYM [Aµ,Aν] and the covariant

derivative is Dµ = ∂µ − i gYM [Aµ,Aν]. In the second term, θ is a real coupling, the

so-called Yang-Mills theta-angle, and F̃ µν is the Hodge dual of the field strength

F̃ µν = 1
2ε
µνρσFµν . It is standard to combine the real couplings gYM and θ into the

single complex Yang-Mills coupling

τ = θ

2π +
4π i
g2
YM

. (3.1.2)

The matrices (σ̄µ)α̇α = (Id,−σ)α̇α and (σµ)αα̇ = εαβεα̇β̇(σ̄)β̇β = (Id, σ)αα̇, where σµ

are the usual Pauli matrices and εab is the Levi-Civita tensor. The only tunable
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parameters in the action are the gauge coupling gYM and the rank of the gauge

group SU(N). Taking the limit N → ∞, gYM → 0, while holding the ’t Hooft

coupling λ = g2
YMN fixed, gives a topological expansion in 1/N where the leading

term corresponds to the planar limit.

A remarkable property of this theory is that it is ultraviolet finite, i.e. that the coup-

ling gYM is not renormalised at the quantum level. Hence, N = 4 SYM is a conformal

field theory even at the quantum level [101, 102]. Thus, the theory is invariant

under the conformal group SO(2,4) ∼ SU(2,2) and supersymmetry enhances this

to the superconformal group PSU(2,2∣4). The bosonic part of PSU(2,2∣4) then

consists of the conformal group SU(2,2) and the R-symmetry group SU(4). The

fermionic part of the supergroup are the four supersymmetry generators and their

superconformal partners.

Type IIB supergravity

The holographic dual of N = 4 SYM is type IIB superstring theory in AdS5×S5.

Type IIB string theory was found in [106] and in the low-energy limit it can be

approximated by type IIB supergravity [107]. Let us review the field content and

action of 10d IIB supergravity here.

First, since it is a theory of gravity, there is a graviton, hence the metric gµν which

is a supersymmetric traceless tensor of the symmetry group SO(8) and thus has 35

bosonic degrees of freedom (counting the number of independent components of a

symmetric 8 × 8 matrix and subtracting one due to tracelessness). The rest of the

bosonic part of the spectrum consists of the axion-dilaton C + iΦ with two bosonic

degrees of freedom, a rank-2 antisymmetric tensor Bµν + iA2µν with 56, and a rank-4

antisymmetric tensor A+
4µνρσ with 35 bosonic degrees of freedom. Furthermore, there

are two Majorana-Weyl gravitinos ψIµα, where I = 1,2, with 112 fermionic degrees

of freedom and two Majorana-Weyl dilatinos λIα, I = 1,2, with 16 fermionic degrees

of freedom. Thus, there are 128 bosonic and 128 fermionic degrees of freedom, as
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required by supersymmetry. The + superscript of the rank-4 antisymmetric tensor

A+
4µνρσ indicates that it has a self-dual field strength, the five-form field strength

F̃5 defined below. The two gravitinos have the same chirality and so do the two

dilatinos, however theirs is opposite to that of the gravitinos. Therefore, the theory

is chiral.

The type IIB supergravity action was found in [93, 107]. Because of the self-dual

field strength F̃5 it is not straightforward to write down a classical action. This is

because the term ∣F̃5∣2 in the action counts twice the desired amount of physical

degrees of freedom since it does not contain the self-duality constraint. This can be

resolved by imposing the self-duality constraint as an additional field equation. The

action is then given by

4κ2
B S =∫ d10x

√−g e−Φ (2R+ 8∂µΦ∂µΦ − ∣H3∣2)

− ∫ [d10x
√−g (∣F1∣2 + ∣F̃3∣2 +

1
2 ∣F̃5∣2) +A+

4 ∧H3 ∧ F3] + fermions , (3.1.3)

with the scalar curvature R, g = det gµν and the coupling constant κB is related to

the string length ls and the 10d Newton constant as follows:

2κ2
B = 1

2π (2πls)8
, 16πG10d

N = 1
2π (2πls)8

g2
s = 2κ2

B g
2
s . (3.1.4)

Moreover, the field strengths are defined as:

F1 = dC , H3 = dB , F3 = dA2 , F5 = dA+
4 ,

F̃3 = F3 −CH3 , F̃5 = F5 −
1
2A2 ∧H3 +

1
2B ∧ F3 , (3.1.5)

and the supplementary self-duality constraint is

∗ F̃5 = F̃5 . (3.1.6)

Finally, the quantities ∣Fp∣2 are defined as

∣Fp∣2 =
1
p!g

µ1ν1 . . . gµpνpF̄µ1⋯µpFν1...νp , (3.1.7)

where F̄ is the complex conjugate of F . It is worth noting that by dimensional
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analysis this theory is non-renormalisable which generally speaking is true for all

effective supergravity actions. This suggests that they do not approximate well-

defined quantum theories. However, this is no problem when considering these

theories as low-energy effective actions of more fundamental quantum theories (like

string theory or M-theory). The non-renormalisability can be seen from conventional

power counting. In the example of the 10d theory above this goes as follows. The

curvature R has dimension (length)−2. By dimensional analysis the square of the

gravitational coupling constant κ2
B then has to have dimensions (length)8, or for

general dimensions d, (length)d−2. It is now easy to see that the coupling constant

has negative mass dimension for d > 2 and is therefore non-renormalisable. As

mentioned before, this is no problem because we only consider it as an effective

theory describing the low-energy physics of string theory.

Type IIB supergravity has SL(2,R) symmetry. This is most manifest in the Einstein

frame, where we redefine fields from the string metric gµν to the Einstein metric gEµν

gµν = eΦ/2gEµν , (3.1.8)

which leads to a transformation of the scalar curvature term such that it contains

the usual Einstein-Hilbert term. Furthermore, combining the axion C and dilaton

Φ into a new complex scalar field gives the axion-dilaton field

τ ≡ C + i e−Φ . (3.1.9)

The metric and A+
4 fields are invariant under SL(2,R) transformations and the

axion-dilaton field transforms under a Möbius transformation

τ → aτ + b
cτ + d , with ad − bc = 1 , a, b, c, d ∈ R . (3.1.10)

Moreover, the fields Bµν and A2µν rotate into each other under the above linear

transformation. When considering the full quantum theory, there is a quantisation

condition τ ∼ τ + 1. Thus, the symmetry group of type IIB superstring theory is the

SL(2,Z) subgroup of SL(2,R), where a, b, c, d ∈ Z in the Möbius transformation.
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Holographic correlators

We have discussed general holographic correlators in section 2.3, were we have

seen that correlators of chiral primary (half-BPS) operators are dual to scattering

amplitudes of bulk scalars in AdS. In particular, we have described how these

correlators can be computed from AdS Witten diagrams. In this chapter we will

study four-point correlators of chiral primary operators in N = 4 SYM. We have

described the form of general chiral primary operators in section 2.3. Now consider

the superconformal primary of the stress tensor multiplet in N = 4 SYM. It is a

scalar operator of protected dimension two and transforms in the two-index traceless

symmetric representation 20 of the R-symmetry group SO(6). It is constructed

from scalar fields as follows

O2 = Tr(φIYMφJYM) − δIJ6 Tr(φKYMφYMK) . (3.1.11)

Its supergravity dual is a scalar in the graviton multiplet in AdS5 with mass m2
2 = −4

(see (2.3.2), where we set the AdS radius R = 1). Traceless symmetric operators

of the form φ
(I1
YMφ

I2
YM . . . φ

Ip)
YM with more than two indices, where all p R-symmetry

indices are symmetrised and all traces removed, are dual to higher Kaluza-Klein

modes on the five-sphere. These modes arise from dimensionally reducing type IIB

gravity on S5 which leads to an infinite tower of protected scalar operators with

scaling dimension ∆ = p, where p is the SO(6) R-symmetry charge describing the

KK modes on the sphere. A chiral primary operator with SO(6) charge p is thus

dual to a KK mode with mass m2
p = p(p − 4).

In the following, we consider the low-energy approximation of string theory, which

corresponds to a small α′ expansion, where the leading contribution is supergrav-

ity and the subleading terms describe stringy corrections. These higher-derivative

corrections to the supergravity approximation are the focus of this chapter. Fur-

thermore, taking N →∞ (which is like taking GN → 0) suppresses loop corrections

and restricts to classical gravity. Through the AdS/CFT correspondence GN ∼ 1/c,
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where c is the central charge, and in the present theory c = (N2 − 1)/4. Hence, we

consider a large-c expansion. See the review in 2.2 for further discussions of these

limits and the relations between the parameters of the bulk and boundary theory.

We now understand the correlators from a holographic point of view, in the next

subsection we consider the half-BPS correlators further in the specific context of the

considerations in this chapter.

3.1.2 Half-BPS Correlators

As we have seen, there are six real scalars in N = 4 SYM transforming in the

adjoint representation of SU(N) and the fundamental of SO(6), φa IYM(X)3. Here we

view the 4d Minkowski space via null 6d embedding coordinates XA with X.X = 0

manifesting the conformal SO(2,4) symmetry (see section 2.3.1 for a review on

AdS embedding space). We also project with a null 6d coordinate YI , Y.Y = 0 to

obtain φYM(X,Y ) = φIYM(X)YI manifesting the internal SO(6) symmetry. Then the

single-trace half-BPS operators are defined as

Op(X,Y ) = 1
pNp/2Tr(φ

p
YM) , (3.1.12)

which looks like the chiral primary operators discussed in the previous subsection

but with the R-symmetry indices contracted and with an additional normalisation.

Note that we normalise the operators with an additional factor of 1/√p compared

to the normalisation giving a normalised two-point function, first derived in [108].

This normalisation is inspired by the ten-dimensional conformal symmetry of [41]

and will be discussed further in chapter 5.

It is then useful to collect together the four-point functions of all single-trace half-BPS

operators Op(X,Y ) into a single object ⟨OOOO⟩ as follows

⟨OOOO⟩ =
∞
∑

p,q,r,s=2
⟨OpOqOrOs⟩int , (3.1.13)

3We drop the index a from now on and it will be understood that the φIYM(X) transform in
the adjoint of SU(N).
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where ⟨OpOqOrOs⟩int represents the interacting part of the correlator, which always

contains a particular factor I(Xi, Yi) due to superconformal symmetry [109] which

we thus divide out

⟨OpOqOrOs⟩int =
⟨OpOqOrOs⟩ − ⟨OpOqOrOs⟩free

I(Xi, Yi)
. (3.1.14)

From now on we will usually drop the explicit ‘int’ subscript at the end of the

correlators. Here I is a polynomial in Xi and Yi, the so-called Intriligator polynomial,

which is a common factor of all interacting half-BPS four-point functions [109]. It is

the counterpart of the δ16(Q) factor of flat space superamplitudes [110] and we give

its explicit form in appendix B.

Now that we have specified what correlators we are studying in this chapter we can

go on and discuss the Virasoro-Shapiro amplitude that describes string scattering in

flat space and how to lift it to curved spacetime.

3.1.3 Effective Action

As explained in the introduction, the four-point amplitude of closed string theory

takes a very compact form in flat space, the Virasoro-Shapiro amplitude:

AVS(S,T ) = 1
STU

Γ(1 − α′S
4 )Γ(1 − α′T

4 )Γ(1 − α′U
4 )

Γ(1 + α′S
4 )Γ(1 + α′T

4 )Γ(1 + α′U
4 )

, S + T +U = 0 ,

(3.1.15)

where S,T,U are the standard four-point kinematic invariants. Note that we have

factored out a supermomentum delta-function which encodes all the external super-

gravity states. In AdS5×S5 the analogue is to factor out an Intriligator polynomial

from the interacting part of half-BPS correlators in the boundary, as we explained in

the previous subsection. Our goal will then be to construct a bosonic 10d effective

action which describes the remaining quantity. A priori it is not obvious that such

an effective action should exist in curved background, but we justify it by showing

that it reproduces previous results. It is important to note that the fact that we can
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factor out the supermomentum delta-function, or the Intriligator polynomial which

contains all the supersymmetry properties of the correlators, is the crucial aspect of

the theory that allows us to obtain correlators using a higher-dimensional effective

action.

The flat space VS amplitude in (3.1.15) has expansion

AV S(S,T ) = 1
STU

exp(
∞
∑
n=1

2(α
′

4 )
2n+1 ζ2n+1

2n + 1(S2n+1+T 2n+1+U2n+1))

= 1
STU

+ 2ζ3(α
′

4 )3 + (S2 + T 2 +U2)ζ5(α
′

4 )5 + 2STU(ζ3)2(α′4 )6

+ 1
2(S2 + T 2 +U2)2ζ7(α

′
4 )7 + . . . , (3.1.16)

where ζn are Riemann-zeta functions. Excluding the first term, which corresponds

to supergravity, we can view the remaining terms as arising from a scalar effective

action. From this point of view, the α′3 correction which gives a constant contribution

to the four-point amplitude, comes from a φ4 interaction. Higher-order terms can

then be obtained by applying derivatives to the φ4 interaction corresponding to the

invariants S,T,U . So S = −2k1.k2 → 2∂µφ∂µφφ2, T = −2k1.k3 → 2∂µφφ∂µφφ etc.

Specifically then the VS amplitude is equivalent to the following four-field terms in

an effective superpotential for supergravity linearised about flat space:

V flat
VS (φ) = 1

23×4!(2ζ3(α
′

2 )3φ4 + 3ζ5(α
′

2 )5(∂φ.∂φ)2 + 2(ζ3)2(α′2 )6(∂φ.∂φ)(∂µ∂νφ∂µ∂νφ)

+ 3ζ7(α
′

2 )7(∂µ∂νφ∂µ∂νφ)2 + . . . ) . (3.1.17)

We now uplift the effective superpotential to an AdS5×S5 background by replacing the

flat derivatives with covariant AdS×S derivatives. This uplift is not unique however.

Firstly the covariant derivatives no longer commute with each other leading to

ambiguities. Secondly there could be terms involving lower number of derivatives,

compensated by the AdS radius R which would vanish in the flat space limit.
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So to O(α′7) the superpotential translates to

V AdS×S
VS (φ) = 1

8×4![(α
′

2 )3Aφ4 + (α′2 )5(3B(∇φ.∇φ)2 + 6C∇2∇µφ∇µφφ2)

+ (α′2 )6(D(∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) + 6E∇µ∇2∇νφ∇µ∇νφφ2)

+ (α′2 )7(6F (∇µ∇νφ∇µ∇νφ)2

+ 6G1 (∇µ∇ν∇µ∇ρ∇σ∇ρφ) (∇ν∇σφ)φ2 + . . . ) + . . . ] . (3.1.18)

There are four more eight-derivative terms with coefficients G2,G3,G4,G5 whose

explicit expressions are given in (3.6.2) and appendix D. The ambiguities with

coefficients C,E,Gi are multiplied by symmetry factors for later convenience. Here,

unlike in flat space, the coefficients A,B,C, . . . themselves can have an expansion in

the dimensionless parameter α′/R2 where R is the radius of AdS (or S). So whereas

in flat space 2k-derivative terms only occur at order α′k+3, in AdS×S, 2k-derivative

terms occur at α′k+3 and all higher orders in principle.

One could also imagine replacing the coefficient of 1/STU in (3.1.16) with an ex-

pansion in α′/R2, which is not included in (3.1.18), however this is forbidden by

superconformal symmetry of N = 4 SYM correlators. In more detail, the non-

renormalisation results of [109] imply that supergravity correlators must contain a

contribution from free theory and there is a non-trivial cancellation between the two

terms which links them together. Since free theory does not receive α′ corrections,

there cannot be α′/R2 corrections to the coefficient of 1/STU .

The zeroth-order terms in the expansion of A,B,D,F are then determined by the

Virasoro-Shapiro amplitude. Specifically,

A(α′) = 2ζ3 +A1
α′

2R2 +A2 ( α′
2R2 )

2 + . . . E(α′) = E0 +E1
α′

2R2 + . . .

B(α′) = ζ5 +B1
α′

2R2 + . . . F (α′) = 1
2ζ7 + F1

α′
2R2 + . . .

C(α′) = C0 +C1
α′

2R2 + . . . Gi(α′) = Gi;0 +Gi;1
α′

2R2 + . . . for i = 1, . . . ,5 .

D(α′) = 2(ζ3)2 +D1
α′

2R2 + . . . (3.1.19)

For simplicity, we will set R = 1 from now on throughout this chapter, but it will be
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understood that these higher-order terms vanish in the flat space limit.

Computing 10d Witten diagrams using novel generalised bulk-to-boundary propagat-

ors and expanding them in terms of S5 coordinates will give all single-trace half-BPS

four-point correlators in N = 4 SYM described by tree-level string theory in AdS5×S5.

We introduce the generalised bulk-to-boundary propagators and Witten diagrams in

the following subsection.

3.1.4 Generalised Contact Witten Diagrams

Standard AdS Witten diagrams were reviewed in section 2.3 and in this subsection we

define analogous objects on the sphere (following similar ideas in [96]) and finally we

introduce a generalisation of Witten diagrams using bulk-to-boundary propagators

which are intrinsically ten-dimensional and treat AdS and S on equal footing. This

will have a big pay-off since we will obtain the whole tower of half-BPS correlators

by expanding the Witten diagrams in spherical coordinates.

As we have seen in subsection 2.3.1, Witten diagrams are most conveniently expressed

in embedding coordinates. In addition to embedding coordinates in AdSd+1 we also

introduce embedding coordinates for Sd+1:

Ŷ 2 =
d

∑
i=−1

(Ŷ i)2 = 1 . (3.1.20)

In the present context, d = 4. As for AdS (2.3.4), covariant derivatives in terms of

embedding coordinates are defined using projection tensors

PJI = δJI − ŶI Ŷ J , (3.1.21)

which satisfy the useful identities

PJI Ŷ J = 0 , PJI PKJ = PKI . (3.1.22)

To distinguish AdS and S projection tensors we use labels A,B,C . . . for AdS in

section 2.3.1 and I, J,K . . . for the sphere analogues here. Recall that the covariant
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derivative of a tensor is then given by [57, 58]

∇ATA1...AN = PC
APC1

A1
...PCN

AN
∂C (PE1

C1
...PEN

CN
TE1...EN) . (3.1.23)

This can equally be applied to the sphere case by simply sending A,B,C, . . . indices

to I, J,K, . . . etc.

Now first recall that the standard AdS contact Witten diagrams in embedding space

are defined as integrals over AdSd+1 of products of bulk-to-boundary propagators

G(X̂,Xi) =
C∆i

(−2X̂.Xi)∆i
, see (2.3.13). At four points this yields:

D
(d)
∆1∆2∆3∆4

(Xi) =
1

(−2)2Σ∆ ∫AdS
dd+1X̂

(X̂.X1)∆1(X̂.X2)∆2(X̂.X3)∆3(X̂.X4)∆4
. (3.1.24)

Recall that Σ∆ = (∆1+∆2+∆3+∆4)/2. These D-functions have the following form in

Mellin space [57] (see also appendix A)

D
(d)
∆1∆2∆3∆4

(Xi) = NAdSd+1
∆i

× ∫
dδij

(2πi)2∏
i<j

Γ(δij)
(Xi.Xj)δij

, with ∑
i<j
δij = ∆j ,

(3.1.25)

where the normalisation is given in (2.3.15) and for later use we define normalised

D-functions without the factor NAdSd+1
∆i

which are independent of the spacetime

dimension d :

D∆i
(Xi) =

1
NAdSd+1

∆i

D
(d)
∆i

(Xi) . (3.1.26)

We can also consider direct analogues of these contact diagrams on the sphere.

Bulk-to-boundary propagators on the sphere were introduced in [96]

G(Ŷ , Yi) ∝ (−2Ŷ .Yi)pi (3.1.27)

and in this context it is then very natural to introduce functions B(d)
p1p2p3p4(Yi),

spherical analogues of the contact Witten diagrams D(d)
∆1∆2∆3∆4

, as:

B
(d)
p1p2p3p4(Yi) = (−2)2Σp ∫

S
dd+1Ŷ (Ŷ .Y1)p1(Ŷ .Y2)p2(Ŷ .Y3)p3(Ŷ .Y4)p4 , (3.1.28)

where Σp = (p1+p2+p3+p4)/2. Even though the sphere is compact, we can formally
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define a boundary when describing half-BPS operators in N = 4 SYM since the

condition Y.Y = 0 simply encodes tracelessness of the R-symmetry indices. The

B-functions are polynomials in the Yi and can be explicitly evaluated purely combin-

atorially, following similar techniques to those found in the appendix of [96] (where

the two- and three-point analogues were obtained):

B
(d)
p1p2p3p4(Yi) = N Sd+1

pi
∑
{dij}
∏
i<j

(Yi.Yj)dij

Γ(dij + 1) , with ∑
i<j
dij = pj , (3.1.29)

where

N Sd+1

pi
= 2 × 2Σp

πd/2+1∏i Γ(pi+1)
Γ(Σp+d/2+1) . (3.1.30)

For later use let us also define a normalised B-function which does not depend on

the dimension d:

Bpi
(Yi) =

1
N Sd+1
pi

B
(d)
pi (Yi) . (3.1.31)

In (3.1.29) the sum is over all sets of numbers dij = dji such that

{(d12, d13, d14, d23, d24, d34) ∶ 0 ≤ dij = dji, dii = 0,
4
∑
i=1
dij = pj} . (3.1.32)

These constraints on dij leave just two free parameters. Note the close similarity this

explicit expansion of the B-functions (3.1.29) has with the Mellin transform of the

AdS contact terms (3.1.25). The B-function can be seen as a discrete D-function,

which is expected since it lives in a compact space. We can thus view the expansion

parameters dij as analogues of the Mellin variables δij.

It is now natural to combine the above AdS and S bulk-to-boundary propagators

into one 10d object, which we refer to as a generalised bulk-to-boundary propagator

in AdS×S:

G(X̂, Ŷ ;X,Y ) = (−2X̂.X − 2Ŷ .Y )−∆
, (3.1.33)

where X and Y satisfy

X2 = Y 2 = 0 . (3.1.34)
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Using the definition in (3.1.23), we see that

∇2G = (∇2
X̂
+∇2

Ŷ
)G = ∆(∆ − d) ((−2X̂.X)2 − (−2Ŷ .Y )2) (−2X̂.X − 2Ŷ .Y )−∆−2

.

(3.1.35)

Hence, the propagator obeys massless equations of motion when d = ∆:

∇2G = 0 , (3.1.36)

which will become important in later sections when computing ambiguities. Whereas

X describes the boundary of AdS, Y is not a boundary point since the sphere is

compact.

We will derive predictions for four-point correlators of half-BPS operators from an

effective action by computing analogues of Witten diagrams directly in the product

geometry AdS×S. For now we will just develop some general properties of AdSd+1×Sd+1

contact Witten diagrams which are defined simply as 4

DAdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) =

1
(−2)2Σ∆ ∫AdS×S

dd+1X̂dd+1Ŷ

(P1 +Q1)∆1(P2 +Q2)∆2(P3 +Q3)∆3(P4 +Q4)∆4
,

(3.1.37)

where we introduce the shorthand

Pi = X̂.Xi , Qi = Ŷ .Yi . (3.1.38)

The contact diagrams in AdS×S are related to the standard AdS contact diagrams in

an intriguing way. This relation is explained in appendix C together with a discussion

of tree-level supergravity which is not expected to arise from a superpotential5 but

can be discussed using the aforementioned relation.

It is now straightforward to expand this AdS×S contact diagram into an infinite

number of standard AdS contact diagrams multiplied by sphere analogues. In

4We keep d and ∆i general here but we will be focussing on the case ∆i = d = 4 later in this
chapter. The case ∆i = d = 1 will be studied in chapter 5.

5Remarkably, in the case of 1d CFTs studied in chapter 5 we find that supergravity correlators
correspond to a φ4 interaction and can therefore be computed from a 4d effective superpotential.
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particular, using

1
(P +Q)∆ =

∞
∑
p=0

(−1)p (p + 1)∆−1

Γ(∆)
Qp

P p+∆ (3.1.39)

four times and then inserting (3.1.24) and (3.1.28) gives the expansion:

DAdS×S
∆1∆2∆3∆4

(Xi, Yi) =
∞
∑
pi=0

4
∏
i=1

(−1)pi
(pi + 1)∆i−1

Γ(∆i)

×D(d)
p1+∆1 p2+∆2 p3+∆3 p4+∆4

(Xi)B(d)
p1p2p3p4(Yi) . (3.1.40)

Expanding the 10d Witten diagrams in spherical modes gives all half-BPS correlators

and in (3.1.40) it is given in terms of AdS and S contact diagrams for a quartic

interaction with no derivatives. We will discuss derivative interactions in section 3.3

but first let us discuss how to express the higher-dimensional Witten diagrams in

Mellin space.

3.1.5 AdS×S Contact Diagrams in Mellin Space

Inserting the expression for the AdS contact term, D(d), as a Mellin integral (3.1.25)

and the sphere analogue B(d) as an expansion (3.1.29) into the expression for the

AdS×S contact term (3.1.40), we get, after some simplifications, a Mellin represent-

ation for the AdS×S contact term:

DAdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) =

πd+1

(−2)Σ∆∏i Γ(∆i)

×
∞
∑
pi=0

(−1)Σp ∫
dδij

(2πi)2 ∑
{dij}

(∏
i<j

(Yi.Yj)dij

(Xi.Xj)δij

Γ(δij)
Γ(dij + 1)) × (Σp+d/2+1)Σ∆−d−1 ,

where ∑
i<j
δij = pj +∆j , ∑

i<j
dij = pj , (3.1.41)

and xn = Γ(x + n)/Γ(x) is the Pochhammer-symbol.

We thus define the AdSd+1×Sd+1 Mellin amplitude, M∆i
[f](δij, dij), for any such

four-point expression, f(Xi, Yi), via a similar expression
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f(Xi, Yi) =
1
4!

πd+1

(−2)Σ∆
(∏

i

C∆i

Γ(∆i)
)

×
∞
∑
pi=0

(−1)Σp ∫
dδij

(2πi)2 ∑
{dij}

(∏
i<j

(Yi.Yj)dij

(Xi.Xj)δij

Γ(δij)
Γ(dij + 1)) ×M∆i

[f] ,

where ∑
i<j
δij = pj +∆j , ∑

i<j
dij = pj . (3.1.42)

Hence, the Mellin amplitude of an AdS×S contact diagram with no derivatives is not

in general a constant as for the AdS case, but rather a Pochhammer:

1
4! (∏i

C∆i
) ×DAdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) ↔ M∆i

(δij, dij) = (Σp+d/2+1)Σ∆−d−1 .

(3.1.43)

We now have all the tools at our disposal to discuss the first correction in the α′

expansion of the correlators.

3.2 α′3 Corrections

Having outlined the general procedure for computing stringy corrections to tree-level

four-point half-BPS correlators in N = 4 SYM using an effective action in AdS5×S5,

we will now illustrate how this works for the first correction to the supergravity

prediction which occurs at order α′3.

In particular, the first term of the effective action (3.1.18) is just a φ4 interaction:

Sα′3 =
1

8 × 4! (
α′

2 )
3
× 2ζ3 × ∫

AdS×S
d5X̂d5Ŷ φ(X̂, Ŷ )4 . (3.2.1)

To obtain the corresponding CFT correlators we mimic the standard AdS/CFT

procedure for obtaining correlators from AdS, but in a fully 10d covariant way,

including the sphere manifestly. Using the generalised bulk-to-boundary propagators

in (3.1.33) we obtain the AdS×S Witten diagram for this contact interaction, yielding

the following proposal for the α′3 corrections to the correlators:
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⟨OOOO⟩∣α′3

= 1
8 × 4! (

α′

2 )
3
× 2ζ3 ×

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

(P1 +Q1)4(P2 +Q2)4(P3 +Q3)4(P4 +Q4)4

= 1
8 × 4! (

α′

2 )
3
(C4)4 × 2ζ3 ×DAdS5×S5

4444 . (3.2.2)

We can now extract any specific half-BPS correlator from (3.2.2) by expanding to

the appropriate power in Yi (see (3.1.13)). First note that the 10d bulk-to-boundary

propagator Taylor expands as

(Pi +Qi)−4 =
∞
∑
p=2

(−1)p (p − 1)3

3! (Pi)−p−2(−Qi)p−2 . (3.2.3)

So the individual correlators are given by6:

⟨Op1Op2Op3Op4⟩∣α′3

= 1
8 × 4! (

α′

2 )
3
× 2ζ3 ×

(C4)4

(−2)16∏
i

(pi − 1)3

3! ∫
AdS

d5X̂∏
i

1
(Pi)pi+2 × ∫S d

5Ŷ ∏
i

(Qi)pi−2

= 1
8 × 4! (

α′

2 )
3
(C4)4 × 2ζ3 × (∏

i

(pi − 1)3

3! )

×D(4)
p1+2p2+2p3+2p4+2(Xi) ×B(4)

p1−2p2−2p3−2p4−2(Yi) . (3.2.4)

To see what it looks like in Mellin space we plug the Mellin transform of D (3.1.25)

and the expansion of B (3.1.29) into this expression (or just use (3.1.41)) giving the

Mellin amplitude (defined in (3.1.42))

Mα′3 = 1
8 (α′2 )3 × 2ζ3 × (Σp−1)3 . (3.2.5)

This correctly reproduces the results of [10, 11, 13] for the Mellin amplitude of

half-BPS correlators at this order.
6This is (3.1.40) with ∆i = d = 4 and with pi → pi − 2 to account for the fact that the lowest

correlator is labelled with pi = 2 rather than pi = 0. We do not need to worry about the minus signs
in the factors (−1)p in (3.2.3) since Bp1p2p3p4 = 0 if p1 + p2 + p3 + p4 is odd .
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3.3 Algorithm for Computing General α′

Corrections

At higher orders in α′ the effective action (3.1.18) has terms with covariant derivatives

acting on the scalar field. Thus before proceeding, we describe an efficient way to

evaluate generalised contact diagrams with derivatives in AdS×S in position space.

Then we present a general formula for converting them to Mellin space.

3.3.1 Generalised Witten Diagrams

Computing the action of the covariant derivatives quickly becomes complicated and

so it is useful to develop an algorithm to do this automatically. We will motivate

the algorithm by building up from simple cases. First, we consider the application

of multiple covariant derivatives at a single point in AdS. From (3.1.23) this is given

recursively as

∇A∇B...∇Cφ = PA
′

A PB
′

B ...PC
′

C ∂A′ (∇B′ ...∇C′φ) , ∇Aφ = PA
′

A ∂A′φ . (3.3.1)

So the application of two covariant derivatives gives

∇B∇Aφ = PB
′

B PA
′

A ∂B′(PA′′A′ ∂A′′φ) = PB
′

B PA
′

A ∂B′∂A′φ + PBAX̂.∂φ . (3.3.2)

The first term arises from the partial derivative ∂B′ being commuted through PA′′A′

whereas the second term arises from the partial derivative hitting PA′′A′ . To arrive

at this form, one then uses the definition of P given in (2.3.4) as well as the useful

formulae (2.3.5). We denote this result graphically as

∇B∇A =
A

B +
A

B

, (3.3.3)

where each vertex corresponds to an index ordered vertically such that the bottom

one is the index of the first derivative to act. An isolated vertex at position A

denotes (P.∂)A (with the understanding that the derivative has been commuted all
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the way to the right) whereas an edge between vertices A and B denotes PABX̂.∂.

Next, consider three covariant derivatives. Here we obtain

∇C∇B∇Aφ

= PC′
C PB

′
B PA

′
A ∂C′ (PB′′

B′ PA′′A′ ∂B′′∂A′′ + PB′A′X̂.∂)φ

= (PC′
C PB

′
B PA

′
A ∂C′∂B′∂A′ + PACPB

′
B X̂.∂∂B′ + PCBPA

′
A X̂.∂∂A′ + PABPC

′
C X̂.∂∂C′

+PABPC
′

C ∂C′)φ

=
A

B

C

+
A

B

C

+
A

B

C

+
A

B

C

+
A

B

C

, (3.3.4)

and we give the corresponding diagrammatic form in the same order as the terms

above. All terms apart from the last arise either from the derivative, ∂C , hitting a P

(which we denote with a solid line) or commuting through (leaving an isolated vertex

at C). The last term arises from the derivative, ∂C , hitting the X̂.∂ term associated

with the solid line between A and B. We denote this by a dotted line from C to B.

Thus, a solid line with a dotted line attached to the top of it loses its decoration, X̂.∂.

For the general case of several derivatives acting at a point we can work recursively:

each additional derivative either commutes through everything, corresponding to an

isolated vertex, or it hits a P corresponding to a solid line, or it hits a X̂.∂, denoted

by a dotted line. We add all such lines in all possible ways. Hence, the n-derivative

term is given diagrammatically by summing all graphs containing n vertices in a

vertical line, with any number of solid edges between any two points, such that no

vertex is attached to more than one solid edge, and with any number of dotted edges

from the vertex at the top of a solid edge to a higher vertex either isolated or at the

bottom of a solid edge.

The above examples are already enough to illustrate the key ingredients of the general

algorithm for obtaining an explicit expression for several covariant derivatives at a

point, ∇A1∇A2 . . .∇An by summing over all possible graphs.
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Algorithm for ∇A1∇A2 . . .∇Anφ

1. Draw n vertices vertically. Each corresponds to an embedding space index

ordered so the bottom one corresponds to An and the top one to A1.

2. Draw any number of solid edges between any two vertices such that each vertex

is connected to at most one solid edge.

3. Draw any number of dotted edges from the upper vertex of a solid edge up to

either a higher disconnected vertex or a higher vertex that is the lower vertex

of a solid edge. No vertex can be attached to more than one dotted edge.

4. Sum over all the resulting graphs with the following interpretation:

A = PA′A ∂A′ A

B

= PABX̂.∂ A

B

= PAB

(3.3.5)

So solid edges come with a decoration X̂.∂ unless they have a dotted line

attached to the top in which case the decoration is removed (otherwise the

dotted lines can be ignored).

A general derivative interaction term consists of covariant derivatives acting on differ-

ent scalars with indices contracted together pairwise. We denote this graphically by

putting together two or more of the above vertical graphs and adding grey edges cor-

responding to the contractions. So for example we obtain ∇B∇Aφ1∇B∇Aφ2 by taking

two copies of all the two-derivative diagrams (3.3.3) and gluing the corresponding

vertices together

∇B∇Aφ1∇B∇Aφ2 =
φ1 φ2

+
φ1 φ2

+
φ1 φ2

+
φ1 φ2

= PAA′PBB′(∂A∂Bφ1)(∂A′∂B′φ2) + PAB(∂A∂Bφ1)X̂.∂φ2

+ PAB(∂A∂Bφ2)X̂.∂φ1 + PAA(X̂.∂φ1)(X̂.∂φ2) . (3.3.6)
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Similarly we obtain ∇C∇B∇Aφ1∇Aφ2∇Bφ3∇Cφ4 by taking the three-derivative dia-

gram (3.3.4) together with three more vertices to the right and gluing the vertices

correspondingly

∇C∇B∇Aφ1∇Aφ2∇Bφ3∇Cφ4

=
φ1 φ2 φ3 φ4

+
φ1 φ2 φ3 φ4

+
φ1 φ2 φ3 φ4

+
φ1 φ2 φ3 φ4

+
φ1 φ2 φ3 φ4

=PAA′PBB′PCC′(∂A∂B∂Cφ1)(∂A′φ2)(∂B′φ3)(∂C′φ4)

+ PBB′PAC(X̂.∂∂Bφ1)(∂Aφ2)(∂B′φ3)(∂Cφ4)

+ PAA′PBC(X̂.∂∂Aφ1)(∂A′φ2)(∂Bφ3)(∂Cφ4)

+ PCC′PAB(X̂.∂∂Cφ1)(∂Aφ2)(∂Bφ3)(∂C′φ4)

+ PCC′PAB(∂Cφ1)(∂Aφ2)(∂Bφ3)(∂C′φ4) . (3.3.7)

The general algorithm for interaction terms is then a straightforward extension of

the one above for covariant derivatives acting on a single scalar.

Algorithm for contact interactions in AdS

1. For each scalar φi with ni covariant derivatives acting on it, draw all the

corresponding contributing vertical graphs using the above algorithm. Place

the graphs for each scalar next to each other horizontally (taking the outer

product over the list of graphs at each point).

2. Draw grey lines between corresponding contracted vertices in the interaction

term.

3. Finally sum over all the resulting graphs with the following interpretation:
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4. Each connected path of solid and grey lines with end points in the vertical line

above φi and φj corresponds to PAB∂Aφi∂Bφj.

5. Each solid line above φi corresponds to X̂.∂φi, as long as it does not have a

dotted line attached to its upper vertex (if it does have such a dotted line it has

no additional contribution).

See the above two examples (3.3.6) and (3.3.7).

So far we have only discussed AdS covariant derivatives. The above rules can be

used with the obvious modifications if instead we are viewing the action on a sphere

(i.e. A,B indices become I, J indices, X̂ → Ŷ and PAB → PIJ in (2.3.4)). However,

our main purpose here is to consider AdS×S covariant derivatives. Thus, each

vertex now represents a 10d index µ = (A, I) but there needs to be some non-trivial

re-interpretation in the case of the product geometry.

Algorithm for contact interactions in AdS×S

The first three steps of the algorithm are as for the AdS case above. Then

4. Each connected path of solid and grey lines with end points in the vertical line

above φi and φj respectively corresponds to Pµν∂µφi∂νφj, but:

5. Each solid line above φi, as long as it does not have a dotted line attached to its

upper vertex, breaks this manifest 10d structure by contributing a multiplicative

factor X̂A∂Aφi, if the index running through it is in AdS or −Ŷ I∂Iφi if the

index running through is in the sphere. (The minus sign appears in the latter

case since this term arises from a derivative hitting P in (2.3.4) or (3.1.21)

which has a minus sign for the internal case.)

6. Finally, there is an additional subtlety related to the dotted lines. The dotted

line ties together the index type corresponding to the otherwise potentially

disconnected parts of the graph, and then contributes a factor of +1 if the
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index running through is in AdS or −1 if the index running through is in the

sphere. (Recall that the dotted lines arise from derivatives ∂X̂ or ∂Ŷ hitting the

decoration X̂A∂Aφi or −Ŷ I∂Iφi. Thus firstly, this vanishes unless the derivative

type (AdS or S) is the same as that of the solid line (hence tying together the

index type), and secondly it gives ±1 depending on whether it is AdS or S.)

Thus, for example the AdS×S covariant version of (3.3.7) is, with each of the five

lines corresponding to the five graphs in (3.3.7),

∇
ρ
∇
ν
∇
µφ1∇µφ2∇νφ3∇ρφ4

= P
µµ′
P
νν′
P
ρρ′

(∂µ∂ν∂ρφ1)(∂µ′φ2)(∂ν′φ3)(∂ρ′φ4)

+ P
νν′
P
AC

(X̂.∂X̂∂νφ1)(∂Aφ2)(∂ν′φ3)(∂Cφ4) − P
νν′
P
IK

(Ŷ .∂Ŷ ∂νφ1)(∂Iφ2)(∂ν′φ3)(∂Kφ4)

+ P
µµ′
P
BC

(X̂.∂X̂∂µφ1)(∂µ′φ2)(∂Bφ3)(∂Cφ4) − P
µµ′
P
JK

(Ŷ .∂Ŷ ∂µφ1)(∂µ′φ2)(∂Jφ3)(∂Kφ4)

+ P
ρρ′
P
AB

(X̂.∂X̂∂ρφ1)(∂Aφ2)(∂Bφ3)(∂ρ′φ4) − P
ρρ′
P
IJ

(Ŷ .∂Ŷ ∂ρφ1)(∂Iφ2)(∂Jφ3)(∂ρ′φ4)

+ P
CC′
P
AB

(∂Cφ1)(∂Aφ2)(∂Bφ3)(∂C′φ4) − P
KK′
P
IJ

(∂Kφ1)(∂Iφ2)(∂Jφ3)(∂K′φ4) .

(3.3.8)

In particular, note that only the first line is manifestly 10d covariant (has only 10d

µ, ν indices). Also compare carefully the penultimate with the final line. These

arise from similar graphs (the last two in (3.3.7)) but one with a dotted line and

one without. In the final line, as well as the decoration X̂.∂X̂ or Ŷ .∂Ŷ being absent,

the dotted line has tied together the two otherwise disconnected parts of the graph,

meaning for example that all indices are either AdS or S, with no mixed ones, unlike

the penultimate line.

Finally, note that in practice for our purposes here the derivatives will always be

acting on bulk-to-boundary propagators (3.1.33) and thus partial derivatives acting

on a single scalar, ∂µ1∂µ2 . . . ∂µni
φi, give (−1)ni(∆i)ni

Xµ1 . . .Xµni etc.
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3.3.2 Mellin Space

The previous subsection gave an algorithm for obtaining explicit expressions for the

integrands of generalised Witten diagrams in AdS×S coming from contact interactions

with derivatives. This will result in integrands corresponding to decorations of

the (no-derivative) contact diagram D (3.1.37). The decorations are in the form

of polynomials in Xi.Xj, Yi.Yj, Qi and Pi which are homogeneous at each point

(i.e. scale the same under the local scaling Xi.Xj → eiejXi.Xj, Yi.Yj → eiejYi.Yj,

Qi → eiQi and Pi → eiPi). Each term of such a decoration thus has the form

1
4!
∏i C∆i

(−2)2Σ∆ ∫AdS×S d
d+1X̂dd+1Ŷ

⎛
⎜
⎝
∏
i

Q
nQ

i
i P

nP
i

i × (∆i)ni

(Pi +Qi)∆i+ni

⎞
⎟
⎠
× (∏

i<j
(Xi.Xj)n

X
ij (Yi.Yj)n

Y
ij) ,

(3.3.9)

with ni = nPi + n
Q
i + ∑j nXij + ∑j nYij. We define ΣX ,ΣY to represent the sum of all

the nXij , nYij respectively, ΣQ,ΣP represents half the sum of all the nQi , nPi and Σn

half the sum of the ni, so Σn = ΣP +ΣQ +ΣX +ΣY . Such a decorated integral will

modify (3.1.40) to

(−2)2ΣX+2ΣY

∞
∑
pi=0

(
4
∏
i=1

(−1)pi
(pi + 1)∆i+ni−1

Γ(∆i)
D

(d)
pi+∆i+ni−nP

i

(Xi)B(d)
pi+nQ

i

(Yi))

× (∏
i<j

(Xi.Xj)n
X
ij (Yi.Yj)n

Y
ij) . (3.3.10)

Inserting the Mellin transform ofD (3.1.25) and expansion of B (3.1.29) and perform-

ing some re-definitions and simplifications then gives the Mellin amplitude (defined

in (3.1.42)):

M∆i
[(3.3.9)] =(−2)ΣX 2ΣY (−1)2ΣQ (∏

i<j
(δij)nX

ij
(dij−nYij+1)nY

ij
)

× (∏
i

(pi+nXi +∆i)nP
i
(pi−nQi −nYi +1)nQ

i
)(Σp−ΣY +d2+1)Σ∆−d−1+ΣX+ΣY

,

where ∑
i<j
δij = pj +∆j , ∑

i<j
dij = pj . (3.3.11)

We will use this general formula, in conjunction with the algorithm of the previous

subsection, to compute higher-order terms in the α′ expansion of half-BPS correlators
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in the next sections.

3.4 α′5 Corrections

After α′3, the next terms in the effective action for string corrections occur at α′5. In

the flat space limit, such terms contain four derivatives, so first we consider all the

possible terms in the effective action in AdS×S involving four derivatives. At first

there are many terms one can write down, but using integration by parts as well

as the equations of motion (3.1.36) reduces the number down quickly. We find that

in fact there are only two linearly independent terms one can write down involving

four derivatives:

(∇φ.∇φ)2 and ∇2∇µφ∇µφφ2 . (3.4.1)

These are the two terms appearing in the effective action (3.1.18). Any other four-

derivative term can be written in terms of these, using integration by parts and the

equations of motion. For example

∇µ∇νφ∇µφ∇νφφ ∼ −1
2 (∇φ.∇φ)2

,

(∇µ∇νφ∇µ∇νφ)φ2 ∼ (∇φ.∇φ)2 −∇2∇µφ∇µφφ2 . (3.4.2)

Although at this level the independent integrands can be obtained by hand, they

can also be nicely checked on a computer by using the algorithm of the previous

section and converting to Mellin space where the integration by parts identities are

made manifest. Simply list all possible four-derivative integrands on the computer,

use the algorithm to obtain the corresponding integrand, convert them to Mellin

amplitudes, and then solve for the independent ones.

We see here for the first time that the effective action has an ambiguity - a term not

determined by the Virasoro-Shapiro amplitude: in the flat space limit the second

integrand in (3.4.1) will vanish (as we can commute the Laplacian through so it acts

directly on φ giving zero by the equations of motion) and so remains undetermined.
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The complete effective action at this order is thus (see (3.1.18))

Sα′5 =
1
8 (α

′

2 )
5
(ζ5S

main
α′5 +C0S

amb
α′5 +A2S

main
α′3 ) , (3.4.3)

where

Smain
α′5 = 3

4! ∫AdS×S d
5X̂d5Ŷ (∇φ.∇φ)(∇φ.∇φ) ,

Samb
α′5 = 6

4! ∫AdS×S d
5X̂d5Ŷ∇2∇µφ∇µφφ2 ,

Smain
α′3 = 1

4! ∫AdS×S d
5X̂d5Ŷ φ4 . (3.4.4)

The ambiguity in the third line of (3.4.4) vanishes in the flat space limit since it

comes from a 1/R2 expansion of the coefficient of the α′3 correction in (3.1.18).

Replacing the scalar fields by bulk-to-boundary propagators and applying the covari-

ant derivatives directly on them then gives a prediction for the half-BPS correlators

at this order in α′. First consider the main contribution (3.4.4)

⟨OOOO⟩∣α′5;main

= 1
4!

(C4)4

(−2)16 ∫AdS×S d
5X̂d5Ŷ

N12N34 +N13N24 +N14N23

(P1 +Q1)5(P2 +Q2)5(P3 +Q3)5(P4 +Q4)5 × 44 , (3.4.5)

where

Nij =Xi.Xj + Yi.Yj + PiPj −QiQj . (3.4.6)

This can then be straightforwardly expanded to give any correlator directly and

explicitly in position space in terms of AdS and S contact diagram functions, as is

done for a general integral in (3.3.10). The corresponding Mellin amplitude can also

be read off directly from (3.3.11)

Mmain
α′5 = 4 [ (Σp−1)5 (s2 + t2 + u2)

+ (Σp−1)4 (−10 (s̃ s + t̃ t + ũu) − 5 (cs s + ct t + cu u))

+ (Σp−1)3 (20 (s̃2 + t̃2 + ũ2) + 4 (c2
s + c2

t + c2
u) + 20 (s̃ cs + t̃ ct + ũ cu))

+ (Σp−1)3 (−12 Σ2
p) ] . (3.4.7)

Here we have used (3.3.11) to obtain the Mellin amplitude (with ∆i = 4, d = 4 and
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pi → pi − 2) and then solved the constraints

∑
i<j
δij = pj + 2 , ∑

i<j
dij = pj − 2 , (3.4.8)

in terms of new variables (s, t, u) and (s̃, t̃, ũ), which are defined as follows [15]:

δ12 = −s + cs , δ14 = −t + ct , δ13 = −u ,

δ23 = −t , δ24 = −u + cu , δ34 = −s ,

d12 = s̃ + cs , d14 = t̃ + ct , d13 = ũ ,

d23 = t̃ , d24 = ũ + cu , d34 = s̃ ,

s = s + s̃ , t = t + t̃ , u = u + ũ , (3.4.9)

where s + t + u = −p3 − 2 , s̃ + t̃ + ũ = p3 − 2 and s + t + u = −4. We also define

cs =
p1 + p2 − p3 − p4

2 , ct =
p1 + p4 − p2 − p3

2 , cu =
p2 + p4 − p3 − p1

2 . (3.4.10)

Note that for any CFT with a string theory or M-theory dual, the leading terms

of the Mellin amplitude in the limit s, t → ∞ can be compared to the appropriate

higher-dimensional string-/M-theory scattering amplitude. In our case, the first

line in (3.4.7) is leading in the flat space limit and is fixed from the flat space VS

amplitude.

Now let us take a closer look at the ambiguity in the second line of (3.4.4). Using

the equations of motion (3.1.36), the integrand can be written as

∇2∇µφ∇µφφ2 = [∇2
X̂
,∇A]φ∇Aφφ2 + [∇2

Ŷ
,∇I]φ∇Iφφ2 . (3.4.11)

Moreover, after some algebra we find that

[∇2
X̂
,∇A]φ = −d∇Aφ , [∇2

Ŷ
,∇I]φ = d∇Iφ , (3.4.12)

so the ambiguity can be written as

∇2∇µφ∇µφφ2 = −d ((∇X̂φ)
2 − (∇Ŷ φ)

2)φ2 . (3.4.13)



64 Chapter 3. Towards the Virasoro-Shapiro Amplitude in AdS5×S5

The corresponding Witten diagram expression is given by

⟨OOOO⟩∣α′5;amb = −
1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4∑
i<j

Lij
(Pi +Qi) (Pj +Qj)

× 43 ,

(3.4.14)

where

Lij =Xi.Xj + PiPj − Yi.Yj +QiQj . (3.4.15)

This takes a very simple form in Mellin space

Mamb
α′5 = 4 (Σp − 1)3 (c2

s + c2
t + c2

u +Σ2
p − 16) . (3.4.16)

Moreover, after multiplying the α′3 term in (3.2.5) by (α′/(2R2))2 (where we set

R = 1), it can be thought of as an additional ambiguity at α′5, which is the origin of

the third line in (3.4.4) as we have seen before. Restoring the prefactors in (3.4.3),

the α′5 correction to the Mellin amplitude for half-BPS correlators can be written

as a sum over three terms:

Mα′5 =
1
8 (α

′

2 )
5
(ζ5Mmain

α′5 +C0Mamb
α′5 +A2Mmain

α′3 ) , (3.4.17)

where Mmain
α′3 = (Σp − 1)3 (it is given in (3.2.5) but here we take it without the

explicit normalisation there). The coefficients of the subleading terms can be fixed

by comparing to the localisation result in [12] and are given by

C0 = −
3
2 ζ5 , A2 = −30 ζ5 . (3.4.18)

We find perfect agreement with the results from bootstrap methods of [14] (rewritten

in this notation in [15])7.

3.5 α′6 Corrections

At order α′6 we have to consider all possible terms in the effective action involving

six derivatives. Using a computer, it is straightforward to enumerate all possibilities

7We thank Francesco Aprile for explicitly checking this agreement.
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and compute their Mellin amplitudes using the algorithm explained in section 3.3

to find all linearly independent terms. After doing so, we find that there are only

two linearly independent terms involving six derivatives:

(∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) and ∇µ∇2∇νφ∇µ∇νφφ2 , (3.5.1)

which appear in the effective action in (3.1.18). The first term is the main correction

at α′6 while the second term is an ambiguity which vanishes in the flat space limit

and is thus not determined by the flat space Virasoro-Shapiro amplitude.

The complete action at order α′6 is given by (see (3.1.18))

Sα′6 =
1
8 (α

′

2 )
6
(2(ζ3)2Smain

α′6 +E0S
amb
α′6 +B1S

main
α′5 +C1S

amb
α′5 +A3S

main
α′3 ) , (3.5.2)

where

Smain
α′6 = 1

4! ∫AdS×S d
5X̂d5Ŷ (∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) ,

Samb
α′6 = 6

4! ∫AdS×S d
5X̂d5Ŷ∇µ∇2∇νφ∇µ∇νφφ2 , (3.5.3)

and the rest was defined in (3.4.4) (in particular, they arise from taking all the terms

contributing at α′5 and multiplying them with α′/(2R2) with unfixed numerical

coefficients and setting R = 1). We then find that the main contribution to half-BPS

correlators at this order is

⟨OOOO⟩∣α′6;main

= 1
4!

1
6

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)5 [ N12M34

(P3 +Q3) (P4 +Q4)
+ perms] × 44 × 52 , (3.5.4)

where the correlator is understood to come from the first line of (3.5.3), Nij was

defined in (3.4.6) and

Mij = (Xi.Xj + PiPj + Yi.Yj −QiQj)2 − 1
5 (PiPj −QiQj)2

. (3.5.5)

Before discussing the Mellin amplitude of the main contribution, let us briefly de-
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scribe the ambiguity whose integrand can be written as

∇µ∇2∇νφ∇µ∇νφφ2 = −d ((∇A∇Bφ)2 − (∇I∇Jφ)2)φ2 , (3.5.6)

where A and I indices label X̂ and Ŷ coordinates, respectively. We obtained the

right hand side by commuting the ∇2 with ∇ν and using the equations of motion

as we did in the previous subsection. The Witten diagram expression associated

with (3.5.6) is

⟨OOOO⟩∣α′6;amb

= 1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4∑
i<j

Kij

(Pi +Qi)2 (Pj +Qj)2 × 43 × 52 , (3.5.7)

where

Kij = (Xi.Xj + PiPj)2 − (Yi.Yj −QiQj)2 − 1
5
((PiPj)2 − (QiQj)2) . (3.5.8)

Converting this to Mellin space gives the ambiguity

Mamb
α′6 = −32 [ (Σp−1)5 (s2 + t2 + u2)

+ (Σp−1)4
1
2
(s c2

s + t c2
t + u c2

u)

− (Σp−1)4 (Σp + 3) [2 (s s̃ + t t̃ + u ũ) + (s cs + t ct + u cu)]

− (Σp−1)3 ((c3
s + c3

t + c3
u) + 2 (c2

s s̃ + c2
t t̃ + c2

u ũ) − 10 Σp (s̃2 + t̃2 + ũ2))

+ (Σp−1)3 (10 Σp (s̃ cs + t̃ ct + ũ cu) + 3 Σp (c2
s + c2

t + c2
u))

+ (Σp−1)3 (−2 Σ3
p − 16 Σp) ] . (3.5.9)

Converting (3.5.4) to Mellin space, the Mellin amplitude of the main contribution is

Mmain
α′6 = M̂main

α′6 − 1
12M

amb
α′6 , (3.5.10)

where

M̂main
α′6 = 8

3[ (Σp−1)6 (s3 + t3 + u3)

+ (Σp−1)5 (6 Σp (s2 + t2 + u2) − 18 (s2 s̃ + t2 t̃ + u2 ũ))
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+ (Σp−1)5 (−9 (s2 cs + t2 ct + u2 cu))

+ (Σp−1)4 (90 (s s̃2 + t t̃2 + u ũ2) + 39
2

(s c2
s + t c2

t + u c2
u))

+ (Σp−1)4 90 (s s̃ cs + t t̃ ct + u ũ cu)

+ (Σp−1)4 (−60 Σp (s s̃ + t t̃ + u ũ) − 30 Σp (s cs + t ct + u cu))

+ (Σp−1)3 (−120 (s̃3 + t̃3 + ũ3) − 9 (c3
s + c3

t + c3
u))

+ (Σp−1)3 (−180 (s̃2 cs + t̃2 ct + ũ2 cu) − 78 (c2
s s̃ + c2

t t̃ + c2
u ũ))

+ (Σp−1)3 (120 Σp (s̃2 + t̃2 + ũ2) + 27 Σp (c2
s + c2

t + c2
u))

+ (Σp−1)3 (120 Σp (s̃ cs + t̃ ct + ũ cu) − 50 Σ3
p − 16 Σp) ] . (3.5.11)

This Mellin amplitude shows a similar structure as (3.4.7). Every line is multiplied by

a Pochhammer depending on the power of {s, t,u} and the rest is at most cubic in the

variables {s, t,u, s̃, t̃, ũ, cs, ct, cu,Σp}. Additionally, after multiplying the three terms

which span the α′5 correction in (3.4.17) by α′, they become additional ambiguities

at α′6, see the expansion (3.1.19). The complete Mellin amplitude for half-BPS

correlators at order α′6 can then be written as a sum over five terms:

Mα′6 =
1
8 (α

′

2 )
6
(2 (ζ3)2Mmain

α′6 +E0Mamb
α′6 +B1Mmain

α′5 +C1Mamb
α′5 +A3Mmain

α′3 ) , (3.5.12)

where we restore the coefficients from (3.5.2).8

We can fix two of the coefficients by comparing the Mellin amplitude to the result

from localisation in [97, 98]. To compare (3.5.12) to [97] we take s→ s
2 − 2, t→ t

2 − 2

and specialise to pi = 2 (where s̃ = t̃ = ũ = 0):

M2222
α′6 = 1

8 (α
′

2 )
6
× 60 (672(ζ3)2 s t u + 14 (3B1 + 4 ((ζ3)2 − 6E0)) (s2 + t2 + u2)

+A3 − 96B1 + 768E0 − 3200(ζ3)2) , (3.5.13)

where u = 4 − s − t. We can now compare this expression to the result in [97] and

8Note that the number of ambiguities is consistent with the number obtained via the bootstrap
method. We thank Francesco Aprile, James Drummond, Hynek Paul and Michele Santagata for
discussions on this.



68 Chapter 3. Towards the Virasoro-Shapiro Amplitude in AdS5×S5

partially fix the coefficients to

E0 =
B1

8 + 2(ζ3)2

3 , A3 = 0 , (3.5.14)

which leads to the α′6 correction to the correlator for pi = 2:

M2222
α′6 = 1

8 (α
′

2 )
6
× 2 (ζ3)2 × (3)6 [s t u −

1
4
(s2 + t2 + u2) − 4] . (3.5.15)

It is noteworthy that localisation predicts the coefficient A3 = 0. Localisation also

predicts the absence of any α′4 corrections i.e. A1 = 0 [12]. Indeed, as we discuss

in the conclusions, it is natural to expect all odd terms in the expansion of the

coefficients in α′/R2 (see (3.1.19)) to vanish in which case we would have B1 = C1 = 0

and then the α′6 correction to the Mellin amplitude in (3.5.12) is completely fixed.

3.6 α′7 Corrections

Using the algorithm explained in section 3.3 to find all linearly independent terms in

the effective action involving eight derivatives, we find that there are six independent

terms, notably the main contribution

(∇µ∇νφ∇µ∇νφ)2 , (3.6.1)

and five ambiguities:

(∇µ∇ν∇µ∇ρ∇σ∇ρφ) (∇ν∇σφ)φ2 , (∇2∇µ∇ν∇ρ∇νφ) (∇µ∇ρφ)φ2 ,

(∇2∇µ∇ν∇ρ∇νφ) (∇ρφ) (∇µφ)φ , (∇µ∇ν∇ρ∇ν∇ρφ) (∇σ∇µφ) (∇σφ)φ ,

(∇µ∇ν∇ρ∇σ∇ρφ) (∇µ∇σφ) (∇νφ)φ . (3.6.2)

See appendix D for details on the ambiguities. The complete effective action at this

order is then given by (see (3.1.18))

Sα′7 =
1
8 (α

′

2 )
7
(1

2ζ7S
main
α′7 +G1;0S

amb1
α′7 +G2;0S

amb2
α′7 +G3;0S

amb3
α′7 +G4;0S

amb4
α′7 +G5;0S

amb5
α′7

+D1S
main
α′6 +E1S

amb
α′6 +B2S

main
α′5 +C2S

amb
α′5 +A4S

main
α′3 ) , (3.6.3)
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where the main contribution is

Smain
α′7 = 6

4! ∫AdS×S d
5X̂d5Ŷ (∇µ∇νφ∇µ∇νφ)2 , (3.6.4)

and the contributions from the five α′7 ambiguities in (3.6.2) to the effective action

are given in appendix D together with their Witten diagram expressions and Mellin

amplitudes. The contributions from lower α′ orders were defined in (3.4.4) and (3.5.3).

The prediction for the main contribution to the half-BPS correlator in position space

at this order is:

⟨OOOO⟩∣α′7;main =
2
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)6 [M12M34 + perms] × 44 × 54 ,

(3.6.5)

where Mij was defined in (3.5.5). The Mellin amplitude of the main contribution is

Mmain
α′7 =M̂main

α′7 + 63
8 M

amb1
α′7 − 31

4 M
amb2
α′7 − 25

32M
amb3
α′7 −Mamb4

α′7 − 32Mmain
α′5

− 85
2 M

amb
α′5 − 1024Mmain

α′3 , (3.6.6)

where M̂main
α′7 is:

M̂
main
α′7 = 32 [ (Σp−1)7 (s4

+ t4
+ u4)

+ (Σp−1)6 (8 Σp (s3
+ t3

+ u3) − 28 (s3 s̃ + t3 t̃ + u3 ũ) − 14 (s3 cs + t3 ct + u3 cu))

+ (Σp−1)5 (Σp (26 Σp + 9) (s2
+ t2

+ u2) + 252 (s2 s̃2
+ t2 t̃2 + u2 ũ2)

+ 252 (s2 s̃ cs + t2 t̃ ct + u2 ũ cu) + 57 (s2 c2
s + t2 c2

t + u2 c2
u)

− 144 Σp (s2 s̃ + t2 t̃ + u2 ũ) − 72 Σp (s2 cs + t2 ct + u2 cu) )

+ (Σp−1)4 ( − 840 (s s̃3
+ t t̃3 + u ũ3) − 75 (s c3

s + t c3
t + u c3

u)

− 1260 (s s̃2 cs + t t̃2 ct + u ũ2 cu) − 570 (s c2
s s̃ + t c2

t t̃ + u c2
u ũ)

+ 720 Σp [(s s̃2
+ t t̃2 + u ũ2) + (s s̃ cs + t t̃ ct + u ũ cu)]

+
1
2
(336 Σp − 1) (s c2

s + t c2
t + u c2

u)

−Σp (139 Σp + 27) [2 (s s̃ + t t̃ + u ũ) + (s cs + t ct + u cu)] )

+ (Σp−1)3 (840 (s̃4
+ t̃4 + ũ4) +

191
8

(c4
s + c

4
t + c

4
u) + 1680 (s̃3 cs + t̃

3 ct + ũ
3 cu)
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+ 1140 (s̃2 c2
s + t̃

2 c2
t + ũ

2 c2
u) + 300 (c3

s s̃ + c
3
t t̃ + c

3
u ũ)

− 960 Σp (s̃
3
+ t̃3 + ũ3) −

191
2

Σp (c
3
s + c

3
t + c

3
u)

− 1440 Σp (s̃
2 cs + t̃

2 ct + ũ
2 cu) − 671 Σp (c

2
s s̃ + c

2
t t̃ + c

2
u ũ)

+ 610 Σ2
p [(s̃

2
+ t̃2 + ũ2) + (s̃ cs + t̃ ct + ũ cu)]

+
573
4

Σ2
p (c

2
s + c

2
t + c

2
u) −

1471
8

Σ4
p − 116 Σ2

p)] , (3.6.7)

and the Mellin amplitudes of the ambiguities are given in appendix D. Note that

this exhibits a similar structure to (3.4.7) and (3.5.11), since every line is multiplied

by a Pochhammer depending on the power of {s, t,u} and the rest is at most quartic

in the variables {s, t,u, s̃, t̃, ũ, cs, ct, cu,Σp} . Collecting all possible contributions at

this order, the complete Mellin amplitude for the half-BPS correlator at α′7 is given

by eleven terms:

Mα′7 =
1
8 (α

′

2 )
7
(1

2 ζ7Mmain
α′7

+G1;0Mamb1
α′7 +G2;0Mamb2

α′7 +G3;0Mamb3
α′7 +G4;0Mamb4

α′7 +G5;0Mamb5
α′7

+D1Mmain
α′6 +E1Mamb

α′6 +B2Mmain
α′5 +C2Mamb

α′5 +A4Mmain
α′3 ) . (3.6.8)

The coefficients of the subleading terms remain unfixed at this order, to fix them we

would need additional information. As an example, let us look at the lowest-charge

correlator with pi = 2 (as in the previous section we shift s→ s
2 − 2 , t→ t

2 − 2):

M2222
α′7 = 1

8 (α
′

2 )
7
× 60 (a1 (s2 + t2 + u2)2 + a2 s t u + a3 (s2 + t2 + u2) + a4) , (3.6.9)

with u = 4 − s − t and

a1 = 1512 ζ7, a2 = 336 (D1 + 48 (G5;0 − 2 ζ7)) ,

a3 = 42B2 + 28 (D1 − 6 (2E1 − 18G1;0 − 20G2;0 + 40G3;0 − 12G5;0 + 23 ζ7)) ,

a4 = A4 − 32 (3B2 + 50D1 − 12 (2E1 − 18G1;0 − 20G2;0 + 40G3;0 − 204G5;0 + 335 ζ7)) .

(3.6.10)
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3.7 Conclusions and Future Directions

To conclude, in this chapter, we have postulated a simple effective field theory in

ten dimensions describing all four-point tree-level string interactions in AdS5×S5.

To obtain the interaction terms in the AdS5×S5 effective action we start from the

flat space VS amplitude written as an infinite series in small α′, where the leading

term is supergravity and all subleading terms describe string corrections and can

be obtained from a scalar effective action in flat space. Lifting the interaction

terms in this flat space action to AdS5×S5 by replacing the flat space derivatives

with 10d covariant derivatives containing both AdS and S derivatives we obtain the

curved space analogue of the scalar effective field theory. The main new tool to

obtain correlators from this effective action was to use a new formulation of Witten

diagrams and the Mellin transform which is manifestly 10d and treats AdS and S

on equal footing. We have shown that this simple description reproduces previous

results for all four-point correlators of half-BPS operators in N = 4 SYM up to

order α′5, and have proposed a general algorithm for extending this to arbitrarily

high order. From this algorithm we obtained new predictions at α′6 and α′7. The

coefficients of the effective action can be determined by comparing to the flat space

VS amplitude, although there are curvature-dependent ambiguities which cannot be

fixed in this way and need additional input from other methods such as localisation.

After fixing all the coefficients in the effective action, the 10d Mellin amplitudes

derived from it can be thought of as the analogue of the VS amplitude in AdS5×S5.

Note that in the considerations above we have focused on the limit of tree-level string

theory for which all orders in the α′ effective action are known in flat space. However,

the coefficients of the first three terms in the flat space effective action (3.1.17) (i.e.

up to ∂6φ4) are actually known at the full non-perturbative level as functions of the

string coupling [111–115]9. These results imply that the coefficients in (3.1.19) can be

promoted to full functions of the complex Yang-Mills coupling τ = θ/(2π) + 4πiNα′2

9We thank Congkao Wen for drawing our attention to this.
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(see (3.1.2), where θ is the Yang-Mills theta-angle and we recall that Nα′2 = g−2
YM if

we set the AdS radius R = 1). Specifically they are promoted as

(α′2 )3
A0 = (α′2 )3 2ζ3 → 1

(24πN)3/2 ×E(3
2 , τ, τ̄) ,

(α′2 )5
B0 = (α′2 )5

ζ5 → 1
(24πN)5/2 ×

1
2E(5

2 , τ, τ̄) ,

(α′2 )6
D0 = (α′2 )6 2(ζ3)2 → 1

(24πN)3 × 3E(3, 3
2 ,

3
2 , τ, τ̄) , (3.7.1)

where A0,B0,D0 are the leading coefficients in the first, second, and fourth lines of

the left column in (3.1.19),

E(s, τ, τ̄) = 2ζ2s(I(τ))s(1 + . . . ) (3.7.2)

are non-holomorphic Eisenstein series and

E(3, 3
2 ,

3
2 , τ, τ̄) = 2

3(ζ3)2(I(τ))3(1 + . . . ) (3.7.3)

is a generalised Eisenstein series. In the above two equations the ellipses denote

perturbative and non-perturbative terms which vanish when I(τ) → ∞. The precise

definitions of the functions can be found for example in [98]. The modular functions

in (3.7.1) are a consequence of the SL(2,Z) symmetry of IIB string theory (see

subsection 3.1.1), which can be understood from compactifying M-theory on a torus

and identifying the IIB coupling τ with the complex structure of the torus [116, 117].

Furthermore, recently in [98, 110, 118] the corresponding dual (but lowest-charge

only) correlators were considered and completely fixed via localisation to all orders.

This then fixes the remaining ambiguities at this order (assuming B1 = C1 = 0 as we

discuss around (3.5.13) and the second bullet point below) in terms of the above

functions as

C0 = −
3
2B0 , A2 = −30B0 , E0 =

D0

3 . (3.7.4)

These relations follow from the earlier results in (3.4.18) and (3.5.14), respectively.

In summary, the 10d effective action in (3.1.18) appears to be a very useful way to
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describe IIB string theory in AdS5×S5 and a powerful tool for computing four-point

correlators in N = 4 SYM. We will propose a similar effective action for AdS2×S2 in

chapter 5.

Future directions

Let us now discuss some interesting questions for future research.

• Firstly, we have not proven the existence of the 10d scalar effective field theory

but rather justified it by showing that it reproduces known results for string

corrections to IIB supergravity in AdS5×S5 which were previously obtained

using bootstrap methods in [11–15]. Hence, it would be very interesting to

prove the existence of this local effective field theory and to do so one would

consider the superspace formalism. As on flat background [93], IIB supergravity

linearised on the AdS×S superspace background is again described by a chiral

scalar superfield with a certain fourth-order constraint [119, 120]. It presumably

then makes sense to integrate a superpotential consisting of a holomorphic

function of this scalar in chiral AdS×S superspace. This then leads to the

question of the existence of an effective chiral superpotential describing the

full nonlinear theory. Such an object has been discussed before [121–123] and

it would be interesting to explore this point further.

• As we have seen above, the effective action has ambiguities corresponding

to curvature corrections which vanish in the flat space limit. For low orders

in α′, we find that these ambiguities can be fixed by comparing to results

from localisation. It would be interesting to understand whether one could

find a systematic way to fix all the ambiguities. If this were possible, the

next question would be whether we can resum the α′ expansion to obtain a

compact form analogous to the flat space VS amplitude. If so, how does the

analytic structure become modified in curved background? Note here that, as

observed below (3.5.13), the explicit results for these ambiguities obtained via
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localisation are completely consistent with all odd powers in the expansion of

α′/R2 vanishing. Since the curvature has opposite sign for AdS (∼ −1/R2) and

S (∼ 1/R2), it is perhaps quite natural to expect that only even powers of the

curvature should contribute.

• Another important direction would be to extend this approach to other back-

grounds. As explained above, in N = 4 SYM the supersymmetry factors out

of certain correlators in a very simple way making it possible to derive them

from a 10d scalar theory in the bulk. We expect this factorisation to hold

when the bulk geometry is AdSp×Sq with p = q, but not when p ≠ q. And

we will propose the existence of such an action for AdS2×S2 in chapter 5 and

deduce the consequences. For AdSq×Sq with q = 3,5, it was recently shown

that supergravity correlators enjoy conformal symmetry which can be used to

lift the lowest-charge half-BPS four-point correlator to all higher-charge correl-

ators [41, 124, 125]. It would be interesting to investigate the relation of this

higher-dimensional conformal symmetry with the explicit higher-dimensional

integrals (AdS×S Witten diagrams) we write down here. We will investigate

this further in chapter 5 where we study holographic correlators in AdS2×S2

in the context of a 4d hidden conformal symmetry as well as derive higher-

derivative corrections from a 4d scalar effective action analogous to the one in

this chapter.

• It would also be interesting to extend this approach to higher-point correlators.

The four-point AdS×S contact diagrams have a direct generalisation to n

points. Note that an important feature of half-BPS four-point correlators in

N = 4 SYM that allowed us to write down a simple effective action was the

ability to factor out a polynomial which encodes all the supersymmetry. This

is analogous to factoring out a supersymmetric delta-function δ16(Q) from a

maximally supersymmetric four-point superamplitude in flat space. Therefore,

it is not obvious how to generalise this approach to generic n-point functions.
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However, there are specific cases where similar properties hold as for example

for the n-point maximally nilpotent correlators – those with fermionic degree

n − 4 [126–128] which have recently been studied at strong coupling in [110].

Thus, one might expect them to be computable from a 10d scalar effective

action just as for the four-point ones.

• It would also be conceptually very satisfying to derive the effective action

directly from CFT without assuming local spacetime description in the bulk.

A systematic approach to such a derivation was achieved in the context of a toy

model consisting of a scalar field in AdS in [30] using crossing and conformal

symmetry of boundary CFT correlators. This calculation was adapted to stress

tensor correlators in N = 4 SYM in [61]. The fact that IIB string theory in

AdS5×S5 can be reduced to a simple 10d effective field theory therefore suggests

that this program might be realised for a full-blown theory of quantum gravity.

• In recent years, loop corrections to the amplitudes have been obtained via

bootstrap methods on the CFT side of the duality [11, 85, 87–92]. It would

be very interesting to perform loop computations directly on the gravitational

side. This is usually technically very difficult and one could hope that the

simplicity at tree-level uncovered from the approach in this chapter could help

to give new insight also at loop-level.





Chapter 4

AdS7×S4: Recursion Relations for

Anomalous Dimensions in the 6d

(2, 0) Theory

This chapter is based on [43] and we mainly follow the structure of this paper.

We study anomalous dimensions of double-trace operators in the conformal block

expansion of stress tensor correlators in the 6d (2,0) theory. As mentioned in the

introduction, the 6d (2,0) theory is dual to M-theory in AdS7×S4 and studying the

holographic correlators is a promising way of understanding M-theory better. In

this chapter we are interested in the stable 5d objects whose worldvolume theory

is the 6d (2,0) theory, the M5-branes. In the low-energy limit, lP → 0, M-theory

can be approximated by 11d supergravity which on the CFT side of the duality

corresponds to studying correlation functions in the limit N →∞, since in AdS7×S4

we have the relation lP ∼ N−1/3 and N is the number of M5-branes. Recent progress

has been made in computing all supergravity tree-level correlators in AdS7×S4 in

Mellin space using constraints from the symmetry of the problem and the analytic

properties of the amplitudes [129, 130]. When going away from the strict large-N

limit and studying subleading terms we can learn something about higher-derivative

corrections to the 11d supergravity effective action. Since the CFT in question is
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non-Lagrangian and can therefore not be studied perturbatively, using conformal

bootstrap methods is a very promising approach (see chapter 2 for a review on

conformal bootstrap). We will use these methods to compute anomalous dimensions

of the operators in the conformal block expansion which will in turn tell us something

about the higher-derivative corrections.

Our main strategy, adapted from the seminal work of [30], is to expand the crossing

equations in the inverse central charge c, where it has been shown using holographic

methods, that c ∼ N3 [131]. Next, one takes a certain limit of the conformal

cross-ratios, the so-called light-cone limit, to isolate the terms in the conformal

block expansion corresponding to anomalous dimensions of double-trace operators.

We then truncate the conformal block expansion in spin and use an orthogonality

relation of the hypergeometric functions in the superconformal blocks to derive a

recursion relation for the anomalous dimensions. For truncated spin L, we find that

the solution to the recursion relation depends on (L + 2)(L + 4)/8 free parameters,

in agreement with holographic arguments of [30] (see section 2.3.2) and with the

explicit four-point functions found in [26]. In particular, they can be thought of as

the coefficients of higher-derivative corrections to supergravity in AdS7×S4 arising

from M-theory [26] (see [10, 61] for similar results in N = 4 SYM).

A strategy for fixing these coefficients using a chiral algebra conjecture [132] was

proposed in [28]. Moreover, the M-theory effective action can also be deduced from

correlators of the ABJM theory [3], which is dual to M-theory in AdS4×S7 [27, 29].

As a warm-up for our analysis in the (2,0) theory, we first derive recursion relations

for anomalous dimensions in an abstract non-supersymmetric 6d CFT, which we

match against the conformal block expansion of Witten diagrams for a massive scalar

field in AdS7. The recursion relations we obtain for both the toy model and the

(2,0) theory can be efficiently solved using a computer.

We start with a brief review of the 6d (2,0) Theory/M-Theory in AdS7×S4 corres-

pondence, followed by the derivation of recursion relations for anomalous dimensions

in a 6d toy model. Finally, we consider the 6d (2,0) theory, where we compute anom-
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alous dimensions which encode the higher-derivative corrections to the supergravity

effective action.

4.1 Review: 6d (2, 0) Theory/M-Theory in

AdS7×S4

In this section we briefly review some aspects of the correspondence between the

6d (2,0) theory and M-theory in AdS7×S4. Other important concepts used in this

chapter are conformal bootstrap methods and higher-derivative corrections which

were both reviewed in chapter 2. For a more detailed review on M-theory see e.g. [51].

The 6d (2,0) theory is the six-dimensional worldvolume theory of M5-branes with

OSp(8∗∣4) symmetry, which is the maximal supersymmetry in 6d. The worldvolume

theory of a single M5-brane can be formulated in terms of an abelian (2,0) tensor

multiplet [133–135]. The field content in this case consists of five scalars φI , eight

fermions and a self-dual two-form gauge field. Generalising this to a higher number

of branes and thus considering the interacting 6d (2,0) theory is very difficult. It

is believed to be non-Lagrangian, since a 6d local Lagrangian can be ruled out by

powercounting as it would contain non-renormalisable and unbounded interactions.

In [19] a 5d Lagrangian, which is believed to capture the full 6d physics, was proposed.

The 6d (2,0) theory is manifestly non-perturbative and the only tunable parameter

is N , which is the number of M5-branes. Therefore, a very promising approach

to study correlators in this theory is to constrain the CFT data using conformal

bootstrap methods. This in turn will tell us something about the bulk dual, M-

theory in AdS7×S4, or more specifically about the higher-derivative corrections to the

low-energy approximation, which is 11d supergravity. Note that higher-derivative

corrections can also be deduced from uplifting string calculations [111, 136, 137]. Let

us briefly review the field content and action of 11d supergravity before we discuss

holographic correlators in this example of the AdS/CFT duality.
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4.1.1 11d Supergravity

We start by considering the field content of 11d supergravity, where we focus on the

bosonic fields for our considerations. Firstly, the graviton which is a supersymmetric

traceless tensor of the symmetry group SO(9) has 44 bosonic degrees of freedom,

which counts the number of independent components of a symmetric 9 × 9 matrix

subtracting one because of tracelessness. For the theory to be supersymmetric, the

number of physical bosonic and fermionic degrees of freedom needs to be the same.

The only fermion field in the theory is the gravitino ΨM which has, in addition to

the vector index, an implicit spinor index. It is a 32-component Majorana spinor for

each value of the index M and has 128 fermionic degrees of freedom (see e.g. [51]

for more details on the fermionic degrees of freedom). To get the right number of

bosonic degrees of freedom (compared to 128 fermionic ones) one needs to include

a rank-3 antisymmetric tensor, represented by a three-form A3. The theory is then

invariant under gauge transformations A3 → A3 + dΛ2, where Λ2 is a two-form.

As a consequence of the gauge invariance the indices for the independent physical

polarisations are transverse (as for any antisymmetric tensor gauge field). Hence, the

three-form in 11 dimensions has 9 × 8 × 7/3! = 84 degrees of freedom and combining

this with the graviton gives 44 + 84 = 128 bosonic degrees of freedom which agrees

with the fermionic ones.

The bosonic part of the action of 11d supergravity is then given by

2κ2
11S = ∫ d11x

√
−G(R − 1

2 ∣F4∣2) −
1
6 ∫ A3 ∧ F4 ∧ F4 , (4.1.1)

with the scalar curvature R, the field strength F4 = dA3 and the 11d gravitational

coupling constant κ11. The coupling constant is related to the 11d Newton constant

G11d
N and the 11d Planck length lP as follows:

16πG11d
N = 2κ2

11 =
1

2π (2πlP )9 . (4.1.2)
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G is defined as detGMN where GMN is the metric combination

GMN = ηABEA
ME

B
N , (4.1.3)

with ηAB being the flat metric and EA
M a vielbein field where the indices M,N, . . .

describe curved base-space vectors in 11d and transform non-trivially under general

coordinate transformations. The indices A,B, . . . on the other hand describe flat

tangent-space vectors which transform non-trivially under local Lorentz transforma-

tions. The quantity ∣F4∣2 is defined as

∣F4∣2 =
1
4!G

M1N1 . . .GM4N4FM1⋯M4FN1...N4 . (4.1.4)

Note that the goal of this chapter is to go beyond the supergravity approximation

and obtain the form of higher-derivative corrections to the low-energy effective

action (4.1.1). We approach this by computing anomalous dimensions of operators

in the conformal block decomposition of the four-point stress tensor correlator in

the dual conformal field theory.

4.1.2 Holographic Correlators

We are interested in the study of four-point stress tensor correlators. The stress tensor

belongs to a half-BPS multiplet whose superconformal primary, TIJ , is a dimension-4

scalar in the two-index symmetric traceless representation 14 of the R-symmetry

group SO(5). As described in the review 2.3, general chiral primary operators are

constructed from scalar fields as φ(I1φI2 . . . φIk), which is totally symmetric and all

traces are understood to be removed. The superconformal primary of the stress

tensor multiplet in the 6d (2,0) theory is then constructed from the scalar fields φI

in the abelian (2,0) tensor multiplet as follows

TIJ = Tr(φIφJ) − δIJ5 Tr(φKφK) , (4.1.5)

where k = 2 and its scaling dimension is 2k = 4. Let us now consider the holographic

duals of these operators. Dimensionally reducing the bulk dual on the four-sphere
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yields a Kaluza-Klein tower of scalars in AdS7 with masses m2
k = 4k(k − 3) in units

of the inverse AdS radius [138], which agrees with (2.3.2). The KK modes are

the holographic duals of chiral primary operators with k indices which have scaling

dimension 2k. The superconformal primaries of the stress tensor multiplet TIJ (4.1.5),

which are the focus of this chapter, correspond to the bottom of the tower, k = 2,

and are dual to bulk scalars with mass m2 = −8.

Four-point correlators of stress tensor multiplets were computed in the supergravity

approximation in [139], and a conformal block decomposition of these results was

subsequently carried out in [47]. More recently, corrections to the supergravity ap-

proximation were deduced in [26] by constructing solutions to the crossing equations

whose conformal block expansion is truncated in spin. In section 4.3, we will derive

recursion relations for the anomalous dimensions appearing in the conformal block

expansions of these solutions. These recursion relations allow one to directly com-

pute the OPE data of these solutions without having to know them explicitly, and

can be straightforwardly implemented on a computer.

Before we go on and study the four-point stress tensor correlator in the (2,0) theory

we consider a general bosonic six-dimensional CFT to illustrate our strategy of

deriving recursion relations for anomalous dimensions and interpreting them to give

insight into the higher-derivative corrections to the low-energy effective action.

4.2 Toy Model

In [30] the authors considered four-point correlators of scalar operators in an abstract

non-supersymmetric CFT in two and four dimensions, and showed that the solutions

to the crossing equations whose conformal block expansion is truncated in spin are

in one-to-one correspondence with local quartic interactions of a massive scalar field

in AdS (modulo integration by parts and equations of motion). In this section, we

will carry out a similar analysis for a toy model in six dimensions as a warm up for

our analysis of the 6d (2,0) theory in the next section. In particular, we will analyse



4.2. Toy Model 83

four-point correlators of a scalar operator O with classical dimension ∆0. Recall the

form of four-point correlators [46]

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =
F (u, v)

(x2
12)

∆0 (x2
34)

∆0
, (4.2.1)

where xi is the position of the ith operator, x2
ij = (xi − xj)2, and F is a function of

the conformal cross-ratios

u = x
2
12x

2
34

x2
13x

2
24

= zz̄ , v = x
2
14x

2
23

x2
13x

2
24

= (1 − z)(1 − z̄) , (4.2.2)

where we will use the variables (u, v) interchangeably with (z, z̄), see also section 2.1.

Note that exchanging x2 with x4 corresponds to exchanging u and v, or (z, z̄) with

(1 − z,1 − z̄). Invariance of the correlator under this exchange (known as crossing

symmetry, see (2.1.6)) then implies the following constraint on F :

v∆0F (u, v) = u∆0F (v, u) . (4.2.3)

In this model, the primary double-trace operators are schematically

On,l = O∂µ1 ...∂µl
∂2nO , (4.2.4)

which have scaling dimension ∆ = 2n + l + 2∆0 + O(1/c), spin l and naive twist

2n + 2∆0.

The conformal block expansion of F (u, v) is then given by the following sum over

primary operators:

F (u, v) = ∑
n,l≥0

An,lG
B
∆,l(z, z̄) , (4.2.5)

where An,l are OPE coefficients and GB
∆,l are six-dimensional bosonic conformal

blocks, which implicitly depend on n through the scaling dimensions of the conformal

primary operator ∆. They are given in terms of hypergeometric functions and we

spell them out in appendix E. Note that An,l = 0 when l is odd since operators with

an odd number of derivatives in the OPE of two identical operators correspond to

descendants.
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The function F can be obtained from tree-level Witten diagrams for supergravity

(see [30], and section 2.3). However, the main point of this chapter is to derive the

anomalous dimensions that appear in the conformal block expansion of the correlator

directly from a recursion relation derived from (4.2.5) without requiring knowledge

of the explicit form of the correlators.

The first step is to expand the OPE data in 1/c:

An,l = A(0)
n,l +

1
c
A

(1)
n,l + ... , ∆ = 2n + l + 2∆0 +

1
c
γn,l + ... (4.2.6)

Firstly, let us compute the free OPE coefficients A(0)
n,l from the conformal block

expansion of the free disconnected part of the four-point correlator which is given by

F free(u, v) = 1 + u∆0 + u
∆0

v∆0
. (4.2.7)

The leading contribution to the OPE coefficients is then given by

A
(0)
n,l =

2 (l + 2) (2∆0 + l + 2n − 2) (2∆0 + l + 2n − 3) ((∆0 + n − 3)!)2

((∆0 − 3)!)2 ((∆0 − 1)!)2
n! (l + n + 2)! (2∆0 + 2n − 6)! (2∆0 + 2l + 2n − 2)!

× ((∆0 + l + n − 1)!)2 (2∆0 + n − 6)! (2∆0 + l + n − 4)! , (4.2.8)

for even l and zero otherwise. In the next subsection, we will derive recursion

relations for the anomalous dimensions γn,l in (4.2.6). After solving the recursion

relations, we can then deduce the 1/c correction to the OPE coefficients A(1)
n,l using

the following formula:

A
(1)
n,l =

1
2∂n (A

(0)
n,l γn,l) . (4.2.9)

This formula was first found in two and four dimensions [30, 140] and was sub-

sequently observed to hold in six dimensions [26].

4.2.1 Recursion Relations

In this subsection, we will derive a formula for the anomalous dimensions of double-

trace operators in the toy 6d CFT described above following the method developed

for 2d and 4d CFTs in [30]. This formula will be written as a sum over the spin
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of the operators and will depend on two non-negative integers p and q. Truncating

the sum over spin to maximum spin L and choosing p and q appropriately will then

give rise to recursion relations for the anomalous dimensions, which can be solved

for arbitrary twist and spin l ≤ L in terms of (L + 2)(L + 4)/8 free parameters, in

agreement with counting of solutions in lower dimensions and holographic arguments,

as we will describe in subsection 4.2.2.

After expanding the OPE data in 1/c in (4.2.6), expanding the conformal block

decomposition (the right hand side of (4.2.5)) in 1/c and inserting this into the

crossing equation (4.2.3) then gives

v∆0 ∑
n,l≥0

[A(1)
n,l G

B
∆,l(z, z̄) +

1
2A

(0)
n,l γn,l ∂nG

B
∆,l(z, z̄)] − (u↔ v) = 0 . (4.2.10)

Note that in general there will be degeneracy in the free theory, i.e. more than

one operator with each given naive dimension and spin. Consequently, in (4.2.10)

the free conformal block coefficient gives a sum over these operators of three-point

coefficients squared, A(0)
n,l = ∑i⟨O∆0O∆0Oi⟩2. Then γn,l is in reality the so-called ‘av-

eraged anomalous dimension’ γn,l = (∑i⟨O∆0O∆0Oi⟩2 γn,l,i)/(∑i⟨O∆0O∆0Oi⟩2) where

γn,l,i are the anomalous dimensions of the individual operators. To obtain the indi-

vidual anomalous dimensions requires more data, for example four-point functions

of operators with different dimensions. We will solve mixing problems like these for

1d correlators in chapter 5 but in the present chapter our focus lies on the averaged

anomalous dimensions since they contain information about the higher-derivative

terms in the low-energy effective action.

The exact form of the conformal blocks is given in appendix E, but they are given

as a sum of products of hypergeometrics with the following schematic form

GB
∆,l(z, z̄) ∼ ∑

un

(z − z̄)3kα(z)kβ(z̄) , (4.2.11)

where

kβ(z) = 2F1 (
β

2 ,
β

2 , β, z) . (4.2.12)

From this we see that ∂nGB
∆,l(z, z̄) gives a contribution of the form log(u) = log(zz̄),
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and the analogous term in the cross channel will contribute log((1− z)(1− z̄)). As a

result, we can isolate the terms containing the anomalous dimensions in both channels

simultaneously by taking the log(z) log(1 − z̄) coefficient of the crossing equation as

z → 0 and z̄ → 1. This limit is referred to as the light-cone limit. In order for the

crossing equation to be consistent, the log(z) coming from ∂nGB
∆,l(z, z̄) must thus

be accompanied by a log(1 − z̄). Such terms indeed arise from the hypergeometrics

depending on z̄ after making use of the relation

kβ(z̄) = log(1 − z̄) k̃β(1 − z̄) + holomorphic at z̄ = 1 , (4.2.13)

where

k̃β(z) = −
Γ(β)

Γ (β2 )
2 2F1 (

β

2 ,
β

2 ,1, z) . (4.2.14)

Similarly, the hypergeometrics depending on 1 − z in the cross channel will give rise

to log(z).

In summary, we take the log(z) log(1 − z̄) coefficient of (4.2.10) as z → 0 and z̄ → 1

yielding the refined crossing equation:

v∆0 ∑
n,l≥0

A
(0)
n,l γn,l (∂nGB

2n+l+2∆0,l
(z, z̄))∣log z log(1−z̄) =

u∆0 ∑
n,l≥0

A
(0)
n,l γn,l (∂nGB

2n+l+2∆0,l
(1 − z,1 − z̄))∣log z log(1−z̄) , (4.2.15)

into which we insert (the precise forms of) (4.2.11) and (4.2.13) to obtain sums of

terms of the form kα(z)k̃β(1 − z̄) and kα(1 − z̄)k̃β(z). To extract a purely numerical

recursion relation we use an orthogonality relation between hypergeometric functions

obtained in [30]

δm,m′ = ∮
dz

2πi z
m−m′−1 k2m+4(z)k−2m′−2(z) , (4.2.16)

for more details on this relation please see appendix F. To use it, one has to mul-

tiply (4.2.15) in terms of sums of the schematic form k k̃ by

k−2q(z)
z5−∆0+q

× k−2p(1 − z̄)
(1 − z̄)5−∆0+p

, (4.2.17)
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which leads to a sum of terms of the schematic form k k k k̃, where p and q are arbit-

rary non-negative integers. Then, performing the contour integrals ∮ dz
2πi ∮ dz̄

2πi , where

the contours encircle (z, z̄) = (0,1), one can use the orthogonality relation (4.2.16),

which takes two of the k’s per term and turns them into numerical expressions.

Additionally, to make sense of the terms of the form k k̃ we define the following

integral

Im,m′ = ∮
dz

2πi
(1 − z)m−∆0+3

zm′−∆0+5 k̃2m(z)k−2m′(z) . (4.2.18)

Finally, we arrive at the following equation:

0 =
L

∑
l=0

∞
∑
n=0

A
(0)
n,l γn,l [(l + 1) (δq,l+n+3I∆0+n−3,p+∆0−4 − δq,nI∆0+l+n,p+∆0−4)

+ (l + 3) (δq,n+1I∆0+l+n−1,p+∆0−4 − δq,l+n+2I∆0+n−2,p+∆0−4)

+ Pn,l (δq,l+n+3I∆0+n−1,p+∆0−4 − δq,n+2I∆0+l+n,p+∆0−4)

+ Qn,l (δq,n+1I∆0+l+n+1,p+∆0−4 − δq,l+n+4I∆0+n−2,p+∆0−4) − (q↔ p)] , (4.2.19)

where

Pn,l =
(l + 3) (∆0 + n − 2)2 (2∆0 + l + 2n − 4)

4 (2∆0 + 2n − 5) (2∆0 + 2n − 3) (2∆0 + l + 2n − 2) ,

Qn,l =
(l + 1) (∆0 + l + n)2 (2∆0 + l + 2n − 4)

4 (2∆0 + l + 2n − 2) (2∆0 + 2l + 2n − 1) (2∆0 + 2l + 2n + 1) . (4.2.20)

Note that we have truncated the sum over spins in (4.2.19) to a maximum spin

L. Recursion relations for the anomalous dimensions are then obtained by making

particular choices of p and q, and the solutions are labelled by L. In the next

subsection we will explain how to solve the recursion relations for L = 0,2 before

describing a general algorithm to solve the recursion relations for any L.
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4.2.2 Solutions

Let us first consider the L = 0 spin truncation in (4.2.19). In this case, setting q = 0

leads to the following recursion relation in terms of p:

I∆0,p+∆0−4A
(0)
0,0γ0,0 =

4
∑
a=0
CaA

(0)
p−a,0γp−a,0 , (4.2.21)

where

C0 = Ip+∆0,∆0−4 ,

C1 = − 3Ip+∆0−2,∆0−4 −
(p +∆0 − 1)2 (p +∆0 − 3) Ip+∆0,∆0−4

4 (p +∆0 − 2) (2p + 2∆0 − 1) (2p + 2∆0 − 3) ,

C2 =3Ip+∆0−4,∆0−4 +
3 (p +∆0 − 4)3 Ip+∆0−2,∆0−4

4 (p +∆0 − 3) (2p + 2∆0 − 7) (2p + 2∆0 − 9) ,

C3 = − Ip+∆0−6,∆0−4 −
3 (p +∆0 − 5)3 Ip+∆0−4,∆0−4

4 (p +∆0 − 4) (2p + 2∆0 − 9) (2p + 2∆0 − 11) ,

C4 =
(p +∆0 − 4)2 (p +∆0 − 6) Ip+∆0−6,∆0−4

4 (p +∆0 − 5) (2p + 2∆0 − 7) (2p + 2∆0 − 9) . (4.2.22)

This recursion relation can be solved for all γn,0 with n > 0 in terms of γ0,0 as follows:

γspin-0n,0 (∆0) =γ0,0
(2∆0 − 3) (2∆0 − 1) (n + 1) (n + 2) (∆0 + n − 2) (∆0 + n − 1)

8 (∆0 − 2)2 (∆0 − 1) (2∆0 + 2n − 5) (2∆0 + 2n − 3)

× (2∆0 + n − 5) (2∆0 + n − 4)
(2∆0 + 2n − 1) , (4.2.23)

where we divided by A(0)
n,0, see (4.2.8).

For L = 2, first choose (p, q) = (1,0) to obtain γ1,0 in terms of three unfixed parameters

{γ0,0, γ0,2, γ1,2}. For p > 1, one can then solve the equations with q ∈ {0,1} for γp,l

with l ∈ {0,2} in terms of γp′,l′ with p′ < p and l′ ∈ {0,2}. In the end, we obtain a

solution for all γn,l with l ∈ {0,2} in terms of {γ0,0, γ0,2, γ1,2}. We find the following

solutions for general scaling dimension ∆0:

γspin-2n,0 (∆0) =
γspin-0n,0 (∆0)

γ0,0
(γ0,0 + γ0,2 f1 (n,∆0) + γ1,2 f2 (n,∆0)) , (4.2.24)
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γspin-2n,2 (∆0) = −
γspin-0n,0 (∆0)

γ0,0

(2∆0 + 1)2 (2∆0 + 3) (n − 1) (n + 3) (n + 4)
4 (∆0 − 1)∆4

0 (∆0 + 1)2

× (∆0 + n) (∆0 + n + 1) (2∆0 + n) (2∆0 + n − 3) (2∆0 + n − 2)
(2∆0 − 3) (2∆0 + 2n + 1) (2∆0 + 2n + 3)

× (γ0,2 − γ1,2
4∆0 (2∆0 + 3) (2∆0 + 5)n (2∆0 + n − 1)

(∆0 + 1) (∆0 + 2)2 (2∆0 − 1) (2∆0 + 1) (n − 1) (2∆0 + n)
) ,

(4.2.25)

where

f1 (n,∆0) =
(2∆0 + 1)2

(2∆0 + 3)n (2∆0 + n − 3)
(∆0 − 1)∆4

0 (∆0 + 1)2
(2∆0 − 3) (2∆0 + 2n − 7) (2∆0 + 2n + 1)

×
⎛

⎝
5n6

+ 15 (2∆0 − 3)n5
+ (89∆2

0 − 161∆0 + 127)n4
+ (2∆0 − 3)

× (78∆2
0 − 22∆0 + 29)n3

+ 2 (82∆4
0 − 143∆3

0 − 107∆2
0 + 117∆0 − 39)n2

+ (2∆0 − 3) (48∆4
0 − 14∆3

0 − 215∆2
0 − 33∆0 − 6)n

+
6 (∆0 − 1)∆2

0 (2∆0 − 7) (4∆3
0 + 12∆2

0 + 5∆0 − 1)
2∆0 + 1

⎞

⎠
,

f2 (n,∆0) =
(2∆0 + 1) (2∆0 + 3)2

(2∆0 + 5)n (2∆0 + n − 3)
(3 − 2∆0) (∆0 − 1)∆3

0 (∆0 + 1)3
(∆0 + 2)2

(2∆0 − 1) (2∆0 + 2n − 7)

×
1

(2∆0 + 2n + 1)
(20n6

+ 60 (2∆0 − 3)n5
+ (4∆0 (89∆0 − 199) + 508)n4

+ 4 (2∆0 − 3) (78∆2
0 − 98∆0 + 29)n3

+ 8 (∆0 (2∆0 (∆0 (41∆0 − 131) + 104)

−27) − 39)n2
+ 4 (2∆0 − 3) (∆0 (∆0 (4∆0 (12∆0 − 25) − 41) + 21) − 6)n

+ 24 (∆0 − 1)∆2
0 (∆0 + 1) (2∆0 − 7) (2∆0 − 1)) . (4.2.26)

We will discuss these solutions and solutions with general L below, but first let us

describe an algorithm to solve recursion relations for general L.

Algorithm to solve recursion relations for any spin-L truncation

Recursion relations for the anomalous dimensions of double-trace operators for a

general spin-L truncation are encoded in (4.2.19) for the bosonic toy model and

below in (4.3.19) for the (2,0) theory, respectively. They are obtained by specifying

a spin truncation L and making appropriate choices of non-negative integers p and
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q. The general algorithm for solving the recursion relation for any L is as follows:

• For each 1 ≤ p ≤ L/2, write down the equations for 0 ≤ q ≤ p − 1.

• Solve these equations for γp,l with 0 ≤ l ≤ 2p − 2 in terms of γp′,l′ with

(p′ ≤ p − 1, l′ ≤ L) and (p′ = p, 2p ≤ l′ ≤ L).

• For each p ≥ L/2 + 1, write down the equations for 0 ≤ q ≤ L/2.

• Solve these equations for γp,l with 0 ≤ l ≤ L in terms of γp′,l′ with

(p′ ≤ p − 1, l′ ≤ L).

In the end, this algorithm will give all γn,l with l ≤ min(2n − 2, L) in terms of all

γn′,l′ with 2n′ ≤ l′ ≤ L, which correspond to (L + 2)(L + 4)/8 free parameters as

depicted in figure 3 of [30] (for a review of the holographic arguments of [30] see

subsection 2.3.2). This algorithm can easily be implemented on a computer1 by

generating all the free parameters for a given L, writing down the equations for

every p ≥ 1 and 0 ≤ q ≤ min(p − 1, L/2), replacing (L + 2)(L + 4)/8 of the anomalous

dimensions by the free parameters, and solving these equations for the remaining

anomalous dimensions.

Discussion of solutions

For a spin-L truncation, we find that the solution depends on (L+2)(L+4)/8 unfixed

parameters, as described above for general L and illustrated in the L = 0,2 cases.

This agrees with the holographic arguments of [30] (see subsection 2.3.2). Recall

that the four-point correlators are dual to local quartic interactions in the bulk.

Specifically, there are L/2+1 independent interactions which can create or annihilate

a state of at most spin L, with the total number of derivatives ranging from 2L to

3L in intervals of two. For the cases we considered in the discussion of the recursion

relation above, there is one spin-0 interaction vertex with no derivatives φ4, and

1This can be seen in the auxiliary Mathematica file 6drecursion.nb of [43].
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two spin-2 interaction vertices φ2 (∇µ∇ν φ)2 and φ2 (∇µ∇ν∇ρ φ)2 with four and six

derivatives, respectively, see (2.3.19). The total number of interactions up to spin L

is then given by ∑L/2l=0 (l + 1) = (L + 2)(L + 4)/8.

Note that this is the same number as there are unfixed parameters in the solutions

to the recursion relations above. Thus, these unfixed parameters can be identified

with coefficients of the bulk interaction vertices. Indeed, we have verified that the

solution in (4.2.23) reproduces the anomalous dimensions in the conformal block

expansion of a Witten diagram for a φ4 interaction (see [30] and subsection 2.3.1)

F spin-0(u, v) = C(0)D̄∆0 ∆0 ∆0 ∆0 , (4.2.27)

for the following choice of the free parameter:

γ0,0 = −
C(0) ((∆0 − 1)!)4

(2∆0 − 1)! , (4.2.28)

where the coefficient C(0) is unfixed and the definition of D̄-functions was reviewed

in chapter 2 around (2.3.17). Note that the anomalous dimensions of F spin-0 are

obtained by expanding this function according to (4.2.10) but without considering

the crossing equation.

Moreover, the L = 2 solution encodes the anomalous dimensions in the conformal

block expansion of Witten diagrams with four- and six-derivative interactions (again

see [30] and section 2.3.2)

F spin-2
4 (u, v) =C(2)

4 (1 + u + v) D̄∆0+1 ∆0+1 ∆0+1 ∆0+1 , (4.2.29)

F spin-2
6 (u, v) =C(2)

6 (D̄∆0+2 ∆0+1 ∆0+2 ∆0+1 + D̄∆0+1 ∆0+2 ∆0+1 ∆0+2

+ u2 D̄∆0+2 ∆0+2 ∆0+1 ∆0+1 + u D̄∆0+1 ∆0+1 ∆0+2 ∆0+2

+v2 D̄∆0+1 ∆0+2 ∆0+2 ∆0+1 + v D̄∆0+2 ∆0+1 ∆0+1 ∆0+2) , (4.2.30)

for the following choice of free parameters:
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{γ0,0, γ0,2, γ1,2}4 =C
(2)
4 {−4 (∆0!)3 (∆0 + 1)!

(2∆0 + 2)! , −2 ∆0! ((∆0 + 1)!)2 (∆0 + 2)!
3 (2∆0 + 1) (2∆0 + 4)! ,

−(∆0 + 1) (2∆0 − 1) (∆0 − 1)! ((∆0 + 2)!)2 (∆0 + 3)!
3 (2∆0 + 3) (2∆0 + 6)! } , (4.2.31)

{γ0,0, γ0,2, γ1,2}6 =C
(2)
6 {−4 (∆0!)2 ((∆0 + 1)!)2

(2∆0 + 2)! ,

− 2 (3∆0 + 2)∆0! ((∆0 + 1)!)2 (∆0 + 2)!
3 (2∆0 + 1) (2∆0 + 4)! ,

−(∆0 + 1) (6∆2
0 + 7∆0 − 2) (∆0 − 1)! ((∆0 + 2)!)2 (∆0 + 3)!

3 (2∆0 + 3) (2∆0 + 6)! } ,

(4.2.32)

where the coefficients C(2)
4,6 are unfixed. Even though the contact interactions can be

obtained from Witten diagrams in AdS case by case for spin-L truncations and this

could be used to obtain the anomalous dimensions of double-trace operators in the

OPE, computing the anomalous dimensions from a recursion relation is much more

efficient. The recursion relation does not require the knowledge of the exact form of

the correlators, one only needs the conformal blocks (and the free theory coefficients)

and can derive the averaged anomalous dimensions for any spin-L truncation easily.

Furthermore, the algorithm for general L solutions described in subsection 4.2.2 can

be implemented on a computer which makes it very efficient to obtain anomalous

dimensions for any L.

Importantly, the number of derivatives in the bulk interactions can be read off from

the large-twist behaviour of the corresponding anomalous dimensions. Indeed, the

anomalous dimensions of F spin-0 scale like n3 in the large-n limit, while those of

F spin-2
4 and F spin-2

6 scale like n7 and n9, respectively. In other words, the anomalous

dimensions associated with four- and six-derivative interactions scale like n4 and n6

compared to those of the φ4 interaction. Studying the anomalous dimensions ob-

tained from the recursion relations, there is a subtlety for L > 0. The solutions (4.2.24)

and (4.2.25) both scale like n9, so they both correspond to six-derivative interactions.

We know however, that for L = 2 there should also be a four-derivative interaction
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corresponding to anomalous dimensions scaling like n7 and it turns out that this is

included in the solutions as follows. For a specific choice of the ratio between the

coefficients γ0,2 and γ1,2, the scaling of (4.2.25) reduces to n7, which can be easily

deduced by imposing the vanishing of the large-n limit of the last line in (4.2.25).

The choice of free parameters is

γ1,2 =
(∆0 + 1) (∆0 + 2)2 (2∆0 − 1) (2∆0 + 1)

4∆0 (2∆0 + 3) (2∆0 + 5) γ0,2 . (4.2.33)

Note that the solution in (4.2.31) is consistent with this constraint. More generally,

for a spin-L solution one can deduce L/2 constraints on the coefficients (corresponding

to bulk interactions with the number of derivatives ranging from 2L to 3L − 2

in intervals of 2) by analysing the large-twist limit. Unconstrained coefficients

then encode the freedom to add solutions with lower spin or subleading large-twist

behaviour.

We will discuss this further in the 6d (2,0) case in subsection 4.3.2 where the

anomalous dimensions encode information about the higher-derivative corrections

to the low-energy 11d supergravity action. Let us now go on and derive recursion

relations for the supersymmetric theory.

4.3 (2, 0) Theory

In this section we will adapt the analysis of the previous section to four-point stress

tensor correlators of the 6d (2,0) theory. Recall from the review in section 4.1.2 that

the superconformal primary of the half-BPS multiplet is the dimension-four scalar

TIJ in the two-index symmetric traceless representation of the R-symmetry group

SO(5). Its holographic dual corresponds to the bottom of the KK tower, k = 2, and

has mass m2 = −8.

As shown in [47, 141], superconformal symmetry constrains the four-point function

of stress tensor multiplets in the 6d (2,0) theory in terms of a prepotential F (z, z̄)
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as follows:

(z − z̄)4 (g13g24)−2 ⟨T1T2T3T4⟩ = D (SF (z, z̄)) + S2
1F (z, z) + S2

2F (z̄, z̄) , (4.3.1)

where D = −(∂z − ∂z̄ + (z − z̄)∂z∂z̄) (z − z̄) and the variables z, z̄ are defined in terms

of the spacetime cross-ratios (4.2.2). We have introduced auxiliary variables Y I to

contract the SO(5) indices of TIJ via Ti = TIJY I
i Y

J
i . Using these internal coordinates,

we then define superpropagators gij = Yi ⋅ Yj/x4
ij and internal conformal cross-ratios

yȳ = Y1 ⋅ Y2Y3 ⋅ Y4

Y1 ⋅ Y3Y2 ⋅ Y4
, (1 − y) (1 − ȳ) = Y1 ⋅ Y4Y2 ⋅ Y3

Y1 ⋅ Y3Y2 ⋅ Y4
, (4.3.2)

in terms of which we define S1 = (z − y) (z − ȳ), S2 = (z̄ − y) (z̄ − ȳ), and S = S1S2.

Crossing symmetry implies that

F (u, v) = F (v, u) . (4.3.3)

This is important because as there is a crossing symmetric prepotential in terms of

which the correlator is constrained, one does not need to consider the full correlator

but studying the much simpler prepotential is enough. Moreover, we can write

F (u, v) as

F (z, z̄) = A

u2 +
g(z) − g(z̄)
u (z − z̄) + (z − z̄)G(z, z̄) , (4.3.4)

where each function in this decomposition encodes certain contributions to the OPE.

Roughly speaking, A encodes the unit operator, g encodes protected operators, and

G encodes non-protected double-trace operators, which will be our main interest.

In more detail, these operators have the schematic form T∂l ◻n T with n ≥ 0 and

scaling dimension ∆ = 2n + l + 8 +O(1/c). They contribute to the conformal block

expansion of G as follows 2

(z − z̄)2G(z, z̄) = ∑
n,l≥0

An,lG
S
∆,l(z, z̄) , (4.3.5)

where the supersymmetric conformal blocks GS
∆,l(z, z̄) are given in appendix E, and

2Note that the conformal block expansion of G also contains protected double-trace operators,
which correspond to n ∈ {−1,−2} in our conventions, but we will not need to consider these operators.
For more details, see [47].
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implicitly depend on n through ∆. Note that equations (4.3.3) and (4.3.4) imply

that G obeys the following crossing relation:

G(z, z̄) = −G(1 − z,1 − z̄) . (4.3.6)

Again we start by computing the leading free theory coefficients which are obtained

from the free disconnected part of the four-point correlator. This can be computed

in the abelian theory and corresponds to the following prepotential:

F free-disc(u, v) = 1 + 1
u2 +

1
v2 . (4.3.7)

Decomposing this function according to (4.3.4) and computing the conformal block

expansion of the piece encoding the non-protected operators according to (4.3.5)

then gives the following formula for the leading contribution to the OPE coefficients:

A
(0)
n,l =

(l + 2) (n + 3)! (n + 4)! (l + 2n + 9) (l + 2n + 10) (l + n + 5)! (l + n + 6)!
72 (2n + 5)! (2l + 2n + 9)! .

(4.3.8)

As we have established, our focus in this chapter are the higher-derivative corrections

to the supergravity approximation which we will discuss in the following subsections.

Nevertheless, it is interesting to analyse the tree-level supergravity result as well,

and this is done in appendix G.

4.3.1 Recursion Relations

To derive recursion relations for the anomalous dimensions of the double-trace oper-

ators described above, we follow the same procedure as section 4.2. First, expand

the OPE data in 1/c:

An,l = A(0)
n,l +

1
c
A

(1)
n,l + ... , ∆ = 2n + l + 8 + 1

c
γn,l + ... (4.3.9)
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Focusing on the part of the prepotential which describes non-protected operators

and expanding the crossing equation (4.3.6) to first order in 1/c then gives3

∑
n,l≥0

[A(1)
n,l G

S
∆,l(z, z̄) +

1
2A

(0)
n,l γn,l ∂nG

S
∆,l(z, z̄)] + (u↔ v) = 0 . (4.3.10)

In the supersymmetric case, the conformal blocks have the schematic form

GS
∆,l(z, z̄) ∼ ∑unhα(z)hβ(z̄) , (4.3.11)

where

hβ(z) = 2F1 (
β

2 ,
β

2 − 1, β, z) , (4.3.12)

see appendix E for the explicit form of the superconformal blocks. Following the same

reasoning described in the previous section, the term ∂nGS
∆,l(z, z̄) in (4.3.10) gives

a contribution proportional to log(z) and the analogous term in the cross channel

will give log(1 − z̄), so we can isolate the terms containing anomalous dimensions

by taking the light-cone limit z → 0 and z̄ → 1. In this case, the hypergeometrics

depending on z̄ and 1 − z will give rise to log(1 − z̄) and log(z) using the relation

hβ(z̄) = log(1 − z̄) (1 − z̄) h̃β(1 − z̄) + holomorphic at z̄ = 1 , (4.3.13)

where

h̃β(z) =
Γ(β)

Γ (β2 )Γ (β2 − 1) 2F1 (
β

2 + 1, β2 ,2, z) . (4.3.14)

We thus consider the log(z) log(1 − z̄) coefficient of (4.3.10) in the limit z → 0 and

z̄ → 1:

∑
n,l≥0

A
(0)
n,l γn,l (∂nGS

∆, l(z, z̄))∣log z log(1−z̄) =

− ∑
n,l≥0

A
(0)
n,l γn,l (∂nGS

∆, l(1 − z,1 − z̄))∣log z log(1−z̄) , (4.3.15)

into which we insert the (precise forms of) (4.3.11) and (4.3.13) to obtain sums of

terms involving hα(z)h̃β(1 − z̄) and hα(1 − z̄)h̃β(z). To obtain a purely numeric

3Note that as in the toy model case, here γn,l are averaged anomalous dimensions.
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crossing equation, first multiply this equation by

h−2q(z)
zq (1 − z) × h−2p(1 − z̄)

(1 − z̄)p z̄ , (4.3.16)

where p and q are arbitrary non-negative integers, and perform the contour integrals

∮ dz
2πi ∮ dz̄

2πi , which encircle (z, z̄) = (0,1). Again we use an orthogonality relation of

the hypergeometric functions and we prove this new relation in appendix F. It is

given by

δm,m′ = ∮
dz

2πi
zm−m

′−1

1 − z h2m+4(z)h−2m′−2(z) , (4.3.17)

and defining the integral

Im,m′ = ∮
dz

2πi
(1 − z)m−3

zm′−1 h̃2m(z)h−2m′(z) , (4.3.18)

finally leads to the following equation:

0 =
L

∑
l=0

∞
∑
n=0

A
(0)
n,l γn,l[Pn,l (δq,nIn+l+6,p+2 − δq,n+l+3In+3,p+2)

+Qn,l (δq,n+2In+l+6,p+2 − δq,n+l+3In+5,p+2)

+Rn,l (δq,n+l+2In+4,p+2 − δq,n+1In+l+5,p+2)

+ Sn,l (δq,n+l+4In+4,p+2 − δq,n+1In+l+7,p+2) − (q↔ p)] , (4.3.19)

where we have truncated the sum over spins and defined

Pn,l =
l + 1

(n + 3) (n + l + 5) , Qn,l =
(l + 3) (n + 5) (2n + l + 8)

4 (2n + 7) (2n + 9) (n + l + 5) (2n + l + 10) ,

Rn,l =
l + 3

(n + 3) (n + l + 5) , Sn,l =
(l + 1) (n + l + 7) (2n + l + 8)

4 (n + 3) (2n + l + 10) (2n + 2l + 11) (2n + 2l + 13) .

(4.3.20)

As we explain in the next subsection and in 4.2.2, recursion relations for the anomal-

ous dimensions are obtained from (4.3.19) by making appropriate choices for p and

q, and solutions are labelled by the spin truncation L.
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4.3.2 Solutions

In this subsection, we will describe solutions to the recursion relations for low spin

truncations and match them with results previously obtained in [26], an algorithm

to obtain solutions for any L was described in subsection 4.2.2. For spin truncation

L = 0, setting q = 0 in (4.3.19) gives the following recursion relation in terms of p:

1
15I6,p+2A

(0)
0,0γ0,0 =

4
∑
a=0
CaA

(0)
p−a,0γp−a,0 , (4.3.21)

where

C0 =
Ip+6,2

(p + 3) (p + 5) ,

C1 = −
3Ip+4,2

(p + 2) (p + 4) −
(p + 3) (p + 6) Ip+6,2

4 (p + 2) (p + 4) (2p + 9) (2p + 11) ,

C2 =
3Ip+2,2

(p + 1) (p + 3) +
3 (p + 2) Ip+4,2

4 (p + 3) (2p + 3) (2p + 5) ,

C3 = −
Ip,2

p (p + 2) −
3 (p + 1) Ip+2,2

4 (p + 2) (2p + 1) (2p + 3) ,

C4 =
p (p + 3) Ip,2

4 (p − 1) (p + 1) (2p + 3) (2p + 5) . (4.3.22)

This can be solved for all γn,0 in terms of γ0,0 to give

γspin−0
n,0 = γ0,0

11 (n + 1)8 (n + 2)6
2304000 (2n + 7) (2n + 9) (2n + 11) , (4.3.23)

where we divided by A(0)
n,0, see (4.3.8), and recall that xn = Γ(x+n)/Γ(x) is the Poch-

hammer symbol. It is interesting to compare this with the bosonic solution (4.2.23)

for ∆0 = 4:

(γbos)spin-0n,0 = (γbos)0,0
35 (n + 1)4 (n + 2)2

96 (2n + 3) (2n + 5) (2n + 7) . (4.3.24)

Similarly, following the procedure described in subsection 4.2.2, we obtain solutions

for L = 2 in terms of three unfixed parameters {γ0,0, γ0,2, γ1,2}, which are :

γspin-2n,0 =
γspin-0n,0

γ0,0
(γ0,0 + γ0,2 f1 (n) + γ1,2 f2 (n)) , (4.3.25)
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γspin-2n,2 = −
γspin-0n,0

γ0,0

845 (n − 1) (n + 5) (n + 6) (n + 8) (n + 9)2 (n + 10) (n + 12)
4064256 (2n + 13) (2n + 15)

× (γ0,2 − γ1,2
51n (n + 11)

364 (n − 1) (n + 12)) , (4.3.26)

where

f1 (n) =
325n (n + 9)

1016064 (2n + 5) (2n + 13)

× (13n6 + 351n5 + 6201n4 + 64233n3 + 385476n2 + 1251666n + 1512620) ,

f2 (n) = −
1105n (n + 9)

9483264 (2n + 5) (2n + 13)

× (5n6 + 135n5 + 2157n4 + 20601n3 + 117468n2 + 370494n + 441700) .

(4.3.27)

We discuss these solutions and what they tell us about the bulk interactions in the

following.

Discussion of solutions

Again, for spin truncation L, the solution will depend on (L + 2)(L + 4)/8 free

parameters, in agreement with the counting of solutions in section 4.2.2. Moreover,

our results for the anomalous dimensions agree with those obtained in [26], which

deduced solutions to the crossing equations whose conformal block expansions are

truncated in spin. In particular, the anomalous dimensions in (4.3.23) can be

obtained from the conformal block expansion of [26]

F spin-0(u, v) = C(0)(z − z̄)2uvD̄5755 , (4.3.28)

where the coefficient C(0) is unfixed. Decomposing F spin-0 according to (4.3.4) and

performing the conformal block expansion according to (4.3.10) gives the anomalous

dimensions in (4.3.23) if we choose the free parameter to be

γ0,0 = −
7200C(0)

77 . (4.3.29)
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Following the holographic arguments of [26, 30, 61], which were reviewed in sec-

tion 2.3.2, F spin-0 should arise from an R4 correction to supergravity in AdS7×S4,

where R is the Riemann tensor. This can be seen by comparing the large-n limit

of the anomalous dimensions of the spin-L solutions to the anomalous dimensions

of the tree-level supergravity solutions at large n, see appendix G where one can

see that for supergravity the anomalous dimensions scale like n5. The difference

in the powers of n then predicts how many derivatives the spin-L interaction has

compared to supergravity. Note that in the large-n limit the anomalous dimensions

scale like n11 which is n6 times the anomalous dimensions obtained in the super-

gravity approximation, indicating that the corresponding interaction vertex has six

more derivatives than supergravity. Since R has two derivatives and we are only

considering quartic interactions, the spin-0 correction is connected to a R4 term.

Note that F is a prepotential from which many four-point component correlators

(corresponding to different choices of Yi) are obtained by applying a differential

operator according to (4.3.1). This differential operator can be rewritten in terms of

u, v derivatives and if the prepotential is expressed in terms of D̄-functions then so

will all the component correlators. Whilst this does not prove that the prepotential

can always be expressed in terms of D̄-functions, this property holds in all the

examples we have considered, and it is natural to conjecture that it should hold in

general. A similar conjecture was made in [129] for four-point correlators of more

general half-BPS operators in the supergravity approximation.

For the L = 2 spin truncation, [26] found the following solutions to the crossing

equation:

F spin-2
4 (u, v) = 2C(2)

4 (z − z̄)2uv (D̄6776 + D̄7676 + D̄7766) , (4.3.30)

F spin-2
6 (u, v) = 6C(2)

6 (z − z̄)2uvD̄7777 , (4.3.31)

where the coefficients C(2)
4,6 are unfixed and the subscripts indicate the number of

additional derivatives compared to the bulk interaction vertex associated with the

L = 0 solution. The first solution corresponds to a D4R4 correction and the second
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one corresponds to a D6R4 correction to supergravity in AdS7×S4, which can be read

off from the large-twist behaviour of the corresponding anomalous dimensions. In

the large-n limit, the first solution scales like n15 while the second one scales like n17,

which corresponds to four and six more derivatives than the spin-0 solution which

goes like n11. The anomalous dimensions of these two solutions are reproduced from

the general solution in (4.3.25) and (4.3.26) for the choice of parameters

{γ0,0, γ0,2, γ1,2}4 = C
(2)
4 {−5 × 72000

1001 ,
80640
1859 ,

5 × 150528
2431 } , (4.3.32)

{γ0,0, γ0,2, γ1,2}6 = C
(2)
6 {54 × 72000

1001 , −3 × 80640
1859 , −33 × 150528

2431 } . (4.3.33)

Note that in both cases, γ0,0 has the opposite sign of γ0,2 and γ1,2, in contrast to

what we found for the toy model in (4.2.31) and (4.2.32), where all three parameters

had the same sign.

Similar to the toy model, considering the anomalous dimensions from the recursion

relations for L = 2, both solutions scale like n17 in the large-n limit. It follows

that the corresponding bulk interactions have six more derivatives than the spin-0

interaction. However, we also expect to find solutions corresponding to interactions

with four more derivatives, which scale like n15 for large n. We obtain these solutions

for the choice of free parameters

γ1,2 =
364
51 γ0,2 , (4.3.34)

which comes from imposing that the last line of (4.3.26) vanishes in the large-n limit.

The solution in (4.3.32) is consistent with this constraint. Having discussed the

solutions for L = 0,2 using the algorithm in section 4.2.2 one can solve the recursion

relations up to any desired spin truncation for any twist.

Although solutions to the recursion relations have unfixed coefficients, it is possible

to deduce their leading 1/c-dependence using holographic reasoning, as described

in [26]. First, note that since we solve the recursion relations by truncating in spin,

this restricts to contact interactions in the bulk (interactions involving bulk-to-bulk

propagators will not truncate in spin). The effective action then has the schematic
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form

L ∼ 1
G11d
N

[(∂φ)2 +∑
D

lD−2
P ∂Dφ4] , (4.3.35)

where φ represents a graviton field, G11d
N is the 11d Newton constant, and the Planck

length lP is inserted by dimensional analysis. After rescaling the graviton by
√
G11d
N

in order to have canonical kinetic terms, the four-point interactions will acquire a

factor of G11d
N ∼ 1/c (this is the origin of the 1/c in (4.3.9)). Recalling that G11d

N ∼ l9P
in eleven dimensions (see (4.1.2)), we see that a four-point contact interaction with

D derivatives must therefore have coefficient G11d
N lD−2

P ∼ c−(D+7)/9. Moreover, the

number of derivatives in a contact interaction can be read off from the large-twist

behaviour of the corresponding solution to the crossing equations [30]. In particular,

if the anomalous dimensions of the solution scale like nα, then the corresponding bulk

interaction must have D = (α − 5) + 2 = α − 3 derivatives (recalling that anomalous

dimensions scale like n5 in the supergravity approximation).

In summary, a solution whose anomalous dimensions scale like nα must have a

coefficient c−(α+4)/9. For example, the spin-0 solution in (4.3.23) will have a coef-

ficient of c−5/3 and the spin-2 solutions (4.3.25) and (4.3.26) which scale like n15

and n17 (with a specific choice of parameters) will have coefficients of c−19/9 and

c−7/3, respectively. Note that the spin-0 correction is the leading correction to the

low-energy tree-level effective action, whereas the spin-2 corrections are subleading

to the one-loop supergravity correction which goes like (G11d
N )2 ∼ c−2.

Similar reasoning applies to conformal field theories with string theory duals, like

N = 4 SYM with any fixed finite value of the string coupling. In that case, a contact

interaction with D derivatives will have a coefficient of GNα′(D−2)/2, where α′ is

related to the square of the string length. Writing this prefactor in terms of the

central charge and string coupling, and fixing the latter at some finite value will

then give an expansion in 1/c analogous to M-theory.
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4.4 Conclusions and Future Directions

In this chapter, we derive recursion relations for anomalous dimensions of double-

trace operators in the 6d (2,0) theory. Given that no Lagrangian description is

presently known for this model, our strategy is to use superconformal and crossing

symmetry of four-point correlators of stress tensor multiplets. In particular, we

expand the crossing equation to first order in the inverse central charge and then

take the light-cone limit of the conformal cross-ratios to isolate the terms containing

anomalous dimensions. Recursion relations then follow from truncating the con-

formal block expansion in spin and taking inner products of the resulting equation

with certain hypergeometric functions, where we make use of an orthogonality rela-

tion of the hypergeometrics. These recursion relations can then be solved to obtain

anomalous dimensions for arbitrary twist and spin, reproducing the results for low

spin truncations previously obtained in [26]. As a warm-up, we derive analogous

recursion relations in a toy model corresponding to an abstract bosonic 6d CFT, and

match the results with the conformal block expansion of Witten diagrams in AdS7,

confirming the holographic arguments of [30]. We describe an algorithm to solve

these recursion relations and compute anomalous dimensions in both the bosonic

and supersymmetric theories to any desired twist and spin truncation. We note

that this method for extracting anomalous dimensions is much more efficient than

extracting them using a conformal block expansion of a known four-point function.

The anomalous dimensions are physically significant because they encode higher-

derivative corrections to supergravity in AdS7×S4. The number of derivatives in each

term of the effective action can be read off from the large-twist behaviour of the

corresponding anomalous dimensions. Furthermore, the coefficients of these higher-

derivative terms correspond to free parameters of the solutions to the recursion

relations. Therefore, these coefficients cannot be determined by our approach and

we will discuss this further below.
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Future directions

There are several interesting questions for future research related to the results

discussed above.

• The first open question is the problem of fixing the coefficients of the higher-

derivative corrections in the low-energy effective action. These coefficients

correspond to the free parameters in the solutions of the recursion relations

for anomalous dimensions derived in this chapter and are thus not fixed by

our approach. In the flat space limit, the coefficients of the R4 and D6R4

terms in the M-theory effective action have been deduced by uplifting string

theory amplitudes (note that the D4R4 term vanishes in 11 dimensions) [114,

136], but the coefficient of the D8R4 term (which arises from a truncated

spin-4 solution in our approach) is unknown. It would therefore be desirable

to develop methods for fixing these coefficients using CFT techniques.

• A strategy for doing so was proposed in [28], and used to fix the coefficient

of the R4 term and argue that the D4R4 term vanishes. This was achieved

by applying the chiral algebra conjecture in [132] to four-point correlators

of the form ⟨kkkk⟩ with k = 3, where k refers to a half-BPS scalar operator

in the k-index symmetric traceless representation of the SO(5) R-symmetry

group with scaling dimension 2k (note that k = 2 is the case considered in this

chapter). It would therefore be interesting to find truncated spin solutions to

the crossing equations for higher-charge correlators, compute the corresponding

anomalous dimensions in their conformal block expansions, and ultimately fix

the coefficients of higher-derivative terms in the M-theory effective action.

Correlators of the form ⟨kkkk⟩ and ⟨n + k,n − k, k + 2, k + 2⟩ were computed in

the supergravity approximation in [129, 142] before all supergravity correlators

were obtained in [130]. Moreover new solutions to the conformal Ward identities

in Mellin space have been found for ⟨kkkk⟩ with k = 2,3 in [28], so it would be
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interesting to see how those methods are related to the ones developed in this

chapter.

• Since the conformal blocks for higher-charge correlators appear to be much

simpler in 4d [46, 49], it may be instructive to first carry out the analysis

described above for 4d N = 4 SYM (for which a chiral algebra description was

also proposed in [143]), and use it to deduce terms in the effective action for

IIB string theory in AdS5×S5 (which was the focus of the previous chapter).

• Finally, it would be very interesting to explore the loop expansion in M-theory

in AdS7×S4 using conformal bootstrap techniques, following on from the recent

success in AdS5×S5 [11, 41, 84–88, 90–92, 144, 145]. Since the loop expansion

in M-theory is an expansion in 1/c, as is the expansion in higher-derivative

corrections, the loop corrections have to be disentangled from the M-theoretic

corrections. The first loop corrections to holographic correlators in the 6d

(2,0) theory have been obtained in [146].





Chapter 5

AdS2×S2 Correlators: Effective

Action and 4d Conformal

Symmetry

This chapter is based on [44], which at the time of submission of this thesis is in prepar-

ation for publication. We will study different aspects of superconformal correlators in

one dimension which are dual to tree-level scattering in quantum gravity in AdS2×S2.

The Kaluza-Klein spectrum of supergravity in AdS2×S2 is described in [147, 148]. In

particular, in [147] the authors start from 11d supergravity (see subsection 4.1.1) and

dimensionally reduce it to obtain 4d supergravity. After compactifying on AdS2×S2

one then obtains 4d N = 2 supergravity. Finally, compactifying 4d supergravity on

S2 yields an infinite tower of KK modes in AdS2 which form representations of the

SU(1,1∣2) superalgebra. The holographic dual of N = 2 supergravity in AdS2×S2 is

expected to be a one-dimensional SCFT with superconformal group SU(1,1∣2). We

do not specify the underlying theory of quantum gravity beyond its symmetries in

this chapter, besides the M-theory origin described above supergravity in AdS2×S2

could also originate from superstring theory in AdS2×S2×T6. This is e.g. discussed

in [149], where the authors consider embedding the AdS2×S2 background into 10d

type IIA or IIB superstring theory. The AdS2×S2×T6 background can be obtained
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either from a quarter-supersymmetric type IIB background describing four intersect-

ing D3-branes [150] or from a type IIA background e.g. describing a superposition of

three D4-branes and one D0-brane. As mentioned in the introduction, the AdS2×S2

background is interesting to study because it is the near-horizon geometry of ex-

tremal black holes in four dimensions. Furthermore, superconformal correlators in

1d are in many ways simpler than higher-dimensional analogues, such as the ones

considered in the previous chapters. Therefore, they are an excellent playing ground

for the study of various aspects of holographic correlators.

Firstly, we investigate a hidden conformal symmetry which was first discovered in

AdS5×S5 in [41] and later investigated in AdS3×S3 in [124, 125]. In the supergravity

approximation, four-point tree-level correlators of half-BPS operators dual to scalars

in AdS5 were found to correspond to 10d supergravity scattering amplitudes in the

flat space limit. Consequently, it is conjectured that all supergravity tree-level four-

point correlators exhibit a surprising 10d conformal symmetry and that correlators of

any spherical harmonics can be generated from a single SO(10,2)-invariant function.

This conjecture is also true for free theory and predictions can be made for loop

corrections, however we will leave the discussion of loop corrections in 1d to [44].

The higher-dimensional conformal symmetry arises because four-point supergravity

correlators in AdS5×S5 correspond to superamplitudes in 10d flat space which have

a dimensionless coupling and are thus conformally invariant. Hence, this symmetry

can only arise for specific four-point functions and furthermore only on conformally

flat backgrounds, AdSq×Sq. In this chapter we aim to understand this hidden

conformal symmetry more systematically and we will discuss it in the context of

free theory, supergravity and higher-derivative corrections in 1d. The symmetry is

generally broken for higher-derivative corrections and this was recently confirmed

in [14], where the authors studied the double-trace spectrum of half-BPS correlators

described by tree-level string theory in AdS5×S5. We will discuss this breaking of

the symmetry and investigate higher-derivative corrections in AdS2×S2. We show

that an infinite set of correlators for specific charges can be reconstructed from the



109

higher-dimensional conformal symmetry, while the symmetry is broken for general

KK modes. We will briefly discuss the implications for α′3 corrections in N = 4 SYM.

Even though the higher-dimensional conformal symmetry is only a symmetry of

specific four-point functions in AdSq×Sq, it is a remarkable symmetry which implies

powerful constraints on four-point functions and nicely complements other methods

such as the effective action approach we proposed in chapter 3. We will consider a

4d analogue of this effective action in this chapter.

We propose a scalar effective action in four dimensions similar to the one in AdS5×S5.

We do not prove the existence of the effective field theory but we deduce half-BPS

correlators in the supergravity approximation as well as higher-derivative corrections

from it and analyse the results. Where possible we compare the results to those from

different methods, such as the 4d conformal symmetry, where we find agreement in

the supergravity sector. The coefficients in the effective action encode the underlying

quantum theory and they are unfixed in our considerations. To deduce all half-BPS

correlators of any R-symmetry charge we again evaluate generalised Witten diagrams

in AdS×S. These manifestly four-dimensional Witten diagrams contain all spherical

harmonics and one can obtain all higher-derivative corrections and in the 1d case,

also the supergravity correlators. Note that from the effective action approach

in AdS2×S2 we can deduce supergravity and all higher-derivative corrections but

neither free theory nor loop corrections. This is nicely complemented by the 4d

hidden conformal symmetry which describes free theory and supergravity but is

generically broken by higher-derivative corrections (it also makes predictions for

loop corrections which we will not discuss in this thesis).

We start by reviewing the ten-dimensional conformal symmetry of supergravity cor-

relators in AdS5×S5 before going on to consider holographic correlators in AdS2×S2.
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5.1 Review: A Hidden Ten-Dimensional

Conformal Symmetry

In [41] a surprising ten-dimensional conformal symmetry was found for tree-level

supergravity correlators in AdS5×S5. Of course, the correlators have four-dimensional

conformal symmetry and are dual to bulk scattering in AdS5 with an infinite tower of

spherical harmonics from compactifying on the sphere. However, it is not expected

that they also have a ten-dimensional conformal symmetry manifestly including the

modes on the sphere. This is very powerful since all higher-charge supergravity

correlators can be packaged into a single generating function which is related to the

flat space superamplitude in ten dimensions.

The first hint towards a higher-dimensional conformal symmetry was observed

in [144], where the authors perform a conformal block analysis of four-point correl-

ators in the large-c expansion in N = 4 SYM described by tree-level supergravity in

AdS5×S5. They consider half-BPS operators which are dual to the infinite tower of

spherical harmonics on the five-sphere and make use of a formula for correlators of

general charge in Mellin space, conjectured in [81]. As mentioned in subsection 4.2.1,

when performing a conformal block decomposition of correlators there are usually

many operators in the spectrum which are described by the same quantum numbers

(scaling dimension and spin), thus there is a degeneracy. To resolve this degeneracy

is called to solve the mixing problem and we will describe this in subsection 5.5.1

before we discuss it in detail for supergravity and higher-derivative corrections in

sections 5.6 and 5.8 respectively. It involves constructing matrices of conformal block

coefficients for correlators with different R-symmetry representation and the same

quantum numbers and solving an eigenvalue problem. In [144] the mixing problem

for the anomalous dimensions of double-trace operators in the conformal block ex-

pansion of half-BPS correlators described by tree-level supergravity was solved and
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a remarkably simple structure was observed:

γsugra4d = −2MtMt+l+1

(l10d + 1)6
= δ(8)

(l10d + 1)6
, (5.1.1)

where

Mt = (t − 1)(t + a)(t + a + b + 1)(t + 2a + b + 2) , (5.1.2)

where a, b describe the R-symmetry representation of the double-trace operators

which is given by the Dynkin labels [a, b, a]. The spin l and twist t are the quantum

numbers of the exchanged operators, where the twist is defined as the scaling dimen-

sion minus the spin (see the discussion around (2.1.12)). Note that the anomalous

dimensions are rational numbers and their simple structure can be interpreted in

terms of an effective ten-dimensional spin

l10d = l + a + 2(i + r) − 1 − 1 + (−1)a+l
2 , (5.1.3)

where i, r label the degenerate operators (see [14] for details on the definition of

these labels). The numerator in (5.1.1) can be understood as the eigenvalue δ(8)

of a special eighth-order differential operator ∆(8) with the conformal blocks as

eigenfunctions. The significance of this differential operator which is derived from

conformal Casimirs will become clear later in this subsection.

It is very surprising that the anomalous dimensions after unmixing are rational

numbers. They are eigenvalues of non-trivial matrices of OPE coefficients and there

is no reason to expect them to be rational and to show such a simple structure. This

was the first hint that tree-level supergravity in AdS5×S5 exhibits more symmetries

than at first expected. In [41] the authors observed a striking similarity of (5.1.1)

to coefficients of the partial wave expansion of the ten-dimensional supergravity

scattering amplitude in flat space. This suggests that the structure in (5.1.1) arises

from the conformal flatness of AdS5×S5 and a ten-dimensional conformal symmetry

of the tree-level supergravity scattering amplitude. Let us look at this heuristic

argument in more detail. The ten-dimensional IIB supergravity amplitude in flat
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space is given by

A10 =
GNδ16(Q)

stu
→ GN

s3

tu
(5.1.4)

where we have taken the dilaton component. Note that GNδ16(Q) is dimensionless,

which is the origin of the 10d conformal symmetry of this amplitude. The partial

wave expansion in general dimensions is given by

Ad(s, cos θ) = 1
s(d−4)/2∑

l

(l + 1)d−4Cl(cos θ)Adl (s) , (5.1.5)

where the scattering angle cos θ = 1 + 2t
s and the partial waves Cl can be expressed

in terms of Gegenbauer polynomials (see e.g. [151]). Expressing the 10d amplitude

in terms of s and θ, we find

A10(s, cos θ) = 4GNs

sin2 θ
. (5.1.6)

The single power of s in the numerator indicates two-derivative interactions, as

expected for supergravity. Comparing this to (5.1.5) implies that the 10d partial

wave coefficients are

A10
l (s) ∼ 1 + R

8

c

s4

(l + 1)6
, (5.1.7)

where the one is put in by hand and we used the fact that the Newton constant

GN ∼ R8/c in 10d, where R is the AdS radius and c is the central charge. Now

compare this to the N = 4 SYM anomalous dimensions after unmixing (5.1.1), where

we note that γsugra contributes at order 1/c:

e
1
c
γsugra

4d ∼ 1 + 1
c

δ(8)

(l10d + 1)6
. (5.1.8)

The eighth-order Casimir encodes s4 in the flat space limit and we see that the

Pochhammers precisely match, which justifies the definition of the effective 10d spin

in (5.1.3). The anomalous dimensions after unmixing can be interpreted in terms

of this higher-dimensional spin and we will discuss this in sections 5.6 and 5.8 for

supergravity and higher-derivative corrections in AdS2×S2 respectively. The above
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similarity is suggestive of a direct relation between the 4d CFT and flat space 10d

supergravity. Importantly, this higher-dimensional conformal symmetry allows for

all the correlators of external operators with any R-symmetry charge to be combined

into one big 10d object which acts as a generating function. We will briefly review

the 10d conformal symmetry for correlators in the supergravity approximation and in

free theory in N = 4 SYM below, followed by some general considerations including

higher-derivative corrections.

One goal of this chapter is to understand the hidden higher-dimensional conformal

symmetries more systematically and to approach this, we study a 4d conformal

symmetry of holographic correlators in AdS2×S2. In this background the analogue

of the dimensionless coupling GNδ16(Q), which is the origin of the 10d conformal

symmetry above, is the dimensionless coupling GNδ4(Q) of 4d N = 2 supergravity

amplitudes in flat space. We will consider supergravity and free theory correlators

and show that they exhibit a 4d conformal symmetry. Moreover, we extend our

discussions to higher-derivative corrections for which the symmetry is generally

broken, and discuss how some of the higher-dimensional conformal structure could

still be intact even for higher-derivative corrections.

5.1.1 General Considerations and Higher-Derivative

Corrections

First, consider four-point tree-level correlators in the supergravity limit which, as

explained above, correspond to a flat space 10d supergravity amplitude with a

dimensionless coupling GNδ16(Q) and are thus conformally invariant. It is then

conjectured that all half-BPS correlators can be combined into a 10d generating

function containing all KK modes. This conjecture can be extended to free theory.

The higher-dimensional conformal symmetry arises when the correlator corresponds

to a conformally invariant flat space scattering amplitude with dimensionless coupling.

For tree-level supergravity this is the case for four-point functions in AdS5×S5 which
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is conformally flat. If the correlator does not correspond to such an amplitude, which

is the case for free theory, it can be rescaled by acting with differential operators

of appropriate powers on the correlator. This can be understood from dimensional

analysis.

As we have seen, for supergravity the object which exhibits 10d conformal symmetry

is the correlator itself. In the case of AdS5×S5, supergravity comes with a factor of

GN ∼ l8P . Since free theory is proportional to l0P , to construct an object of the right

dimensions, one needs to act with a specific eighth-order differential operator on the

correlator to get something of order l8P . The right differential operator to consider

is ∆(8) which is the same operator whose eigenvalue appears in the anomalous

dimensions in (5.1.1). This shows the significance of ∆(8) which is derived from

quadratic Casimir operators. Acting with ∆(8) on free theory correlators gives

something that looks exactly like free theory of superconformal descendants (see [41]

and section 5.3 below). Indeed, the correlator of descendants is the object that plays

the leading role in the hidden conformal symmetry. In the case of supergravity,

which is of order 1/c, to uncover the 10d conformal symmetry one has to divide the

tree-level superamplitude by the dimensionless coupling GNδ16(Q) which according

to the discussion around (5.1.7) can be identified with ∆(8)/c. Hence, in the case of

supergravity the correlator itself is the relevant object which exhibits 10d conformal

symmetry while for free theory it is the correlator of descendants. Moreover, this

discussion can be extended to loop corrections. These corrections contribute at

higher negative orders in c and to obtain the corresponding 10d invariant object one

would act with the appropriate negative powers of ∆(8) on the relevant correlators.

In this chapter we study the hidden conformal symmetry in the context of one-

dimensional SCFTs with hidden four-dimensional conformal symmetry. This case is

much simpler than the 4d/10d case and therefore a good starting point to understand

this surprising symmetry in more detail. Analogue to the above discussions for

10d, 4d N = 2 supergravity amplitudes in flat space have a dimensionless coupling

GNδ4(Q). Thus, the corresponding 1d tree-level supergravity correlators of four
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chiral primaries dual to KK modes in AdS2 are expected to exhibit a 4d conformal

symmetry. We will show that this is indeed the case in subsection 5.4.2. Supergravity

in AdS2×S2 comes with a factor of GN ∼ l2P , this is how one sees whether the object

has the right dimensions to be invariant under 4d conformal symmetry or not. Since

4d N = 2 supergravity is connected to a scaleless coupling in the flat space limit,

whenever a correlator comes with ∼ l2P in 1d it is connected to a flat space amplitude

with dimensionless coupling and thus has 4d conformal symmetry. If it does not, a

4d conformal object can be constructed by acting with differential operators derived

from conformal Casimirs on the correlator. Therefore, free theory, which goes like

l0P , needs to be acted on by a second-order differential operator ∆(2) (analogue to

∆(8) above) to get something invariant under 4d conformal symmetry. As in the

10d case above, ∆(2) acting on the free theory correlator gives exactly free theory of

superconformal descendants. We will show this in detail in section 5.3. This can be

extended to loop corrections, but we leave this discussion to [44].

Finally, we attempt to extend these considerations to higher-derivative corrections,

which were not a part of the considerations in [41]. Generally, the higher-dimensional

conformal symmetry is broken for higher-derivative corrections, which can be seen

specifically when unmixing anomalous dimensions in the double-trace spectrum

of the conformal block expansion of half-BPS correlators corresponding to higher-

derivative corrections. These anomalous dimensions after unmixing still show a

simple structure and many of them are rational numbers as was the case in the

supergravity approximation. However, there are anomalous dimensions which con-

tain square roots and this indicates a breaking of the higher-dimensional conformal

symmetry. These anomalous dimensions were obtained for N = 4 SYM in [13, 14] up

to four derivatives and in [16] for higher derivatives. We will study them in detail

in section 5.8 for the four-derivative corrections in 1d. It is reasonable to expect

that some of the hidden conformal symmetry is still intact for higher-derivative

corrections since, as mentioned before, many of the anomalous dimensions are still

rational numbers. Remarkably, for an infinite set of correlators with specific charges,
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one can indeed construct an object that does have higher-dimensional conformal

symmetry. The breaking of the symmetry for generic higher-derivative corrections

can be anticipated because when an interaction vertex contains derivatives and they

are reduced on the sphere, this gives several terms with different numbers of deriv-

atives in AdS which cannot all be rescaled simultaneously. This will be discussed

further in subsection 5.7.3.

Let us now consider the dimensional analysis for higher-derivative corrections in

AdS2×S2. Recall that higher-derivative corrections contribute to the low-energy

effective action as interaction vertices with k+2 derivatives1, where supergravity has

two derivatives and we restrict to quartic interactions in this thesis. The vertices

with ∂k+2 go like GN lkP , so to get an interaction term with the right scaling, i.e.

GN ∼ l2P , one has to multiply it by l−kP . To achieve this, one acts with (∆(2))−
k
2 on

the correlators. In practice this means that we consider objects which can be lifted

to four dimensions to generate all higher-charge correlators (which turn out to be

4d conformal blocks) and then act with differential operators of positive order k on

them to reconstruct the higher-charge versions of the higher-derivative corrections.

We analyse this for the case of four-derivative corrections in subsection 5.7.3 where

it turns out that this can be constructed for all correlators of four external operators

with the charges {pi} = pp11, where 1 is the lowest mode on the two-sphere and p

corresponds to a general KK mode, and crossing versions but is broken for general

correlators. Note that in AdS2×S2 the zero-derivative term describes supergravity

but in AdS5×S5 the analogue term describes the first higher-derivative correction

to supergravity arising from string theory, which has six more derivatives than

supergravity itself.

To summarise, the higher-dimensional conformal symmetry can be realised for specific

1Note that we often count the number of derivatives not necessarily compared to supergravity
but compared to the correlator dual to the zero-derivative bulk scalar interaction φ4. In AdS2×S2

this is indeed supergravity but in higher dimensions, φ4 corresponds to the term R4 in the low-
energy effective action (2.3.18) which describes the first higher-derivative correction and has six
more derivatives than supergravity. This correction is referred to as the zero-derivative correction
and subleading corrections are interactions with k − 6 derivatives acting on R4, where k + 2 is the
total number of derivatives in the interaction.
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four-point correlators in conformally flat backgrounds. It is not just a symmetry in

the supergravity case but can be understood from constructing interactions with the

required scaling by acting on the correlator with appropriate differential operators.

However, for higher-derivative corrections the symmetry breaks in general due to

covariant derivatives acting on the interaction vertices. Nevertheless, there is still

an infinite number of correlators with specific R-symmetry charges which can be

constructed from the hidden conformal symmetry. Note that on the other hand,

all higher-derivative corrections can be deduced from the 4d effective action, see

subsection 5.7.2.

5.2 General Setup

In this chapter we study four-point correlators of half-BPS operators in a large central

charge c expansion in 1d which correspond to tree-level quantum gravity scattering

in the bulk. In the large-c limit, the half-BPS operators are dual to bulk scalars in

AdS2 described by an infinite tower of KK modes on the two-sphere. Furthermore,

we consider the theory in the low-energy approximation, which corresponds to 4d

N = 2 supergravity, where we also consider subleading contributions in the form

of higher-derivative corrections. Since we do not specify the bulk theory nor the

boundary theory beyond its symmetries we formulate the low-energy approximation

in terms of an expansion in a small parameter a, where a → 0 corresponds to the

strict low-energy limit. Considering this double-expansion, free theory correlators

are proportional to a0c0, supergravity correlators contribute at order a0c−1 and the

higher-derivative corrections to the supergravity effective action contribute at orders

c−1ak−1, where 2k is the number of derivatives in the bulk scalar interaction and

k = 2,3, . . .
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5.2.1 Correlators in 1d and the Differential Operator ∆(2)

Let us start by looking at the general structure of four-point functions in 1d CFTs.

The local operators are defined on a line and are invariant under the SO(2,1)

conformal group. This symmetry allows us to fix three points on the line, therefore

there is only one free real parameter left, describing the position of the fourth point.

As a consequence, the usual conformal cross-ratios u, v are not independent and

there is only one cross-ratio, x. Starting from the usual conformal cross-ratios:

u = zz̄ = x
2
12x

2
34

x2
13x

2
24
, v = (1 − z)(1 − z̄) = x

2
23x

2
14

x2
13x

2
24
, (5.2.1)

where xij = xi − xj and defining z = z̄ = x, the 1d cross-ratio x is

x = x12x34

x13x24
, (5.2.2)

and the usual u, v are given in terms of x by

u = x2 , v = (1 − x)2 . (5.2.3)

Hence, 1d correlators correspond to a holomorphic limit.

To discuss the half-BPS correlators of interest, we follow the formalism of [49] with

m = n = 1. The relevant superspace is the super Grassmannian Gr(1∣1,2∣2) of (1∣1)

planes in (2∣2) dimensions. Coordinates on this Grassmannian can be given as

Xi =
⎛
⎜⎜
⎝

xi θi

θ̄i yi

⎞
⎟⎟
⎠
, (5.2.4)

where xi is the 1d spacetime coordinate, yi is a (complex) internal coordinate used to

deal with the SU(2) structure and θi, θ̄i are Grassmann odd coordinates. Since we

will be dealing with correlators of four operators on this space, we added a subscript

i = 1,2,3,4 to denote the particle number.

The field content of 4d N = 2 supergravity is one graviton, six gravitinos, 15 vector

and 10 (complex) hypermultiplets [147]. Each of these multiplets contains four

bosonic and four fermionic degrees of freedom and compactifying on the two-sphere
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gives an infinite tower of KK modes for each multiplet. The 4d N = 2 hypermultiplet

is the simplest to understand from a higher-dimensional perspective. This multiplet

on an AdS2×S2 background is AdS/CFT dual to an infinite tower of fermionic 1d

half-BPS multiples [147]. These are fermionic superfields of scaling dimension ∆ and

SU(2) representation ∆. They can be written on the above super Grassmannian

and decompose into the following component fields

Ψ∆(xi, θi, θ̄i, yi) = ψ∆ + θiφ∆+ 1
2
+ θ̄iφ̄∆+ 1

2
+ θiθ̄iλ∆+1 , ∆ = 1

2 ,
3
2 ,

5
2 , . . . , (5.2.5)

where the subscript denotes the dimension of the field. The field ψ∆ has SU(2)

representation ∆, φ∆ has SU(2) representation ∆− 1, λ∆ has SU(2) representation

∆ − 2. For the special multiplet Ψ1/2 the descendant λ3/2 is absent. Expanding in

the yi coordinates manifests the SU(2) indices for these representations

ψ∆(xi, yi) = ψI1...I2∆(xi)yI1i . . . y
I2∆
i , ∆ = 1

2 ,
3
2 , . . . ,

φ∆(xi, yi) = φI1...I2∆−2(xi)yI1i . . . y
I2∆−2
i , ∆ = 1,2, . . . ,

λ∆(xi, yi) = λI1...I2∆−4(xi)yI1i . . . y
I2∆−4
i , ∆ = (3

2) , 5
2 , . . . , (5.2.6)

where

yIi = (1, yi) . (5.2.7)

We are interested in the four-point functions of half-BPS superconformal primaries:

⟨ψ∆1(x1, y1)ψ∆2(x2, y2)ψ∆3(x3, y3)ψ∆4(x4, y4)⟩ . (5.2.8)

However, it will also be useful to consider the four-point function of superdescendants

⟨φ∆1(x1, y1)φ∆2(x2, y2)φ̄∆3(x3, y3)φ̄∆4(x4, y4)⟩ . (5.2.9)

Indeed it is the latter which plays the leading role in the hidden higher-dimensional

conformal symmetry as described in section 5.1. Both correlators transform covari-

antly under the bosonic subgroup of the superconformal group SU(1,1) × SU(2) ⊂
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SU(1,1∣2) which means they have the form

⟨ψ∆1(x1, y1)ψ∆2(x2, y2)ψ∆3(x3, y3)ψ∆4(x4, y4)⟩ = P∆i
Gψ∆i

(x, y) ,

⟨φ∆1(x1, y1)φ∆2(x2, y2)φ̄∆3(x3, y3)φ̄∆4(x4, y4)⟩ =
P∆i− 1

2

x12x34y12y34
Gφ∆i

(x, y) , (5.2.10)

where the prefactor P∆i
is

P∆i
= g∆1+∆2

12 g∆3+∆4
34 (g24

g14
)

∆21

(g14

g13
)

∆43

,

with gij =
yij
xij

, yij = yi − yj , (5.2.11)

and ∆ij = ∆i−∆j. This prefactor by itself transforms correctly as a ⟨ψ∆1ψ∆2ψ∆3ψ∆4⟩

correlator under the bosonic subgroup, leaving a remaining function Gψ(x, y) which

is conformally invariant. Thus, it is a function of the conformal cross-ratios x, y, the

spacetime and internal cross-ratios in one dimension:

x = x12x34

x13x24
, y = y12y34

y13y24
. (5.2.12)

The spacetime cross-ratio was discussed above, around (5.2.2), and equivalently for

the internal cross-ratios, there is only a single independent one, y.

The two component correlators (5.2.10) are related to each other by supercon-

formal symmetry. Indeed both can be obtained from the same supercorrelator

⟨Ψ∆1Ψ∆2Ψ∆3Ψ∆4⟩ as

⟨ψ∆1ψ∆2ψ∆3ψ∆4⟩ = ⟨Ψ∆1Ψ∆2Ψ∆3Ψ∆4⟩∣θi=θ̄i=0 ,

⟨φ∆1+ 1
2
φ∆2+ 1

2
φ̄∆3+ 1

2
φ̄∆4+ 1

2
⟩ = ∂θ1∂θ2∂θ̄3∂θ̄4⟨Ψ∆1Ψ∆2Ψ∆3Ψ∆4⟩∣θi=θ̄i=0 . (5.2.13)

Superconformal invariance implies that the full supercorrelator only depends non-

trivially on two bosonic variables. This then implies that the above relations reduce

to the following direct differential relation between the two component correlators

⟨φ∆1+ 1
2
φ∆2+ 1

2
φ̄∆3+ 1

2
φ̄∆4+ 1

2
⟩ = I−1CSU(1,1∣2)

1,2 ⟨ψ∆1ψ∆2ψ∆3ψ∆4⟩ , (5.2.14)

where we leave the derivation of this result to appendix H. Here CSU(1,1∣2)
1,2 denotes
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the superconformal quadratic Casimir given in terms of the second-order differential

operator ∆(2) by

CSU(1,1∣2)
1,2 = Ppi

× x − y
xy

∆(2) xy

x − yP
−1
pi

,

∆(2) = D(p12,p43)
x −D(−p12,−p43)

y ,

D(p12,p43)
x = x2∂x(1 − x)∂x + (p12 + p43)x2∂x − p12p43x , (5.2.15)

where pij = pi − pj. For a derivation of the quadratic Casimir see appendix H.

Furthermore, I is the special polynomial

I = x12x34y13y24 − y12y34x13x24 , (5.2.16)

which is completely antisymmetric under crossing symmetry.

The second-order differential operator ∆(2) is the analogue of ∆(8) playing an im-

portant role in the 10d conformal symmetry of N = 4 SYM correlators. We have

discussed the significance of ∆(2) in subsection 5.1.1. Recall that the object that

has 4d conformal symmetry in AdS2×S2 in the supergravity limit is the half-BPS

correlator itself, whereas for free theory acting with ∆(2) on the correlator yields

the 10d conformally invariant object which is the correlator of descendant bosonic

scalars φ. In 1d this is related to the correlator of chiral primaries ψ by acting on

the latter with ∆(2), see (5.2.14).

Throughout this chapter we will consider four-point functions of half-BPS operators

and in the free theory case also the correlators of descendants. The half-BPS

operators are fermionic primaries ψ∆ with dimensions and SU(2) charges ∆ = 1
2 ,

3
2 , . . .

However, it will turn out to be most useful to label the correlators in terms of the

bosonic descendant operators φ∆+1/2 with dimensions 1,2, . . . Therefore, we define

the half-BPS operators as

Op = (−1)
p
2
ψ(2p−1)/2√

2p − 1
, (5.2.17)

where p = 1,2, . . . In this convention the half-BPS operators have dimension and

SU(2) representation (2p − 1)/2. Furthermore, it is useful to introduce a normalisa-
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tion (−1)p/2 (2p− 1)−1/2 inspired by the higher-dimensional conformal symmetry [41].

It will become clear why this is useful in the discussions below (5.3.12) and (5.3.20).

We then denote the descendants of Op by Lp, L̄p:

Op(x, y) = Op(x, y) + θLp(x, y) + θ̄L̄p(x, y) , (5.2.18)

where Lp has dimension p and SU(2) charge p − 1.

5.2.2 Conformal Blocks

In this subsection we discuss the conformal blocks in 1d. We will consider four-point

functions of half-BPS operators Opi
(5.2.17) with i = 1, . . . ,4. In the OPE of two

such half-BPS operators one finds also long multiplets. These can all be represented

as O∆,p, where ∆ is the dilatation weight and p is the SU(2) representation of the

exchanged operators.

The four-point function can be expanded in superconformal blocks B∆,p(x, y) as

⟨Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)⟩

=
∞
∑
∆=1

p1+p2−2

∑
p=0

Ap1p2p3p4
∆,p gp1+p2−1

12 gp3+p4−1
34 (g24

g14
)
p21

(g14

g13
)
p43

B∆,p,p12,p34(x, y) , (5.2.19)

where the coefficient A∆,p is given in terms of a sum of squares of OPE coefficients

as

Ap1p2p3p4
∆,p = ∑

O∆,p,Õ∆,p

COp1p2C
Õ
p3p4COÕ . (5.2.20)

Further

g̃ij =
yij
∣xij ∣

(5.2.21)

is the two-point function of charge 1 half-BPS operators. Note that the two-point

function g̃ij is antisymmetric under exchange i and j, as expected for fermions. It
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will also be convenient to define the bosonic two-point function

gij =
yij
xij

. (5.2.22)

The superconformal blocks are derived from a general formula for superconformal

blocks with symmetry group SU(m,m∣2n) in [49]. In our case m = n = 1 and the

blocks for long multiplets are given by

Blong
∆,p,p12,p34

(x, y) = − (x − y)(−x)∆
2F1(∆ + 1 − p12,∆ + 1 + p34; 2∆ + 2;x)

× y−p−1
2F1(−p + p12,−p − p34;−2p; y) . (5.2.23)

For half-BPS multiplets ∆ = p and the blocks are

Bhalf-BPS
p,p12,p34 (x, y) =(−x

y
)
p

(1 + (x − y)
k

∑
i=1

[x−i 2F1(p + 1 − i − p12, p + 1 − i + p34; 2p + 2 − 2i;x)]

× yi−1
2F1(i − p + p12, i − p − p34; 2i − 2p; y)) , (5.2.24)

where k = min(p − p12, p + p34) and the square bracket means we take the regular

piece as x→ 0.

It is interesting to note that the block of an operator with dimension ∆ and SU(2)

representation p contributes as follows to the four-point function

⟨Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)⟩

∼ ∑
∆,p

Ap1p2p3p4
∆,p gp1+p2−1

12 gp3+p4−1
34 (g24

g14
)
p21

(g14

g13
)
p43

(−x)∆y−p (1 +O(x, y)) , (5.2.25)

where the higher orders in x, y correspond to spacetime or SU(2) descendants.

5.2.3 4d Scalar Effective Action

In addition to studying the 4d hidden conformal symmetry in this chapter, we

also obtain the correlators described by tree-level supergravity and higher-derivative

corrections in AdS2×S2 from a higher-dimensional effective action analogous to the

10d effective action proposed in chapter 3. There a 10d scalar effective action

was introduced which generates all half-BPS four-point correlators in N = 4 SYM
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described by tree-level string theory in AdS5×S5 [42].

For the present case, we consider the following four-field terms in an effective superpo-

tential for supergravity linearised about flat 4d space, with the expansion parameter

a (where a→ 0 corresponds to the low-energy limit):

V flat(φ) = 1
4!(Aφ4 +B a (∂φ.∂φ)2 +Da2 (∂φ.∂φ)(∂µ∂νφ∂µ∂νφ) + . . . ) , (5.2.26)

where in this chapter we mainly focus on the first two terms. In subsection 5.4.2 we

will see that in AdS2×S2 the zero-derivative term describes supergravity and thus

the φ4 term in the effective action is of order a0. The fact that the supergravity

approximation is included in the effective action is very powerful since we can com-

pute all half-BPS supergravity correlators from the 4d effective action alongside all

higher-derivative corrections, whereas in AdS5×S5 only higher-derivative corrections

can be obtained from the effective action. We organise the expansion in a such that

2k-derivative terms contribute at order ak−1 starting from k = 2, where k = 0 terms

are excluded since they describe supergravity and not higher-derivative corrections.

To uplift the effective superpotential to an AdS2×S2 background the flat derivatives

are replaced with covariant AdS×S derivatives, see (2.3.6). It is important to note

that this uplift is not unique as we have seen in the AdS5×S5 case. There are

ambiguities because the covariant derivatives no longer commute with each other

and there could be contributions from interactions with a lower number of derivatives,

compensated by the AdS radius R, which would vanish in the flat space limit. So

to O(a2) the superpotential translates to

V AdS×S(φ) = 1
4![Aφ4 + a(3B(∇φ.∇φ)2 + 6C∇2∇µφ∇µφφ2)

+ a2(6D(∇φ.∇φ)(∇µ∇νφ∇µ∇νφ) + 6E∇µ∇2∇νφ∇µ∇νφφ2) + . . . ] .

(5.2.27)

As in the AdS5×S5 case (3.1.18), the coefficients B,C, . . . themselves can have an

expansion in the dimensionless parameter a/R2 where R is the radius of AdS (or S).

So whereas in flat space 2k-derivative terms only contribute at order ak−1, in AdS×S,
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2k-derivative terms can contribute at ak−1 and all higher orders in principle. These

expansions are

B(a) = B0 +B1
a
R2 + . . .

C(a) = C0 +C1
a
R2 + . . .

. . . (5.2.28)

For simplicity, we will set R = 1 from now on throughout this chapter, but it

will be understood that these higher-order terms vanish in the flat space limit.

The supergravity coefficient A does not allow for a a/R2 expansion because of

superconformal symmetry (see also subsection 3.1.3).

5.3 Free Theory

In this section we will derive the 1d free theory correlators. As explained in subsec-

tion 5.1.1, the object that has 4d conformal symmetry in free theory is the correlator

of descendants which is obtained by acting on the half-BPS correlator with the

second-order differential operator ∆(2). One can then construct a four-dimensional

generating function which contains all 1d half-BPS correlators in free theory.

First, write the correlators according to (5.2.10) in terms of a prefactor and a function

only depending on the conformal cross-ratios (5.2.12) as

⟨Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)⟩ = Ppi
×Gp1p2p3p4(x, y) , (5.3.1)

where the prefactor is given by

Ppi
= gp1+p2−1

12 gp3+p4−1
34 (g24

g14
)
p21

(g14

g13
)
p43

. (5.3.2)

It is useful to decompose the correlator in such a way that the solution to the

superconformal Ward identities becomes straightforward. The superconformal Ward

identities in 1d are ∂xG(x, y)∣x=y = 0, i.e. simply that G(x,x) is independent of x.
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This has the straightforward solution

Gpi
(x, y) = kpi

(x, y) + x − y
xy

Hpi
(x, y) ,

where kpi
(x, y) = κ(x

y
)
p43

, (5.3.3)

with H(x,x) finite and kpi
(x, y) is defined such that CSU(1,1∣2)

1,2 (Ppi
kpi

) = 0 with a

constant κ and the superconformal Casimir is given in (5.2.15).

In this decomposition the Casimir only sees the interacting piece of the correlator,

the so-called reduced correlator Hpi
:

CSU(1,1∣2)
1,2 ⟨Op1Op2Op3Op4⟩ = Ppi

x − y
xy

∆(2)Hpi
(x, y) = Ppi

x − y
xy

H̃pi
(x, y) , (5.3.4)

where we define

H̃pi
(x, y) = ∆(2)Hpi

(x, y) . (5.3.5)

To construct an object which has the right dimensions to transform like a correlator

which has 4d conformal symmetry, we define the correlator of descendants in terms

of H̃ like

⟨Lp1Lp2L̄p3L̄p4⟩ =
Ppi

x12x34y12y34
H̃pi

(x, y) , (5.3.6)

where Lp is the descendant of Op with dimension p and SU(2) charge p − 1, as

described in (5.2.18). Comparing equations (5.3.4) and (5.3.6) we get

⟨Lp1Lp2L̄p3L̄p4⟩ = I−1CSU(1,1∣2)
1,2 ⟨Op1Op2Op3Op4⟩ , (5.3.7)

which agrees with the relation in (5.2.14).

5.3.1 4d Conformal Symmetry

Let us now construct the four-dimensional generating function for free theory cor-

relators, starting with the correlators of half-BPS operators of equal charge. The

free theory correlator for equal charge operators is given in terms of the fermionic
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two-point functions g̃ij (5.2.21) as

⟨Op(x1, y1)Op(x2, y2)Op(x3, y3)Op(x4, y4)⟩∣c0

= 1
N (0)
pppp

[(g̃12g̃34)2p−1 − (g̃13g̃24)2p−1 + (g̃14g̃23)2p−1]

= 1
N (0)
pppp

(g̃12g̃34)2p−1 [1 + (x
y
)

2p−1
((−sgnx) + (1 − y

1 − x)
2p−1

sgn [x (1 − x)])] , (5.3.8)

where the normalisation

N (0)
pi = (−1)Σp

√
(2p1 − 1)(2p2 − 1)(2p3 − 1)(2p4 − 1) (5.3.9)

comes from the normalisation of the half-BPS operators in (5.2.17) and recall that

Σp = 1
2 (p1 + p2 + p3 + p4). Choosing 0 ≤ x ≤ 1, we then find that

G
(0)
pppp(x, y) =

1
N (0)
pppp

[1 + (x
y
)

2p−1
(−1 + (1 − y

1 − x)
2p−1

)] . (5.3.10)

This decomposes into

k
(0)
pppp(x, y) =

1
N (0)
pppp

, H
(0)
pppp(x, y) =

1
N (0)
pppp

xy

x − y (x
y
)

2p−1
[−1 + (1 − y

1 − x)
2p−1

] . (5.3.11)

The action of ∆(2) then yields

H̃
(0)
pppp =

x2p

y2p−2 (1 + (1 − y)2p−2

(1 − x)2p ) , (5.3.12)

which indeed looks like the free theory of dimension p charge p − 1 operators you

would get as the descendant. Acting with ∆(2) on H gives a factor of (2p − 1)2

which gets cancelled by the normalisation 1/N (0)
pppp. This is how the normalisation

in (5.2.17) was chosen, up to the sign which will become clear shortly.

Note that for the analysis of free theory in terms of the 4d conformal symmetry this

decomposition is not necessary since acting with ∆(2) xy
x−y on G(x, y) only sees the

interacting piece H anyway. Nevertheless, the discussion below can be written in

terms of H in a simple way. Furthermore, the decomposition is useful as it will allow

us to consider the 1/c expansion of H in (5.5.2) later on.

Finally, consider the correlator of descendants from which we construct the generating
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function with 4d conformal symmetry. From (5.3.6) and (5.3.12) we get

⟨LpLpL̄pL̄p⟩c0 = g2p−2
14 g2p−2

23
1

x2
14x

2
23
+ g2p−2

13 g2p−2
24

1
x2

13x
2
24
. (5.3.13)

Note that the correlator of bosonic descendants is given in terms of bosonic two-point

functions gij (5.2.22). Take the lowest case p = 1 where we have

⟨L1L1L̄1L̄1⟩c0 =
1

x2
12x

2
34
H̃

(0)
1111 =

1
x2

14x
2
23
+ 1
x2

13x
2
24
. (5.3.14)

To construct the generating function, now lift this to four dimensions by replacing

x2
ij → x2

ij + y2
ij = x2

ij(1 + g2
ij) which gives

⟨LLL̄L̄⟩4d
c0 =

1
x2

14x
2
23

1
(1 + g2

14)(1 + g2
23)

+ 1
x2

13x
2
24

1
(1 + g2

13)(1 + g2
24)

. (5.3.15)

This is a 4d object which contains all 1d free theory correlators. To obtain the

specific correlators Taylor expand in gij and take the appropriate coefficients. To

check this for the case of equal charges expand out (1+g2)−1 = 1−g2+g4−g6+ ... and

keep the two terms proportional to g2p−2
14 g2p−2

23 and g2p−2
13 g2p−2

24 , this indeed reproduces

the prediction in (5.3.13).

Next, let us investigate correlators of unequal charge and check that they can be

predicted from the generating function (5.3.15), which is the main result of this

section. First, consider {pi} = pqpq, where p > q. These correlators will be important

in later sections, together with the equal charge ones, when performing conformal

block analyses of correlators in the supergravity approximation and at the order of

higher-derivative corrections. The free theory correlator is given by

⟨Op(x1, y1)Oq(x2, y2)Op(x3, y3)Oq(x4, y4)⟩c0 = −
1
N (0)
pqpq

g̃2p−1
13 g̃2q−1

24 , (5.3.16)

and G(0)
pqpq(x, y) = −

1
N (0)
pqpq

(x
y
)
p+q−1

, (5.3.17)

where the operators have dimensions and charges (2p − 1)/2, (2q − 1)/2 and we
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decompose G(0)
pqpq into

k
(0)
pqpq(x, y) = −

1
N (0)
pqpq

(x
y
)
q−p

, H
(0)
pqpq(x, y) =

1
N (0)
pqpq

xy

x − y (x
y
)
q−p

[1 − (x
y
)

2p−1
] .

(5.3.18)

Acting on this with ∆(2) gives

H̃
(0)
pqpq(x, y) = (−1)p+q xp+q

yp+q−2 , (5.3.19)

which does look like free theory with dimensions p, q and charges p − 1, q − 1 as we

would expect for descendants. Using (5.3.6) yields

⟨LpLqL̄pL̄q⟩c0 = (−1)p+q g2p−2
13 g2q−2

24
1

x2
13x

2
24
, (5.3.20)

which agrees with the term proportional to g2p−2
13 g2q−2

24 in the expansion of the gener-

ating function (5.3.15). Thus the choice of signs in our normalisation of the half-BPS

operators (5.2.17) was inspired by the realisation of the 4d conformal symmetry in

free theory, similar to the rest of the normalisation.

Consider one more correlator of mixed charges {pi} = pqqp, where p > q and the free

theory correlator is given by

⟨Op(x1, y1)Oq(x2, y2)Oq(x3, y3)Op(x4, y4)⟩c0 =
1
N (0)
pqqp

g̃2p−1
14 g̃2q−1

23

and G(0)
pqqp(x, y) =

1
N (0)
pqqp

(x
y
)
p+q−1

(1 − y
1 − x)

2q−1
. (5.3.21)

The operators again have dimensions and charges (2p − 1)/2, (2q − 1)/2 as expected.

The correlator decomposes into

k
(0)
pqqp(x, y) =

1
N (0)
pqqp

(x
y
)
p−q

,

H
(0)
pqqp(x, y) =

1
N (0)
pqqp

xy

x − y [(1 − y
1 − x)

2q−1
(x
y
)
p+q−1

− (x
y
)
p−q

] . (5.3.22)

The action of ∆(2) then yields

H̃
(0)
pqqp(x, y) = (−1)p+q xp+q

yp+q−2
(1 − y)2q−2

(1 − x)2q , (5.3.23)
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which as expected looks like free theory of descendants with dimensions p, q and

charges p − 1, q − 1. Using (5.3.6) we finally get the correlator of descendants

⟨LpLqL̄qL̄p⟩c0 = (−1)p+q g2p−2
14 g2q−2

23
1

x2
14x

2
23
, (5.3.24)

which agrees with the term proportional to g2p−2
14 g2q−2

23 in the expansion of (5.3.15).

In this section we have shown that free theory correlators in 1d dual to quantum

gravity in AdS2×S2 have four-dimensional conformal symmetry. The generating

function can be constructed by uplifting the correlator of descendants with lowest

charge to four dimensions. In the following section we will study correlators in the

supergravity limit in the context of the four-dimensional conformal symmetry as

well as the 4d scalar effective action described in subsection 5.2.3.

5.4 Supergravity

As explained in subsection 5.1.1, for supergravity the object which plays the leading

role in the four-dimensional conformal symmetry is the half-BPS correlator itself.

We will study correlators in the supergravity approximation in this section. To

construct a 4d generating function of all the 1d half-BPS correlators dual to tree-

level supergravity from the 4d conformal symmetry, we first need to determine

the lowest-charge supergravity correlator. This will be derived in subsection 5.4.1

using only crossing symmetry and x → 0 behaviour. In subsection 5.4.2 we will

then discuss the 4d conformal symmetry of supergravity correlators. Furthermore,

in subsection 5.4.3 we will obtain all half-BPS supergravity correlators from the

4d effective action (5.2.27) by evaluating generalised AdS2×S2 Witten diagrams

analogous to chapter 3.
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5.4.1 Lowest-Charge Supergravity Correlator

In this subsection we determine the supergravity correlator for pi = 1 using crossing

symmetry and the x → 0 behaviour. The free disconnected correlator of operators

with equal charges pi = 1 is given in terms of g̃ij as

⟨O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)⟩∣c0 = g̃12g̃34 − g̃13g̃24 + g̃14g̃23 . (5.4.1)

At next order in the large-c expansion, which corresponds to supergravity, we would

expect an expression of the form

⟨O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)⟩∣1/c = g̃12g̃34
x

y
(x − y)a(x) ,

however this does not turn out to be the most natural definition, which can be seen

by considering the crossed version. Indeed, if we exchange positions 1 and 3, which

takes x→ 1 − x and y → 1 − y, we get

⟨O1(x3, y3)O1(x2, y2)O1(x1, y1)O1(x4, y4)⟩∣1/c = −g̃32g̃14
1 − x
1 − y (x − y)a(1 − x)

= g̃12g̃34
x

y
(x − y)a(1 − x) .

Setting this equal to minus the original expression (by Fermi statistics) then implies

the crossing equation

a(1 − x) = −a(x)sgn [x (1 − x)] . (5.4.2)

For 0 < x < 1, this reduces to a(1−x) = −a(x). We expect the supergravity correlator

should be given in terms of D-functions, or D̄-functions to get concrete expressions

in position space. Note that since there is only one conformal spacetime cross-ratio x

in 1d, one has to consider holomorphic D̄-functions, which we denote by D̄hol. These

functions can be reached by taking the limit z̄ → z of the usual D̄-functions in terms

of z, z̄ (2.3.17) and setting z = x, see (5.2.3). However, the crossing condition (5.4.2)

is not consistent with the behaviour of D̄hol-functions under crossing.

This can be resolved by constructing the four-point function using bosonic two-point
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functions gij (5.2.22)2, which yields

⟨O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)⟩∣1/c = g12g34
x

y
(x − y)a(x) . (5.4.3)

In this case, from 1↔ 3, we find the crossing constraint

a(1 − x) = a(x) . (5.4.4)

We shall take (5.4.3) as our ansatz. Before considering crossing versions of the four-

point function, it is important to carefully consider some properties of four-point

functions in one dimension. As mentioned in subsection 5.2.1, conformal symmetry

allows us to fix three points on the line, i.e. we can set x1 = 0, x3 = 1 and x4 = ∞ [152].

The position of the third point x2 is then equal to x and ranges over all real numbers.

Let us refer to the interacting part of the four-point function, x2a(x), by A(x) for

the purpose of this discussion. The function A(x) is singular for values of x where

two points coincide, i.e. x = 0,1,∞. Thus, A(x) splits into three different functions

for different regions of the real x line:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A−(x) for x ∈ (−∞,0) ,

A0(x) for x ∈ (0,1) ,

A+(x) for x ∈ (1,∞) ,

(5.4.5)

see also [153] for similar discussions. The functions are related to each other by the

Fermi symmetry of the four-point function, where we have A0,±(x) = x2a0,±(x). As

mentioned above, we choose the ordering 0 < x < 1 where A0 is the relevant function

and thus in all the above equations we replace a(x) by a0(x). When considering

crossing symmetry however, the other regions become relevant.

Let us now consider exchanging 2 with 3, which takes x→ 1/x and y → 1/y:

⟨O1(x1, y1)O1(x3, y3)O1(x2, y2)O1(x4, y4)⟩∣1/c = g12g34
x

y
(x − y) (− 1

x2a
+(1/x)) .

(5.4.6)

2Although we are using bosonic two-point functions, the four-point function is still a valid
solution to the Ward identities with the expected symmetries.
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Equating this with minus the original expression (due to Fermi statistics) then

implies

a+ (1
x
) = x2a0(x) . (5.4.7)

Finally, for the third crossing condition, consider exchanging 1 with 3 in (5.4.6):

⟨O1(x3, y3)O1(x1, y1)O1(x2, y2)O1(x4, y4)⟩∣1/c = g12g34
x

y
(x − y) 1

(1 − x)2a
+ ( 1

1 − x) .

Equating this with the expression in (5.4.3) then gives the condition

a+ ( 1
1 − x) = (1 − x)2a0(x) , (5.4.8)

which follows from (5.4.4) and (5.4.7).

An additional constraint comes from the fact that the subleading part of the correlator

in the large-c expansion should not encode exchange of the identity operator. To

use this conditions, consider the conformal block expansion of the correlator

⟨O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)⟩

=
∞
∑
∆=1

A1111
∆,0 g12g34B

long
∆,0 (x, y)

∼
∞
∑
∆=1

A1111
∆,0 g12g34 (−x)∆ (1 +O(x)) (5.4.9)

and compare the approximation in the last line to the ansatz (5.4.3) considering the

x→ 0 limit. This implies that a0(x) must satisfy the additional constraint

a0(x) = O(1) . (5.4.10)

With these constraints at our hand, assume that a0(x), a+(x) take the form

a0(x) = p0(x) logx2 + p0(1 − x)log(1 − x)2 + r0(x) for x ∈ (0,1) ,

a+(x) = p+(x) logx2 + p+(1 − x)log(1 − x)2 + r+(x) for x ∈ (1,∞) , (5.4.11)

for rational functions p0, p+, r0, r+. Note that for x ∈ (0,1) and x ∈ (1,∞) for a0(x)

and a+(x) respectively the logarithms in the above ansatz will not pose a problem

when considering crossing symmetry. Furthermore, this ansatz makes sense since we
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expect the correlator to be written in terms of D̄hol-functions, and these functions

indeed only consist of log(x), log(1 − x) and rational functions of x. Plugging this

into the crossing equations (5.4.4) and (5.4.7) and the constraint (5.4.10), we get

the following crossing equations for p0, p+ and r0, r+:

p+(1/x) + p+((x − 1)/x) = −x2p0(x) , p+((x − 1)/x) = x2p0(1 − x) ,

p+(x/(x − 1)) = (1 − x)2p0(x) , p+(1/(1 − x)) + p+(x/(x − 1)) = −(1 − x)2p0(1 − x) ,

r0(1 − x) = r0(x) , r+(1/x) = x2r0(x) , r+(1/(1 − x)) = (1 − x)2r0(x) . (5.4.12)

We then find the minimal solution:

a0(x) = logx2

1 − x + log(1 − x)2

x
= −D̄hol

1111(x) for x ∈ (0,1) , (5.4.13)

where D̄hol
1111(x) is the holomorphic box function. Note that (5.4.12) yields that a0(x)

and a+(x) have the same functional form:

a+(x) = −D̄hol
1111(x) for x ∈ (1,∞) . (5.4.14)

Using (5.3.3) we write the interacting theory at tree-level as

Hsugra
1111 = −uD̄hol

1111 . (5.4.15)

We have now determined the lowest-charge supergravity correlator from which we

will obtain all higher-charge correlators from the 4d conformal symmetry in the

following subsection.

5.4.2 4d Conformal Symmetry

As was found in [41] for N = 4 SYM, the higher-dimensional conformal symmetry

allows us to obtain the whole infinite tower of half-BPS correlators of all charges

described by tree-level supergravity from the lowest correlator alone. The starting

point is Hsugra
1111 given in (5.4.15) which is lifted to four dimensions by simply lifting

the 1d cross-ratios and holomorphic D̄-functions to the usual cross-ratios and D̄-
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functions, using the relations (5.2.3) for the cross-ratios. To get an object that

transforms as a 4d conformal correlator, divide by x2
12x

2
34 and then replace x2

ij →

x2
ij(1 + g2

ij) to get the generating function:

Hsugra
1111

x2
12x

2
34

∣4d =
−uD̄1111(u, v)

x2
12x

2
34

∣4d →
−u4dD̄1111(u4d, v4d)

x2
12x

2
34

1
(1 + g2

12)(1 + g2
34)

, (5.4.16)

where

u4d =
x2

12x
2
34

x2
13x

2
24

(1 + g2
12)(1 + g2

34)
(1 + g2

13)(1 + g2
24)

, v4d =
x2

14x
2
23

x2
13x

2
24

(1 + g2
14)(1 + g2

23)
(1 + g2

13)(1 + g2
24)

. (5.4.17)

This 4d object includes all higher-charge 1d supergravity correlators. To obtain the

specific correlators, expand in small gij and take the coefficients of the appropriate

powers of g2
ij. Before deriving a general formula describing all correlators, let us

consider the explicit expansion for a few examples. The interacting piece of the

correlators corresponds to the piece proportional to x−y
xy and for the first few cases

with charges {pi} = ppqq this looks like:

⟨O1O1O2O2⟩1/c∣x−y
xy

=g12g34×g2
34 (uD̄1122) ,

⟨O1O1O3O3⟩1/c∣x−y
xy

=g12g34×1
2g

4
34 (−u D̄1133) ,

⟨O2O2O2O2⟩1/c∣x−y
xy

=g12g34×(ug2
12g

2
34 + g2

13g
2
24 + v g2

14g
2
23) (−u D̄2222) ,

⟨O2O2O3O3⟩1/c∣x−y
xy

=g12g34×(1
2ug

2
12g

4
34 + g2

13g
2
24g

2
34 + v g2

14g
2
23g

2
34) (u D̄2233) ,

⟨O3O3O3O3⟩1/c∣x−y
xy

=g12g34×(1
4u

2g4
12g

4
34 + 1

4g
4
13g

4
24 + 1

4v
2g4

14g
4
23 + ug2

12g
2
34g

2
13g

2
24

+uv g2
12g

2
34g

2
14g

2
23 + v g2

13g
2
24g

2
14g

2
23) (−u D̄3333) . (5.4.18)

To get the one-dimensional correlators, go back to 1d by taking the holomorphic limit

of the D̄-functions and considering the 1d cross-ratios (5.2.12). The supergravity

correlators can be conveniently written in terms of the decomposition in (5.3.3)

using (5.2.22) in 1d:

Hsugra
1122 = uD̄hol

1122 , Hsugra
1133 = −1

2uD̄
hol
1133 , Hsugra

2222 = −2u2 1 − y + y2

y2 D̄hol
2222 ,

Hsugra
2233 = 1

2u
2 4 − 4y + 3y2

y2 D̄hol
2233 , Hsugra

3333 = −3
2u

3 (1 − y + y2)2

y4 D̄hol
3333 . (5.4.19)
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Note that the supergravity correlators with general charges show a simple structure

and are proportional to a single D̄-function with the same indices: Hsugra
p1p2p3p4 ∝

D̄hol
p1p2p3p4 which will become obvious in the general considerations below.

The expansion in g2
ij can be rewritten in terms of differential operators acting on

D-functions. Therefore, to find a general expression for all higher-charge correlators

let us formulate everything in terms of D-functions. These can be easily converted

to D̄-functions when needed to perform explicit calculations in position space us-

ing (2.3.17). Note that here we use a d-independent function defined in terms of the

normalised D-function in (2.3.16) as D′
{pi} = (−2)−Σp D{pi}

3. Again, start from the

4d uplift (5.4.16) and notice that it exactly corresponds to D′
1111:

Hsugra
1111

x2
12x

2
34

∣4d =
−uD̄1111

x2
12x

2
34

∣4d = −D′
1111∣4d . (5.4.20)

To get the coefficient of (g2
ij)

n in the g2
ij expansion of the uplifted correlator with

(u, v) → (u4d, v4d), instead of performing the expansion we take

(x2
ij)

n

n!
dn

d (x2
ij)

nD
′
∆1∆2∆3∆4

, (5.4.21)

where (see [60])
d

dx2
12
D′

∆1∆2∆3∆4
= −D′

∆1+1 ∆2+1 ∆3∆4
. (5.4.22)

Thus the coefficient of (g2
12)

n is

(x2
12)

n

n!
dn

d (x2
12)

nD
′
∆1∆2∆3∆4

= (−x2
12)

n

n! D′
∆1+n∆2+n∆3∆4

(5.4.23)

and similar for all x2
ij. Therefore, a general coefficient of ∏4

i<j (g2
ij)

dij is given by

∏i<j
(−x2

ij)
dij

dij ! D′
{∆i+∑i<j dij}, where 0 ≤ dij = dji, dii = 0.

3The factor (−2)Σp comes from the fact that in chapter 3 we usually factor out (−2) from
(−2Xi.Xj) = x2

ij whereas here we work in terms of x2
ij instead of (Xi.Xj) and similar for the

spherical coordinates.
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Hence a general correlator with charges pi is given as

Hsugra
p1p2p3p4

x2
12x

2
34

∣4d = ∑
{dij}
∏
i<j

⎛
⎜
⎝
(−1)dij (g2

ij)
dij

(x2
ij)

dij

dij!
⎞
⎟
⎠
(−D′

p1p2p3p4)

= ∑
{dij}
∏
i<j

⎛
⎜
⎝

(y2
ij)

dij

dij!
⎞
⎟
⎠
(−1)Σp+1

D′
p1p2p3p4 , (5.4.24)

with

∑
i<j
dij = pi − 1 , 0 ≤ dij = dji , dii = 0 . (5.4.25)

We recognise the factor depending on the internal coordinates yij as the analogue

of the Mellin transform on the sphere we introduced in chapter 3 as B-functions.

Note that the relevant object here is B′
{pi} = (−2)Σp B{pi}, given in terms of the

d-independent B-function defined in (3.1.31) (see footnote 3). The dij correspond

to the sphere-analogues of Mellin variables and y2
ij = (−2Yi.Yj). Equation (5.4.24) is

a four-dimensional object which generates all 1d half-BPS correlators described by

tree-level supergravity. To obtain general correlators in terms of D-functions it is

useful to define the interacting piece of the correlator as

⟨Op1Op2Op3Op4⟩int =
⟨Op1Op2Op3Op4⟩∣x−y

xy

x12x34y12y34
, (5.4.26)

where we divide by x12x34y12y34 which is the 1d analogue of the Intriligator poly-

nomial in 4d defined in appendix B. Note that the interacting correlator in (5.4.26)

agrees with the definition of the interacting correlator in (3.1.14). The lowest-charge

interacting correlator is then simply

⟨O1O1O1O1⟩int = −D′
1111 =

−uD̄1111

x2
12x

2
34

. (5.4.27)

Finally, a general supergravity correlator is given by:

⟨Op1Op2Op3Op4⟩int = (−1)Σp+1D′
p1p2p3p4 ×B′

p1−1p2−1p3−1p4−1 . (5.4.28)

To obtain explicit correlators in terms of conformal cross-ratios, rewrite the correlat-

ors in terms of D̄-functions and take the holomorphic limit. In the next subsection
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we derive the same correlators from a 4d scalar effective action and compare the two

results.

That all supergravity correlators can be obtained from the lowest-charge correlator

alone is remarkable and shows that the higher-dimensional conformal symmetry is

very powerful. Starting from just the box integral in the 1d case we can deduce the

whole tower of spherical harmonics by acting with simple differential operators on

it.

Decomposition into 4d conformal blocks

The four-dimensional conformal symmetry of the supergravity correlators suggests an

expansion in 4d conformal blocks. This expansion will show that the lowest-charge

supergravity correlator lifted to 4d (by using the usual D̄-functions and cross-ratios,

not the holomorphic ones) corresponds to a single 4d conformal block. This result

is expected from the higher-dimensional conformal symmetry, there should be only

a single block contributing for each spin l. Furthermore, 2d kinematics implies that

only spin-0 blocks contribute and thus the 4d uplift of the lowest-charge supergravity

correlator corresponds to a single 4d spin-0 block, which will be explained below.

The decomposition into 4d conformal blocks G∆,l(u, v) can be written as [154, 155],

⟨O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)⟩4d =
1

x2
12x

2
34
∑
∆,l
A∆,lG∆,l(u, v) , (5.4.29)

with

G∆,l(z, z̄) =
1

z − z̄ u
1
2 (∆−l)( (−1

2z)
l
z 2F1 (1

2(∆ + l), 1
2(∆ + l); ∆ + l; z)

× 2F1 (1
2(∆ − l − 2), 1

2(∆ − l − 2); ∆ − l − 2; z̄) − (z ↔ z̄) ) . (5.4.30)

First, expand the correlator at O(c0), which is given by the 4d lift of H̃1111 in (5.3.12).

The leading scaling dimension is ∆0 = 2n+ l + 2, with the labels n = 0,1, . . . and spin

l = 0,2, . . . The conformal block expansion at leading order is then given by

u + u
v
= ∑
n,l

A
(0)
∆0,l

G∆0,l(u, v) . (5.4.31)
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This gives the free OPE coefficients

A
(0)
2,l =

21+l(l!)2

(2 l)! , (5.4.32)

which only has ∆0 = 2 contributions. To decompose the 4d lift of the correlator at

O(1/c) given in (5.4.15) we first expand the OPE data, as well as the decomposition

in (5.4.29) to order 1/c:

∆ = 2n + l + 2 + 1
c
γ∆0,l + . . . , A∆0,l = A

(0)
∆0,l

+ 1
c
A

(1)
∆0,l

+ . . . , (5.4.33)

the block expansion up to O(1/c) is then

⟨O1(x1, y1)O1(x2, y2)O1(x3, y3)O1(x4, y4)⟩4d =
1

x2
12x

2
34
∑
n,l

[A(1)
∆0,l

G∆0,l(u, v) +
1
c
A

(0)
∆0,l

γ∆0,l
1
2
∂

∂n
G∆0,l(u, v) + . . . ] . (5.4.34)

We wish to extract the anomalous dimensions γ, and this can be done by noticing that

∂nG∆0,l gives an expression of the form (loguG∆0,l+ non-log terms). The correlator

which is given in terms of D̄-functions also has a contribution proportional to logu.

Therefore, we can isolate the relevant contributions to solve for the γ∆0,l by taking

the pieces proportional to logu and this yields

− uD̄1111∣logu = ∑
∆0,l

A
(0)
∆0,l

γ∆0,lG∆0,l(u, v) . (5.4.35)

It turns out that the log-piece of the supergravity correlator indeed only has a single

spin-0 block contribution with ∆0 = 2. The anomalous dimension is

γ2,0 = 1 , (5.4.36)

where we divided by A(0)
2,0 . This can also be seen from 4d supergravity scattering in

flat space, analogously to the discussion in section 5.1 where the supergravity anom-

alous dimension agrees with the conformal partial wave coefficient of the flat space

scattering amplitude. In general dimensions the expectation is that the anomalous

dimension is ∼ 1
(l+1)(d−4)

which for 4d reduces to a constant agreeing with (5.4.36).

We will adapt the discussion in section 5.1 to 4d in the following.



140
Chapter 5. AdS2×S2 Correlators: Effective Action and 4d Conformal

Symmetry

Physical interpretation

The 4d supergravity amplitude in flat space is given by

A4 = GNδ
4(Q) → GNs , (5.4.37)

where we have taken the scalar component. Note that GNδ4(Q) is dimensionless

in 4d, so this amplitude has 4d conformal symmetry as expected. The factor of

s indicates two-derivative interactions, as one would expect for supergravity. In

contrast to the 10d amplitude (5.1.4), the 4d one has no θ dependence which implies

that only l = 0 contributes in the partial wave expansion (5.1.5). This is expected

for 2d massless scattering. Hence, there is only one partial wave coefficient:

A4
0(s) ∼ 1 + R

2

c
s , (5.4.38)

where the Newton constant in 4d GN ∼ R2/c, with the AdS radius R and the

central charge c, and the one is put in by hand. This explains why supergravity

correlators correspond to the 4d spin-0 block as was confirmed in (5.4.36). Based on

this argument we can make a prediction for the supergravity anomalous dimensions

obtained from a conformal block analysis in 1d and solving the mixing problem.

Analogous to the N = 4 SYM case, we expect the anomalous dimensions to be of

the form

e
1
c γ

sugra
1d ∼ 1 + 1

c
δ(2) , (5.4.39)

where we note that γsugra contributes at order 1/c and δ(2) is the eigenvalue of the

second-order differential operator ∆(2) acting on the 1d blocks. The eigenvalue δ(2)

encodes s and importantly there is no dependence on the spin l, which has to be

the case because there is no spin in 1d CFTs. We will solve the mixing problem for

anomalous dimensions of double-trace operators at O(1/c) and show that the result

is consistent with this prediction in section 5.6. Before doing so, we will derive all

half-BPS supergravity correlators from the 4d scalar effective action in the following

subsection.
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5.4.3 Effective Action

In general dimensions, AdSq×Sq, supergravity is not expected to be directly computed

from the higher-dimensional scalar effective action, because it is not dual to contact

interactions alone but rather is also described by exchange diagrams. But it turns

out that in AdS2×S2 supergravity is described by the φ4 interaction in the 4d effective

action (5.2.27). This can be seen from the discussions above, that the 4d uplift of the

lowest-charge supergravity correlator corresponds to the 4d spin-0 block (or rather

the logu-piece of the correlator does). Hence, the conformal block expansion in 4d is

truncated in spin and therefore supergravity can be described by contact diagrams

alone, see also subsection 2.3.2. Thus, in AdS2×S2 we can deduce all correlators at

O(1/c) from the effective field theory.

All four-point half-BPS correlators described by tree-level supergravity can be dir-

ectly computed from the 4d effective action (5.2.27) by evaluating zero-derivative

4d Witten diagrams, which is very similar to the zero-derivative corrections at order

α′3 described in section 3.2. To obtain correlators from the 4d effective action we

evaluate AdS2×S2 Witten diagrams, closely following the procedure explained in

chapter 3. The supergravity term is the first term in the effective action (5.2.27)

and is simply a φ4 interaction:

Ssugra =
1
4! A × ∫

AdS×S
d2X̂d2Ŷ φ(X̂, Ŷ )4 , (5.4.40)

where we use embedding space formalism reviewed for AdS coordinates in subsec-

tion 2.3.1 and for spherical coordinates in 3.1.4. We obtain the corresponding CFT

correlators by following the standard AdS/CFT procedure for computing correlators

from AdS, but in a fully 4d covariant way, including the two-sphere manifestly. Us-

ing the generalised bulk-to-boundary propagators in (3.1.33) we obtain the AdS2×S2

Witten diagram for this φ4 contact interaction, leading to the following proposal for

the supergravity correlators:



142
Chapter 5. AdS2×S2 Correlators: Effective Action and 4d Conformal

Symmetry

⟨OOOO⟩sugraint = 1
4! A

(C1)4

(−2)4 ∫AdS×S
d2X̂d2Ŷ

(P1 +Q1)(P2 +Q2)(P3 +Q3)(P4 +Q4)

= 1
4! A (C1)4 ×DAdS2×S2

1111 . (5.4.41)

Recall that Pi = X̂.Xi, Qi = Ŷ .Yi and the AdS×S D-functions are defined in (3.1.37).

The correlator (5.4.41) contains all supergravity half-BPS correlators of all spherical

harmonics and to extract any specific correlator one expands in the appropriate

powers in Yi using the Taylor expansion of the 4d bulk-to-boundary propagators

(Pi +Qi)−1 =
∞
∑
p=1

(−1)p−1(Pi)−p(Qi)p−1 . (5.4.42)

The individual correlators are then given by4:

⟨Op1Op2Op3Op4⟩sugraint

= 1
4! A

(C1)4

(−2)4 ∫AdS2
d2X̂∏

i

1
(Pi)pi

× ∫
S2
d2Ŷ ∏

i

(Qi)pi−1

= 1
4! A (C1)4D

(1)
p1p2p3p4(Xi) ×B(1)

p1−1p2−1p3−1p4−1(Yi)

= A′′ (−1)Σp+1
Dp1p2p3p4(Xi) ×Bp1−1p2−1p3−1p4−1(Yi)

= A′ (−1)Σp+1
D′
p1p2p3p4 ×B′

p1−1p2−1p3−1p4−1 , (5.4.43)

where going from the third to penultimate line we rewrote everything in terms of the

normalised D- and B-functions defined in (2.3.16) and (3.1.31). Further, to compare

to the results obtained from the 4d conformal symmetry in (5.4.28), rewrite D- and

B-functions depending on Xi.Xj, Yi.Yj as D′- and B′-functions in terms of x2
ij, y

2
ij

which have factors of (−2)±Σp between them. We absorb all numerical factors into

the coefficient A′ which is unfixed and we set it to one in subsequent calculations, in

agreement with the choice of normalisation in the previous subsection. In this case

the logu piece of the lowest-charge correlator is exactly equal to the holomorphic

limit of the 4d spin-0 block. The above expression includes all tree-level supergravity

half-BPS correlators of any charge and it agrees with what we found from the

4This is (3.1.40) with ∆i = d = 1 and with pi → pi − 1 to account for the fact that the lowest
correlator is labelled with pi = 1 rather than pi = 0. We do not need to worry about the minus signs
in the factors (−1)p in (5.4.42) since Bp1p2p3p4 = 0 if p1 + p2 + p3 + p4 is odd.
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4d conformal symmetry in (5.4.28), notably ⟨Op1Op2Op3Op4⟩sugraint ∝ Dp1p2p3p4 . To

obtain explicit expressions in position space convert D′ to D̄-functions and take the

holomorphic limit.

5.5 Conformal Block Analysis and Double-Trace

Spectrum

In the previous sections we have determined all half-BPS correlators for disconnected

free theory and in the supergravity limit. Next, we wish to perform a conformal block

analysis of these correlators in the large-c expansion and specifically compute the

anomalous dimensions of double-trace operators in the spectrum. Before doing so

in section 5.6, in this section, we will analyse the double-trace spectrum and discuss

the operators that can be exchanged in the conformal block expansion (5.2.19) for

each pair of scaling dimensions and SU(2) charges (∆, p). We discuss the spectrum

for free theory and supergravity, as well as for higher-derivative corrections.

A lot of progress has been made in the study of the conformal block analysis of

four-point half-BPS correlators in the large-c expansion in the context of N = 4

SYM [11, 14, 16, 84–91, 144, 145] and the analysis in this and following sections

is inspired by these works. It is expected that short and long operators contribute

to the OPE of the four-point functions of half-BPS operators Oq and that the only

unprotected operators which contribute at leading order in 1/c are double-trace

operators which consist of a product of derivatives of two of the operators Oq. All

other multi-trace operators are expected to be subleading in 1/c. We discuss the

double-trace operators which are present in the free theory and at leading order in

1/c. We will find that only specific operators are present in the spectrum in the

supergravity limit, whereas more operators contribute at the order of free theory

and higher-derivative corrections.

Let us start by considering all long double-trace operators in the OPE of two half-
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BPS operators:

Oq1q2 = Oq1∂∆+1−q1−q2Oq2 , q1 ≤ q2 , (5.5.1)

where the operators Oq1 and Oq2 have half-integer scaling dimensions and are labelled

by integers ∆+1/2, the dimensions of the descendants, in terms of q1 and q2 according

to the conventions introduced in (5.2.17) and used in the previous sections. We

denote the scaling dimensions and SU(2) charges of exchanged operators Oq1q2 by ∆

and p respectively. Note that from now on throughout the rest of this chapter, when

writing ∆ and p we will always refer to the dimensions and charges of the exchanged

double-trace operators (not the external ones).

The interacting piece of the correlator, corresponding to H in the decomposi-

tion (5.3.3), can be written as a double expansion in terms of large central charge c

and small expansion parameter a, where a describes the higher-derivative corrections:

H(x, y) =H(0) + 1
c
(Hsugra + aH4-deriv + . . . ) + O(c−2) . (5.5.2)

We wish to study the double-trace spectrum at different orders in c and a. From (5.5.1)

together with considering the possible R-symmetry charges, one can predict which

double-trace operators can in principle contribute to the spectrum at each weight

(∆, p). Subsequently, by performing the conformal block analysis for free theory

at O(1), supergravity at O(1/c) and for four-derivative corrections at O(a/c), we

can determine which operators are really present in the double-trace spectrum at

(∆, p), i.e. have non-zero conformal block coefficients at the order considered. It

turns out that at O(1/c) only part of the operators contribute, while more operators

contribute to free theory and to higher-derivative corrections. This will be explained

by the fact that 1d correlators in the supergravity limit are truncated to 4d spin-0.

Generally, there are many operators contributing at each weight (∆, p) and to resolve

this degeneracy we have to solve a so-called mixing problem. This will be studied in

subsequent sections.

Before we describe the conformal block analysis in detail and solve the mixing

problems for supergravity and four-derivative corrections in sections 5.6 and 5.8
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respectively, we will first present the operators which are found to contribute to the

double-trace spectrum. At the end of this section these will be interpreted in terms

of an effective 4d spin similar to the one in 10d described in section 5.1. We notice

that there are two classes of operators in the spectrum, we call them class A and class

B. Both, class A and class B operators are present in the free theory, but only class

A operators acquire anomalous dimensions and mix with other class A operators at

order O(1/c), while class B operators decouple at O(1/c), i.e. they do not mix and

do not acquire anomalous dimensions at the level of supergravity. Going to higher-

derivative corrections, particularly at four-derivatives which is the case studied in

this chapter, both class A and class B operators acquire anomalous dimensions and

mix. Note that class A and class B operators only mix with operators of the same

class and class A operators never mix with class B operators. Additionally, it is

important to note that there are different operators present for the cases where

t = ∆− p odd or t = ∆− p even. At the level of supergravity there are only operators

present when t is odd, these are the class A operators. In free theory and at the level

of four-derivative corrections, there are operators mixing and acquiring anomalous

dimensions for both odd and even t and we distinguish between them by labelling

them with Bto and Bte respectively.

The fact that only specific operators acquire anomalous dimensions and mix at the

order of supergravity can be explained from the point of view of the 4d conformal

symmetry. Correlators in the supergravity limit correspond to the 4d spin-0 block

only, which only allows for class A operators. This can be seen from the 4d effective

spin we will conjecture in (5.5.6). Whereas for the 4d uplift of correlators corres-

ponding to four-derivative corrections, there are contributions from spin-0 as well

as spin-2 blocks and the decomposition of free theory correlators is not truncated in

spin at all, thus allowing for more operators with non-zero anomalous dimensions,

which includes all class B operators. Note that this is specific to 1d, because the

correlators at O(1/c) correspond to a φ4 interaction. In the N = 4 SYM case, super-

gravity correlators have no spin-truncated block decomposition and their spectrum
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contains all possible double-trace operators.

We label the allowed values of pairs of q1 and q2 for class A and class B operators with

odd or even t with (qA1 , qA2 ), (qBto
1 , qB

to
2 ) and (qBte

1 , qB
te

2 ) respectively. There are d =

dA+dBto +dBte operators Oq1q2 labelled by sets of pairs (q1, q2), where dA counts class

A and dBto , dBte class B operators with odd and even t respectively. The labels run

over a set of operators D∆,p and we parametrise this set by iA, rA, iBto , rBto , iBte , rBte

as follows:

t = ∆ − p odd

For t odd we have both class A and class B operators:

qA1 = 1 + iA + rA , qB
to

1 = 1 + iBto + rBto ,

qA2 = 1 + iA + p − rA , qB
to

2 = 1 + iBto + (p − 1) − rBto ,

iA = 0, . . . , t − 1
2 , iBto = 1, . . . , t − 1

2 ,

rA = 0, . . . , µA − 1
2 , rBto = 0, . . . , µB

to − 1
2 , (5.5.3)

where

t = ∆ − p , µA =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p + 1 p even

p p odd
, µBto =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p − 1 p even

p p odd
, (5.5.4)

with dA = 1
4(µA+1)(t+1) and dBto = 1

4(µBto +1)(t−1) . Class A operators have even

numbers of derivatives while class B operators have odd numbers of derivatives at t

odd.

t = ∆ − p even

There are only class B operators for t even, meaning these operators contribute to

the free theory and higher-derivative corrections but not to supergravity. These

operators are parametrised as

qB
te

1 = iBte + ⌊ rBte+1
2 ⌋ ,



5.5. Conformal Block Analysis and Double-Trace Spectrum 147

qB
te

2 = iBte + p − ⌊ rBte
2 ⌋ ,

iBte = 1, . . . , t2 ,

rBte = 0, . . . , p − 1 , (5.5.5)

with dBte = 1
2 t p .

We illustrate the exchanged operators at weight (∆, p) for odd and even t in figure 5.1

and 5.2 respectively before we interpret them in terms of the effective 4d spin. In

figure 5.1 the exchanged operators with odd t are illustrated in terms of the pairs

(q1, q2) with the parametrisation (5.5.3). The black nodes denote class A operators

while the white nodes denote class Bto operators. In the supergravity approxim-

ation, operators which are connected by vertical lines have the same anomalous

dimensions after unmixing which are all zero at O(1/c), except for a single operator

with non-zero anomalous dimension which is the operator denoted by A. When

including higher-derivative corrections, the degeneracy is broken and focussing on

four-derivatives the operators which acquire non-zero (and non-equal) anomalous

dimensions after unmixing are highlighted by a grey rectangle. Denoted by E is the

one class B operator which acquires non-zero anomalous dimension at O(a/c).

In figure 5.2 exchanged operators with even t are illustrated in terms of pairs (q1, q2)

parametrised as in (5.5.5). For even t, operators mix and acquire anomalous di-

mensions only starting from the order of higher-derivative corrections, thus they

all belong to class B. The operators are parametrised following (5.5.5) and it turns

out that they split into two groups, operators with even rBte are denoted by black

nodes while operators with odd rBte are denoted by white nodes. The two types

of operators do not mix. There is one operator with even and one with odd rBte

which has non-zero anomalous dimension after unmixing at O(a/c) and they are

highlighted by a grey rectangle.



148
Chapter 5. AdS2×S2 Correlators: Effective Action and 4d Conformal

Symmetry

qA1 , qB
to

1

qA2 , qB
to

2

rA, rBto
iA, iBto

A

B

C

D

E

F

G

H

A = (1,1 + p)
B = (1

2 (µA + 1) , 1
2 (−µA + 2p + 3))

C = (1
2 (µA + t) , 1

2 (−µA + t + 2p + 2))
D = (1

2 (t + 1) , 1
2 (t + 2p + 1))

E = (2,1 + p)
F = (1

2 (µBto + 3) , 1
2 (−µBto + 2p + 3))

G = (1
2 (µBto + t) , 1

2 (−µBto + t + 2p))
H = (1

2 (t + 1) , 1
2 (t + 2p − 1))

Figure 5.1: The exchanged operators Oq1q2 which contribute at
(∆, p) for t odd are illustrated in terms of the pairs
(qA1 , qA2 ) and (qBto

1 , qB
to

2 ). The operators are paramet-
rised as described in (5.5.3). The black nodes denote
operators of class A while white nodes denote operat-
ors of class Bto. The only operator acquiring non-zero
anomalous dimension at the order of supergravity is
the one denoted by A. Furthermore, the nodes in the
grey rectangle correspond to operators which acquire
non-zero anomalous dimensions at the order of four-
derivative corrections.
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qB
te

1

qB
te

2 rBte

iBte

I

J

K

L

M

N

O

P

I = (1,1 + p)
J = (⌊p+1

2 ⌋, p − ⌊p+1
2 ⌋ + 2)

K = (⌊p+1
2 ⌋ + t−2

2 , p − ⌊p+1
2 ⌋ + t+2

2 )
L = ( t2 , t2 + p)

M = (2,1 + p)
N = (⌊p+2

2 ⌋, p − ⌊p+2
2 ⌋ + 3)

O = (⌊p+2
2 ⌋ + t−2

2 , p − ⌊p+2
2 ⌋ + t+4

2 )
P = (1 + t

2 ,
t
2 + p)

Figure 5.2: The exchanged operators Oq1q2 which contribute at
(∆, p) for t even are illustrated in terms of the pairs
(qBte

1 , qB
te

2 ). All operators contributing at even t be-
long to class B. The operators are parametrised follow-
ing (5.5.5) and they split into two groups which do not
mix with each other. Operators with even rBte are de-
noted by black nodes while operators with odd rBte are
denoted by white nodes. At the level of four-derivative
corrections two of these operators acquire non-zero an-
omalous dimensions, they are highlighted by a grey rect-
angle.
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4d effective spin

Similar to the 10d effective spin (5.1.3) which was justified from the similarity

between (5.1.7) and (5.1.8), we conjecture a 4d effective spin in terms of 1d quantum

numbers as follows

l4d = 2(iA + rA + iBto + iBte + rBte − 1 + (−1)rBte+1

2 ) . (5.5.6)

This means that at each order in a, this 4d spin will predict how many and which

operators have non-zero anomalous dimensions after unmixing. As we know, the

conformal block expansion of the 4d lift of 1d superconformal correlators in the

supergravity limit is truncated to spin zero. Therefore, the only operators with non-

zero anomalous dimensions are predicted to be those whose quantum numbers give

l4d = 0 and this can only be satisfied by class A operators. Hence, for supergravity

the 4d spin simplifies significantly to

lsugra4d = 2 (iA + rA) . (5.5.7)

For higher-derivative corrections also class B operators are allowed since the dual bulk

contact interactions correspond to spin-L corrections with L ≥ 2. The four-derivative

corrections whose conformal block analysis and unmixing we study in section 5.8

correspond to spin-2 corrections and thus we predict that operators whose quantum

numbers satisfy l4d = 0 and l4d = 2 have non-zero anomalous dimensions at this order.

We will solve the mixing problem for supergravity in the next section and for four-

derivative corrections in section 5.8 and we will also interpret the results in terms

of l4d. First, let us start by describing how to solve the mixing problem at general

orders in c and a in the following subsection.

5.5.1 Solving the Mixing Problem

In [144] the authors study the double-trace spectrum of N = 4 SYM in the super-

gravity limit, where the double-trace operators exhibit degeneracy, as explained in
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the previous subsection for 1d. To solve the mixing problem we need to consider free

theory and tree-level supergravity contributions to the correlators of four half-BPS

operators. In the 4d case the degeneracy can be resolved for a large family of operat-

ors, and only a small residual degeneracy is left. In 1d this residual degeneracy is not

obvious since the degenerate anomalous dimensions are all zero. We will find that

there is only one non-zero anomalous dimension at each weight. It was later found

in [14] that the residual degeneracy in 4d is lifted when considering higher-derivative

contributions to the correlators and we will come to similar conclusions for 1d in

section 5.8. In this subsection we will describe how to solve the mixing problem up

to O(a/c) which corresponds to four-derivative corrections, this discussion can be

easily extended to higher orders in a to include higher-derivative corrections.

To perform the conformal block analysis we need the free theory correlator which is

the leading contribution to the large-c expansion and was described in section 5.3

and the first subleading contribution in the 1/c expansion, which we obtained both

from the 4d conformal symmetry in subsection 5.4.2 and from a 4d scalar effective

action in subsection 5.4.3. Even though we have not obtained the higher-derivative

correlators yet, we will assume that we have them at our disposal and describe

the unmixing at O(a/c). We will later derive all four-derivative corrections to all

half-BPS correlators described by tree-level supergravity from the 4d scalar effective

action in subsection 5.7.2.

We have seen above that there can be many double-trace operators with different

quantum numbers iA, rA, iBto , rBto , iBte , rBte contributing at the same weight (∆, p).

To solve this mixing problem we perform the operator product expansion of (Op1 ×

Op2) and (Op3 × Op4), where the pairs (p1, p2) and (p3, p4) range over the same

set D∆,p, described in (5.5.3) and (5.5.5). The conformal block expansion of the

interacting piece of the correlator in terms of long blocks is

H(x, y) = xy

x − y ∑∆,p
Api

∆,pB
long
∆,p,p12,p34

(x, y) , (5.5.8)

where the superconformal blocks are given in (5.2.23). The coefficients of the decom-
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position are given as a sum of squares of OPE coefficients as follows

Api

∆,p = ∑
O∆,p

Cp1p2OCp3p4O , (5.5.9)

where the sum goes over the degenerate operators because of operator mixing. Ex-

panding the OPE-data to order 1/c we get

∆O = ∆(0) + 1
c
(γsugra + aγ4-deriv + . . . ) + O(c−2) ,

CppO = C(0)
ppO + (aC4-deriv

ppO + . . . ) + O(c−1) , (5.5.10)

where the anomalous dimensions γ depend on ∆, p and the degeneracy labels i and

r. Plugging the expansion of the dimensions and OPE-coefficients back into (5.5.8)

gives

H(x, y) = xy

x − y ∑∆(0), p
[A(0)

∆(0), pB
long
∆(0), p,p12,p34

(x, y)

+ 1
c

logu ∑
∆(0), p

(M sugra
∆(0), p + aM

4-deriv
∆(0), p + . . . )B

long
∆(0), p,p12,p34

(x, y) + . . . ] ,

(5.5.11)

where the dots denote terms analytic in u which do not play a role for our analysis.

We define the OPE-coefficients at orders O(c0), O(1/c) and O(a/c) as follows (note

that from now on we denote the classical scaling dimension ∆(0) of the exchanged

operators by ∆ for simplicity):

A
(0)
∆,p = ∑

O∆,p

C
(0)
p1p2OC

(0)
p3p4O , M sugra

∆,p = ∑
O∆,p

γsugraC
(0)
p1p2OC

(0)
p3p4O ,

M4-deriv
∆,p = ∑

O∆,p

(γ4-derivC(0)
p1p2OC

(0)
p3p4O + γ

sugraC
(0)
p1p2OC

4-deriv
p3p4O + γsugraC4-deriv

p1p2O C
(0)
p3p4O) .

(5.5.12)

The left hand side of equation (5.5.11) are the explicit forms of the correlators

and comparing the equation to the double-expansion in (5.5.2), it can be seen that

A
(0)
∆,p is determined from the free theory contribution, M sugra

∆,p is determined from

the correlators in the supergravity limit and M4-deriv
∆,p will be determined from the

four-derivative corrections to the correlators.



5.5. Conformal Block Analysis and Double-Trace Spectrum 153

To decide which operators we have to consider in the conformal block analysis to solve

the mixing problem, at each weight (∆, p) let us arrange a ((dA + dBto) × (dA + dBto))

matrix of correlators running over D∆,p for t odd and a (dBte ×dBte) matrix for t even

respectively, where we use the parametrisation from earlier in this section. Note that

the ((dA + dBto) × (dA + dBto)) matrix is block-diagonal, so class A and B operators

can be treated independently, and similarly (dBte × dBte) is block-diagonal where

operators with rBte even or odd can be treated independently. We then perform

a conformal block analysis and arrange the coefficients into matrices Â(0)
∆,p, M̂

sugra
∆,p

and M̂4-deriv
∆,p for free theory, supergravity and four-derivative corrections respectively.

Comparing (5.5.11) to (5.5.2), keeping terms up to O(a/c) and writing (5.5.12) in

matrix form then leads to the following unmixing equations:

O(1) ∶ Â
(0)
∆,p = C(0) (C(0))T ,

O(1/c) ∶ M̂ sugra
∆,p = C(0)γ̂sugra (C(0))T ,

O(a) ∶ 0 = C(0) (C4-deriv)T +C4-deriv (C(0))T ,

O(a/c) ∶ M̂4-deriv
∆,p = C(0)γ̂4-deriv (C(0))T +C(0)γ̂sugra (C4-deriv)T +C4-derivγ̂sugra (C(0))T ,

(5.5.13)

where γ̂ is a diagonal matrix of the anomalous dimensions. Note that Â(0)
∆,p is a

diagonal matrix as can be easily seen from the form of the free theory correlators

and M̂ sugra
∆,p and M̂4-deriv

∆,p are symmetric matrices.

To solve the unmixing equations for the supergravity anomalous dimensions and the

free three-point functions (O(1/c) and O(1)) for general (∆, p) it is useful to define

the matrix c̃

c̃c̃T = Id , C(0) = (Â(0))
1
2 ⋅ c̃ . (5.5.14)

The unmixing equations then become:

c̃ ⋅ γ̂sugra ⋅ c̃T = (Â(0))−
1
2 ⋅ M̂ sugra ⋅ (Â(0))−

1
2 . (5.5.15)

The columns of c̃ are eigenvectors of the matrix (Â(0))−
1
2 ⋅ M̂ sugra ⋅ (Â(0))−

1
2 and the
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corresponding eigenvalues are the anomalous dimensions at O(1/c). So the mixing

problem can be solved by solving the eigenvalue problem of the corresponding matrix.

The anomalous dimensions after unmixing at the order of four-derivative corrections

are then the O(a) eigenvalues of (M̂ sugra + aM̂4-deriv) ⋅ (Â(0))−1. We will illustrate

this with examples below.

We now know how to solve the mixing problem in the supergravity limit and for

four-derivative corrections. In the following section we focus on the supergravity

unmixing and we will later perform the unmixing for four-derivative corrections in

section 5.8.

5.6 Unmixing Supergravity

In this section we will solve the unmixing equations for supergravity at each weight

(∆, p), where for every (∆, p) we use (5.5.3) to determine the list of double-trace

operators in the spectrum. Recall that only class A operators are in the double-

trace spectrum of supergravity and thus from the 4d spin (5.5.6) we predict that

there is only one non-zero anomalous dimension per weight, the one corresponding

to l4d = 0. Additionally, from the 4d conformal symmetry we predict that the

value of the anomalous dimension should be the eigenvalue δ(2) of the differential

operator ∆(2) (5.2.15) acting on the blocks. This can be seen from the arguments

around (5.4.39). We determine the anomalous dimensions after unmixing for many

values of (∆, p) and finally, predict a general formula which is indeed δ(2). Let us

look at a few examples, starting with the sector with SU(2) charge p = 0.

5.6.1 p = 0 Sector

For the p = 0 sector, we only need to consider correlators of the form Hq1q1q2q2

and thus for free theory we only need equal charge correlators. We start with a

conformal block analysis of free theory, where we also need to consider contributions
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from half-BPS blocks (5.2.24). Therefore, it is best to consider G(0)
qqqq (5.3.10) instead

of H for free theory. G
(0)
qqqq decomposes into one half-BPS block with ∆ = p = 0

which corresponds to the identity operator and long blocks with coefficients A(0)
qqqq.

Evaluating the free coefficients for many correlators and many values of ∆, p we

obtain a general formula for the free coefficients A(0)
qqqq(∆, p) for all ∆, p, q:

A
(0)
qqqq(∆, p) =

(1 + (−1)∆+p+1)∆!(2(p + 1))!(∆ + 2q − 1)!
2 (2∆)!(∆ + p + 1)p!(p + 1)!(p + 2q − 1)!(−p + 2q − 2)!(1 − 2q)2

× (∆ − p + 1)p(∆ − 2q + 2)−p+2q−2 . (5.6.1)

These coefficients are non-zero only for odd t, which is expected from the paramet-

risation of operators in (5.5.5) because for even t only operators Oq1q2 with q1 ≠ q2

contribute.

For the simplest case ∆ = 1 there is only one exchanged operator of the form (5.5.1)

contributing, O1O1, thus we perform the conformal block analysis of the correlator

Hsugra
1111 . We spell out the supergravity coefficient together with the free theory

coefficient from (5.6.1):

A
(0)
1111(1,0) = 1 , M sugra

1111 (1,0) = 4(∆!)2

(2∆)! ∣∆=1 = 2 , (5.6.2)

The unmixing equations are

A
(0)
1111(1,0) = (C(0)

1,0 )
2
, M sugra

1111 (1,0) = γsugra1,0 (C(0)
1,0 )

2
. (5.6.3)

Solving these equations we get

γsugra1,0 = 2 , C
(0)
1,0 = 1 . (5.6.4)

At weight ∆ = 3 there are two possible exchanged operators, O2O2 and O1∂2O1,

which gives the matrices of OPE coefficients for free theory and supergravity:

Â
(0)
3,0 =

⎛
⎜⎜
⎝

A
(0)
1111 0

0 A
(0)
2222

⎞
⎟⎟
⎠
(3,0)

=
⎛
⎜⎜
⎝

1
10 0

0 1
18

⎞
⎟⎟
⎠
, M̂ sugra

3,0 =
⎛
⎜⎜
⎝

M sugra
1111 M sugra

1122

M sugra
1122 M sugra

2222

⎞
⎟⎟
⎠
(3,0)

=
⎛
⎜⎜
⎝

1
5

1
3

1
3

5
9

⎞
⎟⎟
⎠
,

(5.6.5)
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where the new coefficients for general odd ∆ are

M sugra
1122 (∆,0) = 2(∆ − 1)∆!(∆ + 2)!

3(∆ + 1)(2∆)! , M sugra
2222 (∆,0) = (∆ − 1)2(∆ + 2)2(∆!)2

9(2∆)! ,

(5.6.6)

the rest were already spelled out in (5.6.2). To obtain the O(1/c) contribution to the

anomalous dimensions and the leading contributions to the three-point functions,

we solve the unmixing equations in matrix form (5.5.14) and (5.5.15):

γ̂sugra3,0 =
⎛
⎜⎜
⎝

12 0

0 0

⎞
⎟⎟
⎠
, C(0)

3,0 =
⎛
⎜⎜
⎝

1
2
√

15
1

2
√

3
√

5
6
√

3 − 1
6
√

3

⎞
⎟⎟
⎠
, (5.6.7)

where γ̂sugra are the eigenvalues of the matrix M̂ sugra ⋅ (Â(0))−1. The eigenvectors

are the columns of the orthonormal matrix c̃ which gives the three-point functions

C(0) = (Â(0))
1
2 ⋅ c̃, as explained above. Note that there is only one non-zero anom-

alous dimension at (∆, p) = (3,0), namely γsugra3,0 = 12. Going to higher ∆ and p

this structure will continue, at each weight there is only one non-zero anomalous

dimension, as expected from the higher-dimensional symmetry considerations. Let

us look at a few more examples.

At weight (5,0), there are three exchanged operators in the double-trace spectrum,

O3O3, O2∂2O2 and O1∂4O1 and conformal block analysis of the appropriate correl-

ators gives the symmetric matrices

Â
(0)
5,0 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

A
(0)
1111 0 0

A
(0)
2222 0

A
(0)
3333

⎞
⎟⎟⎟⎟⎟⎟
⎠
(5,0)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
126 0 0

4
81 0

1
75

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

M̂ sugra
5,0 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

M sugra
1111 M sugra

1122 M sugra
1133

M sugra
2222 M sugra

2233

M sugra
3333

⎞
⎟⎟⎟⎟⎟⎟
⎠
(5,0)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
63

2
27

1
15

28
81

14
45

7
25

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5.6.8)
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where the expressions for general odd ∆ for the new coefficients are

M sugra
1133 (∆,0) = (∆ − 3)(∆ − 1)(∆ + 4)∆!(∆ + 2)!

30(∆ + 1)(2∆)! ,

M sugra
2233 (∆,0) = (∆ − 3)(∆ − 1)2(∆ + 2)(∆ + 4)∆!(∆ + 2)!

180(∆ + 1)(2∆)! ,

M sugra
3333 (∆,0) = (∆ − 3)2(∆ − 1)2(∆ + 2)(∆ + 4)2∆!(∆ + 2)!

3600(∆ + 1)(2∆)! . (5.6.9)

Solving the unmixing equations (5.5.13) for the anomalous dimensions, we find that

all are zero but one:

γsugra5,0 = 30 . (5.6.10)

Starting from 3×3 matrices as in the present case, there is a zero-degeneracy, because

more than one operator have zero anomalous dimension. Due to this degeneracy

the free three-point functions cannot be completely fixed but we are left with two

free parameters b1 and b2. In particular, of the eigenvectors forming the matrix c̃,

the two which correspond to the zero eigenvalues are not unique. Thus, the leading

three-point functions is:

C(0)
5,0 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
3
√

210 − 3
√

5 b1+b2
3
√

690n12

√
5 b1−15 b2

15
√

138n12
√

14
9
√

15

√
46 b2

9
√

15n12
−

√
46 b1

9
√

15n12
√

7
5
√

30
2
√

5 b1−7 b2
5
√

690n12

7
√

5 b1+10 b2
25

√
138n12

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5.6.11)

where n12 =
√
b2

1 + b2
2 and b2b3 > b1b4. One of the coefficients b1 and b2 will be

fixed when solving the mixing problem for four-derivative corrections, since the

supergravity data goes into the higher-derivative corrections unmixing equations,

see (5.5.13).

We solve the mixing problem for higher ∆ analogously to the previous cases. Let us

look at a few examples for p = 1 before analysing the results.
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5.6.2 p = 1 Sector

Let us start by determining the free theory coefficients. For p > 0 we need to

consider conformal block expansions of not only Gqqqq but also Gq1q2q1q2 (5.3.17).

These correlators decompose into one half-BPS block with ∆ = p = q1 + q2 − 1 and

long blocks with coefficients A(0)
q1q2q1q2 . The free theory coefficients for q1 = q2 were

given in (5.6.1) and the coefficients for mixed charges are:

A
(0)
q1q2q1q2 =

(−1)q1+q2 2−⌊
p−∣q12 ∣

2 ⌋+ p+1
2 − ∣q12 ∣

2

((
√

2 − 1) (−1)p + (1 +
√

2) (−1)∣q12∣) (2∆)!(p + 1)!(∆ − p)(∆ + p + 1)

× (2(p + 1))!(∆ − ∣q12∣)!(∆ + ∣q12∣)!(∆ + q1 + q2 − 1)!
(∆ − q1 − q2 + 1)!(2q1 − 1)(2q2 − 1)(−p + q1 + q2 − 2)!(p + q1 + q2 − 1)!

×
(⌊1

2(p − ∣q12∣ + 1)⌋ + ∣q12∣)! (⌊p−∣q12∣
2 ⌋ + ⌊1

2(p − ∣q12∣ + 1)⌋ + ∣q12∣)!

(p − ∣q12∣)! (⌊p−∣q12∣
2 ⌋ + ∣q12∣)! (2 (⌊1

2(p − ∣q12∣ + 1)⌋ + ∣q12∣))!
, (5.6.12)

where q12 = q1 − q2. Note that in the denominator of the first line, the eigenvalue

δ(2) = (∆ − p) (∆ + p + 1) (see (5.6.18)) appears, this was also observed in 4d free

theory in [41] and suggests that ∆(2)H free should be a simple object as was confirmed

in subsection 5.3.1.

For the simplest case ∆ = 2, p = 1 there is only one exchanged operator in the

double-trace spectrum, O1O2, and we perform the conformal block analysis for the

correlator H1212. The free theory (see (5.6.12)) and supergravity coefficients are

A
(0)
1212(2,1) =

1
4 , M sugra

1212 (2,1) = 2(1 +∆)∆!(1 +∆)!
3(2∆)! ∣∆=2 = 1 (5.6.13)

and solving the unmixing equations gives

γsugra2,1 = 4 , C
(0)
2,1 = 1

2 . (5.6.14)

Next, let us solve the mixing problem for (4,1) where two types of operators are
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exchanged, O1∂O2 and O2O3. The conformal block coefficients are:

Â
(0)
4,1 =

⎛
⎜⎜
⎝

A
(0)
1212 0

0 A
(0)
2323

⎞
⎟⎟
⎠
(4,1)

=
⎛
⎜⎜
⎝

5
84 0

0 1
30

⎞
⎟⎟
⎠
, M̂ sugra

4,1 =
⎛
⎜⎜
⎝

M sugra
1212 M sugra

1223

M sugra
1223 M sugra

2323

⎞
⎟⎟
⎠
(4,1)

=
⎛
⎜⎜
⎝

5
21

1
3

1
3

7
15

⎞
⎟⎟
⎠
,

(5.6.15)

where the new coefficients in terms of general even ∆ are given by:

M sugra
1223 = (∆ − 2)(∆ + 1)(∆ + 3)∆!(∆ + 1)!

15(2∆)! ,

M sugra
2323 = (∆ + 1) ((∆ + 3) (∆ − 2))2 ∆!(∆ + 1)!

150(2∆)! . (5.6.16)

Solving the unmixing equations gives the anomalous dimensions and three-point

functions

γsugra4,1 = 18 , C(0)
4,1 =

⎛
⎜⎜
⎝

√
5

3
√

42 −
√

5
6
√

3
√

7
3
√

30
1

3
√

15

⎞
⎟⎟
⎠
. (5.6.17)

Again there is only one non-zero anomalous dimension, γsugra4,1 = 18 , as expected.

5.6.3 Anomalous Dimensions after Unmixing

We can solve the mixing problem for any pair (∆, p) analogously to the above

examples, where for every (∆, p) we use (5.5.3) to determine the list of double-trace

operators in the spectrum. Solving the unmixing equations for supergravity for

many pairs of (∆, p) we find that, as expected from the 4d conformal symmetry

considerations in subsection 5.4.2 and the 4d effective spin conjecture (5.5.7), there

is only one operator with non-zero anomalous dimension exchanged. Hence, there is

no non-zero degeneracy in the supergravity limit in 1d. The value of the anomalous

dimension is as expected

γsugra∆,p = δ(2) = (∆ − p)(∆ + 1 + p) , (5.6.18)
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which is the eigenvalue of ∆(2) (5.2.15) acting on the superconformal blocks:

∆(2) ( xy

x − yB
long
∆,p,p12,p34

) = δ(2) ( xy

x − yB
long
∆,p,p12,p34

) . (5.6.19)

This was predicted from the 4d conformal symmetry in (5.4.39).

We have now studied the double-trace spectrum of correlators in the supergravity

limit and their anomalous dimensions in detail. We have seen that they do agree with

the predictions from 4d conformal symmetry and thus that supergravity correlators

in AdS2×S2 indeed have 4d conformal symmetry. In the next sections we will consider

higher-derivative corrections and how the higher-dimensional conformal symmetry

breaks (except for an infinite number of correlators of specific spherical harmonics).

On the other hand, all higher-derivative corrections can be deduced from a higher-

dimensional scalar effective field theory.

5.7 Higher-Derivative Corrections

In this section we study higher-derivative corrections described by a small-a ex-

pansion. We first derive the form of lowest-charge higher-derivative corrections,

with any number of derivatives, from crossing symmetry and x → 0 behaviour in

subsection 5.7.1. In subsection 5.7.2 we obtain all four-derivative corrections to

all half-BPS four-point correlators described by tree-level supergravity from a 4d

effective action by evaluating generalised AdS2×S2 Witten diagrams with derivatives.

Finally, in subsection 5.7.3 we briefly discuss how by acting with inverse higher-order

differential operators on the higher-derivative corrections one can construct an ob-

ject that transforms like a 4d conformal correlator in specific cases, as discussed in

subsection 5.1.1. We will see that the 4d conformal symmetry is broken for general

four-derivative corrections, however it is intact for an infinite tower of correlators of

operators with SU(2) charges {pi} = pp11 and crossing versions.



5.7. Higher-Derivative Corrections 161

5.7.1 Lowest-Charge Higher-Derivative Corrections

Even though we mainly focus on the four-derivative corrections in this chapter,

let us also discuss the general structure of any higher-derivative corrections in 1d

SCFTs. Recall from the review in subsection 2.3.2 that in [30] the authors argued

that for AdSd>2 solutions to the crossing equations with a conformal block expansion

truncated to spin L = 0,2,4, . . . are dual to quartic contact interactions in the

bulk. For a fixed spin L, there are L/2 + 1 independent interactions with number

of derivatives running from 2L,2L + 2, ...,3L. In this subsection we will find that

reducing these solutions to AdS2 by taking the holomorphic limit, the L/2+1 solutions

collapse to a single solution proportional to D̄jjjj, where j = L/2 + 1. This solution

corresponds to a 2L-derivative interaction, i.e. the interaction with the lowest

number of derivatives in the spin-L tower of solutions. This is the case for the lowest-

charge correlators, when going to higher charges, this degeneracy will break. In this

subsection, we focus on the lowest-charge correlators but consider interactions with

any number of derivatives. For later sections however, we focus on the four-derivative

corrections but consider all higher-charge correlators.

Let us deduce the form of higher-derivative corrections to the pi = 1 correlator. Let

us start with an ansatz for a higher-derivative correction at O(a#/c) analogous to

supergravity in (5.4.3)5:

⟨O1O1O1O1⟩a#/c = g12g34
x

y
(x − y)a(x) , (5.7.1)

where we get the same conditions from crossing invariance and the x→ 0 behaviour:

a(1 − x) = a(x) , a(1
x
) = x2a(x) , a(x) = O(1) . (5.7.2)

Again we make an ansatz for a(x) of the following form

a(x) = p(x) logx2 + p(1 − x) log(1 − x)2 + r(x) , (5.7.3)

5See subsection 5.4.1 for a more careful discussion of four-point crossing in 1d which could easily
be extended to higher-derivative corrections to see that a0(x) and a+(x) have the same functional
form. In this subsection we will consider a(x) with x in the regions x ∈ (0,1) and x ∈ (1,∞).
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where p, r are rational functions and r(1 − x) = r(x). Further we have

p(x) = 1
x − 1

1
xk(1 − x)k

m

∑
i=0
bix

i , r(x) = 1
x − 1

1
xk(1 − x)k

m

∑
i=0
cix

i , (5.7.4)

where k and m are integers. Plugging this into (5.7.2), there are only new solutions

for k = 2q and m = 3k = 6q with an integer q. Solutions for odd k reduce to

superpositions of lower-k solutions in 1d. The q = 0 case corresponds to supergravity.

Going to higher q we find solutions that are superpositions of a new correction and

lower-q solutions (supergravity and lower-derivative terms). The new corrections are

of the form

Hq
1111 = x2a(x) = −u (1 + uq + vq)D̄hol

q+1 q+1 q+1 q+1 + . . . , (5.7.5)

where the dots denote terms with lower q. As we have seen in chapter 4 the

averaged anomalous dimensions of double-trace operators in the conformal block

decomposition of these correlators encode the number of derivatives of the dual

quartic interactions in the bulk [30]. First, decomposing the free theory G(0)
1111 (5.3.10)

gives the identity operator and the coefficients of the long blocks A(0)
1111(∆,0) (5.6.1):

A
(0)
1111(∆,0) =

(1 + (−1)∆+1) (∆!)2

(2∆)! . (5.7.6)

Expanding the higher-derivative corrections (5.7.5) at O(1/c) in terms of the long

blocks according to (5.5.11) we get the averaged anomalous dimensions

γ(q) = N(q)P (q)(∆) , (5.7.7)

with

N(q) = 4q+1(1 + 2q)!
(2(1 + 2q))! (5.7.8)

and P (q)(∆) are polynomials of degree ∆4q. For the first few cases we get

P (0)(∆) = 1 ,

P (1)(∆) = 1
2
(∆4 + 2 ∆3 +∆2 + 6) ,
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P (2)(∆) = 1
8
(∆8 + 4 ∆7 + 10 ∆6 + 16 ∆5 + 289 ∆4 + 556 ∆3 + 276 ∆2 + 864) . . .

(5.7.9)

The fact that the averaged anomalous dimensions scale like ∆4q in the large-∆ limit

implies that the corrections (5.7.5) correspond to a 4q-derivative interaction in the

dual bulk field theory. As mentioned before, the q = 0 case corresponds to the

supergravity correlator which is dual to a spin-0 or φ4 interaction. The next case,

q = 1, is given by −u(1 + u + v)D̄hol
2222 plus a spin-0 term and corresponds to a spin-2

correction and is dual to a four-derivative interaction (see (5.7.17)). As predicted

in the beginning of this subsection, there is only one solution per spin L in 1d. In

principle there is another spin-2 solution corresponding to six derivatives and to

k = 3, but this reduces to the four-derivative solution plus supergravity. This is

only true for the lowest-charge correlators though and going to higher charges, this

degeneracy will be lifted.

We have now discussed the general structure of higher-derivative corrections to the

lowest-charge supergravity correlators and in the next section we will obtain all

four-derivative corrections to the half-BPS correlators for all spherical harmonics.

5.7.2 Effective Action

In this section we compute all four-derivative corrections from the 4d scalar effective

action (5.2.27). We follow the procedure outlined in chapter 3, in particular sec-

tion 3.4 where the α′5 corrections, which correspond to four-derivative interactions,

were computed. The only independent contact terms with four derivatives one can

write down are the main contribution (∇φ.∇φ)2 and the ambiguity ∇2∇µφ∇µφφ2.

The complete effective action at this order is then

S4-deriv = B0S
main
4-deriv +C0S

amb
4-deriv , (5.7.10)
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with

Smain
4-deriv =

3
4! ∫AdS×S d

2X̂d2Ŷ (∇φ.∇φ) (∇φ.∇φ) ,

Samb
4-deriv =

6
4! ∫AdS×S d

2X̂d2Ŷ∇2∇µφ∇µφφ2 . (5.7.11)

Note that the φ4 interaction is not considered as an ambiguity here, since it describes

supergravity and not a zero-derivative correction arising from quantum gravity as

in other dimensions.

The Witten diagram expression for the main correction is

⟨OOOO⟩4-deriv;main
int

= 1
4!

(C1)4

(−2)4 ∫AdS×S d
2X̂d2Ŷ

N12N34 +N13N24 +N14N23

(P1 +Q1)2 (P2 +Q2)2 (P3 +Q3)2 (P4 +Q4)2 , (5.7.12)

where

Nij =Xi.Xj + Yi.Yj + PiPj −QiQj . (5.7.13)

Furthermore, the ambiguity is

⟨OOOO⟩4-deriv;amb
int

= − 1
4!

(C1)4

(−2)4 ∫AdS×S
d2X̂d2Ŷ

∏i (Pi +Qi)
∑
i<j

Lij
(Pi +Qi) (Pj +Qj)

, (5.7.14)

where

Lij =Xi.Xj − Yi.Yj + PiPj +QiQj . (5.7.15)

We get the explicit expressions in position space for the correlators at four derivatives

by expanding (5.7.12) and (5.7.14) in terms of D- and B-functions, see (3.1.24)

and (3.1.28). To expand a general decorated integral of the form (3.3.9) obtained

from a contact interaction with any number of covariant derivatives, use (3.3.10)

(−2)2ΣX+2ΣY

∞
∑
pi=0

(
4
∏
i=1

(−1)pi−1 (pi)∆i+ni−1

Γ(∆i)
D

(d)
pi−1+∆i+ni−nP

i

(Xi)B(d)
pi−1+nQ

i

(Yi))

× (∑
i<j

(Xi.Xj)n
X
ij (Yi.Yj)n

Y
ij) , (5.7.16)
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where the different labels are explained in the discussion above (3.3.10). To perform

explicit calculations in 1d position space one needs to express the correlators above

in terms of holomorphic D̄-functions and we spell out a few examples here. Note that

the coefficients in (5.7.10) are unfixed and we choose the overall normalisation of the

H4-deriv
p1p2p3p4 below such that they agree with the supergravity correlators in (5.4.28).

The explicit expressions for some of the correlators are:

H4-deriv
1111 =3u (D̄hol

1111 − 5 (1 + u + v) D̄hol
2222) ,

H4-deriv
pp11 =(−1)p+1

up

(p − 1)! (f1(p)D̄hol
pp11 + f2(p)u D̄hol

p+1p+1 11 + f3(p) (1 + u + v) D̄hol
p+1p+1 22) ,

H4-deriv
p1p1 =(−1)p+1

u
p+1
2

(p − 1)! yp−1 (f1(p)D̄hol
p1p1 + f2(p) D̄hol

p+1 1p+1 1 + f3(p) (1 + u + v) D̄hol
p+1 2p+1 2) ,

H4-deriv
p11p =(−1)p+1

u
p+1
2

(p − 1)! yp−1 (f1(p)D̄hol
p11p + f2(p) D̄hol

p+1 11p+1 + f3(p) (1 + u + v) D̄hol
p+1 22p+1) ,

H4-deriv
2222 =2u

2

y2 ( [−8C0 (1 − y + y2) + 2 (41 − 6y + 6y2)] D̄hol
2222 + 35u (y2 − 1) D̄hol

3322

+ 35 (y − 2) yD̄hol
3223 − 63 (1 + u + v) (1 − y + y2) D̄hol

3333) , (5.7.17)

where

f1(p) = 2C0 p(p − 1) + p2 (4p2 − 8p + 1) , f2(p) = −(1 + 2p)(2p2 − 3p + 1) ,

f3(p) = (1 + 2p)(3 + 2p) . (5.7.18)

Note that H4-deriv
1111 agrees with the prediction in the previous subsection, see (5.7.5)

for q = 1. We investigate the correlators in terms of the 4d conformal symmetry in

the next subsection before we analyse the double-trace spectrum of these correlators

and solve the mixing problem in the following section.

5.7.3 Breaking of 4d Conformal Symmetry

In this subsection we investigate the higher-derivative corrections in terms of the 4d

conformal symmetry. In the previous section we have seen that one can derive all

four-derivative corrections to all half-BPS correlators with any charges, described by

tree-level supergravity, from a four-dimensional effective field theory. Thus, higher-
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derivative corrections to correlators in AdS2×S2 have a four-dimensional symmetry.

However, the four-dimensional conformal symmetry will generally be broken for

higher-derivative corrections. As described in subsection 5.1.1 we will attempt

to construct an object invariant under higher-dimensional conformal symmetry by

acting with negative powers of differential operators related to ∆(2) on the correlators.

In this way, we obtain an object with the right dimensions to be invariant under

4d conformal symmetry, however, this only works for a subset of correlators with

specific charge configurations, as we will explain shortly. In this subsection, we

describe how this can be done for four-derivative corrections and show that there

is an infinite tower of correlators of specific KK modes which can be obtained from

the 4d conformal symmetry. Yet for general charges, the symmetry is broken. We

will discuss the breaking of the symmetry and also briefly comment on implications

for AdS5×S5.

⟨OpOpO1O1⟩ and crossing versions

We start by studying correlators with external charges {pi} = pp11 and their crossing

versions. To get an object with the dimensions of a 4d conformal correlator, we have

to act with negative powers of a differential operator on the correlator. By dimen-

sional analysis, we saw in subsection 5.1.1 that for a vertex with k + 2 derivatives

(where supergravity has two derivatives) one has to act with a general (∆(2))−k/2 on

the corresponding correlator. Hence, for a four-derivative interaction (six derivatives

in total when counting supergravity), we act with an inverse fourth-order differential

operator on the correlator. In practice, we consider objects which have 4d conformal

symmetry, expand them in internal coordinates to obtain all higher-charge correl-

ators, analogous to the considerations in subsection 5.4.2, and act on them with a

fourth-order differential operator to reconstruct the higher-charge higher-derivative

corrections. The 4d conformal objects we have to consider are the 4d conformal

blocks (5.4.30) with the appropriate twist and spin. We start from an ansatz for

a general fourth-order Casimir and fix the coefficients by comparing to the explicit
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results obtained from the 4d effective action in (5.7.17).

By superconformal symmetry, all higher-order Casimir operators have to be of the

form ∆(2) (c1Dax + c2Dby) and thus a general fourth-order Casimir is given by

∆(4) = c1 + c2∆(2) + c3∆(2)Dx + c4∆(2)Dy , (5.7.19)

where ∆(2), Dx, Dy were defined in (5.2.15) and the ci are unfixed coefficients. As

explained in subsection 5.4.2 due to the 4d conformal symmetry there is only one 4d

block contributing to the 4d uplift of the 1d correlators at each spin. For supergravity

it is the spin-0 block and since the four-derivative correction corresponds to a spin-2

correction, we consider the 4d spin-0 and spin-2 blocks as the objects which play the

leading role in the 4d conformal symmetry. Therefore, we propose that a subset of

the four-derivative corrections can be reconstructed by acting with a fourth-order

Casimir of the form (5.7.19) on the holomorphic limit of the 4d spin-0 and spin-2

blocks. Note that the blocks reproduce the logu piece of the correlators rather than

the full functions. The higher-charge versions of the spin-L blocks can be obtained

by replacing x2
ij → x2

ij (1 + g2
ij), expanding in g2

ij and taking the coefficients of the

appropriate powers in g2
ij analogous to subsection 5.4.2. Note that higher-charge

versions of the spin-0 block exactly correspond to the logu piece of the supergravity

correlators. The relevant equation at different charges pi is then

H4-deriv, main
p1p2p3p4 ∣logu = ∆(4)

spin-0 (4d spin-0 block)holp1p2p3p4
+∆(4)

spin-2 (4d spin-2 block)holp1p2p3p4
,

(5.7.20)

where we compare our ansatz to the four-derivative corrections deduced from the

effective action given in (5.7.17) at different charges. Note that we focus on the main

contribution in (5.7.10) here.

Solving (5.7.20) for H4-deriv,main
pp11 partially fixes the coefficients in (5.7.19) to

∆(4)
spin-0 =

1
6∆(2) + 5

12∆(2)Dx + a3∆(2)Dy , ∆(4)
spin-2 = −

1
45∆(2) + 1

90∆(2)Dx + b3∆(2)Dy ,

(5.7.21)

where a3 and b3 remain unfixed since there is no y-dependence for {pi} = pp11.
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We can fix the remaining coefficients by considering H4-deriv,main
p1p1 and H4-deriv,main

p11p .

We thus solve (5.7.20) by comparing to the results from (5.7.17) at the corresponding

charges. This completely fixes the differential operators to

∆(4)
spin-0 =

1
12 (2 ∆(2) + 5 (∆(2))2) , ∆(4)

spin-2 =
1
90 (−2 ∆(2) + (∆(2))2) . (5.7.22)

To summarise, these Casimir operators can lift the lowest-charge four-derivative

correction correctly for {pi} = pp11 and crossing versions. So the 4d conformal

symmetry is satisfied by an infinite tower of four-derivative corrections. This is

highly non-trivial, since the 4d blocks themselves are not crossing symmetric and

also the Casimir operators do not preserve crossing symmetry (only under exchange

of 1↔ 2). Hence, an operator which does not preserve crossing symmetry acts on

an object which is not crossing symmetric, and one obtains a crossing symmetric

correlator. However, going to different charges there are no crossing symmetric

solutions to (5.7.20) and thus the symmetry is broken. We will further discuss this

breaking of the hidden conformal symmetry below and comment on implications for

AdS5×S5.

Breaking of the symmetry and implications for AdS5×S5

Recall that the higher-dimensional conformal symmetry arises when a correlator

corresponds to a conformally invariant amplitude in flat space which is connected to

a scaleless coupling. When the correlator does not correspond to such an amplitude

we can rescale it by acting with differential operators of appropriate powers on it,

and this works well for free theory. When the dual bulk interaction vertices contain

derivatives, which is the case for general higher-derivative corrections, the higher-

dimensional conformal symmetry breaks down (however, it might still be intact

for an infinite tower of higher-derivative corrections with specific charges). This

breaking of the symmetry can be anticipated because a reduction of derivative terms

on the sphere will give a number of terms with different numbers of derivatives in

AdS. Thus, we get terms which scale differently in AdS and we can therefore not
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rescale the corresponding correlator consistently.

We have investigated this in AdS2×S2 for the four-derivative corrections above. Let us

now comment on the implications for the 10d conformal symmetry and its breaking

in AdS5×S5. As discussed in subsection 5.1.1, in the supergravity approximation the

correlator itself has higher-dimensional conformal symmetry whereas for free theory

acting with the eighth-order differential operator ∆(8) on the correlator rescales

it such that it has 10d conformal symmetry. Now, consider the α′3 corrections

which correspond to a φ4 interaction in the scalar effective action. We obtained

all α′3 corrections from the 10d scalar effective action in section 3.2. Based on the

discussions above, since these corrections correspond to a zero-derivative interaction

in the effective field theory, we expect the corresponding correlators to enjoy 10d

conformal symmetry analogous to supergravity correlators. And this conjecture is

indeed strongly supported by the results in [13] where the anomalous dimensions after

unmixing associated with α′3 corrections were obtained. The resulting anomalous

dimensions are rational numbers which suggests that the 10d conformal symmetry

is intact at this order.

To reconstruct these correlators from the 10d conformal symmetry by acting on them

with inverse differential operators consider dimensional analysis. In the low-energy

effective action in (2.3.18) supergravity is described by R which has two derivatives

while the first quartic correction corresponds to R4 which therefore has six more

derivatives than supergravity. So to obtain an object with the correct dimensions we

act with an inverse sixth-order differential operator (∆(6))−1 on the α′3 corrections to

the correlators. In practice, one would reconstruct the higher-charge α′3 correlators

from objects which do have 10d conformal symmetry, i.e. the 10d conformal blocks

with appropriate spin and twist, and act with a differential operator ∆(6) on them.

Since the φ4 interaction corresponds to a spin-0 correction (see subsection 2.3.2), the

correct object to consider is the 10d spin-0 block uplifted to higher charges analogous

to the supergravity case. We leave further discussions of this to [44]. Considering

the α′5 corrections which were obtained in section 3.4, we expect the 10d conformal



170
Chapter 5. AdS2×S2 Correlators: Effective Action and 4d Conformal

Symmetry

symmetry to be broken. Similar to the four-derivative corrections in 1d discussed

above, one might expect that by acting with a higher-order differential operator on

the 10d spin-0 and spin-2 blocks uplifted to higher charges, one could reconstruct a

subset of α′5 corrections with specific charges, we do not consider this in detail here.

The breaking of the symmetry for α′5 corrections was also observed from a different

point of view in [14]. The authors found that the anomalous dimensions of operators

in the OPE spectrum of α′5 corrections contain square roots in some cases. This

indicates a breaking of the 10d conformal symmetry. In more detail, consider the un-

mixing of the anomalous dimensions of double-trace operators in the OPE spectrum

of α′3 and α′5 corrections. The anomalous dimensions after unmixing associated with

α′3 are rational [13], which suggests that the 10d conformal symmetry is intact, as

mentioned before. An important point in these calculations is that the O(α′3c0) cor-

rection to the three-point functions is absent. In [14], the authors found that for the

α′5 corrections however, the O(α′5c0) correction to the three-point functions (ana-

logous to the O(ac0) corrections in (5.5.10)) is non-zero for some quantum numbers

and this leads to square roots in some of the anomalous dimensions, which indicates

breaking of the 10d conformal symmetry. We will discuss the mixing problem for

four-derivative corrections in the 1d case in the following section.

5.8 Unmixing Four-Derivative Corrections

In this section, we solve the mixing problem for four-derivative corrections to half-

BPS correlators in 1d SCFTs which are described by tree-level 4d N = 2 supergravity.

We have predicted all four-derivative corrections including all spherical harmonics

in subsection 5.7.2. To solve the mixing problem we use the large-c and small-a

expansion of the conformal block decomposition (5.5.11). We obtain a list of all

operators in the double-trace spectrum at each weight (∆, p) by using the paramet-

risations in (5.5.3) and (5.5.5). Further, to resolve the degeneracy of operators with

different 1d quantum numbers contributing at the same weight (∆, p), we use the
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unmixing equations given in (5.5.13). We perform the unmixing for many (∆, p),

predict general formulas for the anomalous dimensions and check that they agree

with the prediction in terms of the 4d effective spin (5.5.6). Recall the conjecture

for the 4d spin in terms of 1d quantum numbers is

l4d = 2(iA + rA + iBto + iBte + rBte − 1 + (−1)rBte+1

2 ) . (5.8.1)

The four-derivative interaction corresponds to a spin-2 correction, thus we predict

that we can have 4d spin-0 and spin-2. We therefore expect that only operators

with quantum numbers satisfying l4d = 0,2 acquire non-zero anomalous dimensions

and indeed we will find that our results agree with this prediction. We start by

analysing the unmixing for t = ∆ − p odd and even separately and presenting some

examples. The first example where square roots appear is (∆, p) = (5,2) discussed

around (5.8.20).

5.8.1 Unmixing for Odd t

We start by analysing the unmixing at weights (∆, p) with t = ∆ − p odd, where

we have both class A and Bto operators. For each (∆, p) use the parametrisation

in (5.5.3) to list all operators in the double-trace spectrum at the given weight. Then

construct ((dA + dBto)) × ((dA + dBto)) matrices of correlators running over D∆,p and

solve the unmixing equations (5.5.13). Recall that class A and B operators do not

mix, so they can be treated completely separately. The anomalous dimensions after

unmixing are labelled as (γA)∆,p
iA,rA

for class A operators and (γBto)∆,p
iBto

for class B.

Let us discuss the same examples as for the supergravity limit in section 5.6, starting

with the singlet sector.

p = 0 sector

For p = 0, there are only class A operators in the spectrum, so the operators con-

tributing are the same as for supergravity. Starting with the simplest case ∆ = 1,
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only one exchanged operator O1O1 contributes, thus we perform the conformal block

analysis of H4-deriv
1111 and get

M4-deriv
1111 (1,0) = 2∆2(∆ + 1)∆!(∆ + 1)!

(2∆)! ∣∆=1 = 4 , (5.8.2)

where the free theory coefficients are given in (5.6.1) and the supergravity contribu-

tions were obtained in (5.6.2). The unmixing equations are

M4-deriv
1111 (1,0) = γ4-deriv1,0 (C(0)

1,0 )
2
+ 2γsugra1,0 C

(0)
1,0C

4-deriv
1,0 , 0 = C(0)

1,0C
4-deriv
1,0 . (5.8.3)

To solve these equations, we use the supergravity results (5.6.4) which yields

(γ4-derivA )1,0
0,0 = 4 , C4-deriv

1,0 = 0 . (5.8.4)

At weight ∆ = 3 there are two possible exchanged operators, O2O2 and O1∂2O1 and

the matrix of OPE coefficients for the four-derivative correction is

M̂4-deriv
3,0 =

⎛
⎜⎜
⎝

M4-deriv
1111 M4-deriv

1122

M4-deriv
1122 M4-deriv

2222

⎞
⎟⎟
⎠
(3,0)

=
⎛
⎜⎜
⎝

72
5

4
3(15 + C0)

4
3(15 + C0) 8

9(38 + 5C0)

⎞
⎟⎟
⎠
, (5.8.5)

where the coefficients for general ∆ are

M4-deriv
1122 (∆,0) =(∆ + 2) (∆ − 1)∆!(8C0 ∆! + (∆ − 1)∆(∆ + 2)!)

3(2∆)! ,

M4-deriv
2222 (∆,0) =(∆ + 2) (∆ − 1) (∆!)2

18(2∆)! × [16C0 (∆ + 2) (∆ − 1)

+∆6 + 3∆5 − 3∆4 − 11∆3 + 26∆2 + 32∆ − 32] , (5.8.6)

and the coefficients for free theory and supergravity were given in (5.6.5). We

solve the unmixing equations in matrix form at orders O(a/c) and O(a), using the

supergravity results (5.6.7):

γ4-deriv3,0,i = {16
3 (137 + 15C0),

64
3 } , C4-deriv

3,0 = (−1 + 3C0)
⎛
⎜⎜
⎝

−
√

5
9
√

3
1

9
√

3
√

5
27

√
3

5
27

√
3

⎞
⎟⎟
⎠
, (5.8.7)

where γ4-deriv3,0,i are the eigenvalues of the matrix (M̂ sugra + aM̂4-deriv) ⋅(Â(0))−1 at O(a)

and i is labelling the non-zero anomalous dimensions. Recall that C0 is the coefficient
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of the ambiguity in (5.7.10). While for supergravity there is only one anomalous

dimension at every weight, there are two non-zero anomalous dimensions at O(a/c)

for (3,0), (γ4-derivA )3,0
0,0 = 16

3 (137 + 15C0) and (γ4-derivA )3,0
1,0 = 64

3 . We will explain the

labels, interpret the result from a 4d point of view and give general formulas in

subsection 5.8.3.

At weight (5,0), there are three exchanged operators in the double-trace spectrum,

O3O3, O2∂2O2 and O1∂4O1 and the conformal block analysis of the appropriate

correlators gives the four-derivative contribution

M̂4-deriv
5,0 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

M4-deriv
1111 M4-deriv

1122 M4-deriv
1133

M4-deriv
2222 M4-deriv

2233

M4-deriv
3333

⎞
⎟⎟⎟⎟⎟⎟
⎠
(5,0)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

50
7

8
27(105 +C0) 4

5(30 +C0)
32
81(352 + 7C0) 16

45(321 + 14C0)
24
25(111 + 7C0)

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5.8.8)

where the free theory and supergravity coefficients are given in (5.6.8) and the

expressions for general ∆ for the new coefficients are

M4-deriv
1133 (∆,0) =(∆ − 1) (∆ − 3)∆! (24C0 (∆ + 4)(∆ + 2)! +∆ (∆ + 1) (∆ − 2) (∆ + 4)!)

60(∆ + 1)(2∆)!
,

M4-deriv
2233 (∆,0) =(∆ + 2) (∆ + 4) (∆ − 1) (∆ − 3) (∆!)2

360(2∆)!
× [32C0 (∆ + 2) (∆ − 1)

+∆(∆ + 1) (∆(∆ + 1) (∆2
+∆ − 10) + 88) − 96] ,

M4-deriv
3333 (∆,0) =(∆ − 1) ((∆ + 4) (∆ − 3))2 ∆!(∆ + 2)!

7200(∆ + 1)(2∆)!
× [48C0 (∆ + 2) (∆ − 1)

+∆6
+ 3∆5

− 11∆4
− 27∆3

+ 226∆2
+ 240∆ − 288] . (5.8.9)

We can now solve the unmixing equations (5.5.13) for the contributions to the anom-

alous dimensions at O(a/c) and the O(a) corrections to the three-point functions:

γ4-deriv5,0,i = {80
3 (424 + 21C0),

1204
3 } ,
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C4-deriv
5,0 = (−1 + 3C0)

⎛
⎜⎜⎜⎜⎜⎜
⎝

− 2
√

14
27

√
15

−1
486

√
42c

504−5c
1458

√
210

−16
√

14
81

√
15

−336+c
243

√
42

2(504−5c)
√

2
2187

√
105

4
√

14
45

√
15 − 2016+c

2430
√

42
−504+5c

1215
√

210

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5.8.10)

with one unfixed parameter. Additionally, the unmixing equations at this order fix

one of the coefficients b1, b2 in the leading three-point function (5.6.11) to

b1 = −
9

4
√

5
b2 . (5.8.11)

There are two non-zero anomalous dimensions, which we will again discuss later

from the point of view of the 4d conformal symmetry, they are given by (γ4-derivA )5,0
0,0 =

80
3 (424 + 21C0) and (γ4-derivA )5,0

1,0 =
1204

3 .

We solve the mixing problem for higher ∆ analogously to the previous cases. Let

us look at a few examples for p = 1,2, where class B operators are relevant, before

discussing t even.

p = 1 sector

Starting from p = 1 there are class A and class B operators exchanged, in the present

case where t is odd, they are class Bto operators. These operators contribute from

t ≥ 3 and p ≥ 1.

In the simplest case ∆ = 2, p = 1, there is only one exchanged class A operator in

the double-trace spectrum, O1O2 and we perform the conformal block analysis at

O(a/c) for the correlator H1212 and the OPE-coefficients are

M4-deriv, todd
1212 (2,1) = 1

3∆(2∆)! × [ (∆5 +∆4 − 4∆3 −∆2 + 7∆ − 4)∆!(∆ + 2)!

+ 8C0 ((∆ + 1)!)2]
∆=2

= 2
3(11 + 6C0) , (5.8.12)

where the free theory coefficients are given in (5.6.12) and the supergravity coefficients

were obtained in (5.6.13). Solving the unmixing equations gives

(γ4-derivA )2,1
0,0 =

8
3(11 + 6C0) , C4-deriv

2,1 = 1
2 . (5.8.13)
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Next, let us solve one more mixing problem for t odd. At (4,1) two class A and

one class Bto operators are exchanged, O1∂2O2, O2O3 and O2∂O2. Recall that for t

odd, the class A operators have even numbers of derivatives while class B operators

have odd numbers of derivatives. The conformal block analysis of the appropriate

correlators gives

M̂4-deriv
4,1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

M4-deriv
1212 M4-deriv

1223 M4-deriv
1222

M4-deriv
1223 M4-deriv

2323 M4-deriv
2322

M4-deriv
1222 M4-deriv

2322 M4-deriv
2222

⎞
⎟⎟⎟⎟⎟⎟
⎠
(4,1)

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

2
21(387 + 10C0) 2

15(333 + 25C0) 0
2
15(333 + 25C0) 28

75(171 + 20C0) 0

0 0 56
3

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (5.8.14)

which is block-diagonal as expected and the new coefficients in terms of general ∆

are given by:

M4-deriv, todd
1223 (∆,1) = (∆ − 2)

30∆(2∆)! × [20C0 ∆(∆ + 3)((∆ + 1)!)2

+ (∆5 +∆4 − 7∆3 −∆2 + 22∆ − 16)∆!(∆ + 3)!] ,

M4-deriv, todd
2323 (∆,1) =(∆

2 +∆ − 6)2 (∆ + 1)!
300∆(2∆)! × [32C0 ∆(∆ + 1)!

+ (∆6 + 3∆5 − 8∆4 − 21∆3 + 89∆2 + 100∆ − 128)∆!] ,

M4-deriv, todd
2222 (∆,1) =∆ (∆2 +∆ − 6)2 ∆!(∆ + 1)!

3(2∆)! . (5.8.15)

The free theory and supergravity coefficients are given in (5.6.15). Note that the class

B operators O2∂O2 have zero supergravity OPE-coefficients but their free theory

coefficients are non-zero. The free theory coefficients are relevant for the unmixing

at O(a/c), for operators Oqq they are given in (5.6.1) and the relevant coefficient at

this weight is

Afree
2222(4,1) =

2
9 , (5.8.16)
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solving the O(1) unmixing equation gives the leading three-point function

(C(0)
4,1 )

Bto
=

√
2

3 . (5.8.17)

We can now go on and solve the unmixing equations at O(a/c) and O(a), which

gives the anomalous dimensions and three-point functions

γ4-deriv4,1,i ={8(307 + 30C0),
392
5 , 84} , C4-deriv

4,1 = 1 − 3C0

27
√

15

⎛
⎜⎜⎜⎜⎜⎜
⎝

5
√

14 10 −
√

5
2
√

6 c

−2
√

14 14 1√
30 c

0 −c 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

(5.8.18)

where we used the supergravity results (5.6.17). Note that c is unfixed and while there

is no mixing between class A and class B operators at orders O(1), O(1/c), O(a/c),

there could potentially be mixing at the level of the O(a) correction to the three-

point functions, depending on whether c is zero or not. This could be determined

by studying higher-derivative corrections which mix with the four-derivative ones.

There are three non-zero anomalous dimensions at (4,1), two corresponding to class

A and one to class Bto operators:

(γ4-derivA )4,1
0,0 = 8(307 + 30C0) , (γ4-derivA )4,1

1,0 =
392
5 , (γ4-derivBto )4,1

1 = 84 , (5.8.19)

which will be discussed in terms of the 4d spin below.

Let us look at one more example for odd t in order to understand the emergence of

square roots in the anomalous dimensions, which indicates the breaking of the 4d

conformal symmetry for higher-derivative corrections at higher charges. We discuss

the first example where square roots appear, which is (5,2). This can be seen from

the parametrisation in (5.5.3) and the illustration in figure 5.1 where square roots

are expected to appear once operators with iA = 0, rA = 0 and both iA = 1, rA = 0

and iA = 0, rA = 1 contribute. This is the case when t ≥ 3 and p ≥ 2. In figure 5.1

this corresponds to (q1, q2) where all three black nodes in the grey highlighted area

are present. The grey area contains all operators which acquire non-zero anomalous
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dimensions at O(a/c) when they are present in the spectrum at the weight (∆, p)

considered. The operator at position A is the one which has non-zero anomalous

dimension also in supergravity, the two black nodes in the grey area connected by a

vertical line correspond to the square roots. The square roots thus lift the residual

degeneracy that was there in supergravity, where the black nodes connected by a

vertical line correspond to the same anomalous dimension, which in the 1d case is

zero. The anomalous dimensions of class B operators, denoted by white nodes, do

not acquire square roots since there is no degeneracy to lift as class B operators

decouple in the supergravity limit.

We will focus on the anomalous dimensions and neglect the three-point functions

for the following example since the anomalous dimensions are the relevant objects

to discuss the 4d conformal symmetry. The three-point functions can be obtained

analogously to the examples above and we will do so for a few more examples with

even t. Note that the O(a) corrections to the three-point functions after unmixing are

generally non-zero for higher-derivative corrections, as can be seen from the examples

considered above. This agrees with the observations in [14] that for α′5 corrections

to N = 4 SYM correlators in the supergravity approximation, the O(α′5) corrections

to the three-point functions are non-zero for some cases which are related to square

roots in the anomalous dimensions. Whereas for α′3 it was found in [13] that the

corrections to the three-point functions are absent and all anomalous dimensions

are rational and thus the 10d conformal symmetry is expected to be intact. See

also the discussion in subsection 5.7.3. As a consequence, we would expect that the

O(a) corrections to the three-point functions corresponding to class B operators

are absent, since there are no square roots in these cases. This is e.g. supported

by (5.8.18) where the entry 2222 corresponding to the class B operator is zero and

we will check this in a few more cases below.
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p=2 sector

At weight (5,2) there are four class A operators, O1∂2O3, O2O4, O2∂2O2, O3O3 and

one class B operator, O2∂O3. The class A operators will lead to square roots in

the unmixed anomalous dimensions and class A and class B operators do not mix

at the levels of supergravity and four-derivative correction anomalous dimensions.

The conformal block analysis of the relevant correlators at O(a/c) then leads to the

symmetric matrix:

M̂4-deriv
5,2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M4-deriv
1313 M4-deriv

1324 M4-deriv
1322 M4-deriv

1333 M4-deriv
1323

M4-deriv
2424 M4-deriv

2422 M4-deriv
2433 M4-deriv

2423

M4-deriv
2222 M4-deriv

2233 M4-deriv
2223

M4-deriv
3333 M4-deriv

3323

M4-deriv
2323

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
(5,2)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
25(774 + 35C0)

6
35(416 + 35C0)

4
45(942 + 35C0)

36
35(90 + 7C0) 0

6
245(3910 + 441C0)

36
35(90 + 7C0)

468
245(62 + 7C0) 0

8
135(1955 + 56C0)

8
105(1707 + 112C0) 0

72
245(657 + 56C0) 0

672
25

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(5.8.20)

we spell out the coefficients for general ∆ in appendix I. Furthermore, since we have

not studied this example in the supergravity section 5.6, we also give the free theory

and supergravity coefficients and discuss the mixing problem in the supergravity

limit, which is necessary to solve the unmixing at O(a/c), in the appendix.

Let us solve the unmixing equations at O(a/c) to get the anomalous dimensions

after unmixing:

γ4-deriv5,2,i = {32
3 (545 + 51C0),

8
15(415 −

√
2881), 8

15(415 +
√

2881), 1008
5 } . (5.8.21)

We then label the non-zero anomalous dimensions as follows:

(γ4-derivA )5,2
0,0 =

32
3 (545 + 51C0) , (γ4-derivA )5,2

1,0 =
8
15(415 −

√
2881) ,
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(γ4-derivA )5,2
0,1 =

8
15(415 +

√
2881) , (γ4-derivBto )5,2

1 = 1008
5 . (5.8.22)

We will give formulas for general (∆, p) and analyse them from a 4d perspective

below. Note that for the first time, square roots appear in the anomalous dimensions

and this will be the case for any (∆, p) with p ≥ 2 and t ≥ 3, where t is odd. These

square roots resolve a residual degeneracy from supergravity, which in the 1d case is

not obvious since it is a zero-degeneracy. There are no square roots for even t, which

is expected because there are no supergravity contributions for even t and thus no

degeneracy to resolve.

Continuing to solve the mixing problem weight by weight for many (∆, p) for t odd,

there will always be one rational anomalous dimension corresponding to the operator

with iA = 0, rA = 0 and two square roots if both iA = 1, rA = 0 and iA = 0, rA = 1

operators are present (when both t ≥ 3 and p ≥ 2). This collapses to one rational

anomalous dimension when only one of the two operators is present and to zero

when none of the two is present. Besides class A, for class Bto there is one non-zero

rational anomalous dimension when an operator with iBto = 1 is present (when t ≥ 3

and p ≥ 1). Next, let us study a few examples with t even before presenting the

general formulas for all non-zero anomalous dimensions at O(a/c).

5.8.2 Unmixing for Even t

Let us study a few examples of unmixing for even t where only class Bte operators

contribute to the double-trace spectrum. To get a list of exchanged operators at each

weight, see (5.5.5) and figure 5.2. Class Bto operators only start contributing from

p = 1, and they split into two groups, operators with even or odd rBte respectively.

These are illustrated in figure 5.2 with black and white nodes for even and odd rBte

respectively. The operators with (q1, q2) which are in the grey area are the ones

which obtain non-zero anomalous dimensions at O(a/c). Let us start by looking at

some examples with p = 1.



180
Chapter 5. AdS2×S2 Correlators: Effective Action and 4d Conformal

Symmetry

p=1 sector

At weight (3,1) there is only one operator present, O1∂O2 and performing the con-

formal block expansion we get the free (see (5.6.12)) and four-derivative coefficients:

A
(0)
1212(3,1) =

2
15 ,

M4-deriv
1212 (3,1) = (∆3 − 5∆ + 4) (∆ − 1)!(∆ + 2)!

3(2∆)! ∣∆=3 =
16
9 , (5.8.23)

solving the unmixing equations (where there are no contributions from supergravity)

we get the anomalous dimension

(γ4-derivBte )3,1
1,0 =

40
3 . (5.8.24)

Next, let us obtain the three-point functions after unmixing to check whether the

O(a) correction is zero as we would expect for class B operators. Solving the

unmixing equation at O(1) and plugging the result into the equation at O(a) indeed

gives:

C
(0)
3,1 =

√
2
15 , C4-deriv

3,1 = 0 . (5.8.25)

At next highest weight (5,1) there are two operators that contribute, O1∂2O2 and

O2∂O3 and performing the conformal block expansion of the corresponding correlat-

ors gives

Â
(0)
5,1 =

⎛
⎜⎜
⎝

A
(0)
1212 0

0 A
(0)
2323

⎞
⎟⎟
⎠
(5,1)

=
⎛
⎜⎜
⎝

1
42 0

0 9
175

⎞
⎟⎟
⎠
,

M̂4-deriv
5,1 =

⎛
⎜⎜
⎝

M4-deriv
1212 M4-deriv

1223

M4-deriv
1223 M4-deriv

2323

⎞
⎟⎟
⎠
(5,1)

=
⎛
⎜⎜
⎝

52
45

104
25

104
25

1872
125

⎞
⎟⎟
⎠
, (5.8.26)

where the new coefficients in terms of general odd ∆ are

M4-deriv, t even
2323 (∆,1) =

(∆2 +∆ − 4) (∆3 − 13∆ + 12)2
(∆ − 2)!(∆ + 2)!

75(2∆)!
,

M4-deriv, t even
1223 (∆,1) =

(∆ − 3)(∆ − 1)(∆ + 4) (∆2 +∆ − 4) (∆ − 1)!(∆ + 2)!
15(2∆)!

. (5.8.27)

Solving the unmixing equations in matrix form for this case gives the anomalous
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dimension

(γ4-derivBte )5,1
1,0 =

5096
15 . (5.8.28)

For this case again, as for the whole p = 1 sector, there is exactly one non-zero an-

omalous dimension, which corresponds to the operator with iBte = 1, rBte = 0. Going

to p ≥ 2, there will be two non-zero anomalous dimensions, the additional one being

for the operator with iBte = 1, rBte = 1. Furthermore, solving the equations (5.5.13)

at order O(1) and O(a/c) (where γsugra = 0) and plugging the result into O(a) we

get the three-point functions:

C(0)
5,1 =

⎛
⎜⎜
⎝

1
7
√

6
3
√

6
35

1
7 − 3

35

⎞
⎟⎟
⎠
, C4-deriv

5,1 =
⎛
⎜⎜
⎝

3
355 (−97 + 35

√
6) c c

− 2
355 (105 + 58

√
6) c 1

426 (−210 + 97
√

6) c

⎞
⎟⎟
⎠
,

(5.8.29)

where c is unfixed. However, we would expect c to be zero based on the discussions

above, since for even t all operators acquire rational anomalous dimensions. This

could be checked by considering higher-derivative corrections. We have now seen in

a few examples that the O(a) corrections to the three-point functions are zero (or

unfixed) for class B operators, as expected. For the following examples we will focus

on the anomalous dimensions only, and the corrections to the three-point functions

can be obtained analogously to the examples above. Let us now consider an example

in the p = 2 sector where we expect two non-zero anomalous dimensions.

p=2 sector

Consider the simplest case (4,2), where there are two operators in the spectrum

O1∂O3 and O2O3. Conformal block expansion of the appropriate correlators gives

the coefficients:

Â
(0)
4,2 =

⎛
⎜⎜
⎝

A
(0)
1313 0

0 A
(0)
2323

⎞
⎟⎟
⎠
(4,2)

=
⎛
⎜⎜
⎝

3
28 0

0 2
21

⎞
⎟⎟
⎠
,
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M̂4-deriv
4,2 =

⎛
⎜⎜
⎝

M4-deriv
1313 M4-deriv

1323

M4-deriv
1323 M4-deriv

2323

⎞
⎟⎟
⎠
(4,2)

=
⎛
⎜⎜
⎝

21
5 0

0 224
45

⎞
⎟⎟
⎠
. (5.8.30)

Note that in this case also M̂4-deriv
4,2 is a diagonal matrix, this is because operators with

even or odd rBte do not mix at the level of free theory and four-derivative corrections,

going to higher (∆, p) will give block-diagonal matrices where the mixing problem

could be solved independently for even or odd rBte .

The O(a/c) conformal block coefficients for general even ∆ are:

M4-deriv, t even
1313 (∆,2) = (∆ − 2)3(∆ + 3) (∆2 +∆ − 8) (∆ − 3)!(∆ + 3)!

20(2∆)! ,

M4-deriv, t even
2323 (∆,2) = 4 (∆2 +∆ − 6)2 (∆2 +∆ − 4)∆!(∆ + 1)!

45∆(2∆)! . (5.8.31)

After unmixing, there are indeed two non-zero rational anomalous dimensions as

expected:

γ4-deriv4,2,i = {196
5 ,

784
15 } , (5.8.32)

which we label by (γ4-derivBte )4,2
1,0 =

196
5 and (γ4-derivBte )4,2

1,1 =
784
15 and discuss further below,

see subsection 5.8.3. The two operators with non-zero anomalous dimensions corres-

pond to the two nodes in the grey highlighted rectangle in figure 5.2. We present an

additional example for even t, (6,2) where more than one operator contributes for

even and odd rBte each, in appendix I.

One can solve the mixing problem for any (∆, p) analogous to the given examples.

Solving it for many cases, we conjecture general formulas and we spell them out and

discuss them from a 4d perspective in the following subsection.
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5.8.3 Anomalous Dimensions after Unmixing

We present general formulas for the anomalous dimensions at O(a/c) for any (∆, p)

for odd and even t. From the examples discussed above, we can see that there

are three different non-zero class A and one class Bto anomalous dimensions for

odd t and two different class Bte ones for even t (which agrees with the predictions

from the 4d spin (5.5.6)). Solving for the anomalous dimensions after unmixing for

many weights up to high (∆, p), we can conjecture general formulas. We start by

presenting the results for odd t which are interesting because the breaking of the 4d

conformal symmetry becomes obvious due to the appearance of square roots. Finally

we also present the conjectured formulas for even t.

Anomalous dimensions for odd t

Recall that the four-derivative interaction corresponds to correlators with a conformal

block expansion that is truncated to 4d spin-2. This can be understood in terms

of the effective 4d spin given in (5.5.6). Firstly, analysing the 4d spin-0 sector it is

easy to see that l4d = 2(iA + rA) = 0 can only be satisfied by class A operators with

quantum numbers iA = rA = 0, (iBto only has values iBto = 1, . . . and thus does not

contribute at 4d spin-0). The anomalous dimensions are

(γA)∆,p
0,0 = δ(2) (2

9 (1 − 6C0) +
1
18 (1 + 12C0) δ(2) +

5
12

(δ(2))2 + 1
9 (1 + 12C0) δ(y)) ,

(5.8.33)

where δ(2) and δ(y) are the eigenvalues of the differential operators ∆(2), Dy in (5.2.15)

acting on conformal blocks

δ(2) = (∆ − p)(∆ + p + 1) , δ(y) = p(p + 1) . (5.8.34)

For the 4d spin-2 sector l4d = 2 (iA + rA + iBto) = 2 there are three possible non-zero

anomalous dimensions with quantum numbers iA = 1, rA = 0 and iA = 0, rA = 1 for

class A and iA = 0, rA = 0, iBto = 1 for class B, this is the first case where class B
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operators play a role. These anomalous dimensions are given by:

(γA)∆,p
1,0 = 1

180 δ
(2)(4 − 2 δ(2) + 3 (δ(2))2 − 4 δ(y)

− 4
√

8p3 + 4p4 − 4p2∆(1 +∆) − 4p (1 +∆ +∆2) + (−1 + 2 ∆ + 2 ∆2)2) ,

(5.8.35)

(γA)∆,p
0,1 = 1

180 δ
(2)(4 − 2 δ(2) + 3 (δ(2))2 − 4 δ(y)

+ 4
√

8p3 + 4p4 − 4p2∆(1 +∆) − 4p (1 +∆ +∆2) + (−1 + 2 ∆ + 2 ∆2)2) ,

(5.8.36)

(γBto)∆,p
1 = 1

60 δ
(2) (−2 δ(2) + (δ(2))2 − 4 δ(y)) . (5.8.37)

The square roots resolve the degeneracy at supergravity, where in the 1d case sev-

eral anomalous dimensions are zero (while in the 4d/10d case there is a non-zero

degeneracy). The operators with the same anomalous dimensions in supergravity

correspond to the black nodes (class A operators) connected by vertical lines in

figure 5.1. The operators highlighted by a grey rectangle are the ones acquiring non-

zero anomalous dimensions at the order of four derivatives. The two black nodes

which are connected by a vertical line correspond to the operators with anomalous

dimensions with square roots (5.8.35), (5.8.36) while the white node represents the

operators with anomalous dimension (5.8.37).

Anomalous dimensions for even t

For even t, operators only start to contribute at 4d spin-2 and we get two different

non-zero anomalous dimensions, labelled as (γBte)∆,p
iBte ,rBte

with quantum numbers

iBte = 1, rBte = 0 and iBte = 1, rBte = 1:

(γBte)∆,p
1,0 = 1

60
(δ(2))2 (δ(2) − 2) , (5.8.38)

(γBte)∆,p
1,1 = 1

60
(δ(2))2 (δ(2) + 2) . (5.8.39)

The operators at even t are illustrated in figure 5.2 and the two operators acquiring

non-zero anomalous dimensions are highlighted by a grey rectangle, where the op-
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erator with anomalous dimension (5.8.38) is represented by the black node and the

one corresponding to (5.8.39) by the white node.

Note that there are some relations between these anomalous dimensions, in particular

the eigenvalues of Casimir operators in the anomalous dimensions, and the Casimir

operators which act on 4d conformal objects to uplift the four-derivative corrections

to higher charges in subsection 5.7.3. In particular (5.8.38) is proportional to the

eigenvalue of ∆(4)
spin-2 in (5.7.22). The anomalous dimensions for odd t corresponding

to 4d spin-0 and spin-2 are also partially given in terms of eigenvalues of Casimirs.

However, there is no exact correspondence to eigenvalues of ∆(4)
spin-0 or ∆(4)

spin-2 due to

the square roots and extra dependence on δ(y). This also indicates a breaking of the

4d conformal symmetry.

We have now studied the mixing problem for four-derivative corrections in detail and

have obtained general formulas for all O(a/c) anomalous dimensions after unmixing.

These anomalous dimensions can be organised according to a 4d effective spin inspired

by the 4d conformal symmetry and they indicate a breaking of the symmetry for

higher-derivative corrections due to the appearance of square roots. We will conclude

this chapter in the next section and discuss some interesting open questions for future

research.

5.9 Conclusions and Future Directions

In this chapter we investigate holographic correlators in AdS2×S2. We start with a

review of the hidden 10d conformal symmetry discovered in [41] where it is conjec-

tured that all half-BPS four-point correlators described by tree-level supergravity

can be obtained from one single 10d conformally invariant object. This conjecture

is true for the supergravity approximation and also extends to free theory, as well

as loop corrections (which we do not discuss in this thesis). However, it is gener-

ally broken for higher-derivative corrections as was confirmed in [14] from a study

of anomalous dimensions after unmixing. An appearance of square roots in these
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results indicates the breaking of the symmetry, however there are still many rational

anomalous dimensions which suggests that some of the symmetry is conserved even

for higher-derivative corrections. The hidden conformal symmetry arises when the

corresponding flat space superamplitude is conformally invariant, hence when its

coupling, i.e. GNδ16(Q) in the AdS5×S5 case, is dimensionless. Therefore, only spe-

cific four-point correlators enjoy this conformal symmetry and only on backgrounds

which are conformally flat, such as AdSq×Sq. We have explained that in the su-

pergravity approximation the four-point half-BPS correlator itself enjoys the 10d

conformal symmetry, while for free theory the correlator has to be rescaled by act-

ing on it with an eighth-order differential operator derived from the superconformal

Casimir. This yields the correlator of superdescendants which exhibits 10d conformal

symmetry.

In addition to studying 1d correlators in the context of the 4d hidden conformal

symmetry we also derive four-point half-BPS correlators from a 4d scalar effective

action in AdS2×S2 similar to the one introduced in chapter 3. While in AdS5×S5 the

effective action only describes higher-derivative corrections, in AdS2×S2 the effective

action describes both, supergravity and higher-derivative corrections. Note that we

propose the existence of this effective action and deduce the consequences without

proving it. We then compare the results to those from the 4d conformal symmetry

where possible. Throughout this chapter we consider both these approaches and

show that they nicely complement each other.

We discuss the free disconnected correlators and show that they exhibit a 4d con-

formal symmetry. Recall that for free theory one has to consider the correlator of

descendants which is obtained by acting with ∆(2) on the correlators. This yields a

generating function which contains all higher-charge free theory correlators.

Supergravity correlators in AdS2×S2 are especially interesting because they exhibit

4d conformal symmetry and can also be deduced from the proposed 4d effective

action. We start by deriving the lowest-charge correlator from crossing symmetry

and small x behaviour alone and then show that one can obtain all higher-charge
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tree-level correlators by uplifting it to 4d and expanding in the internal variables.

We derive a general formula for all four-point supergravity correlators and find exact

agreement when deriving the same correlators from the 4d effective action (up to

an overall unfixed coefficient), which suggests that the proposed 4d effective field

theory indeed generates all tree-level half-BPS four-point correlators.

The first hint towards a 10d conformal symmetry was found in [144] when solving

the mixing problem for anomalous dimensions in the supergravity limit where a

remarkably simple structure was uncovered. To show that a similar structure (and

even simpler due to the absence of spin in 1d CFTs) is satisfied for AdS2×S2 we

analyse the double-trace spectrum in the conformal block decomposition of the four-

point half-BPS correlators. We then explain how to solve the mixing problem for

supergravity as well as higher-derivative corrections. Further, we show that the

supergravity anomalous dimensions after unmixing are indeed given by a very simple

formula, namely the eigenvalue δ(2) of ∆(2) acting on the 1d superconformal blocks.

This simple structure can be explained from an effective 4d spin. Therefore, we have

seen that 1d correlators in free theory and in the supergravity approximation indeed

exhibit 4d conformal symmetry.

Finally, we investigate higher-derivative corrections. We start by deriving general

higher-derivative corrections with lowest charge from crossing symmetry before we

focus on the four-derivative corrections. We derive all four-derivative corrections

to the half-BPS correlators with any charge configuration from the 4d effective

field theory. Using these results, we go on to discuss the breaking of the higher-

dimensional conformal symmetry. We propose that some of the correlators can be

reconstructed by rescaling the higher-derivative four-point correlators by acting with

an inverse fourth-order differential operator to obtain an object invariant under 4d

conformal symmetry. In this way one can reproduce an infinite set of four-derivative

corrections with specific charges, however the symmetry is broken for general charge

configurations. This breaking can be anticipated because when dimensionally re-

ducing interaction terms with covariant AdS×S derivatives on the sphere one gets
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several terms with different numbers of derivatives in AdS which then cannot all be

rescaled simultaneously. This strongly suggests that the α′3 corrections in AdS5×S5,

which are described by zero-derivative interactions, have 10d conformal symmetry,

which is in agreement with the rational anomalous dimensions found in [13].

Considering the four-derivative corrections we obtain from the proposed 4d effective

action, we perform a conformal block analysis and solve the mixing problem for

anomalous dimensions at O(a/c). We obtain general formulas for all anomalous

dimensions and similar to [14] we find that a part of these anomalous dimensions

contain square roots, whereas there are also many rational anomalous dimensions.

Again we can explain the structure of these anomalous dimensions from an effective

4d spin. The fact that there are square roots in the unmixed anomalous dimensions

indicates that the 4d conformal symmetry is broken for higher-derivative corrections.

However, there are also many operators obtaining rational anomalous dimensions

and this suggests that a part of the 4d conformal symmetry structure remains. This

agrees with the findings above that a subset of correlators can still be constructed

from the hidden conformal symmetry.

To summarise, both, the higher-dimensional conformal symmetry and the higher-

dimensional scalar effective field theory are very powerful approaches which nicely

complement each other. While the hidden conformal symmetry describes all free

theory and supergravity correlators (as well as loop corrections), it is generally broken

for higher-derivative corrections. On the other hand, the scalar effective action

approach generates all higher-derivative corrections for any number of derivatives

and any charge configuration, but does not describe free theory and loop corrections.

Whereas the effective action in AdS5×S5 only describes higher-derivative corrections,

the effective action in AdS2×S2 also describes supergravity.

Future directions

There are a number of interesting open questions that arise form this research.
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• We have seen that the hidden conformal symmetry and the higher-dimensional

effective action approach nicely complement each other and that both are very

powerful in obtaining four-point half-BPS correlators at different orders in a

and 1/c. It would be very interesting to understand the breaking of the hidden

conformal symmetry for higher-derivative corrections more precisely. It would

be interesting to identify specific pieces of the integrands of Witten diagrams

derived from the effective action that cause the breaking of the symmetry. It

is not straightforward to identify these contributions from (5.7.12) and one

idea might be to perform a Weyl transformation of the derivative terms in the

effective action from flat space to AdS×S to see whether this could give more

insight.

• Another very interesting research direction would be to study implications for

4d black holes. As mentioned before, AdS2×S2 is the near-horizon geometry of

extremal black holes in 4d. Fixing the coefficients in the effective action would

specify the underlying theory of quantum gravity and it would be interesting

to see whether these coefficients could be constrained from the weak gravity

conjecture [156, 157].

• It would also be interesting to consider higher-loop corrections. These can be

constrained from the higher-dimensional conformal symmetry and we leave a

discussion of this to [44] (also see [41]).

• Extending the conformal block analysis to higher-derivative corrections with

more than four derivatives is another possible extension of our research. It

would be interesting to compute the anomalous dimensions after unmixing and

check that the results agree with the 4d effective spin conjecture in (5.5.6).

Furthermore, one could consider constructing part of the correlators from the

4d conformal symmetry by acting with inverse differential operators on the

correlators analogous to the discussion in subsection 5.7.3, where the power of

the differential operators depends on the number of derivatives.





Chapter 6

Conclusion

In this thesis we have studied holographic correlators in three different examples

of the AdS/CFT correspondence. In chapter 2 we started with a review of im-

portant concepts of conformal field theories, including correlators, OPE expansion

and the conformal bootstrap. Furthermore, we have briefly reviewed the AdS/CFT

correspondence and holographic correlators including higher-derivative corrections.

The first case we have studied was the classical canonical example of the AdS/CFT

correspondence, the duality between string theory in AdS5×S5 and N = 4 SYM in

the boundary. The goal is to generalise the flat space Virasoro-Shapiro amplitude,

describing stringy corrections to the supergravity approximation, to curved back-

grounds. We have proposed a 10d scalar effective action in AdS5×S5 describing α′

corrections to the correlators. From there we have described a general algorithm to

compute all four-point half-BPS correlators described by tree-level string theory to

any order in α′ by evaluating new 10d Witten diagrams which manifestly include

AdS5 and S5 coordinates. We have justified the existence of this effective field theory

by reproducing known results for α′3 and α′5 and have then made new predictions

for α′6 and α′7. The coefficients of these interaction terms are fixed by comparing

to the flat space VS amplitude. There are ambiguities in the AdS×S effective action

which vanish in the flat space limit and can therefore not be fixed by our approach.

However, most of the ambiguities at the orders considered in this thesis can be
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determined by comparing to results obtained from localisation.

Next, in chapter 4 we have considered holographic correlators in AdS7×S4 which is

another canonical example of the AdS/CFT correspondence but much less under-

stood since the bulk theory is not known beyond the supergravity approximation

and the boundary theory is non-Lagrangian. Our goal was to better understand the

worldvolume theory of M5-branes, the 6d (2,0) theory, which is dual to M-theory

in AdS7×S4. To study M-theory away from the supergravity approximation we con-

sider correlators in the 6d (2,0) theory away from the strict large-c limit. Since

the 6d (2,0) theory is non-perturbative we have approached this through conformal

bootstrap methods. In particular, we have derived recursion relations for anomalous

dimensions of double-trace operators in the conformal block expansion of four-point

functions of primaries of the stress tensor multiplet. To do this, we have expan-

ded the crossing equation in 1/c and taken the light-cone limit of the conformal

cross-ratios to isolate the contributions from anomalous dimensions. Moreover, we

have made use of orthonormality relations of the hypergeometric functions in the

conformal blocks and have truncated the conformal block expansion to spin L. We

have derived these recursion relations for a bosonic toy 6d CFT as well as for the

supersymmetric 6d (2,0) theory. Further, we have described an algorithm for solving

the recursion relations for the anomalous dimensions at any spin-truncation and for

any twist. Finally, the anomalous dimensions encode the higher-derivative correc-

tions to the low-energy effective action of M-theory. In particular, the large-twist

behaviour of the anomalous dimensions of a specific spin-L truncated solution to the

crossing equation gives the number of derivatives of the corresponding interaction

vertex while the coefficients of the terms in the low-energy effective action cannot

be fixed from our approach.

The third case we have investigated are holographic correlators in AdS2×S2, where

quantum gravity on this background is dual to a one-dimensional superconformal

field theory with SU(1,1∣2) symmetry. This case is much less well understood

but very interesting due to its relation to black hole physics. We have approached
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correlators in this example of the AdS/CFT correspondence from different points of

view, the higher-dimensional conformal symmetry first observed for N = 4 SYM and

the higher-dimensional scalar effective action proposed in a previous chapter. The

hidden conformal symmetry of correlators arises when the corresponding flat space

superamplitude is connected to a dimensionless coupling and is thus conformally

invariant. It is thus only satisfied for specific four-point correlators and moreover,

requires a conformally flat background. We have seen that 1d correlators in free

theory and in the supergravity approximation have 4d conformal symmetry, where

one has to act with a differential operator ∆(2) on the free theory correlators to

obtain a 4d conformally invariant object. In these cases, all higher-charge correlators

can be obtained from the lowest-charge correlator alone using the hidden conformal

symmetry and we have shown that in the supergravity limit these results agree with

the correlators derived from the 4d effective action by evaluating AdS2×S2 Witten

diagrams. That the supergravity correlators satisfy 4d conformal symmetry was also

confirmed through the analysis of anomalous dimensions of double-trace operators

in the spectrum of the correlators after unmixing, which show the expected simple

structure δ(2).

We have then discussed higher-derivative corrections and specifically obtained all

four-derivative corrections from the proposed 4d effective field theory. The higher-

dimensional conformal symmetry is generally broken in this case but through rescal-

ing the correlators by acting on them with inverse powers of differential operators we

can reconstruct an infinite tower of four-derivative corrections with specific charges.

We have also solved the mixing problem for anomalous dimensions of double-trace

operators in the spectrum of the four-derivative corrections and have obtained gen-

eral formulas. While most of the anomalous dimensions are rational, there are

operators which acquire anomalous dimensions with square roots and this indicates

the breaking of the 4d conformal symmetry. To conclude, the hidden conformal sym-

metry conjecture is valid for free theory and supergravity and is generally broken

for higher-derivative corrections whereas the scalar effective field theory approach



194 Chapter 6. Conclusion

generates all higher-derivative corrections but does not describe free theory or su-

pergravity (except in the 1d case). Hence, using both of these approaches together

puts very powerful constraints on the four-point correlators of half-BPS operators

in conformally flat backgrounds.

Detailed conclusions including discussions of open problems are given at the end of

each chapter. There are many interesting future directions arising from the research

in this thesis, such as for example proving the existence of the scalar effective action

proposed in chapter 3, or deriving it directly from the CFT side of the duality. It

would also be interesting to understand systematically how to fix the ambiguities and

how to resum the terms in the effective action. Furthermore, it would be interesting

to extend this approach to different conformally flat backgrounds, to higher-point

correlators or to loop corrections. Following on from chapter 4 an interesting dir-

ection would be to fix the coefficients of the higher-derivative corrections to the

M-theory low-energy effective action using the chiral algebra conjecture [132]. Re-

lated to this, it would be interesting to derive higher-charge correlators and compute

the corresponding anomalous dimensions. Based on chapter 5 it would be very

interesting to explore the implications for higher-derivative corrections in black hole

backgrounds, as well as to extend the study to loop corrections or to interactions

with more derivatives. An interesting direction to pursue, combining both chapter 3

and chapter 5, would be to study the relation between the higher-dimensional scalar

effective action and the higher-dimensional conformal symmetry further and under-

stand the breaking of the conformal symmetry for higher-derivative corrections more

precisely.



Appendix A

Mellin Space

In this appendix we will review a few important concepts for the Mellin space formal-

ism. In [57] the author proposed a representation of conformal correlators that makes

their duality to scattering amplitudes more apparent, Mellin space representation.

Mellin space was first brought into the context of scattering amplitudes in [158, 159],

where a duality between the Mellin amplitude and flat space scattering amplitudes

as a function of Mandelstam invariants was pointed out. The flat space correlator

of four primary scalar operators can be written as

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =
N

(2πi)2 ∫ dδij
n

∏
i≤j

Γ(δij)
(x2

ij)
δij
M(δij) , (A.0.1)

with some normalisation N . The integration variables satisfy the constraints

∑
i≤j
δij = ∆i , (A.0.2)

and the integrand is conformal with scaling dimension ∆i at the point xi. M(δij)

is the Mellin amplitude and the integration contour runs parallel to the imaginary

axis with Re(δij) > 0.

In [57], the author then proposed that the Mellin amplitude is the scattering amp-

litude also in AdS spacetime (see (2.3.14)) and we will discuss this further in the

following.
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Contact Witten diagrams and Mellin space

In this subsection we include additional information about contact diagrams in

Mellin space and their relations to the position space versions, which is useful in the

context of chapter 3. Note that we do not discuss Mellin space in the context of

1d CFTs in chapter 5 because in 1d the Mandelstam variables are not independent

(since u = 0) and thus the Mellin transforms are not unique (see also [160]).

In [57] the author computes the Mellin amplitude M(δij) for different Witten dia-

grams and finds that they resemble to flat space scattering amplitudes. Specifically

contact Witten diagrams, which are the relevant cases for our considerations, give

polynomial Mellin amplitudes which agree with flat space scattering amplitudes

as functions of the Mandelstam invariants. The minimal contact diagram with

no covariant derivatives always has constant Mellin amplitude1 whereas derivative

contact terms give polynomial Mellin amplitudes. More precisely a AdS contact

interaction with 2k covariant derivatives corresponds to a Mellin amplitude which is

a polynomial of degree k.

As we have seen in subsection 2.3.1 the contact Witten diagrams for interactions

with no derivatives, which are described by D-functions, can be written in Mellin

space as (see [57]):

D
(d)
p1p2p3p4(Xi) = NAdSd+1

pi
× ∫

dδij
(2πi)2∏

i<j

Γ(δij)
(Xi.Xj)δij

, with ∑
i<j
δij = pj , (A.0.3)

where the normalisation is given in (2.3.15).

The constraints ∑i δij = pj can be solved most naturally by

δij = 1
2(pi+pj−sij) , (A.0.4)

where s12 = s34 = s, s14 = s23 = t, s13 = s24 = u = p1 + p2 + p3 + p4 − s − t which

can be interpreted as kinematic invariants of an auxiliary momentum space ki with

1In any dimension d there is a contact diagram with constant Mellin transform, namely the one
with ∆ = d for D∆∆∆∆. In 4d this special case is D4444 which corresponds to the α′3 correction,
while in 1d it is D1111 corresponding to supergravity.
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sij = −(ki + kj)2. We can use this to rewrite the normalised D-functions (2.3.16) in

terms of D̄-functions with a simple relation to the Mellin transform as:

P ′ ×Dp1p2p3p4(Xi) = ∫
dsdt

(2πi)2u
s
2v

t
2∏
i<j

Γ(δij)

= u 1
2 (p1+p2)v

1
2 (p2+p3)D̄p1p2p3p4(u, v) , (A.0.5)

where the prefactor is

P ′ = (X1.X2)
1
2 (p1+p2)(X1.X4)

1
2 (p1+p4)(X2.X3)

1
2 (p2+p3)(X3.X4)

1
2 (p3+p4)

(X1.X3)
1
2 (p2+p4)(X2.X4)

1
2 (p1+p3)

(A.0.6)

and to go from the normalised D to D̄ use (2.3.16) and (2.3.17), where x2
ij = −2Xi.Xj.

Thus, one can easily convert between position space in terms of D̄-functions and

Mellin space. Note that in chapter 3 we give all correlators in Mellin space, neverthe-

less we can directly expand the 10d Witten diagrams in terms of D- and B-functions

to get the correlators in position space (analogously for 4d Witten diagrams in

chapter 5). Hence, we can get the correlators both in position space and in Mellin

space directly from the effective action, yet it is interesting to understand how to

convert between them.

Shifting the variables s→ s + p1 + p2, t→ t + p2 + p3 in (A.0.5) we get

D̄p1p2p3p4 = ∫
dsdt

(2πi)2u
s
2v

t
2

× Γ (−s2 )Γ (−p1−p2+p3+p4−s
2 )Γ (−t2 )Γ (p1−p2−p3+p4−t

2 )Γ (2p2+s+t
2 )Γ (p1+p2+p3−p4+s+t

2 ) .

(A.0.7)

Conversely the Mellin transform of any function which has the form of six Gammas

in this form can be written as a D̄-function as follows:

∫
dsdt

(2πi)2u
s
2v

t
2 Γ (a1 − s

2)Γ (a2 − s
2)Γ (b1 − t

2)Γ (b2 − t
2)Γ (c1 + s+t

2 )Γ (c2 + s+t
2 )

=ua1vb1D̄a1+b2+c2, a1+b1+c1, a2+b1+c2, a2+b2+c1 . (A.0.8)

Note that this mapping is not unique because of the symmetries a1 ↔ a2, b1 ↔ b2,

c1↔ c2, which generate various identities amongst the D̄-functions.
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The Polynomial I(Xi, Yi)

The polynomial I(Xi, Yi), the so-called Intriligator polynomial, which factors out of

all half-BPS four-point functions (3.1.14) is:

I(Xi, Yi) = (x − y)(x̄ − y)(x − ȳ)(x̄ − ȳ)(X1.X3)2(X2.X4)2(Y1.Y3)2(Y2.Y4)2 ,

with xx̄ = X1.X2X3.X4

X1.X3X2.X4
, (1 − x)(1 − x̄) = X1.X4X2.X3

X1.X3X2.X4
,

yȳ = Y1.Y2Y3.Y4

Y1.Y3Y2.Y4
, (1 − y)(1 − ȳ) = Y1.Y4Y2.Y3

Y1.Y3Y2.Y4
. (B.0.1)

I is crossing symmetric under simultaneously permuting Xi, Yi with Xj, Yj . It is also

a polynomial and written out fully in terms of the SO(2,4) and SO(6) invariants

Xi.Xj and Yi.Yj is given as

I(Xi, Yi) = (X1.X4) 2 (X2.X3) 2Y1.Y2Y1.Y3Y2.Y4Y3.Y4

+X1.X2X1.X4X3.X4X2.X3 (Y1.Y3) 2 (Y2.Y4) 2

+X1.X3X1.X4X2.X4X2.X3 (Y1.Y2) 2 (Y3.Y4) 2

−X1.X2X1.X4X3.X4X2.X3Y1.Y3Y1.Y4Y2.Y3Y2.Y4

−X1.X3X1.X4X2.X4X2.X3Y1.Y2Y1.Y4Y2.Y3Y3.Y4

−X1.X3X1.X4X2.X4X2.X3Y1.Y2Y1.Y3Y2.Y4Y3.Y4

−X1.X2X1.X4X3.X4X2.X3Y1.Y2Y1.Y3Y2.Y4Y3.Y4

+X1.X2X1.X3X2.X4X3.X4 (Y1.Y4) 2 (Y2.Y3) 2 + (. . . )
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(. . . ) + (X1.X2) 2 (X3.X4) 2Y1.Y3Y1.Y4Y2.Y3Y2.Y4

−X1.X2X1.X3X2.X4X3.X4Y1.Y3Y1.Y4Y2.Y3Y2.Y4

+ (X1.X3) 2 (X2.X4) 2Y1.Y2Y1.Y4Y2.Y3Y3.Y4

−X1.X2X1.X3X2.X4X3.X4Y1.Y2Y1.Y4Y2.Y3Y3.Y4 . (B.0.2)



Appendix C

Contact Diagrams in AdS×S and

AdS, and Supergravity

Although we will not use this fact in the rest of the thesis, it is worth pointing out

an intriguing relation between the AdS×S contact diagrams and the better known

standard AdS contact diagrams. This relation can be seen by comparing their

respective Mellin transforms (3.1.41) and (3.1.25).

First, consider the special case Σ∆ = d + 1. In this case the final Pochhammer

in (3.1.41) is absent and the Mellin transform becomes proportional to

∞
∑
pi=0

(−1)Σp ∫
dδij

(2πi)2 ∑
{dij}

(∏
i<j

(Yi.Yj)dij

(Xi.Xj)δij

Γ(δij)
Γ(dij + 1))

= ∫
dδδδij

(2πi)2 (∏
i<j

Γ(δδδij)
(Xi.Xj + Yi.Yj)δδδij

) ,

where ∑
i<j
δδδij = ∆j , (C.0.1)

where the equality is obtained by performing the sums over pi and then changing

variables from δij → δδδij = δij − dij and δδδij contains AdS and S Mellin variables.

Comparing this with the Mellin transform of the AdS contact term (3.1.25) we see

that this is proportional to a D-function with Xi.Xj → Xi.Xj + Yi.Yj. In other

words it is proportional to a pure AdS contact term with embedding coordinates
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Xµ
i = (XA

i , Y
I
i ), corresponding to a (2d + 2)-dimensional bulk. More precisely we

have the relation1

DAdSd+1×Sd+1

∆1∆2∆3∆4
(Xi, Yi) =

πd+1

(−2)Σ∆∏i Γ(∆i)
×D∆1∆2∆3∆4(Xi, Yi) , where Σ∆ = d + 1 .

(C.0.2)

Note that this case Σ∆ = d + 1 corresponds precisely to the case of a dimensionless

contact term in the flat space limit, ∫ d2d+2xφ∆1 . . . φ∆4 . The above relation (C.0.2)

is an example of the enhanced higher-dimensional conformal symmetry observed

in [41]. We will look at this explicitly for N = 4 SYM in the next subsection.

Now let us modify the above discussion for the case with Σ∆ ≠ d+ 1. Here the direct

relation between AdS×S and AdS contact terms is spoiled by the presence of the

Pochhammer at the end of (3.1.41) which depends on Σp that we are summing over.

A simple way of reproducing this Pochhammer whilst still having a summed up

formula is then to rescale all the Y variables and differentiate. Concretely, we can

write

DAdSd+1×Sd+1

∆1∆2∆3∆4
(Xi,

√
rYi) =

2
Γ(Σ∆ − d − 1)

1
rd/2

( d
dr

)
Σ∆−d−1

rΣ∆−d/2−1D
(2d+2)
∆1∆2∆3∆4

(Xi,
√
rYi) ,

(C.0.3)

where the D-function is for a (2d + 2)-dimensional bulk.

Tree-level supergravity in N = 4 SYM

While the main focus in chapter 3 is obtaining tree-level string corrections to N =

4 SYM correlators from an effective action involving massless scalars in 10d, it

is interesting to also look at the tree-level supergravity prediction following the

approach described in this appendix. While we do not expect this to arise from an

effective superpotential, all single-trace half-BPS correlators were shown in [41] to

possess a 10d conformal structure and in particular can be obtained by expanding

1We here compare with the dimension-independent, normalised D-function (3.1.26), since in
2d + 2 dimensions the D(d)-function itself diverges when Σ∆ = d + 1 due to the Γ-function in the
numerator of (2.3.15).
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out D2422. For D2422 the simple relation between AdS×S and standard AdS contact

diagrams described above is valid because Σ∆ = 5 = d + 1 and hence (C.0.2) applies.

The tree-level supergravity result can be written [41]

⟨OOOO⟩sugra ∝
1

(X1.X3+Y1.Y3)
1

(X1.X4+Y1.Y4)
1

(X3.X4+Y3.Y4)
D2422(Xi, Yi) .

(C.0.4)

Inserting the Mellin representation of D2422 (3.1.25) and changing variables δij →

δij − 1 for i, j = 1,3,4 and δij unchanged otherwise, this can be written in the

form (3.1.42) with ∆i = 4 with the Mellin amplitude

Msugra ∝
1

(δδδ13−1)(δδδ14−1)(δδδ34−1) = 1
(δ13−d13−1)(δ14−d14−1)(δ34−d34−1) . (C.0.5)

The denominator in the above equations can be understood from the supergrav-

ity piece of the Virasoro-Shapiro amplitude which is 1
STU , which acts like inverse

derivatives on D2422. Acting with STU on (C.0.4) gives back the zero-derivative

contact term D4444 which has Mellin transform 1 and can be obtained from a 10d

superpotential.





Appendix D

α′7 Ambiguities in AdS5×S5

The ambiguities at order α′7 were introduced in (3.6.2) and we spell out their Witten

diagram expressions and the corresponding Mellin amplitudes in the following.

The first ambiguity at α′7 contributes to the effective action with

Samb1
α′7 = 6

4! ∫AdS×S d
5X̂d5Ŷ (∇µ∇ν∇µ∇ρ∇σ∇ρφ) (∇ν∇σφ)φ2 , (D.0.1)

it corresponds to a four-derivative interaction and its contribution to the half-BPS

correlator is given as

⟨OOOO⟩∣α′7;amb1 =
1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4∑
i<j

Kamb1
ij

(Pi +Qi)2 (Pj +Qj)2 × 43 × 5 ,

(D.0.2)

where

Kamb1
ij =45 [(Xi.Xj + PiPj)2 + (Yi.Yj +QiQj)2] − 9 (PiPj +QiQj)2

− 180QiQj Yi.Yj + 26PiPjQiQj . (D.0.3)

We write the corresponding Mellin amplitude as

Mamb1
α′7 = M̂amb1

α′7 + 204Mamb
α′5 + 12288Mmain

α′3 , (D.0.4)



206 Appendix D. α′7 Ambiguities in AdS5×S5

where

M̂
amb1
α′7 = 288 [ (Σp−1)5 (s2

+ t2
+ u2)

+ (Σp−1)4
1
2
(s c2

s + t c2
t + u c2

u)

− (Σp−1)4 (Σp + 3) [2 (s s̃ + t t̃ + u ũ) + (s cs + t ct + u cu)]

+ (Σp−1)3 (
1
12

(c4
s + c

4
t + c

4
u) −Σp (c

2
s s̃ + c

2
t t̃ + c

2
u ũ

2) −
1
2

Σp (c
3
s + c

3
t + c

3
u))

+ (Σp−1)3 (+
29
36

Σ2
p (c

2
s + c

2
t + c

2
u) +

1
18

(c2
s c

2
t + c

2
s c

2
u + c

2
t c

2
u) −

5
6
cs ct cuΣp)

+ (Σp−1)3 (2 (Σ2
p + 6) [(s̃2

+ t̃2 + ũ2) + (s̃ cs + t̃ ct + ũ cu)] −
1
6

Σ2
p (Σ2

p + 72)) ] .

(D.0.5)

The next three ambiguities also correspond to four-derivative terms. The contribu-

tion to the effective action from the second ambiguity is

Samb2
α′7 = 6

4! ∫AdS×S d
5X̂d5Ŷ (∇2∇µ∇ν∇ρ∇νφ) (∇µ∇ρφ)φ2 , (D.0.6)

which corresponds to the correlator

⟨OOOO⟩∣α′7;amb2

= 1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4∑
i<j

Kamb2
ij

(Pi +Qi)2 (Pj +Qj)2 × 43 × 52 × 2 , (D.0.7)

where

Kamb2
ij =5 [(Xi.Xj + PiPj)2 + (Yi.Yj +QiQj)2] − (PiPj +QiQj)2

− 20QiQj Yi.Yj + 2PiPjQiQj . (D.0.8)

The Mellin amplitude is

Mamb2
α′7 = M̂amb2

α′7 + 248Mamb
α′5 + 14336Mmain

α′3 , (D.0.9)

where

M̂
amb2
α′7 = 320 [ (Σp−1)5 (s2

+ t2
+ u2)

+ (Σp−1)4
1
2
(s c2

s + t c2
t + u c2

u)

− (Σp−1)4 (Σp + 3) [2 (s s̃ + t t̃ + u ũ) + (s cs + t ct + u cu)]
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+ (Σp−1)3 (
3
40

(c4
s + c

4
t + c

4
u) −Σp (c

2
s s̃ + c

2
t t̃ + c

2
u ũ

2))

+ (Σp−1)3 (
1
20

(c2
s c

2
t + c

2
s c

2
u + c

2
t c

2
u) −

1
2

Σp (c
3
s + c

3
t + c

3
u) +

4
5

Σ2
p (c

2
s + c

2
t + c

2
u))

+ (Σp−1)3 (2 (Σ2
p + 6) [(s̃2

+ t̃2 + ũ2) + (s̃ cs + t̃ ct + ũ cu)])

+ (Σp−1)3 (−
9
10
cs ct cuΣp −

1
40

Σ2
p (7 Σ2

p + 480)) ] . (D.0.10)

The third ambiguity contributes to the effective action with

Samb3
α′7 = ∫

AdS×S
d5X̂d5Ŷ (∇2∇µ∇ν∇ρ∇νφ) (∇ρφ) (∇µφ)φ , (D.0.11)

and the prediction for its contribution to the half-BPS correlator is given by

⟨OOOO⟩∣α′7;amb3 =

1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4 [ Kamb3
123

(P1 +Q1)2 (P2 +Q2) (P3 +Q3)
+ perms] × 44 × 10 ,

(D.0.12)

where we sum over all permutations and

Kamb3
ijk =P 2

i (4PjPk −Xj.Xk) +Q2
i (4QjQk + Yj.Yk) + 5Pi (PkXi.Xj + PjXi.Xk)

− 5Qi (Qk Yi.Yj +Qj Yi.Yk) + 5 (Xi.XjXi.Xk + Yi.Yj Yi.Yk) . (D.0.13)

The corresponding Mellin amplitude is

Mamb3
α′7 = M̂amb3

α′7 − 704Mamb
α′5 − 32768Mmain

α′3 , (D.0.14)

where

M̂
amb3
α′7 = −640 [ (Σp−1)5 (s2

+ t2
+ u2)

+ (Σp−1)4
1
2
(s c2

s + t c2
t + u c2

u)

− (Σp−1)4 (Σp + 3) [2 (s s̃ + t t̃ + u ũ) + (s cs + t ct + u cu)]

+ (Σp−1)3 (
1
20

(c4
s + c

4
t + c

4
u) −Σp (c

2
s s̃ + c

2
t t̃ + c

2
u ũ

2))

+ (Σp−1)3 (−
1
10

(c2
s c

2
t + c

2
s c

2
u + c

2
t c

2
u) −

1
2

Σp (c
3
s + c

3
t + c

3
u))

+ (Σp−1)3 (
13
20

Σ2
p (c

2
s + c

2
t + c

2
u) −

3
10
cs ct cuΣp)
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+ (Σp−1)3 (2 (Σ2
p + 6) [(s̃2

+ t̃2 + ũ2) + (s̃ cs + t̃ ct + ũ cu)] −
1
5

Σ2
p (Σ2

p + 60)) ] .

(D.0.15)

The next ambiguity contributes to the effective action as

Samb4
α′7 = ∫

AdS×S
d5X̂d5Ŷ (∇µ∇ν∇ρ∇ν∇ρφ) (∇σ∇µφ) (∇σφ)φ , (D.0.16)

and the corresponding correlator is given by

⟨OOOO⟩∣α′7;amb4 =

1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4 [ Kamb4
123

(P1 +Q1)3 (P2 +Q2)2 (P3 +Q3)
+ perms] × 44 × 10 ,

(D.0.17)

where

Kamb4
ijk =P 2

i Qi [5 (5Pj +Qj) (Xj .Xk + Yj .Yk) − 4QjQk (6Pj +Qj) + 20P 2
j Pk]

− PiQ
2
i [5 (Pj + 5Qj) (Xj .Xk + Yj .Yk) + 4PjPk (Pj + 6Qj) − 20Q2

jQk]

− P 2
i [Qj (Pj +Qj)Yi.Yk + 5Yi.Yj (Xj .Xk + Yj .Yk + PjPk −QjQk)]

+Q2
i [Pj (Pj +Qj)Xi.Xk − 5Xi.Xj (Xj .Xk + Yj .Yk + PjPk −QjQk)]

+ PiQi [25 (PjPk −QjQk) (Xi.Xj + Yi.Yj) + (Pj +Qj) (5Qj Yi.Yk − 5PjXi.Xk)

+ 25 (Xi.Xj + Yi.Yj) (Xj .Xk + Yj .Yk)] . (D.0.18)

The contribution of this ambiguity to the Mellin amplitude is

Mamb4
α′7 = M̂amb4

α′7 − 128Mmain
α′5 , (D.0.19)

where

M̂
amb4
α′7 = 32 [ (Σp−1)5 Σ2

p (s2
+ t2

+ u2)

+ (Σp−1)5 ((s2 c2
s + t2 c2

t + u2 c2
u) + [s2 (c2

t + c
2
u) + t2 (c2

s + c
2
u) + u2 (c2

s + c
2
t )])

+ (Σp−1)4 (−5 (s c3
s + t c3

t + u c3
u) − 10 (s c2

s s̃ + t c2
t t̃ + u c2

u ũ))

+ (Σp−1)4 (−10Σ2
p (s s̃ + t t̃ + u ũ) − 5Σ2

p (s cs + t ct + u cu))

+ (Σp−1)4 (−10 [s s̃ (c2
t + c

2
u) + t t̃ (c2

s + c
2
u) + u ũ (c2

s + c
2
t )])

+ (Σp−1)4 (−5 [s cs (c2
t + c

2
u) + t ct (c2

s + c
2
u) + u cu (c2

s + c
2
t )])
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+ (Σp−1)3 (4 (c4
s + c

4
t + c

4
u) + 20 (s̃2 c2

s + t̃
2 c2
t + ũ

2 c2
u) + 8 (c2

s c
2
t + c

2
s c

2
u + c

2
t c

2
u))

+ (Σp−1)3 (20 (c3
s s̃ + c

3
t t̃ + c

3
u ũ) + 20 Σ2

p (s̃
2
+ t̃2 + ũ2))

+ (Σp−1)3 (−8 Σ2
p (c

2
s + c

2
t + c

2
u) + 20 Σ2

p (s̃ cs + t̃ ct + ũ cu))

+ (Σp−1)3 (20 [s̃2 (c2
t + c

2
u) + t̃

2 (c2
s + c

2
u) + ũ

2 (c2
s + c

2
t )])

+ (Σp−1)3 (20 [s̃ cs (c
2
t + c

2
u) + t̃ ct (c

2
s + c

2
u) + ũ cu (c

2
s + c

2
t )] − 12 Σ4

p) ] .

(D.0.20)

Finally, the fifth ambiguity contributes to the effective action with

Samb5
α′7 = ∫

AdS×S
d5X̂d5Ŷ (∇µ∇ν∇ρ∇σ∇ρφ) (∇µ∇σφ) (∇νφ)φ , (D.0.21)

which corresponds to a six-derivative interaction and its contribution to the half-BPS

correlator is

⟨OOOO⟩∣α′7;amb5 =

1
4!

(C4)4

(−2)16 ∫AdS×S
d5X̂d5Ŷ

∏i (Pi +Qi)4 [ Kamb5
123

(P1 +Q1)3 (P2 +Q2)2 (P3 +Q3)
+ perms] × (−44) ,

(D.0.22)

Kamb5
ijk =P 3

i [Pj (4 (Qj + 21Pj)Pk − 45Xj .Xk)] +Q
3
i [Qj (4 (Pj + 21Qj)Qk + 45Yj .Yk)]

+ P 2
i Qi [8 (Qj − 4Pj)PjPk + 4 (Qj − 5Pj) (Qj + 6Pj)Qk − 40PjXj .Xk

−5QjYj .Yk] + PiQ2
i [8 (Pj − 4Qj)QjQk + 4 (Pj − 5Qj) (Pj + 6Qj)Pk

+40QjYj .Yk + 5PjXj .Xk] + P
2
i [Pj (129Pj + 4Qj)Xi.Xk + 120P 2

j Yi.Yk

+15Xi.Xj (17PjPk − 3Xj .Xk) +Qj (−5QkYi.Yj + (−4Pj +Qj)Yi.Yk)

+5Yi.YjYj .Yk] +Q2
i [−Qj (129Qj + 4Pj)Yi.Yk − 15Yi.Yj (17QjQk + 3Yj .Yk)

−120Q2
jXi.Xk − Pj (−5PkXi.Xj + (−4Qj + Pj)Xi.Xk) + 5Xi.XjXj .Xk]

+ PiQi [8 (Pj +Qj) (PjXi.Xk −QjYi.Yk)

+20 (−Xi.Xj (Pj (2Pk + 15Qk) + 2Xj .Xk) + Yi.Yj (Qj (2Qk + 15Pk) − 2Yj .Yk))]

+ Pi [150Pk ((Xi.Xj)
2
− (Yi.Yj)

2
) + 300PjXi.Xj (Xi.Xk + Yi.Yk)]

+Qi [−150Qk ((Xi.Xj)
2
− (Yi.Yj)

2
) + 300QjYi.Yj (Xi.Xk + Yi.Yk)]

+ 150 ((Xi.Xj)
2
− (Yi.Yj)

2
) (Xi.Xk + Yi.Yk) . (D.0.23)
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The corresponding Mellin amplitude is

Mamb5
α′7 =M̂amb5

α′7 − 11
2 M

amb1
α′7 + 5Mamb2

α′7 + 1
8M

amb3
α′7 −Mamb4

α′7 + 64Mmain
α′5

+ 66Mamb
α′5 + 4096Mmain

α′3 , (D.0.24)

where

M̂
amb5
α′7 = 128 [ (Σp−1)6 (s3

+ t3
+ u3)

+ (Σp−1)5 (
1
2
(s2 c2

s + t2 c2
t + u2 c2

u) +
1
2

Σp (Σp + 8) (s2
+ t2

+ u2))

+ (Σp−1)5 (− (Σp + 7) [2 (s2 s̃ + t2 t̃ + u2 ũ) + (s2 cs + t2 ct + u2 cu)])

+ (Σp−1)4 (−
5
2
(s c3

s + t c3
t + u c3

u) − 5 (s c2
s s̃ + t c2

t t̃ + u c2
u ũ))

+ (Σp−1)4 (6 (4 Σp + 7) [(s s̃2
+ t t̃2 + u ũ2) + (s s̃ cs + t t̃ ct + u ũ cu)])

+ (Σp−1)4 (−Σp (13 Σp + 24) [(s s̃ + t t̃ + u ũ) + 1
2
(s cs + t ct + u cu)])

+ (Σp−1)4 (
1
2
(14 Σp + 19) (s c2

s + t c2
t + u c2

u))

+ (Σp−1)3 (
17
8

(c4
s + c

4
t + c

4
u) − 60 Σp (s̃

3
+ t̃3 + ũ3) −

17
2

Σp (c
3
s + c

3
t + c

3
u))

+ (Σp−1)3 (10 (c3
s s̃ + c

3
t t̃ + c

3
u ũ) + 10 (s̃2 c2

s + t̃
2 c2
t + ũ

2 c2
u))

+ (Σp−1)3 (−90 Σp (s̃
2 cs + t̃

2 ct + ũ
2 cu) − 47 Σp (c

2
s s̃ + c

2
t t̃ + c

2
u ũ))

+ (Σp−1)3 (
51
4

Σ2
p (c

2
s + c

2
t + c

2
u) + 50 Σ2

p (s̃
2
+ t̃2 + ũ2))

+ (Σp−1)3 (50 Σ2
p (s̃ cs + t̃ ct + ũ cu) −

1
8

Σ2
p (81 Σ2

p + 352)) ] . (D.0.25)



Appendix E

Conformal Blocks in 6d

Conformal blocks for four-point correlators of scalar operators of arbitrary scaling

dimensions ∆i, i = 1, ...,4, in any even dimension were derived by Dolan and Osborn

in [46]. In 6d, the blocks are given by

GDO (∆, l,∆12,∆34) =

F00 −
l + 3
l + 1F−11

− ∆ − 4
∆ − 2

(∆ + l −∆12) (∆ + l +∆12) (∆ + l +∆34) (∆ + l −∆34)
16 (∆ + l − 1) (∆ + l)2 (∆ + l + 1)

F11

+ (∆ − 4) (l + 3)
(∆ − 2) (l + 1)

× (∆ − l −∆12 − 4) (∆ − l +∆12 − 4) (∆ − l +∆34 − 4) (∆ − l −∆34 − 4)
16 (∆ − l − 5) (∆ − l − 4)2 (∆ − l − 3)

F02

+ 2 (∆ − 4) (l + 3) ∆12∆34

(∆ + l) (∆ + l − 2) (∆ − l − 4) (∆ − l − 6)F01 , (E.0.1)

where (∆, l) are the scaling dimension and spin of a primary operator in the conformal

block expansion, ∆ij = ∆i −∆j, and

Fab =
(zz̄)

1
2 (∆−l)

(z − z̄)3 {zl+a+3z̄b

× 2F1 (1
2(∆ + l −∆12) + a, 1

2(∆ + l +∆34) + a; ∆ + l + 2a, z)

× 2F1 (1
2(∆ − l −∆12) − 3 + b, 1

2(∆ − l +∆34) − 3 + b; ∆ − l − 6 + 2b; z̄)

− z ↔ z̄} . (E.0.2)
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For the toy model analysed in section 4.2, the blocks are given by

GB
∆, l(z, z̄) = (l + 1)GDO(∆, l,0,0) , (E.0.3)

where ∆ = 2n + l + 2∆0 + O(1/c). Moreover, for the 6d (2,0) theory analysed in

section 4.3, the blocks are given by [25, 47]

GS
∆, l(z, z̄) =

4 (l + 1)
(l + 2)2 −∆2

(z − z̄)3

u5 GDO(∆ + 4, l,0,−2) , (E.0.4)

where ∆ = 2n + l + 8 +O(1/c) with n ≥ 0.



Appendix F

Orthogonality of Hypergeometrics

In this appendix we derive orthogonality relations for hypergeometric functions used

in chapter 4, explicating a brief argument in [30] which then allows us to obtain a

new case relevant for the supersymmetric 6d theory. Our starting point will be the

differential operator1

Dz = z2 (1 − z)∂2
z − (a + b + 1)z2∂z − a b z . (F.0.2)

This operator has eigenfunctions satisfying

DzHm(z) =m(m − 1)Hm(z) , (F.0.3)

where

Hm(z) = zm2F1(m + a,m + b; 2m; z) . (F.0.4)

First consider a = b = 0. In this case, the differential operator in (F.0.2) reduces to

Dz = z2∂z (1− z)∂z. Let us look at the object HmH1−m′ (we will omit the arguments

(z) in the following). Using the symmetry of the differential operator Dz, after

1Note that this operator is closely related to the conformal Casimir. In d dimensions this is [46]

Dε = z
2
(1 − z)∂2

z + z̄
2
(1 − z̄)∂2

z̄ − (a + b + 1) (z2∂z + z̄
2∂z̄)

− a b (z + z̄) + ε
z z̄

z − z̄
((1 − z)∂z − (1 − z̄)∂z̄) , (F.0.1)

where a, b are arbitrary constants and ε = d − 2. The non-interacting part (i.e ε-independent part)
reduces to Dz +Dz̄.
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integrating by parts twice and using (F.0.3) we find that

0 =∮
dz

2πi
1
z2 [(DzHm)H1−m′ −Hm (DzH1−m′)]

=[m(m − 1) −m′(m′ − 1)]∮
dz

2πi
1
z2HmH1−m′ , (F.0.5)

where the contour encircles the origin. It follows that Hm and H1−m′ are orthogonal

with respect to the inner product defined above if m ≠m′. Plugging in (F.0.4) and

shifting (m,m′) to (m + 2,m′ + 2) then implies the inner product in (4.2.16), where

we fix the normalisation by noting that 2F1(α,β, γ, z) = 1+O (z) and evaluating the

residue at z = 0. This relation was first obtained in [30].

Next, consider a = 0, b = −1, in which case (F.0.2) reduces to Dz = z2 (1 − z)∂2
z .

Following the same arguments as above we find that

0 =∮
dz

2πi
1

z2(1 − z) [(DzHm)H1−m′ −Hm (DzH1−m′)]

=[m(m − 1) −m′(m′ − 1)]∮
dz

2πi
1

z2(1 − z)HmH1−m′ , (F.0.6)

so Hm and H1−m′ are orthogonal with respect to the inner product defined above if

m ≠m′. Plugging in (F.0.4) and shifting (m,m′) to (m + 2,m′ + 2) then proves the

inner product in (4.3.17), where the normalisation is once again fixed by evaluating

the residue at z = 0.



Appendix G

Tree-Level Supergravity in the 6d

(2, 0) Theory

In this appendix we will discuss the 6d (2,0) tree-level supergravity prepotential and

derive the anomalous dimensions of the double-trace operators contributing to its

conformal block expansion. For large c, the four-point prepotential can be derived

from tree-level Witten diagrams for supergravity in AdS7×S4. In [139] the authors

showed that the supergravity contribution consists of a contribution from free theory

(including c0 and 1/c terms) plus the remaining supergravity contribution, which we

call dynamical contribution and which goes like 1/c. We denote the corresponding

prepotential terms by F free and F sugra respectively. Note that in section 4.3 we only

considered the leading disconnected free contribution at c0, now we have to consider

an extra piece. The free contribution is then given by:

F free = 1 + 1
u2 +

1
v2 +

1
c
(1
u
+ 1
v
+ 1
uv

) , (G.0.1)

which satisfies the crossing condition (4.3.3). Decomposing F free according to (4.3.4)

yields

A = 1 , g(z) = z
c
(1 + 1

1 − z) . (G.0.2)
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In addition to expanding G according to (4.3.5) one can expand g in terms of short

conformal blocks as follows

g(x) =
∞
∑
m=0

Bm gm(x) , gm(x) = xm+1
2F1(m + 2,m + 1,2m + 4, x) , (G.0.3)

where the first contribution with m = 0 corresponds to the conformal block of the

stress tensor supermultiplet (see [26] for more details on this). However, we focus

on the expansion of G in terms of long blocks which gives

Afree
n,l =

(l + 2)(n + 3)!(n + 4)!(l + 2n + 9)(l + n + 5)!(l + n + 6)!
(2n + 5)!(2l + 2n + 9)!

× ( 1
72(l + 2n + 10) + 1

c

(−1)n
2(l + 1)(l + 3)(l + 2n + 8)) , (G.0.4)

for l even and zero otherwise. Note that the c0-piece was already obtained in (4.3.8).

Next, we consider the dynamical supergravity contribution at O(1/c). This is given

by the following prepotential derived from AdS contact diagrams:

F sugra = −1
c

(z − z̄)2

uv
D̄3337 . (G.0.5)

Decomposing this according to (4.3.4) gives A = 0 and

g(z) = 1
c
(2 z 2F1(2,1,4, z) − z (1 + 1

1 − z)) . (G.0.6)

The first term corresponds to the conformal block of the stress tensor supermultiplet,

which can be seen from (G.0.3) with m = 0. Importantly, the second term cancels

with the free theory contribution (G.0.2). These terms correspond to twist-4 states

(see [26] for more details). This cancellation is required because it is expected

that only operators in the singlet representation with twist eight or higher develop

anomalous dimensions. The twist-4 states which contribute in the free theory should

be absent in the supergravity limit because from the AdS/CFT correspondence it is

known that there are no supergravity states with twist four, which corresponds to

the minimal twist representation.

Finally, the OPE coefficients and anomalous dimensions of the long operators in
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the conformal block expansion of the dynamical supergravity contribution can be

obtained from an expansion of the form (4.3.10) but with Afree
n,l which depends on

1/c instead of A(0)
n,l and without the crossing version. Let us look more closely at

the contributions from the dynamical part. Since the conformal block expansion at

order 1/c is proportional to logu (see (4.3.10)) it is useful to decompose Gsugra as

follows:

Gsugra(z, z̄) = logu Glog(z, z̄) +Gnon-log(z, z̄) , (G.0.7)

where only the logu piece is important for the computation of the γn,l and the

non-log piece is analytic as u → 0. Now performing the conformal block expansion

of Glog gives the anomalous dimensions

γsugran,l = −3
c
( n(n + 3)

2(l + 3)(l + 2n + 8) + 1) (n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)
(l + 1)(l + 2)(l + 2n + 9)(l + 2(n + 5)) ,

(G.0.8)

where we divided by Afree
n,l . The supergravity OPE coefficients can then be computed

from (4.2.9).

Note that in the large-n limit γsugran,l goes like n5. In subsection 4.3.2 we compare the

large-twist behaviour of the anomalous dimensions from spin-L truncations to this

scaling in order to deduce the additional number of derivatives the spin-L contact

interactions obtain compared to supergravity.





Appendix H

Quadratic Super Casimir and

Correlator of Descendants

In this appendix we will derive the quadratic super Casimir of SU(1,1∣2). This

contains the second-order differential operator ∆(2) which plays a leading role in

the hidden four-dimensional conformal symmetry. Furthermore, we will sketch the

calculation of the correlator of descendants introduced in subsection 5.2.1.

The superblocks (see (5.2.23) and (5.2.24)) are eigenfunctions of the quadratic super

Casimir at points 1 and 2 acting on the correlator. Note that the formalism and

super Casimir outlined below generalise naturally from the supergroup SU(1,1∣2)

to any supergroup of the form SU(m,m∣2n). This was done in the bosonic case

SU(m,m) in [49].

Consider the super Grassmannian Gr(1∣1,2∣2), the space of (1∣1) × (2∣2) matrices

uαA. Here the small Greek indices refer to the local isotropy group GL(1∣1) whilst

the big Latin indices refer to the global group GL(2∣2). Explicitly, one can put

coordinates on this Grassmannian as

(ui)αB = (δαβ , (Xi)αβ̇) , (ūi)B α̇ =
⎛
⎜⎜
⎝

−(Xi)βα̇

δβ̇α̇

⎞
⎟⎟
⎠
, (H.0.1)

where Xi is a matrix containing the spacetime and internal coordinates x, y, and
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Grassmann odd variables θ, θ̄:

(Xi)αβ̇ =
⎛
⎜⎜
⎝

xi θi

θ̄i yi

⎞
⎟⎟
⎠

and Xij =Xi −Xj . (H.0.2)

We thus have (ui)αB (ūj)Bα̇ = (Xij)αα̇. Then the generators of the superconformal group

SU(1,1∣2) at point i are given as

DA
iB = (ui)αA

∂

∂ (ui)αB
, (H.0.3)

The quadratic Casimir operator acting on the four-point function at points 1 and 2

is then given as

CSU(1,1∣2)
1,2 = 1

2(DA
1B +DA

2B)(DB
1A +DB

2A) . (H.0.4)

Superconformal symmetry SU(1,1∣2) fixes the correlator in terms of a conjugation

invariant function of a cross-ratio matrix (see [49, 161]) to the form

⟨Ψp1Ψp2Ψp3Ψp4⟩ = Ppi
× f(Z) (H.0.5)

where the matrix of cross-ratios is given by

Z ∶=X12X
−1
24X43X

−1
31 =

⎛
⎜⎜
⎝

x ξ

ξ̄ y

⎞
⎟⎟
⎠
, (H.0.6)

with Grassmann odd variables ξ, ξ̄ and note that x, y here are different to the cross-

ratios used in the main text, see [49, 161] for more details. That f(Z) is a conjugation

invariant function of the cross-ratio matrix means that f(Z) = f(G−1ZG) where

G ∈ GL(2,2). Therefore, it can be diagonalised and the correlator can be written in

terms of a function f(x̂, ŷ) of the eigenvalues of Z, x̂, ŷ only. These are given by

x̂ = x + ξξ̄

x − y ŷ = y + ξξ̄

x − y . (H.0.7)

That the eigenvalues of Z are given by (H.0.7) can be checked by verifying that the

diagonal matrix of eigenvalues gives the same supertrace and superdeterminant as
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the matrix of cross-ratios Z:

str(Z) = x − y = x̂ − ŷ , sdet(Z) = x − ξξ̄/y
y

= x̂
ŷ
. (H.0.8)

Now, acting with the Casimir on the supercorrelator in terms of a function depending

on the eigenvalues of Z, f(x̂, ŷ) (H.0.5), and commuting through the prefactor gives

CSU(1,1∣2)
1,2 ⟨Ψp1Ψp2Ψp3Ψp4⟩

= Ppi
× [((p12−p34) (x2 ∂

∂x
+ y2 ∂

∂y
) + p34p12(x − y)) f +

1
2C

SU(1,1∣2)
1,2 f] , (H.0.9)

with pij = pi − pj. To obtain this equation we used that sdet(M) = exp(str log(M))

to deal with differentiating the propagators gij ∶= sdet(X−1
ij ) and then applied the

double derivative directly, using DA
12B (ui)αC = (ui)αB δAC and DB

12A (ūi)Cδ̇ = −δCA (ūi)Bδ̇
for i = 1 or 2.

Next, consider the Casimir acting on the conjugation invariant function f(Z) =

f(x, y) of the cross-ratio matrix Z, which is a function of the eigenvalues x, y of Z

only, as discussed above, where we drop the hat for simplicity. By examining the

action of the Casimir on arbitrary products of traces of powers of Z, ∏i tr(Zi)ai ,

and the corresponding expressions as polynomials of eigenvalues we find that

CSU(1,1∣2)
1,2 f(x, y) = [(x2 ∂

∂x
− 2xy
x − y) (1 − x) ∂

∂x
− (y2 ∂

∂y
− 2yx
y − x) (1 − y) ∂

∂y
] f(x, y)

= x − y
xy

(x2∂x(1 − x)∂x − y2∂y(1 − y)∂y)
xyf(x, y)
x − y . (H.0.10)

Finally, combining equations (H.0.9) and (H.0.10), we obtain the action of the

quadratic super Casimir on the correlator

CSU(1,1∣2)
1,2 = Ppi

× x − y
xy

∆(2) xy

x − yP
−1
pi

,

∆(2) = D(p12,p43)
x −D(−p12,−p43)

y ,

D(p12,p43)
x = x2∂x(1 − x)∂x + (p12 + p43)x2∂x − p12p43x . (H.0.11)

The second-order differential operator ∆(2) is the 1d analogue of ∆(8) in N = 4 SYM

and is essential for the higher-dimensional conformal symmetry.
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Performing similar, simpler computations one can also obtain the Casimirs of the

subgroups SU(1∣1) and SU(2) acting on the correlator as

CSU(1,1)
1,2 = Ppi

×D(p12,p43)
x P −1

pi
,

CSU(2)
1,2 = Ppi

×D(−p12,−p43)
y P −1

pi
. (H.0.12)

The action of the superconformal Casimir on the correlator can then be written

directly in terms of those of the subgroups as:

CSU(1,1∣2)
1,2 = x − y

xy
(CSU(1∣1)

1,2 − CSU(2)
1,2 ) xy

x − y . (H.0.13)

Correlator of descendants

We will now compute the correlator of superconformal descendants

∂θ1∂θ2∂θ̄3∂θ̄4⟨Ψp1Ψp2Ψp3Ψp4⟩∣θi=θ̄i=0 , (H.0.14)

introduced in subsection 5.2.1. As explained in (H.0.5) the supercorrelator is fixed by

superconformal symmetry in terms of f(x̂, ŷ) which only depends on the eigenvalues

of the cross-ratio matrix [49, 161]. To compute the derivatives acting on the correlator

of the form (H.0.5) using the definitions (H.0.7) one can use Mathematica with the

help of the grassmann package [162] to deal with the Grassmann odd variables. One

then finds that the Grassmann odd derivatives acting on f are consistent with the

following differential operator:

∂θ1∂θ2∂θ̄3∂θ̄4f(x̂, ŷ)∣θi=θ̄i=0 =
1

x12x34y12y34
(D(0,0)

x̂ −D(0,0)
ŷ ) x̂ŷ

x̂ − ŷ f(x̂, ŷ) . (H.0.15)

Pulling this through the prefactor then gives the action on the correlator itself:

∂θ1∂θ2∂θ̄3∂θ̄4⟨Ψp1Ψp2Ψp3Ψp4⟩∣θi=θ̄i=0

= Ppi

x12x34y12y34
(D(p12,p43)

x −D(−p12,−p43)
y )P −1

pi

xy

x − y ⟨Ψp1Ψp2Ψp3Ψp4⟩∣θi=θ̄i=0

= I−1CSU(1,1∣2)
1,2 ⟨Ψp1Ψp2Ψp3Ψp4⟩∣θi=θ̄i=0 , (H.0.16)
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with I defined in (5.2.16). The final line above relates the descendant correlator to

the action of the superconformal Casimir and comes directly from (5.2.15). We thus

obtain

⟨φ∆1+ 1
2
φ∆2+ 1

2
φ∆3+ 1

2
φ∆4+ 1

2
⟩ = I−1CSU(1,1∣2)

1,2 ⟨ψ∆1ψ∆2ψ∆3ψ∆4⟩

= 1
x12x34y12y34

(CSU(1∣1)
1,2 − CSU(2)

1,2 ) xy

x − y ⟨ψ∆1ψ∆2ψ∆3ψ∆4⟩ ,

(H.0.17)

as written in (5.2.14).





Appendix I

Further Results for Unmixing of

Four-Derivative Corrections

In this appendix we spell out some additional results relevant for section 5.8.

Unmixing at odd t for (5,2)

We start by considering the OPE coefficients for (∆, p) = (5,2), where the operators

in the double-trace spectrum of the OPE are O1∂2O3, O2O4, O2∂2O2, O3O3 and

O2∂O3. Performing a conformal block analysis for free theory and supergravity gives

the coefficients:

Â
(0)
5,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A
(0)
1313 0 0 0 0

A
(0)
2424 0 0 0

A
(0)
2222 0 0

A
(0)
3333 0

A
(0)
2323

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(5,2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7
120 0 0 0 0

5
168 0 0 0

5
27 0 0

1
7 0

2
15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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Corrections

M̂ sugra
5,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M sugra
1313 M sugra

1324 M sugra
1322 M sugra

1333 M sugra
1323

M sugra
2424 M sugra

2422 M sugra
2433 M sugra

2423

M sugra
2222 M sugra

2233 M sugra
2223

M sugra
3333 M sugra

3323

M sugra
2323

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(5,2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

7
30

3
10

14
45

2
5 0

27
70

2
5

18
35 0

56
135

8
15 0
24
35 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(I.0.1)

We spell out formulas for the coefficients at the order of supergravity and four-

derivative corrections for general odd ∆ (see (5.6.12) for general A(0)
q1q2q1q2):

M sugra
1313 (∆,2) =(∆ + 1)(∆ + 2)∆!(∆ + 2)!

30(2∆)!
,

M sugra
1324 (∆,2) =(∆ − 3)(∆ + 1)(∆ + 2)(∆ + 4)∆!(∆ + 2)!

420(2∆)!
,

M sugra
1322 (∆,2) =(∆ − 1)(∆ + 2)∆!(∆ + 2)!

15(2∆)!
,

M sugra
1333 (∆,2) =(∆ − 3)(∆ − 1)(∆ + 2)(∆ + 4)∆!(∆ + 2)!

210(2∆)!
,

M sugra
2424 (∆,2) =(∆ − 3)2(∆ + 1)(∆ + 2)(∆ + 4)2∆!(∆ + 2)!

5880(2∆)!
,

M sugra
2422 (∆,2) =(∆ − 3)(∆ − 1)(∆ + 2)(∆ + 4)∆!(∆ + 2)!

210(2∆)!
,

M sugra
2433 (∆,2) =(∆ − 3)2(∆ − 1)(∆ + 2)(∆ + 4)2∆!(∆ + 2)!

2940(2∆)!
,

M sugra
2222 (∆,2) =2(∆ − 1)2(∆ + 2)2(∆!)2

15(2∆)!
,

M sugra
2233 (∆,2) =(∆ − 3)(∆ − 1)2(∆ + 2)(∆ + 4)∆!(∆ + 2)!

105(∆ + 1)(2∆)!
,

M sugra
3333 (∆,2) =

(∆ + 2) (∆3 − 13∆ + 12)2 ∆!(∆ + 2)!
1470(∆ + 1)(2∆)!

, (I.0.2)

M4-deriv, todd
1313 (∆,2) = 1

60(2∆)!
× [24C0 ((∆ + 2)!)2

(∆ + 3) (∆(∆ + 1) (∆2
+∆ − 5) + 24) (∆ − 2)3

(∆ − 3)!(∆ + 3)!] ,

M4-deriv, todd
1324 (∆,2) =(∆ − 3)(∆ + 4)!

840(2∆)!
× [

40C0 (∆ + 2)!
∆ + 3

+ (∆ − 2) (∆(∆ + 1) (∆(∆ + 1) (∆2
+∆ − 15) + 118) − 400) (∆ − 2)!] ,



227

M4-deriv, todd
1322 (∆,2) =∆!(∆ + 2)!

30(2∆)!
× [20C0 (∆2

+∆ − 2)

+ (∆ − 2)(∆ + 3) (∆(∆ + 1) (∆2
+∆ − 10) + 28) ] ,

M4-deriv, todd
1333 (∆,2) =(∆ − 3)∆!(∆ + 4)!

620(∆ + 3)(2∆)!
× [36C0 (∆2

+∆ − 2)

+ (∆ − 2)(∆ + 3) (∆(∆ + 1) (∆2
+∆ − 14) + 60) ] ,

M4-deriv, todd
2424 (∆,2) = (∆ − 3)2

35280(2∆)!
× [

168C0 ((∆ + 4)!)2

(∆ + 3)2 + (∆ + 4)2
(∆ − 2)!(∆ + 2)!

× (∆(∆ + 1) (∆(∆ + 1) (3∆(∆ + 1) (∆2
+∆ − 25)

+1192) − 8220) + 20000) ] ,

M4-deriv, todd
2422 (∆,2) =(∆ − 3)∆!(∆ + 4)!

420(∆ + 3)(2∆)!
× [36C0 (∆2

+∆ − 2)

+ (∆ − 2)(∆ + 3) (∆(∆ + 1) (∆2
+∆ − 14) + 60) ] ,

M4-deriv, todd
2433 (∆,2) =(∆ − 3)2(∆ + 4)∆!(∆ + 4)!

5880(∆ + 3)(2∆)!
× [52C0 (∆2

+∆ − 2)

+∆(∆ + 1) (∆(∆ + 1) (∆2
+∆ − 24) + 280) − 904] ,

M4-deriv, todd
2222 (∆,2) =

(∆2 +∆ − 2) (∆!)2

15(2∆)!
× [16C0 (∆2

+∆ − 2)

+∆(∆ + 1) (∆(∆ + 1) (∆2
+∆ − 15) + 74) − 80] ,

M4-deriv, todd
2233 (∆,2) =(∆ − 3)(∆ − 1)(∆ + 4)∆!(∆ + 2)!

210(∆ + 1)(2∆)!
× [32C0 (∆2

+∆ − 2)

+∆(∆ + 1) (∆(∆ + 1) (∆2
+∆ − 19) + 130) − 144] ,

M4-deriv, todd
3333 (∆,2) =(∆ − 3)2(∆ − 1)(∆ + 4)2∆!(∆ + 2)!

2940(∆ + 1)(2∆)!
× [48C0 (∆2

+∆ − 2)

+∆(∆ + 1) (∆(∆ + 1) (∆2
+∆ − 23) + 330) − 432] ,

M4-deriv, todd
2323 (∆,2) =

(∆ − 1)3(∆ + 2) (∆2 +∆ − 12)2
(∆ − 2)!(∆ + 2)!

45(2∆)!
. (I.0.3)

Now we can solve the mixing problem in the supergravity limit. This yields the

anomalous dimension

γsugra5,2 = 24 , (I.0.4)

which is δ(2)5,2 as expected. The mixing problem at O(a/c) is solved in section 5.8.
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Corrections

Unmixing at even t for (6,2)

We present an additional example for even t here. At weight (6,2) there are four

operators in the spectrum, O1∂3O3, O2∂O4, O2∂2O3 and O3O4, two with even

and odd rBte respectively. Performing a conformal block analysis of the relevant

correlators gives the following free theory and four-derivative coefficients:

Â
(0)
6,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A
(0)
1313 0 0 0

A
(0)
2424 0 0

A
(0)
2323 0

A
(0)
3434

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(6,2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

14
495 0 0 0

10
189 0 0

35
297 0

5
126

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

M̂4-deriv
6,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M4-deriv
1313 M4-deriv

1324 M4-deriv
1323 M4-deriv

1334

M4-deriv
2424 M4-deriv

2423 M4-deriv
2434

M4-deriv
2323 M4-deriv

2334

M4-deriv
3434

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
(6,2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1224
275

408
35 0 0

408
35

1496
49 0 0

0 0 304
55

456
35

0 0 456
35

7524
245

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(I.0.5)

As expected, M̂4-deriv
6,2 is a block-diagonal matrix, because operators with even or

odd rBte do not mix. Note that each block is symmetric, as it should be from the

structure of the correlators. The free coefficients for general ∆, p, q1, q2 are given

in (5.6.12), some O(a/c) coefficients for general even ∆ were given in (5.8.31) and

the additional ones are

M4-deriv, t even
1324 (∆,2) =(∆ − 4)(∆ − 2)3(∆ + 3)(∆ + 5)(∆ − 3)!(∆ + 3)! (∆2 +∆ − 8)

168(2∆)! ,

M4-deriv, t even
2424 (∆,2) =5(∆ − 2)3(∆ + 3)(∆ − 3)!(∆ + 3)! (∆2 +∆ − 20)2 (∆2 +∆ − 8)

7056(2∆)! ,

M4-deriv, t even
2334 (∆,2) =(∆ − 4)(∆ + 5)∆!(∆ + 1)! (∆2 +∆ − 6)2 (∆2 +∆ − 4)

105∆(2∆)! ,

M4-deriv, t even
3434 (∆,2) =(∆ − 4)2(∆ − 2)2(∆ + 3)2(∆ + 5)2∆!(∆ + 1)! (∆2 +∆ − 4)

980∆(2∆)! .

(I.0.6)
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Solving the unmixing equations, as expected, one finds two non-zero anomalous

dimensions:

γ4-deriv4,2,i = {3672
5 ,

4104
5 } , (I.0.7)

which are labelled by (γ4-derivBte )6,2
1,0 =

3672
5 and (γ4-derivBte )6,2

1,1 =
4104

5 . Conjectured formulas

for general (∆, p) are discussed in subsection 5.8.3.
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