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Abstract:

In this thesis we study holographic correlators in three different examples of the
AdS/CFT correspondence. In particular, we consider the low-energy effective actions
of quantum gravity, where the leading term describes supergravity and the corrections
correspond to higher-derivative interactions. Firstly, we consider the duality between
string theory in AdSsxS® and 4d maximally supersymmetric Yang-Mills theory
(N =4 SYM). We propose a systematic procedure for obtaining all single-trace half-
BPS correlators in N =4 SYM corresponding to the four-point tree-level amplitude
for type IIB string theory in AdS5xS®. The underlying idea is to compute generalised
ten-dimensional contact Witten diagrams, treating AdS and S on equal footing, which
are obtained from a 10d scalar effective field theory in AdS5xS®. Next, we study
holographic correlators in AdS;xS%. M-theory in this background is dual to the
6d (2,0) theory. In particular, we derive recursion relations for the anomalous
dimensions of double-trace operators occurring in the conformal block expansion
of four-point stress tensor correlators in the 6d (2,0) theory. These anomalous
dimensions encode higher-derivative corrections to supergravity in AdS;xS* arising

from M-theory. Finally, we consider quantum gravity in AdS,xS? whose dual CFT



has superconformal group SU(1,1|2). Firstly, we propose an AdS,xS? effective action
which describes both supergravity and higher-derivative corrections and compute the
four-point half-BPS correlators using generalised 4d Witten diagrams, analogous to
AdS5xS® above. Moreover, it was recently shown that IIB supergravity in AdSsxS?®
enjoys 10d conformal symmetry. We adapt this approach, which is complementary
to the effective action approach, to quantum gravity in AdS,xS2. We show that
the 1d supergravity and free theory correlators exhibit 4d conformal symmetry
and discuss implications for higher-derivative corrections where the symmetry is

generically broken, except for specific cases.
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Chapter 1

Introduction

Correlation functions are amongst the most fundamental observables in quantum
field theories (QFTs). They characterise the theory and once all correlation functions
of gauge invariant operators are known, the theory is considered solved. Conformal
correlators, correlation functions in conformal field theories (CFTs), are especially in-
teresting. In addition to Poincaré invariance, conformal correlators are also invariant
under scaling and special conformal transformations. Therefore, these observables

are strongly constrained by symmetries and show interesting structures.

In particular, conformal correlators can be studied through the AdS/CFT corres-
pondence [1]. This is a remarkable duality between certain conformal field theories
and quantum gravity in a specific curved background. The starting point is a stack
of N D- or M-branes and in the low-energy limit the worldvolume theory describing
this stack of branes is a conformal field theory. On the other hand, the stack of
branes curves the spacetime and in the near-horizon limit the resulting geometry
is Anti-de Sitter-space times a sphere (AdSxS) where the stack of branes is in the
boundary of AdS. Therefore, string theory or M-theory in AdSxS is dual to the CFT
in the boundary. This correspondence is very powerful as it relates quantum gravity
in AdS to a non-gravitational theory in the boundary, and is therefore holographic.
Gravity amplitudes in the so-called bulk are dual to stress tensor correlators in the

boundary CFT. Studying these so-called holographic correlators can be of great
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interest from the point of view of both sides of the duality. In theories with enough
supersymmetry, which will be the focus of this thesis, stress tensor correlators can
be related to certain scalar operators using supersymmetry. This is technically ad-
vantageous since correlators of scalars are much simpler than those of tensors. In
this thesis, we will investigate different aspects of holographic correlators in three
different examples of the AdS/CFT correspondence. In all of the considered ex-
amples the boundary theory is a supersymmetric CFT (SCFT) and in particular,
we study four-point functions of half-BPS operators. These are operators in special
representations of the superconformal group which are annihilated by half of the

supersymmetry generators.

In the low-energy limit, quantum gravity can be described by an effective action,
where the leading contribution is Einstein gravity coupled to matter. The matter
and couplings can be chosen to give supergravity, which generally arises from the
low-energy limit of string theory or M-theory. The subleading corrections take
the form of interaction terms with derivatives and we will refer to them as higher-
derivative corrections. In this thesis, we will study these effective actions and
in particular the higher-derivative corrections in three different examples of the
AdS/CFT correspondence. In the original AdS/CFT paper [I], three canonical

examples of the correspondence are considered:

o CFT on D3-branes < type IIB string theory in AdS;xS® ,
o CFT on M2-branes <> M-theory in AdS,xS7 ,

o CFT on Mb-branes <> M-theory in AdS;xS? .

In each of these dualities, the number of branes on the CFT side is N and moreover,
there are N units of flux through the sphere on the gravity side. The first canonical
example is the most studied and best understood of the three. It is a duality
between type IIB superstring theory in AdS;xS® and maximally supersymmetric

Yang-Mills theory in four dimensions (M =4 SYM). We will consider holographic



correlators in this duality in chapter 3. In particular we consider a 10d effective
action describing higher-derivative corrections to the supergravity approximation

arising from tree-level string theory.

The second canonical example is a duality between the worldvolume theory of N
M2-branes and M-theory in AdS,xS7. M-theory is not well understood yet, but in
the low-energy limit it can be described by 11d supergravity [2]. Its fundamental
degrees of freedom are 2d and 5d objects, the M2- and M5-branes. The M2-brane
worldvolume theory is understood by the ABJM theory, a 3d CFT that is dual to M-
theory in AdSyxS” [3], while the worldvolume theory of M5-branes is still mysterious.
It is expected to be a 6d conformal field theory with (2,0) supersymmetry, the 6d
(2,0) theory. We study aspects of holographic correlators in AdS;xS* in chapter 4,
which is the third of the canonical examples of the AdS/CFT correspondence. In
particular we focus on higher-derivative corrections to the low-energy effective action
of M-theory. This duality is less well understood than the previous examples since
the boundary theory has no Lagrangian description and the bulk theory is not known

beyond the supergravity approximation.

Finally, in chapter 5 we will apply the knowledge and techniques from previous
considerations to the study of holographic correlators in AdSyxS? which is expected
to be dual to a one-dimensional SCF'T in the boundary. We use superconformal
symmetry, crossing and higher-dimensional symmetries to reconstruct tree-level
supergravity and higher-derivative corrections which describe the low-energy limit
of any theory of quantum gravity in this background. This duality is less well
understood but of great interest because AdS;xS? is the near-horizon geometry of
extremal black holes in four dimensions [/, 5] and thus by studying holographic
correlators in this background one can hope to gain insight that could be adapted

to real world physics.

Note that in each of these examples we restrict to tree-level correlators, therefore we
suppress all loop corrections by taking the Newton constant Gy — 0. Trough the

AdS/CFT correspondence Gy ~ 1/c where ¢ is the central charge of the boundary
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CFT. The central charge is proportional to positive powers of N depending on the
CFT, where N is the number of branes, therefore taking N — oo suppresses all loop
corrections. We will now briefly motivate the main ideas of each of the three main
chapters, followed by a description of the structure of this thesis. More detailed

introductions will then be given at the beginning of each chapter.

Holographic correlators in AdS;xS?

First, we study holographic correlators in AdS;xS® which is the most studied canon-
ical example of the AdS/CFT correspondence. Half-BPS correlators in ' =4 SYM
are dual to type IIB string theory scattering amplitudes in AdS5xS°. In flat space,
the four-point tree-level amplitude of closed string theory takes a very compact form
known as the Virasoro-Shapiro (VS) amplitude! [0, 8]. This formula encodes many
essential properties of string theory such as a Regge trajectory describing massive
states with arbitrarily high spin, and exponential suppression at high-energy which
was one of the earliest indications that string theory could be a promising candidate
for quantum gravity. Given that the effects of quantum gravity are expected to
become most important in curved backgrounds like the interior of black holes and
the early Universe, it is therefore very important to understand how to generalise the
VS amplitude beyond the flat space limit. At present it is technically challenging to
calculate string amplitudes in curved backgrounds from first principles, but progress
can be made in AdS backgrounds using holographic methods. In the limit o/ — 0,
where o is related to the square of the string length, string theory in AdS;xS® can
be approximated by supergravity. The subleading terms describe string corrections
and take the form of higher-derivative interactions. We can also write the flat space
VS amplitude as an infinite series in o/, where the leading term will describe su-

pergravity while higher-order terms describe string corrections. These corrections

!The Virasoro amplitude is the amplitude for four tachyonic scalars in bosonic string theory found
by Virasoro [6] and generalised to n points by Shapiro [7]. The tree-level four-point amplitude in IIB
string theory [8] which we will be considering here is given by the Virasoro amplitude multiplied
by a kinematic factor and it has become the convention to refer to it as the Virasoro-Shapiro
amplitude.



can be derived at all orders in o/ from a simple effective field theory consisting of a
scalar field with quartic interactions where the coefficients are fixed by comparing

to the VS amplitude.

The goal is to generalise this to curved spacetime and remarkably, we will find
that the interacting part of all single-trace half-BPS correlators in A/ =4 SYM can
be obtained from a similar scalar effective action describing tree-level II1B string
theory on AdSsxS® (rather than a flat) background. The key idea that allows us
to derive correlation functions from the 10d effective field theory is the use of a
natural generalisation of contact Witten diagrams [9] (which are integrals over AdS
space) to integrals over the full AdSxS space, treating AdS and S on equal footing.
These manifestly 10d contact diagrams generate all four-point half-BPS correlators
described by tree-level string theory, corresponding to string corrections at any order
in o/. Note that we do not prove the existence of this 10d effective field theory in
AdS5xS°. We propose its existence and derive the four-point correlators of single-
trace half-BPS operators at different orders in o’. We show that it reproduces the
known results for o/ and o corrections, which were previously obtained in [10-

| using constraints imposed by superconformal and crossing symmetry as well as
simplifications of the spectrum predicted by AdS/CFT. We also present a general
algorithm for extending these predictions to arbitrarily high order in o’ and use it
to obtain new predictions at /6 and o/7. At the same time as we completed our
work, the authors of [10] also obtained higher-order o’ corrections in AdS5xS®, which

nicely complements our results.

Holographic correlators in AdS;xS*

Next, we consider the correspondence between the M5-brane worldvolume theory,
the 6d (2,0) theory, and M-theory in AdS;xS%. Correlators in the 6d (2,0) theory
are dual to M-theory amplitudes in AdS;xS%. The formulation of M-theory is one
of the most important open questions in string theory and it is not well understood

yet. It is an 11-dimensional theory of quantum gravity which, as mentioned before,
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is approximated by 11d supergravity in the low-energy limit. It arises in the strong
coupling limit of type ITA string theory, where the size of the 11th dimension is
proportional to the string coupling [17, 18]. Therefore, there is no tunable coupling
constant and the only tunable parameter is the number of branes N. Further,
there are no strings but its fundamental degrees of freedom are believed to be
2d and 5d objects, the M2- and Mb5-branes. Since there is no string length in
this theory, the only length scale is the Planck length [p which is related to the
Newton constant as Gy ~ [%. And because of the AdS/CFT identification Gy ~ 1/c,
where ¢ ~ N3 is the central charge, the supergravity approximation N — oo is
also like taking [p — 0 which is like a low-energy limit. Moreover, this limit also
implies Gy — 0 which suppresses all loop corrections. Therefore, both, higher-
derivative corrections and loop corrections are suppressed by N — oo and the leading
contribution is tree-level supergravity. Understanding the worldvolume theory of a
stack of Mb5-branes is an important open question in string theory and very little is
known about it since it is intrinsically strongly coupled and it is believed to have no
Lagrangian description in six dimensions. In [19] a 5d Lagrangian was proposed which
is believed to describe the full 6d physics of the theory. Furthermore, the 6d (2,0)
theory is also important because dimensional reduction along various manifolds gives
various lower-dimensional theories, such as A/ =4 SYM. It also provides a geometric
interpretation for their dualities, like S-duality in N'=4 SYM [20]. A lot of progress
in understanding the 6d (2,0) theory has been made by dimensionally reducing the
theory or computing quantities protected by supersymmetry, but ultimately one

wants to compute unprotected quantities in six dimensions.

A promising strategy to study the 6d (2,0) theory is the conformal bootstrap, where
we try to use principle properties of the theory such as superconformal and crossing
symmetry to constrain the correlators. This program was originally proposed in [21—

| and brought back more than 30 years later in [24]. This approach was first
applied to the 6d (2,0) theory in [25]. Our goal is to study the 6d (2,0) theory away

from the strict large-N (or large central charge ¢) limit and thus study M-theory



beyond the supergravity approximation. Important recent progress in this research
area has been made in [26-28]. Moreover, the M-theory effective action can also
be deduced from correlators of the ABJM theory [3], which is dual to M-theory in
AdS4xS7 [27, 29].

We analyse four-point correlation functions of stress tensor multiplets in the 6d (2,0)
theory in the large-c limit. The main aim is to derive the higher-derivative corrections
to the effective action using conformal bootstrap methods without requiring know-
ledge of the explicit form of the correlators, which gives a very direct way of deriving
higher-derivative corrections. We follow the strategy described in [30]. Starting
from a 1/c expansion of the crossing equations, we derive recursion relations for the
anomalous dimensions (1/¢ corrections to the scaling dimensions) of the operators
in the conformal block expansion of the correlators. These anomalous dimensions
encode the higher-derivative corrections to the supergravity effective action arising

from M-theory.

Holographic correlators in AdS;xS?

Finally, we investigate holographic correlators in AdSsxS? where the superconformal
group of the boundary theory is SU(1,1]2). Hence, the 1d boundary SCFT is
quarter-maximal. We will apply techniques from other examples of the AdS/CFT
correspondence to this less well studied case. AdS,xS? is of great interest because it
is the near-horizon geometry of extremal black holes in four dimensions as mentioned
before. Hence, understanding holographic correlators in this background can help
to develop a description of quantum gravity in the real world. The AdS,/CFT,
correspondence has been studied e.g. in [31, 32]. More recently there has been a lot
of interest in AdSy/CFT; due to the relation between the 2d Jackiw-Teitelboim (JT)
gravity [33, 31] and the 1d Sachdev-Ye-Kitaev (SYK) model [35, 30], e.g. in [37, 38],
see [39] for a review. The relation to black holes in nature has been discussed in [10].
Another motivation to study holographic correlators in AdS,xS? is that they are in

many ways simpler than higher-dimensional analogues and hence, AdS,xS? can act
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as a toy model for various aspects of holography.

It was recently observed in [11] that four-point tree-level correlators in AdS;xS°
exhibit a ten-dimensional conformal symmetry. The conjecture is that free theory
and supergravity correlators can be obtained from a single object invariant under 10d
conformal symmetry. This is a consequence of the fact that AdS5xS® is conformally
flat and further that the four-point tree-level supergravity amplitude is scale invari-
ant and can therefore be transformed to flat space by conformal transformation. We
aim to understand this higher-dimensional conformal symmetry more systematically
and will start by showing that free theory and supergravity holographic correlators
in AdS;xS? exhibit 4d conformal symmetry. Furthermore we investigate higher-
derivative-corrections. For both, supergravity and higher-derivative corrections, we
perform conformal block analyses of four-point half-BPS correlators. Generally, there
are many different operators contributing to the same conformal block, i.e. there
are many operators with the same scaling dimension and R-symmetry charge con-
tributing to the spectrum. Thus the conformal block coefficients, and in particular
the anomalous dimensions of exchanged operators, are degenerate and when unmix-
ing these contributions one lifts the degeneracy which is called solving the mixing
problem. After unmixing, the anomalous dimensions of double-trace operators in
the spectrum exhibit a simple structure which can be interpreted in terms of the
4d conformal symmetry. The higher-dimensional conformal symmetry is generally
broken for higher-derivative corrections, as was observed in [14] in the context of
unmixing anomalous dimensions. We show that nevertheless an infinite set of specific

correlators can be constructed from it.

On the other hand, we obtain all higher-derivative corrections from a 4d scalar
effective action analogous to the one proposed above for AdS5xS°. We assume the
existence of this effective action which, in the AdS;xS? case, describes supergravity
as well as higher-derivative corrections and justify it by comparing the results to
ones obtained from other methods like the 4d conformal symmetry. These two

approaches are complementary, as the 4d conformal symmetry describes all free



theory and supergravity tree-level half-BPS four-point correlators but not general
higher-derivative corrections, while the 4d effective action generates all supergravity
correlators and all higher-derivative corrections but does not describe free theory.
Note that the effective action we found for AdSs;xS° describes higher-derivative
corrections but not supergravity. In contrast, the effective action proposed for

AdSyxS? treats supergravity and higher-derivative corrections on equal footing.

Structure of this thesis

We begin with a review of important concepts in chapter 2, starting with a review
of conformal correlators and the conformal bootstrap in section 2.1. Next, we will
briefly review the AdS/CFT correspondence in section 2.2 followed by a discussion
of holographic correlators in section 2.3. Specifically we review the evaluation of
correlators from Witten diagrams in AdS and discuss higher-derivative corrections
to the supergravity approximation. There is one appendix related to this chapter,
appendix A, where we review some important concepts in Mellin space, in particular

contact Witten diagrams.

The rest of this thesis consists of three chapters, each of which focusing on one of
the examples of the AdS/CFT correspondence introduced above. In general, each
of the chapters can be read independently, however some sections of chapter 5 make
use of material presented in chapter 3. Where this is the case we will clearly refer

to the relevant sections.

Chapter 3 is based on [12] and is organised as follows. In section 3.1 we provide
an overview of the general strategy including a general discussion of the effective
action and define generalised contact diagrams in AdSxS as well as their Mellin
transforms. In section 3.2 we use these techniques to compute the leading correction
to half-BPS correlators which occurs at o’3. In section 3.3 we develop an algorithm
for extending these calculations to arbitrary order in o’. Using this algorithm, we

reproduce previous results at o in section 3.4, and obtain new predictions at /6
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and o' in sections 3.5 and 3.6, respectively. We present conclusions and future
directions in section 3.7. There are also several appendices related to this chapter.
In appendix B, we present more details about the parametrisation of half-BPS
correlators. In appendix C we discuss a relation between contact diagrams in AdSxS
and AdS and present its implications for the tree-level supergravity prediction and

in appendix D we list further results at order o'".

Chapter 4 is based on [13] and its structure is described in the following. To start
with, we review some important concepts, including M-theory and 11d supergravity,
in section 4.1. In section 4.2 we derive recursion relations for anomalous dimensions
in a toy 6d model and match the solutions against the conformal block expansion
of Witten diagrams in AdS;. In section 4.3, we then adapt this analysis to the 6d
(2,0) theory, and match the solutions of the supersymmetric recursion relations with
the results obtained in [20]. In section 4.4 we present our conclusions and future
directions. There are also several appendices. In appendix E, we provide formulas
for the conformal blocks in terms of hypergeometric functions and in appendix F we
derive inner products for these functions. Furthermore, in appendix G we perform

the conformal block analysis of the supergravity solution.

Chapter 5 is based on [11], which at the time of submission of this thesis is in
preparation for publication. We start by reviewing the ten-dimensional hidden
conformal symmetry of AdS;xS® in section 5.1 before going on to introduce the
formalism for 1d superconformal correlators studied throughout this chapter in
section 5.2. We will review the half-BPS correlators considered, the conformal blocks
and conformal Casimirs relevant for the subsequent sections as well as propose a
4d scalar effective action from which we deduce the higher-derivative corrections to
supergravity in AdSyxS?, similar to the one in chapter 3. Next, we discuss the free
disconnected theory in the context of the higher-dimensional conformal symmetry in
section 5.3. In section 5.4 we derive the supergravity correlator of lowest charge and
then obtain all higher-charge correlators from the 4d conformal symmetry as well as

from the 4d effective action point of view. In section 5.5 we discuss the double-trace



11

spectrum of the conformal block decomposition of half-BPS correlators and then
explain how to solve the mixing problem at different orders in the central charge
and for higher-derivative corrections. In section 5.6 we solve the mixing problem for
supergravity. Finally, we study higher-derivative corrections in section 5.7, where we
derive general higher-derivative corrections from crossing symmetry before obtaining
predictions for the correlators from the effective action approach. We also discuss
the breaking of the four-dimensional conformal symmetry. In section 5.8 we solve
the mixing problem for the four-derivative corrections, we can then analyse the
anomalous dimensions in terms of a 4d effective spin. There are two appendices
for this chapter. In appendix H we describe the derivation of the quadratic super
Casimir of SU(1,1|2), which plays an important role in the 4d conformal symmetry,
and will compute the correlator of descendants of the superconformal primaries.
Finally, in appendix [ we present further result from unmixing of four-derivative

corrections.






Chapter 2

Review

In this chapter we review several concepts which play an important role throughout
this thesis where the focus lies on four-point correlation functions. We start by
reviewing conformal correlators, the operator-product expansion and the conformal
bootstrap. Subsequently, we briefly review the AdS/CFT correspondence and then
discuss holographic correlators including higher-derivative corrections, in particular

their evaluation from Witten diagrams in AdS.

2.1 Conformal Correlation Functions

Firstly, let us review correlation functions in conformal field theories in more than
two dimensions, for a more detailed review see e.g. [15]. For simplicity, we will
consider scalar operators ¢; with scaling dimension A; in what follows. The two-
point functions are completely fixed by the symmetries of the theory, i.e. Poincaré
invariance, scaling invariance and invariance under special conformal transformations.

They are given by
dij

e (2.1.1)

(¢i(x)¢;(y)) =
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it ¢; and ¢, have the same scaling dimension A and zero otherwise. Similarly,

three-point functions can be fixed by symmetries up to a constant as follows

(P1(21)P2(22)P3(23)) = My ; (2.1.2)

a |J/’12|20‘123|ZL’13|20‘132|ZE23|20‘231

Ai+Aj—Ak
—2 .

where z;; = x; — x; and a;j; =
The four-point functions can no longer be fixed by symmetries but they can be
significantly reduced to a function of only two conformally invariant variables v and
v. Let us consider correlators of four identical operators for simplicity, the four-point
functions are then given by
f(u,v)
(D1(71)P2(2)P3(73)Pa(w4)) = 2R 9N (2.1.3)

Tig T3y

where u and v are conformal cross-ratios defined as

2,2 2.2
u:zéz%, vz(l—z)(l—%):%. (2.1.4)
L13L24 L13L24

It is useful to introduce the parameters (z,z) and we will use (u,v) and (z,2)
interchangeably in later chapters. Note that in one-dimensional conformal field
theories, which we discuss in chapter 5, the cross-ratios are not independent and

reduce to
Uss, = 27, Vs, = (1-2)?, (2.1.5)

see section 5.2.1 for more details. The rest of the discussion in this section is still
valid for 1d CFTs if one keeps in mind that the cross-ratios are not independent and

can be written in terms of a single variable z.

Importantly, the four-point function (2.1.3) is crossing symmetric, i.e. it is invari-
ant under transformations of the four-point crossing symmetry group S3 which is

generated by

(u,v) = (v,u) (u,v) — (—,—) . (2.1.6)

Note that this follows from the fact that we consider four identical operators. As
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a consequence also f(u,v) has to satisfy a specific crossing constraint. This can
easily be seen by considering (2.1.3) which groups the external points (12) and (34)
together. However, this choice is not unique and one can just as well group together
(14) and (23). From (2.1.4) it is obvious that the exchange of 2 <> 4 corresponds to

(u < v) and thus

1 1
—aaxt (W0) = 5x—=x f(v,u) . (2.1.7)
B " e

Multiplying this by 2?4232 yields the following crossing equation for f(u,v):

(%)Af(u,v) = f(v.u) (2.18)

which will play an important role in the following.

2.1.1 Operator-Product Expansion, Conformal Blocks and

Bootstrap

An important concept in conformal field theories is the operator-product expansion
(OPE). First, recall that primary operators are the lowest-weight operators in a
representation of the conformal algebra, they are local operators annihilated by all
generators of special conformal transformations and acting with translation generat-
ors on them gives the so-called descendants (derivatives of primaries)!. A product of
two primary operators can be expanded as a sum of all the primaries and descendants

in the theory as follows:

$1(7)92(0)[0) = ; 20 Co(7,0,) O(y)ly=010) , (2.1.9)

where we sum over all primary operators of the CFT. The coefficients A0 are
called OPE coefficients and are the same as the constants \j»3 in the three-point

function (2.1.2). Furthermore, Co(z,d,) are polynomials of partial derivatives with

In fact we will study superconformal theories in this thesis, hence the operators we consider
are superconformal primaries which in addition to the conformal symmetries are also annihilated
by half of the supersymmetry generators.
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respect to y acting on the primaries, which will generate all the descendants in the
theory. Note that one can perform an OPE in any quantum field theory, but in
general (2.1.9) only holds in the limit where the operators are close together, i.e.
when x — 0 whereas for a CFT the statement is much stronger. Since CFTs are

scale-invariant we do not have a notion of distance and the OPE is valid for finite .

Conformal field theories can be defined by its so-called CFT data which consists
of a list of scaling dimensions A; of all local primaries of the theory together with
all OPE coefficients A;j; for any three primaries. Once one knows the whole CF'T
data one has solved the CFT in question. In principle we can construct all n-point
correlation functions from the three-point functions, which are completely fixed up
to coefficients, using the OPE expansion. In practice this is very difficult to realise
and this is why we have to use other methods to constrain the CF'T data. One such
method is the conformal bootstrap which uses fundamental properties of the CFT,
such as crossing symmetry and conformal invariance, to constrain the CFT data and

fix the correlation functions.

The starting point is the four-point function, where we again consider four identical

fields, written in terms of OPEs of two pairs of primaries as

(01(21)P2(T2)P3(w3) Pa(14)) = %: 20 A310[Co (212, 0y) Co(w34,0.)(O(y) O(2))]
(2.1.10)

T1+T2 z = T3+T4
2 0 2

where y = and the functions in the square brackets are completely

fixed by conformal symmetry. Since the form of the four-point function is known

to be ;;(:mgg, it follows that the right hand side of (2.1.10) has to have the same

12 34

transformation properties which yields

(01(21)Pa(w2)P3(w3)Pa(4)) = %:/\12(9 /\340%1;;2) . (2.1.11)

Ty T3q
The conformally invariant functions G (u,v) are called conformal blocks. Decompos-
ing a four-point function into conformal blocks, the blocks represent the contributions

of the separate conformal primary operators in the theory together with their des-
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cendants, where the operators and their corresponding blocks are labelled by their
scaling dimension and spin. To make this more precise, the conformal block expan-
sion of a correlator of four operators with scaling dimensions A;, where 1 =1,...,4,

can be written as
(91(21) da(2) P3(w3) Da(4)) = P2 ZAﬁflGﬁfl(u,v) , (2.1.12)
Al

where Gﬁfl(u, v) are the conformal blocks describing the contributions of operators in
the theory belonging to a multiplet whose conformal primary has scaling dimension A
and spin [. The coefficients Aﬁfl are squares of OPE coefficients and P2 is a prefactor
depending on the spacetime coordinates. The labels A; indicate a dependence on
the scaling dimensions of the four external operators. As an example of operators
contributing to the conformal block expansion, consider double-trace operators which
will be studied in detail in later chapters. These operators are constructed from two
half-BPS operators with dimensions p,q and have the schematic form 0,0' 0" O,.
Their classical scaling dimension is p+ ¢+ 2n + [, where the spin [ counts the number
of partial derivatives and n counts the number of boxes acting on one of the half-BPS
operators. It is also common to refer to the twist of the exchanged operator which is
defined as its scaling dimension minus its spin. Double-trace operators of the above

form have twist p+ ¢ + 2n.

Conformal blocks have been computed explicitly for many theories. For four-point
correlators of scalar operators of arbitrary scaling dimensions in any even dimension
they were derived in [16]. The authors obtained the conformal blocks by solving
for the eigenfunctions of the Casimir operator of the conformal group SO(d,2) in d
dimensions. The blocks for d = 4 and d = 6 can be written in terms of hypergeometric
functions in a simple way (see e.g. section 5.4.2 for 4d blocks and appendix E for
blocks in 6d), whereas the blocks for general even dimensions are given as an infinite
sum of so-called Jack polynomials. Superconformal blocks in six dimensions were
given in [25, 17]. Conformal blocks for odd dimensions were obtained in [15]. Finally,

the superconformal blocks relevant for 1d supersymmetric CFTs which we study in
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chapter 5 were derived in [19] (see section 5.2.2).

Once the blocks are known, this allows us to perform a so-called conformal block
analysis of the theory. Decomposing the four-point correlators into conformal blocks
gives information about the spectrum of operators in the theory, their scaling di-
mensions and spins. We will perform conformal block analyses of correlators in
1d CF'Ts in chapter 5 where we compute three-point coefficients and anomalous
dimensions of operators in the double-trace spectrum of the theory in the context
of a higher-dimensional conformal symmetry as mentioned in the introduction. We
also perform a conformal block analysis of correlators in a 6d SCFT in chapter 4
where we compute anomalous dimensions which encode information about higher-
derivative corrections to the bulk low-energy effective action. However, the main
focus of chapter 4 is to compute anomalous dimensions of double-trace operators in
the spectrum of half-BPS correlators without requiring knowledge of the explicit form
of the four-point functions but rather deriving a recursion relation for anomalous

dimensions using the conformal bootstrap, which we describe in the following.

Let us start by writing the above equation (2.1.11) diagrammatically:

1 4

(O1(21)P2(22)P3(23)Pa(4)) = %: AM20A340

2 3

Notice that in the double OPE of the four-point function we chose the OPE channel
(12)(34), we could as well have chosen the channel (14)(23) and the result must be

the same. This leads to the conformal bootstrap or crossing symmetry condition

Go(u,v Gor(v,u
> A20 )\340% =Y Ao /\230'% ; (2.1.13)
0 L2 T3q o’ Lig Ta3

or diagrammatically:
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1 4

Z A120A340 = Z 110/ A230 o
0 o’

2 3

After imposing these conditions on all four-point functions of a theory no more
conditions will arise from higher-point functions. The bootstrap conditions (also
called OPE associativity or crossing equations) are used to classify CFTs using the

following statement.

A CFT is a set of CFT data which satisfies the crossing equations for all four-point

functions [21, 23].

To summarise, crossing and (super)conformal symmetry impose powerful constraints
on four-point correlators which can be used to determine CFT data analytically or
numerically. When a holographic dual exists, the CFT data can be constrained even

more by combining the conformal bootstrap with knowledge about the holographic

dual.

2.2 The AdS/CFT Correspondence

In this section, we briefly review the AdS/CFT correspondence [1, 9, 50]. For a

detailed review see e.g. [51, H2].

Through the AdS/CFT correspondence quantum gravity in AdS is described by a
CFT in the boundary. Considering a stack of D- or M-branes, in the low-energy
limit, the worldvolume quantum field theory describing the stack of branes is a CFT.
Besides, the stack of branes warps the surrounding spacetime and in the near-horizon
limit the geometry of this curved space is AdS,xS? and the stack of branes is located

in the boundary of AdS. Hence, the boundary CFT is dual to string or M-theory
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in AdS,xS?, which is a very remarkable duality between a theory of gravity and
a quantum field theory without gravity in different dimensions. It is conjectured
that the two theories in the duality are equivalent to each other, i.e. its operator
observables, states, correlation functions as well as the full dynamics of the theories
are equivalent. This means that each of these objects can be computed from two
completely different calculations and both will lead to the same result. Because the
correspondence is between a theory in AdSxS and a CFT on the boundary of AdS, it
is also called a holographic duality. The stack of N branes creates a flux through the
sphere, thus integrating the flux and using Gauss’ law gives the number of branes.
When the stack is coincident and in flat space, the gauge group of the boundary
theory is expected to be SU(N) in the case of N =4 SYM.

In Maldacena’s original paper [1]| there are three canonical examples, as we have
seen in the introduction. The most well studied duality is between type IIB string
theory in AdS5xS® and N =4 SYM in the boundary which we study in chapter 3.
Another canonical example is the focus of chapter 4, the correspondence between the
worldvolume theory of N M5-branes and M-theory in AdS;xS%. The third canonical
example is a duality between M-theory in AdS,xS” and the worldvolume theory of N
M2-branes which can be described by a 3d CFT, the ABJM theory [3]. In chapter 5
we focus on quantum gravity in AdS;xS? which is expected to be dual to a 1d SCFT

with superconformal symmetry group SU(1,1|2).

Let us have a closer look at the two canonical examples we study in later chapters
and their parameters, starting with A/ =4 SYM and string theory in AdS5xS®. The

parameters of the two theories are identified with one another as
G =419, R'=4mg,N(a')?, (2.2.1)

where gy is the Yang-Mills coupling, gs is the closed string coupling, R is the

curvature radius of the AdSs space and the S° sphere and o is related to the string
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length I; as o’ = 2. With the 't Hooft coupling A = ¢2,,N this yields
R= M\, (2.2.2)

which relates R/ls, the AdS and S radius in units of string length, on the bulk side
of the duality to the 't Hooft coupling of the boundary CEF'T on the other side. This
makes the duality very powerful since it relates a weakly coupled field theory which
can be studied perturbatively to a string theory in a strongly curved background
which makes computations very difficult. On the other hand, when the string theory
is in a weakly curved background and thus calculations are simpler because it can
be approximated by supergravity, the boundary CFT is strongly coupled. Thus,
problems that are intractable on the one side of the correspondence can be much
simpler to compute on the other side. Note that even when both sides of the duality
are non-perturbative, as is the case in the M5-brane case (see chapter 4), this duality
is very useful as for example in the CFT we can use conformal bootstrap methods
to study correlation functions which in turn gives insight into the dual quantum

gravity theory where computations are very difficult.

The second relation in (2.2.1) is derived by constructing extremal black D3-brane
solutions, where the near-horizon geometry of N coincident D3-branes is AdS5xS°. A
similar relation for M5-branes is obtained by constructing extremal black M5-brane
solutions:

r3 = mNsl3 (2.2.3)

The near-horizon geometry of Ny coincident M5-branes is AdS;xS*, where the radius
of the four-sphere is r5 and the radius of AdS; is 2r5. Note that there are no strings
in M-theory and thus no concept of string length, therefore M-theory is manifestly

non-perturbative and has only one length scale, the Planck length [p.

The AdS/CFT correspondence is complicated when considering the full quantum
gravity theory in the bulk, however there are significant simplifications when con-
sidering certain limits. Taking the limit N — oo is like taking the Newton constant

Gn — 0 and therefore this limit suppresses all loop corrections and restricts to tree-
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level gravity. This can be seen from the AdS/CFT identification G ~ 1/c, where
c is the central charge of the CFT which is proportional to positive powers of N
depending on the theory. In all of the following chapters we will restrict to this limit

and only consider tree-level correlators.

Note that in the case of N/ =4 SYM one can take N — oo while keeping the 't Hooft
coupling A constant, this corresponds to a topological expansion in 1/N where the
leading contribution is the planar limit. Furthermore, it restricts to tree-level string
theory where quantum corrections described by string loops are suppressed since
gs = 0. Additionally, one can consider the low-energy limit o/ — 0 which corresponds
to the strong-coupling limit of N' =4 SYM, where A — oo, and describes supergravity
with all stringy corrections suppressed. When studying N' =4 SYM away from the
strict o’ — 0 limit one adds stringy corrections to the supergravity approximation.
Hence, a particularly simple limit of the duality is accessible in N' =4 SYM, a duality

between a strongly coupled planar CFT and weakly coupled classical supergravity.

In the case of M-theory, these limits are not available separately since there is
only one length-scale, the Planck length [p. As described before, taking N — oo
suppresses all loop corrections. Since the Newton constant is proportional to (p,
G ~ 1% in eleven dimensions, the N — oo limit also corresponds to [p - 0 and is
thus a low-energy limit. Further, M-theoretic corrections are also suppressed in the
limit [p - 0 (or N — o0), since this is the only length scale available. Therefore,
both, loop corrections and higher-derivative corrections are described by a large-N
expansion and N — oo corresponds to the tree-level supergravity approximation. In
this thesis we will not discuss loop corrections but focus on tree-level supergravity

and higher-derivative corrections arising from quantum gravity:.



2.3. Holographic Correlators and Witten Diagrams 23

2.3 Holographic Correlators and Witten

Diagrams

In each of the following chapters we consider four-point correlation functions of
half-BPS operators, which are annihilated by half of the supercharges and thus form
a short multiplet. On the quantum gravity side, in the large-N limit, these short
multiplets correspond to supergravity multiplets plus an infinite tower of Kaluza-
Klein (KK) excitations on the sphere. These excitations arise from dimensionally
reducing the corresponding theory of quantum gravity on the sphere. Thus, in the
4d, 6d and 1d examples considered in the chapters below the half-BPS operators
are dual to harmonics on the S°, S* and S? sphere respectively. These spherical
harmonics transform as totally symmetric and traceless rank-n tensors under SO(6),
SO(5) and SO(3) transformations in the case of AdS;xS?, AdS;xS* and AdS,xS?

respectively.

A supermultiplet can be characterised by its primary operator, which is annihilated
by all generators of special conformal transformations and conformal supercharges.
The descendants in the supermultiplet are obtained by acting on the primary with
Poincaré supercharges. In the case of short multiplets, the primary operators, in
addition to being annihilated by the conformal symmetries, are also annihilated
by half of the supercharges. These primaries are called chiral primary operators
(half-BPS operators). It will be useful to describe schematically how chiral primary
operators are constructed in general superconformal theories. To construct a chiral

primary operator, consider the trace of a product of n scalar operators
ON It = Tr(h gl ) | (23.)

with R-symmetry indices I;, where in supersymmetric theories R-symmetry trans-
forms different supercharges into each other. Next, symmetrise all n indices in (2.3.1)
and remove all traces to make a traceless symmetric tensor. Thus, consider operators

of the form ¢Urpl2...¢In) which are totally symmetric and it is understood that all
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traces are removed. More precisely, in the case of N =4 SYM the scalar operators
¢l are the six real scalars of N' =4 SYM (see subsection 3.1.1) where the interacting
fields can be written as perturbations around the free fields. Moreover, the trace
in A/ =4 SYM is defined in terms of the gauge group SU(N). In the 6d (2,0)
theory on the other hand, there is no gauge group and there is no expression for
the interacting fields in terms of the free fields due to the lack of a small coupling
constant, nevertheless these operators are expected to exist. Importantly, nowhere
in chapter 4 is the definition of these operators required and it will be enough to
know the superconformal blocks for this theory. Let us now go back to the general

case.

The operator ¢U¢”) is the superconformal primary of the stress tensor multiplet
and, through the AdS/CFT correspondence, encodes the graviton in AdS. Traceless
symmetric operators of the form ¢(1p%2---¢In) with more than two indices are higher-
charge operators which encode higher KK modes on the sphere. These operators
are so-called single-trace operators and (2.3.1) forms a complete list of single-trace
chiral primary operators for n < N. For n > N they can be related to so-called
multi-trace operators which are products of single-trace operators. We will study
correlation functions of single-trace chiral primary operators in the large-N limit in

the following chapters.

Through the AdS/CFT correspondence, the dimensions A of any scalar operator on
the conformal field theory side correspond to the mass of the dual bulk state on the

gravity side. The relation between these quantities is given by
A(A-d)=m*R*, (2.3.2)

where m is the mass of the scalar field in the bulk, R is the AdS radius and d is the
spacetime dimension of the CFT. Considering the masses of Kaluza-Klein excitations
on the sphere and comparing to the dimensions of the chiral primary operators in

the dual conformal field theory will satisfy this relation.

Finally, correlation functions of half-BPS operators correspond to scattering amp-
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litudes of scalar fields in the bulk with mass m (2.3.2). Therefore, by studying AdS
scattering amplitudes we can learn more about CF'T correlation functions and vice
versa [53-50]. As mentioned before, we are interested in studying the tree-level
supergravity approximation of quantum gravity. This is described by an effective
action whose leading contribution describes supergravity and the subleading correc-
tions are contained in an infinite tower of higher-derivative terms. These corrections
correspond to local interaction vertices in the tree-level low-energy effective action in
AdS, where we focus on quartic interactions in this thesis. These quartic interactions
can be computed from contact Witten diagrams in AdS and we will review them
in the following subsections starting with interaction vertices without derivatives

followed by a discussion of Witten diagrams for higher-derivative corrections.

2.3.1 Contact Witten Diagrams

Supergravity scattering in AdS can be computed from Witten diagrams. They are
most conveniently expressed using embedding coordinates for AdS:
-2 c-1\2 _ ( £0)?
X2=—(X1) - (X +

(2

" (X9) =1, (2.3.3)

where d is the spacetime dimension of the boundary CFT. In terms of these coordin-
ates, covariant derivatives can be defined using projection tensors
PL =05+ X, XP | (2.3.4)
which satisfy the useful identities
PEXA=0, PEPS=PS. (2.3.5)

In particular, the covariant derivative of a tensor is given by [57, 58]

0

oXC

VaTa,..ay = PSP PN (Per PN TE, . Ey) - (2.3.6)



26 Chapter 2. Review

As an application, let us consider two transverse tensors T and U of rank N + 1 and

N, respectively. Using the chain rule, we see that
TBAANGRUL, Ay = —VBRTBA-ANUy | Al + . (2.3.7)
where the ellipsis denotes
Oc (TBA-ANPIUL,  ay) = TBA 4800 (PSP PIY) Uc,.cy - (2.3.8)

When we act on projection tensors with derivatives, this gives terms which vanish
when contracted with the transverse tensors, so the second term vanishes. Since the
first term is a total derivative, (2.3.7) implies that Lagrangians written in embedding
coordinates enjoy the same equivalence relations as flat space Lagrangians under

integration by parts.

The AdS contact Witten diagrams in embedding space are defined as integrals over
AdSg1 of products of bulk-to-boundary propagators. These propagators are given

by
C; , (2.3.9)
(-2X . X;)A

properly normalised to yield a delta-function at the boundary, the bulk-to-boundary

G(X, Xz) =

propagator will include a normalisation? [57, 59|

Ca=— CY : (2.3.10)
2me:l(A-2+1)

Note that :E?j = -2X;.X; and the X, are boundary points which satisfy

X2=0. (2.3.11)

7

Using the definition (2.3.6) and acting on the bulk-to-boundary propagator we get
the equations of motion

VG =A(A-d)G, (2.3.12)

2These are normally omitted from the definition of the contact diagrams or D-functions and we
do so here. We will also later absorb factors of Ca, into the definition of the Mellin amplitude in
chapter 3.
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Xg X4

X4 Xo

Figure 2.1: Contact Witten diagram for a conformal four-point func-
tion dual to a quartic contact interaction of the bulk
scalar fields. Bulk-to-boundary propagators G(X, X;)
connect the boundary points X; to the bulk interaction
point X. A general quartic interaction vertex includes
derivatives acting on the bulk-to-boundary propagators
(see section 2.3.2).

which agrees with the mass from the AdS/CFT prediction (2.3.2) (where we set

R =1). For d = A the propagator obeys massless equations of motion V2G = 0.

To compute a four-point function associated with a ¢* quartic interaction in AdS,

we take the AdS integral over four bulk-to-boundary propagators as follows:

(d) 1 dd+1)€'
Dyl nynsn,(Xi) = 55 f - . ~ . , (2.3.13)
1ot (=2)%a Jads (X.X7)21 (X .X5)22(X . X;5) 2 (X.X,)A

where YA = (A1+A2+A3+A,)/2. This is the definition of the D-functions. They
describe quartic contact diagrams and will play an important role in each of the
following chapters. The powers of minus 2 can be absorbed into the propagators as
(-2X.X;), but for notational simplicity we pull them out. In figure 2.1 a general

four-point Witten diagram is illustrated.

There is a particularly useful representation for contact diagrams, the Mellin repres-
entation. The above D-functions have the following form in Mellin space [57] (see
appendix A for more details on Mellin space and contact diagrams)

déij
(271)?

1—‘ ..
H (51]) with Z(SZ] = Aj , (2314)

(d) A AdSys
D nsaga, (Xi) = Nyt x (X;.X)0i
A

i<J i<J

where the normalisation is given by

1
s AT )

S (=2)P ILT(A)

(2.3.15)
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For later use we define normalised D-functions without the factor Nﬁfsd” as

1

DAi (XZ) = NAde+1
A;

DY (x) . (2.3.16)

Note that the normalised D-functions are independent of the spacetime dimension
d as can be seen from (2.3.14) and they are distinguished by the presence or not of

the superscript (d).

To perform explicit calculations in position space it is useful to rewrite the D(d)-
functions in terms of D-functions, which only depend on the conformal cross-ratios
u,v [60]:

SA-A1-A SA-Az-A
[T T(A) iD(d) () = (z3)" 7 (@) T
d d A1AsA3A v) = -Ay Ao
F(Ea-3 T2 e 5’7%3)% (23,)

DA1A2A3A4 (u7 U) .

(2.3.17)

The simplest of these functions Diq1q is given by the standard four-dimensional box
integral which can be written explicitly in terms of dilogarithms depending on u,v.
Higher D-functions can be computed by acting with differential operators on the

box integral. For more details on these functions we refer the reader to e.g. [60].

2.3.2 Higher-Derivative Corrections

In this subsection we discuss higher-derivative corrections to the low-energy effect-
ive action of the quantum gravity theory under consideration which correspond to
subleading terms in the low-energy expansion of correlators in the boundary CFT.
Let us illustrate this with a schematic low-energy effective action. Supergravity is
described by a supersymmetric version of the Einstein-Hilbert action which contains
the Riemann curvature tensor R. Including quantum gravity corrections corres-
ponds to including higher-derivative interaction terms where we restrict to quartic

interactions of the schematic form D2*R4:

L~ R+> e, D*RY*+... |, (2.3.18)
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with the Newton constant G. Recall that the Riemann tensor contains two deriv-
atives, therefore the first correction R* has six more derivatives than supergravity.
Note that in later chapters R* will be referred to as the zero-derivative correction,
even though it has more derivatives than supergravity, as we label the corrections

in terms of the number of derivatives acting on R%.

In [30] the authors considered higher-derivative corrections for generic 2d and 4d
CF'Ts in the large- N expansion at first subleading order which corresponds to tree-
level supergravity plus higher-derivative corrections. Their strategy was to solve
the crossing equations for four-point correlators by performing a conformal block
analysis (as in (2.1.12)) and truncating the expansion to spin L. They found that
there are (L+2)(L+4)/8 solutions to the crossing equations for each spin-L truncation.
Furthermore, they provided holographic arguments and came to the same conclusion
from a bulk point of view. In particular, the authors considered a massive scalar field
in AdS with local quartic interactions (which can be thought of as a toy model for
the low-energy effective action of quantum gravity in AdS, schematically described
in (2.3.18)) and showed that, up to integration by parts and equations of motion,
the quartic bulk interactions are in one-to-one correspondence with the solutions to
the crossing equations described above. There are L/2 + 1 independent interactions
which can create or annihilate a state of at most spin L, with the total number of

derivatives ranging from 2L to 3L in intervals of two. These can be written as

(vf/%) (vf%) (vho) (Vo) k=0.1,...L/2, (2.3.19)

where the underscores denote sets of Lorentz indices. Note that the first two scalars
in isolation have L free Lorentz indices as do the last two and so they can create
a spin-L state. Hence, there is for example one spin-0 interaction vertex ¢4, and
two spin-2 interaction vertices equivalently written ¢ (V,V, <z§)2 and ¢? (V,V,V, ¢)2
which contain four and six derivatives, respectively. The total number of interactions
up to spin L is then given by ZIL:/OZ(Z +1)=(L+2)(L+4)/8. The diagram in (2.3.13)

describes a zero-derivative interaction and thus corresponds to a spin-0 interaction
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vertex ¢* (or to R* in (2.3.18)).

The counting of independent interaction vertices can be nicely seen in Mellin space.
In [61] a basis of solutions for higher-derivative corrections is given in Mellin space

by
Byy=0boy, with oy=s"+>+u*, o3=s"+17+u’, (2.3.20)

with non-negative integers p,q and s,t,u are Mellin variables, analogous to Man-
delstam variables for four-particle scattering. The solutions P,, correspond to
solutions of the crossing equations with conformal block expansions truncated to

spin L =2(p+ q), hence for each L there are L/2 + 1 solutions.

Remarkably, in [30] the authors argued that the number of derivatives in the bulk
interaction vertex can be deduced from the large-twist behaviour of the anomalous
dimensions of double-trace operators in the conformal block expansions of half-BPS
correlators. From this analysis it is possible to obtain the large-N scaling of the
solutions to the crossing equations by dimensional analysis from comparing the large-
twist limit of the anomalous dimensions corresponding to spin-L corrections to those
of supergravity. This was implemented for A’ =4 SYM in [61] and for the 6d (2,0)

theory in [26, 13] (see chapter 4 for more details).

In the previous subsection we have seen how to obtain contact Witten diagrams
corresponding to a quartic bulk interaction with no derivatives (2.3.14). Let us
illustrate the evaluation of contact diagrams with covariant derivatives acting on the
bulk-to-boundary propagators in a couple of simple examples. The first non-trivial

quartic interaction with derivatives has four derivatives

(Vo) (Vo) , (2.3.21)

which corresponds to a spin-2 solution, see (2.3.19). This is a correction with four
more derivatives than the ¢* interaction and thus corresponds to the D*R* term in
the low-energy effective action. The interaction with two derivatives can be reduced

to ¢* by using integration by parts and equations of motion (2.3.12). The contact
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diagram for a quartic interaction with four derivatives acting on the bulk-to-boundary

propagator is then

N RCSACISHRA A SHRLACIS AR S A
perms
. A A X1.X2 X3.X
o dX T](-2X.x;)™2 B S ) 2.3.22
AdS ZE( ) p;ns(X.XlX.XQX.XgX.X4 " ( )

where we use (2.3.6) and the ellipsis denotes terms that can be reduced to ¢* by
use of integration by parts and equations of motion.? The new contribution can be

written in terms of D-functions as

(1+u+v)DasiAviasiac - (2.3.23)

Performing a conformal block analysis of this correlator one finds that indeed the
sum truncates to spin-2. Furthermore, analysing the large-twist behaviour of the
anomalous dimensions gives insight into the large-N scaling of this solution to the
crossing equations, see chapter 4.

The next higher-derivative correction is given by a six-derivative interaction vertex

(V$)* (V,V,¢)* which corresponds to another spin-2 solution as explained above.

The contact diagram is

> [ aXva(-2%.X1) " v (228.40) T vpve (<28 X,) 9PV (<2X.x)
perms AdS
4 2
oo [ aXT(-2%x)" X1-X3 (X3-X4) . (23.24)

AdS i=1 perms X.X1 X.XQ ()2.)(3)2 (X.X4)2
where the ellipsis denotes terms that can be reduced to the zero- and four-derivative
contributions. The new six-derivative contribution is given in terms of D-functions

as follows

_ _ 5 =
Dasonsinszast + Daviaroasiave + U Dacoasaasi Avl

_ 5 = _
X D/NSUNSUNTCYNTE LAY DNSPNCINTYNSIE Y JNTYNSUNSUNT I (2325)

3These additional terms will become important in chapter 3 where we introduce higher-
dimensional generalised bulk-to-boundary propagators which treat AdS and S on equal footing.
These propagators lead to new AdSxS contact Witten diagrams and the corresponding covariant
derivatives no longer commute, therefore ambiguities appear in the place of the ellipsis above and
they can no longer be disregarded.
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Again, performing the conformal block expansion one finds that indeed the sum
truncates to spin-2. This analysis can be generalised to higher derivatives by act-
ing with the appropriate number of covariant derivatives on the bulk-to-boundary
propagators as in the above example. The results can be represented in position

space in terms of D-functions or in Mellin space according to appendix A.

We will encounter such local quartic bulk interactions dual to conformal correlators
with spin-truncated conformal block expansions again in all three main chapters.
Such correlators can be obtained from contact Witten diagrams only and no exchange
diagrams need to be considered to compute higher-derivative corrections [30]. This
makes the calculation much simpler and all Witten diagrams (with any number of
derivatives) are given in terms of D-functions (or their Mellin transforms). Note
that for supergravity the conformal block expansion does not generally truncate in
spin and therefore it is not included in the above discussion. However, in the 1d case
considered in chapter 5 supergravity is actually described by a ¢* bulk interaction

and can thus be obtained from contact diagrams.

We have now reviewed important concepts which will play a role in the follow-
ing chapters. In the next chapter we discuss higher-derivative corrections to the
low-energy effective action of type IIB string theory in AdS5;xS® dual to half-BPS

correlators in the small o’ expansion in N =4 SYM.



Chapter 3

Towards the Virasoro-Shapiro

Amplitude in AdS;xS®

This chapter is based on [12] and we follow the paper closely. As explained in the
introduction 1, in flat space, four-point amplitudes of closed strings are given by
the Virasoro-Shapiro amplitude. It is of great interest to generalise this to curved

spacetime and our aim is to obtain an analogue of the flat space VS amplitude in

AdS5xS5.

The AdS/CFT correspondence relates 1IB gravity amplitudes to /' =4 SYM single-
trace! half-BPS correlators. From the early days of the AdS/CFT correspondence,
many direct calculations of four-point AdS amplitudes at tree-level and in the su-
pergravity limit have been performed, resulting in predictions for the corresponding
correlators on the CFT side [60, 63, 65—74]. Although the action for superstrings in
AdS;xS5 is known using the Green-Schwarz [75, 76] and pure spinor [77] formalisms,
explicit construction of vertex operators is not fully understood. Hence, computing
amplitudes beyond the supergravity approximation in this background directly from

string theory remains challenging (see [78-80] for recent progress). On the other

In fact the operators dual to supergravity are only single-trace in the large-N limit but have
multi-trace corrections at subleading order [62, 63]. These have recently been given explicitly to
all orders in N [64]. Here however, we work at leading order and so these multi-trace corrections
will not play a role.
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hand, a great deal of progress has recently been achieved on the CF'T side despite
the CFT being strongly coupled, using the constraints imposed by superconformal
and crossing symmetry as well as the simplification of the spectrum predicted by
AdS/CFT (hereby summarised as ‘bootstrap methods’). All tree-level single-trace
half-BPS correlators in the supergravity limit have been obtained in this way [31—

| and more recently string corrections have also been bootstrapped [10-16] with
groundwork laid in [30, 61]. Loop corrections to four-point AdS amplitudes have
also been obtained via bootstrap methods both in the supergravity limit [31-89] as
well as string corrections [11, 90-92]. The more recent of these works have also made
use of a hidden 10d conformal symmetry [11] which we will discuss further in the

context of AdSyxS? in chapter 5.

The program in this chapter can be viewed as partly going back to the direct
calculation approach but in a hugely simplified form. We notice that the tree-level
string corrections obtained via bootstrap methods can be obtained via AdSxS contact
diagrams arising from a simple 10d scalar effective action. The starting point is
the observation that if we write the flat space VS amplitude as an infinite series
in o', the leading term will describe supergravity while higher-order terms describe
string corrections. These corrections can be derived from a simple effective field
theory consisting of a scalar field with quartic interactions. For example, the first
string correction is simply a constant proportional to o’ which arises from a ¢*
interaction, and the next correction is O(a'®) and quadratic in the Mandelstam
variables so can be derived from a four-derivative interaction (0¢.0¢)?. In this way,
we can construct the four-field piece of the linearised (about flat space) effective
action at all orders in o/, fixing coefficients by comparing to the VS amplitude. This
can be made more precise. All the fields of type I1IB supergravity can be described
with a chiral scalar superfield, ¢, in 10d N = 2 superspace [93], and it is this scalar
superfield that appears in the superaction. The Virasoro-Shapiro amplitude for 11B
string theory is a superamplitude containing a factor §16(Q) [94]. Similarly the

corresponding linearised effective action is a superaction and one integrates a scalar
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superfield (prepotential) over 16 Grassmann odd variables [ d'60 [95]. The action of
four Grassmann derivatives on the scalar produces the Riemann curvature and so ¢4

in the effective superpotential produces the familiar R* correction to supergravity.

We propose a generalisation of the flat space VS amplitude by uplifting its small
o' expansion to AdSs;xS° by replacing the derivatives in flat space by covariant
derivatives in AdSs and S°. We will find that this 10d scalar effective action describing
tree-level string theory in AdS5xS® generates the interacting part of all single-trace
half-BPS correlators. The resulting correlators are naturally packaged together into
a 10d structure. This 10d structure is very reminiscent of and indeed was partly
inspired by the 10d conformal structure of these correlators observed in [11]. However,
here the 10d conformal structure is not apparent and does not play a role. We can
read off some coefficients of the AdSxS effective action directly from the flat space
one, but not all terms can be read off in this way. Firstly, since covariant derivatives
will no longer commute in general, there is the possibility of commutator terms which
vanish in flat space. Furthermore, it is also possible to add terms proportional to
the curvature which vanish in the flat space limit. The effective action will therefore

have additional terms with unfixed coefficients.

We do not here prove the existence of the effective field theory in AdS;xS®, but
justify it a posteriori by showing that it reproduces all known results for four-point
correlators of single-trace half-BPS operators at orders o/ and «'°, which were
previously obtained via bootstrap methods in [I0-15]. Furthermore, we present
a general algorithm to obtain four-point correlators to any order in o’ and use it

7. At the same time as we completed our

to derive new predictions at o/ and «
work, the authors of [10] also obtained higher-order o corrections in AdS;xS%, using
bootstrap methods in Mellin space to arrive at the higher-derivative corrections.

Their results nicely complement ours.

As mentioned in the introduction, the key technical tool to derive correlation func-
tions from the 10d effective field theory in AdSsxS® are generalised 10d Witten

diagrams which treat AdS and S on equal footing. Usual contact Witten diagrams
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describe supergravity scattering and are defined as integrals over AdS space, we
will generalise them to integrals over the full AdSxS space to manifestly include the
spherical harmonics on the five-sphere. We are not aware of such generalised Witten
diagrams directly appearing in the literature before, although similar structures on
the sphere are given in [96] where analogues of geodesic Witten diagrams (which give
conformal blocks) on the sphere were considered. The generalised Witten diagrams
involve introducing propagators connecting the (5 + 5)-dimensional bulk of AdS5xS?
to a generalised notion of a boundary. Although the five-sphere is compact, we
can formally define its boundary using embedding coordinates analogous to those
of AdSs. This definition is physically sensible when describing half-BPS operators
since it essentially encodes the condition that they are traceless and symmetric in
R-symmetry indices. Expanding the 10d Witten diagrams in modes on the S° then
gives a prediction for all four-point correlators of single-trace half-BPS operators cor-
responding to a fixed order in the o’ expansion of tree-level string theory in AdSsxS5.
Comparing these results to those obtained using localisation techniques? [12, 97, 98]

allows us to fix some ambiguities in the effective action.

Before we go on and compute these higher-derivative corrections from the effective

action we describe the general setup for our analysis in the following section.

3.1 General Setup

In this section we describe the basic ingredients that we will use in this chapter.
We start with a review of N' = 4 super Yang-Mills theory, type IIB string theory
and the corresponding holographic correlators. This is followed by a review of half-
BPS correlators in A/ = 4 SYM, which will be the analogue of the Virasoro-Shapiro
amplitude in AdS5xS®. Next, we describe our strategy for deducing an effective action

from the VS amplitude in flat space and translating it to AdS5xS®. Subsequently, we

2Supersymmetric localisation is a method to exactly compute correlation functions of supersym-
metric operators in certain supersymmetric quantum field theories by reducing the path integral
to finite-dimensional integrals.
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introduce embedding space formalism for the sphere together with sphere-analogues
of AdS contact diagrams. In the next subsection we then show how to compute
contact diagrams directly in AdSxS using novel bulk-to-boundary propagators which
are manifestly ten-dimensional. For a given order in the o’ expansion of the VS
amplitude, this will allow us to compute the infinite tower of half-BPS correlators
by computing Witten diagrams from a 10d effective action and expanding them in
modes on the sphere. The correlators are most elegantly expressed in Mellin space,
which we review in the last subsection. In particular, we find that expanding our 10d
Witten diagrams in terms of spherical coordinates gives rise to a spherical analogue
of the Mellin transform and implies a generalised Mellin amplitude where AdS; and
S are on equal footing. The question of stringy corrections will be addressed in

subsequent sections.

3.1.1 Review: N =4 SYM/IIB Superstring Theory in
AdS5XS5

Let us start by reviewing the ingredients of the correspondence between N =4 SYM
and string theory in AdSsxS®. We start by introducing the field content and action
of N =4 SYM before considering type IIB supergravity. For more detailed reviews
of these concepts see e.g [52, 99, |. Finally, we discuss holographic correlators in

this example of the AdS/CFT correspondence.

N =4 super Yang-Mills theory

The conformal field theory we study in this chapter, N' = 4 supersymmetric Yang-
Mills theory, is a theory of great interest to the scientific community. On the one
hand, it is the interacting four-dimensional gauge theory with the highest amount of
supersymmetry and it is conformal even at the quantum level [101, |. Tt is also
dual to IIB string theory in AdS5;xS® and is the classical example of the AdS/CFT

correspondence. Moreover, it is believed to be integrable, i.e. exactly solvable at all
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values of the coupling constant, at least in the planar limit [103]. On the other hand,
N =4 SYM is a four-dimensional interacting theory and its tree-level scattering
amplitudes are equivalent to those of massless QCD [104], therefore it is a useful toy
model for developing techniques that can be applied to less symmetric QFTs, such

as QCD. We will briefly introduce the field theory in the following.

Denoted by A =4 SYM is the maximally supersymmetric four-dimensional Yang-
Mills theory with gauge group SU(N). The field content of N' =4 SYM consists of
one gluon field A%, with a = 1,... N2~1 with four fermions as superpartners, ¥2 ,, @““
with a,&=1,2 and A =1,2,3,4. Additionally, closure of the supersymmetry algebra
requires that there are six real scalars ¢¢1 . with I =1,...,6, transforming in the
fundamental representation of SO(6) ~ SU(4). Hence, there are 4 x 2 fermionic and
6 + 2 bosonic degrees of freedom. Due to supersymmetry, all fields have to transform

in the adjoint representation of SU(N). The action of N'=4 SYM was obtained

in [105]

0
d4xTr F JFM + ——F, F" — (Dypap) (Do) + i o6 Dy 4
1672

; 2
ig o tgym - e g
- ;MwA[goAB,waBJ— 50 loas. 0*7) - =M [pas. eon) (™. ¢°7])

(3.1.1)

where we grouped the six real scalar fields ¢4, into six complex scalar fields 48 =

@BA which transform in the fully antisymmetric two-index representation of SU(4).

—-¥
The field strength is defined as F),, = 0,4, — 0, A, +igym [A,, A, ] and the covariant
derivative is D, = 0, —igym [A,, Av]. In the second term, 6 is a real coupling, the
so-called Yang-Mills theta-angle, and F# is the Hodge dual of the field strength

Frv = e*“’p"F . It is standard to combine the real couplings gyy and 6 into the

single complex Yang-Mills coupling

i
= i+2iZ . (3.1.2)
2T gym

The matrices (#)%* = (Id, ~0)** and (0")as = €ap€sp(0 Y38 = (Id, 0 ) e, Where ot

are the usual Pauli matrices and ¢, is the Levi-Civita tensor. The only tunable
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parameters in the action are the gauge coupling gyn and the rank of the gauge
group SU(N). Taking the limit N — oo, gym — 0, while holding the 't Hooft
coupling A = g2, N fixed, gives a topological expansion in 1/N where the leading

term corresponds to the planar limit.

A remarkable property of this theory is that it is ultraviolet finite, i.e. that the coup-
ling gy is not renormalised at the quantum level. Hence, N' =4 SYM is a conformal
field theory even at the quantum level [101, |. Thus, the theory is invariant
under the conformal group SO(2,4) ~ SU(2,2) and supersymmetry enhances this
to the superconformal group PSU(2,2[4). The bosonic part of PSU(2,2/4) then
consists of the conformal group SU(2,2) and the R-symmetry group SU(4). The
fermionic part of the supergroup are the four supersymmetry generators and their

superconformal partners.

Type IIB supergravity

The holographic dual of N' = 4 SYM is type IIB superstring theory in AdSsxS°®.
Type IIB string theory was found in [106] and in the low-energy limit it can be
approximated by type IIB supergravity [107]. Let us review the field content and

action of 10d IIB supergravity here.

First, since it is a theory of gravity, there is a graviton, hence the metric g, which
is a supersymmetric traceless tensor of the symmetry group SO(8) and thus has 35
bosonic degrees of freedom (counting the number of independent components of a
symmetric 8 x 8 matrix and subtracting one due to tracelessness). The rest of the
bosonic part of the spectrum consists of the axion-dilaton C' + i® with two bosonic

degrees of freedom, a rank-2 antisymmetric tensor B,,, +iA3,, with 56, and a rank-4

+

1wpo With 35 bosonic degrees of freedom. Furthermore, there

antisymmetric tensor A

1

o, Where I =1,2, with 112 fermionic degrees

are two Majorana-Weyl gravitinos 1
of freedom and two Majorana-Weyl dilatinos A., I = 1,2, with 16 fermionic degrees

of freedom. Thus, there are 128 bosonic and 128 fermionic degrees of freedom, as
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required by supersymmetry. The + superscript of the rank-4 antisymmetric tensor

A+

4 pvpo

indicates that it has a self-dual field strength, the five-form field strength
Fy defined below. The two gravitinos have the same chirality and so do the two
dilatinos, however theirs is opposite to that of the gravitinos. Therefore, the theory

is chiral.

The type IIB supergravity action was found in [93, |. Because of the self-dual
field strength Fj it is not straightforward to write down a classical action. This is
because the term |F5|? in the action counts twice the desired amount of physical
degrees of freedom since it does not contain the self-duality constraint. This can be
resolved by imposing the self-duality constraint as an additional field equation. The

action is then given by
4% S = f d"z/=ge™® (2R + 89,00 ® - |H;|?)
g 1 -
-f [dl%\ Yar (|F1|2 PR+ 5|F5|2) ¥ AT A Hy A Fg] + fermions , (3.1.3)

with the scalar curvature R, g = det g, and the coupling constant xp is related to

the string length [, and the 10d Newton constant as follows:

1 8 1 8
2K% = P (27ls)” 167G = Dy (2nl,)° g2 = 2k% g2 . (3.1.4)
Moreover, the field strengths are defined as:

Flde, HgZdB, FgZdAg, F5=dAZ,

Fy=F;-CH;, ﬁ5:F5-%A2AH3+%BAF3, (3.1.5)
and the supplementary self-duality constraint is
* Fy = Fy . (3.1.6)
Finally, the quantities |F,|? are defined as

1 _
|_F})|2 = Egulyl . g“PVPF

f1ephp

Fljl...Vp b] (317)

where F' is the complex conjugate of F. It is worth noting that by dimensional
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analysis this theory is non-renormalisable which generally speaking is true for all
effective supergravity actions. This suggests that they do not approximate well-
defined quantum theories. However, this is no problem when considering these
theories as low-energy effective actions of more fundamental quantum theories (like
string theory or M-theory). The non-renormalisability can be seen from conventional
power counting. In the example of the 10d theory above this goes as follows. The
curvature R has dimension (length)=2. By dimensional analysis the square of the
gravitational coupling constant % then has to have dimensions (length)®, or for
general dimensions d, (length)?-2. Tt is now easy to see that the coupling constant
has negative mass dimension for d > 2 and is therefore non-renormalisable. As
mentioned before, this is no problem because we only consider it as an effective

theory describing the low-energy physics of string theory.

Type IIB supergravity has SL(2,R) symmetry. This is most manifest in the Einstein

frame, where we redefine fields from the string metric g,, to the Einstein metric gfy
Guv = e¢/2g5y ) (318)

which leads to a transformation of the scalar curvature term such that it contains
the usual Einstein-Hilbert term. Furthermore, combining the axion C' and dilaton

® into a new complex scalar field gives the axion-dilaton field
r=C+ie®. (3.1.9)

The metric and A} fields are invariant under SL(2,R) transformations and the

axion-dilaton field transforms under a Mobius transformation

ar+b

T —

., withad-bc=1, a,b,c,deR . (3.1.10)
cT+d

Moreover, the fields B, and A,,, rotate into each other under the above linear
transformation. When considering the full quantum theory, there is a quantisation
condition 7 ~ 7+ 1. Thus, the symmetry group of type IIB superstring theory is the

SL(2,7Z) subgroup of SL(2,R), where a,b,c,d € Z in the Mobius transformation.
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Holographic correlators

We have discussed general holographic correlators in section 2.3, were we have
seen that correlators of chiral primary (half-BPS) operators are dual to scattering
amplitudes of bulk scalars in AdS. In particular, we have described how these
correlators can be computed from AdS Witten diagrams. In this chapter we will
study four-point correlators of chiral primary operators in N' = 4 SYM. We have
described the form of general chiral primary operators in section 2.3. Now consider
the superconformal primary of the stress tensor multiplet in N' =4 SYM. It is a
scalar operator of protected dimension two and transforms in the two-index traceless
symmetric representation 20 of the R-symmetry group SO(6). It is constructed

from scalar fields as follows

Oy = Tr(¢{(M¢{(M) - %Tr(¢{(<M¢YMK) . (3.1.11)

Its supergravity dual is a scalar in the graviton multiplet in AdS5 with mass m3 = -4
(see (2.3.2), where we set the AdS radius R = 1). Traceless symmetric operators
of the form gbgﬁ/[ {{?M e %’1\)/[ with more than two indices, where all p R-symmetry
indices are symmetrised and all traces removed, are dual to higher Kaluza-Klein
modes on the five-sphere. These modes arise from dimensionally reducing type 1B
gravity on S® which leads to an infinite tower of protected scalar operators with
scaling dimension A = p, where p is the SO(6) R-symmetry charge describing the
KK modes on the sphere. A chiral primary operator with SO(6) charge p is thus

dual to a KK mode with mass m2 = p(p - 4).

In the following, we consider the low-energy approximation of string theory, which
corresponds to a small o’ expansion, where the leading contribution is supergrav-
ity and the subleading terms describe stringy corrections. These higher-derivative
corrections to the supergravity approximation are the focus of this chapter. Fur-
thermore, taking N — oo (which is like taking Gy — 0) suppresses loop corrections

and restricts to classical gravity. Through the AdS/CFT correspondence Gy ~ 1/c,
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where ¢ is the central charge, and in the present theory ¢ = (N2 —1)/4. Hence, we
consider a large-c expansion. See the review in 2.2 for further discussions of these

limits and the relations between the parameters of the bulk and boundary theory.

We now understand the correlators from a holographic point of view, in the next
subsection we consider the half-BPS correlators further in the specific context of the

considerations in this chapter.

3.1.2 Half-BPS Correlators

As we have seen, there are six real scalars in N' = 4 SYM transforming in the
adjoint representation of SU(N) and the fundamental of SO(6), ¢34,(X)?3. Here we
view the 4d Minkowski space via null 6d embedding coordinates X4 with X.X =0
manifesting the conformal SO(2,4) symmetry (see section 2.3.1 for a review on
AdS embedding space). We also project with a null 6d coordinate Y7, Y.Y =0 to
obtain ¢ym(X,Y") = ¢4, (X)Y7 manifesting the internal SO(6) symmetry. Then the

single-trace half-BPS operators are defined as

1
O,(X,Y) = WTr(¢€’M) : (3.1.12)

which looks like the chiral primary operators discussed in the previous subsection
but with the R-symmetry indices contracted and with an additional normalisation.
Note that we normalise the operators with an additional factor of 1/,/p compared
to the normalisation giving a normalised two-point function, first derived in [108].
This normalisation is inspired by the ten-dimensional conformal symmetry of [11]

and will be discussed further in chapter 5.

It is then useful to collect together the four-point functions of all single-trace half-BPS
operators 0,(X,Y") into a single object (OO0Q0) as follows

(0000) = > (0,0,0.0,)n; , (3.1.13)

D,q,7,8=2

3We drop the index a from now on and it will be understood that the ¢%,,(X) transform in
the adjoint of SU(N).
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where (0,0,0,O;)im represents the interacting part of the correlator, which always
contains a particular factor I(X;,Y;) due to superconformal symmetry [109] which

we thus divide out

O O OTOS - O O Oros ree
(0,0,0,0, )ins = 19,0, [>(X< }f) ! Jiree (3.1.14)

From now on we will usually drop the explicit ‘int’ subscript at the end of the
correlators. Here [ is a polynomial in X; and Y;, the so-called Intriligator polynomial,
which is a common factor of all interacting half-BPS four-point functions [109]. It is
the counterpart of the §16(Q) factor of flat space superamplitudes [ 10] and we give

its explicit form in appendix B.

Now that we have specified what correlators we are studying in this chapter we can
go on and discuss the Virasoro-Shapiro amplitude that describes string scattering in

flat space and how to lift it to curved spacetime.

3.1.3 Effective Action

As explained in the introduction, the four-point amplitude of closed string theory

takes a very compact form in flat space, the Virasoro-Shapiro amplitude:

1 I(1-2H)T1-<0ra-<Y)

Ayg(S,T) = ] 4 1z S+T+U=0,
(1) = 51 D(1+20(1+ 2L)0(1 + 22
(3.1.15)

where S, T, U are the standard four-point kinematic invariants. Note that we have
factored out a supermomentum delta-function which encodes all the external super-
gravity states. In AdS5xS® the analogue is to factor out an Intriligator polynomial
from the interacting part of half-BPS correlators in the boundary, as we explained in
the previous subsection. Our goal will then be to construct a bosonic 10d effective
action which describes the remaining quantity. A priori it is not obvious that such
an effective action should exist in curved background, but we justify it by showing

that it reproduces previous results. It is important to note that the fact that we can
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factor out the supermomentum delta-function, or the Intriligator polynomial which
contains all the supersymmetry properties of the correlators, is the crucial aspect of
the theory that allows us to obtain correlators using a higher-dimensional effective

action.

The flat space VS amplitude in (3.1.15) has expansion

1 2o (N Cone  comat L onat L g ronet
Avs(S,T) = S0 P (;2(2) —2n+1(5 +To L Uem
]. ! ! 7
= g T 2(5)° + (S* 4 T2+ UDG(F) + 25TU (G)*(5)°
+%(SQ+T2+U2)2C7(%’)7+..- 7 (3.1.16)

where (,, are Riemann-zeta functions. Excluding the first term, which corresponds
to supergravity, we can view the remaining terms as arising from a scalar effective
action. From this point of view, the a/? correction which gives a constant contribution
to the four-point amplitude, comes from a ¢* interaction. Higher-order terms can
then be obtained by applying derivatives to the ¢* interaction corresponding to the
invariants S,T,U. So S = —2ky.ky = 20,00t ¢¢p?, T = —2k;.ks - 20,000" p¢ etc.

Specifically then the VS amplitude is equivalent to the following four-field terms in

an effective superpotential for supergravity linearised about flat space:

VI (0) = ik (26(5)76" + 3G:(5)7(96.00)* + 2(()*(5)°(96.06) (9,0, 60" 0" )

+ 3¢ (%) (0,0, 00" §) + . ) . (3.1.17)

We now uplift the effective superpotential to an AdS5xS> background by replacing the
flat derivatives with covariant AdSxS derivatives. This uplift is not unique however.
Firstly the covariant derivatives no longer commute with each other leading to
ambiguities. Secondly there could be terms involving lower number of derivatives,

compensated by the AdS radius R which would vanish in the flat space limit.



46 Chapter 3. Towards the Virasoro-Shapiro Amplitude in AdS;xS®

So to O(a'7) the superpotential translates to

VESS(0) = s (5)7 A6 + (5)°(3B(V9.90)* + 6CV2V,167" 662
+(5)°(D(V6.99)(V,.V,6V"7"6) + 6EV, V2V, 0V 7" 66?
+(§)(6F(7,9,07"7")?

+6G (VHVYV,VPVV ,0) (V. V@) ¢° + ... ) + .. ] . (3.1.18)

There are four more eight-derivative terms with coefficients G, G3, G4, G5 whose
explicit expressions are given in (3.6.2) and appendix D. The ambiguities with
coefficients C| E, GG; are multiplied by symmetry factors for later convenience. Here,
unlike in flat space, the coefficients A, B, C, ... themselves can have an expansion in
the dimensionless parameter o/ R? where R is the radius of AdS (or S). So whereas
in flat space 2k-derivative terms only occur at order a/**3, in AdSxS, 2k-derivative

terms occur at a/**3 and all higher orders in principle.

One could also imagine replacing the coefficient of 1/STU in (3.1.16) with an ex-
pansion in o//R?, which is not included in (3.1.18), however this is forbidden by
superconformal symmetry of N' = 4 SYM correlators. In more detail, the non-
renormalisation results of [109] imply that supergravity correlators must contain a
contribution from free theory and there is a non-trivial cancellation between the two
terms which links them together. Since free theory does not receive o’ corrections,

there cannot be o’/R? corrections to the coefficient of 1/STU.

The zeroth-order terms in the expansion of A, B, D, F are then determined by the

Virasoro-Shapiro amplitude. Specifically,

A(a’):2§3+A1%+A2(%)2+... BE(a')=Ey+Eifs+...
B(a')=(+ Bigs + ... F(a")=3G+Fifs+...
C(a)=Co+Crgam +... Gi(@') = Gip+ Giiggm +... fori=1,...,5.
D(a') =2((3)* + Digas + ... (3.1.19)

For simplicity, we will set R =1 from now on throughout this chapter, but it will be
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understood that these higher-order terms vanish in the flat space limit.

Computing 10d Witten diagrams using novel generalised bulk-to-boundary propagat-
ors and expanding them in terms of S® coordinates will give all single-trace half-BPS
four-point correlators in N = 4 SYM described by tree-level string theory in AdSsxS°.
We introduce the generalised bulk-to-boundary propagators and Witten diagrams in

the following subsection.

3.1.4 Generalised Contact Witten Diagrams

Standard AdS Witten diagrams were reviewed in section 2.3 and in this subsection we
define analogous objects on the sphere (following similar ideas in [96]) and finally we
introduce a generalisation of Witten diagrams using bulk-to-boundary propagators
which are intrinsically ten-dimensional and treat AdS and S on equal footing. This
will have a big pay-off since we will obtain the whole tower of half-BPS correlators

by expanding the Witten diagrams in spherical coordinates.

As we have seen in subsection 2.3.1, Witten diagrams are most conveniently expressed
in embedding coordinates. In addition to embedding coordinates in AdS;,; we also

introduce embedding coordinates for S4+!:

V=S (Vi) =1. (3.1.20)

i—1
In the present context, d = 4. As for AdS (2.3.4), covariant derivatives in terms of

embedding coordinates are defined using projection tensors
Pl =0] -V, V7, (3.1.21)
which satisfy the useful identities
PiY7=0,  P/PF=PF. (3.1.22)

To distinguish AdS and S projection tensors we use labels A, B,C'... for AdS in

section 2.3.1 and I, J, K ... for the sphere analogues here. Recall that the covariant
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derivative of a tensor is then given by [57, 58]
VaTa . ay = PSP PN (PE . PENTE, By ) - (3.1.23)

This can equally be applied to the sphere case by simply sending A, B, C) ... indices
tol,J,K,... etc

Now first recall that the standard AdS contact Witten diagrams in embedding space

are defined as integrals over AdS,,1 of products of bulk-to-boundary propagators

G(X X;) = W, see (2.3.13). At four points this yields:
d+1 X
DXi)A Asa, (Xi) = B / > = d - - . (3.1.24)
1ot (-2)% ) a Jads (X.X7)2 (X . X5)22(X.X5)28(X.X,)A

Recall that Xa = (A1+A2+A3+A,)/2. These D-functions have the following form in

Mellin space [57] (see also appendix A)

do;; ['(d;5)
(d) _ AdSg+ iJ ij . B
D xraangn,(Xi) = Ny x f (27rz’)2H (X:.X;)% 7 with >70; = A;

i<J i<j

(3.1.25)

where the normalisation is given in (2.3.15) and for later use we define normalised
D-functions without the factor N, i_dsd” which are independent of the spacetime

dimension d :

1

DAi (XZ) = NAde+1
A;

DY(x) . (3.1.26)

We can also consider direct analogues of these contact diagrams on the sphere.

Bulk-to-boundary propagators on the sphere were introduced in [90]
G(Y,Y;) o< (=2Y.Y; )P (3.1.27)

and in this context it is then very natural to introduce functions B,Sf2,2p3,,4(1f,-),

spherical analogues of the contact Witten diagrams D(Al) ApAsA, B8
Bl (V1) = (-2 [ @17 (T (P (T (P, (31.28)

where X, = (p1+pa+ps+pa)/2. Even though the sphere is compact, we can formally
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define a boundary when describing half-BPS operators in A/ = 4 SYM since the
condition Y.Y = 0 simply encodes tracelessness of the R-symmetry indices. The
B-functions are polynomials in the Y; and can be explicitly evaluated purely combin-
atorially, following similar techniques to those found in the appendix of [96] (where

the two- and three-point analogues were obtained):

d+ (Y Y) ij .
Biapaps (Y1) = N Y HF(d ) with > dij =p; (3.1.29)
ij

{di;j} i<J i<j

where

w2 1, T (pi+1)
['(X,+d/2+1)

N =2 % 2% (3.1.30)

For later use let us also define a normalised B-function which does not depend on

the dimension d:

B, (V) = —=B (V7). (3.1.31)

Nsd+1

pq

In (3.1.29) the sum is over all sets of numbers d;; = d;; such that

W~

{(dlz,d13,d14,d23,d24,d34) :0<dij=dj;, dy=0, ) d zpj} : (3.1.32)
i=1

These constraints on d;; leave just two free parameters. Note the close similarity this
explicit expansion of the B-functions (3.1.29) has with the Mellin transform of the
AdS contact terms (3.1.25). The B-function can be seen as a discrete D-function,
which is expected since it lives in a compact space. We can thus view the expansion

parameters d;; as analogues of the Mellin variables 0;;.

It is now natural to combine the above AdS and S bulk-to-boundary propagators

into one 10d object, which we refer to as a generalised bulk-to-boundary propagator

in AdSxS:
G(X,V;X,Y)=(-2X X -27.y) " | (3.1.33)

where X and Y satisfy

X2=v2=0. (3.1.34)
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Using the definition in (3.1.23), we see that

. - . Ao -A-2
VG = (V4 + VL) G =A(A-d) ((-2X . X)? - (-2Y .Y)?) (-2X . X -2VY)
(3.1.35)
Hence, the propagator obeys massless equations of motion when d = A:
VG =0, (3.1.36)

which will become important in later sections when computing ambiguities. Whereas
X describes the boundary of AdS, Y is not a boundary point since the sphere is

compact.

We will derive predictions for four-point correlators of half-BPS operators from an
effective action by computing analogues of Witten diagrams directly in the product
geometry AdSxS. For now we will just develop some general properties of AdSg,xS%*!

contact Witten diagrams which are defined simply as 4

DAde+1XSd+1(X, Y) B 1 f dd+1de+1)A/'
Aifafabs 0T (22)2s Jadss (Pr+ Q)21 (Po+ Qo)A (Py+Qy) 2 (Pr+ Q)™
(3.1.37)
where we introduce the shorthand
P=XX,, Q=YY. (3.1.38)

The contact diagrams in AdSxS are related to the standard AdS contact diagrams in
an intriguing way. This relation is explained in appendix C together with a discussion
of tree-level supergravity which is not expected to arise from a superpotential® but

can be discussed using the aforementioned relation.

It is now straightforward to expand this AdSxS contact diagram into an infinite

number of standard AdS contact diagrams multiplied by sphere analogues. In

4We keep d and A; general here but we will be focussing on the case A; = d = 4 later in this
chapter. The case A; =d =1 will be studied in chapter 5.

®Remarkably, in the case of 1d CFTs studied in chapter 5 we find that supergravity correlators
correspond to a ¢* interaction and can therefore be computed from a 4d effective superpotential.
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particular, using

(P+ o7 I;)( et (2?1 it (3.1.39)

four times and then inserting (3.1.24) and (3.1.28) gives the expansion:

X (pl + 1)A
DR Roasa, (Xi Y7) = Z [[(-1y {8t Do

=0 1=1 P(A )
d d
NN 0.3 ): 1 S ¢ ) (3.1.40)

Expanding the 10d Witten diagrams in spherical modes gives all half-BPS correlators
and in (3.1.40) it is given in terms of AdS and S contact diagrams for a quartic
interaction with no derivatives. We will discuss derivative interactions in section 3.3
but first let us discuss how to express the higher-dimensional Witten diagrams in

Mellin space.

3.1.5 AdSxS Contact Diagrams in Mellin Space

Inserting the expression for the AdS contact term, D4, as a Mellin integral (3.1.25)
and the sphere analogue B(?) as an expansion (3.1.29) into the expression for the
AdSxS contact term (3.1.40), we get, after some simplifications, a Mellin represent-
ation for the AdSxS contact term:

DAde+1XSd+1 (X Y) _ ﬂ-d+1
Bisadade T ()L T(A)
-1 P ] i-dly ij S vd/2+1 n
Xp;o( ) (2mi)? 2 (H (X;.X;)% T(dy; +1) X (Bp+d[2+1) 501,

{dij} \i<j

where Z 61']' =p;+ Aj , Z dij =D, (3141)

i<j i<j

and z,, =T'(z + n)/T'(z) is the Pochhammer-symbol.

We thus define the AdSg.1xS%! Mellin amplitude, Ma,[f](0i5,d;;), for any such

four-point expression, f(X;,Y;), via a similar expression
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d+1 C .
f(Xz,Y) 4[ ( Q)EA (U F(Z))
s, [ 40 (Y.Y;)%  T(0;)
xp;o(_l) (271'2 Z (213 (X X, )50 P(dw N 1)) X MAl[f] )
where 0y =pi+ 8y, ) dy=p; (3.1.42)

Hence, the Mellin amplitude of an AdSxS contact diagram with no derivatives is not

in general a constant as for the AdS case, but rather a Pochhammer:

1 x
o (H CAi) Dﬁ?iﬁgi (X:,Y5) o Ma (04, dij) = (Bp+d/241)s a1 -
(3.1.43)

We now have all the tools at our disposal to discuss the first correction in the o'

expansion of the correlators.

3.2 o Corrections

Having outlined the general procedure for computing stringy corrections to tree-level
four-point half-BPS correlators in A/ = 4 SYM using an effective action in AdS5xS?,
we will now illustrate how this works for the first correction to the supergravity

prediction which occurs at order /3.

In particular, the first term of the effective action (3.1.18) is just a ¢* interaction:

1 a'\? A ~A o~
Som=—— (L) x2 f PXPYV (L V) 3.2.1
’ 8><4!(2) x 2 AdSxS o ) ( )

To obtain the corresponding CFT correlators we mimic the standard AdS/CFT
procedure for obtaining correlators from AdS, but in a fully 10d covariant way,
including the sphere manifestly. Using the generalised bulk-to-boundary propagators
in (3.1.33) we obtain the AdSxS Witten diagram for this contact interaction, yielding

the following proposal for the o’ corrections to the correlators:
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(0OO0)|s
1 (o) (Cy)* PXDY
o) &
8x 4!\ 2 (—2)16 AdSxS (P1 +Q1)4(P2+Q2)4(P3+Q3)4(P4+Q4)4
1 o 3 %95
= o d (5) (Ca)* x 2G5 x D™ (3.2.2)

We can now extract any specific half-BPS correlator from (3.2.2) by expanding to
the appropriate power in Y; (see (3.1.13)). First note that the 10d bulk-to-boundary

propagator Taylor expands as

(lDi"‘Qz')_4 Z( 1)p(p 1)

p=2

2(P) P (-Qu)P (3.2.3)
So the individual correlators are given by®:
(01101, 03 O ) s
() e GO [ ST e [ T
SENE Qo =

4) 4
D( +2p2+2p3+2p4+2(X) B( )2102 —2p3—2pa— Q(Y) (3.2.4)

To see what it looks like in Mellin space we plug the Mellin transform of D (3.1.25)
and the expansion of B (3.1.29) into this expression (or just use (3.1.41)) giving the
Mellin amplitude (defined in (3.1.42))

Mo =1 (£) % 265 x (S,-1)5 - (3.2.5)

This correctly reproduces the results of [10, 11, 13] for the Mellin amplitude of

half-BPS correlators at this order.

6This is (3.1.40) with A; = d = 4 and with p; — p; — 2 to account for the fact that the lowest
correlator is labelled with p; = 2 rather than p; = 0. We do not need to worry about the minus signs
in the factors (-1)? in (3.2.3) since By, pypsps = 0 if p1 +p2 +p3 +pa is odd .
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3.3 Algorithm for Computing General o/

Corrections

At higher orders in o' the effective action (3.1.18) has terms with covariant derivatives
acting on the scalar field. Thus before proceeding, we describe an efficient way to
evaluate generalised contact diagrams with derivatives in AdSxS in position space.

Then we present a general formula for converting them to Mellin space.

3.3.1 Generalised Witten Diagrams

Computing the action of the covariant derivatives quickly becomes complicated and
so it is useful to develop an algorithm to do this automatically. We will motivate
the algorithm by building up from simple cases. First, we consider the application
of multiple covariant derivatives at a single point in AdS. From (3.1.23) this is given

recursively as
VaVB..Vo¢ = PAPE . PS0u (V.. Verd) . Vad=PLone . (3.3.1)
So the application of two covariant derivatives gives
VsVad = PE P Op (PA 040d) = PEPY 03 0ud+ PpaX.00 . (3.3.2)

The first term arises from the partial derivative dg being commuted through P4
whereas the second term arises from the partial derivative hitting P4 . To arrive
at this form, one then uses the definition of P given in (2.3.4) as well as the useful
formulae (2.3.5). We denote this result graphically as

B e BI

VBVA= 4. T,

, (3.3.3)

where each vertex corresponds to an index ordered vertically such that the bottom
one is the index of the first derivative to act. An isolated vertex at position A

denotes (P.0) (with the understanding that the derivative has been commuted all
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the way to the right) whereas an edge between vertices A and B denotes P4 5X.0.

Next, consider three covariant derivatives. Here we obtain

Ve VBVaQ
= PC,PB’PA,aCI (PB/” A,”aBuaAu + 'PB,A/X,Q) ¢
= (PS'PE PY 000 Oar + PacPE X 005 + PopPi' X .00, + PapPS X .00

+PABPg’801) ¢

C e C C{ C e Ce
— B e + B e + B e + BI + B'[
Ae A Ae A A

. (3.3.4)

and we give the corresponding diagrammatic form in the same order as the terms
above. All terms apart from the last arise either from the derivative, O¢, hitting a P
(which we denote with a solid line) or commuting through (leaving an isolated vertex
at C'). The last term arises from the derivative, J¢, hitting the X .0 term associated
with the solid line between A and B. We denote this by a dotted line from C to B.
Thus, a solid line with a dotted line attached to the top of it loses its decoration, X.0.
For the general case of several derivatives acting at a point we can work recursively:
each additional derivative either commutes through everything, corresponding to an
isolated vertex, or it hits a P corresponding to a solid line, or it hits a X .0, denoted
by a dotted line. We add all such lines in all possible ways. Hence, the n-derivative
term is given diagrammatically by summing all graphs containing n vertices in a
vertical line, with any number of solid edges between any two points, such that no
vertex is attached to more than one solid edge, and with any number of dotted edges
from the vertex at the top of a solid edge to a higher vertex either isolated or at the

bottom of a solid edge.

The above examples are already enough to illustrate the key ingredients of the general
algorithm for obtaining an explicit expression for several covariant derivatives at a

point, Va,Va, ... V4, by summing over all possible graphs.
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Algorithm for V4, Va,...Va, ¢

1. Draw n vertices vertically. Each corresponds to an embedding space index

ordered so the bottom one corresponds to A,, and the top one to Aj.

2. Draw any number of solid edges between any two vertices such that each vertex

is connected to at most one solid edge.

3. Draw any number of dotted edges from the upper vertex of a solid edge up to
either a higher disconnected vertex or a higher vertex that is the lower vertex

of a solid edge. No vertex can be attached to more than one dotted edge.

4. Sum over all the resulting graphs with the following interpretation:

B BI
A e = 'Pﬁ/aAr A s = PABX.8 Ae = PAB

(3.3.5)

So solid edges come with a decoration X.0 unless they have a dotted line
attached to the top in which case the decoration is removed (otherwise the

dotted lines can be ignored).

A general derivative interaction term consists of covariant derivatives acting on differ-
ent scalars with indices contracted together pairwise. We denote this graphically by
putting together two or more of the above vertical graphs and adding grey edges cor-
responding to the contractions. So for example we obtain VEVA¢, VpVaps by taking
two copies of all the two-derivative diagrams (3.3.3) and gluing the corresponding

vertices together

1l
+

VEBVAD, VgVads . .

PAYPEE (9,051 ) (D4 0pi ) + PAP(040801) X .00,

+ PAB(040502) X001 + PA(X.001)(X.0¢2) . (3.3.6)



3.3. Algorithm for Computing General o/ Corrections 57

Similarly we obtain VEVEVA¢, Vags Vo3 Voos by taking the three-derivative dia-
gram (3.3.4) together with three more vertices to the right and gluing the vertices

correspondingly

VCVBVA¢1 Vap2 VB®3 Vo s

PN PEE PO 105001 ) (Dar62) (0103) (D bs)
+ PEEPAC(X . 00p61)(0462) (0p:63) (Do a)
+ PAYPEC (X 00,161) (D 62) (D53) (D)
+ POCPAB(X 0001) (0462) (D 05) (9r)

+ POCPAE (D0 1)(0a62) (Dpds) (Dorda) - (3.3.7)

The general algorithm for interaction terms is then a straightforward extension of

the one above for covariant derivatives acting on a single scalar.

Algorithm for contact interactions in AdS

1. For each scalar ¢; with n; covariant derivatives acting on it, draw all the
corresponding contributing vertical graphs using the above algorithm. Place
the graphs for each scalar next to each other horizontally (taking the outer

product over the list of graphs at each point).

2. Draw grey lines between corresponding contracted vertices in the interaction

term.

3. Finally sum over all the resulting graphs with the following interpretation:
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4. Each connected path of solid and grey lines with end points in the vertical line

above ¢; and ¢; corresponds to PABO,¢;0p0;.

5. Each solid line above ¢; corresponds to X.@gzﬁi, as long as it does not have a
dotted line attached to its upper vertex (if it does have such a dotted line it has

no additional contribution).

See the above two examples (3.3.6) and (3.3.7).

So far we have only discussed AdS covariant derivatives. The above rules can be
used with the obvious modifications if instead we are viewing the action on a sphere
(i.e. A, B indices become I,.J indices, X - Y and PAB — P17 in (2.3.4)). However,
our main purpose here is to consider AdSxS covariant derivatives. Thus, each
vertex now represents a 10d index p = (A, I) but there needs to be some non-trivial

re-interpretation in the case of the product geometry.

Algorithm for contact interactions in AdSxS

The first three steps of the algorithm are as for the AdS case above. Then

4. Each connected path of solid and grey lines with end points in the vertical line

above ¢; and ¢; respectively corresponds to P*0,¢;0,¢;, but:

5. Each solid line above ¢;, as long as it does not have a dotted line attached to its
upper vertex, breaks this manifest 10d structure by contributing a multiplicative
factor XA(?A@-, if the index running through it is in AdS or —}A/Ia[@- if the
index running through is in the sphere. (The minus sign appears in the latter
case since this term arises from a derivative hitting P in (2.3.4) or (3.1.21)

which has a minus sign for the internal case.)

6. Finally, there is an additional subtlety related to the dotted lines. The dotted
line ties together the index type corresponding to the otherwise potentially

disconnected parts of the graph, and then contributes a factor of +1 if the
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index running through is in AdS or -1 if the index running through is in the
sphere. (Recall that the dotted lines arise from derivatives d¢ or 0y hitting the
decoration X ADad; or -y 01¢;. Thus firstly, this vanishes unless the derivative
type (AdS or S) is the same as that of the solid line (hence tying together the

index type), and secondly it gives +1 depending on whether it is AdS or S.)

Thus, for example the AdSxS covariant version of (3.3.7) is, with each of the five

lines corresponding to the five graphs in (3.3.7),

VIV b1 V2 Vs Vpda
= PH P PP (8,0,0061) (O $2)(Dr83) (D 1)
+ P PAY(X .05 0,61)(0a02) (0 93) (Dcpa) — P P (V.0p.0,61) (0162) (8 63) (O h4)
+ PHPEC(R .05.0u61) (9 62) (0B63) (Dcda) = P PR (Y .05.0,61) (9 62) (9563) (I ha)
+ PP PAB(X.040,01)(0462) (053) (D ba) = PP PI (V.05,0,61) (9r¢2) (9563) (O b4)
+ POCPAE(001)(0402) (D5 63) (9crdn) = PKX P (91 61) (D162) (9165) (D4 -
(3.3.8)
In particular, note that only the first line is manifestly 10d covariant (has only 10d
i, v indices). Also compare carefully the penultimate with the final line. These
arise from similar graphs (the last two in (3.3.7)) but one with a dotted line and
one without. In the final line, as well as the decoration X .0 or }7.8); being absent,
the dotted line has tied together the two otherwise disconnected parts of the graph,
meaning for example that all indices are either AdS or S, with no mixed ones, unlike

the penultimate line.

Finally, note that in practice for our purposes here the derivatives will always be
acting on bulk-to-boundary propagators (3.1.33) and thus partial derivatives acting

on a single scalar, 9,0y, - .. Oy, ¢i, give (=1)"(A;),, Xr .. X ete.
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3.3.2 Mellin Space

The previous subsection gave an algorithm for obtaining explicit expressions for the
integrands of generalised Witten diagrams in AdSxS coming from contact interactions
with derivatives. This will result in integrands corresponding to decorations of
the (no-derivative) contact diagram D (3.1.37). The decorations are in the form
of polynomials in X;.X;, Y;.Y;, @; and P, which are homogeneous at each point
(i.e. scale the same under the local scaling X;.X; - e;e;X;. X;, V.Y, - e;e;Y,.Y],

Q; = €;Q; and P, - ¢;P;). Each term of such a decoration thus has the form

Q P

1 TI;Ca, / Gl O . Q" P x (A))n, . .
v AT Xd"Y L : X0 X (YY)

41 (-2)2%a Jadsxs [1 (P + Q;)Ai+ni <[ T1( )" (Y3.Y5) )

7 1<j

(3.3.9)

P

with n; = nl” + n? +3 nfj( +3 ng We define Yy, Yy to represent the sum of all

the n;},n); respectively, X, Xp represents half the sum of all the n® nf and %,
half the sum of the n;, so 3, = Xp +Xg + X x + Xy. Such a decorated integral will
modify (3.1.40) to
(—2)2Ex+22y i ﬁ(_l)piwp(@ (X4)B(d) (Y;)
J F(Al) pi+Ai+ni—nl v pi+n? v

i=0 \i=1

x (H(Xi.Xj)nﬁ(m.Yj)nZ) _ (3.3.10)

i<j
Inserting the Mellin transform of D (3.1.25) and expansion of B (3.1.29) and perform-
ing some re-definitions and simplifications then gives the Mellin amplitude (defined
in (3.1.42)):
Ma,[(3.3.9)] =(-2)"* 2% (-1)**4 (H (%)nx(dirn?gﬂ)nx)
i<j v v

X (H (pi+n;X+Ai)nf(pi—n?—nfﬂ)ng) (Zp=Sy+§+ )5 -a-1emyezy

where Z(SU =p;+ A]’ s ZdU =pj - (3311)

i<j i<j
We will use this general formula, in conjunction with the algorithm of the previous

subsection, to compute higher-order terms in the o’ expansion of half-BPS correlators
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in the next sections.

3.4 o' Corrections

After o3, the next terms in the effective action for string corrections occur at o’®. In
the flat space limit, such terms contain four derivatives, so first we consider all the
possible terms in the effective action in AdSxS involving four derivatives. At first
there are many terms one can write down, but using integration by parts as well
as the equations of motion (3.1.36) reduces the number down quickly. We find that
in fact there are only two linearly independent terms one can write down involving

four derivatives:
(Vo.Ve)®  and  V2V,0VFep? . (3.4.1)

These are the two terms appearing in the effective action (3.1.18). Any other four-
derivative term can be written in terms of these, using integration by parts and the

equations of motion. For example

V.V, oVFOVY g ~ —% A

(V. V,0VAVY0) 3% ~ (V6.V ) = V2V, 6V 63 | (3.4.2)

Although at this level the independent integrands can be obtained by hand, they
can also be nicely checked on a computer by using the algorithm of the previous
section and converting to Mellin space where the integration by parts identities are
made manifest. Simply list all possible four-derivative integrands on the computer,
use the algorithm to obtain the corresponding integrand, convert them to Mellin

amplitudes, and then solve for the independent ones.

We see here for the first time that the effective action has an ambiguity - a term not
determined by the Virasoro-Shapiro amplitude: in the flat space limit the second
integrand in (3.4.1) will vanish (as we can commute the Laplacian through so it acts

directly on ¢ giving zero by the equations of motion) and so remains undetermined.
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The complete effective action at this order is thus (see (3.1.18))

1{a'\° : .
Sy =§(%) (G Smain + CpSamb 4 A, Gmain) (3.4.3)
where

. 3 PO
et = — PXPY : .
== (V6.90)(V6.V0) |

6 PN
Sa%lb _ Adsxs dSXd5Yv2vu¢v,u¢¢2 ’

oyl
main _ 1 5% 157 14
mgin fA L XV (3.4.4)

The ambiguity in the third line of (3.4.4) vanishes in the flat space limit since it

comes from a 1/R? expansion of the coefficient of the a3 correction in (3.1.18).

Replacing the scalar fields by bulk-to-boundary propagators and applying the covari-
ant derivatives directly on them then gives a prediction for the half-BPS correlators

at this order in o/. First consider the main contribution (3.4.4)

(OOOOHQ’E);main
4
T S I g G o e 849
where
Nij = Xi. X +Yi.Y; + PPy - QiQ; (3.4.6)

This can then be straightforwardly expanded to give any correlator directly and
explicitly in position space in terms of AdS and S contact diagram functions, as is
done for a general integral in (3.3.10). The corresponding Mellin amplitude can also

be read off directly from (3.3.11)

i = 4] (3,-1);

~1252) | (3.4.7)

Here we have used (3.3.11) to obtain the Mellin amplitude (with A; =4,d =4 and
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pi = p; —2) and then solved the constraints

Zééj:ijrZ ; Zdij:pj_2 ) (3.4.8)

i<j i<j

in terms of new variables (s,¢,u) and (3,#,4), which are defined as follows [15]:

019 =—-S+¢s , 01y =-t+c¢ 013 = —u ,
093 = —t | 094 = —U+Cy 034 = =S,
dig=8+cs , dis=t+c , diz =1,
dos =1, dos =T +cy , dss =3,
S=s5+3§, t=t+1, u=u+a, (3.4.9)

where s+t +u=-p3 -2, §+t+0=p3—2and s+t +u=-4. We also define

_ P1t+tP2—P3—DP4

P11t Pa—P2—DP3 P2t Pa—P3—pP1
2 I - - .

Y C’lL
2 2

Cs , (3.4.10)

Note that for any CFT with a string theory or M-theory dual, the leading terms
of the Mellin amplitude in the limit s,f - oo can be compared to the appropriate
higher-dimensional string-/M-theory scattering amplitude. In our case, the first
line in (3.4.7) is leading in the flat space limit and is fixed from the flat space VS

amplitude.

Now let us take a closer look at the ambiguity in the second line of (3.4.4). Using

the equations of motion (3.1.36), the integrand can be written as

VAV, 0VF G = [V%,Va] 0VA0? + V2,V ] oV 6g” . (3.4.11)
Moreover, after some algebra we find that

(V2. Valo=-dVag, [V2,Vi]¢=dvVié, (3.4.12)

so the ambiguity can be written as

VIV oV o0 = ~d (Vi) = (V39)") ¢ . (3.4.13)
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The corresponding Witten diagram expression is given by

1 (Cy)4 PXBY
OOOO) oy = —— /‘ v
< s s 41 (=2)16 Jadsxs Hi(B+Q)4z§(P +Q)(P +Q;)
(3.4.14)
where
This takes a very simple form in Mellin space
M = 4(8, - 1)s (2 +cf+2+X2-16) . (3.4.16)

Moreover, after multiplying the o3 term in (3.2.5) by («//(2R?))? (where we set
R =1), it can be thought of as an additional ambiguity at o, which is the origin of
the third line in (3.4.4) as we have seen before. Restoring the prefactors in (3.4.3),
the a’® correction to the Mellin amplitude for half-BPS correlators can be written

as a sum over three terms:
1
/Mw=g(—)(% main 4 Co M 4+ Ap MIET) (3.4.17)

where M3 = (X, - 1)3 (it is given in (3.2.5) but here we take it without the

explicit normalisation there). The coefficients of the subleading terms can be fixed

by comparing to the localisation result in [12] and are given by
3
CO = —5 C5 , AQ =-30 C5 . (3418)
We find perfect agreement with the results from bootstrap methods of [1] (rewritten
in this notation in [15])7.

3.5 o' Corrections

At order o/ we have to consider all possible terms in the effective action involving

six derivatives. Using a computer, it is straightforward to enumerate all possibilities

"We thank Francesco Aprile for explicitly checking this agreement.
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and compute their Mellin amplitudes using the algorithm explained in section 3.3
to find all linearly independent terms. After doing so, we find that there are only

two linearly independent terms involving six derivatives:
(Vo.VO) (V. V, 0V 'V ¢) and V,V2V,eV'V do? (3.5.1)

which appear in the effective action in (3.1.18). The first term is the main correction
at a6 while the second term is an ambiguity which vanishes in the flat space limit

and is thus not determined by the flat space Virasoro-Shapiro amplitude.

The complete action at order o'6 is given by (see (3.1.18))

1({a"\® : . .
Sa,6:§(%) (2(G)2Smaim + Ep ST + By SWain + O1S78P + A3SWa) |, (3.5.2)
where
. 1 ~ ~
Iriam — d5Xd5Y . y Avi%
min = [ EREV(©OVT,0,070)
6 A oo~
Somb = 2 f PREVY, VP,V 6 (3.5.3)
4! Jadsxs

and the rest was defined in (3.4.4) (in particular, they arise from taking all the terms
contributing at o and multiplying them with o//(2R?) with unfixed numerical
coefficients and setting R = 1). We then find that the main contribution to half-BPS

correlators at this order is

(OOOOHQ’G;main
11 (Cy)* f PXPY Ny Msy Y oo

=—= +perms | x 4% x 5% | (3.5.4
416 (=2)16 Jadsxs [T, (P, + Q;)° | (Ps + Qs) (Py + Q4) P ( )

where the correlator is understood to come from the first line of (3.5.3), NV;; was

defined in (3.4.6) and
1
Mij = (X X;+ PP+ V.Y - QiQ;)" - = (PP - Q:Q;)° . (3.5.5)

Before discussing the Mellin amplitude of the main contribution, let us briefly de-



66 Chapter 3. Towards the Virasoro-Shapiro Amplitude in AdS;xS®

scribe the ambiguity whose integrand can be written as
VY2V, 0V 66 = ~d ((VaVpe)’ - (ViV0)?) ¢? (3.5.6)

where A and I indices label X and YV coordinates, respectively. We obtained the
right hand side by commuting the V2 with Vv, and using the equations of motion
as we did in the previous subsection. The Witten diagram expression associated

with (3.5.6) is

(OO0O0)|ws.2mp
1 (C)! PXPY K -
= x4 x5 3.5.7
41 (-2)10 fAdes I (Pi+ Q)" 15 (Pi+ Q) (P + Q) AT
where
1
Kij=(X;. X, + P’LP])2 -(Y.Y; - Qi@j)2 "5 ((Png)2 - (QZQJ)2) : (3.5.8)

Converting this to Mellin space gives the ambiguity

M = =32 (8,-1), (s* + 2+ u?)
F(51), 5 (s + b uc)
—(Z-1), (B, +3)[2(ss+tt+un)+ (scs+te +ucy,)]
—(Z-D), ((B+d+ ) +2(2s+cft+ca)-10%, (P + £ +a2))
+(2p-1), (108, (Ses+tc +iic,) +35, (2 +cf +c2))

+(Z,-1), (-258-16 Ep)] . (3.5.9)
Converting (3.5.4) to Mellin space, the Mellin amplitude of the main contribution is
main _ Aymain 1 Mamb (3 5 10)
a’6 - a'6 12 o/t U
where

~(main _ 2[ (Ep_l)ﬁ (83 +13 + u3)

a'6

+(Z,-1), (65, (s> +t* +u?) - 18(s? 5+ t? { + u’ 1))
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+(Zp-1), (-9(s? ¢ + 2, +u’cy))

+(X,-1), (90(s§2 +t 2 +ua?) + % (sc2+tc+ ucg))
+(X,-1), 90 (sScs +tEc, +uic,)

+(,-1), (-60%, (ss+ti+u)-30%,(scs+te +ucy))

+(Z-1), (-120(8+ B+ @) -9 (B + )+ )

+(Zp-1), (180 (8% s+ ey + P cy ) - T8 (25 + it + 2 1))

+(Ep-1), (1208, (2 + 2 +0%) + 275, (2 +c +c2))

(
(
(
(D) (1205, (Ses + e +1ie,) ~50T5 - 16%,) | . (3.5.11)

This Mellin amplitude shows a similar structure as (3.4.7). Every line is multiplied by
a Pochhammer depending on the power of {s, t,u} and the rest is at most cubic in the
variables {s,t,u, 3,1, 1, cs, ¢, ¢y, Xyt Additionally, after multiplying the three terms
which span the o5 correction in (3.4.17) by o', they become additional ambiguities
at o', see the expansion (3.1.19). The complete Mellin amplitude for half-BPS
correlators at order o/ can then be written as a sum over five terms:

1(a\° . . .
Ma,ﬁzg(%) (2(C)> M3 + B M2+ By MPE™ + Oy M + A, M™3m) | (3.5.12)

where we restore the coefficients from (3.5.2).8

We can fix two of the coefficients by comparing the Mellin amplitude to the result

from localisation in [97, 95]. To compare (3.5.12) to [97] we take s > 5 —2,t - £ -2

and specialise to p; = 2 (where =1 =1 =0):

7\ 6
M = % (%) x 60 (672(g3)2 stu+14 (3B +4((()? -6 Ep)) (s> +* + u?)

+ A3 - 96 B +768E0—3200(<3)2), (3.5.13)

where u =4 —s—t. We can now compare this expression to the result in [97] and

8Note that the number of ambiguities is consistent with the number obtained via the bootstrap
method. We thank Francesco Aprile, James Drummond, Hynek Paul and Michele Santagata for
discussions on this.
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partially fix the coefficients to

2
g B 2A6?
8 3

A3=0, (3.5.14)
which leads to the a/6 correction to the correlator for p; = 2:

7\ 6
M2 = % (%) x2((3)% % (3)g [stu - i (8% + 12 +u?) —4] . (3.5.15)

It is noteworthy that localisation predicts the coefficient A3 = 0. Localisation also
predicts the absence of any o™ corrections i.e. A; =0 [12]. Indeed, as we discuss
in the conclusions, it is natural to expect all odd terms in the expansion of the
coefficients in o/ R? (see (3.1.19)) to vanish in which case we would have B; = C; =0

and then the a6 correction to the Mellin amplitude in (3.5.12) is completely fixed.

3.6 «o'" Corrections

Using the algorithm explained in section 3.3 to find all linearly independent terms in
the effective action involving eight derivatives, we find that there are six independent

terms, notably the main contribution
(V. V, 0V v e)? (3.6.1)
and five ambiguities:

(VIV'VLVPVIV,00) (VuVed) ¢, (VEVAVYVPY,0) (VuV,0) ¢
(V2Vrvrvry,e) (V,0) (V) ¢, (VHV'VPV,Y,0) (VIV.9) (Vo) &

(VEV"VIVIV,0) (ViVd) (Vo) - (3.6.2)

See appendix D for details on the ambiguities. The complete effective action at this

order is then given by (see (3.1.18))

(o ! 1 main ambj ambsg ambsg amby ambs

Sam =3 D) (§C7 v +G1;05a,7 +G2;05a,7 +G3;05a,7 +G4;05a,7 +G5;050/7
+ Dy g}?in + Engr,Eb + By gﬁ?}in + CQSZ‘,?" + A4Smai“) , (3.6.3)

o'l
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where the main contribution is
main — 6 f PXPY (V,V,6V"V"$)? (3.6.4)
@ 4! Jadsxs K ’

and the contributions from the five o/ ambiguities in (3.6.2) to the effective action
are given in appendix D together with their Witten diagram expressions and Mellin
amplitudes. The contributions from lower o’ orders were defined in (3.4.4) and (3.5.3).
The prediction for the main contribution to the half-BPS correlator in position space

at this order is:

(OO0O0)| 0 .main = [ M1y Msy + perms] x 4% x 51

2o s _EXEY
41 (=2)16 Jaasxs T, (P + Q)"
(3.6.5)

where M;; was defined in (3.5.5). The Mellin amplitude of the main contribution is

i b b. b b. i
gz;m — maln Mam 1 _ Mam 2 Mam 3 Mam 4 32Mgll%m

- ?MZI;H — 1024 Mmain (3.6.6)
Where Mmaln 1Q.

At = 32[ (2,-1); (" + '+ u)

+(Zp-1)s (8%, (s* +t% +u?) - 28 (s 5+ tP T+ v’ i) - 14 (P e+t ¢y + U’ )

+(0p=1)5 (2 (265, +9) (57 + £7 + u?) + 252 (575 + ¢2 % + u’ ?)
+252(sScs +tPEe +ulic,) + 57 (s 2 +t2 ) +uPcl)
— 1445, (25 + 2T+ 02 a) - 23, (P oy + P+ u ey ) )

+ (1), (-840 (s 5 + ¢ 4 ud®) - 75 (sl + £ + uc))
~1260(s3%cs +tt e +uii®c,) - 570(sc2d+tcjt+uch i)
+7208, [(s8 +tT* +ud’) + (se, +tic, +uiey)]
+%(3362p—1)(sc§+tct2+uci)
-3, (1393, +27) [2(s5+ 1+ ud) + (scs + b +ucy)] )

191

+(Bp1), (840 (5 + 4+ ') + == (el cf + ) + 1680 (F ey + P ey + 7P ey
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+1140(§20§+f203+u c)+300(§ +3i+cS )

=g

- 9605, (% + 4 %) - -5 (v 4 )

Q:

-1440% (s cs +1 e+ 1 cu) 671% ( i+ )
+61052[(82+ 8+ @) + (Scs+Tep +iicy)]

573 1471

IR (GG rel) - ——%p-116%3)] (3.6.7)

and the Mellin amplitudes of the ambiguities are given in appendix D. Note that
this exhibits a similar structure to (3.4.7) and (3.5.11), since every line is multiplied
by a Pochhammer depending on the power of {s,t,u} and the rest is at most quartic
in the variables {s,t,u, 3,7, 1, c,, ¢, Cy, Y,} . Collecting all possible contributions at
this order, the complete Mellin amplitude for the half-BPS correlator at o' is given

by eleven terms:

Lo
Mo/7 - _ ( <7 maln
8
b b b b
+ Gl;o./\/lzr,l; y GQ;OMZI,I; 2+ G3;0M21,T71 5+ G4;0M?Xm + G5 oMam °

+D1 maln +E1M m _|_ B2 maln +O2M /5 +A4 mam) . (368)

The coefficients of the subleading terms remain unfixed at this order, to fix them we

would need additional information. As an example, let us look at the lowest-charge

correlator with p; =2 (as in the previous section we shift s - 5 -2 ¢ - 5 -2):

M2 12’7x60<a (32+t2+u2)2+a tu + (2H2Jr 2)+ ) (3.6.9)
_8 5 1 2S8TU as \ s Uu as] , .0.

with v =4-5s-t and

a; = 1512C7, Qo = 336 (D1 +48 (G5;0 - 2C7)) s
as = 42 By + 28 (D1 -6 (2 E,-18 GI;O -20 GQ;O +40 G3;0 -12 G5;0 + 23 47)) )

ayg = A4 -32 (3 B2 + 50 D1 -12 (2 E1 -18 GI;O -20 GQ;O + 40 Gg;() - 204 G5;0 + 335 C7)) .
(3.6.10)
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3.7 Conclusions and Future Directions

To conclude, in this chapter, we have postulated a simple effective field theory in
ten dimensions describing all four-point tree-level string interactions in AdSsxS®.
To obtain the interaction terms in the AdS;xS® effective action we start from the
flat space VS amplitude written as an infinite series in small o/, where the leading
term is supergravity and all subleading terms describe string corrections and can
be obtained from a scalar effective action in flat space. Lifting the interaction
terms in this flat space action to AdSsxS® by replacing the flat space derivatives
with 10d covariant derivatives containing both AdS and S derivatives we obtain the
curved space analogue of the scalar effective field theory. The main new tool to
obtain correlators from this effective action was to use a new formulation of Witten
diagrams and the Mellin transform which is manifestly 10d and treats AdS and S
on equal footing. We have shown that this simple description reproduces previous
results for all four-point correlators of half-BPS operators in N' = 4 SYM up to
order o®, and have proposed a general algorithm for extending this to arbitrarily
high order. From this algorithm we obtained new predictions at a’¢ and o/7. The
coefficients of the effective action can be determined by comparing to the flat space
VS amplitude, although there are curvature-dependent ambiguities which cannot be
fixed in this way and need additional input from other methods such as localisation.
After fixing all the coefficients in the effective action, the 10d Mellin amplitudes

derived from it can be thought of as the analogue of the VS amplitude in AdS;xS?.

Note that in the considerations above we have focused on the limit of tree-level string
theory for which all orders in the o' effective action are known in flat space. However,
the coefficients of the first three terms in the flat space effective action (3.1.17) (i.e.
up to d5¢*) are actually known at the full non-perturbative level as functions of the
string coupling [111-115]%. These results imply that the coefficients in (3.1.19) can be

promoted to full functions of the complex Yang-Mills coupling 7 = 0/(27) + 4wi N o'

9We thank Congkao Wen for drawing our attention to this.
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(see (3.1.2), where 6 is the Yang-Mills theta-angle and we recall that Na/? = g7, if

we set the AdS radius R = 1). Specifically they are promoted as

/ , 1 _
(5) 4= (%) 2 @ NY xE(3,7,7) ,
, , 1 _
() Bo=(5)'¢ - GN)E sE(G.7.7)
/ / 1 _
(5) Do=(5)" 267 ~ Gy =3€G33m7). (3.7.1)

where Ag, By, Dy are the leading coefficients in the first, second, and fourth lines of

the left column in (3.1.19),
E(s,7,7) =20s(3(7))*(1+...) (3.7.2)
are non-holomorphic Eisenstein series and

£(3,2,3,7,7)=2(G)*(I(n))*(1+...) (3.7.3)

is a generalised Eisenstein series. In the above two equations the ellipses denote
perturbative and non-perturbative terms which vanish when J(7) — co. The precise
definitions of the functions can be found for example in [98]. The modular functions
in (3.7.1) are a consequence of the SL(2,7Z) symmetry of IIB string theory (see
subsection 3.1.1), which can be understood from compactifying M-theory on a torus

Y ]

and identifying the IIB coupling 7 with the complex structure of the torus |

Furthermore, recently in [98, , | the corresponding dual (but lowest-charge
only) correlators were considered and completely fixed via localisation to all orders.
This then fixes the remaining ambiguities at this order (assuming B; = C; =0 as we
discuss around (3.5.13) and the second bullet point below) in terms of the above

functions as

3 D
C() = —§B0 y AQ = —3OBO ; E(] = ?0 . (374)

These relations follow from the earlier results in (3.4.18) and (3.5.14), respectively.

In summary, the 10d effective action in (3.1.18) appears to be a very useful way to
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describe IIB string theory in AdSsxS® and a powerful tool for computing four-point
correlators in N =4 SYM. We will propose a similar effective action for AdS,xS? in

chapter 5.

Future directions

Let us now discuss some interesting questions for future research.

« Firstly, we have not proven the existence of the 10d scalar effective field theory
but rather justified it by showing that it reproduces known results for string
corrections to IIB supergravity in AdS;xS® which were previously obtained
using bootstrap methods in [l 1-15]. Hence, it would be very interesting to
prove the existence of this local effective field theory and to do so one would
consider the superspace formalism. As on flat background [93], IIB supergravity
linearised on the AdSxS superspace background is again described by a chiral
scalar superfield with a certain fourth-order constraint [1 19, 120]. It presumably
then makes sense to integrate a superpotential consisting of a holomorphic
function of this scalar in chiral AdSxS superspace. This then leads to the
question of the existence of an effective chiral superpotential describing the
full nonlinear theory. Such an object has been discussed before [121-123] and

it would be interesting to explore this point further.

o As we have seen above, the effective action has ambiguities corresponding
to curvature corrections which vanish in the flat space limit. For low orders
in o', we find that these ambiguities can be fixed by comparing to results
from localisation. It would be interesting to understand whether one could
find a systematic way to fix all the ambiguities. If this were possible, the
next question would be whether we can resum the o/ expansion to obtain a
compact form analogous to the flat space VS amplitude. If so, how does the
analytic structure become modified in curved background? Note here that, as

observed below (3.5.13), the explicit results for these ambiguities obtained via
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localisation are completely consistent with all odd powers in the expansion of
o'/ R? vanishing. Since the curvature has opposite sign for AdS (~ -1/R?) and
S (~ 1/R?), it is perhaps quite natural to expect that only even powers of the

curvature should contribute.

Another important direction would be to extend this approach to other back-
grounds. As explained above, in N' =4 SYM the supersymmetry factors out
of certain correlators in a very simple way making it possible to derive them
from a 10d scalar theory in the bulk. We expect this factorisation to hold
when the bulk geometry is AdS,xS? with p = ¢, but not when p # ¢. And
we will propose the existence of such an action for AdS;xS? in chapter 5 and
deduce the consequences. For AdS,xS? with ¢ = 3,5, it was recently shown
that supergravity correlators enjoy conformal symmetry which can be used to
lift the lowest-charge half-BPS four-point correlator to all higher-charge correl-
ators [11, , |. It would be interesting to investigate the relation of this
higher-dimensional conformal symmetry with the explicit higher-dimensional
integrals (AdSxS Witten diagrams) we write down here. We will investigate
this further in chapter 5 where we study holographic correlators in AdS,;xS?
in the context of a 4d hidden conformal symmetry as well as derive higher-
derivative corrections from a 4d scalar effective action analogous to the one in

this chapter.

It would also be interesting to extend this approach to higher-point correlators.
The four-point AdSxS contact diagrams have a direct generalisation to n
points. Note that an important feature of half-BPS four-point correlators in
N =4 SYM that allowed us to write down a simple effective action was the
ability to factor out a polynomial which encodes all the supersymmetry. This
is analogous to factoring out a supersymmetric delta-function §'6(Q) from a
maximally supersymmetric four-point superamplitude in flat space. Therefore,

it is not obvious how to generalise this approach to generic n-point functions.
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However, there are specific cases where similar properties hold as for example
for the n-point maximally nilpotent correlators — those with fermionic degree
n —4 [126—128] which have recently been studied at strong coupling in [110].
Thus, one might expect them to be computable from a 10d scalar effective

action just as for the four-point ones.

o It would also be conceptually very satisfying to derive the effective action
directly from CF'T without assuming local spacetime description in the bulk.
A systematic approach to such a derivation was achieved in the context of a toy
model consisting of a scalar field in AdS in [30] using crossing and conformal
symmetry of boundary CFT correlators. This calculation was adapted to stress
tensor correlators in A/ =4 SYM in [61]. The fact that IIB string theory in
AdS5xS? can be reduced to a simple 10d effective field theory therefore suggests

that this program might be realised for a full-blown theory of quantum gravity.

e In recent years, loop corrections to the amplitudes have been obtained via
bootstrap methods on the CFT side of the duality [ 1, 85, 87-92]. It would
be very interesting to perform loop computations directly on the gravitational
side. This is usually technically very difficult and one could hope that the
simplicity at tree-level uncovered from the approach in this chapter could help

to give new insight also at loop-level.






Chapter 4

AdS-xS%: Recursion Relations for
Anomalous Dimensions in the 6d

(2,0) Theory

This chapter is based on [13] and we mainly follow the structure of this paper.
We study anomalous dimensions of double-trace operators in the conformal block
expansion of stress tensor correlators in the 6d (2,0) theory. As mentioned in the
introduction, the 6d (2,0) theory is dual to M-theory in AdS;xS* and studying the
holographic correlators is a promising way of understanding M-theory better. In
this chapter we are interested in the stable 5d objects whose worldvolume theory
is the 6d (2,0) theory, the M5-branes. In the low-energy limit, [p — 0, M-theory
can be approximated by 11d supergravity which on the CFT side of the duality
corresponds to studying correlation functions in the limit N — oo, since in AdS;xS4
we have the relation {p ~ N71/3 and N is the number of M5-branes. Recent progress
has been made in computing all supergravity tree-level correlators in AdS;xS* in
Mellin space using constraints from the symmetry of the problem and the analytic
properties of the amplitudes [129, 130]. When going away from the strict large- N
limit and studying subleading terms we can learn something about higher-derivative

corrections to the 11d supergravity effective action. Since the CFT in question is
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non-Lagrangian and can therefore not be studied perturbatively, using conformal
bootstrap methods is a very promising approach (see chapter 2 for a review on
conformal bootstrap). We will use these methods to compute anomalous dimensions
of the operators in the conformal block expansion which will in turn tell us something

about the higher-derivative corrections.

Our main strategy, adapted from the seminal work of [30], is to expand the crossing
equations in the inverse central charge ¢, where it has been shown using holographic
methods, that ¢ ~ N3 [I31]. Next, one takes a certain limit of the conformal
cross-ratios, the so-called light-cone limit, to isolate the terms in the conformal
block expansion corresponding to anomalous dimensions of double-trace operators.
We then truncate the conformal block expansion in spin and use an orthogonality
relation of the hypergeometric functions in the superconformal blocks to derive a
recursion relation for the anomalous dimensions. For truncated spin L, we find that
the solution to the recursion relation depends on (L + 2)(L +4)/8 free parameters,
in agreement with holographic arguments of [30] (see section 2.3.2) and with the
explicit four-point functions found in [26]. In particular, they can be thought of as

the coefficients of higher-derivative corrections to supergravity in AdS;xS* arising

from M-theory [26] (see [10, (1] for similar results in N'=4 SYM).
A strategy for fixing these coefficients using a chiral algebra conjecture [132] was
proposed in [28]. Moreover, the M-theory effective action can also be deduced from

correlators of the ABJM theory [3], which is dual to M-theory in AdS,xS7 [27, 29].
As a warm-up for our analysis in the (2,0) theory, we first derive recursion relations
for anomalous dimensions in an abstract non-supersymmetric 6d CFT, which we
match against the conformal block expansion of Witten diagrams for a massive scalar
field in AdS;. The recursion relations we obtain for both the toy model and the

(2,0) theory can be efficiently solved using a computer.

We start with a brief review of the 6d (2,0) Theory/M-Theory in AdS;xS* corres-
pondence, followed by the derivation of recursion relations for anomalous dimensions

in a 6d toy model. Finally, we consider the 6d (2,0) theory, where we compute anom-
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alous dimensions which encode the higher-derivative corrections to the supergravity

effective action.

4.1 Review: 6d (2,0) Theory/M-Theory in

AdS7XS4

In this section we briefly review some aspects of the correspondence between the
6d (2,0) theory and M-theory in AdS;xS*. Other important concepts used in this
chapter are conformal bootstrap methods and higher-derivative corrections which

were both reviewed in chapter 2. For a more detailed review on M-theory see e.g. [71].

The 6d (2,0) theory is the six-dimensional worldvolume theory of M5-branes with
OSp(8*|4) symmetry, which is the maximal supersymmetry in 6d. The worldvolume
theory of a single M5-brane can be formulated in terms of an abelian (2,0) tensor
multiplet [133-135]. The field content in this case consists of five scalars ¢!, eight
fermions and a self-dual two-form gauge field. Generalising this to a higher number
of branes and thus considering the interacting 6d (2,0) theory is very difficult. It
is believed to be non-Lagrangian, since a 6d local Lagrangian can be ruled out by
powercounting as it would contain non-renormalisable and unbounded interactions.
In [19] a 5d Lagrangian, which is believed to capture the full 6d physics, was proposed.
The 6d (2,0) theory is manifestly non-perturbative and the only tunable parameter
is N, which is the number of Mb5-branes. Therefore, a very promising approach
to study correlators in this theory is to constrain the CFT data using conformal
bootstrap methods. This in turn will tell us something about the bulk dual, M-
theory in AdS;xS%, or more specifically about the higher-derivative corrections to the
low-energy approximation, which is 11d supergravity. Note that higher-derivative
corrections can also be deduced from uplifting string calculations [111, , |. Let
us briefly review the field content and action of 11d supergravity before we discuss

holographic correlators in this example of the AdS/CFT duality.
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4.1.1 11d Supergravity

We start by considering the field content of 11d supergravity, where we focus on the
bosonic fields for our considerations. Firstly, the graviton which is a supersymmetric
traceless tensor of the symmetry group SO(9) has 44 bosonic degrees of freedom,
which counts the number of independent components of a symmetric 9 x 9 matrix
subtracting one because of tracelessness. For the theory to be supersymmetric, the
number of physical bosonic and fermionic degrees of freedom needs to be the same.
The only fermion field in the theory is the gravitino W), which has, in addition to
the vector index, an implicit spinor index. It is a 32-component Majorana spinor for
each value of the index M and has 128 fermionic degrees of freedom (see e.g. [51]
for more details on the fermionic degrees of freedom). To get the right number of
bosonic degrees of freedom (compared to 128 fermionic ones) one needs to include
a rank-3 antisymmetric tensor, represented by a three-form Aj. The theory is then
invariant under gauge transformations A3 — Az + dAy, where Ay is a two-form.
As a consequence of the gauge invariance the indices for the independent physical
polarisations are transverse (as for any antisymmetric tensor gauge field). Hence, the
three-form in 11 dimensions has 9 x 8 x 7/3! = 84 degrees of freedom and combining
this with the graviton gives 44 + 84 = 128 bosonic degrees of freedom which agrees

with the fermionic ones.

The bosonic part of the action of 11d supergravity is then given by
1 1
2/@%15 = f dll{L‘\/ -G (R - §|F4|2) - 6 / A3 AN F4 AN F4 R (411)

with the scalar curvature R, the field strength Fy = dA3 and the 11d gravitational
coupling constant k1. The coupling constant is related to the 11d Newton constant

G4 and the 11d Planck length Ip as follows:

1
167GN? = 2K3, = %(271'113)9 : (4.1.2)
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G is defined as det Gj;n where Gy is the metric combination
Gun =napEyEY | (4.1.3)

with nap being the flat metric and Ef; a vielbein field where the indices M, N, ...
describe curved base-space vectors in 11d and transform non-trivially under general
coordinate transformations. The indices A, B,... on the other hand describe flat
tangent-space vectors which transform non-trivially under local Lorentz transforma-

tions. The quantity |Fy|? is defined as
1
|Fy? = IGMlNl LGMNap o F N (4.1.4)

Note that the goal of this chapter is to go beyond the supergravity approximation
and obtain the form of higher-derivative corrections to the low-energy effective
action (4.1.1). We approach this by computing anomalous dimensions of operators
in the conformal block decomposition of the four-point stress tensor correlator in

the dual conformal field theory.

4.1.2 Holographic Correlators

We are interested in the study of four-point stress tensor correlators. The stress tensor
belongs to a half-BPS multiplet whose superconformal primary, 77, is a dimension-4
scalar in the two-index symmetric traceless representation 14 of the R-symmetry
group SO(5). As described in the review 2.3, general chiral primary operators are
constructed from scalar fields as ¢(1p’2 ... ¢fx), which is totally symmetric and all
traces are understood to be removed. The superconformal primary of the stress
tensor multiplet in the 6d (2,0) theory is then constructed from the scalar fields ¢!

in the abelian (2,0) tensor multiplet as follows

T[J = Tr(¢I¢J) - %Tr(gngbK) > (415)

where k£ = 2 and its scaling dimension is 2k = 4. Let us now consider the holographic

duals of these operators. Dimensionally reducing the bulk dual on the four-sphere
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yields a Kaluza-Klein tower of scalars in AdS; with masses m3 = 4k(k — 3) in units
of the inverse AdS radius [138], which agrees with (2.3.2). The KK modes are
the holographic duals of chiral primary operators with k indices which have scaling
dimension 2k. The superconformal primaries of the stress tensor multiplet 77, (4.1.5),
which are the focus of this chapter, correspond to the bottom of the tower, k = 2,

and are dual to bulk scalars with mass m?2 = -8.

Four-point correlators of stress tensor multiplets were computed in the supergravity

approximation in [139], and a conformal block decomposition of these results was
subsequently carried out in [17]. More recently, corrections to the supergravity ap-
proximation were deduced in [20] by constructing solutions to the crossing equations

whose conformal block expansion is truncated in spin. In section 4.3, we will derive
recursion relations for the anomalous dimensions appearing in the conformal block
expansions of these solutions. These recursion relations allow one to directly com-
pute the OPE data of these solutions without having to know them explicitly, and

can be straightforwardly implemented on a computer.

Before we go on and study the four-point stress tensor correlator in the (2,0) theory
we consider a general bosonic six-dimensional CFT to illustrate our strategy of
deriving recursion relations for anomalous dimensions and interpreting them to give

insight into the higher-derivative corrections to the low-energy effective action.

4.2 Toy Model

In [30] the authors considered four-point correlators of scalar operators in an abstract
non-supersymmetric CFT in two and four dimensions, and showed that the solutions
to the crossing equations whose conformal block expansion is truncated in spin are
in one-to-one correspondence with local quartic interactions of a massive scalar field
in AdS (modulo integration by parts and equations of motion). In this section, we
will carry out a similar analysis for a toy model in six dimensions as a warm up for

our analysis of the 6d (2,0) theory in the next section. In particular, we will analyse
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four-point correlators of a scalar operator O with classical dimension Aj. Recall the

form of four-point correlators [10]

F(u,v)

A Ao
71y) ™" (237"

where z; is the position of the ith operator, x?j = (z; - xj)2, and F' is a function of

(O1(21)O9(22) O3(w3) Ous(74)) =

(4.2.1)

the conformal cross-ratios

2 .2 2 .2

T55T T5,x
U:_;Q 34:22, U:%:(l_z)(1_§)7 (422)
13724 L1324

where we will use the variables (u,v) interchangeably with (z, Z), see also section 2.1.
Note that exchanging xs with x4 corresponds to exchanging v and v, or (z,z) with
(1-2,1-2). Invariance of the correlator under this exchange (known as crossing

symmetry, see (2.1.6)) then implies the following constraint on F:
v F(u,v) = u? F(v,u) . (4.2.3)
In this model, the primary double-trace operators are schematically
O =00d,,...0,,00 | (4.2.4)

which have scaling dimension A = 2n + [+ 2Aq + O(1/c), spin [ and naive twist

2n + QA()

The conformal block expansion of F(u,v) is then given by the following sum over

primary operators:

Fu,v) = ), AniGR(2,2) (4.2.5)

n, >0

where A, ; are OPE coefficients and Ggl are six-dimensional bosonic conformal
blocks, which implicitly depend on n through the scaling dimensions of the conformal
primary operator A. They are given in terms of hypergeometric functions and we
spell them out in appendix E. Note that A, ; =0 when [ is odd since operators with
an odd number of derivatives in the OPE of two identical operators correspond to

descendants.
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The function F' can be obtained from tree-level Witten diagrams for supergravity
(see [30], and section 2.3). However, the main point of this chapter is to derive the
anomalous dimensions that appear in the conformal block expansion of the correlator
directly from a recursion relation derived from (4.2.5) without requiring knowledge

of the explicit form of the correlators.

The first step is to expand the OPE data in 1/c:
A=A 140 A=n+l+20+ 2 4.2.6
nl = n,l+g wi tos =2n+1+ 0+E%’l+'" (4.2.6)

Firstly, let us compute the free OPE coefficients Aflol) from the conformal block
expansion of the free disconnected part of the four-point correlator which is given by

Ag

Firee(y,v) = 1+ub0 + v

el (4.2.7)

The leading contribution to the OPE coefficients is then given by

) _ 2(1+2) (200 +1+2n-2) (200 + 1+ 2n - 3) ((Ag + n — 3)1)?

(A =32 (A= DD RI(1+n+2)1 (200 + 21— 6)! (2A¢ + 21 + 21 — 2)!

x (Mg +1+n—-1)) (280 +1-6)! (200 + 1 +n—4)! (4.2.8)

for even [ and zero otherwise. In the next subsection, we will derive recursion
relations for the anomalous dimensions 7, in (4.2.6). After solving the recursion
relations, we can then deduce the 1/c correction to the OPE coefficients A,(Ill) using

the following formula:

1
ALY = S0 (A1) (4.2.9)
This formula was first found in two and four dimensions [30), | and was sub-

sequently observed to hold in six dimensions [20].

4.2.1 Recursion Relations

In this subsection, we will derive a formula for the anomalous dimensions of double-
trace operators in the toy 6d CFT described above following the method developed

for 2d and 4d CFTs in [30]. This formula will be written as a sum over the spin
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of the operators and will depend on two non-negative integers p and ¢. Truncating
the sum over spin to maximum spin L and choosing p and ¢ appropriately will then
give rise to recursion relations for the anomalous dimensions, which can be solved
for arbitrary twist and spin [ < L in terms of (L + 2)(L + 4)/8 free parameters, in
agreement with counting of solutions in lower dimensions and holographic arguments,

as we will describe in subsection 4.2.2.

After expanding the OPE data in 1/c in (4.2.6), expanding the conformal block
decomposition (the right hand side of (4.2.5)) in 1/c and inserting this into the
crossing equation (4.2.3) then gives

b 3 [A;{} GB \(.7) + %Aﬁf}} Yt 0,GB (2, z)] C(uev)=0.  (42.10)

n,1>0

Note that in general there will be degeneracy in the free theory, i.e. more than
one operator with each given naive dimension and spin. Consequently, in (4.2.10)
the free conformal block coefficient gives a sum over these operators of three-point
coefficients squared, Afl?l) = 2:(0a,04,0;)%. Then 7, is in reality the so-called ‘av-
eraged anomalous dimension’ 7,,; = (X;(O0a;0n00i)? Yn1:)/(Xi(Oa,On,0;)?) where
Yn,i are the anomalous dimensions of the individual operators. To obtain the indi-
vidual anomalous dimensions requires more data, for example four-point functions
of operators with different dimensions. We will solve mixing problems like these for
1d correlators in chapter 5 but in the present chapter our focus lies on the averaged
anomalous dimensions since they contain information about the higher-derivative

terms in the low-energy effective action.

The exact form of the conformal blocks is given in appendix E, but they are given

as a sum of products of hypergeometrics with the following schematic form

iDL Q_an)?)ka(z)kﬁ(é) , (4.2.11)
where
kg(z) =211 (5,5,6,2) : (4.2.12)

From this we see that 9,G7} (2, Z) gives a contribution of the form log(u) =log(22),
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and the analogous term in the cross channel will contribute log((1-2)(1-2)). As a
result, we can isolate the terms containing the anomalous dimensions in both channels
simultaneously by taking the log(z)log(1 - z) coefficient of the crossing equation as
z = 0 and z — 1. This limit is referred to as the light-cone limit. In order for the
crossing equation to be consistent, the log(z) coming from 8nGgyl(z, Z) must thus
be accompanied by a log(1 - z). Such terms indeed arise from the hypergeometrics

depending on z after making use of the relation

ks(Z) =log(1 - Z) ks(1 - Z) + holomorphic at Z=1 |, (4.2.13)
where
aﬂz):_IKﬁLQPg(g g,Lz). (4.2.14)

r(s)

Similarly, the hypergeometrics depending on 1 — 2z in the cross channel will give rise

to log(z).

In summary, we take the log(z)log(1 - z) coefficient of (4.2.10) as z > 0 and z - 1

yielding the refined crossing equation:

Z A(Ol fynl (anG2Bn+l+2A0,l(Z7 5))|]ogzlog(1—2) =

n,120
0 _
u IZO Afll)'Ynl ( G2n+l+2A0 l( -2,1- Z))‘logzlog(l—i) ) (4215>
n,l>

into which we insert (the precise forms of) (4.2.11) and (4.2.13) to obtain sums of
terms of the form k,(2)ks(1 - 2) and ko(1 - 2)ks(2). To extract a purely numerical
recursion relation we use an orthogonality relation between hypergeometric functions

obtained in [30)]

d /
S = B e 2 4 (2) g () (4.2.16)
2

for more details on this relation please see appendix F. To use it, one has to mul-

tiply (4.2.15) in terms of sums of the schematic form k& by

koog(2)  kop(1-2)
5= Ag+q (1 _ 5)5—A0+p )

(4.2.17)
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which leads to a sum of terms of the schematic form k k k k, where p and ¢ are arbit-

dz g dz
27 21

rary non-negative integers. Then, performing the contour integrals ¢ where
the contours encircle (z,z) = (0,1), one can use the orthogonality relation (4.2.16),
which takes two of the k’s per term and turns them into numerical expressions.
Additionally, to make sense of the terms of the form k% we define the following
integral

dz (1-z)mBo+3 -

T = Foom (2) K—ams (2) . (4.2.18)

A1 Zm’—AO+5

Finally, we arrive at the following equation:

L oo
0= Z Z Ag’)l)’}/n,l [(l + 1) (5q,l+n+3IA0+n73,p+Aof4 - 5q,nIA0+l+n,p+Aof4)

1=0 n=0
+ (l + 3) (5q,n+lIAo+l+n—1,p+A0—4 - 5q,l+n+QIA0+n—2,p+Ao—4)
+ Pn,l (5q,l+n+31.Ao+n—1,p+Ao—4 - 5q,n+2IA0+l+n,p+Ao—4)

+ Qn,l (5q,n+1IAo+l+n+1,p+Ao—4 - 5q,l+n+4IAg+n—2,p+A0—4) - (q And p)] ; (4219)

where
P = (1+3) (Ao +n—2)" (200 +1 +2n - 4)
" (@A +2n-5) (289 + 20 - 3) (280 + [+ 20-2)
2
On (I+1)(Ag+1+n) (200 +1+2n—-4) (4.2.20)

T 420y +1+2n-2) (200 +20+2n-1) (2R + 2 +2n+1)

Note that we have truncated the sum over spins in (4.2.19) to a maximum spin
L. Recursion relations for the anomalous dimensions are then obtained by making
particular choices of p and ¢, and the solutions are labelled by L. In the next
subsection we will explain how to solve the recursion relations for L = 0,2 before

describing a general algorithm to solve the recursion relations for any L.
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4.2.2 Solutions

Let us first consider the L = 0 spin truncation in (4.2.19). In this case, setting ¢ =0

leads to the following recursion relation in terms of p:

4
IA07P+A0*4AE)?370,0 = Z CQA;?)GI’Ofyp—a,O ; (4221)
a=0

where

Co =Zping,n0-4 »

(p+ A0 =1)" (p+ D0 -3) Tpingaes
p+A0—2)(2p+2A0—1) (2p+2A0—3) ’
+ 3 (p + AO - 4)3 Zp+A0—2,A0—4

4(p+A0—3) (2p+2A0—7) (2p+2A0—9) ’
- 3(p+280-5)" Tping 4,004
4(p+A0—4) (2p+2A0—9) (2p+2A0— 11) ’

cr o P+ D80=9)" (p+ A= 6) Tpny 68,
YT A(p+Ag-5)(2p+200-T) (2p+2A0-9)

Cl = - 3Ip+A0—2,A0—4 - 4(

Cy =3ZLpsAg-4,00-4

03 == Zp+A0f6,A0f4

(4.2.22)

This recursion relation can be solved for all 7,, o with 7 > 0 in terms of vy as follows:

VZ%H_O(AO) oo (240 -3) (QAOQ_ Dn+1)(n+2)(Ag+n-2)(Ag+n-1)
8 (Ao —2)2 (Do —1) (280 + 21— 5) (200 + 20 - 3)
(2A0+n-5)(2A0+n—4)
: (28, + 20— 1) ’

(4.2.23)

where we divided by Aff()), see (4.2.8).

For L = 2, first choose (p, ¢) = (1,0) to obtain v, o in terms of three unfixed parameters
{70.0,70.2,712}. For p > 1, one can then solve the equations with ¢ € {0,1} for ~,,
with [ € {0,2} in terms of v, with p’ < p and I’ € {0,2}. In the end, we obtain a
solution for all ,,; with [ € {0,2} in terms of {70,%.2,71.2}. We find the following

solutions for general scaling dimension Ag:

spin-0

Tn,0 (AO)

72?511‘2 (Ao) =
70,0

(V0.0 + 70,2 f1 (7, 80) + 112 f2 (1, o)) (4.2.24)
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spin-0

S (Ag) = - Yo (Do) (240 +1)° (24 +3) (2—1)(n +23)(n+4)
70,0 4 (Ag-1)AF(Ap+1)
(Ag+n)(Ag+n+1)(2A0+n) (2A0+n-3) (2A0+n—-2)
g (280 - 3) (200 + 20+ 1) (200 + 201+ 3)
400 (200 +3) (280 +5)n (2Ag +n — 1) )
(Ag+1) (Mg +2)° (280 -1) (240 +1) (n=1) (2Ag + 7))

(4.2.25)

x (70,2 ~ 71,2

where

(200 + 1)? (20 + 3) n (280 +n - 3)

fi(n,80) = (Ao —1) Ad (Ap + 1) (280 - 3) (200 +2n—7) (200 + 2n + 1)

x (5n6 +15 (280 - 3) n® + (89AF - 161A¢ + 127) n* + (2A¢ - 3)

x (T8AF = 2200 +29) n® + 2 (82A§ — 143A - 107AF + 117Ag — 39) n”

+ (240 - 3) (48A7 — 14A7 - 215AF - 33A¢ - 6) n

6 (Ao —1) A% (240 - 7) (4A% + 12A3 + 570 - 1)
" 2A0+1 ’

(200 + 1) (280 +3)? (20 + 5) n (2 + 1 — 3)
(3-2A0) (Ao —1) A% (Mg +1)% (Mg +2)% (240 — 1) (240 + 20— T7)
1
Ao+ 2n+1)

fa(n,Ao) =

(20n° + 60 (2209 - 3) n® + (42 (892 ~ 199) + 508) n*

+4(200 - 3) (T8AF - 98A¢ +29) n® + 8 (Ag (240 (Ag (4140 - 131) + 104)
—27) = 39) n? + 4 (200 - 3) (Ao (Ag (440 (1240 - 25) —41) +21) - 6)n

+24 (A0 - 1) AF (A +1) (280 - 7) (249 - 1)) . (4.2.26)

We will discuss these solutions and solutions with general L below, but first let us

describe an algorithm to solve recursion relations for general L.

Algorithm to solve recursion relations for any spin-L truncation

Recursion relations for the anomalous dimensions of double-trace operators for a
general spin-L truncation are encoded in (4.2.19) for the bosonic toy model and
below in (4.3.19) for the (2,0) theory, respectively. They are obtained by specifying

a spin truncation L and making appropriate choices of non-negative integers p and
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q. The general algorithm for solving the recursion relation for any L is as follows:

For each 1< p < L/2, write down the equations for 0 < g <p—1.

Solve these equations for 7,; with 0 <[ < 2p -2 in terms of v, with

(p<p-1,I'<L)and (p'=p,2p<l'<L).

For each p > L/2 + 1, write down the equations for 0 < ¢ < L/2.

Solve these equations for v,; with 0 < [ < L in terms of ~,  with

(p<p-1,I'<L).

In the end, this algorithm will give all 7,,; with I < min(2n -2, L) in terms of all
Yorr With 2n’ < 1" < L, which correspond to (L + 2)(L +4)/8 free parameters as
depicted in figure 3 of [30] (for a review of the holographic arguments of [30] see
subsection 2.3.2). This algorithm can easily be implemented on a computer! by
generating all the free parameters for a given L, writing down the equations for
every p>1 and 0 < ¢ <min(p—1,L/2), replacing (L +2)(L +4)/8 of the anomalous
dimensions by the free parameters, and solving these equations for the remaining

anomalous dimensions.

Discussion of solutions

For a spin-L truncation, we find that the solution depends on (L+2)(L+4)/8 unfixed
parameters, as described above for general L and illustrated in the L = 0,2 cases.
This agrees with the holographic arguments of [30] (see subsection 2.3.2). Recall
that the four-point correlators are dual to local quartic interactions in the bulk.
Specifically, there are L/2+1 independent interactions which can create or annihilate
a state of at most spin L, with the total number of derivatives ranging from 2L to
3L in intervals of two. For the cases we considered in the discussion of the recursion

relation above, there is one spin-0 interaction vertex with no derivatives ¢*, and

IThis can be seen in the auxiliary Mathematica file 6drecursion.nb of [43].
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two spin-2 interaction vertices ¢2(V,V, ¢)* and ¢2 (V,V,V,$)* with four and six
derivatives, respectively, see (2.3.19). The total number of interactions up to spin L

is then given by ZZL:/OQ(Z +1)=(L+2)(L+4)/8.

Note that this is the same number as there are unfixed parameters in the solutions
to the recursion relations above. Thus, these unfixed parameters can be identified
with coefficients of the bulk interaction vertices. Indeed, we have verified that the
solution in (4.2.23) reproduces the anomalous dimensions in the conformal block

expansion of a Witten diagram for a ¢* interaction (see [30] and subsection 2.3.1)
Fspin—O(u, U) = C(O)DAO Ao Ao Ag (4227)

for the following choice of the free parameter:

CO ((Ag-1))*
Yo0,0 = — )
(24 - 1)!

(4.2.28)

where the coefficient C(©) is unfixed and the definition of D-functions was reviewed
in chapter 2 around (2.3.17). Note that the anomalous dimensions of F*®P-0 are
obtained by expanding this function according to (4.2.10) but without considering

the crossing equation.

Moreover, the L = 2 solution encodes the anomalous dimensions in the conformal
block expansion of Witten diagrams with four- and six-derivative interactions (again

see [30] and section 2.3.2)

spin-2 _ ~(2) =
F4 (U,’U) —04 (1 +U+U) DAO+1A0+1A0+1A0+1 s (4229)
spin-2 _~(2) =
FG (u,’U) _06 (DA0+2A0+1A0+2A0+1 +DAQ+1A0+2A0+1A0+2
9 = _
+tu DA0+2 A0+2 A0+1 A0+l tu DA0+1 A0+1 A0+2 A0+2

= —
+v DA0+1A0+2A0+2A0+1+UDAQ+2A0+1A0+1A0+2) I (4230)

for the following choice of free parameters:



Chapter 4. AdS;xS*: Recursion Relations for Anomalous Dimensions
92 in the 6d (2,0) Theory

CA(AD) (A D)1 2401 ((Ag + DN (Ap +2)!

{’Yo,o, 70,2, 71,2}4 = Cf) {

(2A0+2)! 3(2A0+1) (240 +4)! 7
(A0+1)(2A0—1)(A0—1)!((A0+2)!)2(A0+3)!
- 3(200 +3) (200 +6)! } (42:31)

i
2(300+2) Ag! ((Ag + 1))’ (Ag +2)!
3(2A0+1) (240 +4)! ;
(Ag+1) (6AZ+7A¢—2) (Ao~ 1! ((Ag +2)!)? (Ag + 3)!}
3(24¢ +3) (249 +6)! ,

(4.2.32)

where the coefficients Cfg are unfixed. Even though the contact interactions can be
obtained from Witten diagrams in AdS case by case for spin-L truncations and this
could be used to obtain the anomalous dimensions of double-trace operators in the
OPE, computing the anomalous dimensions from a recursion relation is much more
efficient. The recursion relation does not require the knowledge of the exact form of
the correlators, one only needs the conformal blocks (and the free theory coefficients)
and can derive the averaged anomalous dimensions for any spin-L truncation easily.
Furthermore, the algorithm for general L solutions described in subsection 4.2.2 can
be implemented on a computer which makes it very efficient to obtain anomalous

dimensions for any L.

Importantly, the number of derivatives in the bulk interactions can be read off from
the large-twist behaviour of the corresponding anomalous dimensions. Indeed, the
anomalous dimensions of F*P™0 gcale like n? in the large-n limit, while those of
EP™2 and F5P™ scale like n7 and n?, respectively. In other words, the anomalous
dimensions associated with four- and six-derivative interactions scale like n* and n®
compared to those of the ¢* interaction. Studying the anomalous dimensions ob-
tained from the recursion relations, there is a subtlety for L > 0. The solutions (4.2.24)
and (4.2.25) both scale like n?; so they both correspond to six-derivative interactions.

We know however, that for L = 2 there should also be a four-derivative interaction
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corresponding to anomalous dimensions scaling like n” and it turns out that this is
included in the solutions as follows. For a specific choice of the ratio between the
coefficients 7o and 7 2, the scaling of (4.2.25) reduces to n”, which can be easily
deduced by imposing the vanishing of the large-n limit of the last line in (4.2.25).

The choice of free parameters is

C(Ag+1) (Ag+2)° (280 - 1) (240 +1)
na2= 40, (21, +3) (28 + 5)

70,2 - (4233)

Note that the solution in (4.2.31) is consistent with this constraint. More generally,
for a spin-L solution one can deduce L/2 constraints on the coefficients (corresponding
to bulk interactions with the number of derivatives ranging from 2L to 3L — 2
in intervals of 2) by analysing the large-twist limit. Unconstrained coefficients
then encode the freedom to add solutions with lower spin or subleading large-twist

behaviour.

We will discuss this further in the 6d (2,0) case in subsection 4.3.2 where the
anomalous dimensions encode information about the higher-derivative corrections
to the low-energy 11d supergravity action. Let us now go on and derive recursion

relations for the supersymmetric theory.

4.3 (2,0) Theory

In this section we will adapt the analysis of the previous section to four-point stress
tensor correlators of the 6d (2,0) theory. Recall from the review in section 4.1.2 that
the superconformal primary of the half-BPS multiplet is the dimension-four scalar
Ty in the two-index symmetric traceless representation of the R-symmetry group
SO(5). Tts holographic dual corresponds to the bottom of the KK tower, k =2, and

has mass m? = -8.

As shown in [17, ], superconformal symmetry constrains the four-point function

of stress tensor multiplets in the 6d (2,0) theory in terms of a prepotential F'(z, 2)
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as follows:
(2= 2) (q13924) TV ToT5Ty) = D(SF (2,2)) + S2F (2,2) + S2F (2,2) ,  (4.3.1)

where D = - (0, - 0; + (2 - 2)0.05) (2 — z) and the variables z, z are defined in terms
of the spacetime cross-ratios (4.2.2). We have introduced auxiliary variables Y to
contract the SO(5) indices of Ty via T; = Ty, Y;'Y,”. Using these internal coordinates,

we then define superpropagators g;; = Y; Y /xfj and internal conformal cross-ratios

Yi-YoY5- Yy
Yi-YaYa Yy

Yi-YiYs Y3

— 4.3.2
Vi-YsYa Yy (432)

vy = (1-y)(1-9)=

in terms of which we define §; = (z-y) (z-9), So=(z2-y) (2-¥), and § = 5 S>.

Crossing symmetry implies that
F(u,v) = F(v,u) . (4.3.3)

This is important because as there is a crossing symmetric prepotential in terms of
which the correlator is constrained, one does not need to consider the full correlator
but studying the much simpler prepotential is enough. Moreover, we can write
F(u,v) as

F(z,2) = %+M+(z—2) G(z,2), (4.3.4)

u(z-2)
where each function in this decomposition encodes certain contributions to the OPE.
Roughly speaking, A encodes the unit operator, g encodes protected operators, and
G encodes non-protected double-trace operators, which will be our main interest.
In more detail, these operators have the schematic form 70! 0" T with n > 0 and
scaling dimension A =2n + [+ 8+ O(1/c). They contribute to the conformal block

expansion of G as follows 2

(z-2)*G(2,2) = ZZ:OAM GSM(Z, z), (4.3.5)

n,l>

where the supersymmetric conformal blocks GSA’l(z, z) are given in appendix E, and

2Note that the conformal block expansion of G also contains protected double-trace operators,
which correspond to n € {-1,-2} in our conventions, but we will not need to consider these operators.
For more details, see [17].
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implicitly depend on n through A. Note that equations (4.3.3) and (4.3.4) imply

that G obeys the following crossing relation:
G(z,2)=-G(1-2z,1-2) . (4.3.6)

Again we start by computing the leading free theory coefficients which are obtained
from the free disconnected part of the four-point correlator. This can be computed

in the abelian theory and corresponds to the following prepotential:

: 1
Ffree—dlsc(u,,v) =1+ — +
u2

. (4.3.7)

Decomposing this function according to (4.3.4) and computing the conformal block
expansion of the piece encoding the non-protected operators according to (4.3.5)

then gives the following formula for the leading contribution to the OPE coefficients:

(U+2)(n+3)(n+D)(1+2n+9)(1+2n+10) (I +n+5)! (I +n+6)!
72 (2n+5)! (20 + 2n + 9)! '

A -
(4.3.8)

As we have established, our focus in this chapter are the higher-derivative corrections
to the supergravity approximation which we will discuss in the following subsections.
Nevertheless, it is interesting to analyse the tree-level supergravity result as well,

and this is done in appendix G.

4.3.1 Recursion Relations

To derive recursion relations for the anomalous dimensions of the double-trace oper-

ators described above, we follow the same procedure as section 4.2. First, expand

the OPE data in 1/c:

1 1
An :Afz(,)l)J“EAsl)J“' , A:2n+l+8+z%,l+... (4.3.9)
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Focusing on the part of the prepotential which describes non-protected operators
and expanding the crossing equation (4.3.6) to first order in 1/c then gives?
AW S (o2, L@ S (L s
> i Gag(z,2) + 5 Ani T OnGA(2,2) |+ (uev)=0. (4.3.10)
n,0>0

In the supersymmetric case, the conformal blocks have the schematic form

GAi(2,2) ~ Y uha(2)hs(Z) | (4.3.11)
where
hs(z) :2F1(§7§—1,5,Z) , (4.3.12)

see appendix E for the explicit form of the superconformal blocks. Following the same
reasoning described in the previous section, the term 8nGSA7l(z, Z) in (4.3.10) gives
a contribution proportional to log(z) and the analogous term in the cross channel
will give log(1 - Z), so we can isolate the terms containing anomalous dimensions
by taking the light-cone limit z - 0 and z — 1. In this case, the hypergeometrics

depending on z and 1 - z will give rise to log(1 - z) and log(z) using the relation

hs(Z) =log(1 - 2) (1 - 2) h(1 - 2) + holomorphic at z=1, (4.3.13)
where
TN I'(5) B B
hg(z)—F(g)r(§_1)2F1(2+1,2,2,2) . (4.3.14)

We thus consider the log(z)log(1 - 2) coefficient of (4.3.10) in the limit z - 0 and

> A 70 (0,65 1(2.2))]

n,0>0

= 3 A 3 (0,68 (1 - 2,1-2))|

n,0>0

log zlog(1-z)

(4.3.15)

log zlog(1-z) ’

into which we insert the (precise forms of) (4.3.11) and (4.3.13) to obtain sums of

terms involving ha(2)hs(1 - Z) and h(1 - 2)hg(z). To obtain a purely numeric

3Note that as in the toy model case, here Yn,1 are averaged anomalous dimensions.
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crossing equation, first multiply this equation by

haa(z)  hea(1-2)
24(1-2) (1-2)pz

(4.3.16)

where p and ¢ are arbitrary non-negative integers, and perform the contour integrals

dz § dz

5= ¢ 5=, which encircle (z,2) = (0,1). Again we use an orthogonality relation of

the hypergeometric functions and we prove this new relation in appendix F. It is

given by
dz Zm—m’—l
5m,m’ = a_ - h2m+4(Z) h—2m’—2(2) ) (4317)
2m 1 -
and defining the integral
dz (1-z)m3 .
TInmr = @ — ————hon(2) hoom(2) , 4.3.18
w= § o R (2) b (2) (43.18)
finally leads to the following equation:
L oo 0)
0= Z An,l 'le[Pn,l (5q,nzn+l+6,p+2 - 5q,n+l+3In+3,p+2)
=0 n=0

+ Qn,l (5q,n+2z_n+l+6,p+2 - 5q,n+l+3z_n+5,p+2)
+ Rn,l (5q,n+l+2:zn+4,p+2 - (5q,n+1:zn+l+5,p+2)

+ Sn,l (6q,n+l+4zn+4,p+2 - 5q,n+lzn+l+7,p+2) - (q - p)] ) (4319)

where we have truncated the sum over spins and defined

P I+1 Q1= (1+3)(n+5)(2n+1+8)

A3 (n+l+5) T M T A2+ T) (2n+9) (n+1+5) (2n+1+10)
R [+3 S (I+1)(n+1+7)(2n+1+8)

T m+3)(n+1+5) " T T A(n+3)(2n+1+10) (2n+ 20+ 11) (2n+ 20 +13)

(4.3.20)

As we explain in the next subsection and in 4.2.2, recursion relations for the anomal-
ous dimensions are obtained from (4.3.19) by making appropriate choices for p and

q, and solutions are labelled by the spin truncation L.
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4.3.2 Solutions

In this subsection, we will describe solutions to the recursion relations for low spin
truncations and match them with results previously obtained in [26], an algorithm
to obtain solutions for any L was described in subsection 4.2.2. For spin truncation

L =0, setting ¢ =0 in (4.3.19) gives the following recursion relation in terms of p:

1 0 4 0
R 6,p+2A((),3’Yo,0 = Z_E)Ca/l,(j_)ap’yp-a,o , (4.3.21)

where

Ip+6,2
O (pen)
3Ly (p+3)(p+6)Lps2
(p+2)(p+4) 4(p+2)(p+4)(2p+9)(2p+11)°
32,2 N 3 (P + 2) Lypia2
(p+1)(p+3) 4(p+3)(2p+3)(2p+5) "~
Iy2 3(p+1) Lo
p(p+2) 4(p+2)(2p+1)(2p+3) "~
_ p(p+3)Ip,2
4(p-1)(p+1)(2p+3)(2p+5)

1:

Cs =

C, (4.3.22)

This can be solved for all 7, ¢ in terms of vy to give

11 (n+1)g(n+2),
2304000 (2n+7) (2n+9) (2n+11) ’

spin—-0

fYn’O = ’}/0,0

(4.3.23)
where we divided by Aff()), see (4.3.8), and recall that x,, = '(z+n)/I'(z) is the Poch-
hammer symbol. It is interesting to compare this with the bosonic solution (4.2.23)
for Ay = 4:

. 35(n+1),(n+2)
spin-0 _ 4 2
(/Ybos)n’O - (foOS)0,0 96 (2n + 3) (2n n 5) (2’)’1, N 7) .

(4.3.24)

Similarly, following the procedure described in subsection 4.2.2, we obtain solutions

for L =2 in terms of three unfixed parameters {700, 70,2, 71,2}, which are :

spin-0

spin- ,ym
%%2=,j (V0.0 + 0.2 f1 (n) + 712 f2 (1)) (4.3.25)
0,0
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b2 _ VR 845 (n— 1) (n+5) (n+6) (n+8) (n+9)* (n+10) (n + 12)
2 Y0.0 4064256 (2n + 13) (2n + 15)
51n(n+11)
_ 4.3.26
g (%’2 2364 (n-1) (n+ 12)) ’ (4.3.26)
where
325n(n+9
fi(n)= ( )
1016064 (2n + 5) (2n + 13)
x (13n° + 351n° + 6201n* + 64233n° + 3854760 + 1251666n + 1512620)
1105 (n+ 9
fa(n)=- ( )

0483264 (2n + 5) (2n + 13)
x (5n% +135n° + 2157n" + 20601n> + 117468n? + 370494n + 441700) .
(4.3.27)

We discuss these solutions and what they tell us about the bulk interactions in the

following.

Discussion of solutions

Again, for spin truncation L, the solution will depend on (L + 2)(L + 4)/8 free
parameters, in agreement with the counting of solutions in section 4.2.2. Moreover,
our results for the anomalous dimensions agree with those obtained in [26], which
deduced solutions to the crossing equations whose conformal block expansions are
truncated in spin. In particular, the anomalous dimensions in (4.3.23) can be

obtained from the conformal block expansion of [20]
FSpin_O(U, U) = C(O)(Z - E)ZU’UD5755 s (4328)

where the coefficient C'() is unfixed. Decomposing F**"-0 according to (4.3.4) and
performing the conformal block expansion according to (4.3.10) gives the anomalous

dimensions in (4.3.23) if we choose the free parameter to be

7200 C'(©)

4.3.29
- (4.3.29)

Y0,0 = —
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Following the holographic arguments of [26, 30, (1], which were reviewed in sec-
tion 2.3.2, FPin-0 ghould arise from an R* correction to supergravity in AdS;xS?,
where R is the Riemann tensor. This can be seen by comparing the large-n limit
of the anomalous dimensions of the spin-L solutions to the anomalous dimensions
of the tree-level supergravity solutions at large n, see appendix G where one can
see that for supergravity the anomalous dimensions scale like n°. The difference
in the powers of n then predicts how many derivatives the spin-L interaction has
compared to supergravity. Note that in the large-n limit the anomalous dimensions
scale like n'! which is n® times the anomalous dimensions obtained in the super-
gravity approximation, indicating that the corresponding interaction vertex has six
more derivatives than supergravity. Since R has two derivatives and we are only

considering quartic interactions, the spin-0 correction is connected to a R* term.

Note that F'is a prepotential from which many four-point component correlators
(corresponding to different choices of Y;) are obtained by applying a differential
operator according to (4.3.1). This differential operator can be rewritten in terms of
u, v derivatives and if the prepotential is expressed in terms of D-functions then so
will all the component correlators. Whilst this does not prove that the prepotential
can always be expressed in terms of D-functions, this property holds in all the
examples we have considered, and it is natural to conjecture that it should hold in
general. A similar conjecture was made in [129] for four-point correlators of more

general half-BPS operators in the supergravity approximation.

For the L = 2 spin truncation, [26] found the following solutions to the crossing
equation:
FP20y ) =208 (2 - 2)%uw (Der76 + Drez6 + Drres) (4.3.30)
EP™2 (u,0) = 6 06(2) (z = 2)*uwvDrrrr (4.3.31)

where the coefficients C’fg are unfixed and the subscripts indicate the number of

additional derivatives compared to the bulk interaction vertex associated with the

L = 0 solution. The first solution corresponds to a D*R* correction and the second
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one corresponds to a D%R? correction to supergravity in AdS;xS?*, which can be read
off from the large-twist behaviour of the corresponding anomalous dimensions. In
the large-n limit, the first solution scales like n'® while the second one scales like n!7,
which corresponds to four and six more derivatives than the spin-0 solution which
goes like n''. The anomalous dimensions of these two solutions are reproduced from

the general solution in (4.3.25) and (4.3.26) for the choice of parameters

5 x 72000 80640 5 x 150528
_o® {_ } 1.3.32
{70,07’70,2’71,2}4 4 1001 ) 1859 ) 2431 9 ( )
54 x 72000 3 x 80640 33 x 150528
_c® { _ - } 4.3.33
{’70,07’707%71,2}6 6 1001 ) 1859 ) 2431 ( )

Note that in both cases, 70 has the opposite sign of vp2 and 7,2, in contrast to
what we found for the toy model in (4.2.31) and (4.2.32), where all three parameters

had the same sign.

Similar to the toy model, considering the anomalous dimensions from the recursion
relations for L = 2, both solutions scale like n'7 in the large-n limit. It follows
that the corresponding bulk interactions have six more derivatives than the spin-0
interaction. However, we also expect to find solutions corresponding to interactions
with four more derivatives, which scale like n'® for large n. We obtain these solutions

for the choice of free parameters

364

= — 4.3.34
V1,2 51 Y0,2 ( )

which comes from imposing that the last line of (4.3.26) vanishes in the large-n limit.
The solution in (4.3.32) is consistent with this constraint. Having discussed the
solutions for L = 0,2 using the algorithm in section 4.2.2 one can solve the recursion

relations up to any desired spin truncation for any twist.

Although solutions to the recursion relations have unfixed coefficients, it is possible
to deduce their leading 1/c-dependence using holographic reasoning, as described
in [26]. First, note that since we solve the recursion relations by truncating in spin,
this restricts to contact interactions in the bulk (interactions involving bulk-to-bulk

propagators will not truncate in spin). The effective action then has the schematic
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form

" G l(ad)) + ZZD 20P ¢ (4.3.35)
where ¢ represents a graviton field, Gi}¢ is the 11d Newton constant, and the Planck
length [p is inserted by dimensional analysis. After rescaling the graviton by \/GT]\}d
in order to have canonical kinetic terms, the four-point interactions will acquire a
factor of G119 ~ 1/c (this is the origin of the 1/c in (4.3.9)). Recalling that G114 ~ [%,
in eleven dimensions (see (4.1.2)), we see that a four-point contact interaction with
D derivatives must therefore have coefficient GA¥E2 ~ ¢~(P+1D/9 Moreover, the
number of derivatives in a contact interaction can be read off from the large-twist
behaviour of the corresponding solution to the crossing equations [30]. In particular,
if the anomalous dimensions of the solution scale like n®, then the corresponding bulk
interaction must have D = (av—5) + 2 = o — 3 derivatives (recalling that anomalous

dimensions scale like n° in the supergravity approximation).

In summary, a solution whose anomalous dimensions scale like n® must have a
coefficient ¢=(@+9)/9. For example, the spin-0 solution in (4.3.23) will have a coef-
ficient of ¢/ and the spin-2 solutions (4.3.25) and (4.3.26) which scale like n'®
and n!'7 (with a specific choice of parameters) will have coefficients of ¢ 199 and
¢ 713 respectively. Note that the spin-0 correction is the leading correction to the
low-energy tree-level effective action, whereas the spin-2 corrections are subleading

to the one-loop supergravity correction which goes like (G}\}d)2 ~ 2

Similar reasoning applies to conformal field theories with string theory duals, like
N =4 SYM with any fixed finite value of the string coupling. In that case, a contact
interaction with D derivatives will have a coefficient of Gnao/(P=2/2 where o is
related to the square of the string length. Writing this prefactor in terms of the
central charge and string coupling, and fixing the latter at some finite value will

then give an expansion in 1/c analogous to M-theory.
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4.4 Conclusions and Future Directions

In this chapter, we derive recursion relations for anomalous dimensions of double-
trace operators in the 6d (2,0) theory. Given that no Lagrangian description is
presently known for this model, our strategy is to use superconformal and crossing
symmetry of four-point correlators of stress tensor multiplets. In particular, we
expand the crossing equation to first order in the inverse central charge and then
take the light-cone limit of the conformal cross-ratios to isolate the terms containing
anomalous dimensions. Recursion relations then follow from truncating the con-
formal block expansion in spin and taking inner products of the resulting equation
with certain hypergeometric functions, where we make use of an orthogonality rela-
tion of the hypergeometrics. These recursion relations can then be solved to obtain
anomalous dimensions for arbitrary twist and spin, reproducing the results for low
spin truncations previously obtained in [26]. As a warm-up, we derive analogous
recursion relations in a toy model corresponding to an abstract bosonic 6d CF'T, and
match the results with the conformal block expansion of Witten diagrams in AdS~,
confirming the holographic arguments of [30]. We describe an algorithm to solve
these recursion relations and compute anomalous dimensions in both the bosonic
and supersymmetric theories to any desired twist and spin truncation. We note
that this method for extracting anomalous dimensions is much more efficient than

extracting them using a conformal block expansion of a known four-point function.

The anomalous dimensions are physically significant because they encode higher-
derivative corrections to supergravity in AdS;xS?%. The number of derivatives in each
term of the effective action can be read off from the large-twist behaviour of the
corresponding anomalous dimensions. Furthermore, the coefficients of these higher-
derivative terms correspond to free parameters of the solutions to the recursion
relations. Therefore, these coefficients cannot be determined by our approach and

we will discuss this further below.
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Future directions

There are several interesting questions for future research related to the results

discussed above.

o The first open question is the problem of fixing the coefficients of the higher-
derivative corrections in the low-energy effective action. These coefficients
correspond to the free parameters in the solutions of the recursion relations
for anomalous dimensions derived in this chapter and are thus not fixed by
our approach. In the flat space limit, the coefficients of the R* and DSR*
terms in the M-theory effective action have been deduced by uplifting string
theory amplitudes (note that the D*R* term vanishes in 11 dimensions) [114,

], but the coefficient of the D¥R?* term (which arises from a truncated
spin-4 solution in our approach) is unknown. It would therefore be desirable

to develop methods for fixing these coefficients using CF'T techniques.

o A strategy for doing so was proposed in [28], and used to fix the coefficient
of the R* term and argue that the D*R* term vanishes. This was achieved
by applying the chiral algebra conjecture in [132] to four-point correlators
of the form (kkkk) with k = 3, where k refers to a half-BPS scalar operator
in the k-index symmetric traceless representation of the SO(5) R-symmetry
group with scaling dimension 2k (note that k = 2 is the case considered in this
chapter). It would therefore be interesting to find truncated spin solutions to
the crossing equations for higher-charge correlators, compute the corresponding
anomalous dimensions in their conformal block expansions, and ultimately fix
the coefficients of higher-derivative terms in the M-theory effective action.
Correlators of the form (kkkk) and (n+ k,n -k, k+ 2,k + 2) were computed in
the supergravity approximation in [129, ] before all supergravity correlators
were obtained in [130]. Moreover new solutions to the conformal Ward identities

in Mellin space have been found for (kkkk) with k = 2,3 in [28], so it would be
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interesting to see how those methods are related to the ones developed in this

chapter.

o Since the conformal blocks for higher-charge correlators appear to be much
simpler in 4d [16, 19], it may be instructive to first carry out the analysis
described above for 4d N =4 SYM (for which a chiral algebra description was
also proposed in [113]), and use it to deduce terms in the effective action for

IIB string theory in AdS;xS° (which was the focus of the previous chapter).

o Finally, it would be very interesting to explore the loop expansion in M-theory
in AdS;xS* using conformal bootstrap techniques, following on from the recent
success in AdS5xS5 [11, 41, 84-88 90-92, , 115]. Since the loop expansion
in M-theory is an expansion in 1/¢, as is the expansion in higher-derivative
corrections, the loop corrections have to be disentangled from the M-theoretic
corrections. The first loop corrections to holographic correlators in the 6d

(2,0) theory have been obtained in [110].






Chapter 5

AdS,>xS? Correlators: Effective
Action and 4d Conformal

Symmetry

This chapter is based on [11], which at the time of submission of this thesis is in prepar-
ation for publication. We will study different aspects of superconformal correlators in
one dimension which are dual to tree-level scattering in quantum gravity in AdS;xS2.
The Kaluza-Klein spectrum of supergravity in AdS,xS? is described in [147, . In
particular, in [117] the authors start from 11d supergravity (see subsection 4.1.1) and
dimensionally reduce it to obtain 4d supergravity. After compactifying on AdSyxS?
one then obtains 4d A = 2 supergravity. Finally, compactifying 4d supergravity on
S? yields an infinite tower of KK modes in AdS, which form representations of the
SU(1,1|2) superalgebra. The holographic dual of A" = 2 supergravity in AdS,xS? is
expected to be a one-dimensional SCFT with superconformal group SU(1,1|2). We
do not specify the underlying theory of quantum gravity beyond its symmetries in
this chapter, besides the M-theory origin described above supergravity in AdS;xS?
could also originate from superstring theory in AdS;xS2xT%. This is e.g. discussed
in [119], where the authors consider embedding the AdS,xS? background into 10d

type ITA or IIB superstring theory. The AdS,xS?xT6 background can be obtained
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either from a quarter-supersymmetric type IIB background describing four intersect-
ing D3-branes [150] or from a type ITA background e.g. describing a superposition of
three D4-branes and one DO-brane. As mentioned in the introduction, the AdS,xS?
background is interesting to study because it is the near-horizon geometry of ex-
tremal black holes in four dimensions. Furthermore, superconformal correlators in
1d are in many ways simpler than higher-dimensional analogues, such as the ones
considered in the previous chapters. Therefore, they are an excellent playing ground

for the study of various aspects of holographic correlators.

Firstly, we investigate a hidden conformal symmetry which was first discovered in
AdS5xS® in [11] and later investigated in AdS3xS? in [124, 125]. In the supergravity
approximation, four-point tree-level correlators of half-BPS operators dual to scalars
in AdS5 were found to correspond to 10d supergravity scattering amplitudes in the
flat space limit. Consequently, it is conjectured that all supergravity tree-level four-
point correlators exhibit a surprising 10d conformal symmetry and that correlators of
any spherical harmonics can be generated from a single SO(10, 2)-invariant function.
This conjecture is also true for free theory and predictions can be made for loop
corrections, however we will leave the discussion of loop corrections in 1d to [14].
The higher-dimensional conformal symmetry arises because four-point supergravity
correlators in AdS5xS® correspond to superamplitudes in 10d flat space which have
a dimensionless coupling and are thus conformally invariant. Hence, this symmetry
can only arise for specific four-point functions and furthermore only on conformally
flat backgrounds, AdS,xS? In this chapter we aim to understand this hidden
conformal symmetry more systematically and we will discuss it in the context of
free theory, supergravity and higher-derivative corrections in 1d. The symmetry is
generally broken for higher-derivative corrections and this was recently confirmed
in [11], where the authors studied the double-trace spectrum of half-BPS correlators
described by tree-level string theory in AdS5xS°. We will discuss this breaking of
the symmetry and investigate higher-derivative corrections in AdS,xS2. We show

that an infinite set of correlators for specific charges can be reconstructed from the
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higher-dimensional conformal symmetry, while the symmetry is broken for general
KK modes. We will briefly discuss the implications for a3 corrections in N' = 4 SYM.
Even though the higher-dimensional conformal symmetry is only a symmetry of
specific four-point functions in AdS,xS¢, it is a remarkable symmetry which implies
powerful constraints on four-point functions and nicely complements other methods
such as the effective action approach we proposed in chapter 3. We will consider a

4d analogue of this effective action in this chapter.

We propose a scalar effective action in four dimensions similar to the one in AdS5xS°®.
We do not prove the existence of the effective field theory but we deduce half-BPS
correlators in the supergravity approximation as well as higher-derivative corrections
from it and analyse the results. Where possible we compare the results to those from
different methods, such as the 4d conformal symmetry, where we find agreement in
the supergravity sector. The coefficients in the effective action encode the underlying
quantum theory and they are unfixed in our considerations. To deduce all half-BPS
correlators of any R-symmetry charge we again evaluate generalised Witten diagrams
in AdSxS. These manifestly four-dimensional Witten diagrams contain all spherical
harmonics and one can obtain all higher-derivative corrections and in the 1d case,
also the supergravity correlators. Note that from the effective action approach
in AdS;xS? we can deduce supergravity and all higher-derivative corrections but
neither free theory nor loop corrections. This is nicely complemented by the 4d
hidden conformal symmetry which describes free theory and supergravity but is
generically broken by higher-derivative corrections (it also makes predictions for

loop corrections which we will not discuss in this thesis).

We start by reviewing the ten-dimensional conformal symmetry of supergravity cor-

relators in AdS5xS® before going on to consider holographic correlators in AdS,xS2.
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5.1 Review: A Hidden Ten-Dimensional

Conformal Symmetry

In [11] a surprising ten-dimensional conformal symmetry was found for tree-level
supergravity correlators in AdS;xS°. Of course, the correlators have four-dimensional
conformal symmetry and are dual to bulk scattering in AdS; with an infinite tower of
spherical harmonics from compactifying on the sphere. However, it is not expected
that they also have a ten-dimensional conformal symmetry manifestly including the
modes on the sphere. This is very powerful since all higher-charge supergravity
correlators can be packaged into a single generating function which is related to the

flat space superamplitude in ten dimensions.

The first hint towards a higher-dimensional conformal symmetry was observed
in [111], where the authors perform a conformal block analysis of four-point correl-
ators in the large-c expansion in N =4 SYM described by tree-level supergravity in
AdS5xS5. They consider half-BPS operators which are dual to the infinite tower of
spherical harmonics on the five-sphere and make use of a formula for correlators of
general charge in Mellin space, conjectured in [81]. As mentioned in subsection 4.2.1,
when performing a conformal block decomposition of correlators there are usually
many operators in the spectrum which are described by the same quantum numbers
(scaling dimension and spin), thus there is a degeneracy. To resolve this degeneracy
is called to solve the mixing problem and we will describe this in subsection 5.5.1
before we discuss it in detail for supergravity and higher-derivative corrections in
sections 5.6 and 5.8 respectively. It involves constructing matrices of conformal block
coefficients for correlators with different R-symmetry representation and the same
quantum numbers and solving an eigenvalue problem. In [144] the mixing problem
for the anomalous dimensions of double-trace operators in the conformal block ex-

pansion of half-BPS correlators described by tree-level supergravity was solved and
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a remarkably simple structure was observed:

sugra _ _QMtMt+l+1 _ 5(8)

o (hoa+1)e  (lioa+1)6

(5.1.1)
where
My=(t-1)(t+a)(t+a+b+1)(t+2a+b+2), (5.1.2)

where a,b describe the R-symmetry representation of the double-trace operators
which is given by the Dynkin labels [a,b,a]. The spin [ and twist ¢ are the quantum
numbers of the exchanged operators, where the twist is defined as the scaling dimen-
sion minus the spin (see the discussion around (2.1.12)). Note that the anomalous
dimensions are rational numbers and their simple structure can be interpreted in

terms of an effective ten-dimensional spin

L+ (=1)a*!

liog=l+a+2(i+7)-1- 5 ,

(5.1.3)

where 7,7 label the degenerate operators (see [I1] for details on the definition of
these labels). The numerator in (5.1.1) can be understood as the eigenvalue §(%)
of a special eighth-order differential operator A®) with the conformal blocks as
eigenfunctions. The significance of this differential operator which is derived from

conformal Casimirs will become clear later in this subsection.

It is very surprising that the anomalous dimensions after unmixing are rational
numbers. They are eigenvalues of non-trivial matrices of OPE coefficients and there
is no reason to expect them to be rational and to show such a simple structure. This
was the first hint that tree-level supergravity in AdS;xS® exhibits more symmetries
than at first expected. In [11] the authors observed a striking similarity of (5.1.1)
to coefficients of the partial wave expansion of the ten-dimensional supergravity
scattering amplitude in flat space. This suggests that the structure in (5.1.1) arises
from the conformal flatness of AdS;xS® and a ten-dimensional conformal symmetry
of the tree-level supergravity scattering amplitude. Let us look at this heuristic

argument in more detail. The ten-dimensional IIB supergravity amplitude in flat
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space is given by

_ GN(;lﬁ(Q) _ GNS_3

stu tu

Ao (5.1.4)

where we have taken the dilaton component. Note that Gxd'6(Q) is dimensionless,
which is the origin of the 10d conformal symmetry of this amplitude. The partial

wave expansion in general dimensions is given by
1
Ay(s,cos) = e zl:(l +1)4.4Ci(cos 0) Al(s) , (5.1.5)

where the scattering angle cosf =1 + % and the partial waves C; can be expressed
in terms of Gegenbauer polynomials (see e.g. [151]). Expressing the 10d amplitude

in terms of s and #, we find

4GN$
sin?@ -

Ajo(s,cosb) = (5.1.6)

The single power of s in the numerator indicates two-derivative interactions, as
expected for supergravity. Comparing this to (5.1.5) implies that the 10d partial

wave coefficients are

R® st
10 ~l+ =
AT =1,

(5.1.7)

where the one is put in by hand and we used the fact that the Newton constant
Gy ~ R®/c in 10d, where R is the AdS radius and c is the central charge. Now
compare this to the N'= 4 SYM anomalous dimensions after unmixing (5.1.1), where

we note that ~su& contributes at order 1/c:

sugra ]_ 5(8)
elid m (5.1.8)
¢ (lioa + 1)6

The eighth-order Casimir encodes s* in the flat space limit and we see that the
Pochhammers precisely match, which justifies the definition of the effective 10d spin
in (5.1.3). The anomalous dimensions after unmixing can be interpreted in terms
of this higher-dimensional spin and we will discuss this in sections 5.6 and 5.8 for

supergravity and higher-derivative corrections in AdSsxS? respectively. The above
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similarity is suggestive of a direct relation between the 4d CFT and flat space 10d
supergravity. Importantly, this higher-dimensional conformal symmetry allows for
all the correlators of external operators with any R-symmetry charge to be combined
into one big 10d object which acts as a generating function. We will briefly review
the 10d conformal symmetry for correlators in the supergravity approximation and in
free theory in /' =4 SYM below, followed by some general considerations including

higher-derivative corrections.

One goal of this chapter is to understand the hidden higher-dimensional conformal
symmetries more systematically and to approach this, we study a 4d conformal
symmetry of holographic correlators in AdSsxS2. In this background the analogue
of the dimensionless coupling Gyd'6(Q), which is the origin of the 10d conformal
symmetry above, is the dimensionless coupling Gy0*(Q) of 4d N = 2 supergravity
amplitudes in flat space. We will consider supergravity and free theory correlators
and show that they exhibit a 4d conformal symmetry. Moreover, we extend our
discussions to higher-derivative corrections for which the symmetry is generally
broken, and discuss how some of the higher-dimensional conformal structure could

still be intact even for higher-derivative corrections.

5.1.1 General Considerations and Higher-Derivative

Corrections

First, consider four-point tree-level correlators in the supergravity limit which, as
explained above, correspond to a flat space 10d supergravity amplitude with a
dimensionless coupling Gn0'%(Q) and are thus conformally invariant. It is then
conjectured that all half-BPS correlators can be combined into a 10d generating
function containing all KK modes. This conjecture can be extended to free theory.
The higher-dimensional conformal symmetry arises when the correlator corresponds
to a conformally invariant flat space scattering amplitude with dimensionless coupling.

For tree-level supergravity this is the case for four-point functions in AdSsxS® which
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is conformally flat. If the correlator does not correspond to such an amplitude, which
is the case for free theory, it can be rescaled by acting with differential operators
of appropriate powers on the correlator. This can be understood from dimensional

analysis.

As we have seen, for supergravity the object which exhibits 10d conformal symmetry
is the correlator itself. In the case of AdSsxS°, supergravity comes with a factor of
Gy ~[%. Since free theory is proportional to [%, to construct an object of the right
dimensions, one needs to act with a specific eighth-order differential operator on the
correlator to get something of order 5. The right differential operator to consider
is A® which is the same operator whose eigenvalue appears in the anomalous
dimensions in (5.1.1). This shows the significance of A(®) which is derived from
quadratic Casimir operators. Acting with A®) on free theory correlators gives
something that looks exactly like free theory of superconformal descendants (see [11]
and section 5.3 below). Indeed, the correlator of descendants is the object that plays
the leading role in the hidden conformal symmetry. In the case of supergravity,
which is of order 1/c, to uncover the 10d conformal symmetry one has to divide the
tree-level superamplitude by the dimensionless coupling Gn616(Q) which according
to the discussion around (5.1.7) can be identified with A(®)/c. Hence, in the case of
supergravity the correlator itself is the relevant object which exhibits 10d conformal
symmetry while for free theory it is the correlator of descendants. Moreover, this
discussion can be extended to loop corrections. These corrections contribute at
higher negative orders in ¢ and to obtain the corresponding 10d invariant object one

would act with the appropriate negative powers of A(®) on the relevant correlators.

In this chapter we study the hidden conformal symmetry in the context of one-
dimensional SCFTs with hidden four-dimensional conformal symmetry. This case is
much simpler than the 4d/10d case and therefore a good starting point to understand
this surprising symmetry in more detail. Analogue to the above discussions for
10d, 4d NV = 2 supergravity amplitudes in flat space have a dimensionless coupling

Gno*(Q). Thus, the corresponding 1d tree-level supergravity correlators of four
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chiral primaries dual to KK modes in AdS, are expected to exhibit a 4d conformal
symmetry. We will show that this is indeed the case in subsection 5.4.2. Supergravity
in AdSyxS? comes with a factor of Gy ~ l%, this is how one sees whether the object
has the right dimensions to be invariant under 4d conformal symmetry or not. Since
4d N = 2 supergravity is connected to a scaleless coupling in the flat space limit,
whenever a correlator comes with ~ % in 1d it is connected to a flat space amplitude
with dimensionless coupling and thus has 4d conformal symmetry. If it does not, a
4d conformal object can be constructed by acting with differential operators derived
from conformal Casimirs on the correlator. Therefore, free theory, which goes like
19, needs to be acted on by a second-order differential operator A (analogue to
A®) above) to get something invariant under 4d conformal symmetry. As in the
10d case above, A(?) acting on the free theory correlator gives exactly free theory of
superconformal descendants. We will show this in detail in section 5.3. This can be

extended to loop corrections, but we leave this discussion to [14].

Finally, we attempt to extend these considerations to higher-derivative corrections,
which were not a part of the considerations in [11]. Generally, the higher-dimensional
conformal symmetry is broken for higher-derivative corrections, which can be seen
specifically when unmixing anomalous dimensions in the double-trace spectrum
of the conformal block expansion of half-BPS correlators corresponding to higher-
derivative corrections. These anomalous dimensions after unmixing still show a
simple structure and many of them are rational numbers as was the case in the
supergravity approximation. However, there are anomalous dimensions which con-
tain square roots and this indicates a breaking of the higher-dimensional conformal
symmetry. These anomalous dimensions were obtained for N =4 SYM in [13, 4] up
to four derivatives and in [10] for higher derivatives. We will study them in detail
in section 5.8 for the four-derivative corrections in 1d. It is reasonable to expect
that some of the hidden conformal symmetry is still intact for higher-derivative
corrections since, as mentioned before, many of the anomalous dimensions are still

rational numbers. Remarkably, for an infinite set of correlators with specific charges,
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one can indeed construct an object that does have higher-dimensional conformal
symmetry. The breaking of the symmetry for generic higher-derivative corrections
can be anticipated because when an interaction vertex contains derivatives and they
are reduced on the sphere, this gives several terms with different numbers of deriv-
atives in AdS which cannot all be rescaled simultaneously. This will be discussed

further in subsection 5.7.3.

Let us now consider the dimensional analysis for higher-derivative corrections in
AdS;xS2%. Recall that higher-derivative corrections contribute to the low-energy
effective action as interaction vertices with k +2 derivatives!', where supergravity has
two derivatives and we restrict to quartic interactions in this thesis. The vertices
with 9%+2 go like Gyl%, so to get an interaction term with the right scaling, i.e.
Gy ~ 1%, one has to multiply it by (7. To achieve this, one acts with (A(2))7g on
the correlators. In practice this means that we consider objects which can be lifted
to four dimensions to generate all higher-charge correlators (which turn out to be
4d conformal blocks) and then act with differential operators of positive order k on
them to reconstruct the higher-charge versions of the higher-derivative corrections.
We analyse this for the case of four-derivative corrections in subsection 5.7.3 where
it turns out that this can be constructed for all correlators of four external operators
with the charges {p;} = ppll, where 1 is the lowest mode on the two-sphere and p
corresponds to a general KK mode, and crossing versions but is broken for general
correlators. Note that in AdS;xS? the zero-derivative term describes supergravity
but in AdS5xS° the analogue term describes the first higher-derivative correction
to supergravity arising from string theory, which has six more derivatives than

supergravity itself.

To summarise, the higher-dimensional conformal symmetry can be realised for specific

!Note that we often count the number of derivatives not necessarily compared to supergravity
but compared to the correlator dual to the zero-derivative bulk scalar interaction ¢*. In AdS;xS?
this is indeed supergravity but in higher dimensions, ¢* corresponds to the term R* in the low-
energy effective action (2.3.18) which describes the first higher-derivative correction and has six
more derivatives than supergravity. This correction is referred to as the zero-derivative correction
and subleading corrections are interactions with k — 6 derivatives acting on R*, where k + 2 is the
total number of derivatives in the interaction.
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four-point correlators in conformally flat backgrounds. It is not just a symmetry in
the supergravity case but can be understood from constructing interactions with the
required scaling by acting on the correlator with appropriate differential operators.
However, for higher-derivative corrections the symmetry breaks in general due to
covariant derivatives acting on the interaction vertices. Nevertheless, there is still
an infinite number of correlators with specific R-symmetry charges which can be
constructed from the hidden conformal symmetry. Note that on the other hand,
all higher-derivative corrections can be deduced from the 4d effective action, see

subsection 5.7.2.

5.2 General Setup

In this chapter we study four-point correlators of half-BPS operators in a large central
charge ¢ expansion in 1d which correspond to tree-level quantum gravity scattering
in the bulk. In the large-c limit, the half-BPS operators are dual to bulk scalars in
AdS, described by an infinite tower of KK modes on the two-sphere. Furthermore,
we consider the theory in the low-energy approximation, which corresponds to 4d
N = 2 supergravity, where we also consider subleading contributions in the form
of higher-derivative corrections. Since we do not specify the bulk theory nor the
boundary theory beyond its symmetries we formulate the low-energy approximation
in terms of an expansion in a small parameter a, where a — 0 corresponds to the
strict low-energy limit. Considering this double-expansion, free theory correlators
are proportional to ac?, supergravity correlators contribute at order a®c™! and the
higher-derivative corrections to the supergravity effective action contribute at orders
cta*-1, where 2k is the number of derivatives in the bulk scalar interaction and

k=23,...
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5.2.1 Correlators in 1d and the Differential Operator A2

Let us start by looking at the general structure of four-point functions in 1d CFTs.
The local operators are defined on a line and are invariant under the SO(2,1)
conformal group. This symmetry allows us to fix three points on the line, therefore
there is only one free real parameter left, describing the position of the fourth point.
As a consequence, the usual conformal cross-ratios u,v are not independent and

there is only one cross-ratio, x. Starting from the usual conformal cross-ratios:

o xx? o xla?
u=zz="323 " p=(1-z2)(1-2)="2231, (5.2.1)
T13Toy T3y

where z;; = ; — x; and defining z = z = z, the 1d cross-ratio z is

= 120 (5.2.2)
L13%24

and the usual u,v are given in terms of x by
u=x*, v=(1-z). (5.2.3)

Hence, 1d correlators correspond to a holomorphic limit.

To discuss the half-BPS correlators of interest, we follow the formalism of [19] with
m =n = 1. The relevant superspace is the super Grassmannian Gr(1|1,2|2) of (1]1)

planes in (2|2) dimensions. Coordinates on this Grassmannian can be given as

Xi = _ 5 (524)

i vi
where z; is the 1d spacetime coordinate, y; is a (complex) internal coordinate used to
deal with the SU(2) structure and 6;,6; are Grassmann odd coordinates. Since we

will be dealing with correlators of four operators on this space, we added a subscript

1 =1,2,3,4 to denote the particle number.

The field content of 4d N = 2 supergravity is one graviton, six gravitinos, 15 vector
and 10 (complex) hypermultiplets [117]. Each of these multiplets contains four

bosonic and four fermionic degrees of freedom and compactifying on the two-sphere
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gives an infinite tower of KK modes for each multiplet. The 4d A = 2 hypermultiplet
is the simplest to understand from a higher-dimensional perspective. This multiplet
on an AdS;xS? background is AdS/CFT dual to an infinite tower of fermionic 1d
half-BPS multiples [117]. These are fermionic superfields of scaling dimension A and
SU(2) representation A. They can be written on the above super Grassmannian

and decompose into the following component fields

\G][VN)

3. (5.2.5)

Y

N EN 9_17?/1) =P+ 9i¢A+% + éz&A% + eie_i)\A+1 ) A= %,

where the subscript denotes the dimension of the field. The field YA has SU(2)
representation A, ¢ has SU(2) representation A —1, Ax has SU(2) representation
A - 2. For the special multiplet ¥/, the descendant )3/, is absent. Expanding in

the y; coordinates manifests the SU(2) indices for these representations

wA(xivyi) :¢I1...IQA(xi)yih"'in2A ’ AZ%: %7 R
¢A(xi7yi) = gb[l...]gA,Q(l‘i)inl s iI2A_2 ) A = 17 27 )
INEIRTD :)\Il.__lm%(xi)yih...yl.]m"‘ , A= (%),g, , (5.2.6)
where
yl = (Ly) - (5.2.7)

We are interested in the four-point functions of half-BPS superconformal primaries:

(¢A1 (xl’ y1)¢A2 (x27 y2)¢A3($37 y3)¢A4 (.174, y4)) : (528)

However, it will also be useful to consider the four-point function of superdescendants

<¢A1(x17 y1)¢A2 (LL’Q, y2)(5A3 (.733, y3)(BA4(l’4, y4)) : (529)

Indeed it is the latter which plays the leading role in the hidden higher-dimensional
conformal symmetry as described in section 5.1. Both correlators transform covari-

antly under the bosonic subgroup of the superconformal group SU(1,1) x SU(2) c
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SU(1,1]2) which means they have the form

(ha, (T1,y1) 0, (02, Y2) Vs (23, Y3)Va, (T4, Y1) = Pa, Gy, (2,9)

P\ 1
~ Gy, (2,y), (5.2.10)

(D, (T1,91) Dy (T2, Y2) Pag (T3, Y3) by (T4, ya)) = P

where the prefactor Pa, is

A A
O Ty ()
914 913

with g5 = x—j s Yii =YY (5.2.11)

ij
and A;; = A;—A;. This prefactor by itself transforms correctly as a (¢, ¥Ya,¥a,¥A,)
correlator under the bosonic subgroup, leaving a remaining function G, (x,y) which
is conformally invariant. Thus, it is a function of the conformal cross-ratios x,y, the

spacetime and internal cross-ratios in one dimension:

v T12T34 ’ y = Y12Y34 . (5'2_12>
X13T24 Y13Y24

The spacetime cross-ratio was discussed above, around (5.2.2), and equivalently for

the internal cross-ratios, there is only a single independent one, .

The two component correlators (5.2.10) are related to each other by supercon-
formal symmetry. Indeed both can be obtained from the same supercorrelator

(\I/Alqug\IjA3\I]A4> as

(Va,Va,asva) = (YA, Ya, Ya, Wa,)g,-d.-0 -

(¢A1+%¢A2+%&A3+%$A4+%> = 801892853864<WA1 \PAQ\IJA3\PA4>|01-=§Z-=O . (5213)

Superconformal invariance implies that the full supercorrelator only depends non-
trivially on two bosonic variables. This then implies that the above relations reduce

to the following direct differential relation between the two component correlators

(¢A1+%¢A2+%éA3+%éA4+%> = Iflcfg(l’lp) <wA1wA2wA3wA4> ) (5'2'14>

where we leave the derivation of this result to appendix H. Here Ci 3(1’1‘2) denotes
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the superconformal quadratic Casimir given in terms of the second-order differential
operator A2 by

Cig(l’m) =Dy, x xx_yyA(Q)xx—nyz;il ;

A®@) Dépm,ma) _ Dé*p12,*p43)

piprzris) 1?0, (1 - )0, + (p12 + Pa3) 270y — Propas (5.2.15)

where p;; = p; — p;. For a derivation of the quadratic Casimir see appendix H.

Furthermore, Z is the special polynomial

T = 219234Y13Y24 — Y12Y34T13%24 (5.2.16)
which is completely antisymmetric under crossing symmetry.

The second-order differential operator A is the analogue of A® playing an im-
portant role in the 10d conformal symmetry of N’ =4 SYM correlators. We have
discussed the significance of A®) in subsection 5.1.1. Recall that the object that
has 4d conformal symmetry in AdS,xS? in the supergravity limit is the half-BPS
correlator itself, whereas for free theory acting with A® on the correlator yields
the 10d conformally invariant object which is the correlator of descendant bosonic
scalars ¢. In 1d this is related to the correlator of chiral primaries ¢ by acting on

the latter with A®) see (5.2.14).

Throughout this chapter we will consider four-point functions of half-BPS operators
and in the free theory case also the correlators of descendants. The half-BPS
operators are fermionic primaries 1) with dimensions and SU(2) charges A = %, %, e
However, it will turn out to be most useful to label the correlators in terms of the
bosonic descendant operators ¢a.i/2 with dimensions 1,2,... Therefore, we define

the half-BPS operators as

2 Y(2p-1)/2
O,=(-1) —= |, 5.2.17
where p = 1,2,... In this convention the half-BPS operators have dimension and

SU(2) representation (2p —1)/2. Furthermore, it is useful to introduce a normalisa-
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tion (1) /2 (2p—1)~1/2 inspired by the higher-dimensional conformal symmetry [11].
It will become clear why this is useful in the discussions below (5.3.12) and (5.3.20).

We then denote the descendants of O, by Ly, L,:
0,(z,y) = O,(z,y) +OL,(z,y) + 0L, (z,y) , (5.2.18)

where L, has dimension p and SU(2) charge p - 1.

5.2.2 Conformal Blocks

In this subsection we discuss the conformal blocks in 1d. We will consider four-point
functions of half-BPS operators O, (5.2.17) with i = 1,...,4. In the OPE of two
such half-BPS operators one finds also long multiplets. These can all be represented
as Oa p, where A is the dilatation weight and p is the SU(2) representation of the

exchanged operators.

The four-point function can be expanded in superconformal blocks Ba ,(z,y) as

<Op1(x1’ yl)opz ($27 y2)(/)’p3 ('T37 y3)0p4(x4’ y4))

= g 1 1924\ (g1 \P®
= Z Z A}Z’I;I)sm g{’é”’r g§i+p47 (_) (_) BA,p,P12,p34(x>y) ) (5'2'19>
A=1 p=0 g14 913

where the coefficient Aa j, is given in terms of a sum of squares of OPE coefficients

as
Appamns Z C9,.CO Cop - (5.2.20)
OA,pKQA,p
Further
- Yij
Gii = —L (5.2.21)
! |5Uz'j|

is the two-point function of charge 1 half-BPS operators. Note that the two-point

function g;; is antisymmetric under exchange 7 and j, as expected for fermions. It
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will also be convenient to define the bosonic two-point function

- Y (5.2.22)

Gij
xij

The superconformal blocks are derived from a general formula for superconformal
blocks with symmetry group SU(m,m|2n) in [19]. In our case m =n = 1 and the

blocks for long multiplets are given by

B (z,y) == (@ -y)(~2)22F1 (A +1-p1o, A+ 1+ p3s; 2A + 2; 1)

A,p,p12,P34

x y P LB (=p + pra, —p — D3a; —2p5Y) - (5.2.23)

For half-BPS multiplets A = p and the blocks are

r\P LA . . .
B??fﬂpsf(w,y):(—g) (1+(:v—y)Z[l"‘ZgFl(m1—Z—p12,p+1—2+p34;2p+2—22;$)]
i
xyi‘12F1(i—p+p12,z’—p—p34;2i—2p;y)) ; (5.2.24)

where k = min(p — p12,p + p34) and the square bracket means we take the regular

piece as x — 0.

It is interesting to note that the block of an operator with dimension A and SU(2)

representation p contributes as follows to the four-point function

(Opl(ﬂfb yl)op2(332> y?)ops(l"en y3)0p4(x4, 3/4))

- AP1P2P3Pa op1+p2-1 p3+pa-l 924 P 914 e —)A P (1+0 5995
Z Ap 912 Y34 ( $) Y ( + (-T,y)) ) ( i )
Ap d14 913

where the higher orders in z,y correspond to spacetime or SU(2) descendants.

5.2.3 4d Scalar Effective Action

In addition to studying the 4d hidden conformal symmetry in this chapter, we
also obtain the correlators described by tree-level supergravity and higher-derivative
corrections in AdSxS? from a higher-dimensional effective action analogous to the
10d effective action proposed in chapter 3. There a 10d scalar effective action

was introduced which generates all half-BPS four-point correlators in N = 4 SYM
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described by tree-level string theory in AdSs5xS® [12].

For the present case, we consider the following four-field terms in an effective superpo-
tential for supergravity linearised about flat 4d space, with the expansion parameter

a (where a — 0 corresponds to the low-energy limit):
Vhat() = %(A &' + Ba (00.00)% + D a? (06.00)(0,0,00"0" ) + . .. ) . (5.2.26)

where in this chapter we mainly focus on the first two terms. In subsection 5.4.2 we
will see that in AdS,xS? the zero-derivative term describes supergravity and thus
the ¢* term in the effective action is of order a®. The fact that the supergravity
approximation is included in the effective action is very powerful since we can com-
pute all half-BPS supergravity correlators from the 4d effective action alongside all
higher-derivative corrections, whereas in AdS5xS® only higher-derivative corrections
can be obtained from the effective action. We organise the expansion in a such that
2k-derivative terms contribute at order a*~! starting from k = 2, where k = 0 terms

are excluded since they describe supergravity and not higher-derivative corrections.

To uplift the effective superpotential to an AdS,xS? background the flat derivatives
are replaced with covariant AdSxS derivatives, see (2.3.6). It is important to note
that this uplift is not unique as we have seen in the AdS;xS°® case. There are
ambiguities because the covariant derivatives no longer commute with each other
and there could be contributions from interactions with a lower number of derivatives,
compensated by the AdS radius R, which would vanish in the flat space limit. So

to O(a?) the superpotential translates to

VASS(5) = L[ Ap" + a(3B(V6.V0)? + 6CV2T,07" 66
+ aQ(GD(v¢.v¢)(vuvy¢v”v”¢) + 6Evuv2vy¢v“v”¢¢2) +... ] .
(5.2.27)

As in the AdS5xS® case (3.1.18), the coefficients B,C, ... themselves can have an
expansion in the dimensionless parameter a/R? where R is the radius of AdS (or S).

So whereas in flat space 2k-derivative terms only contribute at order a*1, in AdSxS,
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2k-derivative terms can contribute at a*~! and all higher orders in principle. These

expansions are

B(a):Bgﬁ‘Bl%-l-...
C(CL):O()-FC&%-F...

(5.2.28)

For simplicity, we will set R = 1 from now on throughout this chapter, but it
will be understood that these higher-order terms vanish in the flat space limit.
The supergravity coefficient A does not allow for a a/R? expansion because of

superconformal symmetry (see also subsection 3.1.3).

5.3 Free Theory

In this section we will derive the 1d free theory correlators. As explained in subsec-
tion 5.1.1, the object that has 4d conformal symmetry in free theory is the correlator
of descendants which is obtained by acting on the half-BPS correlator with the
second-order differential operator A(?). One can then construct a four-dimensional

generating function which contains all 1d half-BPS correlators in free theory.

First, write the correlators according to (5.2.10) in terms of a prefactor and a function

only depending on the conformal cross-ratios (5.2.12) as

<O;D1 ($1>y1)0p2 (an yQ)Ops(x& y3)0p4(374>y4)> = Ppi X Gp1p2psp4(x7y) ) (531)

where the prefactor is given by
B B Gos P21 J14 P43
P, = gp1+p2 1gp3+p4 1 (_) (_) . 5.3.2
pi = Y12 34 12 g1 ( )
It is useful to decompose the correlator in such a way that the solution to the
superconformal Ward identities becomes straightforward. The superconformal Ward

identities in 1d are 0,G(x,y)|s=y = 0, i.e. simply that G(z,z) is independent of .
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This has the straightforward solution

x —

Gpi($7y):kpi(x7y)+ prz(xvy) )

Ty

€T P43
where £, (z,y) =k (—) : (5.3.3)
Y
with H(x,z) finite and k,,(z,y) is defined such that Cfg(l’lm (P, kp,) = 0 with a
constant x and the superconformal Casimir is given in (5.2.15).

In this decomposition the Casimir only sees the interacting piece of the correlator,

the so-called reduced correlator H,,:

SU(1, =1y -1y ~

6172 ¢! 1|2)(Op10p20p30p4> = P, - A(Q)Hpi(x,y) =P ix—pri(x,y) . (5.34)
where we define

Hpi(m7y) = A(Q)Hpi(x7y) . (535)

To construct an object which has the right dimensions to transform like a correlator
which has 4d conformal symmetry, we define the correlator of descendants in terms
of H like

_ P ~
L, L, L,L,)= — Pk g r,Yy) , 5.3.6
( p1pa p3 p4) 19731 Y1203 pz( y) ( )

where L, is the descendant of O, with dimension p and SU(2) charge p -1, as

described in (5.2.18). Comparing equations (5.3.4) and (5.3.6) we get
o _LSUQ,
(Lo Lo Ly L) = T71C25 (05, 0,0,,05.) (5:3.7)

which agrees with the relation in (5.2.14).

5.3.1 4d Conformal Symmetry

Let us now construct the four-dimensional generating function for free theory cor-
relators, starting with the correlators of half-BPS operators of equal charge. The

free theory correlator for equal charge operators is given in terms of the fermionic
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two-point functions g;; (5.2.21) as

(Op(il?b ?Jl)op(ilb, ?J2)Op(173, y3)0p(5174, y4))|c0
1

EVON
Nioi

o G |1 (2] (Coma) (122) smle-1)| L 639

EVOR
Nioi

[(G12G30) %" = (G13G24) ™" + (G14G23) |

where the normalisation

NS = (-1)\/(2p1 - 1) (2p - 1) (2p3 - 1) (2p4 - 1) (5.3.9)

comes from the normalisation of the half-BPS operators in (5.2.17) and recall that

¥y = % (p1 + p2 + p3 +psg). Choosing 0 <z <1, we then find that

1 r\2p1 1 -y \2P1
Gl (2,9) = —5 [1+(—) (—1+(1_y) )] : (5.3.10)
Npppp Yy X

This decomposes into

1 1 zy (z\*! 1-y\?!
Koo (,9) = —» Hipiw(,y) = (_) l—1+( ) . (5.3.11)

0) _
Npppp Np(pgp L=y Ny 1 X
The action of A(® then yields
g0 _ ¥ (1-y)*?
prpp - ygp_g (1 + (1 _ l’)zp ; (5312)

which indeed looks like the free theory of dimension p charge p — 1 operators you
would get as the descendant. Acting with A(®) on H gives a factor of (2p - 1)?
which gets cancelled by the normalisation 1 /A/;fggp. This is how the normalisation

in (5.2.17) was chosen, up to the sign which will become clear shortly.

Note that for the analysis of free theory in terms of the 4d conformal symmetry this
decomposition is not necessary since acting with A(Q)% on G(z,y) only sees the
interacting piece H anyway. Nevertheless, the discussion below can be written in
terms of H in a simple way. Furthermore, the decomposition is useful as it will allow

us to consider the 1/c expansion of H in (5.5.2) later on.

Finally, consider the correlator of descendants from which we construct the generating
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function with 4d conformal symmetry. From (5.3.6) and (5.3.12) we get

T T _ 2p-2 2p-2 1 2p-2 2p-2 1
(LpLpLpLp)eo = g1y Gos 5 2 7013 924 3 5
14L23 Ti3L9y

(5.3.13)

Note that the correlator of bosonic descendants is given in terms of bosonic two-point

functions g;; (5.2.22). Take the lowest case p = 1 where we have

- = 1 - 1 1
<L1L1L1L1)CO = ﬁHl(?il = + . (5314)

2 .2 2.2
L1oT3y L4253  T13Toy

To construct the generating function, now lift this to four dimensions by replacing

2 2 .2 _ 2 2 o
x> o3 +y5 = x7;(1 + g7;) which gives

1 1 1 1

(LLLL)! = + .
’ xf4x§3(1+gf4)(1+g§3) x%3x§4(1+g%3)(1+g§4)

(5.3.15)

This is a 4d object which contains all 1d free theory correlators. To obtain the

specific correlators Taylor expand in g;; and take the appropriate coefficients. To

check this for the case of equal charges expand out (1+¢?)'=1-¢g%2+¢g*-¢5+... and
2p-2 2p-2 2p-2 2p-2

keep the two terms proportional to gy “g55 ~ and g5 “g5, ~, this indeed reproduces

the prediction in (5.3.13).

Next, let us investigate correlators of unequal charge and check that they can be
predicted from the generating function (5.3.15), which is the main result of this
section. First, consider {p;} = pgpq, where p > q. These correlators will be important
in later sections, together with the equal charge ones, when performing conformal
block analyses of correlators in the supergravity approximation and at the order of

higher-derivative corrections. The free theory correlator is given by

1 91940
(Op(xhyl)Oq(x%yQ)Op(x37y3)Oq(x4ay4)>co =- (0) gfg lggz ! 9 (5316>
Npqpq
1 p+q-1
and G]g(;;)lI(x7y) == (0) (E) ) (5317)
Npqpq Yy

where the operators have dimensions and charges (2p - 1)/2, (2¢ - 1)/2 and we



5.3. Free Theory 129

decompose Gz(,?];q into

1 (x\T7 1 zy (x\7P z\*!
k() =~ (2) 7 H ) - ) -

Np(gfgq Yy N;;(ggq rT=Yy\y Y
(5.3.18)
Acting on this with A®) gives
~ 0 xp+q
High(w,y) = (—UMW : (5.3.19)

which does look like free theory with dimensions p, ¢ and charges p—1, ¢ -1 as we

would expect for descendants. Using (5.3.6) yields

_ . _ B 1
<LquLqu)co = (_1)p qgfé’ 2932 2 ) (5.3.20)

2 .2
T13Toy

which agrees with the term proportional to g%’_z ggg_Q in the expansion of the gener-

ating function (5.3.15). Thus the choice of signs in our normalisation of the half-BPS
operators (5.2.17) was inspired by the realisation of the 4d conformal symmetry in

free theory, similar to the rest of the normalisation.
Consider one more correlator of mixed charges {p;} = pgqp, where p > ¢ and the free
theory correlator is given by

| P
(Op(wbyl)oq(ﬂfmyz)oq($3>y3)0p($4>y4))c0 = Wﬂfﬁ 19;3, !
Npqqp

1 T p+q-1 1-— y 2q-1
d G (z,y) = (—) ( ) . 5.3.21
and Gpggp(2,y) ngggp y 1+ ( )

The operators again have dimensions and charges (2p-1)/2, (2¢ —1)/2 as expected.
The correlator decomposes into
0 1 (z\P ¢
kl()qu(.’lf, y) = (0) (_) )
Npaap \Y
0 1 Ty 1-y 2q-1 ¢ \PHg-1 T \P4
Héqu(m, y) = ( ) (—) - (—) : (5.3.22)

N e-il\i=) )

The action of A® then yields

)

r7(0) _ (_1\P+q
Hpgap(z,y) = (-1) ypra2 (1 z)2a

(5.3.23)
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which as expected looks like free theory of descendants with dimensions p, ¢ and

charges p—1, ¢ — 1. Using (5.3.6) we finally get the correlator of descendants

_ _ . B B 1
(LyLgLoLy)eo = (-1 g2 g8 —— (5.3.24)
L147T53

which agrees with the term proportional to 955_2935_2 in the expansion of (5.3.15).

In this section we have shown that free theory correlators in 1d dual to quantum
gravity in AdSsxS? have four-dimensional conformal symmetry. The generating
function can be constructed by uplifting the correlator of descendants with lowest
charge to four dimensions. In the following section we will study correlators in the
supergravity limit in the context of the four-dimensional conformal symmetry as

well as the 4d scalar effective action described in subsection 5.2.3.

5.4 Supergravity

As explained in subsection 5.1.1, for supergravity the object which plays the leading
role in the four-dimensional conformal symmetry is the half-BPS correlator itself.
We will study correlators in the supergravity approximation in this section. To
construct a 4d generating function of all the 1d half-BPS correlators dual to tree-
level supergravity from the 4d conformal symmetry, we first need to determine
the lowest-charge supergravity correlator. This will be derived in subsection 5.4.1
using only crossing symmetry and x — 0 behaviour. In subsection 5.4.2 we will
then discuss the 4d conformal symmetry of supergravity correlators. Furthermore,
in subsection 5.4.3 we will obtain all half-BPS supergravity correlators from the
4d effective action (5.2.27) by evaluating generalised AdS;xS? Witten diagrams

analogous to chapter 3.
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5.4.1 Lowest-Charge Supergravity Correlator

In this subsection we determine the supergravity correlator for p; = 1 using crossing
symmetry and the £ — 0 behaviour. The free disconnected correlator of operators

with equal charges p; = 1 is given in terms of g;; as

(O1(21,11) 01 (2, y2) O1 (23, Y3) O1(24,ya) )0 = G12034 — G13024 + G14G23 - (5.4.1)

At next order in the large-c expansion, which corresponds to supergravity, we would

expect an expression of the form

(O1(1,y1)O1 (22, 42) O1 (23, y3) O1 (24, Ya) Y1) = §12§34§(33 -y)a(z) ,

however this does not turn out to be the most natural definition, which can be seen
by considering the crossed version. Indeed, if we exchange positions 1 and 3, which
takes . > 1-x and y - 1 -y, we get

1-z
I-y

(O1(3,93)O1(2,y2)O1 (21, y1) O1 (24, y4))|1/c = —032014 (z-y)a(l-x)

.z
:912934§($_y)a(1_$) .

Setting this equal to minus the original expression (by Fermi statistics) then implies

the crossing equation
a(l-xz)=-a(x)sgn[z(1-2)] . (5.4.2)

For 0 < x < 1, this reduces to a(1-x) = —a(z). We expect the supergravity correlator
should be given in terms of D-functions, or D-functions to get concrete expressions
in position space. Note that since there is only one conformal spacetime cross-ratio x
in 1d, one has to consider holomorphic D-functions, which we denote by D!, These
functions can be reached by taking the limit z — z of the usual D-functions in terms
of z,z (2.3.17) and setting z = z, see (5.2.3). However, the crossing condition (5.4.2)

is not consistent with the behaviour of DPl-functions under crossing.

This can be resolved by constructing the four-point function using bosonic two-point



Chapter 5. AdS,xS? Correlators: Effective Action and 4d Conformal
132 Symmetry

functions g;; (5.2.22)2, which yields

(O1(21,91)O1 (22, y2) O1 (3, y3) O1 (24, Y1) )1/c = 912934%@ -y)a(z) . (5.4.3)

In this case, from 1 <> 3, we find the crossing constraint
a(l-z)=a(x) . (5.4.4)

We shall take (5.4.3) as our ansatz. Before considering crossing versions of the four-
point function, it is important to carefully consider some properties of four-point
functions in one dimension. As mentioned in subsection 5.2.1, conformal symmetry
allows us to fix three points on the line, i.e. we can set x1 =0, x3=1and x4 = oo [152].
The position of the third point x5 is then equal to x and ranges over all real numbers.
Let us refer to the interacting part of the four-point function, z2a(z), by A(zx) for
the purpose of this discussion. The function A(z) is singular for values of = where
two points coincide, i.e. x =0,1,00. Thus, A(z) splits into three different functions

for different regions of the real x line:

A= (z) for x € (—00,0) ,

A(z) =4 A°(x) for z € (0,1) , (5.4.5)

A*(z) for z € (1,00) ,

see also [153] for similar discussions. The functions are related to each other by the
Fermi symmetry of the four-point function, where we have A%*(x) = z2a%*(x). As
mentioned above, we choose the ordering 0 < 2 < 1 where A° is the relevant function
and thus in all the above equations we replace a(z) by a®(z). When considering

crossing symmetry however, the other regions become relevant.

Let us now consider exchanging 2 with 3, which takes = - 1/x and y — 1/y:

(01($17y1)01($3>y3)01(9€2,y2)01(904,y4))|1/c = 9129343@ - y) (—%M(l/x)) :
(5.4.6)

2Although we are using bosonic two-point functions, the four-point function is still a valid
solution to the Ward identities with the expected symmetries.
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Equating this with minus the original expression (due to Fermi statistics) then
implies
1
a+( ) = 2%a’(7) . (5.4.7)
x

Finally, for the third crossing condition, consider exchanging 1 with 3 in (5.4.6):

1 1
(O1(23,y3) O1(21, Y1) O1(22, y2) O1 (24, ya) Yrje = 912934§($ -y) (1-1)? a* ( ) :

1-=x

Equating this with the expression in (5.4.3) then gives the condition

o (ﬁ) _ (1= 2)2a(x) | (5.4.8)

which follows from (5.4.4) and (5.4.7).

An additional constraint comes from the fact that the subleading part of the correlator
in the large-c expansion should not encode exchange of the identity operator. To

use this conditions, consider the conformal block expansion of the correlator

(O1(21,91)O1(22,Y2) O1 (23, Y3) O1 (24, y4))

= Z Al o 9129343 (37,9)

g: ARY g12g34 (=2)2 (1 + O(x)) (5.4.9)

and compare the approximation in the last line to the ansatz (5.4.3) considering the

x — 0 limit. This implies that a°(x) must satisfy the additional constraint
a®(z)=0(1) . (5.4.10)
With these constraints at our hand, assume that a®(x), a*(z) take the form

a®(z) = p°(z)logz® + p°(1 - z)log(1 - z)? + r°(x) for x € (0,1) ,
a*(z) = p*(x)logaz® + p*(1 - z)log(1 - x)* +r*(z) for v € (1,00), (5.4.11)
for rational functions p°, p*,r% r*. Note that for z € (0,1) and x € (1, 00) for a%(x)

and a*(x) respectively the logarithms in the above ansatz will not pose a problem

when considering crossing symmetry. Furthermore, this ansatz makes sense since we



Chapter 5. AdS,xS? Correlators: Effective Action and 4d Conformal
134 Symmetry

expect the correlator to be written in terms of DPl-functions, and these functions
indeed only consist of log(z), log(1 — ) and rational functions of z. Plugging this
into the crossing equations (5.4.4) and (5.4.7) and the constraint (5.4.10), we get

the following crossing equations for p%, p* and 70, r+:

pr(1fz) +p ((z - 1)/2) = =2*p’(z) ., p*((x - 1)) =2’p’(1-2),
p(@/(z-1)) = (1-2)*p"(x) , p"(1/(1-2)) +p*(2/(z - 1)) =-(1-2)*p°(1-2)

r'(1-2)=r%), r*(1/z)=2*"), r(1/(1-2))=1-2)>"x). (5.4.12)

We then find the minimal solution:

log 22 s log(1 - z)?

a®(z) = =DM (z) forxe(0,1), (5.4.13)

l1-z x
where D! () is the holomorphic box function. Note that (5.4.12) yields that a®(x)

and a*(z) have the same functional form:
at(x) = =DM () for x e (1,00) . (5.4.14)
Using (5.3.3) we write the interacting theory at tree-level as
HEES - bl (5.4.15)

We have now determined the lowest-charge supergravity correlator from which we
will obtain all higher-charge correlators from the 4d conformal symmetry in the

following subsection.

5.4.2 4d Conformal Symmetry

As was found in [11] for A/ =4 SYM, the higher-dimensional conformal symmetry
allows us to obtain the whole infinite tower of half-BPS correlators of all charges
described by tree-level supergravity from the lowest correlator alone. The starting
point is Hj 1" given in (5.4.15) which is lifted to four dimensions by simply lifting

the 1d cross-ratios and holomorphic D-functions to the usual cross-ratios and D-
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functions, using the relations (5.2.3) for the cross-ratios. To get an object that
transforms as a 4d conformal correlator, divide by 3,73, and then replace z7; —

z7;(1+g7;) to get the generating function:

Hsugra _ D _ D 1
2111; |4d: U 12111§U,U)’4d_> Usq 11211(;«54d>v4d) - — (5.4.16)
TioT3y TioT3y L1oT3y (1+g7,)(1+ 931)
where
22,22 (1+¢%)(1 + g2 22,22, (1+g2)(1 + g2
Uy = 12 50 (1+915)(1+9g34) Vg = A 53 (1+91,) (1 +933) (5.4.17)

adgad, (T gh)(1+63,) adgad, (L+gi)(1+g3,)
This 4d object includes all higher-charge 1d supergravity correlators. To obtain the
specific correlators, expand in small g;; and take the coefficients of the appropriate
powers of gf] Before deriving a general formula describing all correlators, let us
consider the explicit expansion for a few examples. The interacting piece of the

correlators corresponds to the piece proportional to —yy and for the first few cases

with charges {p;} = ppqq this looks like:

<01010202>1/c|% 2912934X9§4 (UD1122) )

(010,0505)1. = = 129345944 (—u D11s)

<O2O2O202>1/c|% =g12934% (U9%29?2,4 + 9%39%4 + vg%4g§3) (_U D2222) )
<02020303)1/c|%y =012934% (%U 9%29:4314 + 9%39%49%4 + U9%49§39§4) (U D2233) )
(03030303>1/c|% =012934% (%1“291129314 + %19%3934 + 711U29114g§3 + U 912951913954

+uv 9%29:’349%49%3 +v 9%39%49%49%3) (‘U D3333) . (5.4.18)

To get the one-dimensional correlators, go back to 1d by taking the holomorphic limit
of the D-functions and considering the 1d cross-ratios (5.2.12). The supergravity
correlators can be conveniently written in terms of the decomposition in (5.3.3)

using (5.2.22) in 1d:

= — 1-y+y? -
sugra __ hol sugra __ 1 hol sugra __ 2 y y hol
Hijgy =uDi7ye , Hyjzs = _EUD1133 y Hyggy = =2u"——F——Ds3sy ,

4_4y+3y270 sugra —~ho
2—2Dl§2:133 , Hpg' =—3u ——————Di%; . (5.4.19)

sugra _
Hypsy™ = 5u
Yy Yy

1
2
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Note that the supergravity correlators with general charges show a simple structure
and are proportional to a single D-function with the same indices: Hpyg& . o

Dbl .ps Which will become obvious in the general considerations below.

The expansion in gfj can be rewritten in terms of differential operators acting on
D-functions. Therefore, to find a general expression for all higher-charge correlators
let us formulate everything in terms of D-functions. These can be easily converted
to D-functions when needed to perform explicit calculations in position space us-
ing (2.3.17). Note that here we use a d-independent function defined in terms of the
normalised D-function in (2.3.16) as Dy = (-2)7 D3, Again, start from the

4d uplift (5.4.16) and notice that it exactly corresponds to Di;q;:

sugra B
M) 2Py 5.4.20
2 2|4d_ 2 2 |4d__ 1111|4d' ( )
L19T3y 12%34

To get the coefficient of (gfj)n in the g7, expansion of the uplifted correlator with

(u,v) = (U4q,v4q), instead of performing the expansion we take

(v5)" _ar
S D] (5.4.21)
I RNV NNV N
n d(xZZJ) 182830
where (see [00])
d _, )
d$%2 DA1A2A3A4 = _DA1+1 Ao+1AsAy - (5-4'22)

Thus the coefficient of (g%,)" is

(e1,)" _d” ! (-z1)"
n! d(.’ﬂ%z)nDA1A2A3A4:—! Ar+nAg+n A3y (5423)

and similar for all z7;. Therefore, a general coefficient of I, (gf]) ’is given by

d:
2\
)"

Hi<j (# {A+Tc; dis}? where 0 < dz] = dji7 d“ =0.

3The factor (-2)*» comes from the fact that in chapter 3 we usually factor out (-2) from
(-2X,.X;) = :c?j whereas here we work in terms of a:fj instead of (X;.X;) and similar for the
spherical coordinates.
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Hence a general correlator with charges p; is given as

Hsilgra di; di; (;(;ZQ) ,
p2p21023p4.‘4d: Z H (-1) (gfj) ”_dJ“'_ (_Dplpzpsm)
L1234 {di; } i<j ij:
2 \%ii
(yl) Ep+1 /
- Z H d]..l (_1) Dp1p2p3p4 ’ (5‘4'24)
{dij} i<y vy
with
Yodij=pi—-1,0<dij=dj;, dyy =0 . (5.4.25)

i<j

We recognise the factor depending on the internal coordinates y;; as the analogue
of the Mellin transform on the sphere we introduced in chapter 3 as B-functions.
Note that the relevant object here is ngi} = (—Q)Zp Byp,y, given in terms of the
d-independent B-function defined in (3.1.31) (see footnote 3). The d;; correspond
to the sphere-analogues of Mellin variables and y7; = (-2Y;.Y;). Equation (5.4.24) is
a four-dimensional object which generates all 1d half-BPS correlators described by
tree-level supergravity. To obtain general correlators in terms of D-functions it is
useful to define the interacting piece of the correlator as

<OP1 OP2 OP3 Op4 ) |

-y
Ty

(0, 0p, 03 Op, Jint = (5.4.26)

T12T34Y12Y34
where we divide by x12234Yy12y34 Which is the 1d analogue of the Intriligator poly-
nomial in 4d defined in appendix B. Note that the interacting correlator in (5.4.26)
agrees with the definition of the interacting correlator in (3.1.14). The lowest-charge

interacting correlator is then simply

~uD
(01010101 )it = =Diyy; = ﬁ (5.4.27)
12734
Finally, a general supergravity correlator is given by:
<OP1OP20P3OP4>int = (_1)2p+1D1,91p2p3p4 x len—lpz—lpg—lm—l . (5-4-28)

To obtain explicit correlators in terms of conformal cross-ratios, rewrite the correlat-

ors in terms of D-functions and take the holomorphic limit. In the next subsection
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we derive the same correlators from a 4d scalar effective action and compare the two

results.

That all supergravity correlators can be obtained from the lowest-charge correlator
alone is remarkable and shows that the higher-dimensional conformal symmetry is
very powerful. Starting from just the box integral in the 1d case we can deduce the
whole tower of spherical harmonics by acting with simple differential operators on

it.

Decomposition into 4d conformal blocks

The four-dimensional conformal symmetry of the supergravity correlators suggests an
expansion in 4d conformal blocks. This expansion will show that the lowest-charge
supergravity correlator lifted to 4d (by using the usual D-functions and cross-ratios,
not the holomorphic ones) corresponds to a single 4d conformal block. This result
is expected from the higher-dimensional conformal symmetry, there should be only
a single block contributing for each spin /. Furthermore, 2d kinematics implies that
only spin-0 blocks contribute and thus the 4d uplift of the lowest-charge supergravity

correlator corresponds to a single 4d spin-0 block, which will be explained below.

The decomposition into 4d conformal blocks Ga ;(u,v) can be written as [154, 155],

1
(O1(1,41)O1 (2, y2) O1 (3, y3) O1 (24, Ys) aa = ——5 2, Any Gay(u,v) ,  (5.4.29)

Lio%34 A
with

1

Z—Z

x oy (3(A-1-2),3(A-1-2);A-1-2;2) - (2« 2)) . (5.4.30)

Gai(2,7) =——ud D ((=12) 2oF (A(A+1), H(A +1); A +1; 2)

First, expand the correlator at O(c), which is given by the 4d lift of Hyyy; in (5.3.12).
The leading scaling dimension is Ag = 2n + [ + 2, with the labels n =0,1,... and spin

[=0,2,... The conformal block expansion at leading order is then given by

Uu
o= S A Gaga(u,v) (5.4.31)
n,l
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This gives the free OPE coefficients

21+ (]1)2

0) _
Azi = (20!

(5.4.32)

which only has Ag = 2 contributions. To decompose the 4d lift of the correlator at
O(1/c) given in (5.4.15) we first expand the OPE data, as well as the decomposition

in (5.4.29) to order 1/c:
_ 1 40 1o
A=2n+1+2+ —yagu+... , Anga=Ay  + Az +. (5.4.33)
c Lo s
the block expansion up to O(1/c) is then

(O1(x1,y1)O1 (22, y2) O1(x3,y3) O1 (24, Y4) )aa =

1 1 10
R Z [A(Alg,l GAOJ(U, ’U) + E ASAO(?J VAol 53_?1 GAD,Z(Ua U) + .. ] . (5434)

L19%34

We wish to extract the anomalous dimensions v, and this can be done by noticing that
0n,Ga,, gives an expression of the form (logu Ga,;+ non-log terms). The correlator
which is given in terms of D-functions also has a contribution proportional to log u.
Therefore, we can isolate the relevant contributions to solve for the ya,; by taking
the pieces proportional to logu and this yields
= 0
- uD1111|logu = Z A(AJ,ZVAO,I GAO’Z(U, U) . (5435)
Aol

It turns out that the log-piece of the supergravity correlator indeed only has a single

spin-0 block contribution with Ag = 2. The anomalous dimension is
Y20 =1, (5.4.36)

where we divided by Ag?g . This can also be seen from 4d supergravity scattering in
flat space, analogously to the discussion in section 5.1 where the supergravity anom-
alous dimension agrees with the conformal partial wave coefficient of the flat space
scattering amplitude. In general dimensions the expectation is that the anomalous

dimension is ~ which for 4d reduces to a constant agreeing with (5.4.36).

1
(1+1) (g-4)

We will adapt the discussion in section 5.1 to 4d in the following.
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Physical interpretation

The 4d supergravity amplitude in flat space is given by
A4 = GN(S4(Q) g GNS s (5437)

where we have taken the scalar component. Note that Gn04(Q) is dimensionless
in 4d, so this amplitude has 4d conformal symmetry as expected. The factor of
s indicates two-derivative interactions, as one would expect for supergravity. In
contrast to the 10d amplitude (5.1.4), the 4d one has no 6 dependence which implies
that only [ = 0 contributes in the partial wave expansion (5.1.5). This is expected

for 2d massless scattering. Hence, there is only one partial wave coefficient:
R2
Ad(s) ~ 1+ —s, (5.4.38)
c

where the Newton constant in 4d Gy ~ R?/c, with the AdS radius R and the
central charge ¢, and the one is put in by hand. This explains why supergravity
correlators correspond to the 4d spin-0 block as was confirmed in (5.4.36). Based on
this argument we can make a prediction for the supergravity anomalous dimensions
obtained from a conformal block analysis in 1d and solving the mixing problem.
Analogous to the N' = 4 SYM case, we expect the anomalous dimensions to be of

the form

1 sugra

1
echa  ~1+=§3 (5.4.39)
C

where we note that 43¢ contributes at order 1/c and §(?) is the eigenvalue of the
second-order differential operator A acting on the 1d blocks. The eigenvalue §(2)
encodes s and importantly there is no dependence on the spin [, which has to be
the case because there is no spin in 1d CFTs. We will solve the mixing problem for
anomalous dimensions of double-trace operators at O(1/c) and show that the result
is consistent with this prediction in section 5.6. Before doing so, we will derive all
half-BPS supergravity correlators from the 4d scalar effective action in the following

subsection.



5.4. Supergravity 141

5.4.3 Effective Action

In general dimensions, AdS,xS?, supergravity is not expected to be directly computed
from the higher-dimensional scalar effective action, because it is not dual to contact
interactions alone but rather is also described by exchange diagrams. But it turns
out that in AdS,xS? supergravity is described by the ¢* interaction in the 4d effective
action (5.2.27). This can be seen from the discussions above, that the 4d uplift of the
lowest-charge supergravity correlator corresponds to the 4d spin-0 block (or rather
the log u-piece of the correlator does). Hence, the conformal block expansion in 4d is
truncated in spin and therefore supergravity can be described by contact diagrams
alone, see also subsection 2.3.2. Thus, in AdS,xS? we can deduce all correlators at

O(1/c) from the effective field theory.

All four-point half-BPS correlators described by tree-level supergravity can be dir-
ectly computed from the 4d effective action (5.2.27) by evaluating zero-derivative
4d Witten diagrams, which is very similar to the zero-derivative corrections at order
a’® described in section 3.2. To obtain correlators from the 4d effective action we
evaluate AdS,xS? Witten diagrams, closely following the procedure explained in
chapter 3. The supergravity term is the first term in the effective action (5.2.27)

and is simply a ¢* interaction:

1 N N ~ A
oA f EXPY (X V) 4.4
Sng n AdSxS XY (5:4.40)

where we use embedding space formalism reviewed for AdS coordinates in subsec-
tion 2.3.1 and for spherical coordinates in 3.1.4. We obtain the corresponding CFT
correlators by following the standard AdS/CFT procedure for computing correlators
from AdS, but in a fully 4d covariant way, including the two-sphere manifestly. Us-
ing the generalised bulk-to-boundary propagators in (3.1.33) we obtain the AdSyxS?
Witten diagram for this ¢* contact interaction, leading to the following proposal for

the supergravity correlators:
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g _ L 4 (C1)* PXPY
(OOOO>1nt 4 (_2)4 AdeS (Pl+Q1)(P2+Q2)(P3+Q3)(P4+Q4)

1 x
= 1 AC) < DY s (5.4.41)

Recall that P, = X.X;, Q; = Y.Y; and the AdSxS D-functions are defined in (3.1.37).
The correlator (5.4.41) contains all supergravity half-BPS correlators of all spherical
harmonics and to extract any specific correlator one expands in the appropriate
powers in Y; using the Taylor expansion of the 4d bulk-to-boundary propagators
(Pi+ Q)7 =2 (F1)PH(P) Q)" (5.4.42)
p=1

The individual correlators are then given by*:

(Op, 0p, O0p; Op, it

_ 1 (Cl)4 2 ¥ 1 2V pi—1
= 1 Cayi AdSQd My x[SQd FTI@)

1
= Z A (Cl)4 Dz(>3>2psp4 (XZ) X Bzgl) (Y;)

1-1p2—1p3-1ps—1
¥,+1
=A" (_1) v Dmmpsm(Xi)x p1—1p2—1p3—1p4—1(Y;)

= A (-1)"*' Dy

4
p1p2p3pa X Ppi-1pa-1p3-1ps-1 >

(5.4.43)

where going from the third to penultimate line we rewrote everything in terms of the
normalised D- and B-functions defined in (2.3.16) and (3.1.31). Further, to compare
to the results obtained from the 4d conformal symmetry in (5.4.28), rewrite D- and
B-functions depending on X;.X;,Y;.Y; as D’- and B’-functions in terms of x?j,yfj
which have factors of (-2)**» between them. We absorb all numerical factors into
the coefficient A’ which is unfixed and we set it to one in subsequent calculations, in
agreement with the choice of normalisation in the previous subsection. In this case
the logu piece of the lowest-charge correlator is exactly equal to the holomorphic

limit of the 4d spin-0 block. The above expression includes all tree-level supergravity

half-BPS correlators of any charge and it agrees with what we found from the

4This is (3.1.40) with A; =d = 1 and with p; - p; — 1 to account for the fact that the lowest
correlator is labelled with p; = 1 rather than p; = 0. We do not need to worry about the minus signs
in the factors (-1)? in (5.4.42) since By, p,psps = 0 if D1 + D2 + p3 + pa is odd.
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4d conformal symmetry in (5.4.28), notably (Op, Op,O0pOp, )™ o< Dypypopaps- 1O

obtain explicit expressions in position space convert D’ to D-functions and take the

holomorphic limit.

5.5 Conformal Block Analysis and Double-Trace

Spectrum

In the previous sections we have determined all half-BPS correlators for disconnected
free theory and in the supergravity limit. Next, we wish to perform a conformal block
analysis of these correlators in the large-c expansion and specifically compute the
anomalous dimensions of double-trace operators in the spectrum. Before doing so
in section 5.6, in this section, we will analyse the double-trace spectrum and discuss
the operators that can be exchanged in the conformal block expansion (5.2.19) for
each pair of scaling dimensions and SU(2) charges (A,p). We discuss the spectrum

for free theory and supergravity, as well as for higher-derivative corrections.

A lot of progress has been made in the study of the conformal block analysis of
four-point half-BPS correlators in the large-c¢ expansion in the context of N' = 4
SYM [11, 14, 16, 84-91, , | and the analysis in this and following sections
is inspired by these works. It is expected that short and long operators contribute
to the OPE of the four-point functions of half-BPS operators O, and that the only
unprotected operators which contribute at leading order in 1/c are double-trace
operators which consist of a product of derivatives of two of the operators O,. All
other multi-trace operators are expected to be subleading in 1/c. We discuss the
double-trace operators which are present in the free theory and at leading order in
1/c. We will find that only specific operators are present in the spectrum in the
supergravity limit, whereas more operators contribute at the order of free theory

and higher-derivative corrections.

Let us start by considering all long double-trace operators in the OPE of two half-
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BPS operators:
Oq1q2 = OmaAHiqr(Hoqz s 1 £q, (551)

where the operators O,, and O,, have half-integer scaling dimensions and are labelled
by integers A+1/2, the dimensions of the descendants, in terms of ¢; and ¢y according
to the conventions introduced in (5.2.17) and used in the previous sections. We
denote the scaling dimensions and SU(2) charges of exchanged operators O, ,, by A
and p respectively. Note that from now on throughout the rest of this chapter, when
writing A and p we will always refer to the dimensions and charges of the exchanged

double-trace operators (not the external ones).

The interacting piece of the correlator, corresponding to H in the decomposi-
tion (5.3.3), can be written as a double expansion in terms of large central charge ¢

and small expansion parameter a, where a describes the higher-derivative corrections:
1 .
H(z,y)=HY + - (HsugM +a HYeW 4 ) +0(c?) . (5.5.2)
c

We wish to study the double-trace spectrum at different orders in ¢ and a. From (5.5.1)
together with considering the possible R-symmetry charges, one can predict which
double-trace operators can in principle contribute to the spectrum at each weight
(A,p). Subsequently, by performing the conformal block analysis for free theory
at O(1), supergravity at O(1/c) and for four-derivative corrections at O(a/c), we
can determine which operators are really present in the double-trace spectrum at
(A,p), i.e. have non-zero conformal block coefficients at the order considered. It
turns out that at O(1/c) only part of the operators contribute, while more operators
contribute to free theory and to higher-derivative corrections. This will be explained
by the fact that 1d correlators in the supergravity limit are truncated to 4d spin-0.
Generally, there are many operators contributing at each weight (A, p) and to resolve
this degeneracy we have to solve a so-called mixing problem. This will be studied in

subsequent sections.

Before we describe the conformal block analysis in detail and solve the mixing

problems for supergravity and four-derivative corrections in sections 5.6 and 5.8



5.5. Conformal Block Analysis and Double-Trace Spectrum 145

respectively, we will first present the operators which are found to contribute to the
double-trace spectrum. At the end of this section these will be interpreted in terms
of an effective 4d spin similar to the one in 10d described in section 5.1. We notice
that there are two classes of operators in the spectrum, we call them class A and class
B. Both, class A and class B operators are present in the free theory, but only class
A operators acquire anomalous dimensions and mix with other class A operators at
order O(1/c), while class B operators decouple at O(1/c), i.e. they do not mix and
do not acquire anomalous dimensions at the level of supergravity. Going to higher-
derivative corrections, particularly at four-derivatives which is the case studied in
this chapter, both class A and class B operators acquire anomalous dimensions and
mix. Note that class A and class B operators only mix with operators of the same
class and class A operators never mix with class B operators. Additionally, it is
important to note that there are different operators present for the cases where
t=A-poddort=A-peven. At the level of supergravity there are only operators
present when ¢ is odd, these are the class A operators. In free theory and at the level
of four-derivative corrections, there are operators mixing and acquiring anomalous
dimensions for both odd and even ¢ and we distinguish between them by labelling

them with B%* and B respectively.

The fact that only specific operators acquire anomalous dimensions and mix at the
order of supergravity can be explained from the point of view of the 4d conformal
symmetry. Correlators in the supergravity limit correspond to the 4d spin-0 block
only, which only allows for class A operators. This can be seen from the 4d effective
spin we will conjecture in (5.5.6). Whereas for the 4d uplift of correlators corres-
ponding to four-derivative corrections, there are contributions from spin-0 as well
as spin-2 blocks and the decomposition of free theory correlators is not truncated in
spin at all, thus allowing for more operators with non-zero anomalous dimensions,
which includes all class B operators. Note that this is specific to 1d, because the
correlators at O(1/c) correspond to a ¢* interaction. In the N' =4 SYM case, super-

gravity correlators have no spin-truncated block decomposition and their spectrum
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contains all possible double-trace operators.

We label the allowed values of pairs of ¢; and ¢, for class A and class B operators with
odd or even t with (¢2,¢3), (¢%°,¢5") and (¢Z°, ¢F") respectively. There are d =
da+dpiw +dpgie operators Oy, 4, labelled by sets of pairs (g1, g2), where d4 counts class
A and dpto, dpte class B operators with odd and even t respectively. The labels run
over a set of operators Dj , and we parametrise this set by i4, 74, igto, 7'gto, igte, T'pge

as follows:

t=A-podd

For ¢t odd we have both class A and class B operators:

G =1+ig+ra, %" =1+igw+rpge,
@ =1+ig+p-74, & =1+igo+(p-1)-rpo,
, t-1 , t-1
ZA:O,...,T, ZBm:la-"aTa
_1 to_l
ra=0,... A" g =0,... KB , (5.5.3)
2 2
where
p+1 peven p—1 peven
t:A—p, HaA = ) HpBte = ; (554>
P p odd P p odd

with da = $(pa+1)(t+1) and dpee = 3(pupro +1)(¢ - 1) . Class A operators have even
numbers of derivatives while class B operators have odd numbers of derivatives at ¢

odd.

t=A-peven

There are only class B operators for ¢ even, meaning these operators contribute to
the free theory and higher-derivative corrections but not to supergravity. These

operators are parametrised as

Bte _ . rBteJrl
qp =ipe+ | LE5—],
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te

g5 =ipe+p- B,

, t
ZBtezl,...7§,
rge=0,...,p-1, (5.5.5)

with dpgte = %tp :

We illustrate the exchanged operators at weight (A, p) for odd and even ¢ in figure 5.1
and 5.2 respectively before we interpret them in terms of the effective 4d spin. In
figure 5.1 the exchanged operators with odd ¢ are illustrated in terms of the pairs
(q1,¢2) with the parametrisation (5.5.3). The black nodes denote class A operators
while the white nodes denote class Bt operators. In the supergravity approxim-
ation, operators which are connected by vertical lines have the same anomalous
dimensions after unmixing which are all zero at O(1/c), except for a single operator
with non-zero anomalous dimension which is the operator denoted by A. When
including higher-derivative corrections, the degeneracy is broken and focussing on
four-derivatives the operators which acquire non-zero (and non-equal) anomalous
dimensions after unmixing are highlighted by a grey rectangle. Denoted by E is the

one class B operator which acquires non-zero anomalous dimension at O(a/c).

In figure 5.2 exchanged operators with even ¢ are illustrated in terms of pairs (¢, ¢2)
parametrised as in (5.5.5). For even ¢, operators mix and acquire anomalous di-
mensions only starting from the order of higher-derivative corrections, thus they
all belong to class B. The operators are parametrised following (5.5.5) and it turns
out that they split into two groups, operators with even rgt are denoted by black
nodes while operators with odd rpgt. are denoted by white nodes. The two types
of operators do not mix. There is one operator with even and one with odd rpte
which has non-zero anomalous dimension after unmixing at O(a/c) and they are

highlighted by a grey rectangle.
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Figure 5.1: The exchanged operators O, which contribute at
(A,p) for t odd are illustrated in terms of the pairs
(¢, q5) and (¢P”,¢¥"). The operators are paramet-
rised as described in (5.5.3). The black nodes denote
operators of class A while white nodes denote operat-
ors of class B*. The only operator acquiring non-zero
anomalous dimension at the order of supergravity is
the one denoted by A. Furthermore, the nodes in the
grey rectangle correspond to operators which acquire
non-zero anomalous dimensions at the order of four-
derivative corrections.
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Bte
5

Figure 5.2: The exchanged operators O, which contribute at

(A, p) for t even are illustrated in terms of the pairs
(¢P*,¢5"). All operators contributing at even ¢ be-
long to class B. The operators are parametrised follow-
ing (5.5.5) and they split into two groups which do not
mix with each other. Operators with even rptw. are de-
noted by black nodes while operators with odd 7 gt are
denoted by white nodes. At the level of four-derivative
corrections two of these operators acquire non-zero an-
omalous dimensions, they are highlighted by a grey rect-
angle.
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4d effective spin

Similar to the 10d effective spin (5.1.3) which was justified from the similarity
between (5.1.7) and (5.1.8), we conjecture a 4d effective spin in terms of 1d quantum

numbers as follows

(5.5.6)

1+ (—1)"Btc+1)
—

l4d=2(iA+TA+iBto+iBte+TBte—

This means that at each order in a, this 4d spin will predict how many and which
operators have non-zero anomalous dimensions after unmixing. As we know, the
conformal block expansion of the 4d lift of 1d superconformal correlators in the
supergravity limit is truncated to spin zero. Therefore, the only operators with non-
zero anomalous dimensions are predicted to be those whose quantum numbers give
l4g = 0 and this can only be satisfied by class A operators. Hence, for supergravity

the 4d spin simplifies significantly to
lil;gra =2 (ZA + TA) . (557)

For higher-derivative corrections also class B operators are allowed since the dual bulk
contact interactions correspond to spin-L corrections with L > 2. The four-derivative
corrections whose conformal block analysis and unmixing we study in section 5.8
correspond to spin-2 corrections and thus we predict that operators whose quantum

numbers satisfy l4g = 0 and l44 = 2 have non-zero anomalous dimensions at this order.

We will solve the mixing problem for supergravity in the next section and for four-
derivative corrections in section 5.8 and we will also interpret the results in terms
of l44. First, let us start by describing how to solve the mixing problem at general

orders in ¢ and a in the following subsection.

5.5.1 Solving the Mixing Problem

In [144] the authors study the double-trace spectrum of N'=4 SYM in the super-

gravity limit, where the double-trace operators exhibit degeneracy, as explained in
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the previous subsection for 1d. To solve the mixing problem we need to consider free
theory and tree-level supergravity contributions to the correlators of four half-BPS
operators. In the 4d case the degeneracy can be resolved for a large family of operat-
ors, and only a small residual degeneracy is left. In 1d this residual degeneracy is not
obvious since the degenerate anomalous dimensions are all zero. We will find that
there is only one non-zero anomalous dimension at each weight. It was later found
in [11] that the residual degeneracy in 4d is lifted when considering higher-derivative
contributions to the correlators and we will come to similar conclusions for 1d in
section 5.8. In this subsection we will describe how to solve the mixing problem up
to O(a/c) which corresponds to four-derivative corrections, this discussion can be

easily extended to higher orders in a to include higher-derivative corrections.

To perform the conformal block analysis we need the free theory correlator which is
the leading contribution to the large-c expansion and was described in section 5.3
and the first subleading contribution in the 1/¢ expansion, which we obtained both
from the 4d conformal symmetry in subsection 5.4.2 and from a 4d scalar effective
action in subsection 5.4.3. Even though we have not obtained the higher-derivative
correlators yet, we will assume that we have them at our disposal and describe
the unmixing at O(a/c). We will later derive all four-derivative corrections to all
half-BPS correlators described by tree-level supergravity from the 4d scalar effective

action in subsection 5.7.2.

We have seen above that there can be many double-trace operators with different
quantum numbers i, 74, igto, T'gto, ipte, r'gte contributing at the same weight (A, p).
To solve this mixing problem we perform the operator product expansion of (O,, x
0,,) and (O,, x O,,), where the pairs (p1,p2) and (ps,ps) range over the same
set Da p, described in (5.5.3) and (5.5.5). The conformal block expansion of the

interacting piece of the correlator in terms of long blocks is

Yy i lon
H(l’, y) B r—=y AZ: AZ»PBAmg,pm,pm ($’ y) ’ (558)
P

where the superconformal blocks are given in (5.2.23). The coefficients of the decom-
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position are given as a sum of squares of OPE coefficients as follows

Aﬁ,p = Z OP1P2OCP3]D4O ) (559)
OAp

where the sum goes over the degenerate operators because of operator mixing. Ex-

panding the OPE-data to order 1/c we get

1 )
Ap = A0 4 = (,Ysugra " a74‘dem . ) n 0(6_2) :
C

Copo = o0 4 (aCpdmv+ . )+0(c), (5.5.10)

ppO

where the anomalous dimensions v depend on A, p and the degeneracy labels i and

r. Plugging the expansion of the dimensions and OPE-coefficients back into (5.5.8)

gives
Ty (0) lon,
H(x.v) = A B T
( 7y) T—y [ AW p A(O),p,p127p34( ’y)
A(O)J)

1 su, i
1 gra 4-deriv long

i c lOgUA(ZO): <MA<°>7;D * aMA(O)J) T ) BA(O)7P7PI27P34 (@) +.. ] ’

7p

(5.5.11)

where the dots denote terms analytic in w which do not play a role for our analysis.
We define the OPE-coefficients at orders O(c?), O(1/c) and O(a/c) as follows (note
that from now on we denote the classical scaling dimension A(® of the exchanged

operators by A for simplicity):

Mzﬁra: Z ,ysugrao(o) C(O)

p3paO ~ p1p20 ~p3psO
OAp

0) _ (0) (0)
AA,P - Z prz(’)c
OAP

7‘[4—deriv _ 4-deriv ~(0) (0) sugra v(0) 4-deriv sugra v4-deriv v(0)
Ap T ZA: (fy 0171192(’)0193194(’)_Ir’y Op1p200p3p40 + Oplsz Cp3p4(’) :
OAp

(5.5.12)
The left hand side of equation (5.5.11) are the explicit forms of the correlators
and comparing the equation to the double-expansion in (5.5.2), it can be seen that
ASAOL is determined from the free theory contribution, M{®™ is determined from
the correlators in the supergravity limit and Mi‘?fﬁ" will be determined from the

four-derivative corrections to the correlators.
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To decide which operators we have to consider in the conformal block analysis to solve
the mixing problem, at each weight (A, p) let us arrange a ((da + dpto) x (da + dpto))
matrix of correlators running over Da , for ¢ odd and a (dpte x dgte ) matrix for ¢ even
respectively, where we use the parametrisation from earlier in this section. Note that
the ((da + dptw) x (d4 + dpto)) matrix is block-diagonal, so class A and B operators
can be treated independently, and similarly (dpgt x dgt) is block-diagonal where
operators with rgt even or odd can be treated independently. We then perform
a conformal block analysis and arrange the coefficients into matrices /Alg)?p, ]\;[Zu,ira
and M é‘j}eriv for free theory, supergravity and four-derivative corrections respectively.
Comparing (5.5.11) to (5.5.2), keeping terms up to O(a/c) and writing (5.5.12) in

matrix form then leads to the following unmixing equations:

o(1): A =c©(cO)"
O(1fc): M= =4 (CO)"
O(a): 0 = CO (gideriv) " | cderiv (CO)T
O (ac) : Mi—f;eriv _ O ;5/4—deriv (C(O))T +CO Apugra ((C4—deriv)T + C4—derivpysugra (C(O))T :

(5.5.13)

where 4 is a diagonal matrix of the anomalous dimensions. Note that flg))p is a
diagonal matrix as can be easily seen from the form of the free theory correlators

and M"™ and My ‘;}eriv are symmetric matrices.

To solve the unmixing equations for the supergravity anomalous dimensions and the
free three-point functions (O(1/c) and O(1)) for general (A, p) it is useful to define

the matrix ¢
.
e'=1d, CO=(A®)2.¢. (5.5.14)

The unmixing equations then become:

=

- ,Aysugra . ET — (A(O))_% . Msugra . (A(O))_ (5515)

_1
2

FUE T .
The columns of & are eigenvectors of the matrix (A©®) * . Afsuera. (A(0)) > and the
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corresponding eigenvalues are the anomalous dimensions at O(1/c¢). So the mixing

problem can be solved by solving the eigenvalue problem of the corresponding matrix.

The anomalous dimensions after unmixing at the order of four-derivative corrections
-1

are then the O(a) eigenvalues of (M sugra 4 \Vf Arderiv) . (121(0)) . We will illustrate

this with examples below.

We now know how to solve the mixing problem in the supergravity limit and for
four-derivative corrections. In the following section we focus on the supergravity
unmixing and we will later perform the unmixing for four-derivative corrections in

section 5.8.

5.6 Unmixing Supergravity

In this section we will solve the unmixing equations for supergravity at each weight
(A, p), where for every (A,p) we use (5.5.3) to determine the list of double-trace
operators in the spectrum. Recall that only class A operators are in the double-
trace spectrum of supergravity and thus from the 4d spin (5.5.6) we predict that
there is only one non-zero anomalous dimension per weight, the one corresponding
to lyg = 0. Additionally, from the 4d conformal symmetry we predict that the
value of the anomalous dimension should be the eigenvalue §(2) of the differential
operator A(?) (5.2.15) acting on the blocks. This can be seen from the arguments
around (5.4.39). We determine the anomalous dimensions after unmixing for many
values of (A,p) and finally, predict a general formula which is indeed §(2). Let us

look at a few examples, starting with the sector with SU(2) charge p = 0.

5.6.1 p=0 Sector

For the p = 0 sector, we only need to consider correlators of the form H,, 4 4.0
and thus for free theory we only need equal charge correlators. We start with a

conformal block analysis of free theory, where we also need to consider contributions
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from half-BPS blocks (5.2.24). Therefore, it is best to consider Gt(zgt)zq (5.3.10) instead
of H for free theory. Gggzq decomposes into one half-BPS block with A =p =0
which corresponds to the identity operator and long blocks with coefficients AS,SZ,q.

Evaluating the free coefficients for many correlators and many values of A, p we

obtain a general formula for the free coefficients Aég()lq(A, p) for all A, p, ¢:

© . (1+ (~1)22 1) Al(2(p+ 1))I(A +2¢ — 1)!
Adaaa(B:p) T2M)(A+p+ Dpl(p+ D(p+2q - 1)!(—p +2¢ - 2)I(1 - 29)2

X (A—p+ 1)p(A_2q+2)—p+2q—2 . (561)

These coefficients are non-zero only for odd ¢, which is expected from the paramet-
risation of operators in (5.5.5) because for even ¢ only operators Oy, ,, with ¢; # g2

contribute.

For the simplest case A =1 there is only one exchanged operator of the form (5.5.1)
contributing, 0,0y, thus we perform the conformal block analysis of the correlator
HI$®. We spell out the supergravity coefficient together with the free theory

coefficient from (5.6.1):

ARL(L0) =1, MEE(1L0) = (e =2, (5:6.2)
The unmixing equations are
AL L0y = (C9) . a0y =i (09 (5.6.3)
Solving these equations we get
Wer=2, =1, (5.6.4)

At weight A = 3 there are two possible exchanged operators, 0,0y and 0,0%0;,

which gives the matrices of OPE coefficients for free theory and supergravity:

(0) sugra ugra
A Al 0 %) 0 A sugra MR M5, % %
3,0 - A(O) - 1 ’ MS’O - Msugra Msugra - 1 5 ’
0 2222 (3.0) 0 18 1122 2222 (3.0) 3 9
(5.6.5)



Chapter 5. AdS,xS? Correlators: Effective Action and 4d Conformal
156 Symmetry

where the new coefficients for general odd A are

2(A - 1)AI(A +2)!
3(A+1)(24)!

(A-1)2(A+2)2(Al)2
9(2A)! ’

(5.6.6)

Mz, (A,0) = » Maysy'(A,0) =

the rest were already spelled out in (5.6.2). To obtain the O(1/c) contribution to the
anomalous dimensions and the leading contributions to the three-point functions,

we solve the unmixing equations in matrix form (5.5.14) and (5.5.15):

Asugra 120 (0) 2\}1_5 ﬁ
Y50 = , Cig= , (5.6.7)
0 0 VG
6v/3 6v/3

where 4w are the eigenvalues of the matrix A/susra . (A(O))_l. The eigenvectors
are the columns of the orthonormal matrix ¢ which gives the three-point functions
Cc = (A(O))% - ¢, as explained above. Note that there is only one non-zero anom-
alous dimension at (A,p) = (3,0), namely 75" = 12. Going to higher A and p
this structure will continue, at each weight there is only one non-zero anomalous
dimension, as expected from the higher-dimensional symmetry considerations. Let

us look at a few more examples.

At weight (5,0), there are three exchanged operators in the double-trace spectrum,
0303, 020?049 and 0;0*O; and conformal block analysis of the appropriate correl-

ators gives the symmetric matrices

(0) 1
Al 0 0 s 00
1(0) _ (0) - 4
A5,0 B Az 0 - st 0>
0) 1
Al 1
3333 (5,0) 75
sugra sugra sugra 1 2 1
Mllll M1122 M1133 63 27 15
rsugra — sugra sugra, — 28 14
MS,O Mygyy Mayss 81 45|’ (5.6.8)
sugra e
3333 25

(5,0)
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where the expressions for general odd A for the new coefficients are

MEUE (A, 0) = (A-3)(A-1)(A+4)AlI(A +2)!

30(A+1)(2A)! ’
sugra C(A=-3)(A-1)2(A+2)(A+4)AI(A +2)!
Moy (8.0) = 180(A +1)(2A)! ’
sugra C(A=-3)2(A-1)2(A+2)(A+4)2Al(A +2)!
Mis55"(A,0) = 3600(A + 1)(2A)! : (5.6.9)

Solving the unmixing equations (5.5.13) for the anomalous dimensions, we find that

all are zero but one:
,y;i]gra =30 . (5.6.10)

Starting from 3 x3 matrices as in the present case, there is a zero-degeneracy, because
more than one operator have zero anomalous dimension. Due to this degeneracy
the free three-point functions cannot be completely fixed but we are left with two
free parameters b; and by. In particular, of the eigenvectors forming the matrix ¢,
the two which correspond to the zero eigenvalues are not unique. Thus, the leading

three-point functions is:

1 _ 3VBbi+tbs  V/5bi—15by
3v/210 3v690n12 15138712
C(O) - V14 V46 by IRvZT , (5.6.11)

5,0 915 9V/1bnis 915 n1s

V7 2v5b1-7Tby  7/5b1+10bs
5v/30 5v/690 n12 25v/138 12

where nip = \/b? + b2 and bybs > bibs. One of the coefficients b; and by will be
fixed when solving the mixing problem for four-derivative corrections, since the
supergravity data goes into the higher-derivative corrections unmixing equations,

see (5.5.13).

We solve the mixing problem for higher A analogously to the previous cases. Let us

look at a few examples for p =1 before analysing the results.
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5.6.2 p=1 Sector

Let us start by determining the free theory coefficients. For p > 0 we need to
consider conformal block expansions of not only Gy but also Ggigge (5.3.17).
These correlators decompose into one half-BPS block with A =p=¢; +¢; -1 and
long blocks with coefficients At(]?i)DQI‘D’ The free theory coefficients for ¢; = g2 were

given in (5.6.1) and the coefficients for mixed charges are:

p=laiol |, p+1 |12l
2

(_1)Q1+Q2 2_[7J+ 2~ 2
(V2-1)(-1)p+ (1+V2) (-D)le=l) 2A)(p+ DA - p)(A+p+1)
C+ D)A = [q12)!(A + |gr2)1(A + ¢1 + g2 — 1)!
A-n-@+D)!Cn-1)Q2e-)(p+ra+@-2)(p+a+qp-1)

([%(p = |q12| + 1)J + |Q12|)! (l%J + l%(p_ |q12| + 1)J + |CI12|)!
(0~ sz (|72 + laral )1 (2 (|20~ hszl + D) + [ana])!

where ¢12 = ¢1 — ¢2. Note that in the denominator of the first line, the eigenvalue

(0) -
Agioqias =

, (5.6.12)

62 = (A-p)(A+p+1) (see (5.6.18)) appears, this was also observed in 4d free
theory in [11] and suggests that A®) Hfree should be a simple object as was confirmed

in subsection 5.3.1.

For the simplest case A = 2, p = 1 there is only one exchanged operator in the
double-trace spectrum, O;0,, and we perform the conformal block analysis for the

correlator Hia1o. The free theory (see (5.6.12)) and supergravity coefficients are

2(1+ A)AI(1+ A)!

0 1 sugra
A§2)12(27 1) = 1 Moy (2,1) = 3(20)! la=2 =1 (5.6.13)
and solving the unmixing equations gives
sugra (0) 1
You =4, O3y = 5" (5.6.14)

Next, let us solve the mixing problem for (4,1) where two types of operators are
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exchanged, 01005 and O503. The conformal block coefficients are:

0 sugra sugra
A0 _ A§2)12 0 _ 8% 0 Jpsuera _ Maty" Miyss B % %
o (0) - 1 ’ L1 sugra sugra B 1 7 ’
0 Ao (4.1) 0 5 Myyys" Mgy (4.1) 3 15
(5.6.15)
where the new coefficients in terms of general even A are given by:
sugra (A =2)(A+1)(A+3)AIA+1)!
Migys = | )
15(2A)!
, A+1)((A+3)(A-2))"Al(A+1)!
ae = { : 5.6.16
2523 150(2A)! ( )

Solving the unmixing equations gives the anomalous dimensions and three-point

functions
VTS
per=18, cY =R s (5.6.17)
’ ’ VA
3v30  3V15
Again there is only one non-zero anomalous dimension, 7' = 18 , as expected.

5.6.3 Anomalous Dimensions after Unmixing

We can solve the mixing problem for any pair (A,p) analogously to the above
examples, where for every (A,p) we use (5.5.3) to determine the list of double-trace
operators in the spectrum. Solving the unmixing equations for supergravity for
many pairs of (A,p) we find that, as expected from the 4d conformal symmetry
considerations in subsection 5.4.2 and the 4d effective spin conjecture (5.5.7), there
is only one operator with non-zero anomalous dimension exchanged. Hence, there is
no non-zero degeneracy in the supergravity limit in 1d. The value of the anomalous

dimension is as expected

'YSAuf)ra _ 5(2) - (A _p)(A +1 +p) , (5618)
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which is the eigenvalue of A (5.2.15) acting on the superconformal blocks:

A@)(ﬂ Blons ):5@)(&310“% ) . (5.6.19)

T -y A,p,p12,P34 T-y A,p,p12,p34

This was predicted from the 4d conformal symmetry in (5.4.39).

We have now studied the double-trace spectrum of correlators in the supergravity
limit and their anomalous dimensions in detail. We have seen that they do agree with
the predictions from 4d conformal symmetry and thus that supergravity correlators
in AdS,xS? indeed have 4d conformal symmetry. In the next sections we will consider
higher-derivative corrections and how the higher-dimensional conformal symmetry
breaks (except for an infinite number of correlators of specific spherical harmonics).
On the other hand, all higher-derivative corrections can be deduced from a higher-

dimensional scalar effective field theory.

5.7 Higher-Derivative Corrections

In this section we study higher-derivative corrections described by a small-a ex-
pansion. We first derive the form of lowest-charge higher-derivative corrections,
with any number of derivatives, from crossing symmetry and x — 0 behaviour in
subsection 5.7.1. In subsection 5.7.2 we obtain all four-derivative corrections to
all half-BPS four-point correlators described by tree-level supergravity from a 4d
effective action by evaluating generalised AdSyxS? Witten diagrams with derivatives.
Finally, in subsection 5.7.3 we briefly discuss how by acting with inverse higher-order
differential operators on the higher-derivative corrections one can construct an ob-
ject that transforms like a 4d conformal correlator in specific cases, as discussed in
subsection 5.1.1. We will see that the 4d conformal symmetry is broken for general
four-derivative corrections, however it is intact for an infinite tower of correlators of

operators with SU(2) charges {p;} = pp11 and crossing versions.
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5.7.1 Lowest-Charge Higher-Derivative Corrections

Even though we mainly focus on the four-derivative corrections in this chapter,
let us also discuss the general structure of any higher-derivative corrections in 1d
SCFTs. Recall from the review in subsection 2.3.2 that in [30] the authors argued
that for AdSz» solutions to the crossing equations with a conformal block expansion
truncated to spin L = 0,2,4,... are dual to quartic contact interactions in the
bulk. For a fixed spin L, there are L/2 + 1 independent interactions with number
of derivatives running from 2L,2L + 2,...,3L. In this subsection we will find that
reducing these solutions to AdS, by taking the holomorphic limit, the L/2+1 solutions

collapse to a single solution proportional to Dj where j = L/2 + 1. This solution

Jjg»
corresponds to a 2L-derivative interaction, i.e. the interaction with the lowest
number of derivatives in the spin-L tower of solutions. This is the case for the lowest-
charge correlators, when going to higher charges, this degeneracy will break. In this
subsection, we focus on the lowest-charge correlators but consider interactions with

any number of derivatives. For later sections however, we focus on the four-derivative

corrections but consider all higher-charge correlators.

Let us deduce the form of higher-derivative corrections to the p; = 1 correlator. Let
us start with an ansatz for a higher-derivative correction at O(a#/c) analogous to

supergravity in (5.4.3)5:
x
(01010101)a#/0 = 9129345(13 -y)a(z) , (5.7.1)
where we get the same conditions from crossing invariance and the x - 0 behaviour:
1 2
a(l-xz)=a(x), a(—) =za(z) , a(x)=0(1). (5.7.2)
x
Again we make an ansatz for a(x) of the following form

a(x) =p(x)logz? + p(1-x)log(1-2)*+r(x) , (5.7.3)

5See subsection 5.4.1 for a more careful discussion of four-point crossing in 1d which could easily
be extended to higher-derivative corrections to see that a®(x) and a* () have the same functional
form. In this subsection we will consider a(z) with z in the regions z € (0,1) and x € (1, 00).
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where p,r are rational functions and r(1-z) = r(z). Further we have

p(x) = xllxk(l I)kbe, r(z) = xllxk(l a:)’fZCZ , (5.7.4)

where k and m are integers. Plugging this into (5.7.2), there are only new solutions
for k = 2¢ and m = 3k = 6¢ with an integer ¢q. Solutions for odd k reduce to
superpositions of lower-k solutions in 1d. The ¢ = 0 case corresponds to supergravity.
Going to higher ¢ we find solutions that are superpositions of a new correction and
lower-q solutions (supergravity and lower-derivative terms). The new corrections are

of the form
Hijyy=2%a(z) = —u(l+u’+ vq)Dq+lq+1q+1q+1 T (5.7.5)

where the dots denote terms with lower q. As we have seen in chapter 4 the
averaged anomalous dimensions of double-trace operators in the conformal block
decomposition of these correlators encode the number of derivatives of the dual
quartic interactions in the bulk [30]. First, decomposing the free theory Gg?n (5.3.10)
gives the identity operator and the coefficients of the long blocks Aﬁ))n(Aa 0) (5.6.1):

(1+(=1)A+1) (Al
(2A)!

AD (A0 = (5.7.6)

Expanding the higher-derivative corrections (5.7.5) at O(1/c) in terms of the long

blocks according to (5.5.11) we get the averaged anomalous dimensions

v(q) = N(q)P\9(A) , (5.7.7)

with
491(1 + 2q)!
(2(1+29))!

and P@(A) are polynomials of degree A%. For the first few cases we get

N(q) = (5.7.8)

PO(A)=1,
1
2

PW(A)= - (A*+2A%+ A% +6) |
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PA(A) == (AP +4AT+10A"+16 A° + 289 A* + 556 A + 276 A% + 864) ...

1
8

(5.7.9)
The fact that the averaged anomalous dimensions scale like A% in the large-A limit
implies that the corrections (5.7.5) correspond to a 4g-derivative interaction in the
dual bulk field theory. As mentioned before, the ¢ = 0 case corresponds to the
supergravity correlator which is dual to a spin-0 or ¢* interaction. The next case,
q=1,is given by —u(1+u+ U)D3§£2 plus a spin-0 term and corresponds to a spin-2
correction and is dual to a four-derivative interaction (see (5.7.17)). As predicted
in the beginning of this subsection, there is only one solution per spin L in 1d. In
principle there is another spin-2 solution corresponding to six derivatives and to
k = 3, but this reduces to the four-derivative solution plus supergravity. This is

only true for the lowest-charge correlators though and going to higher charges, this

degeneracy will be lifted.

We have now discussed the general structure of higher-derivative corrections to the
lowest-charge supergravity correlators and in the next section we will obtain all

four-derivative corrections to the half-BPS correlators for all spherical harmonics.

5.7.2 Effective Action

In this section we compute all four-derivative corrections from the 4d scalar effective
action (5.2.27). We follow the procedure outlined in chapter 3, in particular sec-
tion 3.4 where the o® corrections, which correspond to four-derivative interactions,
were computed. The only independent contact terms with four derivatives one can
write down are the main contribution (V¢.V¢)? and the ambiguity V2V ,¢V* ¢ ¢

The complete effective action at this order is then

Sideriv = BoSTEm + CoSamd (5.7.10)

-deriv »
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with

. 3 9 19
main XV (vo. .
4-deriv 4! \/AdeS d d (VQb qu) (VQb qu) )

6 .
9m.=—/‘ EX PV VY, 0V 6 b2 . 5.7.11
dderiv ™ 41 f Adsxs VVupVies ( )

Note that the ¢* interaction is not considered as an ambiguity here, since it describes
supergravity and not a zero-derivative correction arising from quantum gravity as

in other dimensions.

The Witten diagram expression for the main correction is

< olelole; >:1I;§1eriv;main
1 (Cl)i / X2V ]\;12]\734 + N1§N24 + N14]2V23 L (T12)
4! (_2) AdSxS (P1+Q1) (P2+Q2) (P3+Q3) (P4+Q4)
where
Nij = X;. X;+Yi.Yj+ PPy - QiQ; - (5.7.13)
Furthermore, the ambiguity is
(OOOO)iferiv;amb
1(Cy)* 2Xd2Y Li;
:ﬂ_wﬂ4j‘ > ] , (5.7.14)
AN (=2)* Jaasss [1; (B + Qi) 5 (B + Qi) (P + Q)
where
Lij = X3 X; =Yi.Yj+ PP+ QiQ; . (5.7.15)

We get the explicit expressions in position space for the correlators at four derivatives
by expanding (5.7.12) and (5.7.14) in terms of D- and B-functions, see (3.1.24)
and (3.1.28). To expand a general decorated integral of the form (3.3.9) obtained

from a contact interaction with any number of covariant derivatives, use (3.3.10)

s 4
_9\2Xx+2% _ pi—l(pi)A¢ (d) ' (@) '
( 2) X Ypizo(g( 1) F(Az) Dpz‘—1+Ai+m—nf)(XZ)Bpi—1+n?(Y;))
nX nY
(DX Y (5.7.16)

i<j
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where the different labels are explained in the discussion above (3.3.10). To perform
explicit calculations in 1d position space one needs to express the correlators above
in terms of holomorphic D-functions and we spell out a few examples here. Note that
the coefficients in (5.7.10) are unfixed and we choose the overall normalisation of the
Hp-deriv below such that they agree with the supergravity correlators in (5.4.28).

The explicit expressions for some of the correlators are:

4-deriv _ hol Mhol
Hi™ =3u (D1111 -5(1+u+wv) D2222) )

-deriv (_1)P+1up nho mho Mho
ng(%l :—(p 1) (fl(p)Dgph + fa(p) UD£+11p+1 1+ f3(p) (T+u+v) D]})1+llp+122) 5
sederiy (71 )ml UPTH Ahol Ahol Ahol
Hypos :—(p N (fl (p)Dplpl + fa(p) Dy + f3(p) (1 +u+v) Dy 2p+12) )
sederiy (71 )ml UPTH Ahol Ahol Ahol
H = (fl(p)Dp11p+f2(p) Dp+111p+1+f3(p)(1+u+v) Dp+122p+1) )

P (p-1)lyrt

2
Hjdoriv :2% ( [-8Co (1-y+y?)+2(41 -6y +6y?)] Dhsh, + 35u (y* - 1) Dsh,
+35(y - 2) yD3s3s - 63(1+u+v) (1 -y +y?) D?é?ég) : (5.7.17)

where

fip) =2Cop(p-1)+p* (4p* =8p+1) , fa(p) =—(1+2p)(2p° -3p+1),

fa(p) = (1+2p)(3+2p) . (5.7.18)

Note that H{;¢" agrees with the prediction in the previous subsection, see (5.7.5)
for ¢ = 1. We investigate the correlators in terms of the 4d conformal symmetry in
the next subsection before we analyse the double-trace spectrum of these correlators

and solve the mixing problem in the following section.

5.7.3 Breaking of 4d Conformal Symmetry

In this subsection we investigate the higher-derivative corrections in terms of the 4d
conformal symmetry. In the previous section we have seen that one can derive all
four-derivative corrections to all half-BPS correlators with any charges, described by

tree-level supergravity, from a four-dimensional effective field theory. Thus, higher-
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derivative corrections to correlators in AdSyxS? have a four-dimensional symmetry.
However, the four-dimensional conformal symmetry will generally be broken for
higher-derivative corrections. As described in subsection 5.1.1 we will attempt
to construct an object invariant under higher-dimensional conformal symmetry by
acting with negative powers of differential operators related to A(2) on the correlators.
In this way, we obtain an object with the right dimensions to be invariant under
4d conformal symmetry, however, this only works for a subset of correlators with
specific charge configurations, as we will explain shortly. In this subsection, we
describe how this can be done for four-derivative corrections and show that there
is an infinite tower of correlators of specific KK modes which can be obtained from
the 4d conformal symmetry. Yet for general charges, the symmetry is broken. We
will discuss the breaking of the symmetry and also briefly comment on implications

for AdSsxS°.

(0,0,0,0,) and crossing versions

We start by studying correlators with external charges {p;} = pp11 and their crossing
versions. To get an object with the dimensions of a 4d conformal correlator, we have
to act with negative powers of a differential operator on the correlator. By dimen-
sional analysis, we saw in subsection 5.1.1 that for a vertex with k + 2 derivatives
(where supergravity has two derivatives) one has to act with a general (A(2))_k/ ? on
the corresponding correlator. Hence, for a four-derivative interaction (six derivatives
in total when counting supergravity), we act with an inverse fourth-order differential
operator on the correlator. In practice, we consider objects which have 4d conformal
symmetry, expand them in internal coordinates to obtain all higher-charge correl-
ators, analogous to the considerations in subsection 5.4.2, and act on them with a
fourth-order differential operator to reconstruct the higher-charge higher-derivative
corrections. The 4d conformal objects we have to consider are the 4d conformal
blocks (5.4.30) with the appropriate twist and spin. We start from an ansatz for

a general fourth-order Casimir and fix the coefficients by comparing to the explicit
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results obtained from the 4d effective action in (5.7.17).

By superconformal symmetry, all higher-order Casimir operators have to be of the

form A (chg + chg) and thus a general fourth-order Casimir is given by
A(4) =C + CQA(2) + C3A(2)Dm + C4A(2)Dy , (5719)

where A®), D, D, were defined in (5.2.15) and the ¢; are unfixed coefficients. As
explained in subsection 5.4.2 due to the 4d conformal symmetry there is only one 4d
block contributing to the 4d uplift of the 1d correlators at each spin. For supergravity
it is the spin-0 block and since the four-derivative correction corresponds to a spin-2
correction, we consider the 4d spin-0 and spin-2 blocks as the objects which play the
leading role in the 4d conformal symmetry. Therefore, we propose that a subset of
the four-derivative corrections can be reconstructed by acting with a fourth-order
Casimir of the form (5.7.19) on the holomorphic limit of the 4d spin-0 and spin-2
blocks. Note that the blocks reproduce the logu piece of the correlators rather than
the full functions. The higher-charge versions of the spin-L blocks can be obtained
by replacing x7; - x7; (1 + gfj), expanding in g;; and taking the coefficients of the
appropriate powers in gfj analogous to subsection 5.4.2. Note that higher-charge
versions of the spin-0 block exactly correspond to the logu piece of the supergravity

correlators. The relevant equation at different charges p; is then

4-deriv, main _ (4)
HP1P2P3Z774 |logu - Aspin—O

(4d spin-2 block)"™

p1p2p3ps

(4d spin-0 block)™ L AW

P1P2P3P4 spin-2
(5.7.20)
where we compare our ansatz to the four-derivative corrections deduced from the

effective action given in (5.7.17) at different charges. Note that we focus on the main

contribution in (5.7.10) here.

Solving (5.7.20) for H;ﬁiriv’ main partially fixes the coefficients in (5.7.19) to

NN

1 1
spin-0 = —A®D, +a;APD,, | AW~ A® L —A@D 4 bsAPD, |
P 6 12 90

spin-2 45
(5.7.21)

where a3 and b3 remain unfixed since there is no y-dependence for {p;} = pp11.
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H4—deriv,main and H4—deriv, main‘

We can fix the remaining coefficients by considering H ollp

We thus solve (5.7.20) by comparing to the results from (5.7.17) at the corresponding

charges. This completely fixes the differential operators to

AW 0:11_2(2A<2>+5 (A®Y) AW :i(_m(?u(A(?))Q) . (5.7.22)

spin-2 90

To summarise, these Casimir operators can lift the lowest-charge four-derivative
correction correctly for {p;} = ppll and crossing versions. So the 4d conformal
symmetry is satisfied by an infinite tower of four-derivative corrections. This is
highly non-trivial, since the 4d blocks themselves are not crossing symmetric and
also the Casimir operators do not preserve crossing symmetry (only under exchange
of 1 « 2). Hence, an operator which does not preserve crossing symmetry acts on
an object which is not crossing symmetric, and one obtains a crossing symmetric
correlator. However, going to different charges there are no crossing symmetric
solutions to (5.7.20) and thus the symmetry is broken. We will further discuss this
breaking of the hidden conformal symmetry below and comment on implications for

AdS5xS°.

Breaking of the symmetry and implications for AdS;xS°

Recall that the higher-dimensional conformal symmetry arises when a correlator
corresponds to a conformally invariant amplitude in flat space which is connected to
a scaleless coupling. When the correlator does not correspond to such an amplitude
we can rescale it by acting with differential operators of appropriate powers on it,
and this works well for free theory. When the dual bulk interaction vertices contain
derivatives, which is the case for general higher-derivative corrections, the higher-
dimensional conformal symmetry breaks down (however, it might still be intact
for an infinite tower of higher-derivative corrections with specific charges). This
breaking of the symmetry can be anticipated because a reduction of derivative terms
on the sphere will give a number of terms with different numbers of derivatives in

AdS. Thus, we get terms which scale differently in AdS and we can therefore not
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rescale the corresponding correlator consistently.

We have investigated this in AdS,xS? for the four-derivative corrections above. Let us
now comment on the implications for the 10d conformal symmetry and its breaking
in AdS5xS®. As discussed in subsection 5.1.1, in the supergravity approximation the
correlator itself has higher-dimensional conformal symmetry whereas for free theory
acting with the eighth-order differential operator A(® on the correlator rescales
it such that it has 10d conformal symmetry. Now, consider the a3 corrections
which correspond to a ¢? interaction in the scalar effective action. We obtained
all o’ corrections from the 10d scalar effective action in section 3.2. Based on the
discussions above, since these corrections correspond to a zero-derivative interaction
in the effective field theory, we expect the corresponding correlators to enjoy 10d
conformal symmetry analogous to supergravity correlators. And this conjecture is
indeed strongly supported by the results in [13] where the anomalous dimensions after
unmixing associated with a3 corrections were obtained. The resulting anomalous
dimensions are rational numbers which suggests that the 10d conformal symmetry

is intact at this order.

To reconstruct these correlators from the 10d conformal symmetry by acting on them
with inverse differential operators consider dimensional analysis. In the low-energy
effective action in (2.3.18) supergravity is described by R which has two derivatives
while the first quartic correction corresponds to R* which therefore has six more
derivatives than supergravity. So to obtain an object with the correct dimensions we
act with an inverse sixth-order differential operator (A(®))™" on the o/ corrections to
the correlators. In practice, one would reconstruct the higher-charge o’ correlators
from objects which do have 10d conformal symmetry, i.e. the 10d conformal blocks
with appropriate spin and twist, and act with a differential operator A(®) on them.
Since the ¢* interaction corresponds to a spin-0 correction (see subsection 2.3.2), the
correct object to consider is the 10d spin-0 block uplifted to higher charges analogous
to the supergravity case. We leave further discussions of this to [11]. Considering

the a’® corrections which were obtained in section 3.4, we expect the 10d conformal
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symmetry to be broken. Similar to the four-derivative corrections in 1d discussed
above, one might expect that by acting with a higher-order differential operator on
the 10d spin-0 and spin-2 blocks uplifted to higher charges, one could reconstruct a

subset of a® corrections with specific charges, we do not consider this in detail here.

The breaking of the symmetry for o> corrections was also observed from a different
point of view in [14]. The authors found that the anomalous dimensions of operators
in the OPE spectrum of o' corrections contain square roots in some cases. This
indicates a breaking of the 10d conformal symmetry. In more detail, consider the un-
mixing of the anomalous dimensions of double-trace operators in the OPE spectrum
of o and o/ corrections. The anomalous dimensions after unmixing associated with
a? are rational [13], which suggests that the 10d conformal symmetry is intact, as
mentioned before. An important point in these calculations is that the O(a’3¢?) cor-
rection to the three-point functions is absent. In [11], the authors found that for the
a5 corrections however, the O(a/>c?) correction to the three-point functions (ana-
logous to the O(ac®) corrections in (5.5.10)) is non-zero for some quantum numbers
and this leads to square roots in some of the anomalous dimensions, which indicates
breaking of the 10d conformal symmetry. We will discuss the mixing problem for

four-derivative corrections in the 1d case in the following section.

5.8 Unmixing Four-Derivative Corrections

In this section, we solve the mixing problem for four-derivative corrections to half-
BPS correlators in 1d SCFTs which are described by tree-level 4d N = 2 supergravity.
We have predicted all four-derivative corrections including all spherical harmonics
in subsection 5.7.2. To solve the mixing problem we use the large-c and small-a
expansion of the conformal block decomposition (5.5.11). We obtain a list of all
operators in the double-trace spectrum at each weight (A, p) by using the paramet-
risations in (5.5.3) and (5.5.5). Further, to resolve the degeneracy of operators with

different 1d quantum numbers contributing at the same weight (A,p), we use the
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unmixing equations given in (5.5.13). We perform the unmixing for many (A, p),
predict general formulas for the anomalous dimensions and check that they agree
with the prediction in terms of the 4d effective spin (5.5.6). Recall the conjecture

for the 4d spin in terms of 1d quantum numbers is

1+ (—1)’"Bte+1) | (58.1)

l4d=2(iA+TA+iBto+iBte+TBte— 5

The four-derivative interaction corresponds to a spin-2 correction, thus we predict
that we can have 4d spin-0 and spin-2. We therefore expect that only operators
with quantum numbers satisfying l44 = 0,2 acquire non-zero anomalous dimensions
and indeed we will find that our results agree with this prediction. We start by
analysing the unmixing for ¢ = A — p odd and even separately and presenting some
examples. The first example where square roots appear is (A, p) = (5,2) discussed

around (5.8.20).

5.8.1 Unmixing for Odd ¢

We start by analysing the unmixing at weights (A,p) with ¢ = A - p odd, where
we have both class A and B operators. For each (A, p) use the parametrisation
in (5.5.3) to list all operators in the double-trace spectrum at the given weight. Then
construct ((da +dptw)) x ((da + dpto)) matrices of correlators running over Dp , and
solve the unmixing equations (5.5.13). Recall that class A and B operators do not
mix, so they can be treated completely separately. The anomalous dimensions after
unmixing are labelled as (WA)i’f;A for class A operators and (tho)i’i for class B.
Let us discuss the same examples as for the supergravity limit in section 5.6, starting

with the singlet sector.

p =0 sector

For p = 0, there are only class A operators in the spectrum, so the operators con-

tributing are the same as for supergravity. Starting with the simplest case A =1,
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only one exchanged operator @10 contributes, thus we perform the conformal block

analysis of H{59"Y and get

2A%A+DAKA+1M| .
(2A)! A=l =

M{{§7™(1,0) = (5.8.2)

where the free theory coefficients are given in (5.6.1) and the supergravity contribu-

tions were obtained in (5.6.2). The unmixing equations are
-deriv -deriv 0 2 sugra 0 -deriv 0 -deriv
M (1,0) = v (CfR) + 2978 ot o= cifcig=r.  (5.8.3)
To solve these equations, we use the supergravity results (5.6.4) which yields

~deriv 1,0 -deriv
(ViA%™) o =4, Gl =0. (5.8.4)

At weight A =3 there are two possible exchanged operators, 0,0y and 00?0, and

the matrix of OPE coefficients for the four-derivative correction is

A . MA-deriv ) ri-deriv 72 é(15 + ()
Mﬁfem _ 1111 1122 _ 5 3 7 (5.8.5)

Mideriv Vb deriv 50 3(15+ Cp) 5(38+5C))

where the coefficients for general A are

Miderv (A 0) :(A+2) (A-1)AI(8C A+ (A-1)A(A +2)!) |

3(2A)!
. A+2)(A-1) (A2
ME(A,0) = >1§(QA)!)( 2 166, (5 +2) (- 1)
+ A+ 3A% - 3A% - 11A3 + 26A2 +32A—32] , (5.8.6)

and the coefficients for free theory and supergravity were given in (5.6.5). We
solve the unmixing equations in matrix form at orders O(a/c) and O(a), using the

supergravity results (5.6.7):

v [16 64 - ey e
vé:&?““{—(lsﬂwco), —},Céja‘em = (-1+3Co) . (5.8.7)

3 3 \/S 5

273 273

. - N o1
where 49V are the eigenvalues of the matrix (M/su& + qMf+deriv). (A©)) " at O(a)

and i is labelling the non-zero anomalous dimensions. Recall that Cj is the coefficient
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of the ambiguity in (5.7.10). While for supergravity there is only one anomalous
dimension at every weight, there are two non-zero anomalous dimensions at O(a/c)
for (3,0), (vﬁ{deriv)gzg = (137 + 15Cp) and (yj‘deri")ig = 8. We will explain the

labels, interpret the result from a 4d point of view and give general formulas in

subsection 5.8.3.

At weight (5,0), there are three exchanged operators in the double-trace spectrum,
0303, 030?05 and 0100, and the conformal block analysis of the appropriate

correlators gives the four-derivative contribution

( 4-deriv 4-deriv 4-deriv
Mllll M1122 M1133

rd-deriv _ 4-deriv 4-deriv
M5,0 M2222 M2233
M4—deriv
\ 3333/ 5 0)

50 2(105+ Cp) 1(30+ Cy)
= 2(352+7C,) 18(321+14Cy) | - (5.8.8)

2 (111 +7C))

where the free theory and supergravity coefficients are given in (5.6.8) and the

expressions for general A for the new coefficients are

Mderiv A o) :(A “1)(A-3)AI(24Co (A+4)(A+2)! + A(A+1)(A-2)(A+4))) ’

60(A +1)(2A)!
(A+2)(A+4)(A-1)(A-3)(A!)?

4-deriv
M35 (A, 0) = 360(20)! X [32 Co(A+2)(A-1)

+A(A+1) (A(A+1) (A% + A-10) +88) - 96] ,

2
pderiv A gy (A2 ((;‘2504(‘2(?1‘) ?;)A)!A!(A 2 [48C) (A+2)(A-1)

+ A0+ 3A7 - 1141 - 27A% + 226A% + 240A - 288 . (5.8.9)

We can now solve the unmixing equations (5.5.13) for the contributions to the anom-

alous dimensions at O(a/c) and the O(a) corrections to the three-point functions:

. 1204
vg;g‘;m:{?(zxmmwo), —30 } ,
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_2/14 -1, 504-5¢
2715 48642 1458/210
4-deriv _ (_ 1614 —336+c 2(504-5¢)V2
Cs (=1+3Co) 81V15 24342 2187105 | ’ (5.8.10)
414  _ 2016+c —504+5¢

4515 2430v42  1215v/210
with one unfixed parameter. Additionally, the unmixing equations at this order fix

one of the coefficients by, by in the leading three-point function (5.6.11) to

9
4/5

There are two non-zero anomalous dimensions, which we will again discuss later

b= -

by . (5.8.11)

from the point of view of the 4d conformal symmetry, they are given by (v5 deri")g’g =

5,0
83_0(424 +21C)) and (Vj‘f{dem)m = %'

We solve the mixing problem for higher A analogously to the previous cases. Let

us look at a few examples for p = 1,2, where class B operators are relevant, before

discussing t even.

p =1 sector

Starting from p = 1 there are class A and class B operators exchanged, in the present
case where t is odd, they are class B'* operators. These operators contribute from

t>3and p>1.

In the simplest case A = 2,p = 1, there is only one exchanged class A operator in
the double-trace spectrum, O;0y and we perform the conformal block analysis at

O(a/c) for the correlator His1o and the OPE-coefficients are

Mz % (2,1) =—3A(12A)! x[(A%+ AT - 47 - A+ TA - 4) Al(A +2)!
2
12 ——
#8Co ((A+1)?] = 2(11+6C) . (5.8.12)

where the free theory coefficients are given in (5.6.12) and the supergravity coefficients

were obtained in (5.6.13). Solving the unmixing equations gives

-deriv 2,1 8 _deriv 1
(74 )0,0 - §(11 +6Coy) , Coie™ = 3 (5.8.13)
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Next, let us solve one more mixing problem for ¢t odd. At (4,1) two class A and
one class B operators are exchanged, 00?0y, 0205 and 0,00,. Recall that for ¢
odd, the class A operators have even numbers of derivatives while class B operators
have odd numbers of derivatives. The conformal block analysis of the appropriate

correlators gives

4-deriv 4-deriv 4-deriv
M1212 M1223 M1222

r4-deriv _ 4-deriv 4-deriv 4-deriv
M4,1 M1223 M2323 M2322

4-deriv 4-deriv 4-deriv
M1222 M2322 M2222 (4,1)

% (387+10Cy) #(333+25C;) 0
=| £(333+25C;) B(171+20C,) 0 | (5.8.14)
0 0 %

which is block-diagonal as expected and the new coefficients in terms of general A

are given by:

-deriv,to A-2
M55 (AL 1) :m x[20Co A(A +3)((A + 1))

+ (A% AT-TA - A2+ 22A-16) Al(A +3)!]

):(A2+A—6)2(A+1)!

4-deriv, todd
Mz (&1 300A(2A)!

x [32COA(A+1)!

+ (A0 4 3A° - 8AT-21A% + 89A% + 100A - 128) Al |

A(A2+A-6)"Al(A+1)!

M;éggriV7t0dd(A7 1) = 3(2A)'

(5.8.15)

The free theory and supergravity coefficients are given in (5.6.15). Note that the class
B operators 02005 have zero supergravity OPE-coefficients but their free theory
coefficients are non-zero. The free theory coefficients are relevant for the unmixing
at O(a/c), for operators O, they are given in (5.6.1) and the relevant coefficient at
this weight is

Afee (4,1) = % : (5.8.16)
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solving the O(1) unmixing equation gives the leading three-point function

(Cff)Bm = g . (5.8.17)

We can now go on and solve the unmixing equations at O(a/c) and O(a), which

gives the anomalous dimensions and three-point functions

A V5
5/ 14 10 _2_\/66

) 392 . 1-3C
4-deriv 4-deriv 0
TV =38(307+30C,), —, 84 C =—— 1 -2/ L
74,1,@ { ( + 0)7 5 ) } 9 471 27\/ﬁ 2 14 14 \/@C )
0 —c 0
(5.8.18)

where we used the supergravity results (5.6.17). Note that ¢ is unfixed and while there
is no mixing between class A and class B operators at orders O(1), O(1/c), O(a/c),
there could potentially be mixing at the level of the O(a) correction to the three-
point functions, depending on whether ¢ is zero or not. This could be determined
by studying higher-derivative corrections which mix with the four-derivative ones.
There are three non-zero anomalous dimensions at (4, 1), two corresponding to class

A and one to class B operators:

(7540 = 8(307+30C0) . (v54™);, = % ()t a4, (5.8.19)

which will be discussed in terms of the 4d spin below.

Let us look at one more example for odd ¢ in order to understand the emergence of
square roots in the anomalous dimensions, which indicates the breaking of the 4d
conformal symmetry for higher-derivative corrections at higher charges. We discuss
the first example where square roots appear, which is (5,2). This can be seen from
the parametrisation in (5.5.3) and the illustration in figure 5.1 where square roots
are expected to appear once operators with 14 =0, 74 =0 and both i, =1,74 =0
and i4 =0, 74 = 1 contribute. This is the case when ¢ > 3 and p > 2. In figure 5.1
this corresponds to (qi,q2) where all three black nodes in the grey highlighted area

are present. The grey area contains all operators which acquire non-zero anomalous
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dimensions at O(a/c) when they are present in the spectrum at the weight (A, p)
considered. The operator at position A is the one which has non-zero anomalous
dimension also in supergravity, the two black nodes in the grey area connected by a
vertical line correspond to the square roots. The square roots thus lift the residual
degeneracy that was there in supergravity, where the black nodes connected by a
vertical line correspond to the same anomalous dimension, which in the 1d case is
zero. The anomalous dimensions of class B operators, denoted by white nodes, do
not acquire square roots since there is no degeneracy to lift as class B operators

decouple in the supergravity limit.

We will focus on the anomalous dimensions and neglect the three-point functions
for the following example since the anomalous dimensions are the relevant objects
to discuss the 4d conformal symmetry. The three-point functions can be obtained
analogously to the examples above and we will do so for a few more examples with
even t. Note that the O(a) corrections to the three-point functions after unmixing are
generally non-zero for higher-derivative corrections, as can be seen from the examples
considered above. This agrees with the observations in [14] that for o/ corrections
to N =4 SYM correlators in the supergravity approximation, the O(a®) corrections
to the three-point functions are non-zero for some cases which are related to square
roots in the anomalous dimensions. Whereas for o’ it was found in [13] that the
corrections to the three-point functions are absent and all anomalous dimensions
are rational and thus the 10d conformal symmetry is expected to be intact. See
also the discussion in subsection 5.7.3. As a consequence, we would expect that the
O(a) corrections to the three-point functions corresponding to class B operators
are absent, since there are no square roots in these cases. This is e.g. supported
by (5.8.18) where the entry 2222 corresponding to the class B operator is zero and

we will check this in a few more cases below.
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p=2 sector

At weight (5,2) there are four class A operators, 010?03, 0204, 020?04, 0305 and
one class B operator, 0,003. The class A operators will lead to square roots in
the unmixed anomalous dimensions and class A and class B operators do not mix
at the levels of supergravity and four-derivative correction anomalous dimensions.
The conformal block analysis of the relevant correlators at O(a/c) then leads to the

symmetric matrix:

4-deriv 4-deriv 4-deriv 4-deriv 4-deriv
M1313 M1324 Ml322 M1333 M1323

M4-deriv M4—deriv M4-deriv M4—deriv

2424 2422 2433 2423
ord-deriv _ 4-deriv 4-deriv 4-deriv
M5,2 - M2222 M2233 M2223

4-deriv 4-deriv
M3333 M3323

M4—dcriv
(5,2)
Z(774+35C)  £(416+35C)) (942 +35C)) 36(90+7Cy) 0
295 (3910 + 441Co)  §2(90+7Co) 562 7C,) 0

= =(1955+56C))  15=(1707+112C) 0 |
22 (657 +56C)) 0

672
25

(5.8.20)
we spell out the coefficients for general A in appendix I. Furthermore, since we have
not studied this example in the supergravity section 5.6, we also give the free theory
and supergravity coefficients and discuss the mixing problem in the supergravity

limit, which is necessary to solve the unmixing at O(a/c), in the appendix.

Let us solve the unmixing equations at O(a/c) to get the anomalous dimensions

after unmixing;:
(32 8 8 1008
Vg = {3(545 +51C)), E(415 -/2881), B(415 +1/2881), T} . (5.8.21)

We then label the non-zero anomalous dimensions as follows:

5,2 _32

4-deriv 4-deriv 5,2 _ 8
(’YA )070 —3(545+ 51Co) , (7A )170 = 1—5(415_ V2881) ,
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_deriv)5:2 _ 8 _deriv\5:2 _ 1008
(74 )0,1 —ﬁ(415+\/2881) o (vpE)T = — (5.8.22)

We will give formulas for general (A,p) and analyse them from a 4d perspective
below. Note that for the first time, square roots appear in the anomalous dimensions
and this will be the case for any (A,p) with p > 2 and ¢ > 3, where ¢ is odd. These
square roots resolve a residual degeneracy from supergravity, which in the 1d case is
not obvious since it is a zero-degeneracy. There are no square roots for even ¢, which
is expected because there are no supergravity contributions for even ¢ and thus no

degeneracy to resolve.

Continuing to solve the mixing problem weight by weight for many (A, p) for t odd,
there will always be one rational anomalous dimension corresponding to the operator
with 74 =0, r4 = 0 and two square roots if both i, =1, r4=0and iy =0, r4 =1
operators are present (when both ¢ > 3 and p > 2). This collapses to one rational
anomalous dimension when only one of the two operators is present and to zero
when none of the two is present. Besides class A, for class B there is one non-zero
rational anomalous dimension when an operator with igw =1 is present (when t > 3
and p > 1). Next, let us study a few examples with ¢ even before presenting the

general formulas for all non-zero anomalous dimensions at O(a/c).

5.8.2 Unmixing for Even ¢

Let us study a few examples of unmixing for even ¢ where only class B operators
contribute to the double-trace spectrum. To get a list of exchanged operators at each
weight, see (5.5.5) and figure 5.2. Class B operators only start contributing from
p =1, and they split into two groups, operators with even or odd rpgt. respectively.
These are illustrated in figure 5.2 with black and white nodes for even and odd rpte
respectively. The operators with (q1,¢2) which are in the grey area are the ones
which obtain non-zero anomalous dimensions at O(a/c). Let us start by looking at

some examples with p=1.
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p=1 sector

At weight (3,1) there is only one operator present, 0100, and performing the con-

formal block expansion we get the free (see (5.6.12)) and four-derivative coefficients:

2
Agg)12(3’ 1) = 1_5 )
4-deriv _ (A3_5A+4) (A_l)l(A‘f‘Q)' _E
Mi515™(3,1) = 320! |a=s = n (5.8.23)

solving the unmixing equations (where there are no contributions from supergravity)

we get the anomalous dimension

s 40
(7)o = - (5.8.24)

Next, let us obtain the three-point functions after unmixing to check whether the
O(a) correction is zero as we would expect for class B operators. Solving the
unmixing equation at @(1) and plugging the result into the equation at O(a) indeed
gives:

2

Csi=\[1z . C3f=0. (5.8.25)

At next highest weight (5,1) there are two operators that contribute, 010?05 and

05,003 and performing the conformal block expansion of the corresponding correlat-

ors gives
0) 1
A(O) _ A1212 0 ] 42 O
51 — A(O) - 9 )
0 0 =
2323 (5.1) 175
4-deriv 4-deriv 52 104
~rd-deriv _ M1212 M1223 | s 25 5896
S s 12| (5.8.26)
4-deriv 4-deriv
M1223 M2323 (5.1) 25 125

where the new coefficients in terms of general odd A are

(A2+ A-4)(A%-13A +12)* (A-2)1(A +2)!
75(24)! !

. A-3)(A-1)(A+4)(A2+A-4)(A-1DI(A+2)!
prbdeivienen gy (B=8)(A 1) )1(5(2;)! ) (A-1DI(A +2)

4-deriv, teven _
M2323 (A7 1) -

(5.8.27)

Solving the unmixing equations in matrix form for this case gives the anomalous
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dimension

qerivy51_ 5096
()= 75 - (5.8.28)

For this case again, as for the whole p = 1 sector, there is exactly one non-zero an-
omalous dimension, which corresponds to the operator with igte =1, rgee = 0. Going
to p > 2, there will be two non-zero anomalous dimensions, the additional one being
for the operator with ige =1, rge = 1. Furthermore, solving the equations (5.5.13)
at order O(1) and O(a/c) (where ~su#a = 0) and plugging the result into O(a) we

get the three-point functions:

i
C(O) — 7_\1/6 % (C4—deriv _ % (_97 + 35\/6) ¢ ¢
51 ~ ) 5,1 = )
12 —2 (105 +58v6) ¢ & (-210+97V/6) ¢

(5.8.29)

where c is unfixed. However, we would expect ¢ to be zero based on the discussions
above, since for even t all operators acquire rational anomalous dimensions. This
could be checked by considering higher-derivative corrections. We have now seen in
a few examples that the O(a) corrections to the three-point functions are zero (or
unfixed) for class B operators, as expected. For the following examples we will focus
on the anomalous dimensions only, and the corrections to the three-point functions
can be obtained analogously to the examples above. Let us now consider an example

in the p = 2 sector where we expect two non-zero anomalous dimensions.

p=2 sector

Consider the simplest case (4,2), where there are two operators in the spectrum
0,005 and 0,03. Conformal block expansion of the appropriate correlators gives

the coefficients:

(0)
A Az 0 ~ = 0
4,2 — (0) - 9 )
0 A2323 21
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M&deriv ) rd-deriv 21 0
~rd-deri 1313 1323 5
s = = . (5.8.30)
' 4-deriv 4-deriv 224
M358 M358 (4.2) 0 %

Note that in this case also M 13"V is a diagonal matrix, this is because operators with
even or odd rgte do not mix at the level of free theory and four-derivative corrections,
going to higher (A, p) will give block-diagonal matrices where the mixing problem

could be solved independently for even or odd rpte.

The O(a/c) conformal block coefficients for general even A are:

(A=2)3(A+3)(A2+A-8)(A-3)(A+3)!

20(2A)! ’
A(A2+A-6)*(AZ+A-4)Al(A+1)!
45A(2A)! '

4-deriv, t even _
M1313 (A7 2) -

M;léggriv,teven(A’Q) _ (583]_)

After unmixing, there are indeed two non-zero rational anomalous dimensions as

expected:
. 196 784
4-deriv
S = — 5.8.32
74,2,2 { 5 ) 15 } 9 ( )
; 4-deriv? _ 196 dderiv)? _ 784 ;
which we label by (’the ) 0= 5 and (”the ) 15T and discuss further below,

see subsection 5.8.3. The two operators with non-zero anomalous dimensions corres-
pond to the two nodes in the grey highlighted rectangle in figure 5.2. We present an
additional example for even ¢, (6,2) where more than one operator contributes for

even and odd rpgt each, in appendix I.

One can solve the mixing problem for any (A, p) analogous to the given examples.
Solving it for many cases, we conjecture general formulas and we spell them out and

discuss them from a 4d perspective in the following subsection.
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5.8.3 Anomalous Dimensions after Unmixing

We present general formulas for the anomalous dimensions at O(a/c) for any (A, p)
for odd and even t. From the examples discussed above, we can see that there
are three different non-zero class A and one class B* anomalous dimensions for
odd ¢ and two different class B ones for even ¢ (which agrees with the predictions
from the 4d spin (5.5.6)). Solving for the anomalous dimensions after unmixing for
many weights up to high (A, p), we can conjecture general formulas. We start by
presenting the results for odd ¢ which are interesting because the breaking of the 4d
conformal symmetry becomes obvious due to the appearance of square roots. Finally

we also present the conjectured formulas for even t.

Anomalous dimensions for odd ¢

Recall that the four-derivative interaction corresponds to correlators with a conformal
block expansion that is truncated to 4d spin-2. This can be understood in terms
of the effective 4d spin given in (5.5.6). Firstly, analysing the 4d spin-0 sector it is
easy to see that l4g =2(is +74) = 0 can only be satisfied by class A operators with
quantum numbers i4 =74 =0, (ipwo only has values ipw = 1,... and thus does not

contribute at 4d spin-0). The anomalous dimensions are

A\Ap 2 1 5 2 1
(v )070 =63 (§ (1-6Cy) + = (1+12C5) 6@ + o (6@ + 5 (1+12Cy)6W | |

(5.8.33)
where () and () are the eigenvalues of the differential operators A(?), D, in (5.2.15)

acting on conformal blocks

0D =(A-p)(A+p+1), W =p(p+1). (5.8.34)

For the 4d spin-2 sector lyg =2 (i4 + 74 +ipto) = 2 there are three possible non-zero
anomalous dimensions with quantum numbers 14 =1, 74, =0 and 14 =0, 74 =1 for

class A and iy =0, r4 =0, igtw =1 for class B, this is the first case where class B
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operators play a role. These anomalous dimensions are given by:

A, 1 2
()5 =i 6042600 43 (5)" 45

48P+ Ap - AP AL+ A) —4p(T+ A+ A%) + (-1+2A+2A%)2)

(5.8.35)

(0o =g 0 (4-20 +3 (0" =400

+4\/8p3+4p4—4p2A(1+A)—4p(1+A+A2)+(—1+2A+2A2)2) ,

(5.8.36)

(,_)/Bto)Am :6_10 5@ (_2 5@ 4 (5(2))2 _ 45(y)) ) (5837)

1

The square roots resolve the degeneracy at supergravity, where in the 1d case sev-
eral anomalous dimensions are zero (while in the 4d/10d case there is a non-zero
degeneracy). The operators with the same anomalous dimensions in supergravity
correspond to the black nodes (class A operators) connected by vertical lines in
figure 5.1. The operators highlighted by a grey rectangle are the ones acquiring non-
zero anomalous dimensions at the order of four derivatives. The two black nodes
which are connected by a vertical line correspond to the operators with anomalous
dimensions with square roots (5.8.35), (5.8.36) while the white node represents the

operators with anomalous dimension (5.8.37).

Anomalous dimensions for even ¢

For even t, operators only start to contribute at 4d spin-2 and we get two different

. . te \ A,
non-zero anomalous dimensions, labelled as (73 e).

with quantum numbers
tpte;T gte

iBte = 1, T Bte = 0 and iBte = 1, T Bte = 1:

(VBte)iép _ 6_10 (5(2))2 (5(2) _ 2) ’ (5.8.38)
(’}/Bte)]_A’;[p _ 6_10 (5(2))2 (6@ +2) . (5.8.39)

The operators at even ¢ are illustrated in figure 5.2 and the two operators acquiring

non-zero anomalous dimensions are highlighted by a grey rectangle, where the op-
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erator with anomalous dimension (5.8.38) is represented by the black node and the

one corresponding to (5.8.39) by the white node.

Note that there are some relations between these anomalous dimensions, in particular
the eigenvalues of Casimir operators in the anomalous dimensions, and the Casimir
operators which act on 4d conformal objects to uplift the four-derivative corrections
to higher charges in subsection 5.7.3. In particular (5.8.38) is proportional to the

(4)

spin-2 101 (5.7.22). The anomalous dimensions for odd ¢ corresponding

eigenvalue of A
to 4d spin-0 and spin-2 are also partially given in terms of eigenvalues of Casimirs.

However, there is no exact correspondence to eigenvalues of Ag;li)n_o or AY  due to

spin-2
the square roots and extra dependence on §(¥). This also indicates a breaking of the

4d conformal symmetry.

We have now studied the mixing problem for four-derivative corrections in detail and
have obtained general formulas for all O(a/c) anomalous dimensions after unmixing.
These anomalous dimensions can be organised according to a 4d effective spin inspired
by the 4d conformal symmetry and they indicate a breaking of the symmetry for
higher-derivative corrections due to the appearance of square roots. We will conclude
this chapter in the next section and discuss some interesting open questions for future

research.

5.9 Conclusions and Future Directions

In this chapter we investigate holographic correlators in AdS;xS?. We start with a
review of the hidden 10d conformal symmetry discovered in [11] where it is conjec-
tured that all half-BPS four-point correlators described by tree-level supergravity
can be obtained from one single 10d conformally invariant object. This conjecture
is true for the supergravity approximation and also extends to free theory, as well
as loop corrections (which we do not discuss in this thesis). However, it is gener-
ally broken for higher-derivative corrections as was confirmed in [11] from a study

of anomalous dimensions after unmixing. An appearance of square roots in these
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results indicates the breaking of the symmetry, however there are still many rational
anomalous dimensions which suggests that some of the symmetry is conserved even
for higher-derivative corrections. The hidden conformal symmetry arises when the
corresponding flat space superamplitude is conformally invariant, hence when its
coupling, i.e. Gnd'8(Q) in the AdS5xS® case, is dimensionless. Therefore, only spe-
cific four-point correlators enjoy this conformal symmetry and only on backgrounds
which are conformally flat, such as AdS,xS?. We have explained that in the su-
pergravity approximation the four-point half-BPS correlator itself enjoys the 10d
conformal symmetry, while for free theory the correlator has to be rescaled by act-
ing on it with an eighth-order differential operator derived from the superconformal
Casimir. This yields the correlator of superdescendants which exhibits 10d conformal

symietry.

In addition to studying 1d correlators in the context of the 4d hidden conformal
symmetry we also derive four-point half-BPS correlators from a 4d scalar effective
action in AdSyxS? similar to the one introduced in chapter 3. While in AdS5xS® the
effective action only describes higher-derivative corrections, in AdSsxS? the effective
action describes both, supergravity and higher-derivative corrections. Note that we
propose the existence of this effective action and deduce the consequences without
proving it. We then compare the results to those from the 4d conformal symmetry
where possible. Throughout this chapter we consider both these approaches and

show that they nicely complement each other.

We discuss the free disconnected correlators and show that they exhibit a 4d con-
formal symmetry. Recall that for free theory one has to consider the correlator of
descendants which is obtained by acting with A®) on the correlators. This yields a

generating function which contains all higher-charge free theory correlators.

Supergravity correlators in AdS,xS? are especially interesting because they exhibit
4d conformal symmetry and can also be deduced from the proposed 4d effective
action. We start by deriving the lowest-charge correlator from crossing symmetry

and small z behaviour alone and then show that one can obtain all higher-charge
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tree-level correlators by uplifting it to 4d and expanding in the internal variables.
We derive a general formula for all four-point supergravity correlators and find exact
agreement when deriving the same correlators from the 4d effective action (up to
an overall unfixed coefficient), which suggests that the proposed 4d effective field

theory indeed generates all tree-level half-BPS four-point correlators.

The first hint towards a 10d conformal symmetry was found in [144] when solving
the mixing problem for anomalous dimensions in the supergravity limit where a
remarkably simple structure was uncovered. To show that a similar structure (and
even simpler due to the absence of spin in 1d CFTs) is satisfied for AdSyxS? we
analyse the double-trace spectrum in the conformal block decomposition of the four-
point half-BPS correlators. We then explain how to solve the mixing problem for
supergravity as well as higher-derivative corrections. Further, we show that the
supergravity anomalous dimensions after unmixing are indeed given by a very simple
formula, namely the eigenvalue 52 of A®) acting on the 1d superconformal blocks.
This simple structure can be explained from an effective 4d spin. Therefore, we have
seen that 1d correlators in free theory and in the supergravity approximation indeed

exhibit 4d conformal symmetry.

Finally, we investigate higher-derivative corrections. We start by deriving general
higher-derivative corrections with lowest charge from crossing symmetry before we
focus on the four-derivative corrections. We derive all four-derivative corrections
to the half-BPS correlators with any charge configuration from the 4d effective
field theory. Using these results, we go on to discuss the breaking of the higher-
dimensional conformal symmetry. We propose that some of the correlators can be
reconstructed by rescaling the higher-derivative four-point correlators by acting with
an inverse fourth-order differential operator to obtain an object invariant under 4d
conformal symmetry. In this way one can reproduce an infinite set of four-derivative
corrections with specific charges, however the symmetry is broken for general charge
configurations. This breaking can be anticipated because when dimensionally re-

ducing interaction terms with covariant AdSxS derivatives on the sphere one gets
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several terms with different numbers of derivatives in AdS which then cannot all be
rescaled simultaneously. This strongly suggests that the a3 corrections in AdSsxS?,
which are described by zero-derivative interactions, have 10d conformal symmetry,

which is in agreement with the rational anomalous dimensions found in [13].

Considering the four-derivative corrections we obtain from the proposed 4d effective
action, we perform a conformal block analysis and solve the mixing problem for
anomalous dimensions at O(a/c). We obtain general formulas for all anomalous
dimensions and similar to [11] we find that a part of these anomalous dimensions
contain square roots, whereas there are also many rational anomalous dimensions.
Again we can explain the structure of these anomalous dimensions from an effective
4d spin. The fact that there are square roots in the unmixed anomalous dimensions
indicates that the 4d conformal symmetry is broken for higher-derivative corrections.
However, there are also many operators obtaining rational anomalous dimensions
and this suggests that a part of the 4d conformal symmetry structure remains. This
agrees with the findings above that a subset of correlators can still be constructed

from the hidden conformal symmetry.

To summarise, both, the higher-dimensional conformal symmetry and the higher-
dimensional scalar effective field theory are very powerful approaches which nicely
complement each other. While the hidden conformal symmetry describes all free
theory and supergravity correlators (as well as loop corrections), it is generally broken
for higher-derivative corrections. On the other hand, the scalar effective action
approach generates all higher-derivative corrections for any number of derivatives
and any charge configuration, but does not describe free theory and loop corrections.
Whereas the effective action in AdS5xS® only describes higher-derivative corrections,

the effective action in AdSyxS? also describes supergravity.

Future directions

There are a number of interesting open questions that arise form this research.
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o We have seen that the hidden conformal symmetry and the higher-dimensional
effective action approach nicely complement each other and that both are very
powerful in obtaining four-point half-BPS correlators at different orders in a
and 1/c. It would be very interesting to understand the breaking of the hidden
conformal symmetry for higher-derivative corrections more precisely. It would
be interesting to identify specific pieces of the integrands of Witten diagrams
derived from the effective action that cause the breaking of the symmetry. It
is not straightforward to identify these contributions from (5.7.12) and one
idea might be to perform a Weyl transformation of the derivative terms in the
effective action from flat space to AdSxS to see whether this could give more

insight.

o Another very interesting research direction would be to study implications for
4d black holes. As mentioned before, AdS,xS? is the near-horizon geometry of
extremal black holes in 4d. Fixing the coefficients in the effective action would
specify the underlying theory of quantum gravity and it would be interesting
to see whether these coefficients could be constrained from the weak gravity

conjecture [156, 157].

o It would also be interesting to consider higher-loop corrections. These can be
constrained from the higher-dimensional conformal symmetry and we leave a

discussion of this to [14] (also see [11]).

o Extending the conformal block analysis to higher-derivative corrections with
more than four derivatives is another possible extension of our research. It
would be interesting to compute the anomalous dimensions after unmixing and
check that the results agree with the 4d effective spin conjecture in (5.5.6).
Furthermore, one could consider constructing part of the correlators from the
4d conformal symmetry by acting with inverse differential operators on the
correlators analogous to the discussion in subsection 5.7.3, where the power of

the differential operators depends on the number of derivatives.






Chapter 6

Conclusion

In this thesis we have studied holographic correlators in three different examples
of the AdS/CFT correspondence. In chapter 2 we started with a review of im-
portant concepts of conformal field theories, including correlators, OPE expansion
and the conformal bootstrap. Furthermore, we have briefly reviewed the AdS/CFT

correspondence and holographic correlators including higher-derivative corrections.

The first case we have studied was the classical canonical example of the AdS/CFT
correspondence, the duality between string theory in AdS5xS® and A =4 SYM in
the boundary. The goal is to generalise the flat space Virasoro-Shapiro amplitude,
describing stringy corrections to the supergravity approximation, to curved back-
grounds. We have proposed a 10d scalar effective action in AdS5xS® describing o’
corrections to the correlators. From there we have described a general algorithm to
compute all four-point half-BPS correlators described by tree-level string theory to
any order in o by evaluating new 10d Witten diagrams which manifestly include
AdS;s and S® coordinates. We have justified the existence of this effective field theory
by reproducing known results for a3 and o’ and have then made new predictions
for a6 and o’7. The coefficients of these interaction terms are fixed by comparing
to the flat space VS amplitude. There are ambiguities in the AdSxS effective action
which vanish in the flat space limit and can therefore not be fixed by our approach.

However, most of the ambiguities at the orders considered in this thesis can be
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determined by comparing to results obtained from localisation.

Next, in chapter 4 we have considered holographic correlators in AdS;xS* which is
another canonical example of the AdS/CFT correspondence but much less under-
stood since the bulk theory is not known beyond the supergravity approximation
and the boundary theory is non-Lagrangian. Our goal was to better understand the
worldvolume theory of M5-branes, the 6d (2,0) theory, which is dual to M-theory
in AdS;xS%. To study M-theory away from the supergravity approximation we con-
sider correlators in the 6d (2,0) theory away from the strict large-c limit. Since
the 6d (2,0) theory is non-perturbative we have approached this through conformal
bootstrap methods. In particular, we have derived recursion relations for anomalous
dimensions of double-trace operators in the conformal block expansion of four-point
functions of primaries of the stress tensor multiplet. To do this, we have expan-
ded the crossing equation in 1/c¢ and taken the light-cone limit of the conformal
cross-ratios to isolate the contributions from anomalous dimensions. Moreover, we
have made use of orthonormality relations of the hypergeometric functions in the
conformal blocks and have truncated the conformal block expansion to spin L. We
have derived these recursion relations for a bosonic toy 6d CFT as well as for the
supersymmetric 6d (2,0) theory. Further, we have described an algorithm for solving
the recursion relations for the anomalous dimensions at any spin-truncation and for
any twist. Finally, the anomalous dimensions encode the higher-derivative correc-
tions to the low-energy effective action of M-theory. In particular, the large-twist
behaviour of the anomalous dimensions of a specific spin-L truncated solution to the
crossing equation gives the number of derivatives of the corresponding interaction
vertex while the coefficients of the terms in the low-energy effective action cannot

be fixed from our approach.

The third case we have investigated are holographic correlators in AdS;xS?, where
quantum gravity on this background is dual to a one-dimensional superconformal
field theory with SU(1,1|2) symmetry. This case is much less well understood

but very interesting due to its relation to black hole physics. We have approached
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correlators in this example of the AdS/CFT correspondence from different points of
view, the higher-dimensional conformal symmetry first observed for N'=4 SYM and
the higher-dimensional scalar effective action proposed in a previous chapter. The
hidden conformal symmetry of correlators arises when the corresponding flat space
superamplitude is connected to a dimensionless coupling and is thus conformally
invariant. It is thus only satisfied for specific four-point correlators and moreover,
requires a conformally flat background. We have seen that 1d correlators in free
theory and in the supergravity approximation have 4d conformal symmetry, where
one has to act with a differential operator A(® on the free theory correlators to
obtain a 4d conformally invariant object. In these cases, all higher-charge correlators
can be obtained from the lowest-charge correlator alone using the hidden conformal
symmetry and we have shown that in the supergravity limit these results agree with
the correlators derived from the 4d effective action by evaluating AdS;xS? Witten
diagrams. That the supergravity correlators satisfy 4d conformal symmetry was also
confirmed through the analysis of anomalous dimensions of double-trace operators
in the spectrum of the correlators after unmixing, which show the expected simple

structure 62,

We have then discussed higher-derivative corrections and specifically obtained all
four-derivative corrections from the proposed 4d effective field theory. The higher-
dimensional conformal symmetry is generally broken in this case but through rescal-
ing the correlators by acting on them with inverse powers of differential operators we
can reconstruct an infinite tower of four-derivative corrections with specific charges.
We have also solved the mixing problem for anomalous dimensions of double-trace
operators in the spectrum of the four-derivative corrections and have obtained gen-
eral formulas. While most of the anomalous dimensions are rational, there are
operators which acquire anomalous dimensions with square roots and this indicates
the breaking of the 4d conformal symmetry. To conclude, the hidden conformal sym-
metry conjecture is valid for free theory and supergravity and is generally broken

for higher-derivative corrections whereas the scalar effective field theory approach
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generates all higher-derivative corrections but does not describe free theory or su-
pergravity (except in the 1d case). Hence, using both of these approaches together
puts very powerful constraints on the four-point correlators of half-BPS operators

in conformally flat backgrounds.

Detailed conclusions including discussions of open problems are given at the end of
each chapter. There are many interesting future directions arising from the research
in this thesis, such as for example proving the existence of the scalar effective action
proposed in chapter 3, or deriving it directly from the CFT side of the duality. It
would also be interesting to understand systematically how to fix the ambiguities and
how to resum the terms in the effective action. Furthermore, it would be interesting
to extend this approach to different conformally flat backgrounds, to higher-point
correlators or to loop corrections. Following on from chapter 4 an interesting dir-
ection would be to fix the coefficients of the higher-derivative corrections to the
M-theory low-energy effective action using the chiral algebra conjecture [132]. Re-
lated to this, it would be interesting to derive higher-charge correlators and compute
the corresponding anomalous dimensions. Based on chapter 5 it would be very
interesting to explore the implications for higher-derivative corrections in black hole
backgrounds, as well as to extend the study to loop corrections or to interactions
with more derivatives. An interesting direction to pursue, combining both chapter 3
and chapter 5, would be to study the relation between the higher-dimensional scalar
effective action and the higher-dimensional conformal symmetry further and under-
stand the breaking of the conformal symmetry for higher-derivative corrections more

precisely.



Appendix A

Mellin Space

In this appendix we will review a few important concepts for the Mellin space formal-
ism. In [57] the author proposed a representation of conformal correlators that makes
their duality to scattering amplitudes more apparent, Mellin space representation.
Mellin space was first brought into the context of scattering amplitudes in [158, 1,
where a duality between the Mellin amplitude and flat space scattering amplitudes
as a function of Mandelstam invariants was pointed out. The flat space correlator

of four primary scalar operators can be written as

(O01(21)O02(22)O3(23) Oy (x4)) = (2?:’—1)2 [ doy 12[

isi (¢3)

with some normalisation N. The integration variables satisfy the constraints

I(4;
( (s?j M(5;),  (A.0.1)

i<j
and the integrand is conformal with scaling dimension A; at the point x;. M (J;;)
is the Mellin amplitude and the integration contour runs parallel to the imaginary

axis with Re(d;;) > 0.

In [57], the author then proposed that the Mellin amplitude is the scattering amp-
litude also in AdS spacetime (see (2.3.14)) and we will discuss this further in the

following.
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Contact Witten diagrams and Mellin space

In this subsection we include additional information about contact diagrams in
Mellin space and their relations to the position space versions, which is useful in the
context of chapter 3. Note that we do not discuss Mellin space in the context of
1d CFTs in chapter 5 because in 1d the Mandelstam variables are not independent

(since u = 0) and thus the Mellin transforms are not unique (see also [L60]).

In [57] the author computes the Mellin amplitude M (6;;) for different Witten dia-
grams and finds that they resemble to flat space scattering amplitudes. Specifically
contact Witten diagrams, which are the relevant cases for our considerations, give
polynomial Mellin amplitudes which agree with flat space scattering amplitudes
as functions of the Mandelstam invariants. The minimal contact diagram with
no covariant derivatives always has constant Mellin amplitude!’ whereas derivative
contact terms give polynomial Mellin amplitudes. More precisely a AdS contact
interaction with 2k covariant derivatives corresponds to a Mellin amplitude which is

a polynomial of degree k.

As we have seen in subsection 2.3.1 the contact Witten diagrams for interactions
with no derivatives, which are described by D-functions, can be written in Mellin
space as (see [57]):

d(;ij
(27i)?

I1 (%) with Z(Sij =pj, (A.0.3)

d X
D1(31;>2P3p4( Z) = '/\/p/?deH % (/X X -)‘Sij ’
i-<4\j

i<j i<j

where the normalisation is given in (2.3.15).

The constraints ), ;; = p; can be solved most naturally by

5ij = %(pﬁ'pj_sij) ) (A-0-4)

where s19 = 834 = S, S14 = S93 = 1, S13 = Sou = U = P; + Pa + P3 + Py — S —t which

can be interpreted as kinematic invariants of an auxiliary momentum space k; with

n any dimension d there is a contact diagram with constant Mellin transform, namely the one
with A =d for Daaaa. In 4d this special case is D4a4sa which corresponds to the a3 correction,
while in 1d it is D111 corresponding to supergravity.
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sij = —(ki + k;)?. We can use this to rewrite the normalised D-functions (2.3.16) in

terms of D-functions with a simple relation to the Mellin transform as:

det s t
2p2 [ | I'(6;,
(Qm-)zu“” g (0i5)

— u%(p”p?)v%(p2+p3)l_)p1p2p3p4(u,v) , (A,0.5)

P’ x DP1P2p3p4(Xi) = f

where the prefactor is

) (X1.X2)z®#p2) (X X)) 2 (01op) (X, X3) 2 P2#ps) (X 5. X, )2 (Ps+pa)

p’
(Xl'X:J,) 1 (pa+ps) (X2X4) 1(p1+ps)

(A.0.6)

and to go from the normalised D to D use (2.3.16) and (2.3.17), where a7 = —2X;. X,

Thus, one can easily convert between position space in terms of D-functions and
Mellin space. Note that in chapter 3 we give all correlators in Mellin space, neverthe-
less we can directly expand the 10d Witten diagrams in terms of D- and B-functions
to get the correlators in position space (analogously for 4d Witten diagrams in
chapter 5). Hence, we can get the correlators both in position space and in Mellin
space directly from the effective action, yet it is interesting to understand how to

convert between them.

Shifting the variables s - s+ p; + g, t >t +po +p3 in (A.0.5) we get

dsdt

Dy, papsps = WU

SIS

s
20

< T (—?s) r (_PI—P2+2P3+P4—$) I (—?t) r (p1—p2—§3+p4—t) r (2p2;s+t) r (p1+p2+pg—p4+s+t) ]

(A.0.7)

Conversely the Mellin transform of any function which has the form of six Gammas

in this form can be written as a D-function as follows:

d dt s 1
T D I RN CEDINCEDINCRE I R
:ual Ubl Da1+b2+02,a1+b1+cl,a2+b1+02, az+ba+cy - (AOS)

Note that this mapping is not unique because of the symmetries a; <> as, by < bo,

c1 <> o, which generate various identities amongst the D-functions.
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The Polynomial I(X;,Y;)

The polynomial I(X;,Y;), the so-called Intriligator polynomial, which factors out of

all half-BPS four-point functions (3.1.14) is:

I(X3,Y:) = (z-y9) (@ —y) (@ - 7)(Z - ) (X1.X3)? (X2 X4)?(Y1.Y3)*(Y2.Y2)?

L o X7.X2X5.Xy (1-2)(1-7) X1. X4 X5. X3
with 27 = ———— -2)(1-2) = ——
X1. XXX, X1. XXX,
__Yi.Y5Y5Y, YY), Y,
= = 1-y)(1-9Y)= ——F-— . B.0.1

I is crossing symmetric under simultaneously permuting X;, Y; with X;,Y; . It is also
a polynomial and written out fully in terms of the SO(2,4) and SO(6) invariants
X;.X; and Y,.Y; is given as

I(X,,Y:) = (X1.X4) 2 (X0 X3) 2Y1.Y5Y1.Y3Y5. VY3 Y,
+ X1 X X1 Xy X5 X X0 X5 (Y1.Y3) 2 (Ya.Y2) 2
X1 X X X X Xy X0 X5 (Y1.Y2) 2 (Y3.Y2) 2
- X1 X X1 X X5 X X0 XY, Y31 Y0 Y0 Y5 Yo Y
= X1 XX XX X Xo XY, YY1 Y Ye V3 Y5,
- X1 X3 X1 X Xo Xy Xo X3V, YY1 Y3 Ya Y, Y5 Y
- X1 X0 X1 X0 X3 X0 X0 X3 Y1 YY1 Y3 Ya Y, Y5 Y

+ Xl.XgXl.XgXQ.X4X3.X4 (Y1Y4) 2 (}/QYE;) 2 + ( .. )
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() + (X1.X0) 2 (X5.X40) 2Y,.Y3Y .Y Ve Y3 Y0 Y,
= X1.X0X7. X3 X0 Xy X53. X4Y1.Y3Y1.Y,Y5 Y35,
F(X1.X5) % (X0 X4) V1Yo Y1 .Y1Y5. Y3 Y3V,

- X1. X0 X1 . X3 X0. Xy X3. X4 Y1.Y5Y1 .Y, Y5.Y3Y5.Y, . (B.0.2)



Appendix C

Contact Diagrams in AdSxS and

AdS, and Supergravity

Although we will not use this fact in the rest of the thesis, it is worth pointing out
an intriguing relation between the AdSxS contact diagrams and the better known
standard AdS contact diagrams. This relation can be seen by comparing their

respective Mellin transforms (3.1.41) and (3.1.25).

First, consider the special case YA = d + 1. In this case the final Pochhammer
in (3.1.41) is absent and the Mellin transform becomes proportional to

(Yi.Y;)4 T'(045)
2 (H (%, X, T(dy + 1))

{dij} \i<y

_ [ _déy I'(6;5)
- J (2mi)? (H (X:. X+ Yi.Yj)fsij) ’

i<j

= dé;;
-1 Xp ()
p;o( ) (271)?

where Z(SZ] = A]’ N (COl)

i<j
where the equality is obtained by performing the sums over p; and then changing

variables from d;; — 0;; = d;; — d;; and d;; contains AdS and S Mellin variables.

Comparing this with the Mellin transform of the AdS contact term (3.1.25) we see
that this is proportional to a D-function with X;. X, - X;. X, + Y¥..Y;. In other

words it is proportional to a pure AdS contact term with embedding coordinates
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X! = (XAY]), corresponding to a (2d + 2)-dimensional bulk. More precisely we
have the relation!

7Td+1

DAde+1de+1 X,.Y)) =
(X YD) = s Ay

A1A2A3A4

XDA1A2A3A4(X1‘7)/1‘) , where 2A=d+1 .
(C.0.2)

Note that this case XA = d + 1 corresponds precisely to the case of a dimensionless
contact term in the flat space limit, [ d?#*2x¢a, ... ¢a,. The above relation (C.0.2)
is an example of the enhanced higher-dimensional conformal symmetry observed

in [11]. We will look at this explicitly for N'=4 SYM in the next subsection.

Now let us modify the above discussion for the case with X # d+ 1. Here the direct
relation between AdSxS and AdS contact terms is spoiled by the presence of the
Pochhammer at the end of (3.1.41) which depends on ¥, that we are summing over.
A simple way of reproducing this Pochhammer whilst still having a summed up

formula is then to rescale all the Y variables and differentiate. Concretely, we can

write
DAde+1XSd+1 (X \/_Y) 3 2 1 i Ya-d-1 EA*d/271D(2d+2) (X fy)
A1A2A3Ay i VTLi) = F(ZA —d- 1) rd/2 \ dr r A2 Az A\ VT

(C.0.3)

where the D-function is for a (2d + 2)-dimensional bulk.

Tree-level supergravity in N =4 SYM

While the main focus in chapter 3 is obtaining tree-level string corrections to N =
4 SYM correlators from an effective action involving massless scalars in 10d, it
is interesting to also look at the tree-level supergravity prediction following the
approach described in this appendix. While we do not expect this to arise from an
effective superpotential, all single-trace half-BPS correlators were shown in [41] to

possess a 10d conformal structure and in particular can be obtained by expanding

We here compare with the dimension-independent, normalised D-function (3.1.26), since in
2d + 2 dimensions the D(®-function itself diverges when YA = d + 1 due to the I-function in the
numerator of (2.3.15).
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out Dag9s. For Doyyos the simple relation between AdSxS and standard AdS contact
diagrams described above is valid because YA =5 =d+ 1 and hence (C.0.2) applies.

The tree-level supergravity result can be written [41]

1 1 1

0000 )sugra <
< ) & (X1X3+}/1)/:3) (X1X4+§/in) (X3X4+§/3Y;1)

Daina (X3, Y7) .
(C.0.4)

Inserting the Mellin representation of Daj9 (3.1.25) and changing variables d;; —
0;j — 1 for 4,5 = 1,3,4 and 0;; unchanged otherwise, this can be written in the
form (3.1.42) with A; =4 with the Mellin amplitude

1 1

Msugra &< = .
(013-1)(814=1)(034-1)  (b13~d13-1)(d14=d14=1)(d34—d34~1)

(C.0.5)

The denominator in the above equations can be understood from the supergrav-

ity piece of the Virasoro-Shapiro amplitude which is ﬁ, which acts like inverse
derivatives on Day9. Acting with STU on (C.0.4) gives back the zero-derivative
contact term Dy444 which has Mellin transform 1 and can be obtained from a 10d

superpotential.
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o/T Ambiguities in AdS;xS®

The ambiguities at order /7 were introduced in (3.6.2) and we spell out their Witten

diagram expressions and the corresponding Mellin amplitudes in the following.

The first ambiguity at /7 contributes to the effective action with

6 o
Sapt = m Ads SdSXdE’Y(v“v”vuvpv“qus) (V. Vo) % (D.0.1)

it corresponds to a four-derivative interaction and its contribution to the half-BPS

correlator is given as

1 (Cy) BXBY K2
<OOOO>|QI7;amb1 == (64)16 f 1 2] 5 X 43 x D )
AN(=2)"0 Jaasss T, (P + Q)" i (P + Q)" (P + Q;)
(D.0.2)
where
K3 =45[(X0. X5 + PP)° + (Y. + QiQ)*] - 9 (PP + QiQy)°
- 180QiQ; Y Y; +26 PPy QiQ; (D.0.3)

We write the corresponding Mellin amplitude as

MEEPT = ORIy 204 M 1 12288 M3 (D.0.4)
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where

MR =288 [ (3,-1); (87 + 87 + u?)
1
+(2p-1), 3 (scg +tc - uci)

- (Xp-1), (5, +3) [2(s§+tf+u&)+(scs+tct+ucu)]

+(X,-1), (% (c§+c?+ci) -, (c§§+ct2£+ e 712) - %Ep (c‘5+c§’+c3)

+(Xp-1), (+%E§ (c§ +c ci) + % (c? G+l ci) Cs Ct Cy X
= (S0 (2(2240) (347 i) + (5es+ier i) - ézf,(z§+72))] .

The next three ambiguities also correspond to four-derivative terms. The contribu-

tion to the effective action from the second ambiguity is

Sambz _ 6
a7

T4l PXEY (VIVI9VrY, ? D.0.6
4 fAdsxs (V VIVIVIV (b) (VuV,d) 6° ( )

which corresponds to the correlator

(OOOO)|urt.amms,
4 5% 75V Jambz
= 1 (64)16 / LR 1 ;] 5 X 4 x52%x2, (D.0.7)
A1(=2)10 Jaasxs T, (P + Qi) i (Pi+ Q)™ (P + Q)

where
K™ =5[(X;. X, + BiP)* + (Yi.Y; + QiQ;)’] - (PP + Q,Q;)"
-20Q:Q;Y:.Y; +2 PP QiQ; (D.0.8)
The Mellin amplitude is
M2 = M2 4 248 MPTEP + 14336 M5 (D.0.9)
where

MR =320 [ (3,-1), (87 + 87 + u?)
1
+(X,-1), 5 (sc2+tc; +ucy)

—(Zp-1), (Zp+3)[2(sé+ti+ud)+(scs+te +ucy)]
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+(Zp-1), (% citciren)-S,(25+ i+ cifﬁ))

1 1 4
+(Zp-1), (2—0 cd+id+cle 2)—221)(0‘3+c;f+c )+5E§(c +c?+cz))
+(Sp-1); (2(Z2+6)[(8°+ P +0°) + (Ses +Ec +Ticy)])

+(5,-1), (-1—0 cacreuy = 1555 (7%2+ 480)) ] . (D.0.10)
The third ambiguity contributes to the effective action with
Sa = fA o PEEY (VPVVP9,0) (V,0) (Vu0) 6 (D.0.11)

and the prediction for its contribution to the half-BPS correlator is given by

<OOOO>|a’7;amb3 =

1 (Cy)* BXDPY K ombs .

I(—2)16-/AdeS (P+Q) (P +Q1)* (Py+ Py + +perms | x4 10,
[L(P+Qi) L(P+Q1)" (Pa+Q2) (P3+Q3)

(D.0.12)

where we sum over all permutations and

K = P2 (4P Py - X;.X0) + Q2 (4Q;Qu + Y).Yi) + 5 Py (Pu Xi. X + Py X;.Xy,)

-5Q; (QrY:.Y;+Q; Y, .Yy) +5(X,. X; X, X, +Y,.Y; Y, .Yy) . (D.0.13)
The corresponding Mellin amplitude is
METPS = JAEbs — 704 MPEP — 32768 MM (D.0.14)

where

MERP =640 [ (S-1); (52 + 2 + u?)
1
+(3,-1), 5 (scg +tc + uci)

—(Zp-1), (Zp+3)[2(s5+tt+ud)+(sco+te+ucy)]

=g

+(3, 1)3<1(c4+cf+c4) Ep(c§§+c?t~+czﬂ2))

S
+
o
0
o
(3]
N—"
|
N | —
™
3
—
2)
V)
+
)
W
+
o
IS
N—"
N—

1
+(%, 1)3< 0(c2cf+c§c

13 3
+(X,-1), (20 p(c§+cf+cz)——csctcu2p)
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+(X,-1), (2 (2120 +6) [(52 +1%+ 112) +(Ses+te+iicy)] - %Zg (2127 + 60))] .

(D.0.15)
The next ambiguity contributes to the effective action as
Sambt = fA N Sd%dW(vﬂv”vpvyvm) (VV,.0) (Vo) b , (D.0.16)

and the corresponding correlator is given by

<OOOO>‘O/7;amb4 =

1 (Cy)* BX Y [omba A

a(_Q)IGAdSXS P00V | (P . - + perms | x 4% x 10 ,
[L(P+ Qi) L(P+ Q1) (Po+ Q)" (P3+Q3)

(D.0.17)

where

K = PPQi[5 (5P + Q;) (X;.Xj +Y;.Y4) —4Q;Q (6P; + Q;) + 20P; P |
- PQ? [5 (P +5Q;) (Xj. Xy +Y;.Yy) + 4P Py, (Py +6Q;) — 20Q3Qy ]
~P2[Q; (P; + Q) Y.V}, + 5Y,.Y; (X;. X}, + Y;.Y}, + Pi Py — Q;Qp)]
+ QI [Py (Pj+ Q) Xi. Xy - 5X:. X (X;. Xp + Y;.Yy, + PPy — Q;Q4)]
+ PQ;i[25 (P Py - Q;Q) (Xi. X, +Yi.Y;) + (P; + Q) (5Q; Yi. Yy, — 5P; Xi.X},)

+25 (X, X; + YY) (X;. Xe + V3 Y0)] (D.0.18)
The contribution of this ambiguity to the Mellin amplitude is
ML = MR~ 128 Mmain (D.0.19)
where
MR = 32[ (Bp=1); 5 (87 + £+ u?)

+(Xp-1), (32 c? +t2 c? +u? ci) + [52 (cf + ci) +t2 (cg + ci) +u? (cg + c?)])

+(3,-1), —5(sc§+tcf+uci)—10(sc§§+tc§f+uc§ﬂ))

(

(
+(3p-1), (1022 (s +tE+ud) - 552 (scs +tep +ucy))
+(Zp-1), (-10[s8(cf + %) +ti(c2+co) +ui(c:+c})])
(

+(2p-1), (-5 [scs (c? + ci) +te (cg + ci) FUC, (cg + cf)])
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+(Zp-1), (4(ch+cf +c )+20(s E+itc+atcl)+8(cie v il +cich))
+(Zp-1), (20(c2s Sa)+20%2 (5% + % + %))

8% (2 +ct+c) 52 (Ses+te+icy))

+(Zp-1), (20[8° (cf +c2) + 2 (2 + ) +a* (2 +c})])

(
(
+ (3= (-
(
(

+(Xp-1), 20[503 (ct +c2) +ic (cg +ci) +Ucy (02 +ct)] —1224)]

(D.0.20)
Finally, the fifth ambiguity contributes to the effective action with
Sl fAdSXS PXAY (VIV'VIVIV,0) (VuVe0) (Vo) 6 | (D.0.21)

which corresponds to a six-derivative interaction and its contribution to the half-BPS

correlator is

<OOOO>|CX’7;amb5 =
i (64)4 f d5Xd5f/ ngém + permS] y (_44)
A1 (=2)16 Jaasxs TT, (P + Qi)' L(PL+ Q1) (P + Q2)* (P3 + Q) ’

ambg _
Kzgk

(D.0.22)

=P’ [P; (4(Q; +21P)) P, — 45X,;.X;)] + Q7 [Q; (4 (Pj +21Q;) Qx + 45Y;.Yz)]
+P2Q; [8(Q; —4P;) PPy + 4(Q; - 5P;) (Q; + 6P}) Qr — 40P; X ;. X},
-5Q;Y;.Y3] + PQ7 [8(P; —4Q;) Q;Qx +4 (P = 5Q;) (P +6Q;) Py
+40Q,Y;.Yy, + 5P X;. Xi ) + P7 [P (129P; + 4Q;) X;. X + 120P7Y,.Yj,
+15X,.X; (17P; P, - 3X;. X)) + Q; (=5QY:.Yj + (—4P; + Q) Yi.Yz)

+5Y3. Y3V, Y] + Q7 [-Q; (129Q; +4P)) Yi.Yy, - 15Y,.Y; (17Q;Qk + 3Y;.Y3)
~120Q7X;. Xy - Pj (-5P, X X + (-4Q; + Pj) X;. Xi) + 5X;. X;X;. X},

+ PQ; [8 (P +Qj) (P X Xy — Q;Y:.Yy)

+20 (-X;.X; (Pj (2P, + 15Qg) +2X;.Xy) + Y3.Y; (Q; (2Qk + 15P;) - 2Y;.Yy,)) ]
+ P, [150P;, ((X;.X;)% - (Yi.Y;)?) + 300P; X ;. X; (Xi. X, + Y;.Vy) |

+Q; [-150Qk ((X:.X;)? - (Yi.Y;)?) + 300Q,Y:.Y; (Xi. Xy + V3. Y3) ]

+150 ((X:.X;)% - (Vi.Y3)?) (Xi X + Vi Yy) (D.0.23)
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The corresponding Mellin amplitude is

Mamb5 Mambs _ Mamb1 Mambz + = Mamb3 Mamb4 + 64Mmain

a’d

+ 66 M50 + 4096 M™m3™ (D.0.24)

where
MR =198 [ (3,-1) (87 + £% + u?)

S (e +t20t+u2c2)+%Ep(2p+8)(s2+t2+u2))
+(Zp-1)5 (- (Zp+ 7 [2(s 5+ 2T+ u’a) + (s s+t +uPey)])
2l rtdrud) - 5(sc§g+tc§f+ucga))
+(2p-1), (6(4%, +7)[(s3® +t& +ud®) + (s5cs +tlc +uicy)])
+(Z,-1), (- (13Ep+24)[(s§+tt~+u7j)+%(scs+tct+ucu)])
(143, + 19) (sc§+tc§+uci))
(bt v ) =605, (504 P v i) - 3, (¢ ATA)
+(Zp-1), (10(25+cft+cla)+10(8 2+ ) +a’cl))

=903, (S cs + ?ct+ﬂ20u)—47Zp(c§§+c?t~+ciﬂ))

+(Zp-1), %Ei(e2+cf+c ) +50%2 (5 +~2+ﬁ2))
+(Ep-1),; (5052 (§cs +Eey +icy) - ng,(sl 2§+352))] : (D.0.25)
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Conformal Blocks in 6d

Conformal blocks for four-point correlators of scalar operators of arbitrary scaling

dimensions A;, i = 1,...,4, in any even dimension were derived by Dolan and Osborn

in [16]. In 6d, the blocks are given by

GDO (Au l? A127 A34) =

[+3
foo—m]‘in
_A—4 (A+Z—A12)(A+Z+A12)(A+Z+A34)(A+Z—A34)F
A-2 6(A+1-1)(A+1)2(A+i+1) H
(A-4)(1+3)

TN Y

X

+2(A-4)(1+3)

(A=1-Ap=2)(A=1+A1—4) (A =1+ A3s—4) (A=1-Agy —4)

16(A-1-5)(A-1-4)°(A-1-3)
A12A34

(A+D)(A+1-2)(A-1-4)(A-1-6)

Foz

For (E.0.1)

where (A, 1) are the scaling dimension and spin of a primary operator in the conformal

block expansion, A;; = A; = A;, and

fab

1

N2 (A

:(?2)2()3 ) {Zl+a+3§b
Z—Z

><2F1(%(A+Z—Alg)+a,%(A+l+Ag4)+a;A+l+2a,z)
xoF (3(A-1-A1)=3+b,2(A-1+23)-3+b;A—-1-6+2b;2)

-z 3. (E.0.2)
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For the toy model analysed in section 4.2, the blocks are given by
GR1(2,2) = (1+1) GP°(A,1,0,0) (E.0.3)

where A = 2n + 1+ 2A¢ + O(1/c). Moreover, for the 6d (2,0) theory analysed in

section 4.3, the blocks are given by [25, 17]

A(1+1) (2-2)°
(1+2)°-A2

G3.(2,2) = GPO(A +4,1,0,-2) | (E.0.4)

where A =2n+1+ 8+ O(1/c) with n > 0.



Appendix F

Orthogonality of Hypergeometrics

In this appendix we derive orthogonality relations for hypergeometric functions used
in chapter 4, explicating a brief argument in [30] which then allows us to obtain a
new case relevant for the supersymmetric 6d theory. Our starting point will be the

differential operator!
D.=22(1-2)0*-(a+b+1)2?0, - abz . (F.0.2)
This operator has eigenfunctions satisfying
D.H,(z)=m(m-1)H,(z) , (F.0.3)

where

H,(2)=2"F1(m+a,m+b;2m;z) . (F.0.4)

First consider a = b= 0. In this case, the differential operator in (F.0.2) reduces to
D, =220,(1-2)0,. Let us look at the object H,, Hi_, (we will omit the arguments

(z) in the following). Using the symmetry of the differential operator D,, after

Note that this operator is closely related to the conformal Casimir. In d dimensions this is [1(]

De=22(1-2)02+22(1-2)02 - (a+b+1) (£20, + 2205)

zZZz

—ab(z+2)+e ((1-2)0,-(1-2)05) , (F.0.1)

z2-z

where a,b are arbitrary constants and e = d — 2. The non-interacting part (i.e e-independent part)
reduces to D, + D5.
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integrating by parts twice and using (F.0.3) we find that

dz 1

0 = —2 —2 [(D Hm) Hl —m/ Hm (DzHl—m’)]
Tz
L dz 1
=[m(m-1)-m'(m' -1)] —HHi (F.0.5)
2mmi 22

where the contour encircles the origin. It follows that H,, and H;_,, are orthogonal
with respect to the inner product defined above if m # m’. Plugging in (F.0.4) and
shifting (m,m’) to (m +2,m’ + 2) then implies the inner product in (4.2.16), where
we fix the normalisation by noting that o F}(a, 3,7,2) = 1+ O (2) and evaluating the

residue at z = 0. This relation was first obtained in [30].

Next, consider a = 0, b = -1, in which case (F.0.2) reduces to D, = 22(1 - z) 0.

Following the same arguments as above we find that

0= .?5 27 22(1 z) (D= Hin) Hior = Hn (Dz i)

1

=[m(m—1)=m/(m' -1)] mm

HyHy o (F.0.6)

so H,, and H;_,, are orthogonal with respect to the inner product defined above if
m +m'. Plugging in (F.0.4) and shifting (m,m’) to (m +2,m/ + 2) then proves the
inner product in (4.3.17), where the normalisation is once again fixed by evaluating

the residue at z = 0.



Appendix G

Tree-Level Supergravity in the 6d
(2,0) Theory

In this appendix we will discuss the 6d (2,0) tree-level supergravity prepotential and
derive the anomalous dimensions of the double-trace operators contributing to its
conformal block expansion. For large ¢, the four-point prepotential can be derived
from tree-level Witten diagrams for supergravity in AdS;xS?%. In [139] the authors
showed that the supergravity contribution consists of a contribution from free theory
(including ¢® and 1/c terms) plus the remaining supergravity contribution, which we
call dynamical contribution and which goes like 1/c. We denote the corresponding
prepotential terms by Ffree and Fsuera respectively. Note that in section 4.3 we only
considered the leading disconnected free contribution at ¢, now we have to consider
an extra piece. The free contribution is then given by:

1 1 1/1 1 1
Free=14 —+ 4+ -[=+>+— (G.0.1)
w? v?2 c\u v wuv)’

which satisfies the crossing condition (4.3.3). Decomposing F'r*¢ according to (4.3.4)

yields

A=1, g(z):§(1+1i ) (G.0.2)
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In addition to expanding G according to (4.3.5) one can expand g in terms of short

conformal blocks as follows
g(@) =Y Bugm(z), gm(x)=a™Fi(m+2,m+1,2m+4,z), (G.0.3)
m=0

where the first contribution with m = 0 corresponds to the conformal block of the
stress tensor supermultiplet (see [20] for more details on this). However, we focus

on the expansion of G in terms of long blocks which gives

Afree (+2)(n+3)(n+ D) +2n+9)(I+n+5)!(l +n+6)!
wh (2n +5)1(2 + 2n + 9)!

1 1 (-1)n
X(5(Z+2n+10)+22(l+1)(l+3)(l+2n+8)) ’ (G.04)

for [ even and zero otherwise. Note that the c-piece was already obtained in (4.3.8).

Next, we consider the dynamical supergravity contribution at O(1/c). This is given

by the following prepotential derived from AdS contact diagrams:

_ )2 _
GRS, W (G.0.5)

[rsuera _

C uv

Decomposing this according to (4.3.4) gives A =0 and

1
g(2) (2z2F1(2,1,4,z)—z(1+

C

)) . (G.0.6)

1-2
The first term corresponds to the conformal block of the stress tensor supermultiplet,
which can be seen from (G.0.3) with m = 0. Importantly, the second term cancels
with the free theory contribution (G.0.2). These terms correspond to twist-4 states
(see [20] for more details). This cancellation is required because it is expected
that only operators in the singlet representation with twist eight or higher develop
anomalous dimensions. The twist-4 states which contribute in the free theory should
be absent in the supergravity limit because from the AdS/CFT correspondence it is
known that there are no supergravity states with twist four, which corresponds to

the minimal twist representation.

Finally, the OPE coefficients and anomalous dimensions of the long operators in
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the conformal block expansion of the dynamical supergravity contribution can be
obtained from an expansion of the form (4.3.10) but with Afffle which depends on
1/c instead of AS?? and without the crossing version. Let us look more closely at
the contributions from the dynamical part. Since the conformal block expansion at
order 1/c is proportional to logu (see (4.3.10)) it is useful to decompose GSu&2 ag
follows:

G2, %) = logu Giog(2, Z) + Gron-log(2, 2) (G.0.7)

where only the logu piece is important for the computation of the «,; and the
non-log piece is analytic as u - 0. Now performing the conformal block expansion

of Glog gives the anomalous dimensions

Sugra:_§( n(n +3) +1) (n+1)(n+2)(n+3)(n+4)(n+5)(n+6)
i 2(1+3)(1 +2n +8) I+ D)(I+2)(1+2n+9)(+2(n+5))

(G.0.8)

where we divided by Agie. The supergravity OPE coefficients can then be computed
from (4.2.9).

Note that in the large-n limit »>"*"* goes like n°. In subsection 4.3.2 we compare the
large-twist behaviour of the anomalous dimensions from spin-L truncations to this
scaling in order to deduce the additional number of derivatives the spin-L contact

interactions obtain compared to supergravity.






Appendix H

Quadratic Super Casimir and

Correlator of Descendants

In this appendix we will derive the quadratic super Casimir of SU(1,1[2). This
contains the second-order differential operator A(®) which plays a leading role in
the hidden four-dimensional conformal symmetry. Furthermore, we will sketch the

calculation of the correlator of descendants introduced in subsection 5.2.1.

The superblocks (see (5.2.23) and (5.2.24)) are eigenfunctions of the quadratic super
Casimir at points 1 and 2 acting on the correlator. Note that the formalism and
super Casimir outlined below generalise naturally from the supergroup SU(1,1|2)
to any supergroup of the form SU(m,m|2n). This was done in the bosonic case

SU(m,m) in [19].

Consider the super Grassmannian Gr(1[1,2|2), the space of (1]|1) x (2|2) matrices
u® 4. Here the small Greek indices refer to the local isotropy group GL(1|1) whilst
the big Latin indices refer to the global group GL(2|2). Explicitly, one can put

coordinates on this Grassmannian as

—(X,)8,
(u)s = (05, (X)) , (@)"a= (56) : (H.0.1)

where X, is a matrix containing the spacetime and internal coordinates x,y, and
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Grassmann odd variables 6, 6:

(Xi)aﬂ' = _ and Xij =X; - Xj . (HOQ)
0 i
We thus have (u;)% (ﬂj)dB = (X;;)5. Then the generators of the superconformal group

SU(1,1]2) at point i are given as
DAB = (Ul')a La (HO?))
’ 40 (u)p

The quadratic Casimir operator acting on the four-point function at points 1 and 2

is then given as

1
SU(1,
Cio () - §(D143 + Dip)(D7y + D3y) (H.0.4)

Superconformal symmetry SU(1,1|2) fixes the correlator in terms of a conjugation

invariant function of a cross-ratio matrix (see [19, 161]) to the form
(W, Uy, Uy, V) = Py < f(Z) (H.0.5)

where the matrix of cross-ratios is given by

S
7 = X129 X5} Xuz X351 = : (H.0.6)

§ vy

with Grassmann odd variables &, ¢ and note that z,y here are different to the cross-
ratios used in the main text, see [19, 161] for more details. That f(Z) is a conjugation
invariant function of the cross-ratio matrix means that f(2) = f(G1ZG) where
G € GL(2,2). Therefore, it can be diagonalised and the correlator can be written in

terms of a function f(Z,7) of the eigenvalues of Z, #,¢ only. These are given by

(H.0.7)

That the eigenvalues of Z are given by (H.0.7) can be checked by verifying that the

diagonal matrix of eigenvalues gives the same supertrace and superdeterminant as
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the matrix of cross-ratios Z:

x - &y

str(Z)=z-y=2-7, sdet(Z) = —== = (H.0.8)
)

z
7
Now, acting with the Casimir on the supercorrelator in terms of a function depending

on the eigenvalues of Z, f(z,4) (H.0.5), and commuting through the prefactor gives

SU(1,1|2
C1,2( | )<“DP1\DP2\PP3\DP4)

0 0
=P, x [((p12_p34) (372— + ?/2—) + paapr2(x - y)) f+ CSU(1 1|2)f] (H.0.9)
Ox dy

with p;; = p; — p;. To obtain this equation we used that sdet(M) = exp(strlog(M))
to deal with differentiating the propagators g;; = sdet(Xi‘ 1) and then applied the
double derivative directly, using D} 5 (wi) = (u;)% 04 and DB, , (u ,)50 = -0¢ (w;)f

fori=1 or 2.

Next, consider the Casimir acting on the conjugation invariant function f(Z) =
f(z,y) of the cross-ratio matrix Z, which is a function of the eigenvalues x,y of Z
only, as discussed above, where we drop the hat for simplicity. By examining the
action of the Casimir on arbitrary products of traces of powers of Z, [], tr(Z%)%,
and the corresponding expressions as polynomials of eigenvalues we find that

oY) p(z,y) = [(ﬁ%_m)(l a;) ( gy ;yi)(l—y)(%]f(%y)

“”xyy( 120,(1 - )0, - 28y(1—y)5y)%_i’/y)- (H.0.10)

Finally, combining equations (H.0.9) and (H.0.10), we obtain the action of the

quadratic super Casimir on the correlator

€y = By x —IAC Pt

Yy r—y
( sP4s ) (_ 3T )
A(2) — szpm P43) Dy P12,~P43 7

Da(cp12,p43) — anx(l _ .I)az + (p12 +p43)$28m — P12P43T - (HOll)

The second-order differential operator A®) is the 1d analogue of A® in A" =4 SYM

and is essential for the higher-dimensional conformal symmetry.



Appendix H. Quadratic Super Casimir and Correlator of Descendants
222

Performing similar, simpler computations one can also obtain the Casimirs of the

subgroups SU(1]|1) and SU(2) acting on the correlator as

CiZU(l,l) =P, % D£p127p43)Pp—il :

C5? = P, x Dy PP pol (H.0.12)

The action of the superconformal Casimir on the correlator can then be written
directly in terms of those of the subgroups as:

SU(,12) T Y (,5U(1)1 SU(2 Ty
0172( 2) _ ” (Cl,z(l)_cl,z())x_y‘ (H.().13)

Correlator of descendants

We will now compute the correlator of superconformal descendants
891 a6’2 @6_3 89_4 (qul \Ilm \Ilp3 \Ilm >|01-:0_1-:0 ) (H'O' 14)

introduced in subsection 5.2.1. As explained in (H.0.5) the supercorrelator is fixed by
superconformal symmetry in terms of f(Z,¢) which only depends on the eigenvalues
of the cross-ratio matrix [19, 161]. To compute the derivatives acting on the correlator
of the form (H.0.5) using the definitions (H.0.7) one can use Mathematica with the
help of the grassmann package [162] to deal with the Grassmann odd variables. One
then finds that the Grassmann odd derivatives acting on f are consistent with the

following differential operator:

N 1 00) 00\ T4 .. .
5. 07 i o=—— (D" =D . H.0.1
891892893894f(x7 y) 6,=0;=0 T12T34Y12Y34 ( z 9 ) 7 — Qf(xa y) ( 0 5)

Pulling this through the prefactor then gives the action on the correlator itself:

891 892 aég 854 < qul \pr2 \IJPS \ij4 ) |9i:§i=0

Dy, ( ~p12,~ ry
_ i Dxp12,p43) —D( P12,-P43) p-1 TR VAR e
T12T34Y19Y34 ( Y ) i T— y( P1 *p2 *p3 p4>|91—01—0

_1,SU(1,1|2
=:Z: 161,2 (1 1| )(\IJPI\IJPQ\IJP3\IJP4>|02':9_¢:0 ) (H016)



223

with Z defined in (5.2.16). The final line above relates the descendant correlator to
the action of the superconformal Casimir and comes directly from (5.2.15). We thus

obtain

_1,SU(L,1J2
TN NI NTEY B 2t (NI ONE N
1 sUl)  »sU(2)\ TY
= rotaar \C -C ——(Va, Va,¥Vn,0n,)
96129034y12y34( 12 1,2 )x—y< NONSINKLINY

(H.0.17)

as written in (5.2.14).






Appendix 1

Further Results for Unmixing of

Four-Derivative Corrections

In this appendix we spell out some additional results relevant for section 5.8.

Unmixing at odd ¢ for (5,2)

We start by considering the OPE coefficients for (A, p) = (5,2), where the operators
in the double-trace spectrum of the OPE are 0,0?°03, 0,04, 050?04, 0305 and
02003. Performing a conformal block analysis for free theory and supergravity gives

the coefficients:

0
AD. 0 0 0 0 L0 0 0 0
0
AL 0 0 0 20 0 0
2(0
AL = A 0 0 = 20 0],
0

Ay 0 P 0

(0) ) 2

2323 15

(5,2)



Appendix I. Further Results for Unmixing of Four-Derivative

226 Corrections
Migys® My Mgy Missst Misss' % 0 55 & 0
Mz Moy Maysy' Mayss 2 EO0
M5 = Mz Mgy Moy | = % 15 0
Mzsss' Mgy 20
2323 0

(5,2)
(1.0.1)

We spell out formulas for the coefficients at the order of supergravity and four-

derivative corrections for general odd A (see (5.6.12) for general Ag?t)nqm):

(A+1)(A+2)Al(A+2)!
30(2A)! ’
suera (A-3)(A+1)(A+2)(A+4)Al(A +2)!
M132g4 (A72) = i 42(;_(2A)' i i y
(A-1)(A+2)AlI(A +2)!
15(2A)! ’
sugra (A_3)(A_]-)(A 2)(A 4)A'(A 2)'
M13§3 (A72) = 21(;_(2A)' i i )
(A-3)2(A+1)(A+2)(A+4)2A1(A +2)!
5880(2A)! ’
sugra (A_3)(A_1)(A 2)(A 4)A'(A 2)'
M242g2 (A72) = 21(;_(2A)' i i )
(A-3)2(A-1)(A+2)(A+4)2A1(A +2)!
2940(2A)! ’
2(A-1)%(A +2)?(A)?
15(2A)! ’
(A=3)(A-1)2(A+2)(A+4)AI(A+2)!
105(A +1)(2A)! ’
(A+2) (A3 -13A +12)° Al(A +2)!
1470(A +1)(2A)! ’

Mygrs'(A,2) =

Myg3,"(A,2) =

M5, (A,2) =

Myy53° (A, 2) =

M55 (A,2) =

Myss" (A, 2) =

M35 (A, 2) = (1.0.2)

My tedd(A, 2) = x[24Co (A +2)!)?

1
60(2A)!
(A+3) (A(A+1)(A%+ A=-5)+24) (A-2)*(A-3)I(A+3)1] ,

(A-3)(A+4)! 140CH(A+2)!
840(20)! <| A3

4-deriv, todd
M132ZI‘1V O (A 2) —

+(A=2)(AA+1) (A(A+1) (A% + A-15) +118) - 400) (A - 2)!] ,
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Al(A +2)!
30(2A)!
+(A-2)(A+3) (A(A+1) (A +A-10)+28) ],

(A-3)AlI(A +4)!
~ 620(A +3)(2A)!

Mderivitodd (A oy x[20Cy (A%+A-2)

Mdervitodd (A ) x[36Co (A% +A-2)

+(A-2)(A+3) (A(A+1) (A +A-14) +60) | ,

(A -3)? 168Co ((A +4)!)?
35280(2A)! | (A +3)?

My ed(A,2) = £ (A+4)2(A-2)I(A +2)!

x (A(A+1) (A(A+1) (BA(A +1) (A% + A - 25)

+1192) - 8220) + 20000) |,

4-deriv, t odd _(A_3)A'(A+4)' 2 _
Mg (A2 = A san [36Co (A% +A-2)

+(A-2)(A+3) (A(A+1)(A?+A-14) +60) ],

(A=3)2(A+4)AI(A +4)!
T 5880(A +3)(2A)!

My tedd (A 2) x[52C (A% + A -2)

FAA+1) (A(A+1) (A% + A - 24) +280) - 904] ,

(A2 +A-2)(Al)?

4-deriv, t odd
Moy (A2 =550,

x[16C) (A% +A-2)

+AA+1) (AA+1) (A% + A-15)+74) - 80]

) _(A-3)(A-1)(A+4)A(A+2)!

M4—deriv,todd A.92
2233 (& 210(A +1)(2A)!

x[32C) (A%+A-2)

+AA+1) (A(A+1) (A% + A-19) +130) - 144] ,

deri A -3)2(A-1)(A +4)2Al(A +2)!
M4 deriv, todd A.92 :( 4 AQ A-2
3353 (8.2) 2040(A +1)(24)! <[48Co (A% +-2)

+A(A+1) (A(A+1) (A% + A-23) +330) - 432] ,

(A-1)%(A+2)(A2+A-12)* (A-2)I(A +2)!

M4—deriv,todd A.92) =
2323 (8,2) 45(2A)!

(1.0.3)

Now we can solve the mixing problem in the supergravity limit. This yields the

anomalous dimension

sugra _
V52 = 24,

(L.0.4)

which is (55()22) as expected. The mixing problem at O(a/c) is solved in section 5.8.
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Unmixing at even ¢ for (6,2)

We present an additional example for even t here. At weight (6,2) there are four
operators in the spectrum, 00303, 02004, 020?03 and 030,, two with even
and odd rpgt respectively. Performing a conformal block analysis of the relevant

correlators gives the following free theory and four-derivative coefficients:

AD. 00 0 o9 0 0
A0 _ Ay 0 0 _ = 0 0
6,2 A (0) 0 35 0 ’
2323 297
A )
Mls™  Msse™  Misgs™ Mg o owm 000
g _ My™ Myggs™ Mpge™ | | 5% % 00
| Mgsr Mgee 0 0 W oue
i) g,y V00 B
(1.0.5)

As expected, Mg;;‘eriv is a block-diagonal matrix, because operators with even or
odd rpte do not mix. Note that each block is symmetric, as it should be from the
structure of the correlators. The free coefficients for general A, p, ¢1, g2 are given
in (5.6.12), some O(a/c) coefficients for general even A were given in (5.8.31) and

the additional ones are

ptdessovn p gy (A=4(A-2)(A+3)(A+5)(A-3)(A+3)!(A+A-8)

1683(2A)!
4-deriv, teven 5(A-23(A+3)(A-3)(A+3)!(A%2+A - 20)2 (A2 + A -8)
Moy (A,2) = 7
7056(2A)!
) — ! 1 (A2 )2 (A2 _
]\424?-)(;(?1\/,teven(A7 2) _ (A 4)(A + 5)A(A + 1) (A +A 6) (A + A 4) ’
105A(2A)!
M4-deriv,teven(A 2) _ (A B 4)2(A B 2)2(A + 3)2(A + 5)2A'(A + 1)' (AQ + A - 4)
4 e 980A(2A)! '

(1.0.6)
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Solving the unmixing equations, as expected, one finds two non-zero anomalous

dimensions:
- 3672 4104
4-deriv
aiv _ [3072 41041 1.0.7
s - {52 =) 107
which are labelled by (fy‘éggeriv)?’i = 302 and (fngieriv)f’i = 4% Conjectured formulas

for general (A, p) are discussed in subsection 5.8.3.
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