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Abstract: While the identification of skyrmions as the low energy description of baryons in N f ≥ 2

QCD is known for decades, a parallel construction for the case of N f = 1 is more mysterious. In the

case of one fermionic flavor, there is no chiral symmetry breaking, no non-linear sigma model, and

the conventional construction of skyrmions fails to work. In this article, I will review developments

from the last couple of years trying to identify baryons as certain singular configurations in the large

Nc limit of N f = 1 QCD. We will give various arguments supporting this identification, and discuss

some of its applications. Unlike skyrmions, the new baryons are not contained completely inside the

low energy effective theory. They give rise to a singular ring on which the chiral condensate must

vanish, with new degrees of freedom living on this ring. These configurations may serve as a bridge

between the UV and the IR, and hopefully shed some light on the connection between different

phases of QCD.

Keywords: QCD; skyrmions; anomalies; large N; vector mesons; Chern-Simons

1. Introduction

QCD is a theory that we understand very well at two corners of its phase diagram. At
very high energies, it is described as a weakly interacting SU(N) gauge theory coupled to
N f fundamental fermions. By assuming confinement and chiral symmetry breaking, the
low energy theory is described as an SU(N f ) non-linear sigma model with a level N Wess-
Zumino (WZ) term [1,2]. The WZ term is fixed uniquely by anomaly matching conditions.
This model, and in particular, the WZ term, are extremely successful in combining deep
theoretical ideas with concrete measurements. The effective degrees of freedom in this
regime are the pions, which are the Nambu–Goldstone (NG) bosons associated with chiral
symmetry breaking, and baryons that appear as topological solitons in the effective theory
of pions. Once we leave the deep infrared (IR) limit and increase the energy, we lose
theoretical control over the physics. In addition to higher derivatives terms, a zoo of
mesons come back to life, which results in many possible interactions. Ideally, we would
like to find theoretical arguments that reveal a hidden order in the theory and restrict the
space of couplings.

In this article, we will summarize recent developments in these directions involving in
particular the η′ meson, the U(N f ) vector mesons known as ρ and ω, which we will denote
collectively by V, and baryons constructed out of one fermionic flavor. We will show how
advanced theoretical ideas based on higher-form symmetries and their anomalies, can be
used to constrain some of the coupling of these mesons, and relate them to the low energy
description of the one-favoured baryon. How are these three types of particles related?
The most controlled way to add the η′ to the chiral Lagrangian is by taking the large N
limit. When N is large, the axial symmetry U(1)A becomes a good symmetry of the theory.
The spontaneous breaking of U(1)A leads to an extra NG boson, which is the η′ meson.
Indeed, the mass of the η′ field is suppressed in the large N limit, m2

η′ ∼
1
N [3,4]. For the

vector mesons, there are two phenomenological principles that are commonly used when
writing their effective theory. The first is the hidden local symmetry (HLS) principle [5,6]
which will be reviewed in Section 5, and the second is Vector Dominance (VD) [7,8] which
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will be reviewed in Appendix A. These two principles restrict the space of couplings and
increase the predictive power of the theory. Yet, a good theoretical explanation for why
these principles are correct is absent. The question of how a baryon in N f = 1 QCD can
be described in terms of low energy degrees of freedom was an open question until the
work of Komargodski in [9]. Later, this construction was elaborated and further studied
in several papers, such as [10–17]. It was shown that there exist singular η′ configurations
that carry baryon charge. Such configurations look like a finite surface that connects η′ = 0
on one side to η′ = 2π on the other (recall that η′ is the phase of the chiral condensate
and as such, is 2π periodic). The boundary of this surface is a singular ring on which
η′ is not well defined and the chiral condensate is expected to vanish. New degrees of
freedom living on the singular ring carry baryon charge. Hence this entire configuration
is a baryon. It has been conjectured that these new mysterious degrees of freedom are
actually the vector mesons mentioned above. Hence, the N f = 1 baryon is a singular soliton
constructed out of η′ and the vector mesons. It happens to be that for this construction to
work appropriately, one needs to fix two coupling constants between pions, η′, and vector
mesons to take specific values, c3 = c4 = 1. Unlike the coefficient of the WZ term, which
is fixed to be N = 3 by anomalies, so far there has been no good theoretical argument
fixing the values of these parameters. Surprisingly, this is exactly the value predicted
by VD. Thus, the construction of N f = 1 baryons provides a theoretical explanation to
the phenomenological observation of VD, and VD provides an experimental evidence
supporting the construction of N f = 1 baryons. The outline of this article is as follows.
In Section 2, we review basic facts about skyrmions, and the motivation for identifying
them with the low energy description of baryons. In Section 3, we study qualitatively
what happens to a skyrmion as we change the mass of one of the quarks and continuously
flow from N f = 2 QCD to N f = 1 QCD. Since the baryon charge is preserved along the
way, the final configuration should be similar to the low energy description of baryons in
N f = 1 QCD. In Section 4, we move on to study directly the construction of baryons in
N f = 1 QCD. We will review the proposal made in the literature and give some evidence
supporting this proposal. In Section 5, we add the vector mesons to the theory and show
how their contribution to the baryon current enables us to write a unified current under
which both the conventional skyrmions and the new N f = 1 baryons are charged. We
also derive the conditions on the parameters c3,4 mentioned above. In Appendix A, we
review the principle of VD and show agreement between it and the conditions derived in
Section 5.

2. N f ≥ 2 Skyrmions: Review

In this section, we will review some of the basic facts about skyrmions. The content of
this section appears in many papers and textbooks; see for example, [18–29]. Our starting
point is SU(N) QCD with N f ≥ 2 massless Dirac fermions. The theory enjoys the global
symmetry (We consider here only the continuous symmetries. See for example, [30] for a
discussion about the discrete factors.) of SU(N f )L × SU(N f )R × U(1)B. In addition, the
QCD Lagrangian enjoys the axial symmetry U(1)A which is broken by non-perturbative
effects. However, in the large N limit, the symmetry is restored and U(1)A becomes an
exact symmetry of the theory. For N f not too large (below the conformal window), the
theory is confining at low energies, and the symmetries are spontaneously broken by the
chiral condensate

SU(N f )L × SU(N f )R × U(1)B → SU(N f )V × U(1)B , (1)

where SU(N f )V is the diagonal subgroup of SU(N f )L × SU(N f )R, leaving the chiral con-
densate invariant. The low energy effective theory can be described using the Goldstone
theorem via a non-linear sigma model, parametrized by U(x) ∈ SU(N f ). The global
symmetries act on U as

U → eiαV†
L UVR , VL,R ∈ SU(N f )L,R , (2)
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where α parametrizes U(1)B. Indeed, the vacuum U = 1 breaks the symmetries as described
in (1). U(1)B, on the other hand, does not act on U. From the microscopic point of view, the
only gauge invariant operators charged under U(1)B are the baryons

Bi1 ...iN = ǫa1 ...aN ψ
i1
a1

. . . ψiN
aN

, (3)

where a1,...,N are the color indices and i1,..,N are the flavor indices. A surprising fact
about baryons is that even though we wrote an effective theory only for the massless
Nambu–Goldstone (NG) modes and threw away all the rest, baryons still appear as soli-
tons, which are famously known as skyrmions. The effective theory is described using the
chiral Lagrangian

L =
F2

π

4
tr (∂µU†∂µU) + . . . . (4)

The . . . includes higher derivatives terms, and for N f ≥ 3, also the Wess-Zumino
term [1,2]; see Section 5 for a review. For any finite energy configuration, the fields must go
to their vacuum at infinity limr→∞ U(x) = 1. Finite energy configurations are maps from
S3 to SU(N f ), which are classified by

Π3(SU(N f )) = Z ∀ N f ≥ 2 , (5)

which allows for the existence of stable solitons. The associated topological current is the
skyrmion current

Sµ =
1

24π2
ǫµνρσtr (U†∂νUU†∂ρUU†∂σU) , (6)

which is the identically conserved ∂µSµ = 0, and the associated charge is S =
∫

d3xSt ∈ Z.
We will focus now on the simple case of N f = 2. A convenient parametrization of U ∈
SU(2) is

U = σ + iτaπa , σ2 + π2
a = 1 , (7)

where τa are the Pauli matrices. An example for a charged configuration is the hedgehog ansatz

U = cos( f (r)) +
isin( f (r))xaτa

r
. (8)

The condition U(r → ∞) = 1 can be satisfied by taking f (r → ∞) = 0 without a loss
of generality. Demanding that U has a well defined limit at the origin requires sin( f (r = 0))
to vanish, which implies f (0) = πK for some integer K. It is a straightforward exercise to
show that for this configuration

S = K . (9)

There are many pieces of evidence and consistency checks showing that the skyrmions
indeed should be identified with baryons, and that the topological symmetry (6) is the low
energy description of U(1)B. These include the spin, coupling to chiral gauge fields, large
N, and many more. We will elaborate on some of them in the next sections. For any N f > 2,
the story works basically the same by choosing an SU(2) ⊂ SU(N f ) and embedding the
hedgehog solution in this subgroup.

2.1. Skyrmions from Anomalies

One of the strongest evidence that skyrmions are indeed the low energy description of
baryons comes from anomalies. The anomaly we want to discuss here is the mixed triangle
anomaly between U(1)B and SU(N f )

2
L (or alternatively, SU(N f )

2
R). In the UV, there are N

quarks in the fundamental representation of SU(N f )L, and charge 1/N under U(1)B. This

results in a triangle U(1)B × SU(N f )
2
L anomaly with coefficient 1. Another way to phrase

the anomaly is that if we turn on the background gauge fields AL for SU(N f )L, the baryon
current obeys the equation
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∂µ J
µ
B =

1

8π2
tr(FL ∧ FL), (10)

where FL is the background field strength for SU(N f )L. An immediate consequence of this

equation is that if we turn on AL such that on some time slice, 1
8π2

∫

tr
(

AL ∧ dAL −
2i
3 A3

L

)

= 1,

the vacuum in this background carries baryon charge 1. How is this anomaly realized in the
IR? Consider the skyrmion current S = 1

24π2 tr(dUU†)3. The topological U(1)S associated with

this current has mixed anomalies with SU(N f )
2
L,R. To see it, couple to SU(N f )L background

gauge fields AL. The covariant derivative of U becomes DUU† = dUU† − iAL. One can show
that it is impossible to write a conserved gauge invariant current for U(1)S, which means that if
we gauge SU(N f )L, U(1)S is broken. Hence, there is a mixed anomaly between them. The best
that we can achieve is to define the current

S′ =
1

24π2
tr[(DUU†)3 + 3iFDUU†] . (11)

S′ is not conserved, but it satisfies dS′ = 1
8π2 tr(F2

L), which is the same as (10) if we iden-
tify the skyrmion current with the baryon current. Indeed, if we turn on AL, such that

1
8π2

∫

tr
(

AL ∧ dAL −
2i
3 A3

L

)

= 1, the vacuum of this configuration will have a baryon

charge of 1. This is satisfied because the vacuum equation is dUU† = iAL, which immedi-
ately gives

1

24π2

∫

tr
(

dUU†
)3

= 1 , (12)

in agreement with the identification of the skyrmion current and the baryon current.

2.2. Skyrmions from Large N

Another evidence for this identification comes from large N, as was shown in [2]. The
prescription of [2] to derive the baryon current in the chiral Lagrangian is as follows:

1. Compute the Noether current for a general vector-like U(1) symmetry that acts as

U → eiQαUe−iQα . (13)

This can be achieved by coupling the symmetry to a gauge field A and reading the
current from the term −Aµ Jµ in the Lagrangian.

2. After deriving Jµ, plug in Q = 1
N . U is invariant under this transformation U →

eiα/NUe−iα/N = U. Therefore, most of the contributions to Jµ will vanish.
3. The only exception is the contribution coming from the 5D WZ term. This is due

to some extra integration by parts when going from 5D to its 4D boundary, which
changes the relative sign between two terms.

4. As a result, the baryon current is given by the skyrmion current

Sµ =
1

24π2
ǫµνρσtr(∂νUU†∂ρUU†∂σUU†) . (14)

One might be suspicious about the degree of rigorousness of this derivation, since
U is not charged under U(1)B, and this “limit” Q → 1

N is ambiguous. However, at least
in the large N limit, we can justify this derivation. The reason for is that in the large N
limit, U(1)A becomes an approximate symmetry, the target space is enlarged from SU(N f )

to U ∈ U(N f ), and we can take tr(Q) 6= 0. In this case, we can really approach Q → 1
N

continuously, and obtain the skyrmion current, no matter how the limit is taken.

3. N f = 2 → N f = 1 Flow

Before we attack the problem of baryons in N f = 1 QCD directly, we will try to
continuously modify N f = 2 QCD to N f = 1 QCD by continuously changing the mass of
one of the quarks from 0 to ∞. When doing so, we expect the mass difference between the
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skyrmion and the one-flavored baryon to decrease, until at some point when the second
quark is very massive, the one-flavored baryon is expected to minimize the energy within
the topological sector defined by S = 1. In the extreme limit, where the mass of the second
quark md → ∞, the microscopic theory flows to N f = 1 QCD, and the one-flavored baryon
remains the only baryon in the spectrum. To achieve this, we will enlarge the target space
from SU(2) to U(2) with the following parametrization

U = eiη′/2(σ + iπaτa) , σ2 + π2
a = 1 . (15)

The matrix U is invariant under

(η′, σ, πa) → (η′ + 2π, −σ, −πa) . (16)

For simplicity, we will take for now the large N limit where η′ is massless and treat it
as a NG boson; however, nothing qualitative is expected to be different for finite N, where
an explicit mass term for η′ is introduced.

Our next step will be to add a mass term for the second quark. When the mass is small,
the effect is to add to the chiral Lagrangian the following term

LM = tr(MU + MU† − 2M) = 2md(cos(η′/2)σ + sin(η′/2)π3 − 1) , (17)

where we took the mass matrix

M =

(

0 0
0 md

)

. (18)

As a result, three of the four NG bosons become massive. The mass term vanishes for
π1,2 = 0 and sin(η′/2) = π3.

For a configuration with a non-trivial skyrmion charge, we cannot simply take all the
massive fields to zero. It is obvious from the expression for the current (6) that we need the
three pions in order to obtain a non-trivial charge. For small mass, the hedgehog solution
will be deformed in some small way to minimize the energy. If the mass of the down quark
is very large, the solution will be highly deformed in a way that minimizes the volume in
which the massive fields are non-zero. The first thing is that we can turn on a value for η′.
η′ does not enter into the skyrmion current and we can use it to cancel at least some of the
mass contribution. This is achieved by choosing

eiη′/2 =
σ + iπ3
√

σ2 + π2
3

. (19)

Notice that with this choice, the bottom-right entry of U is exactly 1. Is this choice of
η′ well defined? The denominator in (19) is zero when π3 = σ = 0. Do such points exist in
the skyrmion solution? For the hedgehog, it happens on the ring defined by z = cos( f ) = 0.
Actually, this ring is a topological invariant in the sense that any topologically non-trivial
mapping from S3 to S3 must include a ring on which σ = π3 = 0. What about π1,2? From
the hedgehog solution, we see that π1,2 are zero at r → ∞ and on the z-axis. The regime in
which they do not vanish has the shape of a bead, which can be continuously deformed to
a ring, the same ring on which σ = π3 = 0. We see that we can push all the massive fields
to the ring, where outside the ring only the massless NG field is excited. We can suggest
the following ansatz for the skyrmion solution in the large md limit,

Uring = ei f̃

(

ei f̃ cos(h) ie−iφsin(h)

ieiφsin(h) e−i f̃ cos(h)

)

, (20)

where φ is as usual the angular coordinate along the ring; h equals π/2 on the ring and
goes to zero very fast outside of the ring, f̃ winds once around the ring from 0 to 2π. (When
continuously deforming the hedgehog to (20), it can be seen that f̃ is roughly sign(z) f . f
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is even under z → −z, and as you go around the ring, it varies from 0 to π and back to 0
without any winding. f̃ , on the other hand, winds once from 0 to 2π.) The equation in (20)
carries the non-trivial topological charge B = 1, and it is a continuous deformation of the
hedgehog solution. The behavior of η′ = 2 f̃ is presented in Figure 1.

Figure 1. The value of η′ ∈ [−π, π] for the ansatz (20). The dashed line is the singular ring that

connects the two η′ = π sheets. The value of η′ jumps by ±2π as one crosses the sheets.

As we take md → ∞, h goes to 0 everywhere, such that (20) becomes

Uring →

(

e2i f̃ 0
0 1

)

. (21)

We see that as we flow to N f = 1, the skyrmion transforms continuously to a configu-
ration in which η′ winds around a singular ring. The winding of π1,2 along the ring should
be replaced by a winding of some new degree of freedom that appears on the singular ring.
In the next section, we will present an alternative construction of this baryon directly from
N f = 1 QCD, based on [9].

4. N f = 1 Quantum Hall Droplet: Review

In this section, we will review the recent work by Komargodski [9] in which he
constructed a soliton that can identified with the N f = 1 baryon. From the microscopic
point of view, N f = 1 baryons can be written as

ǫa1 ...aN ψa1
. . . ψaN

. (22)

Due to the anti-symmetrization over color indices, and the fermionic nature of ψ, the
spin indices must be symmetrized over to obtain something that is not identically zero.
Therefore, there exists only one type of N f = 1 baryon, and its spin is N

2 . The low energy
effective theory is gapped. However, as mentioned above, in the large N limit, U(1)A

becomes an exact symmetry, and its breaking leads to a NG boson known as the η′. η′ is a
periodic scalar, η′ ≃ η′ + 2π. The effective Lagrangian including the leading 1

N correction
is given by

Lη′ =
F2

π

2
(∂η′)2 −

F2
π M2

η′

2
mink∈Z(η

′ + 2πk)2 , M2
η′ ∼ O

(

N−1
)

. (23)

The potential term is locally quadratic, but it has a cusp whenever η′ = π mod 2π.
For small fluctuations around the vacuum η′

vac = 0, it simply looks like a mass term, but
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when global effects that include the non-trivial winding of η′ are present, the cusp plays
an important role. The physical interpretation of the cusp is that when η′ crosses π, heavy
fields jump from one vacuum to the other [31]. As one crosses the cusp, for example,
by constructing a domain wall connecting η′ = 0 and η′ = 2π, the η′ = π surface in
the middle supports a 2 + 1 QFT living on its worldvolume. It has been argued that this
2 + 1 QFT should include a U(1)N Chern–Simons (CS) theory. The appearance of this
CS term is closely related to the first-order phase transition in pure Yang–Mills theory
(YM) when θ = π [3,31–34]. The simplest way to see this is to notice that due to the ABJ
anomaly, axial transformations lock shifts of η′ by a constant with shifts of θ by the same
constant η′ → η′ + α ⇔ θ → θ + α. YM at θ = π has a mixed ’t-Hooft anomaly between
time reversal symmetry and the ZN center one-form symmetry. (We use here the notation
of [35] where p-form symmetry acts on p-dimensional objects and is described by (d-p-
1)-dimensional charges (where d is the dimension of spacetime). For example, zero-form
symmetries are ordinary symmetries that act on local operators and are described by d − 1
dimensional charges. One-form symmetries act on line operators, which are the Wilson
lines in the case of YM, and so on. We refer the reader to [35] for more details.) The domain
wall connects two vacua related by the action of time reversal, which implies that the theory
on the domain wall must carry an anomalous ZN one-form symmetry. The desired anomaly
is matched by the U(1)N Chern–Simons (CS) theory. (There is also a dual description in
terms of an SU(N)−1 CS theory, but for us, the first description will be more convenient.)

The theory (23) enjoys a topological U(1) two-form symmetry, associated with the
current

Jµνρ =
1

2π
ǫµνρσ∂ση′ . (24)

This symmetry is emergent in the IR and does not come from any UV symme-
try. Charged objects under this symmetry are infinitely extended sheets that interpolate
from η′ = 0 on one side to η′ = 2π on the other [36,37]. As an example, consider the
configuration

η′ = f (z) , lim
z→−∞

f (z) = 0 , lim
z→∞

f (z) = 2π . (25)

Indeed, the configuration satisfies. (Notice that because this is a two-form symmetry,
the charge is codimension 3. See [35] for more details.)

Q =
∫

dzJtxy = 1 . (26)

One problem with these sheets is that while their tension is finite, their mass ∼
∫

dxdy
diverges. One cannot construct finite energy configurations charged under this symmetry
in 3+1 dimensions. Instead, we can consider finite sheets of the following schematic form.
To obtain finite energy, we must demand that limr→∞ η′(~r) = 0 mod 2π. In addition,
we will try to impose that η′(x = y = 0, z) = f (z) as before, with f (0) = π. These
two demands cannot live together without having singularities somewhere in space. The
minimal singularity that must exist is of the form of a ring surrounding the η′ = π sheet.
The configuration is illustrated in Figure 2, where it can be seen that η′ must wind from 0
to 2π as we go around the ring.
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Figure 2. The N f = 1 baryon of [9]. In the figure, the pancake is schematically the η′ = π sheet where

the CS theory lives. For any closed trajectory that goes through the pancake, η′ winds from 0 to 2π.

A key question is what happens on the ring. We can expect that as we go closer
and closer to the ring, the chiral condensate goes to zero until it vanishes exactly on the
ring. The physics on the ring is therefore beyond the scope of the low energy effective
theory (23). A progress can still be made if we think of the ring as the boundary of the CS
theory living on the η′ = π sheet. A 2 + 1 dimensional theory of a U(1)N CS theory with a
boundary has been well studied, especially in the context of the Quantum Hall effect. See
for example, [38] for a detailed review. We will give here the main points relevant to our
discussion. Consider the U(1)N CS theory on a disc of radius 1,

LCS =
N

4π
ǫµνρaµ∂νaρ . (27)

Under a general variation aµ → aµ + δaµ, the action transforms as

δSCS =
N

2π

∫

d3xǫµνρ∂µaνδaρ +
N

4π

∫

dφdt(aφδat − atδaφ) , (28)

where φ is the angular coordinate on the boundary. For the specific choice of gauge
variations aµ → aµ + ∂µλ, the transformation of the action is

δSCS =
N

4π

∫

dφdtλ(∂φat − ∂taφ) . (29)

The theory can be quantized as follows. In order to have a well defined variational
principle, we impose Dirichlet boundary conditions, at = vaφ, such that the boundary term
in (28) vanishes identically. In addition, Lorentz invariance leads us to choose v = 1. Gauge
invariance then implies that on the boundary,

(∂φ − ∂t)aφ = 0 ⇒ aφ = aφ(φ + t) . (30)

The bulk term in (28) gives the equations of motion (EOM), Fµν = 0. The EOM are
solved by having aµ = ∂µλ everywhere. However, aµ can still be non-trivial. For example,
we can allow configurations with non-trivial winding

∫

dφaφ = 2πk. The configuration
can be continued to the bulk smoothly while keeping F = 0 except for one singular point.
For k ∈ Z, this singular point is nothing but an invisible “Dirac point” (the 2D analogue of
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a Dirac string). We can extend the boundary conditions to the bulk by choosing the gauge
at = aφ. Fixing the gauge and plugging aµ = ∂µλ into the action, one obtains

S =
N

4π

∫

dφdt
[

∂tλ∂φλ − (∂φλ)2
]

. (31)

The result is that the theory is described by a chiral compact boson living on the
boundary. Going back to our theory, we found that there is a chiral boson living on the
ring. By coupling the theory to a background gauge field for the baryon symmetry, it can
be shown that the baryon charge should be equivalent to the winding of the boson

B =
1

2π

∫

dφ∂φλ =
1

2π

∫

dφaφ . (32)

The configuration can be argued to be dynamically stable. There are various contribu-
tions to the energy of the configuration. Denote the radius of the ring by R. The potential
for η′ contributes energy proportional to the area of the disc ∼R2. The vanishing of the
VEV of the chiral condensate on the ring contributes energy that is proportional to the
perimeter of the ring ∼R. Finally, the edge mode contributes ∼ 1

R due to its momentum
on the ring. While the first two contributions want to minimize R, the last one prefers to
increase it, resulting in some finite radius.

The spin of this configuration can be shown to be precisely N
2 . The most convenient

way of achieving this is in terms of the two-dimensional chiral theory living on the ring’s
worldsheet. The operator carrying one unit of baryon charge is the vertex operator VN =:
eiNλ : whose spin is N

2 . Interestingly, in addition to VN , the theory contains also V1 =:

eiλ : which carries a fractional 1
N baryon charge. The appearance of this operator can be

interpreted as having liberated quarks on the ring, that also carry a 1
N baryon charge. See

also [15] for a more elaborated discussion on this point. This is a summary of some of the
main results of [9]. We see that the construction described in this section is in agreement
with the continuous flow described in Section 3. The new degree of freedom that appears
on the ring (replacing π1,2 as md → ∞) is the chiral boson that comes from having a CS
theory with a boundary.

In the next section, we will give a more phenomenological perspective on the appear-
ance of the CS term by introducing the vector mesons into the theory.

5. Vector Mesons and Hidden Local Symmetry

In this section, we will add the vector mesons to the chiral Lagrangian as gauge bosons
for a hidden local symmetry. We will show that for a certain choice of parameters, the
vector mesons couple to the pions and to η′ in a way that allows us to identify them as the
CS fields on the η′ = π domain wall. As a result, the vector mesons play an essential role
in the construction of the N f = 1 baryon. It is the winding of the vector mesons along the
singular ring that carries baryon charge. We will begin by reviewing the WZ action. The
WZ action can be written as [2]

SWZ,U = −
iN

240π2

∫

B5

ΓU , (33)

with

ΓU = dUU†dUU†dUU†dUU†dUU† , (34)

where U ∈ SU(N f ) is the matrix of pions. Here and later, there is an implicit trace in flavor
space, and all the forms are assumed to be contracted with the ∧ product. The integration
is over a five-dimensional manifold B5 whose boundary is the four-dimensional world
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M4 = ∂B5. Miraculously, the theory does not depend on the fifth dimension for every
N ∈ Z in (33), thanks to

−
in

240π2

∫

M5

ΓU = 2πZ ∀ n ∈ Z , (35)

for every closed manifold M5. The integer is fixed to be the number of colors N via
anomaly matching conditions. While (33) is uniquely fixed at low energies, we want to
study a more fundamental theory and include in addition to pions, also the vector mesons.
Any consistent action that reduces to (33) when integrating out the vector mesons is a
possible “orange” completion (as opposed to UV completion; here, we are just a little bit
above the infrared). We will introduce the vector mesons into the chiral Lagrangian using
the idea of hidden local symmetry, and classify the space of allowed completions for the
WZ term.

In the hidden local symmetry principle, we write U as a product of two unitary matrices

U = ξ†
LξR , (36)

where the redundant transformations ξR,L → hξR,L with h ∈ SU(N f ) are coupled to the

dynamical gauge fields V, which transform as V → hVh† + ihdh†. In addition, the global
SU(N f )L × SU(N f )R symmetries act as

ξR → ξRg†
R , ξL → ξLg†

L . (37)

We also introduce the covariant derivative and the field strength

Dξ Iξ
†
I = dξ Iξ

†
I − iV , F = dV − iV2 . (38)

A convenient shorthand notation that we will use throughout the paper is

R = dξRξ†
R , L = dξLξ†

L , RD = DξRξ†
R , LD = DξLξ†

L . (39)

The most general two derivatives Lagrangian consistent with the above symmetries is

L =
F2

π

4
tr (∂µ(ξ

†
RξL)∂

µ(ξ†
LξR))−

aF2
π

4
tr [DµξLξ†

L + DµξRξ†
R]

2 −
1

4g2
F2

µν , (40)

where a is some dimensionless free parameter and g is the coupling constant.
In the unitary gauge ξR = ξ†

L = ξ, U = ξ2, this is written as

L =
F2

π

4
tr (∂µU†∂µU)−

aF2
π

4
tr [∂µξξ† + ∂µξ†ξ − 2iVµ]

2 −
1

4g2
F2

µν . (41)

In addition to the usual kinetic terms for the pions and the vector fields, the Lagrangian
contains a mass term for the vector fields with m2

V∼ag2F2
π , and interactions between the

vectors and the pions. Now, we will present the most general hWZ action in the theory. By
hWZ action, we mean all the terms whose Lorentz indices are contracted using the ǫ tensor,
similar to (33). In addition, we demand that the action is gauge invariant under the hidden
gauge transformations, consistent with the global symmetries (37) and with time reversal
symmetry that acts on the fields as

U ↔ U† , ξL ↔ ξR , V → V . (42)

We will also simplify the action by taking the large N limit in which only single trace
(in flavor space) operators are considered. The most general hWZ Lagrangian that can be
added to (33) is [39]
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LhWZ =
N

16π2

3

∑
i=1

ciLi ,

L1 = i(LDR3
D − RDL3

D) , L2 = iLDRDLDRD , L3 = F(RDLD − LDRD) ,

(43)

with ci ∈ R. It is straightforward to verify that in the deep IR, upon integrating out the
vector mesons by replacing V → 1

2i (R + L), LhWZ → 0, and we are left only with (33), as
expected. Explicitly, we can write (43) as

L1 =iLR3 − iRL3 + V(R3 − L3 + L2R − R2L − LRL + RL2 + RLR − LR2)

− 2iV2(LR − RL)− iVRVR + iVLVL − 2V3(R − L) ,

L2 =iLRLR + 2V(RLR − LRL)− 2iV2(LR − RL)− iVRVR + iVLVL − 2V3(R − L) ,

L3 =(dV − iV2)(RL − LR) + i(dVV + VdV)(R − L) + 2V3(R − L) .

(44)

In this prescription, there is a family of consistent hWZ actions parameterized by
three real numbers {ci}. In addition, we can couple the theory to a U(1) (dynamical or
background) gauge field for some global U(1),

ξR,L → ξR,Le−iQα , A → A − dα , (45)

Here, Q is the diagonal matrix of charges, and A is the gauge field. Two important
cases that we will discuss are when A is the photon (see Appendix A), and when A is
a background U(1)B field (see Section 5). When A is included, we need to redefine the
covariant derivative accordingly,

RA = RD − iAξRQξ†
R , LA = LD − iAξLQξ†

L . (46)

The WZ action is modified due to this gauging in several ways. First, all the covariant
derivatives in (43) should be replaced with RD, LD → RA, LA. Second, there are two (not
gauge invariant) four-dimensional terms that should be added to (33) in order to maintain
gauge invariance, as was shown in [2]. Notice that the derivatives in (33) are not replaced
by covariant derivatives in this formalism. Third, there is a freedom to add to the hWZ
action, the gauge invariant 4D term

−
Nc4

32π2
dAQ[ξ†

R(RALA − LARA)ξR + ξ†
L(RALA − LARA)ξL] , (47)

with c4 ∈ R.
Understanding which completion is the correct one is important, both from the theoret-

ical and phenomenological points of view. As we will see next, the hWZ action contributes
to the baryon current and to the coupling between η′ and the vector mesons. If we want to
identify the vector mesons with the emergent CS fields living on the η′ = π sheet, and to
obtain the correct baryon charge consistent with the construction of the previous sections,
we must choose to

c3 = c4 = 1 . (48)

We will start from the coupling of η′ and the U(1) vector meson ω = tr(V). The hWZ
action for N f = 1 QCD is highly simplified to

LhWZ,1 =
Nc3

8π2
dη′ωdω . (49)

Taking a domain wall configuration of the form

η′ = η′(z) , lim
z→−∞

η′(z) = 0 , lim
z→∞

η′(z) = 2π , (50)
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the contribution coming from (49) to the effective 2 + 1 domain wall theory is exactly,

LDW =
Nc3

4π
ωdω . (51)

For the special choice of c3 = 1, we exactly obtain a U(1)N CS term where the vector
meson ω is the CS vector field. Next, we will repeat the derivation of the skyrmion current
performed in Section 2.2, for the full hWZ action. We start by computing the current
associated with the transformation

ξR,L → ξR,Le−iQα ⇒ U = ξ†
LξR → eiQαUe−iQα , (52)

and take Q = 1
N in the end. At this point the covariant derivative of ξR,L is

DµξR,L = ∂µξR,L − iVµξR,L − iAµξR,LQ . (53)

We also accompany this transformation with the gauge transformation

ξR,L → e
i
N αξR,L , (54)

such that ξR,L are themselves invariant under U(1)B. This is achieved by modifying
V → V − 1

N A, such that the covariant derivative now becomes

DµξR,L = ∂µξR,L − iVµξR,L +
i

N
AµξR,L − iAµξR,LQ −→Q→ 1

N
∂µξR,L − iVµξR,L . (55)

Indeed, with this choice, the U(1)B gauge field does not appear in the covariant
derivative of ξR,L. Now, we can compute the baryon current. We already know that (33)
gives rise to the skyrmion current (14). We will compute the contribution from the hWZ
action (43), including the improvement term (47). The terms proportional to c1 and c2 in
(43) do not contribute to the baryon current because A does not appear in the covariant
derivatives RD, LD, as explained above. We do obtain contributions from L3 due to the
shift V → V − 1

N A. In addition, the improvement term contains A explicitly. Together,
we have

−
c3 + c4

16π2
Ad(RDLD − LDRD)

= −
c3 + c4

8π2
A(R2L − RL2 + idV(R − L)− iV(R2 − L2)) ,

(56)

such that the full baryon current is

B =
1

24π2
(dUU†)3 +

c3 + c4

8π2
(R2L − RL2 + idV(R − L)− iV(R2 − L2)) . (57)

Using (dUU†)3 = (R − L)3, we can write,

B = S + (c3 + c4)(H − S) , (58)

where

H =
1

24π2

[

R3
D − L3

D + 3iF(RD − LD)
]

, (59)

is the hidden baryon current defined in [10].
In the mV → ∞ limit, we can integrate out the vector mesons and obtain

H →
1

24π2
(R − L)3 = S ⇒ B → S , (60)

as expected. In addition, it has been shown in [10] that H and S differ only by a total
derivative term and therefore give rise to the same charge for any smooth configuration.
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Except for the definition of the local current density, the only physical difference between S
and B comes when computing the baryon charge of singular configurations, such as the
N f = 1 baryons described above. In particular, for N f = 1, the baryon current B can be
written as

B(N f =1) = −
c3 + c4

8π2
dωdη′ . (61)

In Appendix A, it is shown that the principle of VD implies c3 = c4 = 1. With this
choice, B = 2H − S, and at N f = 1, it simplifies to

B(N f =1) = −
1

4π2
dωdη′ . (62)

An example of a charged configuration is our N f = 1 baryon [9]. The baryon charge
of this configuration comes from the two orthogonal windings—the winding of η′ around
the ring, and the winding of the CS field along the ring (the edge mode). Equation (62)
hints that the CS field on the DW is actually the ω vector meson. Indeed, configurations
characterized by two orthogonal windings of the form

∮

η′ = 2πZ ,
∮

ω = 2πZ , (63)

have integer baryon charge under (62),

−
1

4π2

∫

dωdη′ ∈ Z , (64)

where the integration is over the 3D space.
This quantization of charge fails to work for generic c3,4 in (61). The charge is properly

quantized for c3 + c4 = 2. Together with the condition c3 = 1 found above, we have
c3 = c4 = 1.

These arguments give new theoretical predictions for the values of the coupling
constants c3,4 in the effective theory of vector mesons. (See [13] for more arguments fixing
also c1,2.)

Surprisingly, as reviewed in Appendix A, these conditions are exactly the ones pre-
dicted by VD, and are consistent with experimental results.
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Appendix A. Intrinsic Parity and Vector Dominance

One of the most important features of the WZ term is that this is the only term
that breaks the intrinsic parity U → U†. As a result, various odd processes in QCD are
fixed by the WZ term. The most famous are the scattering of two kaons to three pions
K+K− → π+π−π0, the decay of π0 to two photons π0 → γγ, and the four-vertex involving
γπ+π−π0. These three do not involve vector mesons as one of the external particles, and
the leading contribution indeed comes from ΓU coupled to the photon [2]. Other processes
that contain vector mesons are, for example, ω → π+π−π0 and ω → γπ0.

Vector dominance (VD) [7] is a related phenomenological principle that states that
when vector mesons are included, some vertices do not appear explicitly in the Lagrangian
and the contribution to them is dominated by an exchange of the internal vector meson.
The study of VD from the hWZ action was considered commonly in the literature; see
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for example [8,39]. In this section, we will show that VD for the vertices AAπ and AVπ
implies (48), where A in this section plays the role of the photon. We are interested in
studying the effective vertices obtained from expanding U around the identity,

U = 1 +
2iΠ

Fπ
+ . . . , R = −L =

idΠ

Fπ
+ . . . . (A1)

As was shown in [2], expanding the gauged version of (33) results in

2N

15π2F5
π

ΠdΠdΠdΠdΠ +
iN

3π2F3
π

AQdΠdΠdΠ −
N

4π2Fπ
AdAQ2dΠ . (A2)

Together with (43) and (47), we obtain

N(8 − 15c1 + 15c2)

60π2F5
π

Π(dΠ)4 +
iN

4π2F3
π
(c2 − c1 + c3)V(dΠ)3 −

iN

4π2Fπ
(c1 + c2 − c3)V

3dΠ

−
N

8π2Fπ
c3(dVV + VdV)dΠ +

iN(4 − 3c1 + 3c2 − 3c4)

12π2F3
π

AQ(dΠ)3 −
N(1 − c4)

4π2Fπ
AdAQ2dΠ

−
iN(2c1 + 2c2 − c3)

8π2Fπ
AQ(V2dΠ + dΠV2) +

iN(c1 + c2)

4π2Fπ
AQVdΠV −

N(c3 − c4)

8π2Fπ
AQ(dΠdV + dΠdV) .

(A3)

The vertices AAΠ, AVΠ vanish for c4 = 1, c3 = c4, respectively, which give ex-
actly (48). This type of VD means for example, that the π0 → γγ decay is mediated by
vector mesons: π0 → VV → γγ. This type of VD is consistent with the experimental
results for π0 → γγ, and ω → π0γ. See Section (3.8) of [39] for the detailed computation.
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