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ABSTRACT

TOPICS IN COMPACT OBJECT ASTROPHYSICS AND FUNDAMENTAL

PHYSICS WITH CURRENT AND FUTURE GRAVITATIONAL WAVE

OBSERVATIONS

Zhenwei Lyu Advisor:

University of Guelph, 2022 Dr. Huan Yang

The thesis is devoted to compact object astrophysics and fundamental physics with current and

future gravitational wave (GW) observations. Since the first detection of GW event GW150914 by

LIGO in 2015, there have been more than 90 transients observed by the LIGO, Virgo and KAGRA

collaboration up till now. Additionally, more observations of stellar mass compact binaries would

be detected by current and the second generation detectors as well as observations of Extreme

Mass Ratio Inspirals (EMRIs) by future space-based gravitational wave detectors such as LISA,

TianQin and TaiJi.

At the beginning (Chapter 1), a review of data analysis techniques on gravitational waves is

introduced, followed by an introduction to the focused projects.

In Part I, we study the detections and constraints on potential effects postulated by Einstein’s

general relativity (GR) and beyond, such as probing tidal-induced i-mode in inspiraling binary

neutron stars (BNSs) (Chapter 2), searching nuclear coupling of axions from the BNSs (Chapter

3), and constraining Einstein-dilation Gauss-Bonnet (EdGB) gravity from black hole neutron star

(BHNS) events (Chapter 4).



In Part II, we propose a new hybrid waveform model, which illustrates comparable accuracy

in characterizing tidal effects as the effective-one-body (EOB) waveform and numerical relativity

simulation.

Part III investigates an important extreme mass ratio inspirals (EMRIs) formation channel

driven by active galactic nuclei (AGN) accretion disk. Chapter 6 introduces the expectation of

a higher rate of occurrence of EMRIs in AGN for spaceborne gravitational wave detectors; and in

Chapter 7, we show that the AGN channel is much more promising to produce mass-gap EMRIs.
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Chapter 1

Introduction

The whole PhD thesis consists of three parts which all focus on gravitational physics. First, I will

begin with the background of gravitational wave (GW) astronomy and data analysis techniques of

GWs used in the research, such as Bayesian inference, model selection, Fisher analysis and so on.

Then, I will introduce the backgrounds and results of the projects studied in the research.

Part I focus on GW data analysis with inspiraling compact binaries. Benefitted from the detec-

tion of GWs by LIGO and Virgo [1–4], in Chapter 2, we search tidal-induced mode resonance in

binary neutron stars (BNSs) event GW170817 [5]; Chapter 3 explores the probing of nuclear cou-

pling of axions from GW170817 [6]; and in Chapter 4, we demonstrate the constraints on Einstein-

dilation Gauss-Bonnet (EdGB) gravity from black hole neutron star (BHNS) events GW200105

and GW200115 [7].

In Part II we propose a new hybrid waveform model, which shows comparable accuracy to the

effective-one-body (EOB) waveform and numerical relativity simulation in characterizing tidal ef-

fects. Previous studies on compact object tidal effects have been carried out in the post-Newtonian

(PN) and EOB formalisms [8]. Within the black hole (BH) perturbation framework, we propose

a frequency domain hybrid waveform model [9] in Chapter 5, It is used to characterize the tidal

influence in the expansion of mass ratios, while higher-order PN corrections are naturally included.
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This model shows comparable accuracy as the EOB waveform in characterizing the tidal effects,

as calibrated by numerical relativity simulations.

Part III mainly explains the important extreme mass ratio inspirals (EMRIs) formation channel

driven by active galactic nuclei (AGN) accretion disk we developed. There are plans for space-

based detectors such as LISA [10], TianQin [11] and TaiJi [12] other than the ground-based de-

tection of GWs. One of the targeting GW sources of space-based detectors is EMRIs: a stellar

mass compact object orbiting around a massive black hole (MBH) with mass around ∼ 106M⊙. We

suggest that EMRIs in AGN may be more common for spaceborne GW detectors [13] (Chapter 6)

and AGN channel is more promising to produce mass-gap EMRIs [14] (Chapter 7).

1.1 Gravitational Wave Astronomy and Physics

GWs are ripples of spacetime propagating in the speed of light. The existence of GWs is a predic-

tion of Einstein’s general relativity and also valid for all other theories of gravity that obey special

relativity. GWs are quadrupole radiation from accelerating compact objects carrying energy and

momentum information as well as intrinsic properties of the system, which are different from other

astrophysical signal carriers such as photos and cosmic ray. Any important influences to the dy-

namics of the compact system will leave probably detectable signatures to the detected GW and it

is possible to not only extract intrinsic information of GW emitters but also other signatures from

possible effects by analysing the observed data stream.

As a matter of fact, any accelerating object with mass will generate GWs with an extremely

small characteristic strength. We usually define GW strain as h(t) := δL(t)/L, where L is the

separation between two reference free points and δL(t) is the passing GW induced displacement.

As for compact stellar mass binary coalescence such as BH-BH, BH-NS and NS-NS, the typical

strain amplitude is about order 10−21 or less. For LIGO detectors with arm lengths L = 4 km, the

displacement δL is around ∼ 10−17m or less, which is even smaller than the radius of a proton
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(8.4 × 10−16m). Enhanced Michelson interferometer could help us detect such a small effect and

most of current and future GW detectors are base on Michelson interferometer technology, such as

current ground-based detectors LIGO, Virgo and KAGRA [2–4], future ground-based ET [15] and

CE [16], and future space-based LISA [10], TaiJi [12] and TianQin [11].

In this section, I will first present a brief overview of GW observational history, then some

astrophysical and physical questions that have been or could be answered by GW observation, and

prospects for the future.

1.1.1 History of Gravitational Wave Observation

The first indirect evidence of GWs is given by the observation of the orbital decay of the Hulse–Taylor

binary pulsar, which shows exactly the same as the prediction from general relativity [17]. Hulse

and Taylor were awarded the Nobel Prize in Physics for this discovery in 1993. As for direct obser-

vation, it is more challenging. Indeed, there are many attempts over the past half century. They are

all failed due to both technology level and types of detectors, until on September 14 in 2015, the

first direct GW detection is achieved by LIGO [18]. Currently, the most important GW detection

collaboration (LIGO, Virgo and KAGRA) has reported up to 90 GW events from binary black hole

(BBH), BNS and BHNS mergers [1–4] and three physicist (Barry Barish, Kip Thorne and Rainer

Weiss) were awarded the 2017 Nobel Prize in Physics for leading this work.

In the near future, existing ground-based detectors LIGO and Virgo will upgrade to A+ and

AdV+ [2, 19] with improved sensitivities by more than two levels to current designs, and a new

aLIGO-type detector LIGo-india will join the detector network to enhance the combined sensitivity

[19]. Besides, current operating GEO600 are concentrating on testing technologies for future

detectors [20].

The next 3rd generation (3G) ground-based GW detectors will increase the sensitivity by more

than 10 times than current detectors, which will largely increase the number of events detected
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and the astrophysical distance that could reach. As defined previously, the GW strain h(t) :=

δL(t)/L, one straightforward way to increase the detector sensitivity is by lengthening the arm

length. Therefore, future 3G detector designs (one is ET located in Europe with 10 km arm lengths,

and the other one is CE in the USA with 40 km arm lengths) are both increasing the baseline several

time than LIGO [19].

Future space-based detectors such as LISA with baseline lengths ∼ 2.5×109 km are designed to

probe GW frequency ranging from 10−5Hz to 10−1Hz generated by EMRIs and MBH coalescence

with mass 102 ∼ 107M⊙ [10]. Relative to ground-based detectors, the GW induced displacement

δL in LISA is about 10−12m or less, which is about 5 order of magnitude greater than the scale

of ground-based detectors δL ∼ 10−17m. As we can see from previous comparison, the longer

baselines, the higher GW induced displacement δL and the lower optimal response frequency band.

There are many important astrophysical sources such as (super-)MBH inspiral and merger,

EMRIs, stellar mass binary inspiral and merger, pulsars and supernovae, which will generate GWs

with frequencies ranging from 10−9Hz to several thousands Hz. The frequency band below 10−9Hz

could be generated by scalar and tensor perturbations at the inflation stage of the universe leaving

imprints to the cosmic microwave background (CMB), which may be probed by measuring the

B-mode polarization of CMB by BICEP and Keck Array experiments [21]. Pulsar timing arrays

(PTAs) are capable to detect GWs within range 10−9 ∼ 10−6Hz by measuring pulse arrival times

[22–25]. Space-based and ground-based detectors are designed to detect GWs ranging from 10−5 ∼

10−1Hz and 100 ∼ 103Hz, respectively.

In addition to previous mentioned detectors, there are several other methods, such as resonant

mass antennas [26–28], atom interferometry [29, 30].

Multi-messenger Astronomy

Multi-messenger astronomy is referred as collecting more than one astrophysical messengers from

the same object or event. For example, on August 17 in 2017, 1.74 seconds after detecting the BNS
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event GW170817, many observatories observed signals along almost all electromagnetic (EM) fre-

quency bands, including gamma rays, X-rays, ultraviolet, visible light and radio from galaxy NGC

4993 [31–33], which is the first and the most important multi-messenger observation involving

GWs till now. This breakthrough multi-messenger observation provides a lot of knowledge of the

understanding of the universe [32, 33]: the progenitors of short gamma-ray bursts are thought as

BNS mergers; EM observation shows that kilonova is a result of BNS merger which will produce

chemical elements heavier than iron through r-process nuclei; the speed of GWs is almost the same

as the speed of EM; GWs together with EM signal provides an independent estimate of the Hubble

constant. In the near future, we hope there may be many GW-EM multi-messenger observations,

especially, when more powerful GW detectors are established and start observations.

1.1.2 Gravitational Wave Astrophysics, Cosmology and Fundamental Physics

With the discovery of the first BBH coalescence GW150914 [18], the era of GW science has

started. In the next few decades, we expect to observe thousands of events from compact binary

coalescence with 3G ground-based detectors and space-based detectors [34]. Since the observed

data directly encode information about the sources, including the masses, spins, sky location, lu-

minosity distance and other intrinsic and external properties of the compact objects, by extracting

these useful information of the detected events, one could explore many critical problems in astro-

physics, cosmology and fundamental physics.

Astrophysics

The mass distribution of observed GW events will be used to determine the formation rates and

channels of compact objects [35] which could be astrophysical models (formed from supernova

and mergers of compact objects) [36] and cosmological models (cosmic string and/or inflationary

mechanisms) [37, 38]. As LIGO has observed several lower mass-gap object mergers (with mass
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in 3 ∼ 5M⊙), it is possible to interpret the underlying formation mechanism with the inferred mass

and spin distributions, especially when we observed enough cases [39, 40]. No detection of BHs

with mass 0.2 ∼ 1M⊙ has already been perform to constrain primordial black holes (PBHs) since

BH with mass lower than 3M⊙ cannot be produced by stellar evolution process [41]. In Part III,

we propose an important EMRI formation channel driven by AGN disk, which will be tested by

future detection of EMRIs in LISA mission.

On the other hand, all random sub-threshold GW signals form stochastic gravitational-wave

background (SGWB). The detection of SGWB will help us constrain and determine various for-

mation models as well [42–44].

Cosmology

GW events can serve as standard siren by estimating the luminosity distance, especially with

BNS events, we may observe the EM counterparts, which will help us reduce the uncertainties of

Hubble constant [31]. Therefore, they have the potential to solve some crucial cosmological issues

such as Hubble tension, dark mater and the existence of dark energy. Accurate estimates of Hubble

constant by GWs is another independent method, which may resolve the Hubble tension problem

to clarify whether it is measurement issues, unknown large-scale structures or new physics beyond

the ΛCDM model[45–47].

Future 3G ground-based detectors are expected to observed compact binary coalescences to

redshift z = 3 and LISA mission will provide observations of stellar mass compact binaries, EMRIs

and super-massive BBHs up to redshift 0.2 [48], 1 [49] and 10 [50], respectively. With the high

redshift observations, GWs as standard siren can also help us probe the universe expansion history,

dark matter and the equation of state of dark energy, which may provide insights in explaining the

accelerated expanding universe.
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Fundamental Physics

GWs generated from the most extreme environment of gravity (strong field and high curvature)

have huge potentials to explore fundamental physics including but not limited to probe equation

of state (EoS) of NS and test GR and beyond GR theories. Currently, the estimation of tidal

deformation from event GW170817 has excluded some stiffest EoS and constrained the radii to

the range 9 ∼ 13km [51]. We also probe tidal excitation of resonant mode in Chapter 2 in BNS

event GW170817 and predict that such signal may be observable with A+ and more likely with

third-generation detectors ET and CE.

In addition to determine the EoS of NS, GW observations can be used to test the dispersion

relation, which may be caused by non-zero graviton or violations of Lorentz invariance. Current

constraints are still consistent with GR [52]. Besides testing GR, we can also probe modified

theories of gravity, such as EdGB gravity as demonstrated in Chapter 4. we provide a stronger

constraint on
√
αGB ≲ 1.33 km by individual event GW200115.

GWs also provide a unique way to explore dark matter, including probing PBHs by forma-

tion channels and SGWB studies, exploring weakly interacting massive particles (WIMPs) and

extremely light particles, such as axions [53, 54]. In Chapter 3, we explore light axions from

GW170817, which is a unique prediction of string theory, as well as one of the most compelling

candidates for dark matter.

With the upgrade of GW detectors, we expect to observed more and more compact binary

coalescences, which will lead to an era of precision GW science. In the thesis, the next things to

be clarified would be the general methods of data analysis.
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1.2 Data Analysis Techniques on Gravitational Waves

1.2.1 Bayesian Inference

To unveil the basic information of compact binary systems behind GW events, one usually makes

use of a reliable method – Bayesian inference [55, 56]. According to the Bayes’ theorem, a pos-

terior probability p(ϑ|d,H) on a set of parameters ϑ from data d under a given hypothesis H is

given by:

p(ϑ|d,H) =
p(d|ϑ,H) p(ϑ|H)

p(d|H)
, (1.1)

where p(d|ϑ,H) is the likelihood function while p(ϑ|H) is the prior on ϑ of hypothesisH . p(d|H)

called evidence is the probability of the data d given hypothesis H . Mathematically, one could

evaluate the evidence (also known as marginal likelihood) by marginalizing the likelihood over all

possible parameters ϑ of the hypothesis:

p(d|H) :=
∫

dϑ p(d|ϑ,H) p(ϑ|H), (1.2)

With a stationary Gaussian noise assumption, the log-likelihood function log p(d|ϑ,H) can be

expressed as:

log p(d|ϑ,H) = log ᾱ −
1
2

∑
k

⟨dk − hk(ϑ) | dk − hk(ϑ)⟩ , (1.3)

where the index k refers to different detectors and log ᾱ is the normalization factor while dk and

hk(ϑ) are the data and waveform templates from given detectors. The noise-weighted inner prod-

uct between complex functions a and b is defined as:

⟨a(t) | b(t)⟩ := 2
∫ fhigh

flow

ã∗( f )b̃( f ) + ã( f )b̃∗( f )
S n( f )

d f . (1.4)

Here ∗ refers to a complex conjugate, ã( f ) denotes the Fourier transform of a(t), flow and fhigh
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are the low and high frequency cutoff of GW data respectively. For ground based detectors such

as LIGO, Virgo and KAGRA, the low frequency detectability is about 20 Hz (may change with

specific GW events) and the high frequency cutoff should be greater than the maximum frequency

of the GW signal. S n( f ) is the one-sided (only positive frequencies) power spectral density (PSD)

of given detectors defined as:

⟨ñ∗( f ) ñ( f ′)⟩ =
1
2
δ( f − f ′)S n( f ) , (1.5)

where n( f ) is the Fourier transform of detector observed time series n(t) which is usually assumed

to be stationary and Gaussian. The stationarity means the characteristic of the noise process do not

change over time ⟨n(t)⟩ = 0 and the assumption of Gaussianity indicates the probability density for

noise is a Gaussian distribution.

A common way to estimate the posterior probability is to generate large enough sizes of sam-

ples from posterior probability p(ϑ|d,H) and then draw histograms and contour plots of parame-

ters ϑ. Two of the well implemented methods are Markov Chain Monte Carlo (MCMC) and nested

sampling [57, 58] techniques.

1.2.2 MCMC and Nested Sampling

MCMC is one of the most popular sampling methods used to generate equal weighted samples

proportional to the posterior distribution. Whereas it is hard to estimate the evidence when we

need to compare two models (see subsection 1.2.6), nested sampling proposed by Skilling [57,

58] is an alternative approach which is able to generate posterior samples as well as estimating the

evidence. Afterall, it is time-consuming to put these in practice. Fortunately, there are several well-

organized packages which have already employed MCMC and nested sampling, such as packages

emcee [59], dynesty [60], pymultinest [61, 62] etc.

Both MCMC and nested sampling are effective in estimating the posterior distribution of multi-
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parameter ϑ; specially, although it takes more tedious efforts, nested sampling is better to estimate

the evidence in the process of generating unbiased posterior samples from multi-dimensional pa-

rameter space as well as estimating the Bayes factor.

The next topic would be the parameter space of the waveform models. There are more than 15

parameters for BBH waveform model (11 parameters for spin-aligned BBH waveform model) and

17 parameters for BNS waveform model by including tidal effects:

ϑ = (M , q , a1 , a2 , θ1 , θ2 , ϕ1 , ϕ2 ,Λ1 ,Λ2 , α , δ , ψ , ι , ϕref , tc ,DL) , (1.6)

HereM = (m1m2)3/5/(m1 + m2)1/5 is the detector frame chirp mass, q = m2/m1(< 1) is the mass

ratio, aA are the dimensionless spin magnitudes while (θA, ϕA) are the polar and azimuthal angles

of the spin angular momentum of the Ath body, ΛA is the dimensionless tidal deformability of Ath

neutron star (NS), (α, δ) are the sky location of the binary (right ascension and declination), ψ is

the polarization angle of GWs with respect to the earth-centered coordinates, ι is the inclination

angle of the binary’s orbital angular momentum relative to the detector’s line of sight, for aligned

or nonspining system this ι coincides with the angle between the total angular momentum and the

detector’s line of sight, ϕref is the reference phase at the reference frequency, tc is the coalescence

time, and DL is the luminosity distance.

One should include more parameters while considering other GR effects such as spin-induced

quadrupole moment [63], interface (i) modes [5, 64] as excited at the interface of the fluid core

and solid crust of NS, pressure-gravity (p-g) mode tidal instability of NS [65] and other possible

beyond GR effects would also introduce new parameters to the waveform models. For instance,

axionlike particles sourced by neutron stars would introduce two new parameters (relative strength

γa and axion mass ma) [6] and EdGB gravity would bring in coupling constant αGB [7, 66, 67].

Due to the large number of parameters (15 in total), it is computationally expensive to cal-

culate the evidence by marginalizing the likelihood over all parameters. Subsection 1.2.6 will
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demonstrate how to estimate evidence as well as Bayes factor. Followings are the other important

sampling methods used in this research.

1.2.3 Generating Samples from Probability Distributions

The Inverse Transform Sampling

For any normalized probability distribution f (x) with cumulative distribution function (CDF) F(x) =

p( f (x′) ≤ x) =
∫ x

−∞
f (x′)dx′ (0 ≤ F(x) ≤ 1). F(x) must be a strictly increasing function since

f (x) ≥ 0. If the inverse F−1 exits, F−1(u) follows f (x) distribution where u is a distribution on

Uniform[0, 1]. A simple proof is as follows, if U is a random variable on Uniform[0, 1], then

p(U < y) = y for any y ∈ [0, 1]. The cumulative distribution of F−1(U) is:

p(F−1(U) ≤ x) = p(U ≤ F(x)) = F(x) = p( f (x′) ≤ x) (1.7)

which means if we generate a large amount of samples u randomly from uniform distribution on

[0, 1], then F−1(u) follows probability distribution f (x). For example, f (x) = sin(x)/2 in the range

of [0, π], the CDF and inverse function are F(x) = (1 − cos(x))/2 and F−1(x) = acos(1 − 2x). We

could generate samples u randomly from uniform distribution on [0, 1], then F−1(u) = acos(1−2u)

has a probability distribution the same as f (x) = sin(x)/2.

Acceptance-Rejection sampling

When it is hard to find the inverse of CDF F(x) and there is another general sampling method called

Acceptance-Rejection sampling though sometimes it is not that efficient. Given any normalized

probability distribution f (x) that we want to generate samples from, we have another probability

distribution g(y) where we know how to generate samples. We first choose a number N ≥ f (x)
g(x) for

any x. Then generate a random number Y from g(y) and another random number U from uniform
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distribution Uniform[0, 1]. If U < f (Y)
Ng(Y) , we accept Y as one of our samples by setting X = Y .

Otherwise, go back and generate another new pair of Y and U. When we have a large amount of

random samples X, the histogram of X should follow the probability distribution f (x). Here I will

provide a simple proof. Let’s consider the CDF of X:

p(X ≤ x) = p
(
Y ≤ x |U ≤

f (Y)
Ng(Y)

)
,

=
p
(
Y ≤ x, U ≤ f (Y)

Ng(Y)

)
p
(
U ≤ f (Y)

Ng(Y)

) , (1.8)

Note that in the last equality, we used the definition of conditional probability. For any realization

of random variable Y = y, the numerator:

p
(
Y ≤ x, U ≤

f (Y)
Ng(Y)

)
=

∫
p
(
Y ≤ x, U ≤

f (Y)
Ng(Y)

|Y = y
)

g(y)dy ,

=

∫
p
(
y ≤ x, U ≤

f (y)
Ng(y)

)
g(y)dy ,

=

∫ x

−∞

p
(
U ≤

f (y)
Ng(y)

)
g(y)dy ,

=

∫ x

−∞

f (y)
Ng(y)

g(y)dy ,

=
1
N

∫ x

−∞

f (y)dy , (1.9)

Similarly, the denominator:

p
(
U ≤

f (Y)
Ng(Y)

)
=

∫
p
(
U ≤

f (Y)
Ng(Y)

|Y = y
)

g(y)dy ,

=

∫
p
(
U ≤

f (y)
Ng(y)

)
g(y)dy ,

=

∫
f (y)

Ng(y)
g(y)dy ,

=
1
N

∫
f (y)dy =

1
N
, (1.10)
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Putting all altogether we obtain:

p(X ≤ x) =
p
(
Y ≤ x, U ≤ f (Y)

Ng(Y)

)
p
(
U ≤ f (Y)

Ng(Y)

) =

∫ x

−∞

f (y)dy , (1.11)

which means that the random variable X does have the density f (x). In practice, we want to choose

N as small as possible because a small N leads to a higher chance of accepting Y . To see this, note

that the denominator p
(
U ≤ f (Y)

Ng(Y)

)
= 1

N . Thus, a small N leads to a large accepting probability.

Figure 1.1: Illustration of reject sampling method from probability distribution f (x) = sin(x)/2.

Note that f (x) is normalized whereas g(x) is not.

For example, probability distribution f (x) = sin(x)/2 in the range of [0, π], the max value of

f (x) is 0.5. We naturally choose g(x) = 0.5 as a uniform distribution over range Uniform[0, π]

and N = 1. As shown in Fig. 1.1, the motivation is straightforward. Generating a random sample

x from distribution g(x) for example x = 0.5, then generating another random sample u from

Uniform[0, 1]. If u < f (0.5)/g(0.5) = 0.48, we accept u as a sample from the distribution f (x),
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else we reject u. Repeat the process until we have a desired number of samples.

1.2.4 Detection of GW Events

One well-known technique to identify whether a GW event signal exists when a data stream is

observed by LIGO is matched filtering: it searches for GW signals with known templates. With

a given length of data stream, the filter has the ability to find the maximum signal-to-noise ratio

(SNR) from a large bank of gravitational waveform templates generated with given waveform

models. In other words, the waveform template corresponding to the maximum SNR has the best

match for the observed data.

The Optimal Network SNR is defined as:

(S
N

)
max

:= max
i

∑
k

⟨h(ϑi) | d⟩
√
⟨h(ϑi) | h(ϑi)⟩

, (1.12)

where ⟨...⟩ is the inner product defined in Eq. (1.4). Index k refers to different detectors. d is the

observed data (GW signal may or may not present), h(ϑi) is the trail waveform template with pa-

rameters ϑi from possible parameter space. The detection threshold depends on the cosmological

model as well as the population distribution of the binary systems and a typical value of detection

threshold is 8 [68, 69].

In Part III, we will estimate the detection rate of EMRIs from different formation channels.

Since the LISA detector is yet to be launched (planned in early/mid 2030s), there is no observed

EMRI data by now. Supposing d = h(ϑi), then the SNR becomes:

SNR =
√
⟨h(ϑi) | h(ϑi)⟩ =

√
4
∫ fhigh

flow

h̃∗(ϑi, f )h̃(ϑi, f )
S n( f )

d f , (1.13)

where S n( f ) is the detector PSD of LISA.

It might be hard to determine the correct, or preferred, models when various waveform models
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are suggested by different physical mechanisms. Frequentist and Bayesian perspectives provide

several mode selection techniques, and the proper one adopted in this essay is the most popular

Bayesian approach.

1.2.5 Bayesian Model Selection

To compare two models or hypotheses, we apply the Bayesian model selection method. For hy-

pothesisH1 andH2 and observed data d, the odds ratio is defined as:

O12 :=
p(H1|d)
p(H2|d)

=
p(H1)
p(H2)

p(d|H1)
p(d|H2)

=
p(H1)
p(H2)

B12 (1.14)

where

B12 :=
p(d|H1)
P(d|H2)

(1.15)

is Bayes factor between two different hypothesesH1,H2 and:

p(d|H1) =
∫

dϑ p(d|ϑ,H1) p(ϑ|H1),

p(d|H2) =
∫

dϑ p(d|ϑ,H2) p(ϑ|H2), (1.16)

Usually, we don’t have any preference between hypothesesH1 andH2, assuming priors onH1 and

H2 are equal p(H1) = p(H2) = 1
2 . Then we have O12 = B12.

According to the criteria in [70], larger Bayes factor B12 implies more preference of hypothesis

H1 over hypothesisH2, and vice versa (see Table 1.1).
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lnB12 Strength of Evidence

-1.1 to 1.1 not prefer any

1.1 to 3 Positive

3 to 5 Strong

greater than 5 Very strong

Table 1.1: Criteria on Bayes Factor lnB12. According to the justification in [70], if −1.1 < lnB12 <

1.1, the data does not prefer one model over the other; if 1.1 < lnB12 < 3, there is positive support

for hypothesis H1; if 3 < lnB12 < 5, there is strong support for hypothesis H1 and if lnB12 > 5,

the support is overwhelming.

1.2.6 Bayes Factor Estimation

As defined in the previous subsection 1.2.5, Bayes factor is the ratio of evidences from two hy-

potheses. While it is usually extremely hard to calculate the evidence analytically, there are multi-

ple tools to estimate the Bayesian factor such as the thermodynamic integration method [71, 72],

nested sampling method [57, 58, 60] and the Savage-Dickey Density Ratio (SDDR) method [73,

74].

Thermodynamic Integration Method

Let’s first take a closer look at the thermodynamic integration method by redefining the unnormal-

ized posterior q(ϑ|d)β as a function of β ∈ [0, 1]:

q(ϑ|d)β := p(d|ϑ) β p(ϑ) , (1.17)

then we have the modified evidence:

Z(d)β :=
∫

dϑ q(ϑ|d)β , (1.18)

16



when β = 0, we have Z(d)β=0 =
∫

dϑ p(d|ϑ)0 p(ϑ) =
∫

dϑ p(ϑ) = 1 since the prior is normalized

and we want to figure out Z β=1 which is used to calculate the Bayes factor. Taking the derivative

of ln Zβ with respect to β leads to:

∂ ln Zβ
∂β

=
1
Zβ

∫
dϑ

∂q(ϑ|d)β
∂β

=

∫
dϑ

∂ ln q(ϑ|d)β
∂β

q(ϑ|d)β
Zβ

, (1.19)

since
∂ ln q(ϑ|d)β

∂β
=

p(ϑ)
q(ϑ|d)β

∂p(d|ϑ) β

∂β
=

p(ϑ) p(d|ϑ) β ln p(d|ϑ)
q(ϑ|d)β

= ln p(d|ϑ) , (1.20)

thus we have
∂ ln Zβ
∂β

=

∫
dϑ ln p(d|ϑ)

q(ϑ|d)β
Zβ

= Eϑ

[
ln p(d|ϑ)

]
β , (1.21)

where Eϑ[...] stands for the expectation value of log likelihood ln q(ϑ|d)β with respect to normal-

ized posterior q(ϑ|d)β
/

Zβ at temperature T = 1/β (0 ≤ β ≤ 1). Taking the integration of ∂ ln Zβ / ∂β

respect to β from 0 to 1 leads to:

ln Zβ=1 − ln Zβ=0 =

∫ 1

0

∂ ln Zβ
∂β

dβ =
∫ 1

0
Eϑ

[
ln p(d|ϑ)

]
|β dβ , (1.22)

When we run MCMC samplings with a series of temperature T ’s, there are a large amount of

posterior samples with log likelihood at different temperatures. The log evidence ln Z β=1 is then

the numerical integration:

ln Zβ=1 =

∫ 1

0
Eϑ

[
ln p(d|ϑ)

]
|β dβ , (1.23)

Although thermodynamic integration method is a good way to evaluate the evidence, it is indeed

computationally expensive since we have to run more than 10 MCMC’s at different temperatures

to get a lower error on the Bayes factor.
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Nested Sampling Method

Different from the MCMC approach which tries to generate equal weighted samples directly from

the posterior distribution, nested sampling estimates the evidence as well as generating weighted

samples.

Let’s rewrite the evidence defined in Eq. (1.2) as:

Z :=
∫
Ωϑ

L(ϑ) π(ϑ)dϑ , (1.24)

where L(ϑ) is the likelihood function, π(ϑ) is the prior, and Ωϑ stands for the prior volume.

Figure 1.2: A graphical representation shows iso-likelihood contour with a 2D prior. The evidence

is the sum of all contours weighted by the likelihood.

Since there are up to 15 parameters in GW waveform, it is indeed hard to perform the inte-

gration. Nested sampling provides a way by defining an iso-likelihood contour: as the likelihood

increases, the prior volume decreases from 1 to 0. One could consider the integral as over the

prior volume (one dimensional) instead of multi-parameters ϑ. The prior volume X(λ) enclosed
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by iso-likelihood contour with likelihood L(ϑ) > λ defined as:

X(λ) :=
∫
Ωϑ:L(ϑ)>λ

π(ϑ)dϑ , (1.25)

Within the scope of GW parameter estimation, the Gaussian likelihood implies L(ϑ) ∈ (0, 1), as

λ → 0, X(λ) → 1, and λ → 1, X(λ) → 0. As shown in Fig. 1.2, we could rewrite the evidence as

the integral over the likelihood λ:

Z =

∫
X(λ)dλ =

∫
L(X) dX , (1.26)

If the inverse of X(L = λ) exists, we could also integrate over the prior volume X instead of

likelihood λ. When we run a nested sampling, as time goes on, the prior volume decreases from 1

to 0, and the log-likelihood increase from −∞ to 0. The difficulty of nested sampling is to find the

iso-likelihood contour and evaluate the prior volume.

The Savage-Dickey Density Ratio Method

The SDDR method directly estimates the Bayes Factor between two models instead of the evidence

of each one. Consider two modelsH0 andH1, there are common parameters ϑ and one particular

ϕ. ϕ is a free parameter in modelH1 whereas in modelH0, ϕ = ϕ0 is fixed. We also callH0 a null

hypothesis that is nested under hypothesisH1. In the nested models, as ϕ→ ϕ0, modelH1 reduces

toH0, which is p(ϑ|H0) = p(ϑ|ϕ→ ϕ0,H1). The evidence under modelH0 is:

p(d|H0) =
∫

dϑ p(d|ϑ,H0) p(ϑ|H0) ,

=

∫
dϑ p(d|ϑ, ϕ = ϕ0,H1) p(ϑ, ϕ = ϕ0|H1) ,

= p(d|ϕ = ϕ0,H1) , (1.27)
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By adopting Bayes’ theorem:

p(d|H0) = p(d|ϕ = ϕ0,H1) =
p(ϕ = ϕ0|d,H1) p(d|H1)

p(ϕ = ϕ0|H1)
, (1.28)

Then the Bayes factor is:

B01 =
p(d|H0)
P(d|H1)

=
p(d|ϕ = ϕ0,H1)

P(d|H1)
,

=
p(ϕ = ϕ0|d,H1)
p(ϕ = ϕ0|H1)

, (1.29)

which is the ratio between the posterior and prior at ϕ = ϕ0 under model H1. As an example

illustrated in Fig. 1.3, if modelH1 degenerates toH0 when ϕ = 0, the Bayes factor is:

B01 =
p(d|H0)
P(d|H1)

=
p(ϕ = 0|d,H1)
p(ϕ = 0|H1)

= 0.01/0.033 ≈ 0.3 (1.30)

In other words, the Bayes factor lnB10 = ln(1/B01) = 1.20 is greater than 1.1. From criteria

shown in Table 1.1, there is a positive support for model H1 than the null hypothesis H0. As we

can see in Fig. 1.3, if ϕ = 0 is far from the peak of the posterior, the error on p(ϕ = 0|d,H1) will

largely influence the estimated Bayes factor, which will result in an unreliable estimation of Bayes

factor.

We will perform the SDDR method to estimate Bayes factor in our project [5], when δϕ → 0,

the hypothesis with mode resonance reduces to the one without. As well as in project [7], when
√
αGB → 0, EdGB gravity reduces to GR.
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Figure 1.3: An example shows the prior and posterior on parameter ϕ. The Bayes factor is the ratio

between the posterior and prior at ϕ = 0

1.2.7 Fisher Analysis

We next explain another method for parameter estimation, namely the Fisher Information Matrix

(FIM) [75–78], which is valid when the SNR is large and the noise is stationary and Gaussian. We

begin by expanding the log-likelihood function at the maximum likelihood point ϑML for a given

hypothesisH :

log p(d|ϑ,H) ∝ −
1
2

∑
k

⟨dk − hk(ϑ)|dk − hk(ϑ)⟩ ,

∝ −
1
2

∑
k

Γ
(k)
i j ∆ϑ

i ∆ϑ j , (1.31)
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where ∆ϑi = ϑi,ML−ϑi is the error of a given parameter relative to the value at maximum likelihood

point and Γ(k)
i j is the FIM evaluated at the maximum likelihood point ϑML:

Γ
(k)
i j =

〈
∂h(ϑ)
∂ϑi

∣∣∣∣∣ ∂h(ϑ)
∂ϑ j

〉 ∣∣∣∣∣
ϑML

, Γi j =
∑

k

Γ
(k)
i j , (1.32)

where the inner product is given in Eq. (1.4) with the power spectral density S (k)
n for the kth detector.

Notice that the elements of FIM are partial derivatives of the waveform template with respect to

given parameters. Similar to the Bayseian inference, one can introduce a prior to find the posterior

distribution on ϑ. The inverse of the FIM is an estimator of the error covariance matrix Σi j. The

standard error is the square root of the diagonal elements of the covariance matrix. For a given

parameter ϑi, the standard error can be expressed as:

√〈
(δϑi)2〉 = √

Σii , Σi j =
(
Γ̃−1

)
i j
. (1.33)

We implement the Fisher analysis method to estimate
√
αGB in our EdGB project. See more

details in Chapter 4.

1.3 Gravitational Waveform Models

GR is a theory of gravitation who has achieved a great success in not only explaining various as-

tronomical phenomena but also predicting new phenomena such as GWs which have been direct

observed by LIGO in 2015 [18]. In order to search GW signal in observed data, we need to con-

struct waveform models (solve Einstein field equation) which could generate waveform templates

with given parameters as mentioned in subsection 1.2.4. Since Einstein field equation Gµν = 8πTµν

is a 4-dimentional second order differential tensor equation and the highly non-linearity makes

it extremely hard to solve. Numerical relativity is a way to solve the Einstein equation directly,

however, it is really computational expensive and can only solve limited parameter space in which
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the equation is stably evolved. One way to speed up the generation of waveforms is adopting

PN approximation by sacrificing the accuracy, while the approximated waveform is still accurate

enough at the inspiral stage for current parameter estimation purpose (requires millions of wave-

form templates with various parameters). Since the field is strong at merger and ringdown stages1,

the PN waveforms will have a large deviation from the ”real” GR waveforms. In this case, one

can employ inspiral-merger-ringdown waveform models (EOB or Phenom formalism) to realize a

better accuracy than PN approximation.

The waveform is naturally expressed in the frequency domain, which allows fast waveform

evaluation. This is because matched filtering implemented in the frequency domain is computa-

tionally less expensive, whereas the time domain waveforms usually requires solving the equation

of motion down to orbital timescales.

Throughout the research, we will focus on three waveform models. TaylorF2 [80], a com-

monly used frequency domain model which gives an accurate approximation to the inspiral stage

for large separation and slow velocities. IMRPhenomXPHM [81], a phenomenological frequency

domain model including precessing effects and subdominant harmonic modes. SEOBNRv4T [8],

a time domain EOB model including the effect of dynamical tides. IMRPhenomXPHM and SEOB-

NRv4T are both full waveform models including inspiral-merger-ringdown stage by combining PN

theory and NR simulations [82]. Above three models have already been well implemented in the

LALSimulation package [83].

We will go through the post-Newtonian (PN) formalism, then two families of full waveform

models (EOB and phenomenological), and, at last, the parameterized post-Einsteinian (ppE) for-

malism.
1The binary coalescence usually splits into three stages: inspiral stage, when the field strength is comparable to

Newtonian case and relative velocity is much small than the speed of light; merger stage, when the separation of
the binary is around the Innermost Stable Circular Orbit (ISCO) (rISCO = 6M) of Schwarzschild BHs with the same
total mass, the corresponding frequency is called transition frequency; ringdown stage, the transition frequency from
merger to ringdown is called ringdown frequency, see paper [79].
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1.3.1 PN Approximants

At the early stage of compact binary coalescence, the separation is large with respect to their

size (week field) and relative velocity of the objects is much smaller the the speed of light (slow

motion):
GM
c2Rc

∼
v2

c

c2 ≪ 1 (1.34)

where M is the total mass of the system, Rc is the characteristic separation of the binary, vc is the

characteristic orbital velocity and c is the speed of light. In the domain of PN theory (week field and

slow motion), it is safe to expand the Einstein field equations in powers of dimensionless velocity

v = (GMΩ/c3)1/3 = (πM f )1/3, here the orbital frequency Ω relates to the GW frequency f through

Ω = π f and use G = c = 1 convention in the last equality. A nth-PN correction usually refers

the expansion to v2n and the zeroth-PN order is just the Newtonian theory without any corrections.

We can include higher order corrections until the desired accuracy is achieved. To learn more on

PN theory, please read the excellent textbook Gravity: Newtonian, Post-Newtonian, Relativistic by

Poisson and Will [84].

Orbits of the binary system shrink as a result of energy loss (GW radiation) and orbital frequen-

cies increase at the same time. In the adiabatic approximation (orbital frequency changes slowly)

and for circular orbits, we expect the energy balance equation P = −dE/dt holds where P and E

are energy and energy flux of the system, respectively.

P = −dE/dt = −E′(v)
dv
dt
, (1.35)

which is
P

E′(v)
+

dv
dt
= 0 , (1.36)

Together with Kepler’s third law Ω2r3 = GM, GW phase ϕ = 2π f t and the definition of dimen-
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sionless characteristic velocity v = (GMΩ)1/3:

1
2

dϕ
dt
−

v3

M
= 0 , (1.37)

where 1/2 comes from the fact that orbital phase is one half of GW phase. Together with differential

Eqs. (1.36) and (1.37) (Equivalently the integral form shown in Eq. (1.40)), one could solve the

evolution of any parameters such as v and ϕ as a function of t or f . Though the observed GW data

is in time domain, it is indeed more efficient to work in frequency when we need to compute the

inner product of time series defined in Eq.(1.4).

Let’s consider a common used frequency domain waveform model TaylorF2. Within the sta-

tionary phase approximation (SPA) [76, 80], one can analytically integrate Eqs. (1.36) and (1.37)

with respect to GW frequency f . The waveform in the Fourier space is then given by:

h( f ) = A( f ) exp
[
iΨ( f )

]
, (1.38)

HereA( f ) ∝ M5/6 f −7/6Q(ι, ψ)/DL is the amplitude. The phase Ψ( f ) can be calculated by:

Ψ( f ) = 2π f t( f ) − ϕ( f ) −
π

4
, (1.39)

with

t( f ) = tc −

∫ f

fc

1
P

(
dE
d f ′

)
d f ′ , ϕ( f ) = ϕc −

∫ f

fc

2π f ′

P

(
dE
d f ′

)
d f ′, (1.40)

where E and P are the binding energy and energy flux of the binary system respectively. Note

that E and P are functions of r and Ω, which are related by the Kepler’s law r(Ω), and the GW

frequency f relates to the orbital frequency Ω through Ω = π f . After integration, the phase upto
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kth-PN order is given by [80]:

Ψ( f ) = 2π f tc − ϕre f −
π

4
+

3
128 ηv5

∑
i≤k

α2i v2i , (1.41)

where v = (πM f )1/3 and M = m1 + m2 is the total mass of the system. tc is the coalescence time

and ϕre f is the reference phase at the reference frequency. η = m1m2/M2 is the symmetric mass

ratio. αi are known functions of M and η.

For example, let’s consider 0PN order binding energy E and energy flux P:

E = −
1
2

Mηv2 F = −
32
5

Mη2v10 , (1.42)

After integrating Eq. (1.40), one finds the 0PN order coefficient α0 = 1. One could employ higher

PN orders of binding energy and energy flux to compute the coefficients of GW phase until the

desired accuracy has been achieved. The state of art TaylorF2 has implemented up to 3.5PN order

corrections in LALSimulation package.

If there are other GR effects as mentioned in section 1.2.2, which will introduce an extra phase

corrections. When we search for i-mode resonance signature [5] from BNS event GW170817, we

directly add an extra phase correction δΨ( f ) to the TaylorF2 phase:

Ψ( f )Tot = Ψ( f )TaylorF2 + δΨ( f )i−mode (1.43)

See section 1.5.1 and Chapter 2 for more details.

1.3.2 Full Waveform Models (EOB and Phenomenological)

PN approximants are only valid at the inspiral stage under the weak field and slow motion assump-

tions. As the separation of binary shrinks, the field strength and relative velocity increase gradually,
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which leads PN approximants more and more inaccurate. However, the merger and ringdown fre-

quency band is exactly observable by current ground based detectors. Therefore, for data analysis

purpose we much find another way to achieve a better approximation to NR simulations at the

merger-ringdown stage (it is still computational expensive to solve field equation directly), such as

EOB and Phenomenological, which are two families of full inspiral-merger-ringdown waveform

models by combining the PN theory at inspiral region, and the BH perturbation theory or EOB

approach at merger-ringdown region, and calibrated with NR simulations.

EOB approach is trying to solve the dynamical evolution of compact binary system by mapping

two-body problem to an effective-one-body problem which is a test particle moving in an effective

external metric [85]. It is a time domain model calibrated with NR simulations by adopting a

variety of analytical approximations. In Chapter 5, we will compute the tidal phase including

dynamical tides with SEOBNRv4T model [8] which have already included the effect of dynamical

tides.

Phenomenological (IMRPhenom) model is another approach to deal with the merger-ringdown

stage in frequency domain with the BH perturbation theory, as well calibrated with NR simulations.

We adopt state-of-the-art IMRPhenomXPHM [81] model in Chapter 4 with appropriate modifica-

tion (see next subsection), since the model incorporates both precessing effects and subdominant

harmonic modes.

1.3.3 Modification to GR Waveform Models

There may be other beyond GR effects as mentioned in section 1.2.2. One import question is

how to construct the corresponding waveform models? Yunes and Pretorius [86] proposed the

parameterized post-Einsteinian (ppE) formalism for modifying waveform models. It is a way to

include beyond GR effects to existing well constructed frequency-domain GR models according to

the leading PN order phase corrections predicted by beyond GR theories. See papers [86–88] for

27



more details.

In working on projects searching nuclear coupling of axions [6] and constraining on EdGB

gravity [7], we incorporate the ppE formalism via including phase corrections in the inspiral regime

to the corresponding waveforms, which is similar to Eq. (1.43). See sections 1.5.2 and 1.5.3 for

more details.

1.4 Tidal Interaction from Compact Binary Objects

If at least one of the compact objects in the binary is a neutron star, tide-induced neutrons star

deformation has to be included into the binary dynamics. This effect was first computed in [89] for

the leading order term in the waveform, with higher order PN corrections worked out in [90]. Later

on these PN tidal corrections were incorporated in the EOB framework, for both the equilibrium

tide [91–93] and the dynamic tide [8].

In the adiabatic limit, the star’s induced quadrupole moment Qab is directly proportional to the

tidal gravitational field Eab, with the proportionality constant given by the tidal Love number λ:

Qab = −λ Eab , (1.44)

In the equilibrium tide approximation, λ is assumed to be a constant; with dynamical tide included,

λ can be thought as a function of the orbital frequency. Additional subtlety comes in if the orbital

evolution cross one or more mode resonances, where residual free mode oscillations will be present

after these resonances and Eq. (1.44) breaks down [94]. For the purpose of study in Chapter 5,

since the primary mode (f-mode) generally has frequency higher than the inspiral frequency, we

will assume that the adiabatic approximation holds in the entire inspiral frequency range.

In addition to adiabatic tides, tidal interaction can excite internal modes of neutron stars as the

binary sweeps through the inspiral frequency range. The pressure (p-) and fundamental (f-)modes
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[95] will not be fully excited as their frequencies are generally higher than the inspiral frequency,

although it has been suggested that early excitation of f-modes may be observed in the late inspiral

stage [96]. Gravity modes may be fully excited, but their couplings to tidal gravitational fields are

so small that the induced phase shifts are O(10−3) or smaller [97, 98]. Resonance of rotational

modes has also been investigated assuming a rotational frequency of a few ×102 Hz [99–102],

whereas the fastest rotating pulsar known in a binary neutron star system has a frequency of ∼ 60

Hz [103, 104].

The interface (i-)modes [64], excited at the interface of the fluid core and solid crust, have

frequencies around several tens to a few hundred Hertz, depending on the star’s equation of state

and prescription of the crust. The resonance of i-modes was proposed to explain precursors of

short gamma-ray bursts due to possible crust failures [105]. We observe that through excitation

of i-modes, the crustal material actually reaches its elastic limit well before the mode resonance.

After reaching this threshold the crust undergoes an elastic-to-plastic transition and the tidal driving

starts to heat up the crust. The whole process ends with the meltdown of the crust in tens of cycles.

We search such an i-mode with GW event GW170817 in Chapter 2.

1.5 Research on Astrophysics and Fundamental Physics with

Inspiraling Compact Bianries

This section talks about three projects based on the detected GW events: GW170817 [106],

GW200105 and GW200115 [107]. The first one is on tidal induced interface (i) mode of NS,

we will try to search for such a i-mode signal in observed BNS events GW170817 (Chapter 2);

the second project is to search for axionkile particles from GW170817 (Chapter 3) and the third is

about constraints on EdGB gravity from BHNS events GW200105 and GW200115 (Chapter 4).

The intrinsic information of inspiraling compact binaries and the surrounding environment will
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influence the orbital motion hence change both the phase and amplitude of waveforms. However,

when we search for possible signals (i-mode, axion and EdGB) from GW events, we only consider

the inspiral stage of the waveform and for any possible modification to the waveform model, we

just add an extra phase change to the total phase since matched-filtering techniques are particularly

sensitive to the phase of GW signals [108]. Though the GW amplitude will indeed change in some

sense, the estimation uncertainty on luminosity distance DL is much larger than the changes due to

other effects (i-mode, axion and EdGB). Therefore we neglect any corrections to amplitude of the

waveform model.

We adopt the frequency domain waveform model TaylorF2 in Chapter 2 and Chapter 3, wave-

form model IMRPhenomXPHM in Chapter 4. By employing the SPA, the TaylorF2 model is

expressed in PN expansion, hence it is only valid at the late-inspiral stage fhigh = 0.018/M [109].

1.5.1 Probing Crust Meltdown in Inspiraling Event GW170817 (Chapter 2)

Neutron stars have been one of the most mysterious objects in the universe since they were first

hypothesized nearly a century ago. Recent measurements of star deformability and radius enable

a better understanding of their stellar structure. However, these measurements are only sensitive

to the core, i.e., the most dense part of the star. In this work, we report an eigenmode excited on

the interface of the core and crust during the inspiraling stage of a neutron star binary. This mode

oscillation causes a elastic-to-plastic transition of the crust, heat up and finally melt the crust,

thereby imprinting a detectable signature on the gravitational waveform. Once detected, it will be

a unique probe of the crust structure of neutron stars.

After the melting process, part of the binary orbital energy is converted to the mode and thermal

energy resulting in a phase shift of the gravitational waveform. Similar to the discussion in [97,

98, 110] for mode resonances, for the binary neutron star waveform h( f ) = A( f )eiΨ( f ), its phase is
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modified as

δΨ( f ) =
∑
i=1,2

δϕi

(
1 −

f
fi

)
Θ( f − fi)

≈ δϕa

(
1 −

f
fa

)
Θ( f − fa) (1.45)

where Θ is the Heaviside function and fi is the melting frequency of each star. The melting process

decreases the coalescence phase by δϕi and the coalescence time by δϕi/2π fi. In the second line

we introduced δϕa =
∑

i δϕi and δϕa/ fa =
∑

i δϕi/ fi to reduce the number of extra parameters in

this model, which simplifies the parameter estimation process. Notice that if energy transfers from

the orbit to the mode (or heat in this case) during resonance, δϕ is positive; if energy transfers from

the mode to the orbit, as expected in some of the r-mode resonances [101], δϕ is negative.

As discussed in section 1.3 and 1.2.2, we plug the induced phase δΨ( f ) to pure GR waveform

model TaylorF2 and perform MCMC simulation to search the crust melting signature. Though we

don’t find the this signal in GW170817, possibly due to the SNR is relatively small, we expect

to observe the signal with GW detector A+ and more likely with third-generation GW detectors.

Furthermore, by estimating Bayes factor (see section 1.2.6 for more details) between different

possible signatures, we find it is possible to distinguish the i-mode from other possible origins,

such as tidal-p-g mode [111] and axion filed around NSs [6].

See more details on this work in Chapter 2.

1.5.2 Constraints on Nuclear Coupling of Axions from Event GW170817

(Chapter 3)

In this project, we report on a new search for certain axions using GW170817, the GWs from a BNS

inspiral detected by LIGO and Virgo [106]2. We focus on axions that couple to nuclear matter in
2Although the scenario of GW170817 being a neutron star-black hole merger can not be ruled out, the astrophysical

processes to produce a black hole with neutron-star mass are generally considered to be exotic [112].
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the same way as the QCD axion, but with masses that are relatively light [113, 114]. Such axions

can be sourced by NSs and affect the dynamics of binary NS coalescence, leaving potentially

detectable fingerprints in the inspiral waveform [115, 116]. Given the fact that the observed GWs

do not deviate significantly from GR, we expect anything induced by the scalar axion must be

small. We calculate the axion induced phase shift by taking the effect as a perturbation to GR.

First, Let’s find out the modified Kepler’s law r(Ω). The modified Lagrangian is L = LGR − Va,

where Va is the leading correction to the GR binding energy [116] (c = 1):

Va = −8qaMη
e−mar

r
, (1.46)

After plugging the modified Lagrangian in Euler equation for circular orbit we have:

(GMΩ)2 =

(GM
r

)3 [
1 + 8qa(1 + mar)e−mar] , (1.47)

Then the deviation of orbital frequency and separation between the two NSs from GR are:

δΩ2 =
GM
r3 8qa(1 + mar) e−mar , δr =

8
3

qar(1 + mar) e−mar , (1.48)

Here Ω is the orbital frequency, r denotes the dimensionless separation (devide by GM) between

the two NSs of masses M1 and M2, and M = M1 + M2 is the total mass. qa = q1q2/(ηM2) is

dimensionless axion charge, where q1 and q2 are axion charge for the two NSs. ma is the axion

mass.

By taking the modified Kepler’s law, the axion induced leading order corrections to the GR

binding energy and radiation power are:

δE =
∂EGR

∂r
δr + Va , δP =

∂PGR

∂r
δr + Pa , (1.49)
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where Pa is the axion dipole radiation [116]. Then Eq. (1.40) becomes:

δt( f ) =
∫ f

fc

(
δP
P2

GR

dEGR

d f ′
−

1
PGR

dδE
d f ′

)
d f ′ ,

δϕ( f ) =
∫ f

fc
2π f ′

(
δP
P2

GR

dEGR

d f ′
−

1
PGR

dδE
d f ′

)
d f ′ , (1.50)

After integrating above equations, the axion induced phase Ψ( f )a = 2π f δt − δϕ is shown in Ap-

pendix 3.A.

To search for such axions, we plug axion phase Ψa( f ) into TaylorF2 waveform model (see sec-

tion 1.3) and perform Bayesian analysis (see section 1.2.2) of GW170817 taking into account the

possible dephasing caused by the axions. The posterior distribution over the waveform parameters

suggest no significant evidence for such axion fields. As shown in Fig. 3.1, this null result excludes

a large region of the axion parameter space, much of which has not been probed by existing ex-

periments. Importantly, our constraints are independent of the assumption that axions are the dark

matter, which is required for the constraint from big bang nucleosynthesis (BBN) [117].

See more details on this work in Chapter 3.

1.5.3 Constraints on EdGB gravity from BH-NS events (Chapter 4)

Scalar Gauss-Bonnet gravity theory is described by a scalar field ϕ non-minimally coupled to the

Gauss-Bonnet invariant RGB = RµνσρRµνσρ − 4RµνRµν +R2 [118, 119]. The corresponding action is:

S =
∫

d4x
√
−g

[ R
16π
−

1
2

(∇ϕ)2 + αGB f (ϕ)R2
GB

]
+ S m . (1.51)

where g is the determinant for the metric gµν. R is the Ricci scalar on the 4-dimensional manifold

with metric gµν. αGB is the coupling parameter and f (ϕ) is an arbitrary function of the scalar field

that determines how it is coupled to the metric. S m donates the matter action.

For compact binary inspirals within the parameterized post-Einsteinian (ppE) framework, the
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parameter αGB is usually introduced to describe the non-Einsteinian effects [87, 88, 120]. We have

derived the higher order phase corrections upto 2PN order by maping the result from Jordan frame

to Einstein frame, see Appendix 4.A. To construct a modified GW waveform model, we introduce

these phase correction as a perturbation to the existing GR waveform model IMRPhenomXPHM

[67, 81, 121].

In EdGB gravity, dimensionless BH charges si = 2(
√

1 − χ2
i −1+χ2

i )/χ2
i , where χi = S⃗ i · L̂/m2

i

are dimensionless spins of BHs. si = 0 for ordinary stars like NS. As reported in LVC papers [107,

122], the (l,m) = (3, 3) mode is non negligible. Therefore we include (3, 3) mode in all of our

MCMC analyses except for event GW151226.

Since we only derive the EdGB effect upto post-inspiral stage and the events we employed

are inspiral stage dominant, we only consider inspiral waveform modification by setting a high

frequency cutoff fhigh = 0.018/M [109] (for the total mass M in a unit of second). The modified

waveform model IMRPhenomXPHM doesn’t include tidal effect though it includes both higher

order modes and precession effects. Since no waveform model includes all of the three effects

currently, and tidal phase is O(1) which is relatively small compared to EdGB phase correction

O(10), we are safe to perform MCMC simulation with waveform model IMRPhenomXPHM.

In order to constrain
√
αGB, we first perform Fisher analysis (in section 1.2.7) to determine a

rough estimation and then perform Bayesian inference (in section 1.2.2) to find the posterior distri-

butions on
√
αGB with GW events GW151226, GW190814(BBH), GW190814(NSBH), GW200105

and GW200115. The constraints on
√
αGB are shown on Table 4.1 and Fig. 4.1. Constraint on

GW151226 is consistent with Perkins’ work on Fig. 6 [67], which also means our work is reliable.

We give a stronger constraint
√
αGB ≲ 1.33 km by individual event GW200115 rather than stacking

individual events from GWTC-1 and GWTC-2 catalogs which gives
√
αGB ≲ 1.7 km.

Further more, we adopt the stacking technique introduced in paper [67] by combining marginal-

ized posteriors from individual events GW200105, GW200115 and GW190814(NSBH) and Perkin’s

combined posterior together to give a more stringent constraint on
√
αGB. The combined constraints
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are
√
αGB ≲ 0.59 km by Fisher analysis and

√
αGB ≲ 1.18 km by Bayesian inference.

Besides constraints from leading order −1PN phase correction, we perform MCMC simula-

tion from higher PN order phase corrections with GW events GW200105 and GW200115, and

show the 90% upper bounds are improved by 14.5% from GW200105 and 6.9% from GW200115

respectively, A posterior distribution comparison between −1PN phase correction and higher PN

phase corrections are shown in Fig. 4.2.

In the future, we would happy to see if there are more higher mass ratio events with higher

SNR, which will strongly improve the constraint on
√
αGB. Or in the other way, we could stack

all individual events together, if there are N statistical independent events with the similar SNR,

which could improve the constraint by a factor of
√

N in principle.

See more details on this work in Chapter 4.

1.6 The Hybrid Waveform for inspiraling Compact Binaries

(Chapter 5)

As mentioned in section 1.4, tidal interaction could introduce an extra phase shift to GW phase.

The tide-induced phase shift can be expanded in the velocity v =
√

M/r (M is the total mass and r

is the orbital separation) within the PN formalism:

ψPN = λv5(ψ0PN + v2ψ1PN + v3ψ1.5PN + v4ψ2PN + ...) . (1.52)

The leading PN-order coefficient ψ0PN is:

δψ = −
9

16
v5

µM4

(
11m2

m1
+

M
m1

)
(1.53)
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Figure 1.4: ψBP and ψPN approximately obtained in truncated expansions in the Black Hole Per-

turbation Theory and Post-Newtonian Formalism. The green and blue parts denote ψBP, the green

and yellow parts denote ψPN, and then the overlap of ψBP and ψPN is green part.

with µ being the reduced mass µ = m1m2/M = ηM and M is the total mass M = m1 + m2. This

motivates us to write down the tide-induced phase shift contributed by the less massive star (star

“1”) as

ηψBP,1 ≈ λ1(q−1ψ(−1)
BP + ψ

(0)
BP +

∑
n≥1

ηnψ(n)
BP) . (1.54)

which naturally includes all PN corrections, with the subscript “BP” denoting “Black Hole Per-

turbation”. In particular, the ψ(−1)
BP term can be obtained considering the tidal deformation of the

neutron star due to the background Kerr spacetime of the primary black hole, and ψ(0)
BP corresponds

to the extra tidal deformation induced by h1.

Theoretically speaking, after summing over all PN terms in Eq. (1.52) and all mass ratio terms

in Eq. (1.54), ψBP and ψPN should agree. In practice, ψBP and ψPN are approximately obtained
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in truncated expansions in the Black Hole Perturbation Theory and Post-Newtonian Formalism

respectively, as illustrated in Fig. 1.4. In order to better capture the tidal effect with these two

independent expansions, we propose to construct a hybrid waveform by using

ψhyd = ψPN + ψBP − ψovp , (1.55)

where ψovp denotes the contribution from the overlap regime of the Post-Newtonian and Black Hole

Perturbation methods (the green regime in Fig. 1.4). As a result, the difference between this hybrid

waveform and the “true” waveform come from the blank space in Fig. 1.4. As the expansion orders

in Post-Newtonian and Black Hole Perturbation methods increase, the blank space shrinks and we

shall obtain a better approximated waveform. Notice that this construction applies not only to BNS

and BHNS binaries discussed here, but binary black holes BBHs as well. It will be interesting to

perform the exercise combining the EMRI-inspired waveform with the PN waveform for BBHs,

and compare with other resumed waveforms such as the EOB templates[123–127].

In this work we truncate the series with only ψ(−1)
BP in ψBP and up to ψ2PN in ψPN. The accuracy

of the resulting hybrid waveform is comparable to the state of the art EOB waveform for the tidal

correction, for the numerical waveforms that we have used for comparison. The systematic error

is understood as the blank space in the phase diagram as in Fig. 1.4. The waveform model is

also easily extendible when higher order correction terms in ψBP and ψPN are available. We plan to

update the hybrid waveform with ψ(0)
BP in the future, and possibly with inspiral-to-plunge corrections

and higher multipoles if necessary.

1.6.1 Tide-induced Phase Comparison

Numerical waveforms downloaded from SXS Gravitational Waveform Database [128] are all in

time domain and are expressed as h(t) = h+(t) − ihx(t) with two polarizations h+(t) and hx(t). In

order to compare tidal induced phase shift in frequency domain, we should take a time-frequency
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domain transformation. We define the GW phase and frequency as:

ϕ(t) = −arg(h(t)) , f (t) =
1

2π
dϕ(t)

dt
, (1.56)

Combining above two equations we could find ϕ( f ) as of function of GW frequency. The tidal

induced phase is then δψ( f ) = ϕBHNS( f ) − ϕBBH( f ). As mentioned in paper [129], one could also

define ϕ as an argument of the time derivative of h(t). We have checked they are almost the same

and doesn’t influence our comparisons as shown in Fig. 5.2 and Fig. 5.3, which indicate the hybrid

method has a comparable accuracy as the EOB waveform and numerical relativity simulation in

characterizing the tidal effects and the hybrid waveform is more accurate if mass ratio is small. We

also compare the spin influence to the tidal phase in Fig. 5.4 which shows the discrepancy is less

than 10% even at the end of the inspiral stage.

See more details on this work in Chapter 5.

1.7 Formation and Rate Study of EMRIs in AGN (Chapter 6

and 7)

One of the important sources for spaceborne GW detectors is EMRIs [130] and previous stud-

ies have focus on the ”loss cone” channel (also called ”dry EMRIs”), where stellar-mass black

holes (sBHs) are gravitationally captured by a MBH, following multi-body scatterings within the

nuclear cluster [131–139]. As previously advanced by Zhen Pan and Huan Yang [140], there is

another comparable formation channel in AGN driven by accretion disk (called ”wet EMRIs”).

In this project we will compare these two main channels of EMRI formation by estimating LISA

detectable rate respectively and we forecast that wet EMRI channel is evidently an important or

even dominant channel for spaceborne GW detectors.

In the dry channel, a sBH is scattered by stars in the nuclear stellar cluster and gravitation-
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ally captued by the MBH. There are two relevant timescales in the long-term dynamics: the GW

emission timescale tgw on which the sBH orbit shrink, and the diffusion timescale tJ on which the

orbital angular momentum changes by successive scatterings [131, 134, 141–143]. If GW emis-

sion is more efficient with tgw < tJ, the sBH becomes a stable EMRI with continually shrinking

orbit until the final coalescence with the MBH. If scatterings are more efficient, i.e., tJ < tgw, the

sBH is randomly scattered towards or away from the MBH. SBHs that are scattered into the MBH

without losing much energy via GW emission are called prompt infalls [131]. As the GW emis-

sion timescale is much shorter for eccentric orbiters (e→ 1), EMRIs in the dry channel are highly

eccentric at formation.

A fractionO(10−2−10−1) of MBHs in the universe (referred as AGNs) are actively accreting gas

with an accretion disk [144, 145]. The presence of an accretion disk introduces new interactions

affecting the motion of sBHs in the stellar cluster. For a sBH embedded in the AGN disk, its

periodic motion produces density waves [146–149] that in turn drive the sBH to migrate inward,

damp its orbital eccentricity and its inclination w.r.t. the disk plane. For a sBH on a highly inclined

orbit, the effects of density waves becomes subdominant to dynamical friction [150, 151] arising

from the relative motion of the sBH and the surrounding gas as it passes through the disk. As a

result, sBHs are first captured onto the disk driven by dynamical fraction and density waves, and

then migrate inward driven by the density waves upon reaching the vicinity of the MBH, where

GW emission become dominant. We refer this type of EMRIs as wet EMRIs. Because density

waves are very efficient at damping out the eccentricity, wet EMRIs are essentially circular. Dry

and wet EMRIs can be easily distinguished from each other by measuring their eccentricities using

spaceborne gravitational wave detectors [137–139]. In addition, the imprints of an accretion disk

on the EMRI waveform may also be detectable [152, 153].

In order to compare these two channels. We first construct kinds of models by choose reason-

able functions and parameters from each model, for examples, we consider two redshift-independent

MBH mass functions as shown in Eq. (6.24). Then we generate random samples from all models
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(see section 6.5 for more details). For each EMRIs, we generate its time-domain waveform h+,×(t)

using the Augment Analytic Kludge (AAK) [154–156] with the conservative Schwarzschild plunge

condition, then calculate the SNR using Eq. (1.13) with LISA sensitivity. As shown in Fig. 6.2 and

Table 6.1, the expected LISA detectable EMRI rates (SNR≥ 20) from wet channel is evidently an

important or even dominant channel for all the models we have considered.

Besides EMRIs with a sBH, we also studied EMRIs with a lower mass gap object (MGO)

(∼ (2.5 − 5)M⊙). In the dry channel, sBHs are generally closer to the central MBH than MGOs

due to the mass segregation, so that their EMRI rate should be larger. In the wet channel, the

EMRI formation rates of both sBHs and MGOs mainly depend on the capture rate onto the AGN

disk and the rate of migration along the disk. Both rates are proportional to the object mass,

therefore the EMRI rate of MGOs is lower than that of sBHs by a factor of their mass ratio at

most. We find the wet EMRI rate per AGN is generally higher than the dry EMRI rate per MBH

by O(101 − 103) for sBHs, and by O(103 − 104) for MGOs. Taking into account the AGN fraction

fAGN = O(10−2−10−1), the wet channel turns out to be primary way in producing mass-gap EMRIs.

If there is no gap in the mass spectrum of supernova remnants and roughly equal number of MGOs

and sBHs are born in SN explosions, we expect LISA to detect ≲ 1 dry mass-gap EMRIs per

year, and O(1 − 102) × ( fAGN/1%) wet mass-gap EMRIs per year. In addition, future detections

of dry and wet mass-gap EMRIs have interesting implications of MGO formation. An excess of

mass-gap EMRI detection could be a signature of MGOs of more exotic origin, e.g., PBHs. The

relative fraction of mass-gap EMRIs to sBH EMRIs is a sensitive probe for the mass spectrum of

SN remnants and therefore the SN explosion mechanism.

See more details on this work in Chapter 6 and Chapter 7.
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Inspiraling Compact Bianries
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Chapter 2

Probing Crust Meltdown in Inspiraling

Binary Neutron Stars

Zhen Pan, Zhenwei Lyu, Béatrice Bonga, Néstor Ortiz, Huan Yang

Phys. Rev. Lett. 125, 201102 (Nov. 2020), arXiv:2003.03330

My specific contributions: Modify TaylorF2 waveform model by adding i-mode phase δΨ( f )

discussed in section 2.4 to the total phase and perform MCMC simulation to search such a specific

signal in GW event GW170817 in section 2.5. After searching i-mode in observed data, I generate

GW170817-like mock data with a i-mode at fa = 60Hz and δϕ = 0.3, then search the i-mode with

A+ and third-generation detectors. I also try to search tidal p-g mode and scalar filed using the

same mock data, then calculate the corresponding Bayes factors in appendix 2.B.

Thanks to recent measurements of tidal deformability and radius, the nuclear equation of state

and structure of neutron stars are now better understood. Here, we show that through resonant tidal

excitations in a binary inspiral, the neutron crust generically undergoes elastic-to-plastic transition,

which leads to crust heating and eventually meltdown. This process could induce ∼ O(0.1) phase
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shift in the gravitational waveform. Detecting the timing and induced phase shift of this crust

meltdown will shed light on the crust structure, such as the core-crust transition density, which

previous measurements are insensitive to. A direct search using GW170817 data has not found this

signal, possibly due to limited signal-to-noise ratio. We predict that such signal may be observable

with Advanced LIGO Plus and more likely with third-generation gravitational-wave detectors such

as the Einstein Telescope and Cosmic Explorer.

2.1 Introduction

Inspiraling neutron stars deform under mutual tidal interactions. In the adiabatic limit, the star’s

induced quadrupole moment is directly proportional to the tidal gravitational field, with the pro-

portionality constant given by the tidal Love number. Deformed neutron stars orbit each other

differently from black holes with the same masses, and the phase difference can be used to mea-

sure the tidal Love number [157], as shown in the analysis of GW170817 [158]. Together with

neutron star radius measurements [159], maximum mass estimates [160] and possibly post-merger

electromagnetic signals [161], the star’s equation of state (EoS) is now better constrained.

As discussed in sections 1.4 and 1.5.1, we will search the tidal resonance mode from GW170817

in this project.

2.2 Crust heating up and melting down

The outer part of the crust is commonly described by a Coulomb lattice with shear modulus µ [162].

The inner crust may have nonuniform structures associated with the “nuclear pasta” phase [163,

164], which is not considered in this study. Simulations of molecular dynamics [165] have shown

that the lattice responds elastically under small applied stress; once the induced strain exceeds the

breaking strain (ϵb ∼ 0.1), plastic deformation starts to develop. Assuming an applied stress σ,

43



the plastic deformation rate ϵ̇pl is exponentially small if σ < σb = µϵb, and becomes exponentially

large if σ > σb. Mathematically, it is well approximated by [165]

ϵ̇pl =
niZ2e2

a
ωp

µN̄Γ
e(−18.5σ̄b+σ̄N̄)Γ , (2.1)

where the dot denotes a time derivative, ωp is the plasma frequency, N̄ = 500/(Γ − 149) + 18.5,

σ̄ = σ/(niZ2e2/a) and Γ = Z2e2/aT is the melting parameter with e the electron charge, Ze the

total charge per ion, a the lattice spacing, ni the ion density and T the temperature. The elastic part

of the strain ϵel satisfies σ = µϵel and the total strain is simply ϵ = ϵel + ϵpl.

With the plastic deformation, mode energy dissipates into thermal energy, heating up the crust

with a rate [166]

niėi = σϵ̇pl(σ,T ) , (2.2)

where ni is the ion number density, ei is the thermal energy per ion, and dei = cVdT with cV the

specific heat capacity for T < Tmelt [167]. Once the melting temperature Tmelt is reached, the

crustal material still needs an extra amount of latent heat (∼ kTmelt per ion) to be melted [168].

As a result, the total energy per ion needed to melt the crust from its initial cold state is roughly

emelt =
∫ Tmelt

0
cVdT + kTmelt. In this work we have ignored contributions from dripped neutrons as

their specific heat may be suppressed by superfluidity.

2.3 Mode Analysis

In the linear approximation, the stellar response to the tidal force is specified by the Lagrangian

displacement ξ(r, t) of a fluid element from its equilibrium position. The displacement can be

decomposed into eigenmodes, ξ(r, t) =
∑
α aα(t)ξα(r), where α denotes the quantum number of an

eigenmode. In the context of this paper, we only consider i-modes driven by the leading quadrupole

term of the tidal force, so that ξm(r) = [U(r)r̂ + rV(r)∇]Y2m(θ, ϕ), where Y2m(θ, ϕ) is the l = 2
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spherical harmonic. The displacement behavior is governed by the linear pulsation equation [64]

[L(r; µ) − ω2
0]ξm = 0 , (2.3)

with L being an operator specifying the restoring force inside the star (see 2.A for the explicit

expression).

For the example star with M⋆ = 1.3M⊙,R⋆ = 11.7 km assuming SLy4 EoS [169, 170] and

a core-crust baryon transition density nb,cc = 0.065 fm−3, we obtain an i-mode frequency f0 =

ω0/2π = 190 Hz [64, 105] and the tidal coupling coefficient (a measure quantifying the overlap

between the waveform and the tidal field)

Q =
1

M⋆R2
⋆

∫
d3xρ ξ∗m · ∇[r2Y2m(θ, ϕ)] = 0.018, (2.4)

with the normalization ⟨ξm|ξm′⟩ :=
∫

d3xρ ξm · ξ∗m′ = δmm′M⋆R2
⋆, where ρ is the mass density 1.

The evolution of the mode amplitude am(t) is governed by [97]

äm + γ(t)ȧm + ω
2
0(t)am =

GM′W2mQ
D3 e−imΦ(t) , (2.5)

where the right-hand side is the leading quadrupole term of the tidal driving force with M′ = qM⋆

the companion star mass, D the binary seperation, Φ(t) the orbital phase and W2m is a coefficient

of O(1) (see Eq. (2.4) in Ref. [97]). On the left-hand side, γ(t)ȧm is a damping term capturing

the plastic deformation induced dissipation with γ(t) defined as the ratio between the mode energy

dissipation rate and two times the mode kinetic energy, i.e.,

γ(t) =

∫
crust

niėi d3x

M⋆R2
⋆

∑
m |ȧm|

2
, (2.6)

1In Ref. [105], a factor
√

l(l + 1) was missed in the normalization calculation.
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where the numerator is the crust heating rate (which is equal to the mode energy dissipation rate),

and the mode kinetic energy is 1
2

∫
d3xρξ̇(r, t) · ξ̇∗(r, t) = 1

2 M⋆R2
⋆

∑
m |ȧm|

2. The mode frequency

ω0(t) to leading order is determined by (see Eq. (2.3))

ω2
0(t) =

⟨ξm|L(r; µavg)ξm⟩

⟨ξm|ξm⟩
, (2.7)

where µavg is the average shear modulus which decreases as the crust is heated and we find the

mode frequency is roughtly proportional to the square root of the average shear modulus [171].

Given the mode amplitude am(t), it is straightforward to calculate the fluid element displace-

ment ξ(r, t) =
∑

m am(t)ξm(r) and the corresponding strain ϵel. From equation (2.1), the plastic

deformation rate ϵ̇pl has an exponential dependence on the local strain ϵel for ϵel ≳ 0.1, so does the

energy dissipation rate σϵ̇pl. Physically, the dissipated energy comes from the local elastic energy,

therefore the energy dissipation rate cannot exceed its replenishment rate A2 µϵ
2
el fGW, where fGW is

the frequency of both the tidal force and the GW emission andA is a coefficient of O(1). Here we

take A = 2 as an example. As for the initial condition, we choose Ti = 0.02Tmelt, where Tmelt ∼ 1

MeV is the melting temperature of the ion crystal at the crust base [162]. Using the 4th-order

Runge-Kutta scheme, we evolve Equations (2.1, 2.2, 2.5) on the two-dimensional surface of the

crust base, i.e., we only trace the thermal evolution of the crust base considering its dominant role

in the crust heat capacity.

As the neutron star binary spirals inward, the tidal field increases and so does the i-mode ampli-

tude am=0,±2, as shown in Fig. 2.1. At a certain binary separation (with corresponding gravitational

wave frequency fGW,melt < f0), part of the crust reaches the yield limit ϵb due to the i-mode ex-

citation and plastic deformation starts. Heating first takes place at the equator where the strain

maximizes. As the crust heats up, it softens so that i-mode frequency f0 decreases and the mode

amplitude am increases. As a result, the crust yields on larger and larger areas, extending from

the equator to the poles, and finally the whole crust is melted. The crust melting takes about 20
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Figure 2.1: Left three panels are the heat maps ei/emelt of the neutron star crust (within a 1.3M⊙ +

1.3M⊙ binary) at binary separations D = 12.0/11.6/11.4 R⋆, respectively. In the rightmost panel,

dashed lines denote the evolution of the i-mode frequency f0 and the gravitational wave (GW)

frequency fGW, and solid lines denote the evolution of mode amplitude am with m = ±2, 0.

orbit periods and a total amount of energy Emelt ≃ 1.1 × 1047 ergs. Notice that this mode treat-

ment is approximate once the plastic motion turns on, where a more accurate description requires

3-dimensional dynamical modeling of crustal motions. A 2-dimensional consistent evolution was

implemented in [166] to reveal yield patterns of magnetar crust under strong magnetic stress.

2.4 Waveform signature

As discussed in section 1.5.1, the search and forecast presented below for crust melting apply

equally for generic mode resonances, and we will use ‘mode resonance signature’ and ‘crust melt-

ing signature’ interchangeably.

For each neutron star, δϕ depends on its mass M⋆, the mass ratio of the companion q (with

the companion mass being qM⋆), the melting energy Emelt and the melting frequency fGW,melt as

follows [97]

δϕ =
2ωorbEmelt

PGW
≃

0.1
q2

(
1 + q

2

)2/3

E47M−10/3
1.3 f −7/3

70 , (2.8)

where ωorb = π fGW,melt is the orbital angular frequency, PGW is the energy loss rate due to GW

emission, and E47 = Emelt/1047ergs,M1.3 = M⋆/1.3M⊙, f70 = fGW,melt/70Hz. From Equation (2.8),

we immediately see that the phase shift increases if the melting process happens earlier (lower
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Figure 2.2: The crust melting induced phase change δϕa in GWs of a BNS merger with each

star of M⋆ = 1.3M⊙ and R⋆ = 12.5/11.3/11.7/12.7 km for the EoS SkI6/APR4/SLy4/MPA1,

respectively, which are not ruled out by the LIGO tidal measurement with GW170817. Note that

the core-crust transition density nb,cc is subject to a large uncertainty in each EoS instead of being

an accurately predicted value, so we take the transition density as a free parameter.

fGW,melt) in the inspiral phase. In Fig. 2.2, we show the total phase change δϕa for an equal-

mass binary neutron star (BNS) merger with M⋆ = 1.3M⊙, where δϕa varies from 0.03 to 0.6

depending on the star’s EoS and the core-crust transition baryon density nb,cc. The melting energy

increases substantially with increasing nb,cc (commonly assumed to be within 0.06−0.1 fm−3 [172–

174]), whereas the i-mode frequency and the associated melting frequency are non-monotonic

functions of nb,cc. We also note that since the mode calculation presented here is Newtonian with

the Cowling approximation [175], the fully relativistic mode frequencies may be different (for

examples, the frequencies of p- and f-modes are smaller with the metric perturbation included

[176, 177]). If there are also more unpaired neutrons present within the star, as suggested by the

cooling measurement in [178], the melting energy may be significantly boosted and the internal
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mode spectrum may be modified as well. Therefore the search of mode resonance signatures may

also help probe the superfluid composition of neutron stars. The effects of nuclear pastas on the

melting energy budget and the mode frequency determination also need to be better understood.

Nevertheless, the measurement of fa and δϕa will convey useful information about the core-crust

transition density and the star’s EoS around that density.

2.5 Search with GW170817

We now present the first search for mode resonance effects (including crust melting) in binary neu-

tron star systems with data from GW170817 with Equation (1.45) implemented. A similar search

for tidal-p-g instability is discussed in [111] using different δΨ( f ). The Markov-Chain Monte

Carlo (MCMC) parameter estimation is performed with PyCBC [179], for which we assume the

source distance and sky location are known as the electromagnetic counterpart of this source has

been identified [31]. We use the TaylorF2 waveform [180] as the background binary neutron wave-

form. We present the posterior distributions of chirp mass, mass ratio, δϕa and fa in Fig. 2.3. The

marginal distribution of ϕa indicates that there is no evidence for mode resonance in GW170817,

as δϕa < 1.5 at 95% confidence level. A similar conclusion can be drawn from a Bayesian model

comparison framework. We denote Ha as the hypothesis with mode resonance and H0 as the one

without, the Bayes factor can be defined as

Ba
0 =

P(GW170817|Ha)
P(GW170817|H0)

(2.9)

which measures the relative probability of these two hypotheses. We have computed the Bayes

factor using both the method of thermodynamic integration [71] and the Savage-Dickey Density

Ratio method [73], which both suggest consistent values of logBa
0 in the range of [−0.6,−0.3].

This means that these two hypotheses are essentially indistinguishable with this set of gravitational
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Figure 2.3: Posterior distribution of chirp mass M, mass ratio q, phase shift δϕa and melting

frequency fa obtained with PyCBC, where the prior for fa is set to be [30, 300]Hz and [0, 2] for

δϕa. Left Plot: the search using data from GW170817. Right Plot: a search obtained assuming

LIGO A+ sensitivity and an mode resonance injection at fa = 60Hz and δϕa = 0.3.

wave data [70].

It is natural to expect observations with higher signal-to-noise ratios as the sensitivity of grav-

itational wave detectors improves. In the mid-2020s the upgrade of Advanced LIGO, LIGO A+,

is expected to start its constrcution 2. Assuming LIGO A+ design sensitivity for both detectors at

Hanford and Livingston, and Advanced Virgo with its full sensitivity, we may observe GW170817-

like events with signal-to-noise ratios beyond 100. In the right panel of Fig. 2.3, we present a

sample search with an injected signal with δϕa = 0.3, fa = 60Hz (for a GW170817-type system)

into simulated detector noises consistent with the aforementioned LIGO A+ network sensitivity. A

MCMC analysis of the mock data successfully recovers the injected values of fa and ϕa with small

uncertainties. So it is possible that we observe the crust melting signature in gravitational waves

with LIGO A+.

Stacking different events may also improve detectability, as is the case for subdominant modes

2https://dcc.ligo.org/LIGO-G1601435/public
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in black hole ringdowns [181]. However, we have no prior information on δϕa and fa, which are

distinct for each binary neutron star system. If we have an underlying or phenomenological model

that predicts or characterizes δϕa, fa as a function of star mass, core-crust transition density and star

compactness (which depends on the EoS), the hyper-parameters in this model may be constrained

from different events. Certainly the posterior distribution of the hyper-parameters from different

events can be multiple together to form the joint probability distribution. This is something worth

to pursue in future studies.

If a mode resonance signature is indeed detected (i.e. preferred over the null hypothesis), it is

still necessary to compare to other possible origins, such as tidal-p-g coupling [111], dynamical

scalarization and vectorization [182, 183], scalar modes associated to certain GR extensions [184]

and extensions to standard particle physics [185], that predict different δΨ( f ). Since the crust

melting is nearly instant (Fig. 2.1), its impact on the waveform boils down to shifting the coales-

cence time and the coalescence phase, i.e., δΨ( f ) = δϕa × (1 − f / fa) with δϕa being a constant.

For other processes with continuous orbital energy draining, e.g., the tidal-p-g coupling extending

the whole frequency range once the nonlinear instability is turned on, the waveform signature can

be formulated in a similar way except with a frequency dependent phase shift δϕa( f ) which en-

codes the details of orbital energy draining. To simulate this, we inject a mode resonance signal

(δϕa = 0.3, fa = 60Hz) into detector noise corresponding to the LIGO A+ network, and perform

the Bayesian model selection between our model resonance waveform and the tidal-p-g waveform.

We find a Bayes factor logBa
p−g = 2.7 ± 0.3, suggesting that it is also possible to determine the

correct model if a positive detection occurs (see 2.B for more details of the Bayesian analysis).

The comparison will be much sharper with third-generation gravitational wave detectors. Simi-

larly for the scalarized neutron stars proposed in scalar tensor theories or other particle physics

considerations, there are also effects, such as dipole scalar radiation, that will be effective during

the whole frequency range once turned on [185]. We also perform a model selection between the

mode resonance and an example model of BNSs with scalar dipole radiation using the same mock
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data above, and we find the Bayes factor is logBa
dipole = 11.7 ± 2.2 (see 2.B).

2.6 Conclusions and Discussion

Resonant tidal excitations in a neutron star binary induce a phase shift δϕa in the gravitational wave

signal by melting its crust. In calculating the crust heating rate, we have used the fitting formula

ϵ̇pl(σ) [Eq. (2.1)] which is a result of molecular dynamics simulations [165]. If this simulations

result does not accurately apply to the NS crust with a breaking strain ϵb different from 0.1, the

crust melting frequency fGW,melt will also change. For a smaller breaking strain ϵb = 0.05, we find

the melting frequency fGW,melt decreases by ∼ 25% and the phase shift δϕa increases by a factor

∼ 2. All the predicted phase shifts corresponding to different EoSs are still well consistent with

the constraint δϕa < 1.5 (95% confidence level) from GW170817. LIGO A+ may already be able

to detect such induced phase shifts. A 3rd-generation detector network with Cosmic Explorer [16]

sensitivity at the LIGO detectors and Einstein Telescope [15] sensitivity at the Virgo detector is able

to limit δϕa with uncertainty ∼ 0.01 and fa below 1%. This will not only allow high-confidence

detection of the crust melting effect, but also precisely measure crustal and EoS properties as shown

in Fig. 2.2.

We do not expect significant energy release to the neutron star magnetosphere associated with

crustal failure, as the magnetic fields (∼ 1012G) assumed are too weak to efficiently transfer energy

by sending out Alfvén waves. However, if the star is a magnetar with field ∼ 1015 G, this emission

mechanism may excite star magnetospheres and power precursor gamma-ray bursts [166, 186,

187]. Interestingly, the recent LIGO observation of a heavy neutron-star binary (GW190425 [188])

may indicate the existence of a fast-merging channel to form binary neutron stars. Such systems

may have short-enough lifetime ∼ 104 years to allow active magnetars in the binary coalescence

stage [189].
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2.A Appendix: Pulsation Equations

The motion of a mass element inside a star is governed by the continuity equation, the momentum

equation and the Possion equation

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v =

1
ρ
∇ · σ − ∇Φ ,

∇2Φ = 4πGρ ,

(2.10)

where σ is the stress tensor. In the equilibrium state where v(0) = 0, the stress tensor is simply

σ(0)
i j = −pδi j with p being the pressure.

The linear pulsation equations can be derived assuming the Lagrangian displacement ξ(r, t) =

ξ(r)eiω0t and the potential perturbation δΦ(r, t) = δΦ(r)eiω0t with {ξ(r), δΦ(r)} and ω0 being the

to-be-determined eigenfunctions and eigenfrequency, respectively. Consequently, we obtain v =

∂ξ(r, t)/∂t + (v(0) · ∇)ξ(r, t) = ∂ξ(r, t)/∂t and σi j = σ
(0)
i j + Γ1 p(0)ϵkkδi j + 2µ(ϵi j −

1
3ϵkkδi j), where

Γ1 = (d ln p/d ln ρ)ad is the adiabatic index, ϵi j =
1
2 (ξi, j + ξ j,i) is the strain tensor and µ is the

shear modulus. Plugging them into Eq. (2.10), we obtain the linear pulsation equation [L(r; µ) −

ω2
0]ξ(r) = 0 with [64, 190]

L(r; µ)ξ = −∇
(
Γ1 p
ρ
∇ · ξ

)
− ∇

(
1
ρ
ξ · ∇p

)
+ ∇δΦ

+
1
ρ

[
∇

(
2
3
µ∇ · ξ

)
− (∇µ · ∇) ξ − ∇(ξ · ∇µ)

]
+

1
ρ

[
(ξ · ∇)∇µ − µ

(
∇2ξ + ∇(∇ · ξ)

)]
,

(2.11)

and the linear Possion equation

∇2δΦ = −4πG(ξ · ∇ρ + ρ∇ · ξ) . (2.12)
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For spheroidal modes (for example, the i-mode), the displacement vector can be written as a

variable-seperation form

ξr(r) = U(r)Ylm(θ, ϕ) ,

ξθ(r) = V(r)
∂Ylm

∂θ
(θ, ϕ) ,

ξϕ(r) =
V(r)
sin θ

∂Ylm

∂ϕ
(θ, ϕ) ,

δΦ(r) = S (r)Ylm(θ, ϕ) .

(2.13)

Plugging them into Eqs. (2.11,2.12), we obtain the governing equations of {U(r),V(r), S (r)} [64,

190]

ρω2
0U =ρ

dχ̂
dr
−

d
dr

(
1
3
µα̂

)
+

dµ
dr

(
α̂ − 2

dU
dr

)
− µ

[
1
r2

d
dr

(
r2 dU

dr

)
−

l(l + 1)
r2 U +

2l(l + 1)
r2 V

]
,

ρω2
0V =ρ

χ̂

r
−

1
3
µα̂

r
−

dµ
dr

(
dV
dr
−

V
r
+

U
r

)
− µ

[
1
r2

d
dr

(
r2 dV

dr

)
−

l(l + 1)
r2 V +

2U
r2

]
,

1
r2

d
dr

(
r2 dS

dr

)
−

l(l + 1)
r2 S = 4πG

(
U

dρ
dr
+ α̂ρ

)
,

(2.14)

with
α̂ =

1
r2

d
dr

(r2U) −
l(l + 1)

r
V ,

χ̂ = −
Γ1 p
ρ
α̂ −

1
ρ

dp
dr

U + S .

For simplicity, we take the Cowling approximation assuming δΦ = 0 and solve the i-mode eigen-

value problem following Ref. [64].

2.B Appendix: Bayesian Parameter Estimation and Model Test

For the search of possible mode resonance in GW170817, we have incorporated δϕa, fa plus all

the binary parameters (except for the source distance and sky location which are known from elec-
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Figure 2.4: The posterior distribution of all parameters in the search of mode resonance presented

in Fig. 3a in the maintext with data from GW170817.
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tromagnetic counterparts), including chirp massM, mass ratio q, inclination angle ι, polarization

phase ψc, coalescence phase ϕc, coalescence time tc, tidal Love numbers of both stars Λ1,2 and

parallel spins of both stars χ1,2z. The priors of the spin are set to be |χ1,2z| < 0.05. The full posterior

distribution of parameters and the Markov-Chain Monte-Carlo samples are presented in Fig. 2.4.

In general, the accuracy of the search result not only depends on the event signal-to-noise ratio,

but also on the melting frequency. If the melting frequency is too small, even if it is still in the

LIGO band, the imbalance of the waveform signal-to-noise ratio before and after the melting pro-

cess still degrades the search accuracy. For GW170817, given that the low-frequency sensitivity

of the LIGO detectors in O2 is significantly worse than O3, we find that it is beneficial to set the

lower bound of the frequency range to be at least 40 Hz to allow SNR ∼ 5 in the waveform before

the resonance. This situation will be greatly improved as LIGO reaches design sensitivity when

the low-frequency performance is much better, and definitely for LIGO A+ and 3rd-generation

detectors, which is important as crust melting may happen before 40 Hz.

We have applied Bayesian model selection formalism in the search for a resonance signature in

the data of GW170817, in which case H1 is the model including the resonance effect and the null

hypothesisH0 is the one without. We obtain logB1
0 ∼ [−0.6,−0.3], so that there is no evidence of

mode resonance in the parameter range we searched for in the strain data of GW170817.

The model selection method also applies to distinguish possible origins of the signal. For

example, if we detect a signal by searching with our mode resonance waveform, it may also show

a positive signal if we had searched for this signal with waveforms motivated by other reasons. To

illustrate this, we injected a mode resonance signal (δϕa = 0.3, fa = 60Hz) to simulated detector

noise compatible with LIGO A+, and searched it with both our mode resonance waveform and the

waveform for tidal-p-g coupling [111]:

δΨ( f ) = −
2C

3B2(3 − n0)(4 − n0)

Θ
(

f
fref

)n0−3
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Figure 2.5: The posterior distribution of chirp massM, and A0, n0, f0 as we try to fit the mock data

with the tidal-p-g mode waveform.

+(1 − Θ)
(

f0

fref

)n0−3 [
(4 − n0) − (3 − n0)

(
f
f0

)] , (2.15)

where Θ = Θ( f − f0), fref = 100Hz, C = A0[(2m1)2/3 + (2m2)2/3]/M2/3, and

B = (32/5)(GMπ fref/c3)5/3. The corresponding posterior distributions of parameters are shown

in Fig. 2.5. The fitting with tidal-p-g coupling does not generate a compact posterior distribution

of the parameters of this model, A0, f0 and n0, although the distribution of log A0 is significantly

different from the lower bound of its prior, which is -10. As we compare the two models, the Bayes

factor logBres
pg is 2.7 ± 0.3, which shows a preference for the mode resonance model. This means

that it is still possible to distinguish these two models when we detect a mode resonance signal
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Figure 2.6: The posterior distribution of chirp massM, and λ0, q0, δq0 as we try to fit the mock

data with the waveform of scalar dipole radiation.

with LIGO A+.

In the case of double NSs carrying scalar (e.g., axions with mass ms [185]) charge q1 and q2 , the

BNS evolution would be modified by both the extra force mediated by the scalar and the extra scalar

dipole radiation. To the leading order, the extra force can be described in term of Yukuwa potential

Vs(r) = −8q1q2e−msr/r and scalar dipole emission power is Ps(r) = 1
12

(q1m2−q2m1)2

M2 M2
Planck

(
1 − m2

s
Ω2

)3/2
r2Ω4Θ(Ω2−

m2
s), where M = m1 + m2 is the total mass of the BNS system, Ω(r) is the orbital frequency.

For convenience, we define symmetry charge q0 := q1q2/m1m2, anti-symmetry charge δq0 :=

q1/m1 − q2/m2 and dimensionless variable λ0 := (GMms)−1. We find the GW phase shift driven
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the extra scalar degree of freedom is δΨ( f ) =
[
2π f δts( f ) − δϕs( f )

]
Θ( f − 1

πGMλ0
), with

δϕs( f ) =
5q0λ

5/2
0

12η
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,
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−C2 ,

(2.16)

where v( f ) := (GMΩ)1/3 = (GMπ f )1/3, Γ(a, z) :=
∫ ∞

z
ta−1e−tdt is the gamma function, 2F1 is the

hypergeometric function, and C1,2 are two integration constants enabling vanishing δts and δϕs at

f = 1
πGMλ0

. To illustrate the power of LIGO A+ distinguishing the scalar dipole radiation from

the mode resonance, we also constrain the scalar radiation model using the same mock data above

(Fig. 2.6) and we find the Bayes factor lnBres
dipole = 11.7 ± 2.2.
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Chapter 3

First Constraints on Nuclear Coupling of

Axionlike Particles from the Binary Neutron

Star Gravitational Wave Event GW170817

Jun Zhang, Zhenwei Lyu, Junwu Huang, Matthew C. Johnson

Laura Sagunski, Mairi Sakellariadou, Huan Yang

Phys. Rev. Lett. 127, 161101 (Oct. 2021), arXiv:2105.13963

My specific contributions: Calculate axion induced phase together with Jun in appendix 3.A.

I construct the waveform model by adding axion induced phase Ψa( f ) discussed in section 3.3

to the total phase and perform Bayesian inference in section 3.4 to search axion signal in event

GW170817. I analysis the MCMC result and draw a violin plot shown in Fig. 3.2. Though we

don’t find such signal in GW170817, we discuss and explain the MCMC simulation result in sec-

tion 3.5.

Light axion fields, if they exist, can be sourced by neutron stars due to their coupling to nuclear
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matter, and play a role in binary neutron star mergers. We report on a search for such axions by

analysing the gravitational waves from the binary neutron star inspiral GW170817. We find no

evidence of axions in the sampled parameter space. The null result allows us to impose constraints

on axions with masses below 10−11eV by excluding the ones with decay constants ranging from

1.6 × 1016GeV to 1018GeV at 3σ confidence level. Our analysis provides the first constraints on

axions from neutron star inspirals, and rules out a large region in parameter space that has not been

probed by the existing experiments.

3.1 Introduction

Axions are hypothetical scalar particles that generally appear in many fundamental theories. An

archetypal example is the QCD axion, a pseudo-scalar field proposed to solve the strong CP prob-

lem [191–194]. Light axions are also a unique prediction of string theory [195, 196], as well as

one of the most compelling candidates for dark matter [197–199].

Axions have been constrained by measuring the energy loss and energy transport in various

astrophysical objects, such as stars [200–202] and supernova 1987A [203, 204]. Further constraints

can be imposed if axions make up all of the dark matter in our universe [117, 205–208]. In

addition, axions with weak self-interactions could lead to black hole superradiance, and hence are

constrained by the black hole spin measurements [209–214], the polarimetric observations [215],

and the gravitational waves (GWs) emitted by the superradiance cloud [216–222]. Bosonic fields

may also form compact objects that have GW implications [223].

In this Letter, as discussed in section 1.5.2, we search such axions using GW events GW170817

and use the conventions ℏ = c = 1.
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Figure 3.1: Constraints on the axion parameter space. ma is the mass of axion field and fa is

the axion decay constant. The blue dots show the masses of axion fields that are sampled in this

work, and the corresponding 3σ constraints on fa from GW170817. For fa ≳ 1.6 × 1016GeV, the

GW170817 data cannot distinguish waveforms with ma ≲ 10−13eV, allowing us to extrapolate the

constraints on small ma to the massless limit and to exclude the existence of axions in the blue

regime. Axions in the purple region could also be significantly sourced by the Earth and the Sun,

and hence are excluded [115]. In addition, we show the 3σ constraint from the spin measurements

of the stellar mass black holes (Cyg X-1 and GRS 1915+105) [214] (in green), as well as the 1σ

constraint on axion dark matter from the BBN [117] (in red).

3.2 Neutron Stars with Axions

We consider axions that couple to nuclear matter in a similar way as the QCD axion. The low

energy effective potential is [115]

V(a) = −m2
π f 2
π ϵ

√
1 −

4mumd

(mu + md)2 sin2
(

a
2 fa

)
, (3.1)
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where fa is the axion decay constant, mπ and fπ are the pion mass and decay constant, and mu,d

stands for the mass of the up, down quarks. Assuming ϵ < 0.1, the mass of the axions is ma ≃

√
ϵ mπ fπ/ fa, and is lighter than the mass of the QCD axion. In vacuum, the axion field is expected

to stay at the minimum of its potential a = 0. Inside a dense object, such as a NS, the axion

potential receives finite density corrections [224]

V(a) = −m2
π f 2
π

[(
ϵ −

σNnN

m2
π f 2
π

) ∣∣∣∣∣∣cos
(

a
2 fa

)∣∣∣∣∣∣
+O

(σNnN

m2
π f 2
π

)2 , (3.2)

where nN is the number density of nucleons, and σN ≈ 59 MeV [225]1. For ϵ < 1, the axion

potential inside the dense object can change sign while perturbation theory is still valid. If the

radius of the dense object is larger than the critical radius

Rcrit ≡
2 fa√

σNnN − ϵm2
π f 2
π

, (3.3)

a phase transition occurs, shifting the vacuum expectation value of the axion field from 0 to ±π fa

inside the dense object. Assuming NSs have a radius on the order of 10km, this phase transition

generally happens inside NSs for axions with fa ≲ 1018GeV. As a result, the NS develops an axion

profile, interpolating from ±π fa near the NS surface to 0 at spatial infinity.

In this case, the axion field mediates an additional force between NSs, with strength that could

in principle be as strong as gravity. The axion force cannot be sourced by nuclei (as nuclei are too

small to trigger the phase transition), and can therefore avoid fifth force constraints in laboratories.

1Specific mechanisms that suppress the axion masses [113, 114] might also change the period of this low energy
effective potential. However, the axion profile and subsequent analysis is determined exclusively by the finite density
effect inside the NS, with period 2π fa. Therefore, our analysis applies to the light axions in [113, 114].

63



At leading order, the axion force between two NSs is

Fa = −
Q1Q2

4πr2
(1 + mar) exp[−mar] r̂ , (3.4)

where Q1,2 is the axion charge carried by each NS and is related to the NS radius R1,2 through

Q1,2 = ±4π2 faR1,2 . (3.5)

The axion force can be either attractive or repulsive, depending on whether the axion field values

are of the same or opposite sign on the surfaces of the two NSs. Moreover, the axion force is only

“turned on” if the two NSs are within the axion’s Compton wavelength λa ≡ 1/ma.

If such NSs form binaries, the axion field might also radiate axion waves during binary coales-

cence. For circular orbits, the leading order radiation power is

Pa =
(Q1M2 − Q2M1)2

12π (M1 + M2)2 r2Ω4
(
1 −

m2
a

Ω2

)3/2

, (3.6)

where Ω is the orbital frequency, r denotes the separation between the two NSs of masses M1 and

M2. According to Eq. (3.6), the axion radiation is turned on only when the orbital frequency is

larger than the axion mass. The axion force as well as the axion radiation power are calculated to

the next-to-leading order in [116].

3.3 Waveform Template

Inspirals in the presence of a generic massive scalar field have been studied in [116, 226–232],

among which corrections of the scalar field on the GR waveforms are calculated to the first post-

Newtonian (PN) order in [116]. The waveform template cannot be written in a closed analytic
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form, and cannot be described by the usual PN templates, e.g., the one used in [233]. In our

analysis, the waveform is generated by a modified TaylorF2 template, in which the frequency

domain waveform is given by

h( f ) ≃ H( f ) exp
[
iΨ( f )

]
. (3.7)

Since the existing analyses of GW170817 [106, 158] show good agreement with GR, the axion

charges, if non-zero, must be very small, which allows us to expand Ψ as

Ψ = ΨGR + Ψa + O(Q4
1,2) + O(Q2

1,2v2). (3.8)

HereΨGR is the phase in the usual TaylorF2 template in the PyCBC package [234],Ψa is the leading

order phase correction caused by the axion field, and v2 counts the PN order. The expression of

Ψa can be found in the Supplementary Material. In practice, we only consider the leading order

correction caused by the axion field, which is justified by the necessary smallness of the axion

charge.

Generally, taking into account the leading correction from a massive scalar field introduces

three parameters in the waveform template, i.e., the scalar charge of each star and the mass of

the scalar field. In our case, the two charges Q1 and Q2 are given by Eq. (3.5) and hence are not

independent. Thus, we define

γa ≡
Q1Q2

4πGM1M2
, (3.9)

a dimensionless parameter that characterizes the relative strength of the axion and gravitational

force between the two NSs. The effects of the axion field are then parameterized by ma and γa.

In order to obtain each charge Q1,2 from γa, we first use the universal Λ − C relation [235–237]

to compute the compactness and hence the radius of each NS. Then with Eq. (3.5) we compute

65



Q1/Q2, and eventually obtain the two charges Q1 and Q2 that are used to generate the waveform.

Moreover, we assume the two NSs obey the same equation of state (EOS), in which case their

tidal deformabilities Λ1 and Λ2 are related. Following [158], we consider that the symmetric

tidal deformability Λs ≡ (Λ2 + Λ1)/2, the antisymmetric tidal deformability Λa ≡ (Λ2 − Λ1)/2

and the mass ratio of the binary q ≡ m2/m1 ≤ 1 are related through an EOS-insensitive relation

Λa(Λs, q) [238, 239]. In Bayesian analysis, we sample uniformly in the symmetric tidal deforma-

bilityΛs ∈ [0, 2000], whileΛa and henceΛ1 andΛ2 are obtained using the EOS-insensitive relation

Λa(Λs, q) which is tuned to a large set of EOS models [240, 241].

3.4 Bayesian Inference

To search for axions, we scan the parameter space by sampling axion fields with different masses

(see Fig. 3.1 for the masses). In addition, we also consider the massless limit ma = 0. For each

mass, we perform a Bayesian analysis of GW170817, taking into account the possible dephas-

ing caused by the axion field in the inspiral waveform. In particular, we consider a set of pa-

rameters ϑ = (γa,ϑNS), and evaluate the posterior probability density function p(ϑ|d) given the

GW170817 data d. Here ϑNS includes chirp massM, mass ratio q, coalescence time, coalescence

phase, polarization, inclination, spins of two NSs, and symmetric tidal deformability which are

defined in the usual TaylorF2 waveform template. In these analyses, we fix the luminosity distance

DL = 40.7Mpc [242] and the sky localization (RA, Dec) = (197.450374, −23.381495) [243] for

GW170817, as they have been accurately measured independently.

In order to determine the posterior distribution over the parameters ϑ, we make use of the

Markov-chain Monte Carlo algorithm as implemented in the PyCBC package [234]. For the like-

lihood calculation, we use GW170817 data version 3 released by the LIGO and Virgo scientific

collaboration on GW open science center [244], and assume a Gaussian noise model with a low
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frequency cutoff of 20Hz. We only use LIGO Hanford and Livingston data, since the signal to

noise ratio (SNR) of Virgo data is far smaller [106].

The priors on γa are chosen to be (−0.1, 0.1). The sign of γa indicates whether the axion force

is attractive or repulsive. In principle, the probability of an attractive or repulsive axion force can

be different, depending on the formation history of the binary. Nevertheless, we assume the same

prior on positive and negative γa for simplicity.
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a /GM
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Figure 3.2: Posteriors on γa of axions with different masses. λa ≡ 1/ma is the Compton wavelength.

The horizontal bars mark the 3σ standard deviations. The deviation increases rapidly at small λa

as the axion effects is suppressed by ma. The deviation is large around λa ∼ 135GM⊙ due to the

degeneracy between γa and the chirp massM. This degeneracy is partially broken (especially for

γa < 0) at large λa by the axion radiation. The posteriors eventually approach to that in massless

limit (noted as λa = ∞) since the GW170817 data is insensitive to waveform with |γa| ≤ 10−2 at

large λa.
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3.5 Results

We focus on the posteriors over γa, which are shown in Fig. 3.2 as a function of the axion Compton

wavelength. The posteriors show no significant evidence for non-zero γa, and are compatible with

γa = 0 at 3σ confidence level over the full range of axion masses sampled.

The standard deviation of γa increases dramatically when λa becomes smaller than 10 GM⊙, in

which case λa becomes less than the NS radii and the effects of the axion field is suppressed. On

the other hand, for λa ≳ rcut, where rcut ≃ 110 GM⊙ is the separation between the two NSs corre-

sponding to the 20Hz low frequency cutoff, the axion force (3.4) behaves like a Newtonian force

during the whole observed inspiral stage. Without axion radiation, γa would be highly degenerate

with the chirp masses M. This is indeed the case for λa ∼ 135GM⊙, where the axion radiation

is still not significant, and the standard deviation of γa is large due to the degeneracy between γa

andM. As λa increases, the axion radiation becomes significant and breaks this degeneracy, espe-

cially for negative γa. For positive γa, the charge difference is small if the radii of the two NSs are

comparable, thus the axion radiation is always weaker than for negative γa. This is also why the

constraints on negative γa are better than those for positive γa at large λa. The degeneracy can also

be partially broken by considering the induced charge effect studied in [116], which could improve

the constraints at large λa by a factor of roughly two.

The posteriors on γa become stable for λa > 338GM⊙. This is because |γa| is constrained

to be smaller than 10−2 for axions with mass λa > 338GM⊙. With such a small |γa|, the phase

difference is less than O(1), and hence the GW170817 data has no distinguishing power. Indeed,

we find that the posteriors with λa > 338GM⊙ eventually approach the posterior in the massless

limit. The insensitivity of posterior on large λa allows us to also impose constraints on axions with

λa > 338GM⊙.

To draw conclusions about axion fields, we project the 3σ constraints on γa onto the decay

constant fa. We combine the constraints from positive and negative γa by picking the weakest one.
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As shown in Fig. 3.1, the constraints on γa translate to a constraint of fa < 1.6×1016GeV on axions

with ma ≤ 10−11eV. On the other hand, for axions with fa > 1018GeV, the critical radius is so large

that NSs cannot trigger the phase transition. In other words, axions with fa > 1018GeV cannot

be sourced by NSs even if they exit, and are free from the NS inspiral constraint. Therefore, our

analysis indicates that GW170817 imposes constraint on axions with masses below 10−11eV by

excluding the ones with decay constants 1.6 × 1016GeV < fa < 1018GeV.

3.6 Conclusions and Discussion

Our analysis provides the first constraint on axions from NS inspirals, and excludes a large param-

eter space that has not been probed by existing experiments. As a comparison, in Fig. 3.1 we show

the 3σ constraint from the spin measurements of the stellar mass black holes (in green) [214], as

well as the 1σ constraint on axion dark matter from BBN (in red) [117]. In addition, axions can be

constrained by the absence of GWs emitted by the superradiance cloud around stellar mass black

holes [218–222]. Since this constrain is also based on the absence of the superradiance, it excludes

a similar parameter space as the one that is excluded by the spin measurements of stellar mass

black holes. We emphasize that our analysis imposes constraint on parameter space that cannot

be covered by the existing experiments. For example, superradiance can only be used to probe

axions whose Compton wavelength is comparable or slightly larger than the size of black holes.

Therefore, the superradiance constraints, from both black hole spin measurements and the GWs

emitted by superradiance clouds, cannot probe axions with very small masses due to the lack of

the corresponding heavy black holes or the low superradiance efficiency. Moreover, our analysis

does not rely on the assumption that the axions make up the dark matter, which is required for the

BBN [117] and the neutron electric dipole moment (nEDM) [206, 207] constraints. Especially,

the kinetic energy and momentum of axions with fa ≲ 1017GeV would change by more than O(1)
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near the Earth due to the finite density corrections, therefore most of the constraint from the Earth

based nEDM experiments are in question. Beside the above constraints, axions with smaller fa (in

purple region in Fig. 3.1) can be sourced by the Earth and the Sun for the same reason, and hence

are excluded [115]. Also see [245, 246] for constraints from pulsars.

We did not consider the induced charge effect, whose relative magnitude is v2 exp(−mar)/C1,2

comparing to the axion effects considered in this Letter (see Supplementary Material). This effect

could become important at the late inspirals for axions with small masses, and could potentially

extend the excluded region to 1016GeV < fa < 1018GeV for ma ≲ 10−14eV. However, including of

this effect requires further understanding on how the induced charges affect the axion radiations,

and is beyond the scope of this work.

Constraint from binary NS inspirals can be further improved if the SNR of the merger event is

enhanced, for example by stacking multiple binary NS merger events or with the next generation

GW detectors. We expect the constraint on fa to improve by a factor of
√

N if the SNR is improved

by a factor of N. In addition, assuming a similar SNR as GW170817, the constraint could also be

improved by roughly two orders of magnitude if we observe a NS-black hole merger, as in which

case the axion radiation is not suppressed by the small charge difference and there is no degeneracy

between parameters for axions with small masses. A joint analysis of the events GW190425 [188]

and GW190814 [247], which may contain NSs, is left for future work.

3.A Appendix: Supplementary Material

Flowing section 1.5.2, in the presence of the axions, the leading corrections to the GR binding

energy and radiation power are given by

Va = −
Q1Q2

4π
e−mar

r

(
1 − 16p GM

e−mar

r

)
(3.10)
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and

Pa =

(
Q̄1M2 − Q̄2M1

)2

12π
r2Ω4

(
1 −

m2
a

Ω2

)3/2

(3.11)

with

p ≡
1
M

(
Q1

Q2
p2 +

Q2

Q1
p1

)
(3.12)

and

Q̄1,2 ≡ Q1,2

(
1 − 8Gp2,1

e−mar

r

)
. (3.13)

Here Ω is the orbital frequency, r denotes the separation between the two NSs of masses M1 and

M2, and M ≡ M1 + M2 is the total mass. Comparing to Eqs. (3.4) and (3.6), we also include terms

proportional to p1,2 that could in principle arise due to the present of a generic scalar field. The

value of p1,2 is model dependent. For axions, these terms characterize the induced charge effect,

and p = (R1 + R2) /16GM when ma = 0. Thus, we expect that the induced charge effect could

become important at the late stage of inspirals for axions with small masses. However, taking into

account this effect requires further studies on how p1,2 relates to the parameters of the neutron stars

and the axion field. Therefore, we neglected the induced charge effect in our analysis.

Given the fact that the axion charge Q1,2 must be small, we neglect terms of O(Q4
1,2), O(Q2

1,2v2)

and higher when we evaluate Eq. (1.40). In this case, the phase Ψ( f ) is given by Eq. (3.8) with

Ψa = Ψ
E
a +


Ψ

P>
a x > α

Ψ
P<
a x ≤ α

, (3.14)
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where we have defined

ΨE
a =

5
64

γae−
α

x2/3

ηx5/3

−4 −
32x2/3

α
−

138x4/3

α2 −
360x2

α3 +
360x8/3

(
e

α

x2/3 − 1
)

α4 −
21
√
πx5/3e

α

x2/3 Erf
(
α1/2

x1/3

)
α5/2

 , (3.15)

ΨP>
a =

5
254951424

δq2

ηx16/3

[
−
√

x2 − α2

(
−822640α2 +

227089x6

α4 +
261342x4

α2 + 671304x2
)

+
140049x7

α4 2F1

(
−

5
6
,

1
2

;
1
6

;
α2

x2

)
+ 320x

(
1183α2 +

512x6

α4 −
684x4

α2 − 741x2
)

2F1

(
−

1
2
,−

1
3

;
2
3

;
α2

x2

)

+ 960x
(
−1183α2 −

80x6

α4 +
684x4

α2 + 741x2
)

2F1

(
−

1
3
,

1
2

;
2
3

;
α2

x2

)]
, (3.16)

ΨP<
a =

25
√
π

1536
δq2

α10/3η

Γ
(

5
3

)
Γ
(

11
3

)
x − Γ

(
7
6

)
Γ
(

25
6

)
α

Γ
(

11
3

)
Γ
(

25
6

) . (3.17)

Here Erf is the Gauss error function, 2F1 is the hypergeometric function, and

α ≡ GMma, η ≡
M1M2

M2 , x ≡ πGM f ,

δq ≡
1

4
√

2πG

(
Q1

M1
−

Q2

M2

)
. (3.18)
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Chapter 4

Constraints on

Einstein-dilation-Gauss-Bonnet gravity

from black hole-neutron star gravitational

wave events

Zhenwei Lyu, Nan Jiang, Kent Yagi

Phys. Rev. D 105, 064001 (March 2022), arXiv:2201.02543

My specific contributions: Construct EdGB waveform model through ppE formalism, which is

including EdGB corrections to GR waveform model IMRPhenomXPHM in section 4.2.2. Then

perform all MCMC simulation in section 4.3 and analysis the MCMC result in section 4.4. The

draft is written by me and polished by Kent.

Recent gravitational wave observations allow us to probe gravity in the strong and dynamical

field regime. In this paper, we focus on testing Einstein-dilation Gauss-Bonnet gravity which is mo-
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tivated by string theory. In particular, we use two new neutron star black hole binaries (GW200105

and GW200115). We also consider GW190814 which is consistent with both a binary black hole

and a neutron star black hole binary. Adopting the leading post-Newtonian correction and carrying

out a Bayesian Markov-chain Monte Carlo analyses, we derive the 90% credible upper bound on

the coupling constant of the theory as
√
αGB ≲ 1.33 km, whose consistency is checked with an

independent Fisher analysis. This bound is stronger than the bound obtained in previous litera-

ture by combining selected binary black hole events in GWTC-1 and GWTC-2 catalogs. We also

derive a combined bound of
√
αGB ≲ 1.18 km by stacking GW200105, GW200115, GW190814,

and selected binary black hole events. In order to check the validity of the effect of higher post-

Newtonian terms, we derive corrections to the waveform phase up to second post Newtonian order

by mapping results in scalar-tensor theories to Einstein-dilation Gauss-Bonnet gravity. We find that

such higher-order terms improve the bounds by 14.5% for GW200105 and 6.9% for GW200115

respectively.

4.1 Introduction

Recent updates of the gravitational-wave (GW) catalog (GWTC-3) [1–4] reports, in total, 90 grav-

itational wave events from binary black hole (BBH), binary neutron star (BNS), and neutron star

black hole (NSBH) mergers (see [248–250] for the previous catalogs). These events have been

used to obtain implications on astrophysics, cosmology, nature of black holes (BHs) and nuclear

physics (see studies on e.g. population properties of compact objects [251], Hubble tension [252],

stochastic GW background [253], black hole spectroscopy [254], equations of state of neutron

stars (NSs) [255, 256], and possible mode instabilities driven by NS tidal effects [257–259]). GW

events are also ideal sources to probe strong/dynamical fields of gravity [233, 260–263] that are

difficult to access through other experiments/observations, including table-top and solar system

experiments, or binary pulsar and cosmological observations. For example, they have been used to
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probe the mass of the graviton [260–262], scalar-tensor theories (Brans-Dicke theory, those with

scalarization phenomena proposed by Damour and Esposito-Farèse, screened modified gravity,

and the time dependence of the scalar field) [261, 264, 265], light axion fields sourced by neutron

stars [6], and dynamical Chern-Simons gravity [66, 67, 261, 266, 267]).

Scalar Gauss-Bonnet (sGB) gravity [268–271] is another theory beyond General Relativity

(GR) that has been studied extensively. In the action, a dynamical scalar field is coupled to a

Gauss-Bonnet (GB) invariant (consisting of a certain combination of curvature-squared scalars)

with a coupling constant αGB that has a dimension of length squared. Depending on what kind

of coupling one considers, one recovers a shift-symmetric theory (linear coupling) [272, 273],

Einstein-dilation Gauss-Bonnet (EdGB) gravity [274–277] (exponential coupling) motivated by

string theory and inflation [278, 279], and a theory admitting spontaneous scalarization of BHs

and NSs (quadratic coupling is an example) [280–283].

EdGB gravity has been constrained by GWs from BBHs that is summarized in Table 4.1,

together with other astrophysical constraints from a BH low-mass x-ray binary (LMXB) and NS

observations. The current upper bound on the coupling constant
√
αGB is ∼ 1km. For example,

Perkins et al. [67] combined bounds on
√
αGB from 6 selected BBH events from the GW catalogs

GWTC-1 and GWTC-2 and found the bound
√
αGB ≲ 1.7 km. These GW bounds are obtained by

taking into account the leading correction to the gravitational waveform phase that enters at −1

post-Newtonian (PN) order relative to GR due to the scalar dipole radiation [261, 272]. Such a

correction is derived within the small coupling approximation, where the coupling constant αGB is

assumed to be much smaller than the characteristic curvature scale of a system (e.g. the mass for a

BH) and one keeps only to O(α2
GB). Under this approximation, EdGB gravity effectively reduces to

shift-symmetric GB gravity with a linear coupling between the scalar field and the GB invariant.

In this paper, we derive new bounds on EdGB gravity through GWs from NSBH binaries.

Some forecasts on constraining the theory with such systems were made in [286] based on a Fisher

analysis. The authors showed that the existing bounds can be improved further for NSBH binaries
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LMXB NS
GW (BBH) GW (NSBH) (this work)

O1–O2 O1–O3 GW200115 combined
√
αGB [km] 1.9 [269] 1.29 [284] 5.6 [66], 1.85 [285], 4.3 [88] 1.7 [67], 4.5 [121], (0.4) [121] 1.33 1.18

Table 4.1: Astrophysical bounds on EdGB gravity. We show bounds from a LMXB, NSs (∼ 2M⊙

NSs), GWs from BBHs, and NSBHs (this work). The one in brackets comes from GW190814

assuming that it is a BBH, which has some uncertainty. For NSBH, we present the bound from

GW200115 and that by combining NSBHs (GW200115, GW200105, and GW190814; assuming

the last one as a NSBH is a conservative choice) and BBHs from [67].

with a sufficiently small BH mass. We here derive new bounds through a Bayesian analysis using

GW200105 and GW200115 [107]. We also consider GW190814, which is consistent with BBH or

NSBH, and find bounds on EdGB gravity for the BBH and NSBH assumptions separately. We per-

form Bayesian inference to analyze the above events by adopting IMRPhenomXPHM waveform

[81, 287, 288] (a phenomenological inspiral-merger-ringdown waveform for precessing BBHs in

GR) as our base GR waveform and include EdGB corrections to the inspiral phase. We set a high

frequency cutoff as fhigh = 0.018/M [109] (for the total mass M in a unit of second) on the strain

data, since the EdGB modifications to the waveform within the PN expansion is only valid for the

phase at the inspiral stage. We also carry out independent Fisher analyses for cross-checking the

results.

We improve previous analyses by deriving and including EdGB corrections to the waveform

phase to higher PN orders. Recently, Shiralilou et al. [119, 289] derived the waveform valid to

1PN order higher than the leading tensor/scalar non-dipole and scalar dipole emission respectively.

We update this by taking the waveform in scalar-tensor theories (in the Jordan frame) valid to 2PN

relative to the leading for each of dipole and non-dipole contributions [290]. We apply a conformal

transformation in scalar-tensor theories to go from the Jordan frame to the Einstein frame, find the

mapping between the scalar fields in scalar-tensor theories and EdGB gravity, and use the scalar

charges for BHs and NSs in the latter theory. We checked that this correctly reproduces the leading
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−1PN correction in EdGB gravity known previously [261, 272].

We find the following results. First, using the leading EdGB correction to the phase, we find

the 90% credible upper bound on
√
αGB as

√
αGB ≲ 1.33 km for GW200115. This bound is stronger

than the bound
√
αGB ≲ 1.7 km in [67] obtained by combining selected BBHs from GWTC-1 and

GWTC-2 catalogs. We also derive combined bounds by stacking posterior distributions on
√
αGB

from GW200105, GW200115, and GW190814 (conservatively assuming it is a NSBH), and BBHs

considered in [67], and find
√
αGB ≲ 1.18 km. These results are also summarized in Table 4.1. We

next study the effect of including higher PN corrections. We find that such corrections do not

make a significant difference on the bound on
√
αGB from the case with the leading correction, but

improve the bound by 14.5% for GW200105 and 6.9% for GW200115 respectively. Such a finding

is consistent with the analysis in [67].

This paper is organized as follows. We first review EdGB gravity and corrections to the wave-

form phase in Sec. 4.2. We next explain in Sec. 4.3 two methods of data analysis adopted in

this paper, namely Bayesian inference through Markov-chain Monte Carlo (MCMC) and a Fisher

analysis. In Sec. 4.4, we present our results and conclude in Sec. 4.5. We use the convention

G = c = 1 throughout the paper.

4.2 Einstein-dilation Gauss-Bonnet Gravity

Let us first review EdGB gravity within the context of sGB theory and explain corrections to the

gravitational waveform from GR.

4.2.1 Theory

We begin by presenting the action for sGB gravity [268–271]:

S =
∫

d4x
√
−g

[ R
16π
−

1
2

(∇ϕ)2 + αGB f (ϕ)R2
GB

]
+ S m . (4.1)
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Here g is the determinant for the metric gµν, R is the Ricci scalar, ϕ is a scalar field, αGB is the

coupling constant between the scalar field and the metric, S m is the matter action, and

R2
GB = RµνσρRµνσρ − 4RµνRµν + R2 , (4.2)

is the GB invariant. f (ϕ) is an arbitrary function of the scalar field that determines how it is coupled

to the metric. EdGB gravity is realized by choosing f (ϕ) = e−γϕ for a constant γ. As shown in

[291, 292], this theory can be written in a second-order, hyperbolic form that is well-posed for

numerical relativity evolution within a range of parameter space.

String theory predicts even higher order curvature terms in the action that we do include in

the analysis. To justify this and treat the theory as an effective field theory, we work in the small

coupling approximation scheme (or reduced-order scheme) where we assume that the GR contri-

bution is dominant and handle EdGB corrections as small perturbations. In particular, we define a

dimensionless coupling constant

ζ ≡
16πα2

GB

L4 , (4.3)

where L is the characteristic length of the system and assume ζ ≪ 1. This technique has been

used to find scalar charges of compact objects [272, 293, 294], corrections to the GW phase at the

inspiral stage [272], and to carry out numerical simulations of BBH mergers [295].

Let us study the theory within the small coupling approximation scheme in more detail. We

perturb field equations in αGB and solve them order by order. Then, ϕ = O(αGB) and one can expand

f (ϕ) in small ϕ as:

f (ϕ) = f (0) + f ′(0)ϕ + O(ϕ2) . (4.4)

The first term is a constant and this does not change the field equations from the GR ones as the GB

invariant is a topological term and can be rewritten as a total derivative. Thus, the leading effect

comes from the second term where the scalar field is linearly coupled to the GB invariant. For this
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reason, we consider the following action in this paper:

S =
∫

d4x
√
−g

[ R
16π
−

1
2

(∇ϕ)2 + αGBϕR
2
GB

]
+ S m , (4.5)

where we have absorbed f ′(0) into αGB. In this theory, BHs can have non-vanishing scalar charges

[272, 293] while NSs do not [294].

Current astrophysical bounds on
√
αGB are summarized in Table 4.1. Besides these, one could

use electromagnetic radiation emitted by gas or stars orbiting BHs. For example, simulations of the

reflection spectrum of thin accretion disks with present and future X-ray missions show that current

missions cannot distinguish BHs in GR and those in sGB gravity, while next-generation missions

may be able to distinguish them [296]. Another possibility is to use Solar System experiments,

though they are weaker than the astrophysical bounds in Table 4.1 by six orders of magnitude

[269, 297] as the curvature of spacetime in the vicinity of the Sun is much smaller than that of BHs

and NSs.

4.2.2 Gravitational Waveforms

We next find EdGB corrections to the gravitational waveform phase. Given that most of the signal-

to-noise ratios (SNRs) for GWs from NSBHs and (small mass) BBHs come from the inspiral

portion, we focus on the inspiral stage in our analysis. The leading correction to the phase at the

inspiral stage enters at −1PN order due to the scalar dipole radiation and was derived in [269].

Some of the higher PN corrections were recently derived in [119, 289]. Here, we identified even

higher PN corrections using the waveforms in scalar-tensor theories [290] (see Appendix 4.A for

details of the derivation).

Within the stationary phase approximation [76, 80], the waveform in the Fourier space is given

by:

h( f ) = A( f ) exp
[
iΨ( f )

]
, Ψ( f ) = ΨGR( f ) + δΨ( f ) . (4.6)
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Here A( f ) is the amplitude, ΨGR is the GR phase, and the EdGB correction to the phase δΨ (up to

O(α2
GB)) is given in a form

δΨ =
∑

i

δΨ i PN =
α2

GB

M4

∑
i

ci v−5+2i . (4.7)

Here v = (πM f )1/3 is the relative velocity of the binary constituents with GW frequency f and the

total mass M = m1 + m2, where m1 and m2 are the masses of the primary and secondary objects

of the system. The coefficients ci up to 2PN order can be found in Appendix 4.A. We note that

corrections at 1.5PN and 2PN terms contain terms that have not been computed yet and are thus

not fully complete.

4.3 Data Analysis

In this paper, we carry out two independent analyses to find constraints on
√
αGB. The first method

is a MCMC analysis based on Bayesian inference by using the publicly-available GW data. The

second method is a simpler Fisher analysis that can be used to obtain rough bounds on
√
αGB to

cross check the results from the first method.

Which GW events shall we consider? Since the EdGB corrections to the phase are proportional

to α2
GB/M

4, such corrections become larger for systems with smaller total masses. If the data

is consistent with GR, this translates to a stronger bound on EdGB gravity. Furthermore, the

leading scalar dipole radiation is proportional to the square of the difference in the scalar charges

between two objects. This means that we expect to find stronger bounds on
√
αGB for systems

with smaller mass ratios (q = m2/m1 < 1). For these reasons, we will consider the two NSBH

events, GW200105 and GW200115, from O3a, (whose total masses are 10.9M⊙ and 7.1M⊙, and

mass ratios are 0.22 and 0.26, respectively [107, 298]). We also employ GW190814 [122] whose

mass ratio is small (0.11) and the secondary mass is m2 ≈ 2.6M⊙. The system is consistent with

both BBH and NSBH, though the probability of a NS with 2.6 M⊙ may be small [299–301]. Given
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the uncertainty in the nature of the secondary object, we consider both possibilities of GW190814

being a BBH and a NSBH. We also use GW151226, a BBH with a relatively small mass, to check

our results against those found previously [66, 67].

4.3.1 Bayesian Inference

As reviewed in section 1.2.1, we set fhigh = 0.018/M [109] which is the approximate maximum

frequency at the inspiral stage. Notice that fhigh is not a fixed number but varies among different

MCMC realizations. For our analysis, the parameters are those in GR plus the EdGB coupling

constant
√
αGB.

We find posterior distributions on all parameters ϑ for GW events taken from Gravitational

Wave Open Science Center (GWOSC) [302] as follows. We perform MCMC samplings through

the PyCBC package [303, 304] and emcee pt sampler [305] with 500 walkers and 3 temps. We

analyze 32 s of data for GW200105 and 64 s of data for GW200115. Regarding the low frequency

cutoff, we set flow = 20 Hz except for LIGO Livingston for GW200115, where flow = 25 Hz was

used to avoid some excess noise localized at low frequency [107]. Regarding priors, we assume a

uniform distribution on
√
αGB with [0, 5] km for GW200105, GW200115 and GW190814 (BBH),

and [0, 15] km for GW190814 (NSBH). As for spin priors, we adopt isotropic spin distribution on

(θA, ϕA) with a high-spin prior on magnitude, a1 and a2 ≲ 0.99, for all of the MCMC analyses.

For the base waveform model in GR, we adopt IMRPhenomXPHM (that is also used in [121])

from LALSimulation package [83], which is a phenomenological model in the frequency domain

that includes spin precession and higher order multipole radiation modes. As the (l,m) = (3, 3)

mode is found to be non-negligible for GW200105, GW200115, and GW190814 [107, 122], we

include this mode in these events while we only consider the dominant (l,m) = (2, 2) mode for

GW151226. We adopt IMRPhenomXPHM model that was constructed for BBHs. As for NSBHs,

the tidal effects were found to be negligible [107] for the events considered in this paper, and thus
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it is safe to adopt the same waveform model.

4.3.2 Fisher analysis

Fisher analysis method is discussed in section 1.2.7. We follow [306] and impose a Gaussian prior,

for simplicity, with a standard deviation σ(0)
ϑi on each parameter. FIM then becomes

Γ̃i j =
1(

σ(0)
ϑi

)2 δi j + Γi j , (4.8)

the standard error can be expressed as:

√〈
(δϑi)2〉 = √

Σii , Σi j =
(
Γ̃−1

)
i j
. (4.9)

Regarding the base waveform in GR, we follow [261] and use IMRPhenomD instead of IMR-

PhenomXPHM that was used for the Bayesian inference analysis (as explained in Sec. 4.3.1). The

former is a simpler version of the latter in the sense that it is valid only for spin-aligned systems

(i.e. no spin precession) and includes only the dominant mode. This simplification is justified as

we only use the FIM analysis to cross check the results from the Bayesian inference which is more

robust. Moreover, Perkins et al. [67] showed that the difference in the waveform models between

IMRPhenomPv2 (a precessing model similar to IMRPhenomXPHM but only includes the domi-

nant mode) and IMRPhenomD changes the bound on
√
αGB only by ∼ 20%. For simplicity, we use

a sky-averaged waveform (and rescale the amplitude so that the SNR matches with the observed

one) and the parameters for this second method are as follows:

ϑ =
(
M, q, a1, a2, ϕref , tc,DL, α

2
GB

)
. (4.10)

Notice that we take α2
GB as our EdGB parameter instead of

√
αGB. This is because the former is
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GW200105 GW200115 GW190814 GW151226
combined

NSBH NSBH NSBH BBH BBH

Fisher 1.55 0.91 7.39 0.90
4.19

0.59
(2.51 [67])

Bayesian 1.90 1.33 2.72
0.37 3.43

1.18
(0.4 [121]) (4.4 [67])

small coupl.
4.40 2.94 11.4 1.27 3.81 —

limit

Table 4.2: Constraints on
√
αGB [km] at 90% credible level with Fisher analysis and Bayesian

inference from selected NSBH and BBH events. For GW190814, we consider both NSBH and

BBH possibilities due to the uncertainty in the nature of the secondary object. These constraints are

derived by using the leading phase correction at −1PN order, which are improved by approximately

7–15% if we include higher PN corrections. Our results for GW190814 (BBH) and GW151226 are

consistent with those found in previous work shown in brackets. The last column shows the bound

by combining posteriors from GW200105, GW200115, GW190814 (NSBH), and the combined

posterior from selected BBHs from GWTC-1 and GWTC-2 catalogs obtained in [67]. The last row

shows the upper limits on
√
αGB that is valid within the small coupling approximation (Eq. (4.11)).

Observe that all the bounds from the Fisher and Bayesian analyses are within these upper limits,

showing the validity of our results.

what enters directly in the waveform and if one chooses to use the latter, the Fisher matrix becomes

singular when we take the fiducial value as αGB = 0 (for the fiducial values of other parameters,

we use those reported by LVC and set ϕref = tc = 0). We impose a Gaussian prior [306] with the

standard deviation of σa1 = σa2 = 1 and σϕref = π.
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4.4 Results

4.4.1 Leading Correction

We now present our results. Constraints on
√
αGB from various GW events with Bayesian and

Fisher analyses are summarized in Table 4.21. Here, we only included the leading −1PN correc-

tion to the waveform phase. Observe that the bounds from the two analyses for each GW event

agree within a factor of ∼ 3. Since the phase corrections are derived within the small coupling

approximation, we need to check whether the bounds presented here satisfies this approximation.

Following [67], we require

16π
α2

GB

m4 ≤ 0.5 , (4.11)

where m is the smallest length scale in the binary. We choose m = m2 (the mass of the smaller

BH) for BBH while m = m1 (the mass of the BH) for NSBH2. We present in Table 4.2 the upper

limit on
√
αGB that satisfies the above bound. Notice that all the Fisher and Bayesian bounds satisfy

the small coupling approximation and thus are reliable. Notice also that our Fisher and Bayesian

results for GW151226 and GW190814 (BBH) are consistent with those in [67, 121]3. Our results

are also roughly consistent with the forecast made in [286] for bounds on
√
αGB with NSBHs

derived through a Fisher analysis. For example, the bound for a BH mass of 8M⊙ and an SNR of

8 (similar to GW200115 where the BH mass is 5.7M⊙ and an SNR of 11.4 [107]) was found to be
√
αGB ≲ 0.4km with advanced LIGO’s design sensitivity which has a slightly different shape for

the noise curve than that with O3 detectors.

The most stringent constraint comes from GW190814 (BBH) though the event is still consistent

1Notice that there are some differences in Bayesian and Fisher analyses, such as the waveform modeling (Phe-
nomXPHM vs IMRPhenomD), sGB parameter (

√
αsGB vs α2

sGB) and its prior (uniform vs Gaussian). This may explain
why Fisher bounds are weaker than the Bayesian ones in some cases.

2For simplicity, we use the mass estimates found by LVC assuming GR while Ref. [67] used the median values of
the masses from posterior distributions including

√
αGB.

3Perhaps a small discrepancy in the results for GW190814 (BBH) is due to the fact that we vary the coalescence
time tc in our Bayesian inference while it seems that Ref. [121] fixed this parameter (at least the posterior distribution
on this parameter is not shown in Appendix A of [121]).
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with NSBH and thus such a bound may not be robust. The reason why the bound on
√
αGB is

stronger for BBH than NSBH for GW190814 can be understood as follows. First, notice that the

leading correction to the phase is proportional to (m2
1s2 − m2

2s1)2/M4 (see Eq. (4.18)). Second, let

us consider the case m1 ≫ m2 for simplicity. In this case, we find c−1 ∝ 1 for BBH while c−1 ∝ q4

for NSBH (the scalar charge s2 is 0 for a NS). Thus, the EdGB correction can be much larger for

BBH than NSBH.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
GB (km)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

PD
F

GW200105
GW200115
GW190814(NSBH)
Combined (BBH)
Combined (NSBH+BBH)

Figure 4.1: Posterior probability distributions for
√
αGB from selected GW events. We also show

an upper bound on
√
αGB at 90% credible level for each event as vertical lines, which indicates

the result is consistent with GR. The posteriors are found by including only the leading EdGB

correction to the phase at −1PN order.

Besides constraints from the events GW151226 and GW190814 (BBH) which have already

been derived in the previous works [67, 121], we here derived bounds from NSBHs (GW200105,

GW200115, and GW190814) for the first time. We present the posterior distributions for
√
αGB for

these events in Fig. 4.1. The bound from GW200115 is
√
αGB ≲ 1.33 km, which is stronger than the

85



bound obtained in [67] by stacking several BBHs from GWTC-1 and GWTC-2 catalogs (
√
αGB ≲

1.7 km). Observe that the posterior distributions are quite different from Gaussian centered at
√
αGB = 0, which partially explains the difference between the Fisher and Bayesian results (see also

TABLE II, FIG. 2, and FIG. 3 in [67]).

Furthermore, we derive combined bounds by multiplying normalized posterior histograms on
√
αGB

4 from GW200105, GW200115, GW190814 (with the NSBH assumption that gives us a

more conservative bound), and combined BBH bounds in [67]. We found a stringent bound of
√
αGB ≲ 1.18 km through the Bayesian analysis as shown in Table 4.2 and Fig. 4.1.

4.4.2 Effects of Higher PN Corrections

We next study the effect of higher PN corrections to the waveform phase by including PN correc-

tions up to 2PN as presented in Appendix 4.A. Perkins et al. [67] carried out a similar analysis

though such higher PN corrections were not available at that time. Thus, the authors considered

three different ways to parameterize the unknown 0PN correction (which is 1PN higher than the

leading −1PN correction) based on the functional forms at 1PN order in GR and the leading −1PN

EdGB corrections. They then marginalized over such a parameter and concluded that higher PN

corrections do not affect the results much and the bounds derived with the leading correction are

robust. We check this outcome by using explicit forms of the higher PN corrections in EdGB

gravity.

Figure 4.2 presents posteriors on
√
αGB for GW200105 and GW200115 with and without higher

PN corrections, while Fig. 4.3 shows corresponding corner plots on
√
αGB, M and q. Notice

that the inclusion of the higher PN corrections does not affect the posteriors much, especially for

GW200115. The 90% credible upper bound on
√
αGB improves from the case with the leading

correction by 14.5% for GW200105 and 6.9% for GW200115 respectively. These findings are

4This corresponds to the second method discussed in Sec. IIIE of [67] for obtaining combined bounds.
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Figure 4.2: A comparison of the posteriors on
√
αGB from the leading −1PN correction and those

including higher PN corrections (up to 2PN) for GW200105 (top) and GW200115 (bottom). Ob-

serve that the 90% upper bounds on
√
αGB are improved by 14.5% for GW200105 and 6.9% for

GW200115 respectively.

consistent with those in [67] and a very recent work [307] that investigated the improvement one

obtains when including higher PN order terms.

4.5 Conclusions and Discussion

In this paper, we derived bounds on EdGB gravity using GWs from NSBH binaries. Using the

leading PN correction, we found
√
αGB ≲ 1.33 km as a 90% credible limit from GW200115, which

is stronger than the bound in [67] found by combining selected BBHs from GWTC-1 and GWTC-
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Figure 4.3: Posterior probability distributions for the EdGB coupling constant
√
αGB, the chirp mass

M, and the mass ratio q from GW200105 (left) and GW200115 (right). We compare the marginal

posterior distributions for the case with the leading EdGB correction at −1PN order (blue) and

the case including higher PN orders up to 2PN (orange). The purple shaded regions indicate the

posterior probabilities of the latter case and the solid lines represent the 90% credible regions for

the two cases. The vertical dashed lines show the one-sided 90% confidence interval for
√
αGB and

the two-sided 90% credible intervals forM and q.

2 catalogs. We also derived combined bounds by stacking posterior distributions on
√
αGB from

GW200105, GW200115, GW190814 and the combined posteriors from selected BBHs in [67],

and found
√
αGB ≲ 1.18 km. We further derived higher PN corrections in the waveform phase up

to 2PN order from the results in scalar-tensor theories [290]. Using these, we improved bounds on
√
αGB for GW200105 and GW200115 from the case with leading PN correction alone by 14.5%

and 6.9% respectively.

The analysis carried out here can easily be extended to probe other theories of gravity. We

looked at constraining dynamical Chern-Simons gravity [308], which is a parity-violating quadratic

gravity whose leading PN correction to the phase is derived in [309]. Similar to the case with BBHs

[66, 67, 261], we were not able to find meaningful bounds that satisfy the small coupling approxi-
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mation. For future work, one could consider e.g. sGB gravity with the coupling function f (ϕ) ∝ ϕ2

or f (ϕ) ∝ 1 − e−6ϕ2
that admits spontaneous scalarization of BHs [280, 282].

4.A Appendix: EdGB Corrections to Gravitational Waveforms

In this appendix, we explain how to map the waveform (for non-spinning BBHs) in scalar-tensor

theories [290] to that in EdGB gravity. The former is valid to 2PN order higher than the leading

for each of tensor and scalar emission.

The waveform in scalar-tensor theories is derived in the Jordan frame while EdGB gravity is in

the Einstein frame. Therefore, we first turn the former into the Einstein frame. This can be realized

by using the mapping provided in Appendix A of [290]. After this transformation, the waveform

is given in terms of the scalar charge αA and its derivative βA for the Ath body.

The next step is to find these charges in EdGB gravity and substitute this into the waveform.

We can compute these following [310] which uses a slightly different convention for sGB gravity:

S =
1

16π

∫
d4x
√
−g

[
R − 2(∇φ)2 + αGB f̄ (φ)R2

GB

]
+ S m . (4.12)

One can perform the following rescaling in the scalar field φ and the identification of the function

f̄ (φ) to recover the action in Eq. (4.5):

f̄ (φ) = 2
√

16πφ , φ =

√
16π
2

ϕ . (4.13)

From this, αA and βA for a non-rotating BH to leading order in αGB are given by:

αBH
A = −

αGB f̄ ′(φ0)
2m2

A

= −

√
16παGB

m2
A

, (4.14)

βBH
A = −

α2
GB f̄ ′(φ0)2

2m2
A

= −
32πα2

GB

m2
A

, (4.15)
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where φ0 is the asymptotic value of the scalar field φ at infinity. When substituting these into the

waveform expression, the terms with βA enter at O(α4
GB) and are negligible. For αA, we add the spin

dependence as:

αBH
A = −

√
16πsAαGB

m2
A

, (4.16)

where the spin dependent factor is given by: [261, 294]

sA = 2

√
1 − χ2

A − 1 + χ2
A

χ2
A

. (4.17)

This reduces to sBH
A → 1 in the limit χA → 0. For NSs, αNS

A = O(α3
GB) and is negligible while βNS

A has

not been computed. Though we expect the αGB dependence to be the same as BH and ignore such

terms in the waveform.

Using these charge expressions in the dominant harmonics (ℓ = m = 2) of the waveform and

keeping only to O(α2
GB), EdGB corrections to the waveform can be expressed as in Eq. (4.7) with

the coefficients given as follows:

c−1 = −
5π
448

(m2
1s2 − m2

2s1)2

η5M4 , (4.18)

c0 = −
5π

43008
(659 + 728η)(m2

1s2 − m2
2s1)2

η5M4 +
5π

8600
s1s2

η3 , (4.19)

c0.5 =
75π2

448
(m2

1s2 − m2
2s1)2

η5M4 , (4.20)

c1 = −
5π

48384
(m2

1s2 + m2
2s1)2 (535 + 924η)
η5M4 −

5π
2016

s1s2(743 + 924η)
η3

90



−
25π
576

(m2
1s2 − m2

2s1)2

η5M4

[12497995
1016064

−
11(m1 − m2)(m2

1s2 + m2
2s1)

2M(m2
1s2 − m2

2s1)
+

15407η
1440

+
165η2

16

]
,

(4.21)

c1.5 =
π2

2
(m2

1s2 − m2
2s1)2

η5M4 −
3 f GB

3

32η
, (4.22)

c2 =
5π

32514048
1

η5M5

[
(m5

1s2
2 + m5

2s2
1)(−4341025 + 65553264η − 684432η2)

+ ηM2(m3
1s2

2 + m3
2s2

1)(20044511 + 65553264η − 684432η2)

+ 42η2M5s1s2(1029619 − 36387504η − 7970256η2)
]
−

15 f GB
4

64η
. (4.23)

Here η ≡ m1m2/M2 is the symmetric mass ratio while f GB
3 and f GB

4 represent our ignorance of

the correction to the tensor non-dipole emission in EdGB gravity at 1.5PN and 2PN orders5. The

above corrections can be mapped to the parameterized post-Einsteinian (PPE) framework [87, 88,

120] of

δΨ =
∑

i

βPPE
i v−5+2i , (4.24)

with

βPPE
i =

α2
GB

M4 ci . (4.25)

The leading −1PN term (c−1 or βPPE
−1 ) derived here agrees with those found in [261, 272].

Figure 4.4 presents each PN correction term in the phase against the GW frequency f for

GW200115, together with the leading GR term. We chose
√
αGB = 1.33km that is the 90% credi-

ble limit found through our Bayesian inference in Table 4.2. Notice that the EdGB corrections are

subdominant to GR by at least an order of magnitude. Notice also that the leading EdGB correction

5We have replaced f ST
i in [290] to (α2

GB/M
4) f GB

i for i = 3, 4.
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at −1PN order dominates higher PN contributions at f ≲ 200Hz and the latter becomes only impor-

tant when the frequency becomes high (though the noise becomes larger as the frequency becomes

higher), which explains why higher PN corrections do not affect the bound on
√
αGB much. It is

interesting to note that for f ≳ 200Hz, the EdGB phase is dominated by the contribution at 1.5PN

order, though the phase is still incomplete at this order (we have set the unknown contributions f GB
3

and f GB
4 to 0 in Fig. 4.4).
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Figure 4.4: Comparison of EdGB corrections to the phase entering at different PN orders as a

function of the GW frequency. We also present the leading phase in GR and the contribution from

all of the EdGB corrections combined. For each contribution, we show the phase relative to that at a

reference frequency chosen to be 20Hz. We chose (m1,m2) = (5.9, 1.4)M⊙ and (χ1, χ2) = (0.31, 0),

corresponding to GW200115, and
√
αGB = 1.33 km that is the 90% credible limit found through

our Bayesian inference (see Table 4.2).

Let us comment on up to which PN order the above waveform corrections are complete. The

αGB dependence in the above corrections enter only through the scalar charges αA. There are other
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contributions to the waveform where αGB appears explicitly though such contributions enter at 3PN

order and are negligible for our purpose 6. For non-spinning binaries, they are complete up to 1PN

order. The expressions at 1.5PN and 2PN include currently unknown f GB
3 and f GB

4 but they also have

other missing contributions, such as the scalar dipole radiation at 1.5PN and 2PN orders (which

correspond to 2.5PN and 3PN relative to the leading −1PN contribution) and the correction to the

binding energy or Kepler’s law at 3PN that couples to the −1PN dipole radiation and enter at 2PN

in the waveform. For spinning binaries, the waveform is complete only up to 0PN order as the

effect of spins are only included through the scalar charges αA. Missing contributions include e.g.

a spin-orbital coupling in the binding energy at 1.5PN order that couples with the leading dipole

radiation to enter at 0.5PN in the waveform.

We end by comparing the 0PN corrections found here with different functional forms consid-

ered in [67]. Using Eqs. (4.18) and (4.19), the 0PN correction to the phase can be expressed

as:

δΨ0PN =
659 + 728η

96
v2δΨ−1PN +

5π
16

s1s2

η3

α2
GB

M4 v−5 . (4.26)

The first term is similar to one of the functional forms considered in [67]:

δΨ(PNSY,1)
0PN =

5
756

(743 + 924η)γ u2 δΨ−1PN , (4.27)

where γ is a constant that does not depend on binary parameters, u ≡ (πM f )1/3 and the η depen-

dence is taken from that in the phase at 1PN order in GR. The η dependence in the two expres-

sions,however, are different. The second term in Eq. (4.26) is similar to another functional form

considered in [67]:

Ψ
(PNSY,2)
0PN = 16π

α2
GB

M4 γu−5 , (4.28)

though again, the expressions are different. This is because if one maps the second term in Eq.

6We count the PN order in powers of v/c while Shilarirou et al. [119, 289] counts in powers of 1/c. With the latter
counting, the αGB dependence other than scalar charges enters at 1PN.

93



(4.26) to Eq. (4.28), γ depends on binary parameters through η and sA.
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Part II

The Hybrid Waveform for Compact

Binaries
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Chapter 5

The Hybrid Waveform

Xuefeng Feng, Zhenwei Lyu, Huan Yang

accepted by PRD, arXiv:2104.11848

My specific contributions: Calculate all tidal phases of EOB waveform model and numerical

relativity simulation in section 5.4.2. Discuss neutron star tidal effect and equation of state with

Xuefeng.

We consider the motion of nonspinning, compact objects orbiting around a Kerr black hole

with tidal couplings. The tide-induced quadrupole moment modifies both the orbital energy and

outgoing fluxes, so that over the inspiral timescale there is an accumulative shift in the orbital and

gravitational wave phase. Previous studies on compact object tidal effects have been carried out

in the Post-Newtonian (PN) and Effective-One-Body (EOB) formalisms. In this work, within the

black hole perturbation framework, we propose to characterize the tidal influence in the expan-

sion of mass ratios, while higher-order PN corrections are naturally included. For the equatorial

and circular orbit, we derive the leading order, frequency dependent tidal phase shift which agrees

with the Post-Newtonian result at low frequencies but deviates at high frequencies. We also find
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that such phase shift has weak dependence (≤ 10%) on the spin of the primary black hole. Com-

bining this black hole perturbation waveform with the Post-Newtonian waveform, we propose

a frequency-domain, hybrid waveform that shows almost comparable accuracy as the EOB wave-

form in characterizing the tidal effects, in a comparison with limited number of numerical relativity

simulations. Further improvement is expected as the next-to-leading order in mass ratio and the

higher-PN tidal corrections are included. This hybrid approach is also applicable for generating

binary black hole waveforms.

5.1 Introduction

Inspiraling and coalescing compact-object binary systems, including black holes and/or neutron

stars, are important sources of ground-based gravitational waves (GW) detectors, e.g. LIGO[311]

and Virgo[312]. Up to the O3 observation run, Advanced LIGO and Virgo have detected more

than thirty binary black hole mergers, two binary neutron star mergers and one possible black

hole-neutron star merger. The number of events is expected to increase significantly as Advanced

LIGO and Virgo reach their design sensitivities.

Constructing GW waveform models is crucial for efficiently detecting these binary systems

as well as accurately estimating their source properties based on the observation data. Since it is

computationally expensive to numerically solve Einstein’s equation (and associated hydrodynam-

ical equations if a neutron star is involved) for the binary evolution across the entire observation

frequency band, especially with the large parameter space needed to characterize these binaries,

several (semi)-analytical or phenomenological methods[313–315] have been developed to comple-

ment the information from numerical simulations and generate reliable waveforms [316–319].

These methods generally follow different avenues of analytical approximations in modelling

the binary black hole inspiral waveform. For example, the low-frequency inspiral dynamics and as-

sociated waveform are treated within the Post-Newtonian (PN) framework in the “Phenom” wave-
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form series [316, 320]. At higher frequency certain calibrations with numerical waveforms are

performed to bridge the gap between the PN inspiral description with the black hole ringdown.

On the other hand, the PN expansion is restructured in the Effective-One-Body formalism [123]

through a mapping to an effective spacetime of the relative motion, so that the resumed PN results

may be better attached to the strong-gravity regime. Calibration with numerical relativity data has

also been used to improve the accuracy of Effective-One-Body (EOB) waveforms.

When the mass ratio between the secondary and the primary black hole is small, we can view

the smaller black hole as a particle moving in a perturbed spacetime of the primary black hole,

where the metric perturbation and associated dynamical effects can be evaluated in a systematic ex-

pansion in the mass ratio. This black-hole-perturbation approach is the leading solution to produce

waveforms of extreme mass-ratio inspirals (EMRIs), which are important sources for space-borne

GW detectors such as LISA [321]. Given this expansion scheme, it is then natural to ask what is

its regime of applicability in mass ratios? Interestingly, recent studies [319, 322–334] on this ques-

tion have revealed a rather surprising result: the EMRI-based waveform may be even applicable

for equal-mass binaries. In particular, for the equatorial and circular orbit, the GW phase can be

written as the post-adiabatic expansion[319]

ψ(ω) =
ψ−1(ω)
η
+ ψ0(ω) + ηψ1(ω) + ... , (5.1)

where ω is the orbital angular frequency and η = m1m2/(m1 + m2)2 is the symmetric mass ratio,

the function ψi(ω) is the coefficient of the order ηi term. When the mass ratio is extreme, the

symmetric mass ratio is almost the same as the mass ratio q = m1/m2 ≤ 1. The comparison with

numerical relativity waveforms shows that, across the entire inspiral frequency range, high order

terms (starting from ψ2 in the expansion) only contribute ≤ 2 radians phase shift even for equal-

mass black hole binaries (with η = 1/4) for most of the frequency range, except near the transition
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regime from inspiral to plunge 1. This observation indicates that Eq. (5.1) may be a fast-converging

series even for equal-mass binaries, so that the first several terms may suffice to produce accurate

waveforms.

In this work, we adopt the black hole perturbation point of view, and evaluate the induced

quadrupole moment of a neutron star moving in a perturbed spacetime of the primary black hole.

In the local rest frame (or more precisely, within the “asymptotically Cartesian and mass centered”

coordinates [336] 2) of the neutron star.

In the black hole perturbation picture, the metric perturbation generated by the less massive

black hole can be expanded in power laws of the mass ratio h = h1q + h2q2 + ..., with q = m1/m2,

and the less massive black hole m1 can be viewed as moving along geodesics of the spacetime with

metric gKerr+h [338]. This mass ratio expansion justifies the mass ratio expansion of ψ in Eq. (5.1).

When the less massive object is a neutron star, its motion can be viewed as a perturbed geodesic

of the spacetime gKerr + h. This deviation from geodesic mainly comes from multipole interaction

between the star and its environmental tidal field, while h is sourced by the monopole (“the point-

mass” piece), quadrupole, and all higher order multipole parts of the stress-energy tensor. For

simplicity, we truncate the multipole expansion at the quadrupole order and use the Mathisson-

Papapetrou-Dixon prescription [339] to construct the stress-energy tensor of the star. To the linear

order in λ, the tidal energy of the object and the tidal induced gravitational radiation flux are all 1/q

or 1/η order lower than those of a point mass, so that the correction to the gravitational phase starts

at q−2 or η−2 order. Both q and η are eligible choices of expansion parameters in the small mass

ratio limit, but they will give rise to rather different result as we truncate the series and apply it in

the comparable mass ratio limit. For binary black hole waveforms it seems η is a more efficient

expansion parameter [319], but for tidal corrections the optimal choice is yet to be determined.

1It is expected that an additional correction of order η−1/5 must be introduced to account for the transition effects
[124, 335].

2In the multipole expansion picture discussed in [337], the central object can be fully relativistic. As the multipole
moments are derived in the asymptotic zone, Eq. (1.44) can be viewed as the definition for the relativistic Love number
λ.
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As decribrd in section 1.6, if the companion is also a neutron star, its tidal contribution to

the waveform can be obtained by replacing q by q−1, λ1 by λ2 and keeping η to be the same in

Eq. (1.54). As a result, the total tidal correction is

ηψBP =ηψBP,1 + ηψBP,2

=λ1(q−1ψ(−1)
BP + ψ

(0)
BP +

∑
n≥1

ηnψ(n)
BP)

+ λ2(qψ(−1)
BP + ψ

(0)
BP +

∑
n≥1

ηnψ(n)
BP) . (5.2)

Strictly speaking, if both compact objects are neutron stars, there is no horizon absorption of

the gravitational wave flux. Such effect enters the dynamics at 2.5 relative PN order for rotating

black holes and 4PN for non-rotating black holes [340]. The overall contribution to the phase is

less than 0.1 rad for the point-mass motion terms, which means for the tidal correction it should

be even smaller[341]. We shall neglect this effect in the waveform construction. Notice that

ψ(0)
BP(ω) becomes the leading order term for star “2”. In fact, it can be evaluated by computing the

deformation of a star by an orbiting point mass, and then determining the extra energy change and

gravitational wave flux due to the star deformation. This offers an alternative (and likely easier)

way to compute ψ(0)
BP(ω). Such calculation will be carried out in a follow-up study of this work,

where more systematic comparison with numerical waveforms will be provided.

The paper is organized as follows. In Section II, we derive the explicit equations of motion of

an extended body with nonzero quadrupole moment moving on a circular and equatorial orbit in

the Kerr spacetime. A series of conserved quantities discussed here. In Section III, we review the

Teukolsky formalism where the asymptotic behavior of the homogeneous solution, waveforms and

fluxes, and the quadrupole source term are shown. In Section IV, we construct the hybrid waveform

and compare it with numerical relativity waveforms, as well as the EOB waveform. We summarize

in Section V. Throughout this paper, we adopt geometrical units, G = c = 1, where G denotes the
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gravitational constant and c the speed of light, respectively. The metric signature is (−,+,+,+)

5.2 Conservative orbital motion

In this section, we consider a nonspinning body (with nonzero quadrupolar moment) moving in

the Kerr spacetime, focusing on the case of circular, equatorial orbits. Without including the

gravitational radiation reaction, the orbital motion is conservative and easily solvable. We focus

on the conservative piece of motion in this section, and leave the discussion on radiative effects to

Sec. 5.3.

The Boyer-Lindquist coordinates (t, r, θ, ϕ) are used in the analysis, in which the Kerr metric

takes the following form:

ds2 = −

(
1 −

2Mr
Σ

)
dt2 −

4aMrsin2θ

Σ
dtdϕ

+
Σ

∆
dr2 + Σ dθ2

+sin2θ

(
r2 + a2 +

2a2Mrsin2θ

Σ

)
dϕ2, (5.3)

where M is the mass of black hole, a is the spin parameter with |a| ≤ M, and

∆ = r2 − 2Mr + a2, Σ = r2 + a2cos2θ. (5.4)

The Kerr spacetime has two Killing vector fields given by ∂t and ∂ϕ.

5.2.1 Equations of motion

The motion of a test body with multipolar structure is discussed in detail in [342]. Following the

same formalism, considering the influence of quadrupole moment-curvature coupling, the equation
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of motion of a spinning extended body reads

Dpa

dτ
= −

1
2

RabcdubS cd −
1
6
∇aRbcdeJbcde, (5.5)

DS ab

dτ
= 2p[aub] +

4
3

R[a
cdeJb]cde (5.6)

where ua denotes the 4-velocity of the body along its world line (normalized to uaua = 1), τ is

an affine parameter of the orbit, Rabcd denotes the Riemann tensor of a Kerr spacetime, pa is the

momentum, and Jabcd is the quadrupole tensor which obeys the following symmetries:

Jabcd = J[ab][cd] = Jcdab, (5.7)

Jabcd + Jbcad + Jcabd = 0. (5.8)

If we only consider the gravito-electric tidal field, neglecting the gravito-magnetic tidal field and

quadrupole deformations induced by the spin, the induced quadrupole moment is:

Qab = −λEab, (5.9)

where λ is the tidal Love number and Eab =
1

m12 Racbd pc pd is the tidal tensor of the spacetime. In

addition, the tidal quadrupole deformations Jabcd is related to Qab by

Jabcd = −
3m0

m3
1

p[aQb][c pd], (5.10)

where

m2
1 = −pa pa ,

m0 = −paua ,
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In this paper, we suppose that the extended body has no spin, then the 4-momentum can be obtained

from (5.6):

pa = m0ua +
4
3

ubR[a
cdeJb]cde. (5.11)

The difference between m0 and m1 is at higher multipole order than the quadrupole[342]. As

a result, we shall not distinguish m0 from m1 in this work, as we only consider effects by the

quadrupole moment. The stress-energy tensor of the test body can be written in the following

form:

T ab =

∫
dτ

[
u(a pb) δ(4)

√
−g
+

1
3

Rcde
(aJb)edc δ(4)

√
−g

−
2
3
∇d∇c

(
Jd(ab)c δ(4)

√
−g

)]
. (5.12)

5.2.2 Conserved Quantities

A test particle moving in the Kerr spacetime has four conserved quantities: energy, angular mo-

mentum along the symmetry axis, the Carter constant and its rest mass. As a result, its motion is

integrable for generic geodesic orbits. When the internal quadrupole moment is included, we can

still construct conserved quantities for extended bodies in the Kerr spacetime based on the Killing

vector fields. According to [343, 344], the quantity

Qξ = paξ
a (5.13)

is conserved if ξa is a Killing vector, ∇(bξa) = 0. We then decompose energy and angular mo-

mentum as E = E0(r) + Et(r) and J = J0(r) + Jt(r) , where Et(r) and Jt(r) are proportional to the

tidal Love number λ. As only the first order tidal effects included, we just need to substitute E0(r)

and J0(r) into Eq. (5.10) to obtain the momentum p and quadrupole moment Jdabc .For the Kerr
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spacetime, there are two killing fields ∂t, ∂ϕ, which lead to

E = − pt

=
1
r
(
2Mauϕ − 2Mut + rut) − 9M2λ

m5
0r10

(
J0 − E0a

)
×

(
E0J0 − E2

0a + m2
0a

)(
2J2

0 − 4E0Ja + 2E2
0a2 + m2

0r2) ,
(5.14)

J = pϕ

=
1
r
[
2Maut − uϕ

(
2Ma2 + ra2 + r3

) ]
+

9M2λ

m5
0r10

(
J0 − E0a

){
2J4

0 − 6E0J3
0a + m2

0(a2 + r2)

+ J2
0[6E2

0a2 + m2
0(2a2 + 3r2)]

− J0[2E3
0a3 + E0m2

0a(4a2 + 5r2)]
}
. (5.15)

As both E, J are conserved and the geodesic contributions E0, J0 are not, one can obtain E0, J0

at any stage of the orbits as functions of E, J from the above equations. Notice that both m0 and

m1 are no longer constant with the presence of quadrupole deformation. In fact, as shown in [344],

the following mass-like quantity µ as

µ = m0 +
λ

4
EabEab + O(λ2) (5.16)

is approximately constant if we neglect the second order tidal effects. It is straightforward to show

that Eq. (5.16) implies

m0

µ
=1 −

3M2λ

2m5
0r10

[
m4

0r4 + 3m2
0r2(J0 − E0a)2

104



+ 3(J0 − E0a)4] + O(λ2) . (5.17)

5.2.3 Orbital description

In the Kerr spacetime, the motion of a generic test body with internal quadrupolar moment is no

longer separable as there are only three conserved quantities: E, J and µ. However, for equatorial

orbits the inclination angle being a constant: θ = π/2, and the motion in r and ϕ directions are

still separable. In particular, if the orbit is circular, all conserved quantities can be expressed as

functions of r. With this understanding, we shall explicitly write down the orbital equation of

motion up to linear order in λ for equatorial orbits. According to the expressions for E, J in (5.14),

(5.15) and m2
1 = m2

0 = −pa pa, they are

( dt
dτ

)
=

E
m0r2

[ (r2 + a2)2

∆
− a2

]
+

aJ
m0r2

(
1 −

r2 + a2

∆

)
+ F0t(r, a, E, J)

:= F00(r, a, E, J) + F0t(r, a, E, J), (5.18)(dϕ
dτ

)
=

J
m0r2 +

aE
m0r2

(r2 + a2

∆
− 1

)
−

a2J
m0r2∆

+ F3t(r, a, E, J)

:= F30(r, a, E, J) + F3t(r, a, E, J), (5.19)

(dr
dτ

)2

=

[
E(r2 + a2) − aJ

]2

m4
0r4

−
∆
[
r2 + (J − aE)2]

m4
0r4

+ F1t(r, a, E, J)

:= F10(r, a, E, J) + F1t(r, a, E, J), (5.20)
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where

F0t(r, a, E, J) = −
9M2λ

m6
0r11∆

(
J − Ea

)[
2J2 − 4EJa + 2E2a2 + m2

0r2
][

2J2Ma + E2a(2Ma2 + a2r + r3)

−EJ(4Ma2 + a2r + r3) − m2
0ar(a2 − 2Mr + r2)

]
, (5.21)

F3t(r, a, E, J) =
9M2λ

m6
0r11∆

(
J − Ea

)[
2J2 − 4EJa + 2E2a2 + m2

0r2
][
− 2E2Ma2 + EJa(4M − r)

+J2(−2M + r) + m2
0r(a2 − 2Mr + r2)

]
, (5.22)

F1t(r, a, E, J) =
18M2λ

m7
0r13

(
J − Ea

)2[
2J2 − 4EJa + 2E2a2 + m2

0r2
][
− 4EJMa + J2(2M − r) − m2

0r∆

+E2(2Ma2 + a2r + r3)
]
. (5.23)

The terms F00, F10, F30 represent the geodesic motion in the Kerr spacetime, and F0t, F1t, F3t ac-

count for the leading-order tidal correction 3. Strictly speaking, the adiabatic tide approximation

(Eq. (5.9)) breaks down for eccentric orbits as the environmental tidal tensor Eab varies on the

orbital timescale. The f-mode excitation and evolution have to be included into the equations of

motion [345]. However, as the main purpose of this paper is to generate waveforms for circu-

lar orbits, where the adiabatic approximation still holds, we can view Eq. (5.18), Eq. (5.19) and

Eq. (5.20) as effective equations of motions that are introduced as intermediate steps to find the

circular orbits.

In the remaining part of the paper, for the sake of convenience, we introduce the following

dimensionless variables:

r →
r
M
, J →

J
Mµ

, E →
E
µ

(5.24)

3There are no F20, F2t terms here as the motion in the θ direction is not present for equatorial orbits.
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to replace the unnormalized variables. In this convention, we can rewrite Eq. (5.20) in the form:

(1
r

dr
dτ

)2

= αE2 − 2β
J
r

E + γ
J2

r2 − δ
m2

0

µ2 , (5.25)

where

α = 1 +
a2(2 + r)

r3 , β =
2a
r2

δ = 1 +
a2 − 2r

r2 , γ = −1 +
2
r
. (5.26)

Therefore, we know that Eq. (5.25) describes a one-dimensional motion within a potential well.

For circular orbits, we require the radial velocity to be zero at the equilibrium radius and the radial

acceleration to be zero at the same location. Based on these two requirements, we can obtain the

conserved E, J as functions of the equilibrium radius r:

E(r) =
1 − 2v2 + av3

√
1 − 3v2 + 2av3

+λ
(
4r
√

1 − 3v2 + 2av3
)−1[

a2g(r) + 2a f (r)v

+
(
− 2 + r

)(
2 f (r) + g(r)r

)]
, (5.27)

J(r) =
1 − 2v2 + av3

√
1 − 3v2 + 2av3

+λ
[
4
(
1 − 3v2 + 2av3)]−3/2 1

r5/2

{
2a4g(r)

+a3v
[
3g(r)(r − 1)r + 4 f (r)

]
+a2[g(r)r((r − 1)r − 4) + 2 f (r)(r − 7)

]
+3a

[
g(r)(r − 2)(r − 1)r + 4 f (r)

]√
r

+(r − 3)r2[g(r)(r − 2)r + 2 f (r)
]}
, (5.28)
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where

v =

√
1
r
,

f (r) =
3λ

r8 (2av + r − 3)2

[
− 3a4 +

6a3

v
− a2r(3r + 1)

+
2a
v5 − r2

(
r2 − 3r + 3

) ]
, (5.29)

g(r) = −
18λ

r9 (2av + r − 3)2

[
− 5a4 +

12a3

v
− 2a2r(2r + 3)

+
4a
v5 − r2

(
r2 − 2r + 2

) ]
. (5.30)

In order to compute the gravitational wave fluxes, we also need to evaluate the orbital frequency

(only prograde orbits are considered here):

Ωϕ =
dϕ
dt
=

dϕ/dτ
dt/dτ

=
1

r3/2 + a

{
1+

F3t(r, a, E, J)
F30(r, a, E, J)

−
F0t(r, a, E, J)
F00(r, a, E, J)

−

(EtJ0 − E0Jt)r2∆[
2aE0 + J0(−2 + r)

][
− 2aJ0 + E0r3 + a2E0(2 + r)

]}.
(5.31)

If we substitute Eq. (5.31) into Eq. (5.27) and Eq. (5.28), we can obtain E(Ω) = E0(Ω)+Et(Ω) and

J = J0(Ω)+ Jt(Ω), where E0(Ω), Et(Ω), J0(Ω) and Jt(Ω) are the geodesics and tidal parts of energy

and angular momentum respectively.

We have incorporated these explicit tidal corrections in Eq. (5.27) and Eq. (5.31) in an open

source Teukolsky code “Gremlin” within the “Black Hole Perturbation Toolkit” project[346],

which provides many useful toolboxes for describing the motion and wave emission of EMRIs.

This tide-modified Gremlin package [347] allows us to evolve the trajectory of a point particle in a

Kerr spacetime, while counting for the tide-induced corrections. In Sec. 5.3 we use the same code
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to compute the gravitational radiation associate with the particle motion.

5.2.4 Dynamic tide

In the low frequency limit, the stars answer to the adiabatic environmental tidal fields by deforming

themselves according to Eq. (5.9), with λ being a constant. This scenario is often referred as the

“equilibrium tide”[348]. In the late part of the inspiral, although the orbital frequency Ω is still

lower than the frequency ω f of the ℓ = 2 f-mode, the gradual excitation of the f-mode in the pre-

resonance stage is no longer negligible. In fact, as shown in [8], effectively we need to replace the

constant (dimensionless) Love number

λ =
2k2R5

3G
(5.32)

by

kdyn
l = kl

[
al +

bl

2

(QDT
m=l

QAT
m=l

+
QDT

m=−l

QAT
m=−l

)]
(5.33)

where

QDT
m

QAT
m
=

ω2
f

ω2
f − (mΩ)2

+
ω2

f

2(mΩ)2ϵ fΩ
′
f (ϕ − ϕ f )

±
iω2

f

(mΩ)2√ϵ f
e±iΩ′f ϵ f (ϕ−ϕ f )2

∫ √
ϵ f (ϕ−ϕ f )

−∞

e∓iΩ′f s2
ds . (5.34)

where the coefficients a2 = 1/4, b2 = 3/4(only ℓ = 2 is considered here), Ω2 = M/r3 and ϵ f is the

ratio between the orbital timescales and the gravitational radiation reaction timescales, Ω′f = 3/8 is

a rescaled derivative in frequency, ϕ is the orbital phase and ϕ f denotes the orbital phase evaluation
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at ω = ω f . These quantities can be written as a function of r:

ϵ f =
256 M2/3ω5/3

f µ

5 |m|5/3
, (5.35)

ϕ − ϕ f =
1

32M3/2 µ

[( √M|m|
ω

)5/3

− r5/2
]
, (5.36)

which can be found in [8]. In the above two equations, we do not use the dimensionless variables

defined in Eq. (5.24) in order to express them explicitly.

Note here the star still oscillates at the same frequency of the external tidal force, which is why

a frequency-dependent Love number can be introduced here. If the f-mode frequency were within

the inspiral frequency range, the post-resonance star also oscillates with a frequency component

ω = ω f [94]. Such free f-mode oscillations have been observed in numerical simulations of

eccentric binary neutron stars [345].

In Sec. 5.4 we show the performance of hybrid waveform models with the dynamic tide effect

implemented. The dynamic tide model generally fits better with the numerical waveforms in the

late inspiral stage, as demonstrated in [8].

5.3 Radiation

Neutron stars develop nonzero quadrupole moments because of the gravitational tidal fields from

their companions. As a result, the stress-energy of the star is modified by the tidal deformation

Eq. (5.12). This extra piece of stress energy also generates additional gravitational wave radiation,

which in turn affects the orbital evolution. In this section we first review the relevant Teukolsky

formalism and then compute the tide-induced gravitational wave radiation.
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5.3.1 The Teukolsky equation

The wave emission by an extended body moving in the Kerr spacetime can be described by the

Teukolsky equation [349], which is separable in the frequency domain. In particular, consider the

variable

ψ4 =
1

(r − ia cos θ)4

∫ ∞

−∞

dω
∑
lm

Rlmω(r)−2S aω
lm (θ)eimϕ−iωt (5.37)

which is a Newmann-Penrose quantity defined by contracting the Weyl tensor Cabcd with tetrad

vectors: ψ4 = −Cabcdnam̄bncm̄d. The Kinnersley tetrad components are being used [350]

na =
1
2

(
∆

Σ
, 1, 0,−

a∆ sin2 θ

Σ
)

m̄a =
ρ
√

2
(ia sin θ, 0,Σ,−i(r2 + a2) sin θ) (5.38)

At any given frequency ω, the wave equation is separable. In particular, the eigen-solution of the

angular part of the Teukolsky equation defines the spin-weighted spheroidal harmonic −2S aω
lm (θ),

which is normalized by

∫ π

0
|−2S aω

lm (θ)|2 sin θdθ = 1. (5.39)

We have listed relevant properties of the spin-weighted spheroidal harmonics and their derivatives

in Appendix A. The radial function Rlmω(r) obeys the radial Teukolsky equation:

∆2 d
dr

(
1
∆

dRlmω

dr

)
− V(r)Rlmω(r) = −Tlmω(r). (5.40)

where

V(r) = −
K2 + 4i(r − M)K

∆
+ 8iωr + λlm , (5.41)
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and ∆ = r2 − 2Mr + a2, K = (r2 + a2)ω − ma, λlm ≡ Alm − 2amω + a2ω2 − 2, where Alm is the

eigenvalue of the angular Teukolsky equation.

The radial Teukolsky equation is an ordinary differential equation, which can be solved by

using the Green function method. To achieve this goal, one needs to first identify two indepen-

dent solutions of the homogeneous Teukolsky equation: RH
lmω and R∞lmω, which have the following

asymptotic behaviour:

RH
lmω = Btrans

lmω ∆
2e−ipmr∗ , r → r+

RH
lmω = Bref

lmωr3eiωr∗ +
Binc

lmω

r
e−iωr∗ , r → ∞ (5.42)

and

R∞lmω = Cup
lmωeipmr∗ +Cref

lmω∆
2e−ipmr∗ , r → r+

R∞lmω = Ctrans
lmω r3eiωr∗ , r → ∞ . (5.43)

where pm = ω − ma/2Mr+ and the tortoise coordinate r∗ is:

r∗(r) = r +
2Mr+

r+ − r−
ln

r − r+
2M

−
2Mr−

r+ − r−
ln

r − r−
2M

,

where the outer and inner horizon radii are r± = M ±
√

M2 − a2. Based on the Green’s functions

method, the general solution of the Teukolsky equation with a source can be written in this form:

Rlmω(r) = ZH
lmω(r)R∞lmω(r) + Z∞lmω(r)RH

lmω(r) , (5.44)
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where

ZH
lmω(r) =

Btrans
lmω

2iωBinc
lmωCtrans

lmω

∫ r

r+
dr′

RH
lmω(r′)Tlmω(r′)
∆(r′)2 ,

Z∞lmω(r) =
1

2iωBinc
lmω

∫ ∞

r
dr′

R∞lmω(r′)Tlmω(r′)
∆(r′)2 . (5.45)

As the neutron star we consider here moves along circular and equatorial orbits, there is only

one frequency in this setup ω = Ωϕ. In particular, the mth harmonic has a frequency of

ωm = mΩϕ. (5.46)

Then we have

ZH,∞
lmω =

∑
m

δ(ω − ωm)ZH,∞
lmωm

(5.47)

The energy fluxes going out to infinity and black hole horizon can be obtained as:

(
dE
dt

)r→∞

GW
=

∑
lm

|Z∞lmωm
|2

4πω2
m
. (5.48)(

dE
dt

)r→r+

GW
=

∑
lm

αlm

|ZH
lmωm
|2

4πω2
m

(5.49)

where

αlm =
256(2Mr+)5 pm(p2

m + 4ε2)(p2
m + 16ε2)ω3

m

|Clm|
2 , (5.50)

with ε =
√

M2 − a2/4Mr+ and

|Clm|
2 =

[
(λlm + 2)2 + 4aωm − 4a2ω2

m

]
[λ2

lm + 36maωm

− 36a2ω2
m] + (2λlm + 3)

[
6a2ω2

m − 48maωm

]
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+ 144ω2
m(M2 − a2). (5.51)

As mentioned earlier, the boundary condition for gravitational waves on the star’s surface is differ-

ent from the one for black hole horizon. As a result, the horizon flux should not be accounted for if

both objects are neutron stars in the binary system. However, it is a 4PN effect for Schwarzschild

black holes and 2.5PN effect for Kerr black holes, and the associated phase shift is less than 0.1

even for the point mass motion. Therefore in characterizing the tidal effect and the extra gravi-

tational wave emission associated with tidal deformation, we shall not consider the issue of the

horizon fluxes in our paper.

5.3.2 Source term

In order to obtain the energy flux, we need to evaluate the source term in Eq. (5.45). It is explicitly

given by [351]:

Tlmω(r) = 4
∫

dΩ dt
Σ

ρ4

(
B′2 + B∗′2

)
−2 S aω

lm (θ)e−imϕeiωt , (5.52)

where the functions B′2 and B∗′2 are

B′2 = −
ρ8ρ̄

2
L−1

[
ρ−4L0

(
ρ−2ρ̄−1Tnn

)]
+
∆2ρ8ρ̄

2
√

2
L−1

[
ρ−4ρ̄2J+

(
ρ−2ρ̄−2∆−1Tnm̄

)]
,

B∗′2 =
∆2ρ8ρ̄

2
√

2
J+

[
ρ−4ρ̄2∆−1L−1

(
ρ−2ρ̄−2Tnm̄

)]
−
∆2ρ8ρ̄

4
J+

[
ρ−4J+

(
ρ−2ρ̄Tm̄m̄

)]
. (5.53)

Here, ρ = −1/(r − ia cos θ), ρ̄ = −1/(r + ia cos θ). The differential operators J+ and Ls are

J+ = ∂r +
iK(r)
∆

,
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Ls = ∂θ + m csc θ − aω sin θ + s cot θ ,

L†s = ∂θ − m csc θ − aω sin θ + s cot θ . (5.54)

The stress-energy tensor for an extended body moving in the Kerr spacetime, as described in

Eq. (5.12), is given by

T ab(x) =
∫

dτ
[
u(a p(b)δ(4) +

1
3

Rcde
(aJb)edcδ(4)

−
2
3
∇d∇c(Jd(ab)cδ(4))

]
. (5.55)

=

∫
dτ

[
u(a p(b) +

1
3

Rcde
(aJb)edc − Jdaec∂cΓ

b
de

+ Γa
de

(
Γd

c f J f ebc + Γe
c f Jd f bc

)
+ Γb

de

(
Γd

c f J f aec + Γa
c f Jd f ec

)]
δ[x − z(τ)]
√
−g

+ ∂d

(
Γd

c f J f abc + Γa
c f Jd f bc + Γb

c f Jca f d
) 1
√
−g

+ ∂d∂c

{
Jdabcδ[x − z(τ)]

} 1
√
−g

(5.56)

:=
∫

dτ Aab δ[x − z(τ)]
√
−g

+ ∂d

{
Bbabδ[x − z(τ)]

} 1
√
−g

+ ∂d∂c

{
Jdabcδ[x − z(τ)]

} 1
√
−g

, (5.57)

where we have converted the covariant derivatives into coordinate partial derivatives with Christof-

fel symbols, which are more convenient for numerical evaluation. Here the delta function δ[x−z(τ)]

is defined as

δ[x − z(τ)] = δ[t − t(τ)]δ[r − r(τ)]δ[θ − θ(τ)]δ[ϕ − ϕ(τ)]. (5.58)
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Jdabc in Eq. (5.55) is a tensor, then we have also introduced additional notations for Jdabc to account

for various pieces of the source terms, as modified by the tidal field

A{nn} := Aabnanb, (5.59)

B{α}
{nn} := Bαabnanb, J{αβ}

{nn} := Jαabβnanb. (5.60)

where α, β = t, r, θ, ϕ, and

B{r}
{drnn} := Brab∂r(nanb) , B{θ}

{dθnn} := Bθab∂θ(nanb),

J{tr}
{drnn} := Jtabr∂r(nanb) , J{tθ}

{dθnn} := Jtabθ∂θ(nanb),

J{rϕ}
{drnn} := Jrabϕ∂r(nanb) , J{θϕ}

{dθnn} := Jθabϕ∂θ(nanb),

J{rr}
{ddrnn} := Jrabr∂r∂r(nanb) , J{θθ}

{ddθnn} := Jθabθ∂θ∂θ(nanb).

J{rθ}
{drnn} := Jrabθ∂r(nanb) , J{rθ}

{dθnn} := Jrabθ∂θ(nanb)

J{rθ}
{drdθnn} := Jrθabθ∂r∂θ(nanb). (5.61)

Apart from nana, we can also define components for Jdabc by contracting Jdabc with n(am̄b) and m̄am̄b

following similar convention as the above equations. The explicit forms of these components are

given in the Appendix B.

5.3.3 Sample evolution

We incorporated the additional tide-related source terms into the Gremlin code, and evaluate the

gravitational wave energy flux as a function of the orbital frequency. Formally we can write the

total power as

P = Ppm + Ptide = η
2
(
dE
dt

)pm

+ η
λ

m5
0

(
dE
dt

)tide

. (5.62)
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Figure 5.1: The energy flux computed for an equal-mass, black hole-neutron star system with

k2(Ω = 0) = 0.07346, m0 = 1.4M⊙, Mω f = 0.1349(1 + q)/2 and Γ = 2 polytropic equation of

state, and a similar binary black hole system with the same mass and starting from the same initial

location. The flux dE/dt is normalized by η2.
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The η2 factor within the point mass term is related to the fact that metric perturbation generated

by the point mass is proportional to the mass ratio, so that the flux is proportional to η2. The tidal

correction of the gravitational wave flux is generated by the beating of the wave generated by the

point mass with the additional wave generated by the quadrupole deformation of the star. Both

Ėpm and Ėtide can be computed given the initial conditions of the system. The values can be used

in other systems with different η and λ.

In Fig. 5.1, we plot the total power versus the point mass power for a non-spinning, equal-mass

black hole-neutron star system . The same type of system is also used in Sec. 5.4 for waveform

comparison. The additional energy flux contributed by the tidal deformation (Eq. (5.62)) becomes

more important at higher frequencies. Although the fluxes are computed within the extreme-mass-

ratio limit, the results are applied in the comparable mass ration limit for the waveform construc-

tion.

5.4 Waveform Construction

With the preparation in Sec. 5.2 and Sec. 5.3 on the conservative and dissipative pieces of the

tidal effects, we are ready to present the tidal correction to the gravitational waveform. We shall

focus on the gravitational wave phase as it is the most sensitively measured quantity within a

parameter estimation process. In general, amplitude corrections for binary neutron star and Black

hole-neutron star waveforms are not negligible [352, 353].

Assuming adiabatic circular orbit evolution, the motion at any instantaneous moment can be

approximately viewed as a circular orbit with frequency Ω. The gravitational wave phase, as a

function of the orbital frequency, follows

d2ψ

dΩ2 = 2
dE/dΩ

P
. (5.63)
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As we are interested in the tidal correction, we shall write the total phase ψ as ψpm + ψtide, the total

energy as E = Epm + Etide, and expand Eq. (5.63) so that only linear order terms in λ are kept:

d2ψtide

dΩ2 = 2
(
dEtide/dΩ

Ppm − Ptide dEpm/dΩ
(Ppm)2

)
, (5.64)

where we plug in Etide and Ptide evaluated in Sec. 5.2 and Sec. 5.3. In the Post-Newtonian theory,

Etide and Ptide can be computed to various PN orders, which lead to the PN tide waveform at

different orders [90]. Notice that the gravitational wave phase increases twice as fast as the orbital

phase, because we focus on the dominant piece of the waveform with ℓ = 2,m = 2.

5.4.1 Hybrid waveform

The black hole perturbation calculation discussed in Sec. 5.2 and Sec. 5.3 gives rise to an EMRI-

inspired waveform, which is fully capable of describing the gravitational wave emission in the

highly relativistic regime. On the other hand, the PN tide waveform, although being less accurate

in the strong-gravity regime, does not require an expansion in the mass ratio. In order to combine

the merits of these two different approaches, we have proposed a hybrid version of the waveform,

as explained in Eq. (1.55) and depicted in Fig. 1.4. By definition, this hybrid waveform is accurate

if the mass ratio is small or if the binary separation is large. Similar to the spirit of the EOB

construction, we anticipate that by ensuring matching at small mass ratio and weak gravity limit,

the hybrid method still provides reasonably accurate description for comparable mass-ratio systems

in the strong gravity regime. This point has to be checked with numerical relativity waveforms, as

discussed in Sec. 5.4.2.

In constructing the hybrid waveform one needs to subtract the waveform contribution in the

overlap regime, as explained in Fig. 1.4. In fact, it also serves as a sanity check that the PN

waveform taking a mass ratio expansion should agree with the EMRI-inspired waveform taking a

PN expansion. In light of Eq. (5.64), it suffices to show that Etide and Ptide obtained in the PN theory

119



have the same small mass limit as their counterparts found in Sec. 5.2 and Sec. 5.3, expanded in

various PN orders. Such a consistency check is explicitly performed in Appendix. 5.C.

5.4.2 Numerical comparison

In order to evaluate the performance of the black hole perturbation and hybrid methods in con-

structing waveforms, we adopt an equal mass, black-hole neutron-star waveform from the SXS

waveform catalog [354]. For this particular waveform, the neutron stars have a polytropic equation

of state P = KρΓ, with Γ = 2, K = 101.45. The neutron star mass is m = 1.4M⊙ and the radius is

R = 14.4km. The phase error is approximately ∼ 1 rad at the peak of the strain [8].

For comparison purpose, we also compute the EOB prediction of the tidal phase correction,

with dynamic tide included, in addition to the black hole perturbation result. As shown in Fig. 5.2,

the hybrid waveform that integrates both the black hole perturbation and 2PN methods, performs

significantly better than the black hole perturbation result alone. The 2PN expansion of the tidal

effects are from Eq.(5) of [355](”ad 2PN”). This hybrid waveform also has shown almost compara-

ble accuracy as the EOB-dynamic tide waveform, using this polytropic star waveform. In Fig. 5.3,

we consider a black hole-neutron star system with mass ratio 2:1 and the property of the neutron

star is the same as Fig. 5.1 and Fig. 5.2. We observe slightly better agreement with the numerical

wavefrom for the hybrid waveform is in this case, but the difference is within the phase uncer-

tainty of the numerical waveform. Apart from these two scenarios, more detailed and systematic

comparison and characterization are needed to address the phase error of the hybrid waveform.

This hybrid waveform is naturally expressed in the frequency domain, which is convenient for

fast waveform evaluation. To further improve the waveform accuracy to meet the requirements of

third-generation gravitational wave detectors, high-order corrections (q0 and η1) in the black hole

perturbation method should be evaluated to reduce the empty space in Fig. 1.4. As numerical wave-

forms are required for validation and calibration purposes, we also likely require future numerical
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Figure 5.2: Tidal phases of gravitational perturbation theory, the hybrid method, the EOB frame-

work and numerical relativity simulation for an equal-mass, binary neutron star system. Here MΩ

is the orbital frequency and “ad 2PN” stands for adiabatic 2PN tides. The properties of neutron star

are the same as those described in Fig. 5.1. The vertical dashed line shows the merger frequency

of the system and the red shaded region indicates the estimated phase error from the numerical

simulation[358].

waveforms with O(0.1) phase error, i.e., a factor of ten improvement from current waveforms.

Interestingly, the black hole perturbation approach also offers straightforward evaluation of the

spin-dependence of the tidal terms, which are absent in the current PN or EOB waveforms. Ac-

cording to Fig. 5.4, the influence of the spin parameter of the black hole on the tide-induced phase

shift is less than 10% in the entire inspiral range. Such additional phase shift may be less impor-

tant for binary neutron stars, as they are generally believed to be slowly spinning according to the

observation of galactic pulsar binaries [356]. Nevertheless they should be relevant for black hole-

neutron star binaries if we want to control the waveform phase error to be below 0.1, especially for

the ones with a low-mass black hole [357].
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Figure 5.3: Tidal phases of gravitational perturbation theory, the hybrid method, the EOB frame-

work and numerical relativity simulation for black hole-neutron star system with mass ratio 2:1.

The properties of the neutron star are the same as those described in Fig. 5.1. The vertical dashed

line shows the frequency of tidal disruption.

Figure 5.4: Tidal phases in the black hole perturbation waveform with spin ranging from a = 0 to

a = 0.99 for six equal-mass, black hole-neutron star systems. The property of the neutron star is

the same as Fig. 5.1.
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5.5 Conclusions and Discussion

A recent program in connecting scattering amplitude calculations to two-body problems in Gen-

eral Relativity has triggered an evolution in Post-Newtonian and Post-Minkowski (PM) Theory

[359–361]. Higher order PN and PM corrections to the equations of motion have been discov-

ered with this new approach. On the other hand, the development of second-order (in mass ratio)

gravitational self force is being carried out and implemented in circular orbits in Schwarzschild

[362]. It is expected to correct phase error on the O(1) order, which is on the comparable level

of the environmental effects [363–366]. The hybrid approach proposed here naturally integrates

these two independent expansions to achieve a better description of binary motions in the compa-

rable mass ratio, strong gravity and high velocity regime. In this work we have incorporated the

PN expansion of the tidal correction up to 2PN order and the leading-order term in the mass-ratio

expansion, which gives rise to a hybrid waveform with almost comparable accuracy to the state of

the art EOB waveform in our comparison with limited number of numerical waveforms. Although

in this work we only consider the equal-mass and mass-ratio 2:1 system for numerical comprisons,

our model applies for arbitrary mass ratios. This tidal phase can be added to the phase of binary

black hole waveforms to obtain the waveforms for binary neutrons tars and black hole-neutron star

systems[314].

Moving forward, it should be straightforward to include the ψ2.5PN term [355, 367, 368] and

ψ(0)
1BP corrections. In particular, as ψ(0)

1BP is the leading-order tidal term for the more massive object,

it is easier to consider the problem of a point mass orbiting around a star to evaluate ψ(0)
1BP. In

Fig. 5.4, we observe that the discrepancy between the black hole perturbation waveform and the

numerical waveform monotonically increases as the binary evolves. The inclusion of ψ2.5PN term

and ψ(0)
1BP may help alleviate the disagreement. In the future, it is feasible to also work out the ψ(1)

1BP

and beyond-2PN corrections to achieve better accuracy.

In [319], it is argued that for the comparison between the numerical relativity binary black
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hole waveform and the EMRI-inspired waveform, the discrepancy at large orbital frequency might

come from the breakdown of the adiabatic approximation, so that the inspiral-to-plunge transition

has to be taken into account. However, in the comparison performed here for the tidal effects, the

discrepancy never displays a sudden rise near the merger. Therefore we do not expect the inspiral-

to-plunge transition to be the main reason of disagreement found here. Nevertheless, we may still

include the transition in our future investigation to see how it affects the waveform construction.

On the other hand, higher-order in mass ratio terms may be obtained by calibration with a set

of numerical waveforms [319]. Let us consider Eq. (5.2) as an example. If both ψ(−1)
1BP and ψ(0)

1BP are

known through black hole perturbation calculations, we may truncate the summation up to n ≥ 1

and fit ψ(1)
1BP, ..., ψ

(n)
1BP by comparing to a series numerical waveforms with different mass ratios.

The obtained fitting formula and the associated waveform can be tested with another independent

set of numerical waveforms. The accuracy of this method relies crucially on the accuracy of the

calibration waveforms. We plan to perform this analysis using more binary neutron star and black

hole-neutron star waveforms.

As Advanced LIGO continues to improve its sensitivity and especially with the third-generation

gravitational-wave detectors [369, 370], we should expect to observe a set of high signal-to-noise-

ratio (SNR) events, which will allow many important applications of precise gravitational wave

astronomy. The gain in SNR also poses strict requirements on the modeling error of the waveforms,

so that the waveform systematic error is smaller than the statistical error of these events. It has been

shown that for third generation detectors the mismatch error for numerical relativity waveforms has

to improve by one order of magnitude. For semi-analytical waveforms an improvement of three

orders of magnitude is necessary [371]. Significant new developments are required to bridge such a

large gap, and hopefully the hybrid method proposed here will provide one avenue for exploration.

124



5.A Appendix: Spheroidal harmonics

Even though some derivatives of the spin-weighted spheroidal harmonics can be found in [372],

we need some other derivatives which we state them as follows:

∂θ−1Ykm(θ) = (m csc θ − cot θ)−1Ykm(θ)

−[k(k + 2)]1/2
0Ykm(θ), (5.65)

∂θ0Ykm(θ) = m csc θ0Ykm(θ)

−[k(k + 2)]1/2
1Ykm(θ), (5.66)

∂θ1Ykm(θ) = m csc θ1Ykm(θ)

−[(k − 1)(k + 2)]1/2
2Ykm(θ), (5.67)

S =
∞∑

k=lmin

bk∂θ−2Ykm, (5.68)

∂θS = (m cot θ csc θ + 2 csc2 θ)S

−

∞∑
k=lmin

bk[(k − 1)(k + 2)]1/2
−1Ykm(θ), (5.69)

∂θ∂θS =(−m cot θ csc θ + 2 csc2 θ)S

+ (m cot θ csc θ + 2 csc2 θ)∂θS
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−

∞∑
k=lmin

bk[(k − 1)(k + 2)]1/2∂θ−1Ykm(θ), (5.70)

∂θL
†

1L†2S =
∞∑

k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/2∂θ0Ykm(θ)

+ 2aω cos θL†2S + 2aω sin θ∂θL
†

2S

− 2(aω sin θ)aω cos θS − (aω sin θ)2∂θS , (5.71)

L†2S =aω sin θS −
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2
−1Ykm(θ) (5.72)

∂θL
†

2S =aω cos θS + aω sin θ∂θS

−

∞∑
k=lmin

bk[(k − 1)(k + 2)]1/2∂θ−1Ykm(θ), (5.73)

L†1L†2S =
∞∑

k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/2
0Ykm(θ)

+ 2aω sin θL†2S − (aω sin θ)2S (5.74)

∂θ∂θL
†

2S =(−aω sin θ + 2aω sin θ)S

+ (aω cos θ + aωm − 2aω cos θ)∂θS

− (aω cos θ − m cot θ csc θ + csc2 θ)×
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2
−1Ykm(θ)

− (aω sin θ + m csc θ − cot θ)×
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∞∑
k=lmin

bk[(k − 1)(k + 2)]1/2
−1Ykm

+

∞∑
k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/2
0Ykm, (5.75)

∂θ∂θL
†

1L†2S =(−m cot θ csc θ)×
∞∑

k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/2
0Ykm(θ)

+ m csc θ
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2∂θ0Ykm(θ)

−

∞∑
k=lmin

bk[(k − 1)k2(k + 1)2(k + 2)]1/2∂θ1Ykm(θ)

− 2aω sin θL†2S + 2aω cos θ∂θL
†

2S

+ 2aω cos θ∂θL
†

2S + 2aω sin θ∂θ∂θL
†

2S

− 2a2ω2(cos2 θ − sin2 θ)S

− 2a2ω2 sin θ cos θ∂θS − 2a2ω2 sin θ cos θ∂θS

− (aω sin θ)∂θ∂θS . (5.76)

5.B Appendix: Source terms

Because we consider the first order tidal effects, the we can substitute E0 and J0 into the tensors

Bdab and Jdabc. The concrete components are

A{nn} =

[
Ja − E(r2 + a2)

]2

4mr4 +
λ(a2 + (−2 + r)r)2

4r11(−3 + 2av + r)3

[
− 18a4 +

a3

v

− 2a2r(31 + 3r) +
4a(3 + 4r)

v3 + r2(9 − 12r + r2)
]

(5.77)
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A{nm̄} = −
i(J − Ea)

[
Ja − E

(
r2 + a2

)]
2
√

2mr3
+

iλ

2
√

2 (2va + r − 3)3

(
1
r

)19/2 [
18va7

+
(33r + 17)a5

v
+ r(133 − 97r)a4 +

(
17r2 + 48r − 139

)
a3

v3 + r2
(
−39r2 + 84r − 17

)
a2

+

(
2r3 + 21r2 − 83r + 66

)
a

v5 + r3
(
−2r3 + r2 + 15r − 18

)
− 60a6

]
, (5.78)

A{m̄m̄} =
E

[
(r + 2)a2 + r3

]
− 2Ja

mr
[
(r − 2)r + a2] −

λ

r9 (2va + r − 3)3

[30a5

v
− r(12r + 7)a4 +

4(11r − 20)a3

v3

− r2
(
r2 + 46r − 104

)
a2 +

2
(
4r2 − 2r − 15

)
a

v5 + r3
(
r3 − 10r2 + 21r − 9

)
− 9a6

]
, (5.79)

B{t}
{nn} =

3λ
[
(r − 2)r + a2]

8r9 (2va + r − 3)2

[
6va5 + 6ra4 +

(3r − 25)a3

v

+ 2r
(
3r2 − 5r + 5

)
a2 +

3
(
r2 − 5r + 4

)
a

v3 + 2r3
(
r2 − 5r + 6

) ]
, (5.80)

B{t}
{nm̄} = −

3iλ

8
√

2r8 (2va + r − 3)2

[
6va6 + 6(r − 1)a5 −

(3r + 19)a4

v

+ 2r
(
3r2 − 2r + 13

)
a3 −

2(4r + 5)a2

v3 + 2r2
(
r3 − 2r2 + 3

)
a +

r2 − 5r + 6
v7

]
, (5.81)

B{t}
{m̄m̄} = 0, (5.82)

B{r}
{nn} =

3λ
[
(r − 2)r + a2]2

8r10 (2va + r − 3)2

[6a3

v
− r(3r + 1)a2 +

2a
v5 − r2

(
r2 − 3r + 3

)
− 3a4

]
, (5.83)
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B{r}
{nm̄} =

3iλv17[(r − 2)r + a2]
8
√

2 (2va + r − 3)2

[
6va5 +

2(3r + 4)a3

v

+ r(15 − 13r)a2 +
2
(
r2 − 3

)
a

v3 − 3r2
(
r2 − 3r + 2

)
− 18a4

]
, (5.84)

B{r}
{m̄m̄} = −

3λ
4r8 (2va + r − 3)2

[12a5

v
− r(3r + 10)a4 +

(11r − 15)a3

v3

− r2
(
r2 + 9r − 25

)
a2 +

(
3r2 − 5r − 6

)
a

v5 + r3
(
−2r2 + 6r − 3

)
− 3a6

]
, (5.85)

B{r}
{drnn} =

3λ
(
r − a2

) [
(r − 2)r + a2]

2r11 (2va + r − 3)2

[6a3

v
− r(3r + 1)a2

+
2a
v5 − r2

(
r2 − 3r + 3

)
− 3a4

]
, (5.86)

B{r}
{drnm̄} = −

3iλ

8
√

2r10 (2va + r − 3)2

[
−

42a6

v
+ 12r(2r − 1)a5 −

9(3r − 7)a4

v3

+ 2r2
(
6r2 − 20r − 1

)
a3 +

2
(
r2 + 5r − 3

)
a2

v5 + 2r3
(
r3 − 10r2 + 21r − 12

)
a

+
3
(
r2 − 3r + 2

)
v9 + 18a7

]
, (5.87)

B{r}
{drm̄m̄} = −

3λ
2r9 (2va + r − 3)2

[
−

6a5

v
+ r(3r − 2)a4 −

2a3

v5

+ r2
(
r2 − 9r + 19

)
a2 +

4(r − 3)a
v5 + r3

(
−2r2 + 6r − 3

)
+ 3a6

]
, (5.88)

B{θ}
{nn} = B{θ}

{nm̄} = B{θ}
{m̄m̄} = B{θ}

{dθnn} = B{θ}
{dθnm̄} = B{θ}

{dθm̄m̄} = 0, (5.89)
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B{ϕ}
{nn} =

3λv19[(r − 2)r + a2]
8 (2va + r − 3)2

[
r(9r − 25)a2 −

2(r − 5)a
v3

+ r2
(
3r2 − 13r + 12

)
+ 6a4

]
, (5.90)

B{ϕ}
{nm̄} = −

3iλ

8
√

2r8 (2va + r − 3)2

[
6va5 +

(9r − 19)a3

v

+ 2r(13 − 4r)a2 +

(
3r2 − 5r − 10

)
a

v3 − 2(r − 3)r2 − 6a4
]
, (5.91)

B{ϕ}
{m̄m̄} = 0, (5.92)

J{tt}
{nn} = −

3λ
[
(r − 2)r + a2]

16r8 (2va + r − 3)2

[2(r + 5)a3

v
+ 2r

(
r2 + 2r − 6

)
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+
2(r − 3)a

v5 + r4(2r − 3) − a4
]
, (5.93)

J{tt}
{nm̄} = −

3iλa
(
r2 + a2

)
8
√

2r6
, (5.94)

J{tt}
{m̄m̄} = −

3λ
8r6 (2va + r − 3)2 (

(r − 2)r + a2)[ − 2(r + 4)a5

v
+ r
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)
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2(3r − 8)a
v9 + r5(9 − 4r) + a6

]
, (5.95)

J{tr}
{nn} = −

3λ (va + r)
8r8 (2va + r − 3)2

[2a5

v
+ r(15 − 8r)a4 +

4(r − 2)a3
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v5
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(
−7r2 + 26r − 24

)
a2 − (r − 2)2r3(2r − 3) − 3a6

]
, (5.96)
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J{tr}
{nm̄} = −

3iλ
(
r3/2 + a

)
(va − 1)

8
√

2r7(2va + r − 3
)2

[
(r − 2)r + a2][ − 2a

v
+ r(2r − 3) + 3a2

]
, (5.97)

J{tr}
{m̄m̄} = 0, (5.98)

J{tr}
{drnn} = −

3λ
(
r − a2

)
(va + r)

4r9 (2va + r − 3)2

[
(r − 2)r + a2][2a

v
+ r(3 − 2r) − 3a2

]
, (5.99)

J{tr}
{drnm̄} =

3iλ
(
r3/2 + a

)
(va + 1)

[
(r − 2)r + a2][ − 2a

v + r(2r − 3) + 3a2]
8
√

2r8 (2va + r − 3)2
, (5.100)

J{tr}
{drm̄m̄} = 0, (5.101)

J{tθ}
{nn} = 0, (5.102)

J{tθ}
{nm̄} = −

3λ (va + r)
(
(r − 2)r + a2

) (4a
v − r2 − 3a2)

8
√

2r7 (2va + r − 3)2
, (5.103)

J{tθ}
{m̄m̄} = −

3iλ
(
r3/2 + a

)
(va − 1)

(
−4a

v + r2 + 3a2
)

4r6 (2va + r − 3)2 , (5.104)

J{tθ}
{dθnn} = 0, (5.105)
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J{tθ}
{dθnm̄} =

3iλa (va + r)
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)

8
√
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, (5.106)
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J{tϕ}
{nn} =
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]

8 (2va + r − 3)2 , (5.108)

J{tϕ}
{nm̄} = −

3iλ
(
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)
8
√

2r6
, (5.109)

J{tϕ}
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[
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3λ
[
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√
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(r − 2)r + a2
]3

16r9 (2va + r − 3)2 , (5.111)
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]
, (5.112)

J{rr}
{m̄m̄} = −

3λ (va − 1)2
[
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√
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] [

(r − 2)r + a2
]

8r6 (2va + r − 3)2 , (5.113)
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Jrabθ = 0, (5.120)
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5.C Appendix: Overlap regime of PN and BP method

To obtain the hybrid waveform between Post-Newtonian theory and Black hole perturbation method,

we need to check the consistency within the overlap regime of these two methods. In other words,

the PN waveform taking the mass ratio expansion should agree with the BP waveform taking the

PN expansion, to the relevant orders. Technically it suffices to compare the tide-induced energy

and energy flux, which we explicitly show here up to the q−1 and 1.5 PN order. In order to accom-

plish this goal, we need to expand the components in Appendix 5.B, as well as the homogeneous

solutions of the Teukolsky equation with the ingoing boundary condition for l = 2, 3 and incident

amplitudes which can be found in [373].

ωRin
2mω =

z4
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+

iz5

45
−

11z6
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−

iz7
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+

23z8
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+
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+ ϵ

(
−
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−
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−
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−

31iz6
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(
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)
(5.145)
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8ω2
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1 − ϵ

π

2
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(
13
6
− γ − log 2

)
+ O(ϵ2)

}
(5.148)

where z = ωr and ϵ = 2Mω. With these equations and components in Appendix 5.B, we can

obtain the energy flux up to the 1.5PN order from Eq. (5.48):

E = η (MΩ)2/3
[
−

1
2
+

3
8

(MΩ)2/3 +
9
2
λ(MΩ)10/3 +

33
4
λ(MΩ)4

]
(5.149)

dE
dt
= −

5
32η2 (MΩ)10/3

[
1 −

1247
336

(MΩ)2/3 + 18λ(MΩ)10/3 −
704
28

λ(MΩ)4
]

(5.150)

which are same as the corresponding PN result by keeping only the η−1 order term[90]. According

to Eq. (5.63), we know that in the overlap regime the Post-Newtonian and Black Hole Perturbation
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methods are consistent.
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Chapter 6

Wet Extreme Mass Ratio Inspirals

Zhen Pan, Zhenwei Lyu, Huan Yang

Phys. Rev. D 104, 063007 (Sept. 2021), arXiv:2104.01208

My specific contributions: Calculate EMRI rates for all models considered in Table 6.1. Gener-

ate MBH samples from Eqs. (6.24) and EMRI samples from Eqs. (6.25), then Calculate SNR of all

models with LISA sensitivity and evaluate LISA detectable rate shown in Table 6.1. Demonstrate

LISA detectable dry and wet EMRI rates per mass bin per year in Fig. 6.2.

Extreme Mass Ratio Inspirals (EMRIs) can be classified as dry EMRIs and wet EMRIs based

on their formation mechanisms. Dry (or the “loss-cone”) EMRIs, previously considered as the

main EMRI sources for the Laser Interferometer Space Antenna, are primarily produced by multi-

body scattering in the nuclear star cluster and gravitational capture. In this work, we highlight an

alternative EMRI formation channel: (wet) EMRI formation assisted by the accretion flow around

accreting galactic-center massive black holes (MBHs). In this channel, the accretion disk captures

stellar-mass black holes that are intially moving on inclined orbits, and subsequently drives them

to migrate towards the MBH - this process boosts the formation rate of EMRIs in such galaxies
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by orders of magnitude. Taking into account the fraction (O(10−2 − 10−1)) of active galactic nuclei

where the MBHs are expected to be rapidly accreting, we forecast that wet EMRIs will contribute

an important or even dominant fraction of all detectable EMRIs by spaceborne gravitational wave

detectors.

6.1 Introduction

The primary astrophysical sources for space-based gravitational wave detectors, such as Laser In-

terferometer Space Antenna (LISA) [10] and TianQin [11], include massive black hole (MBH)

bianaries, extreme mass ratio inspirals (EMRIs) [130], galactic binaries and stellar-mass black

hole (sBH) binaries. Other systems, e.g. intermediate mass ratio inspirals [374, 375], extremely

large mass ratio inspirals [376, 377] and cosmic strings [378], may also be detectable, albeit with

larger uncertainties. Among these sources, EMRIs provide unique opportunities in testing the Kerr

spacetime [379, 380], probing the galactic-center cluster distribution [132, 134, 140], understand-

ing the astrophysical environmental effects [381–383], and inferring the growth history of MBHs

[384–386]. Loud EMRIs can serve as dark standard sirens for measuring the Hubble constant H0

and the dark energy equation of state [387].

EMRI formation mechanism can be classified into two main channels. In the “dry EMRI”

channel, an EMRI may be produced after a sBH is gravitationally captured by a MBH, following

the multi-body scatterings within the nuclear cluster [135, 137, 388] (other processes involving

tidal disruption or tidal capture of binary sBHs, or tidal stripping of giant stars [389–392] may

also contribute a fraction of dry EMRIs). There are two characteristic timescales [131, 133] in

this process: the GW emission timescale tgw on which the sBH orbit shrinks and the relaxation

timescale tJ on which the orbital angular momentum of the sBH changes, due to scatterings by

stars and other sBHs. If tgw > tJ, the sBH will likely be randomly scattered either into or away

from the MBH (sBHs scattered into the MBH are known as prompt infalls). If tgw < tJ, the sBH
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orbit gradually spirals into the MBH to form an EMRI while random scatterings are negligible. The

generic rate can be obtained by solving the Fokker-Planck equation or by N-body simulations [132,

134, 140], subject to assumptions on the initial distributions of stars and sBHs in the nuclear cluster.

In addition to the generic rate per MBH, the EMRI rate density in the universe also depends on the

mass function of MBHs, the fraction of MBHs living in stellar cusps and the relative abundance

of sBHs in stellar clusters. Taking into account these astrophysical uncertainties, Babak et al.

[137, 388] and Fan et al. [139] forecasted that there will be a few to thousands of detectable

(dry) EMRIs per year by LISA and TianQin, respectively. In a recent paper [142], Zwick et

al. reanalyzed the GW emission timescales of inspiraling eccentric binaries and realized Post-

Newtonian (PN) corrections to the commonly used Peters’ formula [393] are necessary. With

PN corrections implemented, the dry EMRI rate decreases by approximately at least one order of

magnitude [394].

Wet EMRIs come from MBHs in gas-rich environments, where the distributions of nearby

stars and sBHs are significantly affected by the accretion flow. About 1% low-redshift (z ≲ 1)

galaxies and 1% − 10% high-redshift (1 ≲ z ≲ 3) galaxies are active [144, 145] and known

as active galactic nuclei (AGNs), in which galactic MBHs are believed to be rapdidly accreting

gas in a disk configuration. In the presence of an accretion disk, the periodic motion of a sBH

generally generates density waves which in turn affect the sBH’s motion by damping both the

orbital inclination with respect to the disk plane and the orbital eccentricity, and driving the sBH’s

migration in the radial direction [146–149]. As long as the sBH is captured onto the disk, the

density waves together with other disk-sBH interactions, e.g., head wind [152, 153], accelerate its

inward migration until the vicinity of the MBH where GW emissions become prevalent. In addition

to sBHs captured onto the disk, star formation and subsequent birth of sBHs in the AGN disk may

also contribute to wet EMRI formation [395–397]. In this paper, we show that an accretion disk

usually boosts the EMRI intrinsic rate per individual MBH by orders of magnitude compared with
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the loss-cone channel 1. In particular, we suggest that wet EMRI formation is an important or even

dominant channel for all observable EMRIs by spaceborne GW detectors.

The remaining part of this paper is organized as follows. In Sec. 6.2, we summarize the inter-

actions of AGN disks with sBHs and stars. In Sec. 6.3, we introduce the Fokker-Planck equation

which governes the evolution of sBHs and stars in a cluster with or without the presence of an

AGN disk. In Sec. 6.4, we present the generic dry EMRI rate per MBH and the wet EMRI rate per

AGN. In Sec. 6.5, we calculate the LISA detectable EMRI rate from both channels, and we discuss

the applications of wet EMRIs in Sec. 6.6.

Throughout this paper, we will use geometrical units G = c = 1 and assume a flat ΛCDM

cosmology with Ωm = 0.307,ΩΛ = 1 −Ωm and H0 = 67.7 km/s/Mpc.

6.2 Disk-sBH and Disk-Star Interactions

In addition to the gravitational forces from the MBH and the stars/sBHs in the cluster, the orbital

motion of a sBH around an accreting MBH is influenced by disk-sBH interactions: density waves,

head wind [146–149, 152] and other sub-dominant interactions including dynamic friction [398,

399] and heating torque [400, 401].

As a sBH orbits around the MBH, its periodic motion excites density waves consisting of three

components [148, 149]: regular density waves arising from the circular motion, eccentricity waves

arising from the non-circular motion and bending waves arising from the motion normal to the disk.

The density waves in turn affect the motion of the sBH: the regular density waves exert a (type-I)

migration torque on the sBH and drives its migration in the radial direction on the timescale tmig,I;

the eccentricity and bending density waves damp the orbit eccentricity and the inclination with

respect to the disk plane on the timescale twav. Previous analytic studies [148, 149] calibrated with

1More details can be found in a companion paper [140]
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numerical simulations [402] show that the type-I migration torque can be formulated as

J̇mig,I = CI
mbh

M
Σ

M
r4Ω2

h2 , (6.1)

where mbh is sBH mass, and M = M(< r) is the total mass of the MBH, stars, sBHs and the disk

within radius r; the prefactor CI = −0.85 + d logΣ/d log r + 0.9 d log Tmid/d log r depends on the

disk profile; Σ(r),Tmid(r), h(r),Ω(r) are the disk surface density, the disk middle plane temperature,

the disk aspect ratio and the sBH angular velocity, respectively. The corresponding migration

timescale and damping timescale are

tmig,I =
J
|J̇mig,I|

∼
M

mbh

M
Σr2

h2

Ω
, twav =

M
mbh

M
Σr2

h4

Ω
, (6.2)

where J = r2Ω is the specific angular momentum of the sBH, and twav ≈ tmig,Ih2, i.e., the eccen-

tricity/inclination damping is faster than the migration by a factor h2. Therefore the orbit should

become circular long before the sBH migrate into the LISA band. A gap in the disk opens up if the

sBH is so massive that its tidal torque removes surrounding gas faster than the gas replenishment

via viscous diffusion. After a gap is opened, the type-I migration turns off and the sBH is subject

to type-II migration driven by a type-II migration torque J̇mig,II [403].

For a sBH embedded in the gas disk, surrounding gas in its gravitational influence sphere flows

towards it. Considering the differential rotation of the disk, the inflow gas generally carries nonzero

angular momentum relative to the sBH, so that the inflow tends to circularize and form certain local

disk or buldge profile around the sBH. Depending on the radiation feedback and magnetic fields, a

major part of captured materials may escape in the form of outflow and only the remaining part is

accreted by the sBH [404, 405]. Because of the circularization process, it is reasonable to expect

that the outflow carries minimal net momentum with respect to the sBH. As a result, the head wind

in the influence sphere of the sBH is captured, and the momentum carried by the wind eventually
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transfers to the sBH. Therefore the specific torque exerted on the sBH from the head wind is

J̇id
wind = −

rδvϕṁgas

mbh
, (6.3)

where the upper index “id” denotes in-disk objects, δvϕ := vϕ,gas − vϕ,bh is the head wind speed, and

ṁgas is the amount of gas captured per unit time (see [140] for detailed calculation).

In summary, the migration timescales of in-disk (id) sBHs and those outside (od) are

tbh,id
mig =

J
|J̇mig,I,II + J̇gw + J̇wind|

, tbh,od
mig =

J
|J̇mig,I + J̇gw|

, (6.4)

where J̇mig,I,II = J̇mig,I or J̇mig,II and J̇wind = J̇id
wind [Eq. (6.3)] or 0, depending on whether a gap is

open. The specific torque arising from GW emissions is 2

J̇gw = −
32
5

mbh

M

(M
r

)7/2

. (6.5)

The damping timescale of sBH orbital inclination and eccentricity is given by Eq. (6.2)

tbh,od
wav =

M
mbh

M
Σr2

h4

Ω
. (6.6)

The above discussion of disk-sBH interactions also equally applies to stars in the cluster, except

stars are usually lighter (mstar < mbh), and the head wind impact on stars is weak (J̇star
wind ≈ 0)

considering that the wind could be largely suppressed in the presence of star radiation feedback

and solar wind [406, 407]. Becuse the structure of AGN disks has not been fully understood, we

consider three commonly used AGN disk models: α-disk, β-disk [408] and TQM disk [409] in this

work.
2GW emission turns out to has little influence on the wet EMRI rate which is determined by the capture and

the migration of sBHs at large separations where GW emission is negligible. We include the GW emission in the
calculation because in some special cases the migration torque J̇mig,I changes its sgin near the MBH and the GW
emission works to overcome the would-be migration trap [140].

145



6.3 Fokker-Planck Equation

Statistical properties of stars and sBHs in the stellar cluster are encoded in their distribution func-

tions fi(t, E,R) (i = star/bh) in the phase space, where

E := ϕ(r) − v2(r)/2 , R := J2/J2
c (E) (6.7)

are the specific orbital (binding) energy and the normalized orbital angular momentum, respec-

tively. Here ϕ(r) is the (positive) gravitational potential, v is the orbital speed, and Jc(E) is

the specific angular momentum of a circular orbiter with energy E. Given initial distributions

fi(t = 0, E,R), the subsequent evolution is governed by the orbit-averaged Fokker-Planck equa-

tion. In the case of no gas disk, the Fokker-Planck equation (for both stars and sBHs) is formulated

as [410–412]

C
∂ f
∂t
= −

∂

∂E
FE −

∂

∂R
FR , (6.8)

where f = fi(t, E,R), C = C(E,R) is a normalization coefficient, and FE,R is the flux in the E/R

direction:
−FE = DEE

∂ f
∂E
+DER

∂ f
∂R
+DE f ,

−FR = DRR
∂ f
∂R
+DER

∂ f
∂E
+DR f ,

(6.9)

where the diffusion coefficients {DEE,DER,DRR}i and the advection coefficients {DE,DR}i are

functions of fi(t, E,R) [410–412]. From flux {FE, FR}bh, we can compute the EMRI rate via the

lose cone mechanism as

Γlc(t) =
∫

E>Egw

F⃗ · dl⃗ , (6.10)

where F⃗ = (FE, FR), dl⃗ = (dE, dR) is the line element along the boundary of the loss cone, and

Egw is a characteristic energy scale above which the sBH GW emission is dominant with tgw < tJ

[131, 132, 134, 140, 142, 394].
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In the presence of an AGN disk, stars and sBHs settle as two components: a cluster com-

ponent and a disk component. We expect the distribution functions of cluster-component stars

and sBHs acquire some dependence on the orbital inclination as interacting with the disk. For

convenience, we choose to integrate out the inclination and work with the inclination-integrated

distribution functions fi(t, E,R) of the cluster-component stars and sBHs. Considering the density

waves excited on the disk to damp the orbital inclinations and eccentricities of orbiters, and to

drive the orbiters’ inward migration together with head winds and GW emissions, we rewrite the

Fokker-Planck equation as

C
∂ f
∂t
= −

∂

∂E
FE −

∂

∂R
FR + S , (6.11)

where flux FE,R are defined in Eq. (6.9), with the advection coefficients modified by disk-star/sBH

interactions as

DE,bh → DE,bh − C
E

tbh,od
mig

, DR,bh → DR,bh − C
1 − R

tbh,od
wav

,

DE,star → DE,star − C
E

tstar,od
mig

, DR,star → DR,star − C
1 − R

tstar,od
wav

,

and the negative source term S = S i(t, E,R) arising from spherical-component stars/sBHs captured

onto the disk is parameterized as

S bh = −µcapC
fbh

tstar,id
mig

, S star = −µcap
mstar

mbh
C

fstar

tstar,id
mig

, (6.12)

with µcap ∈ [h, 1] mbh
mstar

a phenomenological parameter quantifying the disk capture efficiency (see

[140] for more details). A new EMRI forms if a sBH is captured onto the disk and migrate to the

vicinity of the MBH within the disk lifetime Tdisk, therefore the EMRI rate assisted by the AGN

disk is given by

Γdisk(t; Tdisk) =
∫ ∫

tbh,id
mig <Tdisk

−S bh(t, E,R) dEdR . (6.13)
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6.4 EMRI Rate per MBH/AGN: dry and wet

6.4.1 Dry EMRIs

Given initial distributions of stars and sBHs in the stellar cluster, one can evolve the system ac-

cording to the Fokker-Planck equation (6.8) and calculate the EMRI rate in the loss cone channel

using Eq. (6.10). As shown in Refs. [132, 134, 140], the EMRI rate mainly depends on the to-

tal number of stars within the MBH influence radius, which determines the relaxation timescale

and the relative abundance of sBHs in the stellar cluster. Following Ref. [137], the time-averaged

EMRI rate per MBH can be parameterized as

Γdry(M•; Np) = Cdep(M•; Np)Cgrow(M•; Np)Γlc(M•) , (6.14)

with

Γlc(M•) = 30
(

M•
106M⊙

)−0.19

Gyr−1 , (6.15)

where Np is the average number of prompt infalls per EMRI; Cdep and Cgrow are correction factors

accounting for possible depletion of sBHs in the cusp as sBHs accreted by the MBH and cap-

ping the maximum MBH growth via accreting sBHs, respectively, and the loss-cone EMRI rate in

Eq. (6.15) is lower than previous calculations [132, 134, 137, 140] by one order of magnitude be-

cause these previous results were based on the Peters’ formula [393] which underestimate the GW

emission timescales of eccentric binaries and the true EMRI rate should be lower by approximately

at least one order of magnitude [142, 394].

Following Ref. [137], we explain the two corrections Cdep(M•; Np) and Cgrow(M•; Np) to the

generic dry EMRI rate. Consider a MBH with mass M•, whose influence sphere (r < rc = 2M•/σ2)

encloses a number of sBHs with total mass Σmbh ≃ 0.06M•, and these sBHs will be depleted by
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the MBH via EMRIs and prompt infalls on a timescale

Tdep(rc) =
∑

mbh

(1 + Np)Γlc(M•)mbh

=
200

1 + Np

(
mbh

10M⊙

)−1 (
M•

106M⊙

)1.19

Gyr ,
(6.16)

where Np is the average number of prompt infalls per EMRI. On the influence sphere, the relaxation

timescale of the star cluster is approximately [412]

Trlx(rc) ≃
(

σ

20km/s

) (
rc

1pc

)2

Gyr , (6.17)

where the velocity dispersion is related to the MBH mass by the famous M• − σ relation [413].

The depletion correction Cdep is defined as

Cdep(M•; Np) := min.
{

Tdep

Trlx
, 1

}
, (6.18)

where
Tdep

Trlx
≃

12
1 + Np

(
mbh

10M⊙

)−1 (
M•

106M⊙

)0.06

. (6.19)

The growth correction

Cgrow := min.
{

e−1 M•
∆M•

, 1
}

(6.20)

arises from requiring the MBH grows no more than e−1 via accreting sBHs, where

∆M• = mbh(1 + Np)Cdep(M•; Np)Γlc(M•)Temri(M•) , (6.21)

is the MBH growth via accreting sBHs, and

Temri(M•) =
∫

dz
dt
dz

Ccusp(M•, z) (6.22)
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Figure 6.1: Average EMRI rates per MBH in the loss cone channel Γdry(M•; Np) and per AGN in

the disk channel Γwet(M•;M), where Np is the number of prompt infalls per EMRI, andM consists

of all model parameters of initial condition of stellar clusters, AGN duty cycles and AGN disk

model, where the AGN fraction is fAGN = 1%.

is the effective growth time when the MBH lives in a stellar cusp.

In Fig. 6.1, we show 3 sample models of dry EMRIs with Np = {0, 10, 102}, where Γdry(Np = 0)

is the same as the generic rate [Eq. (6.15)] in the mass range of interest, Γdry(Np = 10) is capped

by the accretion growth limit Cgrow for light MBHs, and Γdry(Np = 102) is further reduced by the

sBH depletion Cdep across the entire mass range.

6.4.2 Wet EMRIs

More technical complications are involved in calculating the wet EMRI rate due to the uncertainties

in AGN accretion history, AGN accretion disks and initial conditions of stellar clusters, which we

outline as follows in accordance with our previous work [140].

In this paper, we conservatively assume a constant AGN fraction fAGN = 1% throughout the

universe, though it can be 10 times higher [144, 145]. Being consistent with the AGN fraction, the

total duration of active phases of an AGN is about 108 yr [414], therefore MBHs are in quiet phase

most of the time. Another complication is that AGN accretion is likely episodic [415, 416], i.e.,

a MBH may become active for multiple times during its whole life. Without detailed knowledge
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of the duty cycle of an MBH, we simplify it as a long quiet phase of T0 = 5 Gyr followed by a

short active phase of Tdisk = 107 or 108 yr. For Tdisk = 108 yr, there is only one active phase. On

the other hand, there are on average 10 active phases for models with Tdisk = 107 yr, and we only

consider the following two extremal cases. If a (low-redshift) AGN that has gone through all the

10 active phases and the relaxation between different active phases is not expected to substantially

change the sBH distribution, the average EMRI rate is approximately same to that in the case of

Tdisk = 108 yr. If a (high-redshift) AGN that has gone through only 1 active phase, the duty cycle is

simply a long quiet phase with duration T0 = 5 Gyr followed by a short active phase with duration

Tdisk = 107 yr. That is to say, Tdisk in our model is approximately the total duration of all active

phases an AGN has gone through.

The structure of AGN disks has not been fully understood either, partially due to the large range

over which an AGN disk extends: from an inner radius of a few gravitational radii of the MBH

to the outer radius of parsec scale where the AGN disk connects to the galactic gas disk. Three

commonly used AGN disk models: α-disk, β-disk [408] and TQM disk [409], are different in

their prescriptions of disk viscosity and/or disk heating mechanism which lead to large differences

in predicted disk structures. Each disk model is specified by two model parameters, the MBH

accretion rate Ṁ• and a viscosity parameter [140]: an α parameter which prescribes the ratio

between the viscous stress and the local total/gas pressure in the α/β-disk and a X parameter

which prescribes the ratio between the radial gas velocity and the local sound speed in the TQM

disk. For calculating the wet EMRI rate, we consider both an α-disk model [408] with the viscosity

parameter α = 0.1 and accretion rate Ṁ• = 0.1ṀEdd
• , and a TQM disk [409] with the viscosity

parameter X = 0.1 and accretion rate Ṁ• = 0.1ṀEdd
• (β-disk is different from α-disk only in the

inner region where radiation pressure dominates over gas pressure, and this difference has little

impact on the wet EMRI rate).

For calculating the wet EMRI rate, we also need to specify the initial distributions of stars and

sBHs in the stellar cluster, which we assume the commonly used Tremaine’s cluster model [417]
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with a power-law density profile nstar(r) ∼ r−γ deep inside the influence sphere of the MBH and

nstar(r) ∼ r−4 far outside, and sBHs are of the same density profile with a relative abundance δ.

Given initial distributions of stars and sBHs in the stellar cluster, we first evolve the system for

time T0 according to the Fokker-Planck equation (6.8), then turn on an accretion disk and continue

the evolution for time Tdisk, according to the modified Fokker-Planck equation (6.11). In the active

phase, the disk assisted EMRI rate is computed using Eq. (6.13). We show the time-averaged

EMRI rate per AGN

Γwet(M•;M) =
1

Tdisk

∫ T0+Tdisk

T0

Γdisk(t,M•;M)dt , (6.23)

for different modelsM in Fig. 6.1, whereM denotes models parameterizing initial distributions of

stars and sBHs in the cluster, duty cycles of MBHs and AGN disk model (see Table 6.1 for model

parameters for all the 9 models considered in this work).

Because sBHs are captured onto the disk and migrate inward efficiently, and the sBH loss via

prompt infalls is negligible (Np ≪ 1), the wet EMRI rate is mainly limited by the number of sBHs

available in the stellar cluster. As a result, we find the presence of an AGN disk usually boosts the

EMRI formation rate by orders of magnitude [140, 418] regardless of the variations of different

disk models considered.

6.5 Total and LISA Detectable EMRI Rates

For calculating the total EMRI rate, we consider two redshift-independent MBH mass functions in

the range of (104, 107)M⊙,

f•,−0.3 :
dN•

d log M•
= 0.01

(
M•

3 × 106M⊙

)−0.3

Mpc−3 ,

f•,+0.3 :
dN•

d log M•
= 0.002

(
M•

3 × 106M⊙

)+0.3

Mpc−3 ,

(6.24)
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where the former one is approximate to the mass function as modelled in Refs. [419–422] assuming

MBHs were seeded by Population III stars and accumulated mass via mergers and gas accretion

along cosmic history, and the latter one is a phenomenological model [385]. The differential EMRI

rates (in observer’s frame) in the two formation channels are written as

d2Rdry

dM•dz
=

1
1 + z

dN•
dM•

dVc(z)
dz

Ccusp(M•, z)Γdry(M•; Np) ,

d2Rwet

dM•dz
=

fAGN

1 + z
dN•
dM•

dVc(z)
dz

Ccusp(M•, z)Γwet(M•;M) ,
(6.25)

where the factor 1/(1 + z) arises from the cosmological redshift, Vc(z) is the comoving volume of

the universe up to redshift z, Ccusp(M•, z) is the fraction of MBHs living in stellar cusps which are

supposed to be evacuated during mergers of binary MBHs and re-grow afterwards [419–422]. For

cases with mass function f•,+0.3, we use the same Ccusp function as in [137] and we simply take

Ccusp = 1 for cases with phenomenological mass function f•,+0.3
3.
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Figure 6.2: Forecasted LISA detectable dry and wet EMRI rates Ndet per mass bin (M•[M⊙]) per

year for different models, where f•,±0.3 are the two different MBH mass functions [Eq. (6.24)],

Np is the number of prompt infalls per EMRI in the loss cone channel, and the wet EMRI model

parameters of M1,...,5 are detailed in Table 6.1.

In order to calculate the LISA detectable EMRI rate in each channel, we construct a population

of EMRIs with sBH mass mbh = 10M⊙, MBH spin a = 0.98, and MBH masses and redshifts ran-

3There was some misplot of the Ccusp(M•, z) function in [137], and we thank Alberto Sesana for kindly providing
the correct one.
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domly sampled according to the differential EMRI rates [Eq. (6.25)]. For each individual EMRI,

we need 10 more parameters to uniquely specify its binary configuration at coalescence and its

gravitational waveform [154–156]: sky localization n̂, MBH spin direction â, 3 phase angles, co-

alescence time t0, inclination angle ι0 and eccentricity e0 at coalescence. For both dry and wet

EMRIs, we assume the sky locations and the MBH spin directions are isotropically distributed on

the sphere, 3 phase angles are uniformly distributed in [0, 2π], coalescence times are randomly

sampled from [0, 2] yr, and cosines of inclination angles are randomly sampled from [−1, 1]. Dis-

tributions of eccentricity e0 are different: uniform disbribution of e0 in [0, 0.2] for dry EMRIs v.s.

e0 = 0 for wet EMRIs.

For each EMRI, we compute its time-domain waveform h+,×(t) using the Augment Analytic

Kludge (AAK) [154–156] with the conservative Schwarzschild plunge condition, because the PN

corrections used for constructing the AAK waveform model are increasingly inaccurate as the

orbital separation decreases. Extending the waveform to the Kerr last stable orbit likely leads to an

overestimate of the signal-to-noise ratio (SNR) [137, 156].

The SNR is calculated as a noise weighted inner product in the frequency domain [423]

SNR =

√
4
∫ ∞

0

h+( f )h∗+( f ) + h×( f )h∗×( f )
S n( f )

d f , (6.26)

where S n( f ) is the sky-averaged detector sensitivity of LISA [137, 424]. The expected LISA

detectable EMRI rates (SNR≥ 20) of different models in each mass bin are shown in Fig. 6.2,

and the total event rates and the LISA detectable rates are collected in Table 6.1. From Fig. 6.2

and Table 6.1, wet EMRI formation is evidently an important or even dominant channel for all the

models we have considered.
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Table 6.1: Comparison of dry and wet EMRI rates in different models, where f• is the MBH mass

function. The last two columns are the total EMRI rate in the redshift range of 0 < z < 4.5 and the

corresponding LISA detectable (SNR≥ 20) rate.

Dry f• Np Total [yr−1] LISA detectable [yr−1]
f•,−0.3 0 3500 150

10 1300 120
102 150 14

f•,+0.3 0 160 10
10 130 10
102 15 1

Wet f• M : (γ, δ) µcap (Tdisk [yr], fAGN) AGN Disk Total [yr−1] LISA detectable [yr−1]
f•,−0.3 M1 :(1.5, 0.001) 1 (108, 1%) α-disk 11000 600

M2 :(1.5, 0.001) 0.1 11000 760
M3 :(1.5, 0.002) 1 24000 1500
M4 :(1.8, 0.001) 1 8100 240
M5 :(1.5, 0.001) 1 (108, 1%) TQM disk 23000 1900
M6 :(1.5, 0.001) 1 (107, 1%) α-disk 39000 4200
M7 :(1.5, 0.001) 0.1 21000 3000
M8 :(1.5, 0.002) 1 80000 9800
M9 :(1.8, 0.001) 1 22000 1400

f•,+0.3 M1 :(1.5, 0.001) 1 (108, 1%) α-disk 2100 49
M2 :(1.5, 0.001) 0.1 2000 57
M3 :(1.5, 0.002) 1 4300 100
M4 :(1.8, 0.001) 1 1900 18
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6.6 Applications of wet EMRIs

Due to the high LISA sensitivity to the EMRI eccentricity whose value at coalescence can be

measured with typical uncertainty as low as 10−5 [137], wet EMRIs can be distinguished from

dry ones via eccentricity measurements, as wet EMRIs are expected to be circular in the LISA

band as a result of the efficient eccentricity damping by the density waves (twav ≪ tmig), while

dry EMRIs from the loss-cone channel are highly eccentric as entering the LISA band and remain

mildly eccentric at coalescence [131, 137]. Another subdominant dry EMRI channel involving

tidal stripping of giant stars seems unlikely to produce such circular EMRIs either [391], while the

prediction of the channel involving tidal disruption of binary sBHs is more uncertain [389, 392].

The disk-environmental effects may produce measurable phase shift in the EMRI waveform [152,

153, 425].

EMRIs have unprecedented potential to probe fundamental laws of gravity and the nature of

dark matter [379, 380, 426, 427]. In previous studies, such tests using EMRIs have been implicitly

assumed in vacuum without any environmental contamination. However, as we have shown here,

wet EMRIs are possibly more common in the universe, for which the environmental effects on

the EMRI waveform are inevitable. The possible degeneracy calls for a systematic framework for

searching new fundamental physics with EMRIs, with astrophysical environmental effects taken

into account.

In the context of wet EMRIs, AGN jet physics and accretion physics are promising realms

where LISA and next-generation Event Horizon Telescope (ngEHT 4) may synergize. According

to the estimate in [386], a fraction of low-redshift (z ≲ 0.3) EMRIs can be traced back to their host

galaxies with LISA observations alone, and host AGNs of ∼ 50% of low-redshift (z ≲ 0.5) wet

EMRIs can be identified considering the much lower density of AGNs. Combining GW observa-

tions of wet EMRIs with radio obervations of AGN jets by, e.g. ngEHT, one can simultaneously

4https://www.ngeht.org/
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measure the MBH mass M•, the MBH spin â, the rotation direction of the accretion disk L̂, the jet

power Ėjet and the jet direction n̂jet. This set of observables provide unprecedented opportunites to

probe the AGN jet physics. For example, an ensemble of events with {n̂jet · â, n̂jet · L̂} data may

help us to constrain various jet launching models, i.e., powered by the rotating energy of the MBH

[428] or by the accretion disk [429]. In addition, certain disk properties are directly constrained

with GW observations via the disk environmental effects on the EMRI waveform [152, 153, 425],

and accretion physics of AGN disks is also one of the primary targets of ngEHT.

Wet EMRIs with host AGNs identified are ideal “bright sirens” for constraining the late time

cosmology (e.g., the Hubble constant and the equation of state of dark energy), because the lu-

minosity distance and the redshift can be measured from GW and electromagnetic observations,

respectively. It will be interesting to compare the sensitivity of this method to other approaches,

with the predicted wet EMRI rate from this study.

Wet EMRIs encode additional information of MBH growth in their orbital inclination angles

ι0 with respective to the MBH spin. If all MBHs grow up via coherent gas accretion where gas

feeds are from a fixed direction, orbital inclination angles of wet EMRIs at coalescence should

be ι0 ≈ π/2. If MBHs grow up via chaotic gas accretion from a random direction in each active

phase, a fraction of wet EMRIs form before the MBH spin direction â is aligned with the disk

rotation direction L̂ via the Bardeen-Petterson mechanism [430], and their orbital inclinations are

approximately ι0 ≈ cos−1(â · L̂). In a similar way, MBH growth via different merger channels also

imprints differently on the inclinations of wet EMRIs.

157



Chapter 7

Mass-gap Extreme Mass Ratio Inspirals

Zhen Pan, Zhenwei Lyu, Huan Yang

Phys. Rev. D 105, 083005 (April 2022), arXiv:2112.10237

My specific contributions: Calculate EMRI rates for all models considered in Table 7.2. Gen-

erate EMRI samples and Calculate SNR of all models with LISA sensitivity and evaluate LISA

detectable rate shown in Table 7.2.

In this work, we propose a new subclass of extreme-mass-ratio-inspirals (EMRIs): mass-gap

EMRIs, consisting of a compact object in the lower mass gap ∼ (2.5 − 5)M⊙ and a massive black

hole (MBH). The mass-gap object (MGO) may be a primordial black hole or produced from a

delayed supernova explosion. We calculate the formation rate of mass-gap EMRIs in both the

(dry) loss-cone channel and the (wet) active galactic nucleus disk channel by solving Fokker-

Planck-type equations for the phase-space distribution. In the dry channel, the mass-gap EMRI

rate is strongly suppressed compared to the EMRI rate of stellar-mass black holes (sBHs) as a

result of mass segregation effect. In the wet channel, the suppression is roughly equal to the mass

ratio of sBHs over MGOs, because the migration speed of a compact object in an active galactic
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nucleus disk is proportional to its mass. We find that the wet channel is much more promising to

produce mass-gap EMRIs observable by spaceborne gravitation wave detectors. (Non-)detection

of mass-gap EMRIs may be used to distinguish different supernova explosion mechanisms and

constrain the abundance of primordial black holes around MBHs.

7.1 Introduction

Observations of Galactic X-ray binaries have indicated a dearth of compact objects around ∼ (2.5−

5)M⊙ in the mass spectrum [e.g., 431–433]. Whether this mass gap is a result of observational

selection effects or underlying supernova (SN) explosion mechanism has been an open question for

more than a decade [432, 434–436]. More recently new events detected with gravitational waves

(GWs) and time-domain astronomy suggest the existence of mass-gap objects (MGOs) in compact

object binaries and in Galactic non-interacting binaries - the compact objects of ∼ (2.6 − 2.8)M⊙

in compact binary coalescence events GW190814 and GW200210 [437, 438], a compact object

of ∼ 3.3M⊙ as a non-interacting companion of a giant [439], and a compact object of ∼ 3.0M⊙

as a non-interacting companion of a red giant [440] (see [441–443] for candidate MGOs in non-

interacting binaries and as dark lens in the Milky Way). These identified MGOs provide evidences

of a population of compact objects lying in the mass gap, or even a more extreme possibility that the

mass gap itself does not exist. A natural question is that, if indeed a population of MGOs is present,

what should be their origin? One viable option is MGOs are born in delayed SN explosions [436],

which also provides an explanation to the merger rate of GW190814-like events [444, 445]. A more

exotic possibility is that MGOs are primordial black holes (PBHs) [112, 446–448], which have

been intensively discussed in the context of compact binary mergers detected by LIGO. With the

upgrading of LIGO and the coming era of third-generation detectors, more GW190814-like events

are expected to be detected. However, as there is already a large number of proposed formation

channels [e.g., 449–458], many of which are still subject to large theoretical uncertainties (see
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[459] for a recent review), it is unclear whether we will be able to nail down the the origin of

MGOs with only the detection of stellar-mass binaries.

To better answer these questions, we investigate the possiblity that MGOs appear as compo-

nents of some extreme mass ratio inspirals (EMRIs), to form mass-gap EMRIs. We propose that

future detections of EMRIs and especially mass-gap EMRIs by spaceborne GW detectors, may be

a useful probe for the origins of MGOs, thanks to the limited number of EMRI formation channels

and distinct signatures of EMRI sources from different channels. In this paper we show that wet

channel is a primary way in producing mass-gap EMRIs.

The remaining part of this paper is organized as follows. In Sec. 7.2 and 7.3, we introduce the

two EMRI formation channels and the formation rates of MGOs and sBHs in these two channels.

In Sec. 7.4, we forecast the detection prospects of these EMRIs by LISA. We summarize this work

in Sec. 7.5. Throughout this paper, we use geometrical units G = c = 1, and assume a flat ΛCDM

cosmology with Ωm = 0.307,ΩΛ = 1 −Ωm and H0 = 67.7 km/s/Mpc (h = 0.677).

7.2 Dry loss-cone channel

In this section, we will first briefly introduce the loss-cone mechanism along with the Fokker-

Planck equation governing the evolution of stars in a stellar cluster around a MBH. After that we

calculate the EMRI formation rates of both sBHs and MGOs via the loss-cone mechanism.

7.2.1 Loss-cone mechanism

Consider a star orbiting around a MBH, with specific binding energy E := ϕ − v2/2 and specific

angular momentum J, where ϕ(r) is the (positive) gravitational potential and v2/2 is the kinetic

energy. Its orbital motion is affected by two main effects: GW emission which shrinks the orbit on

a timescale tgw and gravitational scatterings by other stars in the stellar cluster which changes the

orbital angular momentum by order of unity on a timescale tJ. For a star on a tight and eccentric
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orbit where the GW emission is more efficient with tgw < tJ, the orbit is stable against random

scatterings and the star becomes an stable EMRI [131]. On the other hand, for a star on a wide

and/or circular orbit where the GW emission is less efficient with tgw > tJ, the star is expected to

be scattered into a random direction: away from, towards or even directly into the central MBH.

In the phase space, a region of low angular momentum J < Jlc(E) is usually referred as the

loss cone, where a star ususally promptly falls into the MBH within one orbital period P(E) if

its angular momentum is not altered much by gravitational scatterings. As a result, the loss cone

region satisfying P(E) < tJ is unpopulated (empty regime) and the loss cone region satisfying

P(E) > tJ is populated (full regime). For the problem we are investigating, relevant orbits are of

low energy (E ≈ 0) with semi-major axis length a ≫ M• and the boundary of the loss cone is [460]

Jlc(E ≈ 0) = 4M• . (7.1)

7.2.2 Fokker-Planck equation

Statistical properties of stars can be described by their distribution functions fi(t, r⃗, v⃗) in the (⃗r, v⃗)

phase space, where i labels different star species. Following Refs. [410, 411], we approximate the

distribution functions as fi ≈ fi(t, E,R), where R := J2/J2
c (E) is the normalized orbital angular

momentum with Jc(E) being the maximum orbital angular momentum of a star with energy E. In

order to relate the distribution function f (E,R) to the number density n(r), and derive the Fokker-

Planck equation, it is necessary to understand the properties of star orbits in given potential field

ϕ(r), for which we summarize as follows [411]. The definition of energy suggests that

2(ϕ − E) = v2 = v2
t + v2

r =
J2

r2 + v2
r , (7.2)

161



where vt and vr are the tangential velocity and the radial velocity respectively. For a circular orbit

of energy E, its orbit radius rc(E) and angular momentum Jc(E) are determined by

J2
c (E) = −r3

cϕ
′(rc) ,

2(ϕ(rc) − E) =
J2

c

r2
c
.

(7.3)

For a general non-circular orbit with parameters (E,R), its turning points (apsis/periapsis) r± are

determined by

2(ϕ(r±) − E) =
J2

r2
±

, (7.4)

and its orbit period P(E,R) is

P(E,R) = 2
∫ r+

r−

dr
vr
. (7.5)

Defining the particle number density in the (E,R) phase space as N(E,R), with N(E,R)dEdR :=∫ r+
r−

d3rd3v f (E,R), we have [410, 411]

N(E,R) = 4π2P(E,R)J2
c (E) f (E,R)

: = C(E,R) f (E,R) .
(7.6)

The position-space particle number density n(r) can be expressed by the distribution function

f (E,R) by [411]

n(r) =
2π
r2

∫ ϕ(r)

0
dEJ2

c (E)
∫ Rmax

0

dR
vr

f (E,R) , (7.7)

where Rmax(r, E) = 2r2(ϕ(r) − E)/J2
c (E), and vr(r, E,R) = 2(ϕ − E) − J2/r2 = (Rmax − R)J2

c (E)/r2.

In the case of thermal distribution f = f (E), the above equation simplifies as [461]

n(r) = 4π
∫ ϕ(r)

0
dE

√
2(ϕ(r) − E) f (E) . (7.8)

With all these orbital properties, the Fokker-Planck equation governing the phase space evolu-
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Figure 7.1: In the fiducial stellar cluster around a MBH with M• = 4 × 106M⊙, distribution

functions fi(E,R) (i = star,mgo, sbh) at tf = 2 Gyr are shown in the first 3 panels. The 4th panel

shows R-integrated distribution functions f̄i at ti = 0 (dashed lines) and at tf = 2 Gyr (solid lines).

All the distribution functions are shown in units of 105pc−3/(2πσ2)3/2.

tion is written in the form of [133, 410–412, 462]

C
∂ f
∂t
= −

∂

∂E
FE −

∂

∂R
FR , (7.9)

with C = 4π2J2
c P being the weight function defined in Eq. (7.6) and FE,R being the flux in the E/R

direction:

−FE = C

(
DEE

∂ f
∂E
+ DER

∂ f
∂R
+ DE f

)
,

−FR = C

(
DRR

∂ f
∂R
+ DER

∂ f
∂E
+ DR f

)
.

(7.10)

The diffusion and advection coefficients are functions of the distribution functions and are derived

in Appendix 7.A.

Given initial condition f (t = 0, E,R), we evolve the cluster according to the Fokker-Planck

equation (7.9) subject to following boundary conditions. On the E → 0 boundary, we fix the

distributions to their initial values, i.e.,

f (t, E,R)|E→0 = f (t = 0, E,R)|E→0 , (7.11)
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considering the long relaxation timescale there. On the R = 1 boundary, the flux in the R direction

should vanish,

FR|R→1 = 0 . (7.12)

On the loss cone boundary R = Rlc(E) := J2
lc/J2

c (E), there are two different regimes: full loss cone

regime where

ylc :=
Rlc

(DRR/R)R→0P
< 1 , (7.13)

and empty regime where ylc > 1. In the empty regime, stars are expected to fall into the MBH

within one orbital period P (that’s why the phase space is empty). In the full regime, stars are in

general scattered into/out of the loss cone mulitiple times within one orbital period, therefore the

phase space is full of stars and the rate of stars falling into the MBH is low. Quantitatively, the flux

in the R direction was obtained in Ref. [410] as

−
FR

C
=

(DRR

R

) ∣∣∣∣∣∣
R→0

f (R0)
ln(R0/Rlc) + F (ylc)

, (7.14)

where R0 is any small R in the range of Rlc ≤ R ≪ 1, F (ylc) ∼ 1/ylc for ylc ≲ 1 and F (ylc) ≃

0.824y−1/2
lc for ylc ≳ 1. At R0 = Rlc, the above equation simplifies as FR(Rlc) = 0 in the full regime,

and f (Rlc) = 0 in the empty regime.

As a result, the EMRI rate and the promp infall rate per MBH via loss cone is given by

Γemri,lc =

∫ +∞

Egw

F⃗ · dl⃗ ,

Γinfl,lc =

∫ Egw

σ2
F⃗ · dl⃗ ,

(7.15)

where F⃗ = (FE, FR), dl⃗ = (dE, dR) is the line element along the boundary of the loss cone, and Egw

is the critical energy where tgw = tJ. To calculate the GW emission timescale tgw, we use a recently

corrected version of Peters’ time-scale that accounts for eccentricity evolution and post-Newtonian
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Figure 7.2: Left panel: EMRI rates Γemri,lc and prompt infall rates Γinfl,lc of both sBHs and mass-

gap objects in the loss-cone channel. Right panel: differential rates dΓ/dE at t = 2 Gyr, and the

two dots are the critical energy Emgo,sbh
gw .

corrections [141–143, 463], with

tgw =
5a4

256M2
•m

(1 − e2)7/2

1 + 73
24e2 + 37

96e4
81−

√
1−ee

5M•
a(1−e) , (7.16)

where m is the mass of the star orbiting around the MBH, a and e are the orbital semi-major axis

and the eccentricity, respectively. For calculating the diffusion timescale tJ in the J-direction, we

use the approximation [131]

tJ ≈
J2

J2
c (E)

tE(E,R) =
J2

J2
c (E)

E2

2DEE(E,R = 0)
. (7.17)

7.2.3 EMRI rate and prompt infall rate

We initialize the system with Tremaine’s MBH+stellar cluster model [417, 464], assuming 3 star

species in the stellar cluster: stars with mass mstar, mass-gap objects with mass mmgo and heavy

sBHs with mass msbh. The total star/mgo/sBH mass in the cluster are Mstar, Mmgo and Msbh, respec-
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tively. Their number densities in the Tremaine’s cluster model are specified by

nstar(r) =
Mstar

mstar

3 − γ
4π

ra

rγ(r + ra)4−γ ,

ni(r) = δi × nstar(r) ,
(7.18)

with i the index labelling different star species, ra the density transition radius, γ the density scaling

power index, and δi the abundance of species i relative to stars.

As an example, we initialize a stellar cluster with three different star species with mi = (1, 3, 10)M⊙,

δi = (1, 10−3, 10−3) around a MBH with M• = 4 × 106M⊙. Note if there is no gap in the mass

spectrum of SN remnants with the power-law mass spectrum dN/dm ∝ m−2.35 [465] holding in

the whole mass range 3M⊙ ≤ m ≤ 50M⊙, we expect nearly equal number of MGOs and sBHs

produced in SN explosions. The total star mass Mstar = 20M•, the density transition radius

ra = 4rh = 4M•/σ2 and the density power index γ = 1.5, where the star velocity dispersion σ

satisfies the M• − σ relation [413, 466]

M• = 1.53 × 106
(

σ

70 km/s

)4.24

, (7.19)

We evolve the cluster according to the Fokker-Planck equation (7.9) (see [467] for detailed

numerical algorithm). In first 3 panels of Fig. 7.1, we show the distribution functions fi(t, E,R) at

t = 2 Gyr, and in the 4th panel, we show the R-integrated functions f̄i(E) =
∫ 1

0
dR fi(t, E,R) at t = 0

and t = 2 Gyr, respectively. From the 4th panel, we see sBHs (which are the most massive star

component) concentrate around the MBH as a result of mass segregation, yielding a large increase

in the distribution function for sBHs at small radii/large binding energy E with time [132, 134,

468], while little concentration is found for less massive MGOs or stars.

In the upper panel of Fig. 7.2, we show the EMRI rates and the prompt infall rates of both

sBHs and MGOs, where Γmgo
emri is lower than Γsbh

emri by a factor of O(102), as a result of the stronger
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mass segregation and shorter GW emission timescale tgw for sBHs. In contrast, the prompt infall

rates are less affected by the mass segregation, because the prompt infall rate depends on the star

density at lower energy (< Egw), while the EMRI rate depends on the star density at higher energy

(> Egw) (Eq. 7.15), and the latter is more sensitive to the mass segregation (Fig. 7.1). As a result,

we find the number of prompt infalls per EMRI Np := Γinfl/Γemri are Nsbh
p ≈ 10,Nmgo

p ≈ 250 for the

fiducial model.

For an analytic understanding of these results, we re-estimate the number of prompt infalls per

EMRI Np using previous analytic formula [Eq. (17) and (26) in [131]],

Γemri,lc =

∫ agw

0

4πa2n(a)
ln(Rlc)trlx(a)

da ∼ a1.5−2p
gw ,

Γinfl,lc =

∫ amax

agw

4πa2n(a)
ln(Rlc)trlx(a)

da ∼ a1.5−2p
max ,

(7.20)

where n(a) ∼ a−1.5−p is the number density, trlx(a) ∼ ap is the local relaxation timescale, amax is a

characteristic radius of the stellar cluster, and agw is the critical radius where tgw = tJ [Eqs.(7.16,7.17)].

For a single-species cluster filled with stars of mass m, the dependence of agw on mass m and on

the MBH mass M• is [131, 469],
agw

M•/σ2 ∝ m
2

3−2p M0
• . (7.21)

For comparison with numerical results, we formulate the above analytic results in the phase space,

with the analytic differential rates

dΓ/dE = dΓ/da × da/dE ∼ E2p−2.5 , (7.22)

which can be directly compared wtih the numerical results of the fiducial model at t = 2 Gyr

(lower panel of Fig. 7.2). From the comparison, we see the power laws dΓmgo/dE ∼ E−2.25 and

dΓsbh/dE ∼ E−1.75 are a good approximation at E ≳ 10σ2, i.e., 2pmgo ≈ 0.25, 2psbh ≈ 0.75. In

167



terms of the differential rates, the EMRI rate and the prompt infall rates are written as

Γemri,lc =

∫ ∞

Egw

dΓ/dE dE ,

Γinfl,lc =

∫ Egw

σ2
dΓ/dE dE ,

(7.23)

where the critical energy are numerically found as Esbh
gw = 63σ2, Emgo

gw = 171σ2 and they are

consistent with the analytic expectation Esbh
gw /E

mgo
gw ≈ (msbh/mmgo)

2
3−2p [Eq. (7.21)]. Using the power-

law approximations to the differential rates, we have

Np ≈ (Egw/Emin)1.5−2p, (7.24)

where Emin ∈ (1, 10)σ2 is an effective minimum energy (lower panel of Fig. 7.2). As a result, we

obtain an analytic estimate Nsbh
p ∈ (4, 22) and Nmgo

p ∈ (35, 600).

Similar to the fiducial model, we initialize the stellar cluster around a MBH with mass in the

range of (105, 107)M⊙, then evolve the system for T0 = 5 Gyr, and summarize the time-averaged

EMRI rates Γ̄sbh,mgo
emri and prompt infall rates Γ̄sbh,mgo

infl in Fig. 7.3. We find the EMRI rates peak around

M• = 106M⊙, because the rates are limited by the longer relaxation timescale of the stellar cluster

around a heavier MBH, while the rates are limited by the lower number of sBHs and MGOs

in the stellar cluster around a lighter MBH [467]. We find the time-averaged EMRI rates are

Γ̄sbh
emri = O(10− 102) Gyr−1 and Γ̄mgo

emri = O(1) Gyr−1. For longer evolution time T0, the rates decrease

further because of the depletion of sBHs and MGOs in the stellar cluster. On average, the number

of prompt infalls per EMRI Np are similar to in the fiducial model with Nsbh
p ≈ 10,Nmgo

p ≈ 250,

except Np(M• = 105M⊙) is lower by a factor ∼ 2. The nearly independence of Np on the MBH

mass M• comes from the independence of agw (or equavilently Egw) on M• [Eq. (7.21,7.24)], while

Nmgo,sbh
p (M• = 105M⊙) are lower simply because MGOs/sBHs around the lighter MBH are of lower

number and are quickly depleted via the loss cone, consequently the critical energy Egw decreases
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Figure 7.3: Average EMRI rates Γ̄emri,dry and average prompt infall rates Γ̄infl,dry of both sBHs and

mass-gap objects in the loss-cone channel.

and Np is reduced.

7.3 Wet AGN disk channel

In the presence of an accretion disk around a MBH, the distributions of all different orbiting object

species are affected by the disk. As a result, the spherical symmetry is broken and the distribution

function f (E,R, µ) generally acquires dependence on the orbital inclination ι w.r.t. the disk plane,

where we have defined µ := cos ι = Ĵ · Ĵdisk, with Ĵ and Ĵdisk being the unit direction vectors of

the star orbital angular momentum and the disk angular momentum, respectively.

For the problem we are considering, all stars can be conveniently decomposed as a cluster
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component and a disk component, i.e.,

f (E,R, µ)→ f (E, µ) + g(E)δ(µ − 1)δ(R − 1) , (7.25)

where we have approximate the cluster-component distribution as R-independent and approximate

the disk component as circular orbiters lying on the equator with ι = 0 (µ = 1), because the

orbital eccentricity damping timescale is in general much shorter than the migration timescale

(see subsection 7.3.1 for details). With this decomposition, we have number density n(r, θ) of the

cluster-component stars and surface number density Σ(r) of the disk-component stars as

n(r, θ) = 4π
∫ ϕ(r)

0
dE

√
2(ϕ(r) − E) f̄ (E, θ) ,

Σ(r) = 2π2rE
√

2(ϕ(r) − E)g(E)
∣∣∣∣
r=rc(E)

,

(7.26)

with

f̄ (E, θ) =
1

2π

∫ 2π

0
dη f (E, µ = sin θ cos η) , (7.27)

where θ is the polar angle w.r.t. to the Ĵdisk direction.

In the remaining part of this section, we will first summarize the important interactions between

stars and the accretion disk, then incorporate these interactions into the Fokker-Planck equation,

and finally evolve the stellar cluster to calculate the wet EMRI rates.

7.3.1 Star-disk interactions

Interactions of an accretion disk with stars, MGOs and sBHs are similar in aspects of density waves

and dynamical friction. In term of gas accretion onto stars, MGOs and sBHs within the AGN disk,

the star size makes a difference. Compact objects of relatively small sizes only grow mildly within

the AGN disk, while the stellar evolution is expected to be impacted by gas accretion onto stars

of much larger sizes [470, 471]. In this work, we are not intended to model the star evolution in
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detail, and we simply assume no mass change of all the star species during the evolution period.

For illustration purpose, we take sBHs as an example. As a sBH orbits around the central MBH

surrounded by an accretion disk, its periodic motion generates density waves, which in turn drive

the star to migrate inward, damp its orbital eccentricity e and its orbital inclination ι. For a highly

inclined orbiter, the density wave effects become subdominant with respect to dynamical friction

as it goes through the gas disk. The two effects (density waves and dynamical friction) together

contribute to the advection in (E, µ) space as [150, 151]

⟨∆µ⟩dsk
t = (1 − µ2)

ι

sin ι
×min.

{
0.544
twav

,
1.46
twav

h4

ι sin3(ι/2)

}
,

⟨∆E⟩dsk
t = E ×min.

{
2.7 + 1.1αs

tmig,I
,

8.8
tmig,I

h2

sin(ι) sin(ι/2)

}
,

(7.28)

with ⟨∆X⟩t := ∆X
∆t |∆t→0, αs := d lnΣ/d ln r and

tmig,I =
M
m

M
Σr2 h2 , twav = tmig,Ih2 , (7.29)

where m is the mass of the orbiter, M is the total mass within radius r, h and Σ are disk scale height

and the disk surface density 1.

For a sBH captured into the disk, its orbital eccentricity will be damped by the eccentricity

density waves on timescale twav, which is generally much shorter than all other relevant timescales,

including the migration timescale tmig,I and two diffusion timescales, E2/DEE and (1−µ2)/Dµµ. As

a result, sBHs in the AGN disk are generally moving in circular orbits. For a sBH embedded in the

gas disk, surrounding gas tends to flow towards it nearly in the radial direction at large distances,

in the rest frame of the sBH. Due to the differential rotation of the gas disk, the inflowing gas

generally carries non-zero angular momentum relative to the sBH, consequently circularizes and

1In the previous work [467], we have approximated the effect of density waves as inclination-independent and have
neglected the contribution from dynamical friction. As a result, the previous approximation is an over estimate for
highly inclined orbiters.
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forms a disk around the sBH. The gas inflow rate at the outer boundary is usually super-Eddington

and a strong outflow naturally emerges. As a result, a major part of the inflowing gas may escape as

outflow and only the remaining part is accreted by the sBH (see Ref. [470] and references therein

for detailed modeling). Because of the circularization process, it is reasonable to expect that the

outflow carries minimal net momentum with respect to the sBH, and the momentum carried by

the inflow eventually transfers to the sBH. The head wind contributes to the advection in the E-

direction as

⟨∆E⟩wnd
t =

2J
J̇wnd

(for in-disk orbiters), (7.30)

where J̇wnd is sBH angular momentum loss rate due to the head wind (see Ref. [467] for calculation

details).

GW emission only becomes important when the orbiter is very close to the MBH and it drives

an advection in the E direction for a circular orbiter as [463]

⟨∆E⟩gw
t =

64
5

M2m
a4 E . (7.31)

Accretion disk structure of AGNs has not been well understood especially in the outer parts,

where both disk heating mechanism and the angular momentum transport mechanism are not clear.

Three commonly used AGN disk models (α/β disks [408], and TQM disk proposed by Thompson,

Quataert, and Murray [409]) have been numerically solved and compared in our previous work

[467]. In this work, we will use α and β disks with accretion rate Ṁ• = 0.1Ṁ•,Edd as fiducial disk

models (Fig. 5 in [467]). In Fig. 7.4, we show the migration timescales E/ ⟨∆E⟩t := E/(⟨∆E⟩dsk
t +

⟨∆E⟩wnd
t + ⟨∆E⟩gw

t ) of a sBH with msbh = 10M⊙ embedded in the two fiducial accretion disks. The

two disks only differs in inner parts where the radiation pressure dominates over the gas pressure

and the two migration timescales only differs where E/σ2 ≳ 103. We do not include the TQM

disk model in this work because a much more efficient angular momentum transport mechanism
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Figure 7.4: The migration timescales of a 10M⊙ BH embedded in the fiducial α and β disks,

respectively, where the GW emission becomes dominant at E/σ2 ∼ 105 or equivalently a ∼ 102M•.

is assumed in the TQM disk model, which is inconsistent with the turbulence viscosity driven

by magnetorotational instability in inner parts of the accretion disk [472–474]. Due to the high

efficiecy of the angular momentum transport assumed in the TQM disk model, TQM disks are in

general of lower surface density, therefore longer migration timescale tmig,I, which hinders sBHs

and MGOs from migrating to the vicinity of the central MBH and forming EMRIs if Tdisk < tmig,I.

If Tdisk > tmig,I, the EMRI rates in TQM disks are similar to those in α/β-disks (see [467] for

details).

7.3.2 Fokker-Planck equation

For cluster-component stars, the Fokker-Planck equation takes the form

Cµ
∂ f
∂t
= −

∂

∂E
FE −

∂

∂µ
Fµ , (7.32)
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with flux

−FE = Cµ

(
DEE

∂ f
∂E
+ DEµ

∂ f
∂µ
+ DE f

)
,

−Fµ = Cµ

(
Dµµ

∂ f
∂µ
+ DEµ

∂ f
∂E
+ Dµ f

)
,

(7.33)

and the weight function

Cµ(E) :=
1
2

∫ 1

0
C(E,R)dR , (7.34)

where the factor 2 comes from
∫ 1

−1
dµ. All the coefficients of the Fokker-Planck equation (7.32)

are contributed by star interactions with the accretion disk and by scatterings with both the cluster-

component stars and the disk-component stars, where the first only contributes to the advection

coefficients as

DE = −
(
⟨∆E⟩dsk

t + ⟨∆E⟩gw
t

)
, Dµ = − ⟨∆µ⟩

dsk
t . (7.35)

and the latter two contributions are given in Eqs.(7.78,7.79), respectively.

With proper initial conditions, we evolve the system according to Eq. (7.32) with the following

boundary conditions. On the E → 0 boundary, we again fix the distribution, i.e.,

f (t, E,R)|E→0 = f (t = 0, E,R)|E→0 . (7.36)

On the E → Emax boundary, where the evolution of distribution function is dominated by GW

emission, we set

FE |E→Emax = −CµDE f . (7.37)

On the µ = −1 boundary, we use the zero-flux condition

Fµ|µ→−1 = 0 . (7.38)

On the µ = 1 boundary, where the evolution of distribution function is dominated by the inclination

174



0 2 4
log10(E/ 2)

0.5

0.0

0.5

=
co

s(
)

4

3

2

1

0

1

2

log10(fstar)

0 2 4
log10(E/ 2)

0.5

0.0

0.5

4

3

2

1

0

1

2
log10(103fmgo)

0 2 4
log10(E/ 2)

0.5

0.0

0.5

4

3

2

1

0

1

2
log10(103fsbh)

101 103 105

E/ 2

10 10

10 6

10 2

102

fstar

fmgo

fsbh

gstar
gmgo

gsbh

Figure 7.5: In the fiducial stellar cluster around a MBH with M• = 4 × 106M⊙, the cluster-

component distribution functions fi(E, µ) (i = star,mgo, sbh) at t = 107 yr are shown in the first

3 panels. The 4th panel shows µ-integrated cluster-component distribution functions f̄i(E) (solid

lines) and disk-component gi(E) (dashed lines). All the distribution functions are shown in units

of 105pc−3/(2πσ2)3/2.

damping arising from the normal density waves, we set

Fµ|µ→1 = −CµDµ f . (7.39)

For disk-component stars, the Fokker-Planck equation reduces to be 1-dimensional,

Cµ
∂g
∂t
=

∂

∂E

[
Cµ

(
DEE

∂g
∂E
+ DEg

)]
+ Fµ(E, µ = 1) , (7.40)

with the source term arising form disk-component stars captured by the disk. We also find the

evolution of disk-component stars is dominated by the star-disk interactions and GW emission

[Eqs. (7.28,7.30,7.31)], so we simply neglect the contributions from scatterings, i.e.,

DE = −
(
⟨∆E⟩dsk

t + ⟨∆E⟩gw
t + ⟨∆E⟩wnd

t

)
, DEE = 0 . (7.41)

Now Eq. (7.40) is an first-order differential equation, which requires only one boundary condition,
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Figure 7.6: Wet EMRI rates Γemri,disk(t) of sBHs and MGOs. For comparision, we also plot the

average dry EMRI rates Γ̄emri,lc during the quiet phase as horizontal lines (Fig. 7.3).

and we choose it as

g(t, E,R)|E→0 = g(t = 0, E,R)|E→0 . (7.42)

The wet EMRI rate is determined by the flux in the E direction at the Emax boundary, i.e.,

Γemri,disk = −CµDEg|E=Emax . (7.43)

Strictly speaking, the cluster-component contribution should also be included in addition to the

disk-component contribution. As we will see later, the disk-component constribution at the Emax

boundary turns out to be dominant.
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7.3.3 Wet EMRI rates

Considering that the accretion history of MBHs is likely episodic [415, 416] and the active phase

of an MBH is in general much shorter that its quiet phase [144, 145, 414], we simplify the duty

cycle of an AGN as a long quiet phase of T0 = 5 Gyr followed by a short active phase of duration

Tdisk ∈ {106, 107, 108} yr. This simplied picture holds if the cluster evolution driven by purely two-

body scatterings is negligible during a quiet phase between two active episodes, so that adjacent

episodes can be effectively glued together as we understand the hisotory of evolution.

For calculating the wet EMRI rate, we initialize the stellar cluster around a MBH and evolve

the system for T0 in the same way as in the previous section, then turn on the accretion disk and

initialize the cluster-component and disk-component distributions as

fi(t = 0, E, µ) = 0.99
∫ 1

0
fi(t = T0, E,R) dR ,

gi(t = 0, E) = 0.01
∫ 1

0
fi(t = T0, E,R) dR ,

(7.44)

where the integrand fi(t = T0, E,R) is the distribution function at the end of the quiet phase,

and the initial fraction 0.01 is the typical disk aspect ratio [467], the exact value of which does

not matter because the disk-component star densities are mostly determined by subsequent capture

and migration processes. With this initialization, we continue the evolution of fi(t, E, µ) and gi(t, E)

according to Eqs.(7.32,7.40) for a duration Tdisk.

As a fiducial model of the wet channel, we again consider a fiducial model with a MBH and

a stellar cluster same to in the previous section, and a fiducial α-disk with lifetime Tdisk = 108 yr

(Fig. 7.4). In the first 3 panels of Fig. 7.5, we show the cluster-component distribution functions

fi(E, µ) at t = 107 yr, where we see low-inclination (µ → 1) orbiters have been captured into the

disk, therefore the distribution function fi(E, µ→ 1) is relatively lower. In the 4th panel, we show

the µ-integrated distribution functions f̄i(E) =
∫ 1

−1
dµ fi(E, µ) and the disk-component functions
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ḡi(E) at t = 107 yr. The disk component dominates over the cluster component in the vicinity

of the MBH (large E), and the disk component peaks around E ∼ 105σ2 where the migration

timescale peaks (Fig. 7.4). It is interesting to note that the disk-component distribution functions

gi(E) are proportional to their abundance δi with no dependence on different star masses mi, simply

because both the rate of stars captured onto the disk and the migration rate of stars along the disk

are proportional to their masses mi, and the local density gi(E) is determined by the ratio of the two

rates in the equilibrium state.

In Fig. 7.6, we show the wet EMRI rates for both sBHs and MGOs as functions of time. Initally

both of them are low because it takes sometime for sBHs and MGOs that are captured by the disk

to migrate to the MBH; and the two rates peaks around t = 3 × 105 yr and t = 106 yr, respectively,

because the migration timescale is inversely proportional to the star mass mi. After the peak time,

the rate of stars captured by the disk is in equilibrium with the corresponding EMRI rate, and both

of them steadily decrease with time ∝ t−0.5, which is the typical behavior of diffusion processes

with absorbing boundary conditions. We find the wet EMRI rate of sBHs in the equilibrium state

is higher than the dry EMRI rate by O(102 − 103) for the fiducial model, which is consistent with

the result of the slow disk capture scenario in our previous work (Fig. 10 of Ref. [467]), though the

detailed time dependence does not match exactly because we approximated the effect of density

waves as inclination-independent and neglected the contribution from dynamical friction in the

previous work, while we have used more refined prescription of star-disk interaction [Eq. (7.28)]

and self-consistent calculation of the disk capture rate [Eq. (7.40)] in this work. In the loss-cone

channel, the EMRI rate of MGOs is largely suppressed compared to sBHs because MGOs benefit

little from the mass segregation (see Figs. 7.1 and 7.2), while in the disk channel, the EMRI rate

of MGOs is lower than that of sBHs by a factor of ∼ msbh/mmgo in the equilibrium state (Fig. 7.6).

As a result, we find the wet EMRI rate of MGOs in the equilibrium state is higher than the dry rate

by O(103 − 104) for the fiducial model.

As shown in Fig. 7.4, the migration timescale of a sBH in an AGN disk peaks around r ∼
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102M•, where the GW emission start to dominate over other processes. As a result, a number of

sBHs aggregate around this radius due to a traffic jam (4th panel of Fig. 7.5). For clarity, we show

the surface number density of disk-component sBHs Σ in Fig. 7.7 at different times. Compared

with the β-disk, more sBHs aggregate around r ∼ 102M• in the fiducial α-disk because of slower

migration speed. A similar result (with slightly higher surface number densities) was obtained in

our previous work [470] though the disk capture rate was not calculated from first principles.

Similar to the fiducial model, we initialize a stellar cluster of a MBH with mass in the range

of (105 − 107) M⊙, evolve the MBH+cluster system for T0 = 5 Gyr, then turn on an accretion

disk around the MBH and initialize the cluster-component and disk-component distributions, and

continue the evolution for Tdisk. The average wet EMRI rates of sBHs and MGOs

Γ̄wet =
1

Tdisk

∫ Tdisk

0
Γemri,diskdt , (7.45)

are summarized in Table 7.1. For long disk lifetime Tdisk ≳ 107 yr, the wet EMRI rates of sBHs and

MGOs are higher for heavier MBHs because more sBHs and MGOs are available around heavier

MBHs. For short disk lifetime Tdisk = 106 yr, the trend reverses for M• ≳ 106M⊙ because longer

migration timescale in AGN disks (≳ Tdisk) around heavier MBHs hinders the sBHs and MGOs

captured by the AGN disk from migrating to the vicinity of the MBH and becoming EMRIs.

In comparison with the dry channel, we find the wet EMRI rate of sBHs is usually higher by

O(101 − 103) and the wet EMRI rate of MGOs is usually higher by O(103 − 104).

7.4 Detection Prospects

In addition to the generic EMRI rates per MBH/AGN obtained in the previous two sections, a few

extra pieces of information are needed for calculating the LISA detectable EMRI rate: the mass

function of MBHs dN•/dM• and the fraction of MBHs living a stellar cusp which is supposed to
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Table 7.1: Average EMRI rates (Gyr−1) of sBHs and MGOs per AGN, assuming sBHs and MGOs

are produced from SN explosion with equal numbers.

AGN disk M•/M⊙ (Γ̄mgo
wet , Γ̄

sbh
wet)Tdisk=106yr (Γ̄mgo

wet , Γ̄
sbh
wet)Tdisk=107yr (Γ̄mgo

wet , Γ̄
sbh
wet)Tdisk=108yr

α-disk 1 × 107 (0.1 × 103, 4.1 × 104) (1.2 × 104, 4.9 × 104) (6.7 × 103, 1.7 × 104)
4 × 106 (0.7 × 103, 9.0 × 104) (1.2 × 104, 3.7 × 104) (4.7 × 103, 1.2 × 104)
1 × 106 (1.0 × 104, 4.4 × 104) (7.4 × 103, 1.3 × 104) (2.5 × 103, 4.3 × 103)
4 × 105 (1.1 × 104, 1.7 × 104) (4.3 × 103, 4.5 × 103) (1.5 × 103, 1.4 × 103)
1 × 105 (2.7 × 103, 1.6 × 103) (1.1 × 103, 0.6 × 103) (0.5 × 103, 0.3 × 103)

β-disk 1 × 107 (4.6 × 103, 9.3 × 104) (1.3 × 104, 5.1 × 104) (6.7 × 103, 1.7 × 104)
4 × 106 (7.3 × 103, 1.1 × 105) (1.3 × 104, 3.8 × 104) (4.7 × 103, 1.2 × 104)
1 × 106 (1.5 × 104, 4.8 × 104) (7.6 × 103, 1.4 × 104) (2.5 × 103, 4.3 × 103)
4 × 105 (1.2 × 104, 1.8 × 104) (4.4 × 103, 4.9 × 103) (1.5 × 103, 1.4 × 103)
1 × 105 (3.7 × 103, 3.2 × 103) (1.1 × 103, 0.8 × 103) (0.5 × 103, 0.3 × 103)

Table 7.2: Forecasted Total and LISA detectable (with SNR≥ 20) EMRI rates of sBHs and MGOs

in the redshift range 0 < z < 4.5 assuming sBHs and MGOs are produced from SN explosions with

equal numbers. For the wet channel, we have assumed a conservative AGN fraction fAGN = 1%

throughout the universe.

Wet EMRIs f• AGN disk Tdisk [yr] Total rates of (MGOs, sBHs) [yr−1] LISA detectable rates of (MGOs, sBHs) [yr−1]
f•,−0.3 α-disk 106 (1900, 6400) (50, 480)

107 (1400, 2500) (24, 130)
108 (540, 860) (10, 54)

β-disk 106 (2700, 8200) (65, 530)
107 (1400, 2600) (24, 150)
108 (540, 860) (10, 54)

f•,+0.3 α-disk 106 (110, 1000) (3, 34)
107 (180, 470) (1, 10)
108 (71, 160) (< 1, 3)

β-disk 106 (200, 1300) (5, 38)
107 (190, 500) (2, 11)
108 (71, 160) (< 1, 3)

Dry EMRIs f• Total rates of (MGOs, sBHs) [yr−1] LISA detectable rates of (MGOs, sBHs) [yr−1]
f•,−0.3 (79, 1300) (1, 120)
f•,+0.3 (3, 130) (< 1, 10)
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be destroyed during a MBH merger following a previous galaxy merger.

Following Ref. [137], we consider two MBH mass functions in the range of (104, 107)M⊙,

f•,−0.3 :
dN•

d log M•
= 0.01

(
M•

3 × 106M⊙

)−0.3

Mpc−3 ,

f•,+0.3 :
dN•

d log M•
= 0.002

(
M•

3 × 106M⊙

)+0.3

Mpc−3 ,

(7.46)

where f•,−0.3 is an approximation to the mass function in the model assuming MBHs are seeded by

Pop-III stars and grow via accretion and mergers [419], and f•,+0.3 is purely a phenomenological

model [385].

In the frame of observers on the earth, the differential dry and wet EMRI rates are written as

d2Rdry

dM•dz
=

1
1 + z

dN•
dM•

dVc(z)
dz

Ccusp(M•, z)Γ̄dry(M•; Np) ,

d2Rwet

dM•dz
=

fAGN

1 + z
dN•
dM•

dVc(z)
dz

Ccusp(M•, z)Γ̄wet(M•;M) ,
(7.47)

where z is cosmological redshift, Vc(z) is the comoving volume of the universe up to redshift z,

Ccusp(M•, z) is the fraction of MBHs embedded in a stellar cusp, where we use the same Ccusp(M•, z)

function as in [137] for models with MBH mass function f•,−0.3 and take Ccusp(M•, z) = 1 for

models with MBH mass function f•,+0.3. Γ̄wet(M•;M) is the average wet EMRI rate (Table 7.1) and

we conservatively take the AGN fraction as fAGN = 1%.

In consistent with Ref. [137], we parametrize the average dry EMRI rate of sBHs as

Γ̄sbh
dry(M•; Np) = Cdep(M•; Np)Cgrow(M•; Np)Γsbh

lc (M•) , (7.48)

where we take the number of prompt infalls per EMRI as Np = 10 (Fig. 7.2), the generic rate

Γsbh
lc (M•) = Γ0

(
M•

106M⊙

)−0.19

, (7.49)
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with Γ0 ∈ (30, 300) Gyr−1 [137, 475], and two correction factors are correction from possible

depletion of sBHs available Cdep(M•; Np) and correction capping the MBH mass growth via ac-

creting sBHs (from both prompt infalls and EMRIs) Cgrow(M•; Np), respectively. Though there is

uncertainty of a factor of O(10) in the generic rate Γsbh
lc , we will see that the uncertainty does not

propagate to the average rate Γ̄sbh
dry with the two corrections. The depletion correction is formulated

as

Cdep = min.
{

Tdep

Trlx
, 1

}
, (7.50)

where Tdep is the depletion timescale of sBHs residing in the MBH influence sphere (rc = 2M•/σ2)

Tdep =
Σmsbh

(1 + Np)Γsbh
lc msbh

, (7.51)

assuming the total mass of sBHs in the influence sphere is Σmsbh = 0.06M• , and the relaxation

timescale at r = rc is

Trlx =

(
σ

20 km/s

) (
rc

1 pc

)2

Gyr . (7.52)

The MBH growth correction comes from requiring the MBH mass grows no more than 1/e via

accreting sBHs,

Cgrow = min.
{

e−1 M•
∆M•

, 1
}
, (7.53)

with

∆M• = msbh(1 + Np)Cdep(M•,Np)Γsbh
lc (M•,Np)Temri(M•) , (7.54)

and

Temri =

∫
dt

dt
dz

Ccusp(M•, z) (7.55)

is the total duration when a MBH lives in a stellar cusp.
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With these two corrections, we find the average EMRI rate of sBHs is well fitted by

Γ̄sbh
dry(M•; Np = 10)

= min.

26
(

M•
105M⊙

)
, 30

(
M•

106M⊙

)−0.19
 Gyr−1 .

(7.56)

with little dependence on the generic rate Γ0 as long as it is higher than 30 Gyr−1, because the

average rate is in fact determined by the number of sBHs available around MBHs and the MBH

growth limit via accreting sBHs. For the average EMRI rate of MGOs, we simply take it as

Γ̄
mgo
dry (M•) ≈ 1 Gyr−1 (Fig. 7.3).

With all the elements for calculating the differential EMRI rates ready [Eq. (7.47)], we calcuate

the total EMRI rates of MGOs and sBHs from the two channels and the LISA detectable EMRI

rates. We first sample the EMRI sources according to the differential rates [Eq. (7.47)], then

compute the EMRI waveform using the Augment Analytic Kludge [476–478] and the expected

signal-to-ratio (SNR) by the LISA detector (see all the source sampling and SNR computation

details in the previous work [475]). The forecast results are listed in Table 7.2. For the well-

motivated MBH mass function f•,−0.3, we expect LISA to detect ∼ 1 mass-gap EMRIs, O(102) sBH

EMRIs from the dry channel, O(10 − 102) × ( fAGN/1%) mass-gap EMRIs, and O(102 − 103) ×

( fAGN/1%) sBH EMRIs from the wet channel per year. For the less optimistic MBH mass function

f•,+0.3, the expected detection numbers are overall lower by a factor of O(10).

7.5 Conclusions and Discussion

7.5.1 Summary

In the dry EMRI formation channel, the formation rate of mass-gap EMRIs is strongly suppressed

compared with EMRIs of sBHs, because sBHs are heavier and accumulate closer to MBH due to
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the mass segregation effect and therefore easier to form EMRIs (Fig. 7.2). In the wet channel, the

EMRI formation turns out to be much more efficient than in the dry channel because the capture

of compact objects onto the accretion disk and subsequent inward migration along the disk are

highly efficient in transporting compact objects [467, 475]. Both the capture rate onto to disk and

the migration speed along the disk are linearly proportional to the compact object mass, so that

the formation rate of wet mass-gap EMRIs in the equilibrium state is suppressed by a factor of

∼ mmgo/msbh assuming their abundances are equal (δsbh = δmgo). As a result, we find the wet EMRI

rate of sBHs per AGN is higher than the dry rate per MBH by O(101 − 103), and the wet EMRI

rate of MGOs per AGN is higher than the dry rate per MBH by O(103 − 104). Accounting for the

AGN fraction fAGN = O(10−2 − 10−1), the wet channel turns out to the dominant channel of mass-

gap EMRI formation. As for the LISA detection prospects, we expect LISA to detect no more

than ∼ 1 dry mass-gap EMRIs, and O(10 − 102) × ( fAGN/1%) wet mass-gap EMRIs per year for

the physically motivated MBH mass function f•,−0.3. For the less optimistic MBH mass function

f•,+0.3, the expected detection numbers are lower by O(10) (Table 7.2).

7.5.2 Discussion

As shown above, the expected number of EMRI detections (denoted as Dsbh and Dmgo) are sensitive

to the unknown MBH mass function, while the ratio Dsbh/Dmgo is not, which can be used as a more

robust probe to the MGO abundance and origin.

If LISA detects Dmgo dry mass-gap EMRIs and Dsbh dry EMRIs of sBHs per year, we can infer

the relative abundance of MGOs and sBHs within nuclear stellar clusters as

δmgo

δsbh
≈

Dmgo/Dsbh

Rmgo
sbh

, (7.57)

where Rmgo
sbh ≈ 1/120 is the ratio of expected detection numbers of two different EMRIs assuming

MGOs and sBHs are of the same abundance (Table 7.2). In a similar way making use of Eq. (7.57),
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one can again infer the relative abundance of MGOs δmgo/δsbh from detections of wet EMRIs,

where Rmgo
sbh = (1/10 − 1/5) (Table 7.2) varies little over all different model parameters for the

parameter space we considered. The inferred relative abundance δmgo/δsbh can be used to constrain

the SN explosion mechanisms, where the delayed SN explosion mechanism predicts δmgo/δsbh → 1

while the rapid explosion mechanism predicts δmgo/δsbh → 0 [436].

An excess of mass-gap EMRI detection by LISA is a signature of MGOs of exotic origins

(e.g., PBHs [446–448, 479, 480]). If these MGOs are of primordial origin, their abundance around

MBHs may be further used to constrain the mass fraction of PBHs in dark matter (DM) fmgo :=

Ωmgo/ΩDM. This constraint sensitively depends on the DM distribution around MBHs, which is

poorly understood theoretically. We consider two extremal cases: (1) DM around MBHs traces

baryons with the DM to baryon ratio ΩDM/ΩB; (2) the DM density around MBHs follows the

NFW profile [481].

In case (1), the abundance of MGOs relative to stars is

δmgo

δstar
=

fmgoΩDM

(1 − fgas)ΩB

mstar

mmgo
, (7.58)

where fgas is the mass fraction of gas in baryons and fmgo is formulated as

fmgo = (1 − fgas)
δsbh

δstar

Dmgo/Dsbh

Rmgo
sbh

ΩB

ΩDM

mmgo

mstar

= 6 × 10−4(1 − fgas)
δsbh/δstar

10−3

Dmgo/Dsbh

Rmgo
sbh

ΩB/ΩDM

0.2
mmgo/mstar

3

(7.59)

where we have used Eq.(7.57).

In case (2), the DM abundance around MBHs is usually much lower, with the total DM mass

with the MBH influence radius MDM(< rc) ≈ 0.3%M• (see Appendix 7.C for details). For com-

parison, the total star mass is Σmstar(< rc) ≈ 2M• and the total mass of astrophysical MGOs is

Σmmgo(r < rc) ≈ 0.6%M• × (δmgo/10−3), i.e., the DM abundance around MBHs is comparable
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with that of astrophysical MGOs. In this case, it is unlikely to observe excess of mass-gap EMRIs.

Therefore, an excess of mass-gap EMRI detection by LISA would disfavor the NFW distribution

of MGOs as DM.

Many other proposals to explain GW190814-like events involve hierachical mergers, e.g., in

young stellar clusters [452], triple systems [455], AGN disks [457], etc. If the abundance of MGO

production can be realibly estimated in these scenarios, the rate of mass gap EMRIs may also be

used to test these models. For example, as young stellar clusters are not expected to host massive

black holes, if they are the only places that MGOs are produced, we should expect the mass-gap

EMRI rate to be minimized.

One working assumption we used is no mass change of MGOs in AGN disks. As shown in

Fig. 7.4, the typical migration timescale of MGOs is ∼ 106 yr, which is much shorter than the

Salpeter timescale 5× 107 yr (mass doubling timescale with the Eddington accretion rate). But the

accretion rate of MGOs/sBHs in AGN disks is uncertain [470, 482]. If gas accretion onto MGOs

was highly super-Eddington and largely increased their masses, identifying the distorted mass gap

is less straightforward, and the commonly used techniques of searching for mass-gap features in

the mass spectrum of LIGO events [438] would also be valuable for our purpose.

7.A Appendix: Diffusion and advection coefficients in the Fokker-

Planck equation (7.9)

In Refs. [410, 411, 462], the diffusion and the advection coefficients of a single-species cluster have

been derived in detail. Following Refs. [133, 412], we extend the them to multi-species cases. We
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first define auxiliary functions:

F( j)
0 (E, r) = (4πm j)2 lnΛ

∫ E

−∞

dE′ f̄ j(E′) ,

F( j)
n (E, r) = (4πm j)2 lnΛ

∫ ϕ(r)

E
dE′

(
ϕ − E′

ϕ − E

)n/2

f̄ j(E′) ,
(7.60)

where n ≥ 1, j is the index labelling different star species, lnΛ the Coulomb’s logarithm which we

take as lnΛ = 10, and

f̄ j(E) :=
∫ 1

0
f j(E,R)dR . (7.61)

With these auxiliary functions, the coefficients are written as

D(i)
EE =

∑
j

2
3P

∫ r+

r−

dr
vr

v2(F( j)
0 + F( j)

3 ) ,

D(i)
E =

∑
j

−
2
P

∫ r+

r−

dr
vr

F( j)
1 ×

mi

m j
,

D(i)
ER =

∑
j

4
3P

R
∫ r+

r−

dr
vr

(
v2

v2
c
− 1

)
(F( j)

0 + F( j)
3 ) ,

D(i)
RR =

∑
j

4
3P

R
J2

c

∫ r+

r−

dr
vr

{
2

r2

v2

v2
t

(
v2

v2
c
− 1

)2

+ v2
r

 F( j)
0

+ 3
r2

v2 v2
r F( j)

1 +
r2

v2

2v2
t

(
v2

v2
c
− 1

)2

− v2
r

 F( j)
3

}
,

D(i)
R =

∑
j

−
4
P

R
v2

c

∫ r+

r−

dr
vr

(
1 −

v2
c

v2

)
F( j)

1 ×
mi

m j
,

(7.62)

where i (similar to j) is also the star species index, vt = J/r is the tangential velocity, and vc(E) is

the velocity of a circular orbit with energy E.
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7.B Appendix: Diffusion and advection coefficients in the Fokker-

Planck equation (7.32)

Following Refs. [133, 410–412], we derive the diffusion and advection coefficients in the Fokker-

Planck equation (7.32) in this section. Consider a star m with orbital energy E and velocity v

changes its energy by ∆E and velocity by ∆v due to a scattering with a field star ma. In the

following orthonormal basis,

v̂ = v/v ,

Ĵ = J/J = r × v/J ,

ŵ = v × J/|v × J | ,

(7.63)

the velocity change is written as

∆v = ∆v∥v̂ + ∆v⊥ = ∆v∥v̂ + ∆vJĴ + ∆vwŵ . (7.64)

As a result, the changes in energy and angular momentum are

∆E = −
1
2

(∆v∥)2 −
1
2

(∆v⊥)2 − v∆v∥ , (7.65)

and
∆J = r × ∆v

= J
(
∆v∥
v
−

vr

vt

∆vw

v

)
Ĵ + J

∆vJ

v

(
vr

vt
ŵ − v̂

)
:= ∆J∥ + ∆J⊥ ,

(7.66)

with ∆J⊥ = J(∆vJ/v)
√

1 + (vr/vt)2 = J(∆vJ/vt) = r∆vJ and

∆J := |J + ∆J | − J = J
∆v∥
v
− rvr

∆vw

v
+

1
2

r2(∆vJ)2

J
. (7.67)
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For µ = cos ι = Jz/J with Jz the z-component angular momentum, its change is

∆µ =
∆Jz

J
− µ
∆J
J
=
∆vJ

v

(
vr

vt
ŵ − v̂

)
· ẑ −

µ

2
r2(∆vJ)2

J2 . (7.68)

Defining ⟨∆X⟩t := ⟨∆X⟩
∆t |∆t→0 and ⟨∆X∆Y⟩t := ⟨∆X∆Y⟩

∆t |∆t→0 (where ⟨⟩ is ensemble average over

scatterings a star has experienced), it is straightforward to see

⟨∆E⟩t = −
1
2
⟨(∆v∥)2⟩t −

1
2
⟨(∆v⊥)2⟩t − v ⟨∆v∥⟩t ,

⟨(∆E)2⟩t = v2 ⟨(∆v∥)2⟩t ,

⟨∆µ⟩t = ⟨
∆vJ

v
⟩

t

(
vr

vt
ŵ − v̂

)
· ẑ −

µ

2
r2

J2 ⟨(∆vJ)2⟩t ,

⟨(∆µ)2⟩t = ⟨

(
∆vJ

v

(
vr

vt
ŵ − v̂

)
· ẑ

)2

⟩
t

= ⟨
(∆vJ)2

v2

(
v2

r

v2
t
+ 1

)
sin2 ι

2
⟩

t

=
1 − µ2

2
r2

J2 ⟨(∆vJ)2⟩t ,

⟨∆E∆µ⟩t = −
(
vr

vt
ŵ − v̂

)
· ẑ ⟨∆v∥∆vJ⟩t ,

(7.69)

accurate to quadractic order in ∆v.

In the case of spherical symmetry, coefficients ⟨∆v⟩t and ⟨∆v∆v⟩t has been derived by [412]

(assuming the field stars ma are symmetrically distributed in the azimuthal direction in the rest

frame of particle m) as

⟨∆v∥⟩t = −κ
m + ma

ma

∫ v

0
dva

v2
a

v2 fa(va) ,

⟨(∆v∥)2⟩t =
2
3
κ

(∫ v

0
dva

v4
a

v3 fa(va) +
∫ ∞

v
dvava fa(va)

)
⟨(∆v⊥)2⟩t =

2
3
κ

(∫ v

0
dva

(
3v2

a

v
−

v4
a

v3

)
fa(va) + 2

∫ ∞

v
dvava fa(va)

) (7.70)
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⟨∆v⊥⟩t = 0 and ⟨∆v∥∆vJ⟩t = 0, with κ = (4πma)2 lnΛ. It is straightforward to extend the above

results to the non-spherical symmetry case, with the replacement fa(va)→ f̄a(va, θ), where

f̄a(va, θ) :=
1

2π

∫ 2π

0
dη fa(va, µ = sin θ cos η)dη , (7.71)

and θ is the polar angle w.r.t. the z-axis.

With ⟨∆v⟩t and ⟨∆v∆v⟩t ready, the derivation of coefficients in the Fokker-Planck equation

(7.32) is parallel to the previous section and we outline it as follows. Define functions

F( j)
0 (E, θ) = (4πm j)2 lnΛ

∫ E

−∞

dE′ f̄ j(E′, θ),

F( j)
n (E, r, θ) = (4πm j)2 lnΛ

∫ ϕ(r)

E
dE′ f̄ j(E′, θ)

(
ϕ − E′

ϕ − E

)n/2

,

(7.72)

with n ≥ 1 and

f̄ j(E, θ) :=
1

2π

∫ 2π

0
dη f j(E, µ = sin θ cos η)dη . (7.73)

With these auxiliary functions, the local diffusion/advection coefficients D̂(E,R, r, θ) (which de-

pend on energy E, normalized angular momentum R, and spatial coordinates r and θ) are

D̂(i)
EE =

∑
j

1
3

v2(F( j)
0 + F( j)

3 ) ,

D̂(i)
E =

∑
j

−F( j)
1 ×

mi

m j
,

D(i)
µµ =

∑
j

1 − µ2

4
1
3

v−2
t (2F( j)

0 + 3F( j)
2 − F( j)

4 ) ,

D(i)
µ =

∑
j

1 − µ2

4
1
3
∂

∂µ
v−2

t (2F( j)
0 + 3F( j)

2 − F( j)
4 ) ,

D(i)
µE = 0 .

(7.74)

In general, the orbital coordinates (r, θ) of a star orbit with semi-major axis a(E) and eccentric-
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ity e are specified by

r =
a(1 − e2)

1 + e cosψ′
, cos θ = cos(ψ′ + ϕ) sin ι , (7.75)

with ϕ ∈ [0, 2π] specifying the pericenter location in the azimuthal direction, and ψ′ ∈ [0, 2π] is

the orbital phase w.r.t the pericenter. With orbit average, we obtain

D̄(E,R, µ, ϕ) =
2
P

∫ r+

r−

dr
vr

D̂(E,R, r, θ) . (7.76)

After ensemble average over R and ϕ, we arrive at the final form D(E, µ) = ⟨D̄(E,R, µ, ϕ)⟩R,ϕ.

In fact, we find circular orbits is a good approximation in calculating the coefficients. For

circular orbits, the orbital equation is simplified as

r = rc(E), cos θ = cosψ′ sin ι (7.77)

and the diffusion/advection coefficients arising from scatterings with the cluster-component stars

D(i)
EE =

∑
j

1
3π

∫ π

0
dψ′v2(F( j)

0 + F( j)
3 ) ,

D(i)
E =

∑
j

−
1
π

∫ π

0
dψ′F( j)

1 ×
mi

m j
,

D(i)
µµ =

∑
j

1 − µ2

4
1

3π

∫ π

0
dψ′v−2

t (2F( j)
0 + 3F( j)

2 − F( j)
4 ) ,

D(i)
µ =

∑
j

1 − µ2

4
1

3π
∂

∂µ

∫ π

0
dψ′v−2

t (2F( j)
0 + 3F( j)

2 − F( j)
4 ) ,

D(i)
µE = 0 .

(7.78)

With the same approximation, the diffusion/advection coefficients arising from scatterings with
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the disk-component stars are

D(i)
EE =

∑
j

1
3
ϵv2(G( j)

0 +G( j)
3 ) ,

D(i)
E =

∑
j

−ϵG( j)
1 ×

mi

m j
,

D(i)
µµ =

∑
j

1 − µ2

4
1
3
ϵv−2

t (2G( j)
0 + 3G( j)

2 −G( j)
4 ) ,

D(i)
µ =

∑
j

1 − µ2

4
1
3
∂

∂µ
ϵv−2

t (2G( j)
0 + 3G( j)

2 −G( j)
4 ) ,

D(i)
µE = 0 .

(7.79)

where ϵ(h, ι) = min{1, 2
π

arcsin( h
ι
)} ≈ 2

π
arcsin( h

h+ι ) is fraction of the orbit lying inside the disk

component, and

G( j)
0 (E) = (4πm j)2 lnΛ

∫ E

−∞

dE′g j(E′),

G( j)
n (E, r) = (4πm j)2 lnΛ

∫ ϕ(r)

E
dE′g j(E′)

(
ϕ − E′

ϕ − E

)n/2

,

(7.80)

with n ≥ 1.

7.C Appendix: Dark Matter NFW profile

If DM density around a MBH follows the NFW profile [481]

ρDM(r) =
ρs

r
Rs

(
1 + r

Rs

)2 , (7.81)

the total DM mass within radius r is written as MDM(< r) = 4πρsR3
sG(c), with concentration

c := r/Rs and G(c) = ln(1+c)−c/(1+c), where ρs and Rs are the characteristic density and radius,

respectively. For relating ρs and Rs to the MBH mass M•, we need the aid of a commonly used

cutoff radius within which the average DM density is 200 times the critical density of the universe
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ρcrit, i.e.,

M200 = 4πρsR3
sG(c200),

ρs

ρcrit
=

200
3

c3
200

G(c200)
, (7.82)

As found in Ref. [483], M200 and M• are correlated with

M•
107M⊙

≈

(
M200

1012M⊙

)1.65

. (7.83)

For low redshift, the concentration c200 has a weak dependence on the mass M200 [484]

log10 c200 = 0.905 − 0.101 log10(M200/1012h−1M⊙) . (7.84)

Combining the above three equations, we find the total mass of DM within the influence radius rc

is MDM(< rc) ≈ 0.3%M• for M• ∈ (105, 107)M⊙.
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[89] É. É. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008).

[90] J. Vines, E. E. Flanagan, and T. Hinderer, Phys. Rev. D 83, 084051 (2011).

[91] A. Nagar et al., Phys. Rev. D 98, 104052 (2018).

[92] T. Damour and A. Nagar, Phys. Rev. D 81, 084016 (2010).

199

https://doi.org/https://doi.org/10.1016/j.cogpsych.2009.12.001
https://doi.org/10.1103/physrevd.46.5236
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/physrevd.57.7089
https://doi.org/10.1103/physrevd.77.042001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/physrevd.80.084043
https://doi.org/10.1103/PhysRevD.103.104056
https://doi.org/10.1007/978-981-15-4702-7_31-1
https://git.ligo.org/lscsoft/lalsuite
https://git.ligo.org/lscsoft/lalsuite
https://doi.org/10.1103/physrevd.59.084006
https://doi.org/10.1103/physrevd.80.122003
https://doi.org/10.1103/physrevd.86.022004
https://doi.org/10.1103/physrevd.98.084042
https://doi.org/10.1103/physrevd.77.021502
https://doi.org/10.1103/physrevd.83.084051
https://doi.org/10.1103/physrevd.98.104052
https://doi.org/10.1103/PhysRevD.81.084016


[93] D. Bini, T. Damour, and G. Faye, Phys. Rev. D 85, 124034 (2012).

[94] H. Yang, Phys. Rev. D 100, 064023 (2019).

[95] K. D. Kokkotas and B. G. Schmidt, Living Reviews in Relativity 2, 2 (1999).

[96] G. Pratten, P. Schmidt, and T. Hinderer, Nature Communications 11, 2553 (2020).

[97] D. Lai, MNRAS 270, 611 (1994).

[98] H. Yu and N. N. Weinberg, Mon. Not. Roy. Astron. Soc. 464, 2622 (2017).

[99] W. C. G. Ho and D. Lai, Mon. Not. Roy. Astron. Soc. 308, 153 (1999).

[100] D. Lai and Y. Wu, Phys. Rev. D 74, 024007 (2006).

[101] E. E. Flanagan and E. Racine, Phys. Rev. D 75, 044001 (2007).

[102] E. Poisson, Phys. Rev. D 101, 104028 (2020).

[103] M. Burgay et al., Nature 426, 531 (2003).

[104] J. J. Andrews and I. Mandel, ApJL 880, L8 (2019).

[105] D. Tsang et al., Phys. Rev. Lett. 108, 011102 (2012).

[106] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017).

[107] R. Abbott et al., ApJL 915, L5 (2021).

[108] B. Allen et al., Phys. Rev. D 85, 122006 (2012).

[109] B. P. Abbott et al., Phys. Rev. D 100, 104036 (2019).
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