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Abstract

Over the last six years, the LIGO and Virgo gravitational wave detectors have revolutionized grav-

itational wave astronomy by discovering the first compact binary mergers. There is much to learn

about how these systems form in nature, and these discoveries have allowed to start characterizing

the astrophysical population of binary black holes. Many layers of data processing are needed in the

path from raw gravitational wave data to inference of astrophysical implications. In this thesis, I

worked on algorithms to search for signals from compact binary mergers, estimating their parameters

and analyzing them collectively to infer properties of the astrophysical population, ultimately aimed

at unveiling key questions in gravitational wave astronomy: What is the rate of binary mergers in

the Universe? What is the distribution of masses and spins? What is the formation mechanism of

merging binary black holes?

I construct a bank of waveform templates suitable for searching compact binary mergers in grav-

itational wave data through matched-filtering. The resulting bank is defined on a geometric space,

whose notion of distance between waveforms naturally corresponds to their response mismatch. Be-

yond aiding intuition, this feature enables optimal placement of templates, dynamical refinement of

the search, and powerful and robust signal quality tests. Using this template bank, my collabora-

tors and I carried a search for binary black holes in public LIGO–Virgo data, confirming previous

detections and identifying nine new events.

I compute the likelihood function for the parameters of the individual sources, such as black

hole masses and spins. I derive a framework to combine these pieces of information into a likeli-

hood for the collective distribution of these parameters, that accounts for measurement uncertainties,

selection effects and statistical significance of the events. With this, I test and constrain phenomeno-

logical models for the distribution of binary black hole masses, spins, merger rates and cosmological

evolution. I find that the mass distribution features a steep drop around 40M⊙, as predicted by

the pair-instability supernova mechanism; but also features an extended tail to higher masses. The

distribution of spin orientations is anisotropic, disfavoring dynamical formation channels as the only

pathway for merging binary black holes.
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Chapter 1

Introduction

1.1 Gravitational waves

Gravitational waves are disturbances of space-time that propagate at the speed of light, predicted

over 100 years ago by General Relativity. Their physical effect is to stretch or compress distances

between free-falling objects, along directions transverse to the propagation of the wave. Gravitational

wave detectors operate on this principle to measure them. Currently there are three gravitational

wave detectors in operation: two Advanced LIGO located in Hanford, WA, and Livingston, LA,

in the United States, and Advanced Virgo in Cascina, Italy. Advanced LIGO and Advanced Virgo

became operational in 2015 and 2017, respectively, and use laser interferometry to precisely monitor

variations in the distance between test masses caused by gravitational waves.

Gravitational waves are produced in nature by rapidly accelerating, compact massive objects. A

gravitational wave is characterized by the dimensionless strain tensor hij , which can be interpreted as

the fractional change in distances it produces along the various directions. Emission of gravitational

waves is described by the quadrupole formula (to leading order in the strength of the gravitational

field and velocity of the source, and in the wave zone far from the source):

hij =
2G

c4D
Q̈ij , (1.1)

where G is the gravitational constant, c is the speed of light, D is the (luminosity) distance to the

source and

Qij =

∫

d3x ρ(x)

(

xixj −
1

3
δijr

2

)

(1.2)
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is the traceless mass quadrupole moment, with ρ the mass density. The strain is highly suppressed

by the factor G/c4 ∼ 10−44 s2kg−1m−1 in Eq. (1.1), which makes detection of gravitational waves

extremely challenging from a technological point of view. Detection is impossible for all but the

loudest sources, which involve motion of objects multiple times heavier than the solar system at

velocities comparable to the speed of light. The classic example of a source of gravitational waves

is a binary system made of compact objects, like black holes or neutron stars, in tight orbit (and

indeed these have been the only so far observed). Gravitational wave emission causes the binary to

lose energy, tightening the orbit and further increasing gravitational wave emission. If the orbit is

initially tight enough, this is a runaway process which ends in a violent merger of the two objects in

less than the age of the universe. We can crudely estimate the order of magnitude of gravitational

waves emitted from a binary as follows. For a binary with mass M and orbital separation R, the

quadrupole moment is

Q ∼MR2. (1.3)

The timescale for its variation is given by the orbital frequency, Q̈ ∼ ω2Q, which in turn follows

from Newton’s laws: GM2/R2 ∼MRω2 or

ω2 ∼ GM

R3
. (1.4)

Putting everything together,

h ∼ G

c4D
MR2GM

R3
=

(

GM

c2

)2
1

RD
∼ R2

S

RD
, (1.5)

where RS = 2GM/c2 is the Schwarzschild radius of a black hole of mass M . Emission is largest for

small orbital separation R, which can only be as small as the component objects’ size. This is why

merging black holes or neutron stars, whose size is comparable to their Schwarzschild radius, are

prime sources of gravitational waves. For these, R ∼ RS and Eq. (1.5) becomes

h ∼ RS
D

= 10−21 M

M⊙

100Mpc

D
, (1.6)

where M⊙ is the mass of the Sun and a megaparsec Mpc is comparable to intergalactic separations

(as it turns out, it is necessary to probe out to hundreds of Mpc in order to observe events at a rate

of several per year). This means that gravitational wave detectors need to be sensitive to strain on

the order of 10−21. For a kilometer-scale detector such as LIGO or Virgo, this requires measuring
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a change in separation between the test masses of ∆L = hL ∼ 10−18 m—a thousandth part of the

diameter of a proton. Considering that test masses are made of atoms, and laser interferometry

uses micron-wavelength light, this is an astonishing achievement. A historical review of how this

formidable challenge was overcome is given in Saulson (2019).

Advanced LIGO achieved the first direct detection of gravitational waves from a binary black

hole merger on 2015, September 14, which opened a new observational window to the universe and

revolutionized astrophysics (Abbott et al., 2016a). Since then, three observing runs (O1, O2, O3)

took place in 2015, 2017 and 2019, interspersed with periods of detector upgrades that progressively

increased their sensitivity. Altogether, about fifty binary black holes and two binary neutron stars

have been identified.

A compact binary merger signal exhibits a waveform of characteristic shape (“chirp”), with

increasing frequency and amplitude during the inspiral and terminating at merger (Abbott et al.,

2016d). By analyzing the detailed shape of the waveform and comparing it to physical models

of binary mergers, we can estimate the parameters of the source, like masses, spins, location and

orientation. This is very valuable to shed light on the astrophysics of these systems and their

progenitors, particularly since binary black holes can only be observed through gravitational waves.

A pressing question that these observations can inform is what is the astrophysical origin of

merging binary black holes. Several ideas have been put forward, broadly encompassing two classes

of mechanisms: dynamical formation, where binaries are assembled from independently-formed black

holes; or isolated formation, where a binary star evolves into a merging binary black hole. I briefly

describe some of the main ideas below, see Mandel and Farmer (2018) for a review.

The leading mechanism to dynamically form a binary from unbound objects is through a three-

body interaction that binds the binary and deposits the excess energy in the third object. Further

few-body interactions are required to tighten the orbit of the binary, until gravitational wave emission

can take over and lead to a merger within the age of the Universe. Dynamical formation can thus

only happen in dense stellar clusters; where the rate of three-body encounters is appreciable. Such

clusters include globular clusters (old clusters of ∼ 105 stars, of which each galaxy typically has

hundreds), nuclear clusters (dense clusters of ∼ 106 stars at the center of most galaxies) or open

clusters (small, young clusters of ∼ 103 stars, where stars are born). A robust, testable prediction of

dynamical formation channels is that the spin orientations of the independently-formed black holes

in a merger are distributed isotropically, uncorrelated with each other and with the direction of the

orbit. Dynamical formation channels also tend to produce binaries of black holes with comparable

masses. This is because gravitational interactions induce mass-segregation: heavier objects move

3



quickly to the core of the cluster where they get paired with each other. Furthermore, three-

body scatterings tend to eject the lighter object with high probability, which enhances exchange of

companions for unequal-mass binaries. An interesting exception are “second-generation” mergers,

that are possible within dynamic formation channels: if the remnant black hole is retained in the

cluster after merger, it can become paired and merge again. Second-generation mergers would be

characterized by a high mass, a ∼ 2 : 1 mass ratio, and a large spin of the heavier black hole of

≈ 0.7GM2/c due to the orbital angular momentum from the first merger.

In isolated-formation channels, instead, a binary star in a generic location of its galaxy (the

“galactic field”) evolves into a binary black hole that then merges. The main challenge in this

pathway is that mechanisms other than gravitational waves are required to bring the objects together:

a binary black hole with an initial separation larger than the maximum (giant phase) radius of its

progenitor stars would take longer than the age of the Universe to merge by gravitational wave

emission. One natural mechanism is a common-envelope phase, which is a short unstable mass

transfer episode triggered by the expansion of one of the two stars. When a star exhausts hydrogen at

its core, fusion temporarily stops and the core contracts and heats until helium fusion is ignited. The

heating of the core causes the hydrogen envelope to expand; a star in a binary can overflow its Roche

lobe (the region in the co-rotating frame in which trajectories are bound to that star), and transfer

mass to its companion. Mass transfer has two effects: conservation of angular momentum requires

the orbital separation to change (heavy-to-light transfer decreases the separation, and vice versa),

it also alters the hydrodynamic equilibrium of the donor. Depending on the interplay between these

effects, mass transfer can enhance or inhibit itself, leading to unstable or stable transfer, respectively.

Unstable mass transfer triggers a common envelope episode that lasts only a few orbital periods; a

large amount of orbital energy is dumped into the envelope of the star, which gets ejected. If this

process stops before the two stars merge, it results in a tight binary that can ultimately merge by

gravitational wave emission. After common envelope, at least one of the objects is still a stellar core

(the other may already be a black hole). An interesting possibility that arises is that, if the orbital

separation is small enough, the companion can torque the star through tides before it too becomes a

black hole. This would lead to a high black hole spin aligned with the orbit. Mass transfer episodes

can also spin up the objects; altogether, isolated formation generally predicts a tendency for spins to

be aligned with the orbital angular momentum. Black hole spin orientations are thus of paramount

importance as a discriminator between dynamical and isolated formation channels.

4



1.2 Thesis overview

In order to use gravitational wave data to constrain the properties of the astrophysical population,

several layers of data analysis need to take place. Namely, identifying signals present in the noisy

data and establishing their statistical significance, estimating their source parameters, and using the

aggregated set of detections to test and inform models of the population.

1.2.1 Search pipeline

The current policy of the LIGO–Virgo Collaboration (LVC) regarding accessibility of their data is

as follows. Once data are acquired, there is a proprietary period of 18 months during which these

are calibrated and analyzed by the LVC. An initial search is performed at low-latency and limited

information about candidate triggers is reported within minutes to hours, in order to aid follow-

up of counterparts by the community of astronomers. This information includes source location

and estimated probability of electromagnetic emission (e.g. by a kilonova, the explosion following

a binary neutron star merger). The more refined results of an offline search are reported within

the proprietary period in the form of a catalog of events, along with short segments of data that

contain the events identified. After the proprietary period ends, the full strain data are released to

the public (Abbott et al., 2021).

The availability of these data motivated my collaborators and me to develop a pipeline to search

for compact-object binary mergers (Venumadhav et al., 2019). The task of the search pipeline is to

define a detection statistic, that tests the hypothesis H1 that there is a signal present in a piece of

data against the null hypothesis H0 that the data only contains noise. By Neyman–Pearson lemma,

the optimal statistic is (a monotonic function of) the likelihood ratio

P (d | H1)

P (d | H0)
. (1.7)

The pipeline needs to identify all data segments where the statistic Eq. (1.7) has a high value.

A useful model to orient the discussion is that detector noise is stationary and Gaussian—this is

only approximately true for real data, and can be thought as a theoretical limit for detection. Under

this model, the noise likelihood

P (d | H0) ∝ exp

{

−1

2
〈d | d〉

}

, (1.8)

5



where

〈a | b〉 = 4Re

∫ ∞

0

df
ã∗(f)b̃(f)

S(f)
(1.9)

is the inverse-variance-weighted inner product. Here S(f) is the one-sided power spectral density

(PSD) of detector noise, which is diagonal in frequency space by the stationarity hypothesis, tildes

indicate Fourier transforms and asterisks complex conjugation. The signal likelihood is

P (d | H1) =

∫

dθP (d | θ,H1)P (θ | H1), (1.10)

where θ are parameters of the gravitational wave signal and, again for stationary Gaussian noise,

P (d | θ,H1) ∝ exp

{

−1

2
〈d− h(θ) | d− h(θ)〉

}

, (1.11)

where h(θ) is the model gravitational wave strain. For Gaussian noise, the log-likelihood ratio of a

specific signal model θ is thus

log
P (d | θ,H1)

P (d | H0)
= −1

2
〈d− h | d− h〉+ 1

2
〈d | d〉

= 〈d | h〉 − 1

2
〈h | h〉.

(1.12)

We can readily estimate the number of independent models θ that the pipeline needs to test. These

source parameters can be divided into intrinsic (masses and spins) and extrinsic (location, orien-

tation and time of arrival). Intrinsic parameters control the shape of the waveform, while (in the

approximation that gravitational radiation is quadrupolar and that the spins are aligned with the

orbit) extrinsic parameters change the amplitude, phase and time of arrival seen at each detector k:

h̃k(f ; θint, θext) = Ak(θext)e
iφk(θext)e−i2πftk(θext) h0(f ; θint) (1.13)

As we will see in Chapter 2, there are ∼ 104 binary black hole templates with sufficiently different

shapes to be regarded as independent trials, and an order of magnitude more for the lighter binary

neutron stars or neutron-star–black-hole binaries, whose signals are much longer; these cover the

variability from intrinsic parameters. Typical autocorrelation times of these templates (whitened

with the detector noise spectrum) are on the order of a millisecond, so there are ∼ 1010 independent

possible arrival times for each template in a few-month long observing run. Depending on the sky

location of the source, there is a time delay between detectors up to the gravitational wave travel

6



time—of ±10ms for Livingston–Hanford, the most sensitive pair of detectors—which multiplies the

options by 20. The remaining extrinsic parameters (distance and orientation), which determine the

amplitude and phase, can be analytically maximized over; for example for the amplitude

max
A

log
P (d | θ,H1)

P (d | H0)
= A∗〈d | h0〉 −

1

2
A2

∗〈h0 | h0〉 (1.14)

= −1

2

〈d | h0〉2
〈h0 | h0〉

:= −ρ
2

2
; (1.15)

A∗ =
〈d | h0〉
〈h0 | h0〉

; (1.16)

ρ =
〈d | h0〉
√

〈h0 | h0〉
. (1.17)

We have introduced the signal-to-noise ratio ρ, which is the cross-correlation of a normalized template

h0/
√

〈h0 | h0〉 with the data. For the phase, maximization is achieved by changing the real part

in Eq. (1.9) by an absolute value. Maximizing over amplitude and phase means that the detection

statistic follows a chi-squared distribution with two degrees of freedom on Gaussian noise.

The need for trying 104 · 1010 · 20 ∼ 1015 models has two implications: First, it sets a limit for

detectability of a signal ρ2min ≈ 70, set by

Ntrials

∫ ∞

ρ2
min

dρ2χ2(ρ2, 2) ≈ 1 (1.18)

(roughly, eρ
2
min/2 ≈ Ntrials). An optimal pipeline will be limited by the fact that, given the number

of models tried, Gaussian noise will produce & 8σ fluctuations over the course of the observing run,

this is sometimes termed look-elsewhere effect. For a sub-optimal pipeline, the detection bar will in

general be higher.

Second, the sheer size of parameter space means that the cost of computing the detection statistic

needs to be optimized. The solution is to introduce several stages in the pipeline which compute

increasingly better approximations to the detection statistic and filter out data that, at that stage,

are already inconsistent with having a detectable signal.

A first approximation consists of replacing the integral in Eq. (1.10) by a maximization over

model parameters, P (d | H1) ∝∼ P (d | θ∗). Extrinsic parameters are optimized by maximizing the

likelihood over amplitude, phase and time of arrival. For intrinsic parameters, we construct a bank

of template waveforms that cover the target space of signals sufficiently densely and test all of them

by brute force. This template bank is described in Chapter 2; its most remarkable property is

that it has a geometric structure. This means that template waveforms live on a coordinate space
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whose Euclidean distance corresponds to their “mismatch”—a measure of how the response of the

template to a signal degrades if their shapes are different. This feature provides a few analytical

and algorithmic advantages: First, a set of templates with optimal coverage can be obtained by a

regular tiling of the target geometric space. Second, the search can be refined on demand around

promising triggers by adding more templates locally, which decreases the overall computational

cost. Finally, signal quality tests can be made orthogonal (insensitive) to mismatches that are

due to the discreteness of the bank. This allows to perform more stringent tests at fixed false-

rejection rate, which improves the sensitivity of the search. Another improvement we introduced

with this bank is that we divide the parameter space into disjoint regions (by mass of the binary), in

which we expect comparable numbers of astrophysical signals but require largely different number

of templates to cover. This helps insulate the different look-elsewhere penalties associated to these

regions of parameter space, as well as the different classes of background noise that predominate,

and prevent these problems from cross-contaminating the rest of the search.

As discussed above, the main ingredient of the detection statistic is the cross correlation between

the template and the data: whenever the data contain a signal similar to the template, the cross

correlation is high. This would be the optimal detection statistic for a single detector with Gaussian,

stationary noise. Since there are multiple detectors, and the noise is only approximately stationary

and Gaussian, the detection statistic requires several corrections that are implemented by different

stages of the pipeline as follows.

Detectors exhibit non-Gaussian transients at a rate of several per hour. These so-called “glitches”

are short, abrupt disturbances whose origin is often unknown. We first identify and remove as many

glitches as we can by iteratively whitening the data, running several excess power tests, and excising

the glitches. The excess power tests are calibrated to guarantee a fixed, small false rejection rate

of astrophysical signals with a moderate signal to noise ratio ρ < 20 on Gaussian noise (we assume

that any louder signals have already been found in previous searches). To excise the glitches, the

approach of simply gating the data with a window function would hurt the sensitivity of the search.

This is because, due to narrowband lines in the detector noise power spectrum, the whitening filter

has a long impulse response time of several tens of seconds. Gating would thus pollute model scores

tens of seconds away from the glitch. Instead, we introduce the following change to the detection

statistic (Zackay et al., 2019c). Recall from Eq. (1.17) that the signal-to-noise ratio in stationary

Gaussian noise is

ρ =
〈d | h〉
√

〈h | h〉
=

hTC−1d√
hTC−1h

, (1.19)
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where in the time domain the inverse of the covariance C−1 is a non-diagonal matrix. Our model

for glitches is that they completely destroy information over a short segment in the time domain,

but leave data outside it unaffected. Let us write

d =

(

x

y

)

(1.20)

where x denotes data that is clean, and y data that was corrupted by a glitch and became unusable;

in the time domain these are well separated. The optimal detection statistic in this case becomes

log
P (d | H1)

P (d | H0)
= log

P (x | H1)

P (x | H0)
+ log

P (y | x,H1)

P (y | x,H0)
(1.21)

where the last term vanishes, since our model is that glitches are allowed to do anything. For the

first term we still assume that x is described by Gaussian noise under H0, or Gaussian noise plus a

signal under H1:

log
P (x | θ,H1)

P (x | H0)
= −1

2

(

x− hx(θ)
)T
C−1
xx

(

x− hx(θ)
)

+
1

2
xTC−1

xx x (1.22)

where hx(θ) is the part of the template that lands on clean data and Cxx is the noise covariance

outside the glitch. This can be mapped to the previous formulas for the detection statistic by

replacing the metric C−1 by

H =

(

C−1
xx 0

0 0

)

; (1.23)

for example, Eq. (1.17) becomes

ρ =
hTHd√
hTHh

. (1.24)

With this technique in place, removing glitches becomes harmless and we can do it aggressively to

obtain cleaner background distributions.

A second problem of real detector noise is that it is not stationary: the PSD undergoes ∼ 10%

variations on scales & 10 s. However, due to the aforementioned narrow spectral lines, thousands

of seconds of data are required in order to resolve the lines while keeping & 100 independent PSD

samples to keep statistical measurement errors low. Our workaround is to use a fiducial spectrum

measured over few thousand seconds and then normalize the score (1.17) by its local standard

deviation, empirically measured over 104 autocorrelation times (∼ 10 s) to keep statistical errors

under 1% (Zackay et al., 2019c). The effect of this “PSD-drift correction” on the distribution of
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Figure 1.1: Complementary cumulative distribution of single-detector signal-to-noise ratios, for a
low-mass template bank BBH (0, 0) (top) or a high-mass bank BBH (3, 0) (bottom), in the Liv-
ingston (left) or Hanford (right) detectors. Four curves are shown, toggling PSD-drift correction
and vetoes on and off. These distributions are completely dominated by background noise (detected
events have been removed); distributions with more support at high values of ρ2 thus correspond to
smaller sensitivity. Figure taken from Zackay et al. (2019c).

background triggers is illustrated in Fig. 1.1: it takes the blue distribution to the orange one, which

more closely resembles a χ2 distribution (a straight line in this plot). The main improvement happens

at low signal to-noise-ratios.

However, especially for high-mass templates that are a few cycles long (bottom panels in Fig. (1.1))

the orange distribution still exhibits a non-Gaussian tail that would hurt sensitivity at high signal-

to-noise ratios. This tail is caused by glitches that survived the generic excess power tests performed

at the initial data processing stage. At this point, a series of signal-quality tests are applied to

loud triggers in the form of vetoes. Since we do not have a good model for glitches, we design the

tests to have a fixed false-rejection rate of ≈ 1% for signals on Gaussian noise. We test that the

template plus Gaussian noise is a good description of the data by checking that different parts of

the template accumulate signal-to-noise ratio with the expected amplitude and phase. The template

to veto is chosen by maximizing a joint score ρ2H + ρ2L over the two LIGO detectors, Hanford and
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Livingston. This step requires refining the template bank grid around the trigger, because sub-

tracting an incorrect template would leave non-Gaussian residuals, that could spuriously trigger the

test. In addition, the tests are orthogonalized with respect to departures from the template along

directions spanned by the template bank. The geometric structure of our template bank is crucial

for the implementation of both these steps. The effect of vetoes on the background distribution is

also shown in Fig. 1.1 by the black and green lines. For low-mass templates the distribution after

PSD-drift correction and vetoes is Gaussian all the way up to 8σ. For higher masses and especially

in Hanford, there remains a non-Gaussian tail that dominates above 7σ; still, the background level

gets reduced by several orders of magnitude.

The next stage of the pipeline is to combine triggers from Hanford and Livingston (Virgo joined

late in O2 and has a lower sensitivity than the LIGO detectors, so for simplicity we do not use it

for detection). The final detection statistic is the joint log likelihood-ratio for the data at the two

detectors

log
P (dH, dL | H1)

P (dH, dL | H0)
= logP (dH, dL | H1)− logP (dH | H0)− logP (dL | H0), (1.25)

under the assumption that dH and dL are uncorrelated in the noise hypothesis. The detection statistic

involves a coherent score logP (dH, dL | H1) and an incoherent score − logP (dH | H0) − logP (dL |

H0). Due to the non-Gaussian tails, we need to estimate the incoherent score from the empirical

background distribution at each detector. For triggers that have a chance of reaching the detection

bar, we compute the coherent score Eq. (1.10) by maximization over intrinsic parameters and Monte

Carlo integration over extrinsic parameters.

Once the top triggers have been determined, there remains to estimate their significance. We do

this by a bootstrap method, borrowed from LVC’s PyCBC pipeline: we generate data realizations

free of coincident astrophysical signals by artificially time-shifting the data between detectors beyond

the 10ms gravitational wave travel time. We then rerun the pipeline on these data and empirically

reconstruct the background distribution, which we use to establish the frequentist’s false-alarm rate

of a trigger as a function of the value of its detection statistic.

There is one regime in which the strategy described above fails, which is when a signal is much

louder in one detector than the other. This can happen for a combination of reasons: the detectors

have different intrinsic sensitivities, orientations and noise realizations. The different orientations

mean that for fortuitous source polarization and sky location, a detector may be more sensitive than

the other to a particular source. The above strategy fails in this regime because a trigger may not
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Figure 1.2: Approximate detection limits in the space of incoherent Hanford and Livingston squared
signal-to-noise ratio, for high-mass (M > 20M⊙) binary black holes. The detection limit of our
main (2-detector coincidence) search on the O2 observing run is shown in orange, that of LVC’s
pipelines in blue. The green region indicates the regime in which the coincidence search may miss
detectable events that are loud in Livingston and faint in Hanford, there we run a dedicated search
for signals with disparate detector responses. Blue circles show events first reported by the LVC,
yellow squares events first found in our coincidence search and red stars in the search for signals
with disparate detector responses. A logarithmic histogram of 2× 104 background realizations is
shown in gray scale.

be found in coincidence—we impose a minimum ρ2 > 16 to record a single-detector trigger, in order

to keep memory usage under control. In Zackay et al. (2019a) we carried a dedicated search to cover

this case, where we first ranked single-detector Livingston triggers and then directly computed their

coherent score including Hanford.

1.2.2 Detections

Owing to the improvements described above, we were able to improve the sensitivity over previous

searches and approximately double the sensitive volume. Figure 1.2 shows the improvement in

detection limit. Our searches confirmed previous detections reported by the LVC and identified nine

new signals in O1 and O2 (Zackay et al., 2019b; Venumadhav et al., 2020; Zackay et al., 2019a). We

are currently analyzing the recently released first half of the third observing run, O3a.

We identified seven of these signals in Hanford–Livingston coincidence: one in O1 (GW151216,
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Figure 1.3: Binary black holes in O1 and O2, in terms of total mass and effective spin. Events
found by the LVC are shown in blue, and those found in our coincidence search are color coded by
probability of astrophysical origin. Figure from Zackay et al. (2019a).

after its birthday) and six in O2 (GW170121, GW170202, GW170304, GW170403, GW170425,

GW170727). The remaining two (GW170817A and GWC170402) were found in a dedicated search

for signals with disparate responses at Livingston and Hanford. Of these, the most significant are

GW170727, GW170121 and GW170304, which are confidently astrophysical in origin with false-

alarm rates of one per 256, 185 and 79 O2 observing runs, respectively. The other events have more

modest inverse false-alarm rates, which means it is possible that some of them are due to detector

noise. Events from the first two observing runs are shown in Fig. 1.3 in terms of their total mass

Mtot = m1 +m2 and effective spin

χeff =
m1χ1 +m2χ2

m1 +m2
· L̂, (1.26)

where χ = Gm2S/c is the dimensionless spin and L̂ is the direction of the orbital angular momentum.

Events found in our coincidence search are color-coded by their probability of astrophysical origin.

In terms of their parameters, notable events include GW170121, which shows a preference for

spin anti-aligned with the orbit (χeff < 0) at 95% credibility. GW170304 also has anti-aligned

spins, but the event itself has a smaller significance. GW151216, conversely, requires large spins

with a high degree of alignment with the orbit. This is interesting because it is very unlikely to

get both spins aligned from the isotropic distribution expected in dynamical channels, while other

formation channels do have mechanisms for producing large aligned spins (e.g. through tides).

Another remarkable event is GW170817A, which at the time was the most massive event detected
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and also has a moderately large spin aligned with the orbit. In the O3a run, more events similar

to it were found, which increases our confidence in its astrophysical origin. Finally, GWC170402 is

interesting in that, despite its rather low false-alarm rate, we were unable to find a physical model

that describes well the data. We found two different physical solutions with comparable signal-to-

noise ratio, which means that an unphysical linear combination of these fits the data significantly

better. This might be due to waveform systematics like physical effects missing from our waveform

models (e.g., eccentricity), or simply to a rare non-Gaussian noise transient.

1.2.3 Population inference

Once signals have been identified, their individual source parameters need to be estimated. Often

there are large measurement uncertainties and correlations in these parameters; in addition, grav-

itational wave detectors have nontrivial selection effects (for example, from Eq. (1.6) we already

see that heavier systems emit louder gravitational waves and can be observed to further distances).

These complications need to be accounted for in order to get unbiased constraints. Chapters 3, 4

and 5 describe a series of works on this area, carried out as events from O2 were being announced by

the LVC (2018–2019), after our O1 and O2 reanalyses (2019–2020), and after the LVC announced

events from O3a (2020–2021), respectively. Each iteration progressively involved more events, re-

quired more sophisticated methods and yielded more insights.

The analysis in Chapter 3 is based on events reported in the first Gravitational Wave Transient

Catalog by the LVC (GWTC-1, Abbott et al. (2019a)), which contains 10 binary black hole events

from O1 and O2. At that time, short segments of data around each event had been released. I

introduce some approximations that help develop intuition and allow to marginalize the likelihood

function of individual event parameters semi-analytically. I then develop a method to combine

these into a likelihood function for population parameters, which I use to place constraints on the

distribution of astrophysical binary black hole spins and masses.

In Chapter 4, I carry a full end-to-end population analysis of the results of our search for binary

black holes in O1 and O2. Some events in our catalog have marginal significance, in the sense that

there is a non-negligible probability that they are due to detector noise instead of astrophysical

signals. I develop a novel framework that enables inclusion of candidate events with arbitrary

significance in the population inference. This allows to extract the information that these marginal

triggers collectively carry about the astrophysical population without introducing biases. Applying

this framework to our catalog, I find improved constraints on the spin, mass, rate and cosmological
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evolution of the population of binary black holes.

In Chapter 5, I incorporate the GWTC-2 catalog, which includes events from O3a identified by

the LVC, in the population inference. Due to improvements in detector sensitivity, the number of

events tripled with the inclusion of GWTC-2. With this larger statistical sample, tests for qualitative,

robust features of the distribution of black hole spin orientations predicted by different classes of

formation channels become powerful enough to place meaningful bounds. Most interestingly, I find

that there is an excess of black hole spins aligned with the orbit over anti-aligned, which disfavors

dynamical formation as an explanation for the entirety of the events.
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Chapter 2

Template Bank

This Chapter has been adapted from Roulet et al. (2019).

We introduce an algorithm for placing template waveforms for the search of compact binary

mergers in gravitational wave interferometer data. We exploit the smooth dependence of the ampli-

tude and unwrapped phase of the frequency-domain waveform on the parameters of the binary. We

group waveforms with similar amplitude profiles and perform a singular value decomposition of the

phase profiles to obtain an orthonormal basis for the phase functions. The leading basis functions

span a lower-dimensional linear space in which the unwrapped phase of any physical waveform is

well approximated. The optimal template placement is given by a regular grid in the space of linear

coefficients. The algorithm is applicable to any frequency-domain waveform model and detector

sensitivity curve. It is computationally efficient and requires little tuning. Applying this method,

we construct a set of template banks suitable for the search of aligned-spin binary neutron star,

neutron-star–black-hole and binary black hole mergers in LIGO–Virgo data.

2.1 Introduction

The optimal algorithm to search for known signals in the presence of Gaussian noise is matched-

filtering, in which a signal template is cross-correlated with the data and triggers are recorded

whenever the correlation exceeds some threshold. In the context of gravitational wave detection

with the LIGO (Aasi et al., 2015) and Virgo (Acernese et al., 2014) interferometers, compact binary

coalescences are a good example of predictable signals for which we have accurate models, and

thus are well suited for matched filtering (Dhurandhar and Sathyaprakash, 1994; Allen et al., 2012).

Indeed, the LIGO and Virgo Collaborations have reported gravitational wave signals from 10 binary
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black hole (BBH) and one binary neutron star (BNS) mergers during their first and second observing

runs (Abbott et al., 2019a, 2016a,b,c, 2017b,c,d,e), all of which were found by search pipelines based

on matched-filtering (Sachdev et al., 2019; Usman et al., 2016) (seven of these BBHs were also

found by an unmodeled search (Klimenko et al., 2016; Abbott et al., 2019a)). Searches in the public

LIGO–Virgo data by independent groups have found seven additional BBHs (Zackay et al., 2019b;

Venumadhav et al., 2020), additional BBH candidates (Nitz et al., 2019a) and a BNS candidate (Nitz

et al., 2019b), also employing matched filtering.

Since the source parameters describing the waveform are not known a priori, one needs a bank

of waveform templates that adequately cover the parameter space. The notion of good coverage is

characterized by the warranty that any physical waveform the search aims to detect has a sufficiently

large match with at least one waveform in the bank. For example, the LIGO and Virgo Collaborations

have aimed at a minimum match of 97% for any aligned-spin binary merger with component masses

between 1 and ∼ 200M⊙, for which they require a template bank consisting of ∼ 4× 105 waveforms

(Canton and Harry, 2017). Due to the large number of templates involved, matched filtering is a

sizeable computational task. This means that an efficient bank should not over-cover the parameter

space. In other words, the templates should be uniformly spaced with respect to a distance defined in

terms of the matched-filtering mismatch between templates (defined in §2.2). This incorporates the

notion that, from the perspective of signal detection, two waveforms that sufficiently resemble each

other are essentially indistinguishable in the presence of noise. Source parameters can be mutually

degenerate in the sense that different parameter combinations may describe similar waveforms. The

optimal placement of templates in physical parameter space is very non-uniform; for example, an

order of magnitude more templates are needed to search for mergers with 1–3M⊙ components

(“neutron stars”) than for mergers with 3–200M⊙ (“black holes”).

Two broad classes of template-placement algorithms have been developed in the literature. One

robust method is “stochastic placement” (Harry et al., 2009; Ajith et al., 2014; Privitera et al.,

2014; Capano et al., 2016): waveforms are randomly drawn from the desired parameter space, and

one gradually builds up the bank by only accepting newly drawn waveforms that differ sufficiently

from the ones the bank already has, and rejecting those that are too similar to at least one existing

waveform. Stochastic placement, however, has the shortcoming that a large number of trial wave-

forms needs to be drawn before convergence is achieved (much more than the required number of

templates in the bank). This method also tends to over-cover the parameter space, in the sense that

the average template density is higher than optimal at fixed minimum match (Roy et al., 2017).

A different method to construct the bank is “geometric placement”. Here, a metric in the

17



parameter space is defined based on the matched-filtering overlap between waveforms (Owen, 1996;

Owen and Sathyaprakash, 1999). This metric is then used to define a regular lattice (Babak et al.,

2006; Cokelaer, 2007; Babak et al., 2013). However, it is in general difficult to derive this metric,

especially if the parameter space is high dimensional or if the waveform model is not analytic.

Approximations to the metric have first been found by using suitably reparameterized analytic,

post-Newtonian (PN) non-spinning waveform models (Owen, 1996; Owen and Sathyaprakash, 1999;

Tanaka and Tagoshi, 2000); later generalizations include the use of phenomenological waveform

models and template parameters (Ajith et al., 2008), the inclusion of aligned-spin PN models (Brown

et al., 2012; Harry et al., 2014), or numerical evaluation from arbitrary waveform models (Roy et al.,

2019).

In practice, a combination of the two methods is often a better strategy. For example, one can

place templates geometrically at low masses and stochastically at high masses (Capano et al., 2016;

Canton and Harry, 2017), or one can use many small patches with regularly spaced templates, which

are themselves placed stochastically to cover the entire parameter space (Roy et al., 2019).

In this work, we develop a fast and general method to construct a high-effectualness template

bank using geometric placement. Our method relies on the construction of a flat, linear space of

orthonormal phase functions that embeds the space of physical waveforms. The Euclidean distance in

this space coincides with the mismatch distance between similar waveforms, making these coordinates

naturally suited for geometric placement of templates. Besides optimal template placement, having

this geometrical notion turns out to be helpful for a number of reasons. It allows to refine the bank

locally around triggers at the time of search, reducing the amount of templates in the bank at fixed

effective coverage. Moreover, a crucial stage of searches involves signal consistency checks, that

assess the probability that the residual between a best-fitting template and a candidate signal is

explained by Gaussian noise in order to reject non-Gaussian noise transients (Allen, 2005; Sachdev

et al., 2019; Usman et al., 2016; Venumadhav et al., 2019). With the bank described here, these tests

can be made orthogonal to the linear space of waveforms, so that they are insensitive to mismatches

due to the discreteness of the bank. This allows to make the tests more stringent and improves the

sensitivity of the search (Venumadhav et al., 2019). We further require that the template bank be

built from sub-banks that can be approximated to have a fixed amplitude profile A(f). This feature

is useful for implementing the noise amplitude-spectral-density drift correction, a key component for

precise matched filtering (Venumadhav et al., 2019; Zackay et al., 2019c). Together, these analytical

properties make our template bank appealing, even considering that there are other template banks

with comparable effectualness and number of templates in the literature. Finally, building a new
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template bank enables us to customize a number of other choices, like the frequency range and

parameter space covered, in the context of our search pipeline (Venumadhav et al., 2019) and the

detector performances during the observation time analyzed. The coordinates presented in this work

are similar in essence to the ones introduced in Brown et al. (2012), except that we generalize them

to arbitrary waveform models and component mass ranges.

The paper is organized as follows. In §2.2 we define a metric based on the mismatch between

templates and show how the desired Euclidean space can be constructed. In §2.3 we apply this

formalism to the construction of a search-quality template bank that targets stellar-mass compact

binary mergers. We summarize our results in §2.4. The bank presented here was used in the searches

described in Refs. (Venumadhav et al., 2019, 2020).

2.2 Linear metric space

In this section, we define the notion of distance between templates and describe the construction of

a low-dimensional linear space of phase functions in which the metric is Euclidean. We build this

linear space based on the intuition that the unwrapped phases are smooth functions of the wave

frequency (Cutler and Flanagan, 1994) and hence are linear combinations of a small number of basis

functions (Tanaka and Tagoshi, 2000; Brown et al., 2012).

2.2.1 Mismatch distance

We first introduce the noise-weighted inner product in the frequency domain (Allen et al., 2012)

(hi | hj) := 4

∫ ∞

0

df
h̃i(f)h̃

∗
j (f)

Sn(f)
. (2.1)

Here, Sn(f) is a fiducial one-sided power spectral density (PSD) of the detector noise and tildes

indicate Fourier transforms. The match between hi and hj is given by Re zij , where

zij :=
(hi | hj)

√

(hi | hi)(hj | hj)

≡ (hi | hj).
(2.2)

In the second line, we normalize the waveforms to

(h | h) = 1, (2.3)
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Figure 2.1: An example of two waveforms that look very different to each other in the frequency
domain (top panel) but have very similar amplitude and phase profiles (middle and bottom panels).
The amplitude and phase profiles can be well captured by a low-dimensional linear space spanned
by a few basis functions. Waveform amplitudes are shown in arbitrary units.

as usually the template waveforms are defined up to an overall normalization. Since all possible

coalescence times and phases are searched for, waveforms related by time and phase offsets are

described by the same waveform in template bank. Thus, the match is maximized over time and

phase offsets:

mij := max
τ0,φ0

(

Re zij(τ0, φ0)
)

= max
τ0

|zij(τ0)|,
(2.4)

where τ0 and φ0 are the time and phase offsets between hi and hj , respectively. We define the

mismatch distance dij between the two waveforms by

d2ij = 1−mij . (2.5)

We seek a parametrization of waveforms under which the mismatch distance has an Euclidean metric

for similar waveforms.
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2.2.2 Linear space

A general frequency-domain waveform model can be cast to the form

h̃(f ;p) = A(f ;p)eiψ(f ;p). (2.6)

Under the approximation that the dominant mode of gravitational radiation has (ℓ, |m|) = (2, 2)

and that spin-orbital precession and eccentricity effects are insignificant, the frequency dependent

functions A and ψ vary slowly with the binary parameters p, as illustrated in Fig. 2.1. For matched

filtering, the phase ψ is the most important to describe with high accuracy, since loss of phase

coherence leads to a rapid degradation of the signal-to-noise ratio (SNR).

Moreover, it is important to analyze templates with different amplitude profiles A(f) separately

as the matched filtering correction from PSD drifts depends on A(f) (Zackay et al., 2019c). Thus we

assume in the following that A(f ;p) ≈ A(f) is valid for a suitably chosen subset of parameters. To

achieve this, we sort a large number of randomly sampled physical input waveforms into groups of

similar amplitude profile. In each group, we require that the match of the amplitudes to a reference

A(f) exceeds a minimum

(Ai | A) = 4

∫ ∞

0

df
Ai(f)A(f)

Sn(f)
> 0.96 (2.7)

for all input waveforms hi in the group. Note that the match of the amplitudes sets an upper bound

on the match of the waveforms. Our approach will be to split a template bank into “subbanks”,

each subbank describing one group of input waveforms which share the same approximate amplitude

profile A(f).

We design the subbanks in order to minimize the average amplitude mismatch as follows. We

start with a single subbank that contains all the input waveforms, and define its reference amplitude

profile as the root-mean-square

A(f) :=
√

〈A2〉(f), (2.8)

where the angled brackets indicate average over the input waveforms in the subbank. This choice

inherits the normalization of the input waveforms. We compute the amplitude match Eq. (2.7) for

all the waveforms; if the worst match satisfies the chosen bound we stop. If it does not, we add a new

subbank with a reference amplitude given by the waveform with the worst amplitude match. We

then optimize the choice of reference amplitudes using the k-means algorithm: we reassign waveforms

to subbanks by their best amplitude match, redefine the amplitude profile of the subbanks using

Eq. (2.8), and iterate these two steps a few times to achieve convergence. Finally we recompute the
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worst match and decide if a new subbank is needed, in which case we repeat the above process.

Having decided on the division of subbanks, we wish to find an efficient representation of the set

of phases ψ(f) as a linear combination of a small number of basis functions,

ψ(f ;p) = ψ(f) +

few
∑

α

cα(p)ψα(f), (2.9)

where α is an integer index that enumerates the basis functions and ψ(f) is an average phase

which we are free to define. From now on, we abandon the physical parameters p and describe the

waveforms in terms of their cα components:

h(f ; c) = A(f) exp
[

i
(

ψ(f) +
∑

α

cα ψα(f)
)]

. (2.10)

We now express the match between two waveforms using the above decomposition. As mentioned

earlier, template waveforms are defined up to arbitrary time and phase offsets, namely an additive

piece to the phase that is a linear function of the frequency ∆ψ(f) = φ0+2πfτ0. We choose the first

two basis functions ψ0(f) and ψ1(f) to span the subspace of linear phases so that c0 and c1 capture

phase and time offsets, respectively, and in particular ψ0(f) ≡ 1. If two waveforms are similar, their

inner product Eq. (2.1) to second order in δcα is approximately

(

h(c)
∣

∣h(c+ δc)
)

= 4

∫ ∞

0

df
A

2
(f)

Sn(f)
ei

∑
α
δcαψα(f)

≈ 4 eiδc0
∫ ∞

0

df
A

2
(f)

Sn(f)

[

1 + i
∑

α>1

δcα ψα(f)−
1

2

∑

α,β>1

δcα δcβ ψα(f)ψβ(f)

]

+O(δc3).

(2.11)

This motivates a new inner product, with respect to which we will orthonormalize the basis functions:

〈ψα, ψβ〉 := 4

∫ ∞

0

df
A

2
(f)

Sn(f)
ψα(f)ψβ(f)

≡ δαβ ,

(2.12)

which we enforce by a suitable choice of the basis functions ψα(f) (described below). In particular,
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the first condition 〈ψ0, ψ0〉 = 1 is the normalization Eq. (2.3), and the two first basis functions are

ψ0(f) = 1,

ψ1(f) =
f − f

√

f2 − f
2
,

(2.13)

where we define fn := 4
∫∞

0
dffnA2(f)/Sn(f).

Using orthonormality, Eq. (2.11) becomes

(

h(c)
∣

∣h(c+ δc)
)

≈ eiδc0
(

1− 1

2

∑

α>1

δc2α

)

+O(δc3). (2.14)

Thus, for nearby templates the distance Eq. (2.5) is

d2c,c+δc ≈ 1

2

∑

α>2

δc2α +O(δc3), (2.15)

which means that the mismatch distance is given by an Euclidean metric in c space at small dis-

placements. We construct the bank on a regular grid in c space with spacings ∆cα . 1, chosen

sufficiently small so as to guarantee a minimal loss of match.

We note in passing that we can also compute the distance in the opposite limit of large separation,

which is useful for estimating the long-range correlations between triggers from different templates

during a search. Assuming now that the templates are separated by δc = Dn̂, with
∑

α n
2
α = 1

and D ≫ 1, we can perform a stationary phase approximation around the frequencies fj at which

∑

α nαψ
′
α(fj) = 0. This yields

(

h(c)
∣

∣h(c+Dn̂)
)

= 4

∫ ∞

0

df
A

2
(f)

Sn(f)
exp

(

iD
∑

α

nαψα(f)

)

≈ 4√
D

∑

j

A
2
(fj)

Sn(fj)

√
2π exp

(

−iπ4 + iD
∑

α nαψα(fj)
)

√
∑

α nαψ
′′
α(fj)

.

(2.16)

Thus, the long-range correlation between two templates separated by D decays as 1/
√
D (this holds

for the match without maximization over time).

In practice we choose the set of basis functions ψα(f) as follows:

1. Define a discrete frequency grid {fk} (our choice is described in §2.3). The integrals over

frequency will be approximated by quadratures
∑

k∆fk . . .;

2. Compute a moderately large number of waveforms for random parameter choices (we use
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5× 104), and extract the unwrapped phases, {ψ(i)(fk)}, as illustrated in the top panel of

Fig. 2.2;

3. Subtract the average phase ψ(f);

4. Subtract the projection onto the first two dimensions so that the phase residuals

δψ(i)(f) = ψ(i)(f)− ψ(f)−
1
∑

α=0

〈ψ(i) − ψ,ψα〉ψα(f) (2.17)

are orthogonal to ψ0 and ψ1(f) with respect to the inner product Eq. (2.12) (middle panel of

Fig. 2.2);

5. Construct a matrix of weighted phase residuals

Mik = wk δψ
(i)(fk),

wk = 2A(fk)
√

∆fk/Sn(fk),

(2.18)

and find its singular-value decomposition (SVD)

Mik =
∑

α

UiαDαVαk. (2.19)

U, V are orthogonal matrices and we sort the axes so that the eigenvalues Dα > 0 are in

decreasing order. From the orthogonality of V , i.e.
∑

k VαkVβk = δαβ , we can identify

Vαk = wk ψα(fk) (2.20)

which satisfies the orthonormality Eq. (2.12) and defines the basis functions, with the conven-

tion that the α start at 2 (bottom panel of Fig. 2.2).

From Eqs. (2.9) and (2.19) it follows that the components of the input waveforms are

c(i)α = UiαDα. (2.21)

Since U is an orthogonal matrix, |Uiα| 6 1 and |cα| 6 Dα, that is, the extent spanned by the

input samples along each dimension in component space is bounded by Dα. This means that the

information in the templates is captured by the first few components along the larger dimensions,

and we can reduce the dimensionality of our description by dropping dimensions that have Dα ≪ 1.
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Figure 2.2: Construction of the basis functions ψα. Top panel: (a subset of 100) input unwrapped
phases for random parameters. Middle panel: phase residuals after subtraction of the average phase
and orthogonalization with respect to time and phase offsets. Bottom panel: first three basis
functions.
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2.3 Constructing a search quality template bank

In this Section, we apply the method developed in §2.2 to the construction of a template bank suitable

to the search of gravitational wave strain signals from binary neutron stars, neutron-star–black-hole

and binary black hole mergers.

We choose lower and upper frequency cutoffs of fmin = 24Hz, and fmax = 512Hz, respectively.

These cutoffs are chosen such that the resulting loss in SNR2 is lower than 2% for binary neutron star

templates (the amplitude profiles of these whitened waveforms, i.e., A(f)/
√

Sn(f), are essentially

independent of parameters since the cut-off scale is outside the LIGO sensitivity band). Formally,

the accumulated SNR2 = 4
∫ 24Hz

0
dfA2(f)/Sn(f) ≈ 4

∫∞

512Hz
dfA2(f)/Sn(f) ≈ 10−2 outside our

frequency range. It is advisable to restrict the frequency range because the linear-free phase, and

thus the basis functions, grow rapidly at both ends (see Fig. 2.2), and our Taylor expansion Eq. (2.11)

would become inaccurate. As we noted above, it is exactly at these frequencies where the contribution

to the matched-filtering SNR vanishes. It is better to discard these frequencies rather than to try

and capture the negligible information content within by adding extra dimensions to the template

bank. Furthermore, this has the additional benefit that the strain data can be down-sampled during

analysis, which reduces the computational cost of the search.

We define the fiducial PSD empirically from the PSDs of 200 LIGO Handford and LIGO Liv-

ingston data files chosen randomly from the Second Advanced LIGO Observing Run (O2) re-

lease (Abbott et al., 2021). Each individual PSD was computed as described in (Venumadhav et al.,

2019). The fiducial PSD is constructed using the 10th percentile of all the sample PSDs in each

frequency bin. This choice is robust to large fluctuations in the sample PSDs, and is representative

of optimal detector conditions.

We choose a target parameter space of compact binary mergers satisfying the following bounds:

1M⊙ < m2 < m1 < 100M⊙, (2.22)

q >















1/50 if m2 < 3M⊙

1/18 otherwise,

(2.23)

|χ1,2| < 0.99, (2.24)

where m1 and m2 are the primary and secondary masses, respectively, q = m2/m1 6 1 is the mass

ratio, and χ1 and χ2 are the individual dimensionless spin projections in the direction of the orbital

angular momentum. The parameter ranges and approximant used are not a constraint from the
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LIGO and Virgo detectors or the method presented here, but a documentation of the choices we

made. In particular, the mass ratio cut for BBHs was due to the calibration regime of the IMRPhenomD

approximant (Khan et al., 2016). For NSBH, we extend the maximal q because a substantial part

of the NSBH parameter space lies outside the calibrated range of IMRPhenomD. For the purpose of

signal detection (as opposed to parameter estimation), the calibration tolerance is less stringent, as

long as a signal can be recovered by the model with some combination of parameters. Compared to

other template banks in the literature, the one presented here covers a larger spin range for low-mass

objects. Indeed, bounds of |χ| < 0.05 (Canton and Harry, 2017; Brown et al., 2012; Roy et al., 2019)

or |χ| < 0.4 (Brown et al., 2012) have been used in the BNS mass range, the former motivated by the

known binary neutron star spins and the latter by the known pulsar spins (Miller and Miller, 2015).

Neutron stars can in principle have dimensionless spins up to a mass-shedding limit of |χ| ∼ 0.7 (Lo

and Lin, 2011; Tacik et al., 2015). Other types of compact objects, including light black holes, may

in principle have even higher spins. This motivates us to cover this unexplored part of the parameter

space.

As mentioned before, the number of templates required to describe waveforms from low-mass

mergers is significantly larger than that for high-mass mergers, due to the larger number of wave

cycles in band. Searches with larger template banks suffer a penalty in sensitivity because of the

increased look-elsewhere effect. To prevent the high penalty inherent to the lower-mass region of

parameter space from affecting the higher-mass regions, we propose to divide the search space into

a number of regions and perform an independent search in each. Each search then only pays an

additional look-elsewhere penalty that a few other searches are performed, but is unaffected by the

potentially huge size of the other banks. This division can be interpreted as implementing a prior

about which templates are more likely to produce an astrophysical trigger: if we expect comparable

numbers of high- and low-mass signals but have vastly more templates at low-mass, any particular

low-mass template is much less likely to produce an astrophysical trigger. In addition, templates in

different regions of parameter space are sensitive to different types of noise transients in the strain

data. Dividing the search into several regions enables us to recognize the different types of noise

background that a search using each class of templates is subject to.

Under the above motivations, we divide the search space into regions based on the component

masses, and construct a separate template bank for each of them. The division is illustrated in

Fig. 2.3 and is defined as follows. We refer to binary components with masses between 1 and 3M⊙

as neutron stars, and to components with masses between 3 and 100M⊙ as black holes. We make

three binary neutron star template banks, three neutron-star–black-hole (NSBH) banks, and five
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Figure 2.3: Component masses of the input waveforms used for constructing our template banks. We
divide the parameter space according to the component masses into three banks of binary neutron
star waveforms (BNS 0-2), three banks of neutron-star–black-hole waveforms (NSBH 0-2), and five
banks of binary black hole waveforms (BBH 0-4). We further divide each bank into subbanks (color
coded) under the criterion that the match of the amplitude profiles with a reference profile specific
to each subbank exceeds 0.96. The dots show the 5× 104 input waveforms we use to build each
bank. We do not scatter plot here individual template waveforms in each bank, as those lack an
explicit representation in terms of the source physical parameters.

binary black hole banks. The banks within each of these categories are defined by bins in the

chirp mass M := (m1m2)
3/5/(m1 + m2)

1/5. We put the bounds between the three BNS banks

at M = {1.1, 1.3}M⊙. This choice is motivated by the observation that the chirp masses of the

known Galactic binary neutron stars expected to merge within a Hubble time lie in a narrow range

(Farrow et al., 2019), and therefore we might expect more astrophysical signals from this chirp

mass range (which we further expand to account for the redshift of the detector-frame masses up

to z ∼ 0.05, or a luminosity distance dL ∼ 200Mpc). In this way, we minimize the number of

templates in the most astrophysically probable BNS bank, BNS 1, enhancing our sensitivity to those

systems. A similar strategy was adopted in Refs. (Magee et al., 2019; Nitz et al., 2019b). For other

banks, we use logarithmic chirp-mass bins: we place the bounds between the three NSBH banks at

M = {3, 6}M⊙, and those between the five BBH banks at M = {5, 10, 20, 40}M⊙. We generate

5× 104 input waveforms in each bank using the IMRPhenomD approximant (Khan et al., 2016). Based

on the amplitude profiles Ai(f) of the input waveforms, we further divide each bank into subbanks

as explained in §2.2. We find that a single subbank is sufficient for waveforms with m1,2 . 15M⊙,

but multiple amplitude subbanks are needed for heavier mergers as the frequency at which A(f) is

cut-off falls within the LIGO sensitive band. Table 2.1 summarizes the parameters of all template
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Bank m1 (M⊙) m2 (M⊙) M (M⊙) qmin ζ ∆cα Nsubbanks dsubbanks Lmax,subbanks Ntemplates

BNS 0 < 1.1 1 2 777.0 48 806
BNS 1 (1, 3) (1, 3) (1.1, 1.3) — 0.05 0.55 1 2 434.3 23 856
BNS 2 > 1.3 1 2 824.6 43 781
NSBH 0 < 3 1 4 753.4 84 641
NSBH 1 (3, 100) (1, 3) (3, 6) 1/50 0.05 0.5 2 6, 6 259.5, 166.8 85 149
NSBH 2 > 6 3 5, 4, 4 87.5, 61.2, 9.4 15 628
BBH 0 < 5 0.55 1 3 270.6 8246
BBH 1 (5, 10) 0.55 2 4, 4 113.7, 50.0 4277
BBH 2 (3, 100) (3, 100) (10, 20) 1/18 0.05 0.5 3 3, 4, 3 41.5, 33.5, 10.3 1607
BBH 3 (20, 40) 0.45 3 2, 2, 2 11.7, 10.8, 4.9 225
BBH 4 > 40 0.35 5 2, 2, 2, 1, 1 2.9, 2.0, 1.1, 0.7, 0.5 46

Total 316 262

Table 2.1: Summary of the parameters of the template banks. Columns 2 to 5 describe the bounds
of physical parameter space that each bank is designed to cover. ζ is a tunable fudge parameter
that controls the tolerance for removing nonphysical grid points. ∆cα is the grid spacing that we
chose for each bank. Nsubbanks is the resulting number of subbanks in each bank. dsubbanks and
Lmax,subbanks are the dimensionalities of each subbank (sorted by increasing mean total mass) and
the size of their largest dimension, respectively. Ntemplates is the total number of templates in each
bank.

banks. The banks differ greatly in size, which justifies the division of the search space into multiple

banks.

For each subbank, we apply the procedure outlined in §2.2 to define a set of basis phase functions

that generate a linear space and obtain the projections of the input waveforms onto that space.

These are shown in Fig. 2.4 for the example case of the BBH 0 bank, with the points color-coded

by their chirp mass. The first three dimensions capture practically all the diversity of the input

waveforms. Also note the large differences in size from the leading dimension to the sub-leading

ones. The number of cycles, proportional to M−5/3, is the best-measured parameter and thus

should approximately correspond to the coefficient of the leading dimension (Cutler and Flanagan,

1994; Dhurandhar and Sathyaprakash, 1994). Indeed, this is observed in Fig. 2.4, confirming that

the decomposition is working as expected.

Next, we choose a grid spacing ∆cα common to all dimensions and define a rectangular grid

in component space as follows. We force the point c = 0 to be a grid point, because the SVD

typically aligns the highest density regions (where the input physical waveforms tend to be) with

the axes. Along each dimension, we add uniformly-spaced points until the whole range spanned by

the input waveforms is covered. We allow the spacing to slightly decrease so that the most extreme

input component is half the grid spacing away from the most extreme grid point. We do this for

each dimension and in the positive and negative directions separately. Finally, not all the points

of the rectangular grid describe physically viable waveforms. We only keep the templates that are
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Figure 2.4: Our three-dimensional BBH 0 template bank in the component space (black dots, which
at this scale appear as lines), projected along two different axes. Underlaid are the input waveforms
used to build the bank, projected according to Eq. (2.21) and color-coded by their chirp mass.

close to at least one input waveform, with the following criterion. For every input waveform set of

components, we keep the closest grid point and a patch of the grid around it, with size equal to the

corresponding dimension times a tunable fudge factor ζ ∼ 0.1.

Indeed, as Fig. 2.4 shows, the input physical waveforms do not fill the entire rectangular volume

but are distributed within some irregularly shaped region. Furthermore, the density of input wave-

forms is low in the low-M region, where the waveforms have more wave cycles in band and hence are

mutually more distinguishable. Holes can be produced in the physically viable region if the fudge

factor ζ is too small, and there is an excess of unphysical templates if ζ is too large. We choose the

∆cα and ζ parameters such that we achieve a good balance between economic template bank size

and high bank effectualness. The values chosen for each bank are reported in Table 2.1.

In Table 2.1 we observe a general trend with the mass: the banks for lighter mergers tend to have

fewer subbanks and the first dimension spans a wider range. By comparison, the banks for heavier

mergers have more subbanks, with smaller dimensions. The increase in the number of subbanks for

heavier mergers is caused by the cutoff frequency falling in the band, which increases the variety of

amplitude profiles.

There are interesting implications of the number of dimensions and their size for parameter

estimation. Given an astrophysical signal, in the limit of high SNR ρ, the parameter likelihood is

approximately given by P (d | p) ∝ exp
(

ρ2|z|2/2
)

, where z = (h(p∗) | h(p)) is the complex match of

p to the best-fit parameters p∗ (Roulet and Zaldarriaga, 2019). By virtue of Eq. (2.15), this means
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that the likelihood is approximately an isotropic Gaussian in terms of the cα coordinates, with a

width ∼ 1/ρ. The number of dimensions can therefore be interpreted as the number of independent

parameters that can be measured, and the size of each dimension as the relative precision that can be

obtained for a fixed SNR (with the caveat that we have restricted the frequency range; for example,

information about the tidal deformability comes from frequencies higher than our 512Hz cutoff).

For example, for BNS (and effectively for light BBH) the banks have two dimensions, with a large

first dimension well correlated with the chirp mass (Fig. 2.4). The two measurable parameters are the

chirp mass, which indeed can be measured to much higher precision than for heavy systems, and a

combination of the mass ratio and effective spin which can be measured with a lower precision. These

are the leading contributions to the phase evolution as can be understood from the post-Newtonian

expansion.

An important advantage of our geometric coordinates is that they are well suited for a two-step

search that effectively achieves a smaller grid spacing at reduced computational cost. We realize this

by refining the template grid on demand around all triggers that exceed an appropriately lowered

SNR threshold (Venumadhav et al., 2019; Gadre et al., 2019). During the search, we first use a

coarse grid, and refine every trigger using neighboring templates from a denser grid that has half the

spacing along each dimension. The fact that the distance between cα components translates directly

to mismatch (Eq. (2.15)) makes this method straightforward to implement.

To characterize the effectualness of the bank at recovering the target physical signals, we gener-

ate a set of 104 random “test waveforms” within the parameter range of each bank, using the same

approximant with which the input waveforms were generated. We choose the parameters from a

distribution that is uniform in the component masses m1,m2 and aligned spins χ1, χ2. In principle,

we would have to match each test waveform against every waveform in the bank to look for the

best match. To save computational effort, we select a candidate best-match based on the approxi-

mate metric Eq. (2.15) by extracting the phase of the test waveform ψ(i)(f), projecting it onto the

linear space, c
(i)
α = 〈ψ(i) − ψ, ψα〉, and finding the closest grid point with respect to the Euclidean

metric (2.15). Since a priori we do not know which subbank best describes the test waveform,

we pick the best candidate from each subbank and compute the match with all. The best match

with our reduced set of candidates is a lower bound on the best match over all the waveforms in

the bank. Rather than using Eq. (2.4) directly, we compute the match by following the detection

strategy described in Venumadhav et al. (2019): we account for the finite time resolution of the

Fourier transform by downsampling the waveforms to 512Hz and sinc-interpolating the matched-

filter output twice. We show the result of this test in Fig. 2.5, in terms of the cumulative fraction of
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Figure 2.5: Effectualness of our template banks, tested on random waveforms drawn from a distri-
bution uniform in individual masses and aligned spins. The vertical axis shows the fraction of the
random trials that do not achieve a given match in the bank.

the matches with each bank before and after applying the grid refinement, which we use to assess

the collection threshold on the coarse grid and the effectualness achieved for each bank, respectively.

We find that depending on the bank 99% of the templates have a match higher than 0.95 to 0.98.

2.4 Conclusions

We have developed a general and computationally efficient geometric placement algorithm to con-

struct high-effectualness template banks for detecting gravitational waves from compact binary

mergers. We have constructed a basis of functions that generate a linear space of phase profiles

on which the mismatch metric is Euclidean. For the purpose of signal detection, we shift the focus

away from physical parameters to the linear coefficients for the basis phase profiles. We identified

which components carry the largest amount of information about physical waveforms and what is

the minimal set required to guarantee a desired match. The basis functions can be determined from

a set of input waveforms whose size is small compared to that of the bank. The basis functions
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can be generated with any frequency-domain waveform model. The resolution of the bank can be

decided independently after the basis functions have been found; in particular, it can be increased

arbitrarily at negligible computational cost since no further evaluations of the physical waveform

approximants need to be done. Our algorithm guarantees that within each of the few subbanks

that make up one template bank, all templates share the same amplitude profile, a property that is

critical for the correction of the power-spectral-density drift in signal processing.

We have applied our algorithm to the construction of a collection of eleven template banks

that together cover the parameter space associated to stellar-mass compact binary mergers with

aligned spins. We find the effectualness and total number of templates to be comparable to the

ones obtained by other algorithms in the literature (Canton and Harry, 2017; Roy et al., 2019);

detailed comparisons are difficult due to the different parameter spaces targeted in various works.

We note that our template bank includes rapidly spinning neutron stars, which to date have not

been searched for in the gravitational wave data. We implement a two-step search with a coarse

grid that we refine around triggers at the time of search, a task for which our new formalism is

ideally suited. This is an important step to reduce the number of templates while preserving a high

effectualness.

Looking forward, an accurate and fast interpolation from physical parameters to the cα compo-

nent space would be extremely useful for rapid parameter estimation. First, because waveforms can

be generated at negligible computational cost once the components are known. At least in cases

where analytical waveform models are not valid, waveform generation dominates the computational

cost of parameter estimation. Moreover, the likelihood would look close to an isotropic Gaussian

in terms of the cα coordinates due to orthonormality, making them a suitable choice from the data

analysis perspective. Other natural extensions of the work presented here are to include the effects

of precession, due to misalignment between the spins and the orbital angular momentum, and ec-

centricity. These are deferred for future work. The inclusion of eccentricity is currently limited by

the availability of robust public waveform generation codes.

The template bank described here is available at https://github.com/jroulet/template_

bank.
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Chapter 3

Early Constraints on Binary Black

Hole Populations

This Chapter has been adapted from Roulet and Zaldarriaga (2019).

We reanalyse the LIGO–Virgo strain data of the 10 binary black hole mergers reported to date

and compute the likelihood function in terms of chirp mass, mass ratio and effective spin. We

discuss the strong degeneracy between mass ratio and spin for the three lighter events. We use this

likelihood and an estimate of the horizon volume as a function of intrinsic parameters to constrain

the properties of the population of merging binary black holes. The data disfavour large spins.

Typical spins are constrained to a . 0.4, even if the underlying population has randomly-oriented

spins. For aligned spins the constraints are tighter, with typical spins required to be around a ∼ 0.1

and have comparable dispersion. We detect no statistically significant tendency towards a positive

average spin in the direction of the orbital angular momentum. We put an upper limit on the fraction

of systems where the secondary could have been tidally locked prior to the formation of the black

holes (corresponding to merger times shorter than 108 years) f . 0.3. Four events are consistent

with having a maximally-spinning secondary, although one only marginally. We confirm previous

findings that there is a hint of a cutoff at high mass. The data favour distributions of mass ratios

with an average q & 0.7.
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3.1 Introduction

Binary black holes (BBH) have been observed for the first time with the recent advent of gravitational

wave (GW) observatories (Abbott et al., 2016a,b,c, 2017b,c,d, 2019a). The astrophysical origin

of these systems remains a major open question. Potential formation channels that have been

proposed in the literature include isolated binary evolution through a common envelope phase, a

chemically homogeneous evolution in a tidally locked binary, the dynamical formation in dense stellar

environments such as globular clusters or in triple systems and the formation in galactic nuclear disks

assisted by the presence of gas (references to various scenarios and how they fare in comparison with

the LIGO data can be found in Abbott et al. (2016c)). Although the gravitational wave data are

yet insufficient to decide between these scenarios, constraints on specific models can already start

to be set (see for example results in Abbott et al. (2016c); Vitale et al. (2017b); Talbot and Thrane

(2017); Farr et al. (2017); Hotekezaka and Piran (2017); Farr et al. (2018); Abbott et al. (2019b)).

To use the LIGO–Virgo events to constrain the properties of the population of merging black holes

we need the likelihood of individual events as a function of the parameters of the binary. Although

constraints on individual parameters have been reported by the LIGO and Virgo collaborations

(LVC), the full likelihoods have not been provided to the community yet (posterior samples have

been recently released). These are necessary in order to properly include the correlations between

parameters, which as we will see are substantial. Thus in this paper we set out to reanalyse the

LIGO–Virgo strain data (under some simplifying assumptions) to obtain likelihoods for the events

and then use those to set constraints on the parameters of population models for the BBHs. The

attempts to put constraints on the populations already presented in the literature were limited by

the lack of the individual event likelihoods, so approximate constraints were based on properties of

the one-dimensional posteriors gathered from the LVC figures and papers.

Neglecting center-of-mass acceleration (e.g. due to a third body), BBH merger events are com-

pletely characterized by 17 parameters (two masses, six spin components, two angles for the orbit

orientation, two for the sky location, distance, merger phase and time, orbital eccentricity and peri-

center angle). However, the following key observations allow us to significantly reduce the number

of parameters considered.

First, not all the parameters are informative of the population properties. Population models

generally predict a homogeneous and isotropic GW-source distribution on scales resolvable by GW

detectors, so the source location is irrelevant to distinguish among these models. Similarly, the

source orientation and the time and phase of merger are uniformly distributed. Moreover, the signal
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dependence on these parameters is well understood, so the likelihood can be marginalized over them.

Second, not all the parameters can be constrained by the data at the current sensitivity levels.

Only one of the spin combinations, χeff , is relatively well measured (see for example Vitale et al.

(2014, 2017a)). It is defined by

χeff =
m1~a1 +m2~a2
m1 +m2

· L̂, (3.1)

where ~ai = c~Si/Gm
2
i and L̂ is the direction of the orbital angular momentum. Spin components

orthogonal to χeff are largely unconstrained. Thus, including these parameters in the analysis

increases the computational cost without significantly changing the results. Moreover, the waveform

templates currently used for detection and parameter estimation have no eccentricity, so LIGO is

not able to measure it. We will assume no eccentricity as well.

Third, astrophysical models for the populations are quite crude and thus small shifts in the

parameters or error bars are not likely to change the astrophysical conclusions one might draw. At

this stage one is interested in more qualitative questions such as whether the BHs are spinning fast,

whether the spins tend to be aligned normal to the orbital plane or what the range of masses of the

BBHs is.

As a result of these considerations, there is a clear hierarchy in the parameters based on how

much they can constrain BBH population models. χeff and the two masses are measurable and have

distributions dependent on the models (Mandel and O'Shaughnessy, 2010; Rodriguez et al., 2016b;

Zevin et al., 2017; Stevenson et al., 2017a). The other spin components and the eccentricity, while

dependent on the population model, are still poorly constrained by the data, so we henceforth ignore

them. The various angles, phase, time of merger and distance are uninformative of the population,

so they are nuisance parameters for our purposes. They have a known effect on the signal, so we

marginalize over them in §3.2.

We will parametrize the two masses in terms of the chirp mass M and the mass ratio q, given

by

M =
(m1m2)

3/5

(m1 +m2)1/5

q =
m2

m1
≤ 1,

(3.2)

because M, q are generally less correlated than m1,m2, as these are the combinations that respec-

tively enter the GW waveform at the leading and the next-to-leading order in the post-Newtonian

expansion. To implement our restriction to a single spin variable, we will use the prescription that
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the spins are aligned with the orbital angular momentum, and that χ1 = χ2 = χeff , where χi = ~ai ·L̂.

At the current level of sensitivity the exact way one distributes the spin to obtain a given χeff does

not affect the parameter constraints in a meaningful way.

We will denote the informative parameters by p = (M, q, χeff). Unless otherwise stated, we

will refer to the detector-frame mass, whose value is redshifted from the source-frame mass by

M = (1 + z)Msource. Both q and χeff are independent of redshift.

3.2 Single-event likelihood

In this section we describe our computation of the BBH-parameter likelihood of a GW event and

its analytical marginalization over the nuisance parameters. What we do is rather standard but we

detail our procedure so that we can report all our simplifications. We first analyse the case of a

single detector.

We will define the noise-weighted inner product between two functions in the frequency domain

〈x | y〉 = 4Re

∫ ∞

0

x̃∗(f)ỹ(f)

σ2(f)
df, (3.3)

where σ2(f) is the one-sided power spectral density (PSD) of the detector noise and the tildes indicate

Fourier transforms. Under the assumption that the noise is additive, stationary and Gaussian, the

single-detector likelihood L = P (d | h) that the data d have been produced by a model GW signal

h is

logL = −1

2
〈d− h | d− h〉. (3.4)

We have access to both d and h, because the strain data for all reported events and the approximants

for generating template waveforms have been released by the Gravitational Wave Open Science Cen-

ter (GWOSC) (Vallisneri et al., 2015). We use two different approximants, SEOBNRv4 ROM, based on

the effective-one-body formalism (Bohé et al., 2017), and IMRPhenomD, based on a phenomenological

approach (Khan et al., 2016), as a robustness test of our results. We estimate the PSD using the

PyCBC (Biwer et al., 2018) implementation of the median-mean spectrum described in Allen et al.

(2012) on a segment of 32 s of data centered around each event. As recommended by the GWOSC,

we use a lower frequency cutoff of 10Hz except for GW170608, which we cut at 20Hz for Livingston

and 30Hz for Hanford.
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We decompose the modeled signal into the form

h̃(f ;p, a0, t0, φ0) = a0e
i(2πft0−φ0)

h̃0(f ;p)
√

〈h0 | h0〉
. (3.5)

Here h̃0(f ;p) is the waveform template, that depends on the set of physical parameters p =

(M, q, χeff) that are intrinsic to the binary. We work in the quadrupole radiation approximation,

i.e. that the dominant spherical harmonics of the emitted GW are (l,m) = (2,±2). The shape of h0

is then independent of the nuisance parameters, which only enter through a0, φ0, t0. The inclusion

of other multipole moments would introduce a dependence of the waveform shape on the orientation

of the binary (Cotesta et al., 2018). We divide h0 by the norm to eliminate its arbitrary normal-

ization. We may then compute h0 at any fiducial configuration, e.g. directly above the detector

at a 1Mpc distance, with a face-on alignment. t0 and φ0 are the time and phase of the merger as

seen in the detector. a0 is the amplitude, which can be interpreted as the expectation value for the

signal-to-noise ratio (SNR) with which a signal identical to h would be measured in the detector,

given by
√

〈h | h〉. For multiple detectors, each one will have different values of a0, t0, φ0 that are

related by the various angles between source and detectors.

Combining (3.4) and (3.5) we obtain

logL = −1

2
(〈d | d〉 − 2〈d | h〉+ 〈h | h〉)

= −1

2

(

〈d | d〉 − 2a0|z| cos(φ0 − arg z) + a20
)

,

(3.6)

where z(p, t0) is the complex matched filter output (Allen et al., 2012):

z(p, t0) =
4

√

〈h0 | h0〉

∫ ∞

0

d̃∗(f)h̃0(f ;p)

σ2(f)
ei2πft0df. (3.7)

Note that, for any set of parameters p, we can compute z for all t0 with a single Fast Fourier

Transform.

3.2.1 Likelihood marginalization

We will now marginalize the likelihood (3.6) over the nuisance parameters a0, φ0, t0, since their priors

do not depend on the BBH population model, and we will keep the dependence on p. Our approach

will be to do the marginalization subject to the condition D that the event has been detected, that
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is, we will define

L(p) ≡ P (d | p,D)

=

∫

da0dφ0dt0Pprior(a0, φ0, t0 | p,D)L(a0, φ0, t0,p | D)

=

∫

da0dφ0dt0Pprior(a0, φ0, t0 | D)L(a0, φ0, t0,p). (3.8)

The last equality follows because, as we will show, the prior for a0, φ0, t0 does not depend on p

once conditioned to detectability; and the likelihood L is suppressed for combinations of parameters

that yield undetectable signals, since the data under consideration correspond to detections and

detectability is a property of the data only. P (d | p,D) differs from P (d | p) in that it excludes the

selection bias of the detector, whose sensitivity depends on p. Indeed, for data corresponding to

detections

P (d | p) = P (d | D,p)P (D | p), (3.9)

where P (D | p) is the selection bias (see Appendix 3.A). By imposing the detection condition D we

are taking the observer’s point of view, where the events analysed are conditioned to detection and

the selection bias enters in the form of a prior for p. We show the equivalence to the alternative,

physical approach usually taken in the literature (e.g. Fishbach and Holz (2017); Mandel et al.

(2019)) in Appendix 3.A.

We compute the prior in Eq. (3.8) as follows. φ0 and t0 have uniform priors. a0 is proportional

to D−1, where D is the luminosity distance to the event. At low redshifts, the prior for the distance

is Pprior(D) ∝ D2, so demanding Pprior(D)dD = Pprior(a0)da0 yields Pprior(a0) ∝ a−4
0 . For the event

to have been a detection, a0 must exceed a certain threshold value, for which we take a conservative

(low) value of a0,min = 9 (see fig. 9 of Abbott et al. (2016c)).

The priors for the nuisance parameters are then

Pprior(φ0) =
1

2π
(3.10)

Pprior(t0) =
1

T
(3.11)

Pprior(a0) =
3a30,min

a40
, a0 > a0,min (3.12)

where T is the duration of the data being analysed and the priors have been normalized to integrate
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to 1 over their domains, as required by the detection condition.

Using (3.6), (3.10) and (3.12), the marginalization of the likelihood over φ0 and a0 yields:

∫ ∞

a0,min

da0Pprior(a0)

∫ 2π

0

dφ0
2π

L = 3a30,mine
− 1

2
〈d|d〉I(|z|), (3.13)

where we have defined

I(|z|) =
∫ ∞

a0,min

I0(a0|z|)e−
1
2
a20

a40
da0. (3.14)

Here, I0 is the modified Bessel function of the first kind of order zero. In practice, we ignore the

constant factor in front of I(|z|) in (3.13) as it does not depend on the parameters. To implement

the computation of I(|z|) efficiently, we tabulate its more smoothly varying logarithm for several

values of |z| and interpolate in between.

Finally, we can further marginalize Eq. (3.13) with respect to t0 using (3.7) and (3.11), computing

∫ ∞

a0,min

da0Pprior(a0)

∫ 2π

0

dφ0
2π

∫ T

0

dt0
T

L(p, a0, φ0, t0) ∝
∫ T

0

I(|z(p, t0)|)dt0 (3.15)

by numerical quadrature.

Eq. (3.15) gives the one-detector likelihood marginalized over the nuisance parameters a0, φ0, t0,

assuming non-precessing spins and that the dominant mode of GW emission is (l,m) = (2,±2). For

the case of multiple detectors, the total likelihood is the product of all the one-detector likelihoods,

but the marginalization should be made over the source parameters (location, orientation, phase

and time of coalescence), that correlate the values of a0, φ0, t0 observed at each detector.

The case of LIGO is particularly extreme because by design, the two detectors at Hanford and

Livingston have the same orientation to a good approximation (plus a 90◦ rotation in the plane of

the detector). Under the approximation that the two detectors are co-aligned, a signal must have

the same phase φ0 and strain amplitude A0 ≡ a0
√

〈h0 | h0〉 in both detectors. The arrival times,

however, can be different depending on the location of the source, so these must be marginalized over

separately. The time delay between detectors is δt = td cos θ, where td = 10.012ms is the GW travel

time between sites and θ is the angle between the source and a line passing through both detectors.

Although an isotropic distribution of sources is uniform in cos θ and thus in δt, the antenna pattern

of the detectors induces a selection bias because sources above or below the plane of the detectors

are more likely to be detected (Sathyaprakash and Schutz, 2009; Chen et al., 2017). The resulting
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prior for δt is well fit by (Cornish et al., 2017)

Pprior(δt) ∝ 1−
(

δt

10.65ms

)2

, |δt| ≤ td. (3.16)

Since both detectors measure the same polarization, for any given δt we can combine the Hanford

and Livingston streams of data coherently into a single “combined channel”, dLIGO, in a way that

minimises the relative variance:

d̃LIGO(f ; δt) = σ2
LIGO(f)

(

d̃H(f)

σ2
H(f)

− e−i2πfδt d̃L(f)

σ2
L(f)

)

, (3.17)

where H and L refer to Hanford and Livingston, and σ2
LIGO = (σ−2

H + σ−2
L )−1 is the noise PSD of

the combined channel. The minus sign accounts for the relative 90◦ rotation between the two LIGO

sites. Since the true value of δt is not known, this parameter has to be marginalized over. With the

combined channel, we can use the single-detector formulas to get the marginalized likelihood of the

LIGO network. From (3.17) and (3.7) we obtain

zLIGO(p, t0, δt) = f
1/2
H zH(p, t0)− f

1/2
L zL(p, t0 + δt), (3.18)

where

fα =
〈h0 | h0〉α

〈h0 | h0〉H + 〈h0 | h0〉L
, α ∈ {H,L}. (3.19)

We finally obtain the LIGO-network marginalized likelihood using (3.15), (3.16) and (3.18):

LLIGO(p) ∝
∫ T

0

dt0

∫ td

−td

dδtPprior(δt)I(|zLIGO(p, t0, δt)|), (3.20)

which we evaluate by quadrature. Note that a0,min is now interpreted as the detection threshold on

the LIGO-network SNR.

Although in this analysis we have been careful to analyse the data of both detectors coherently

we have checked that this is largely unimportant for the constraints on the populations we obtain.

One gets effectively the same constraints if one treats each detector independently using Eq. (3.15)

and combines them incoherently, logLLIGO(p) ≈ logLH(p)+logLL(p). The change in the likelihood

distribution compared to its width was on the few-percent level or smaller in all cases.

The first five detections reported to date, as well as the last one, are LIGO-only, for which (3.20) is

accurate. The remaining four events were also observed in Virgo. Since Virgo is not co-aligned with
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LIGO, we cannot apply the treatment above. Instead, we make the approximation that a0, φ0, t0 are

uncorrelated between LIGO and Virgo. This amounts to ignore the fact that we know the relative

orientations, locations and timing between those detectors. Since we are discarding information, this

approximation will increase the uncertainties in p without biasing the maximum-likelihood values.

For the three-detector events, then, we use

LHLV(p) ∝ LLIGO(p)

∫ T

0

I (|zV(p, t0)|) dt0, (3.21)

where V stands for Virgo. As we explained before, treating the detectors independently is sufficient

for our purposes even for LIGO, so this is an excellent approximation in the context of our simplified

analysis.

Since we have kept only three parameters, it is practical to evaluate the likelihood (3.21) over

a grid in p = (M, q, χeff) for each event. We use a regular grid of 643 points, centered around

the values reported by the LVC and with an extent of twice the reported uncertainties (subject to

the bounds 0 < q ≤ 1,−1 ≤ χeff ≤ 1). In all cases we verify on random parameter values that

interpolating the likelihood from the grid has good agreement with the actual computation. By

using a grid, we have to compute the likelihood only once, and we are able to apply any prior easily

a posteriori. This is a key requirement for model inference, since the prior for the parameter values

depends on the population model. Working in a low-dimensional parameter space enables us to

circumvent the need for Monte Carlo Markov chains.

3.2.2 LIGO–Virgo reported binary black holes

The single-event marginalized likelihood computed in this way is shown as a function of the pa-

rameters in Fig. 3.1. We obtained very similar results using the SEOBNRv4 ROM and IMRPhenomD

approximants, so we only show the results for SEOBNRv4 ROM. The likelihood can be interpreted as

the posterior distribution that would arise form a uniform prior in M, q, χeff . In Appendix 3.B we

show each event in greater detail, and apply the LIGO prior as a check of our pipeline.

In the middle panel of Fig. 3.1 we superimposed the masses and spins of the black holes in X-ray

binaries (XRBs) as reported in McClintock et al. (2013). The variables for XRBs (m, a) and BBHs

(M, χeff) are different, so care has to be taken when comparing them. By definition (Eq. (3.2)), the

individual masses of the BBHs are guaranteed to satisfy m2 ≤ 21/5M ≤ m1, with 21/5 ≈ 1.15. We

recall that χeff is a mass-weighted average of the spin components of the two black holes parallel to

the orbital angular momentum. We comment on the XRBs in §3.4.1.
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Figure 3.1: Marginalized likelihood contours enclosing 50% and 90% of the distribution for each of
the six events reported to date. In the middle panel, the persistent and transient X-ray binaries
reported in McClintock et al. (2013) are shown by ellipses, whose position in the plane represents
the black hole mass m and its dimensionless spin a. In the bottom panel, the case where the aligned
spins of the black holes are χ1 = 0, χ2 = 1 is shown by a dashed-dotted line, as a proxy for what
the outcome of a tidally-locked-secondary progenitor would be (see §3.4.1).
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Figure 3.2: Parameter likelihood for the three lighter likely events, marginalized over M, as a
function of η = q/(1 + q)2 and χeff . At low mass, η and χeff are degenerate.

It is interesting to note that there are clear degeneracies between the parameters and that those

degeneracies change with the mass of the system. At low mass there is a strong degeneracy between

mass ratio and effective spin. This was of course expected (for an early discussion see Cutler

and Flanagan (1994)). Low mass binaries merge at a higher frequency and thus the detector is

more sensitive to the inspiral, where the post-Newtonian (PN) expansion is accurate. The leading

PN corrections including spin are approximately degenerate with the leading corrections including

mass ratio. This correlation is simpler when expressed using χeff and the symmetric mass-ratio

η = q/(1 + q)2 as variables (Baird et al., 2013; Ng et al., 2018), as we show in Fig. 3.2 (compare

to the bottom panel of Fig. 3.1). It is apparent that a linear combination of the two parameters is

better constrained than each of them. We report this combination in Table 3.1.

At high mass we observe a different degeneracy, between the chirp mass and effective spin (middle

panel of Fig. 3.1). In General Relativity, the mass can be scaled out of the problem as a time-scale.

That is, a system with a smaller chirp mass and all other dimensionless parameters constant yields

the same waveform, but sped up, or shifted to higher frequencies. A positive aligned spin can mimic

this effect: it acts as an effective repulsive force between the BHs, which delays the plunge and makes

them merge at a higher frequency (Campanelli et al., 2006). Since at high masses the chirp mass

is not too well constrained, the degeneracy appears. Like before, a linear combination of M, χeff is

better constrained than either parameter, which we also report on Table 3.1.

Thus it is more convenient to change parameter basis and use a different combination for the
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Event A χeff +A(η − 1/4)

GW151226 2.8 0.16+0.04
−0.03

GW151012 3 −0.09+0.12
−0.1

GW170608 3.4 0.02+0.04
−0.02

B (M⊙) M−Bχeff (M⊙)

GW170104 8 25.9+0.8
−1.0

GW170814 8 26.1+0.6
−0.5

GW170809 9 28.9+0.8
−0.6

GW150914 12 31.0+0.6
−0.5

GW170818 11 32.7+1.0
−0.7

GW170823 15 37+2
−2

GW170729 27 41+3
−3

Table 3.1: Best constrained linear combination of η, χeff for the three lighter events, and of M, χeff

for the seven heavier ones, with 90% confidence uncertainties. A and B are coefficients chosen to
minimise the correlation.

heavy and light events. In the new basis the constraints can be better approximated by a sim-

ple Gaussian. Such approximation can provide a quick way to make estimates of the population

parameters for astrophysical use.

3.3 Model inference

3.3.1 Universe- and detector-rates

We turn now to the task of constraining population models combining the data of all events. We

will do that by introducing a new set of population-parameters λ, that will depend on the specific

model at hand and which we want to constrain. We make two remarks in that respect.

First, we note that what we can constrain is the rate at which BBHs with certain parameter values

(masses, spins) merge, which is not necessarily proportional to the abundance of those systems, since

their dynamics depend on the parameter values. Light binaries, for example, need to start closer in

order to merge in less than the age of the Universe, since GW emission is less efficient than for heavy

BBHs. Then, our definition of a model, parametrized by λ, is given by the volumetric merger rate

R(ps, zrs | λ), that can depend on the cosmological redshift zrs and the source-frame parameters

ps = (Ms, q, χeff). We recall that Ms = M/(1 + zrs), while q, χeff are independent of redshift. R

can explicitly depend on redshift if the merger rate depends on time. For example, star formation

peaked at zrs ∼ 2, so if the delays between black hole formation and merger are short compared to
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the age of the Universe, the merger rate can be expected to be higher at large redshifts. Instead, we

will assume the rate to be uniform in comoving volume, so that R(ps | λ)dps is the rate at which

BBHs with parameter values within dps of ps merge per unit comoving volume and source-frame

time.

Second, the rate of events observed at the detector network is not proportional to the merger rate

in the Universe, because of two effects. First, the strength of the GW signal, and thus the horizon

distance up to which an event can be observed, again depends on the parameters, inducing a selection

bias. And second, the detector- and source-frame masses differ because of cosmological redshift.

There are additional redshift considerations because GW detectors are sensitive to a luminosity-

volume, while we defined the rate per comoving-volume, and because the merger rate is redshifted.

To incorporate these effects, we introduce the detection rate Λ, such that Λ(p | λ)dp is the rate of

detection of events with detector-frame parameters p per unit time. It is related to the physical rate

R by

Λ(p | λ) = 4π

∫

dMs

∫

dDcD
2
c

R(ps | λ)
1 + zrs

δ(M−Ms(1 + zrs))f(p, DL)

= 4π

∫

dDLD
2
L

1

(1 + zrs)5

(

1− DL

1 + z

dz

dDL

)

R

( M
1 + zrs

, q, χeff

∣

∣

∣

∣

λ

)

f(p, DL).

(3.22)

Here, Dc is the comoving distance to the source, and DL = (1 + zrs)Dc is the luminosity distance.

We have assumed a spatially-flat Universe. Following Fishbach and Holz (2017), we have defined

f(p, DL) to be the fraction of events with p, DL that are detected, averaging over source position

(θ, φ) and orientation (ι, ψ). We take the detection probability to be one if the expectation value of

its SNR exceeds a threshold ρthresh = 9 and zero if it does not. In practice, the SNR measured by the

detector network will differ from its expectation value due to the noise. The measured SNR would

be obtained by maximizing |zLIGO| over t0, δt,p; its variance over noise realizations is approximately

1 (Allen et al., 2012). The effect that noise fluctuations have on detectability is important only near

the boundary of the sensitive volume, and we ignore it for simplicity. The expectation value of the

SNR of an event depends on the angles through

ρ = A(θ, φ, ι, ψ)
ρ0(p)

DL[Mpc]
, (3.23)

where ρ0(p) = 〈h0(p) | h0(p)〉1/2 is the SNR that an optimally aligned source at 1Mpc would have,
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and the angular factor 0 ≤ A ≤ 1 is given e.g. in Sathyaprakash and Schutz (2009). Then,

f(p, DL) = P (ρ > ρthresh)

= P

(

A >
ρthresh
ρ0(p)

DL[Mpc]

)

.
(3.24)

We estimate P (A > A∗) from a histogram of A computed over 108 isotropically distributed realiza-

tions of the angles. In Eq. (3.22), we use the redshift-distance relation given in Adachi and Kasai

(2012), taking the values of the cosmological parameters from Ade et al. (2016). We evaluate the

DL integral by quadrature.

To compute ρ0(p), we use a grid over p-space and a reference noise PSD. This is valid provided

that the shape of the noise curve of the detectors (i.e. the relative values of the PSD at different

frequencies) is approximately constant throughout the observation time, at least in the frequency

range relevant for BBH detection. We construct the reference PSD as the harmonic mean of the

combined-channel PSDs of the first six events: σ2
ref(f) = 〈σ−2

H,i(f) + σ−2
L,i(f)〉−1, where i labels each

event and the brackets indicate an average over all the events considered. We consider three BBH

events in each observing run, so we expect that this average is representative of the typical PSD

during O1 and O2. We find that our results do not sensitively depend on the waveform approximant

used.

If one ignored the fact that the source-frame mass depends on redshift, the detector rate would

take the form Λ(p | λ) = R(p | λ)V (p), where

V (p) = 4π

∫

dDLD
2
L

1

(1 + zrs)4

(

1− DL

1 + z

dz

dDL

)

f(p, DL) (3.25)

is the sensitive (comoving-) volume of the detector network. Fig. 3.3 shows the sensitive volume

computed with the SEOBNRv4 ROM approximant. V indeed depends on all the three parameters

M, q, χeff . As already pointed out in Fishbach and Holz (2017), the mass dependence follows an

approximate power law V ∝ M2.2 for q & 0.5, i.e. heavier BBH mergers are louder. Moreover,

events with large χeff (where the spins are aligned with the orbital angular momentum) are also

louder, because χeff first enters the post-Newtonian expansion as an effective force that is repulsive

for χeff > 0 (Campanelli et al., 2006). This effect is irrelevant for the dynamics of the inspiral while

the BHs are far apart, but it means that the signal lasts longer in the detector band before the

plunge, and thus more SNR is accumulated. Finally, the dependence with q at fixed M is very weak

if q & 0.5, but the sensitive volume drops rather strongly for smaller q.

47



10 1

100

101

102
Fixed q= 1

101 102

(M )

10 2

10 1

100

101

102

q= 0.03

q= 0.09
q= 0.16

Fixed eff = 0
1.0

0.5

0.0

0.5

1.0

ef
f

0.0

0.2

0.4

0.6

0.8

1.0

q

V(
,q

,
ef

f) 
 (G

pc
3 )

Figure 3.3: Dependence of the detector network sensitive volume on the parameters p = (M, q, χeff).
The solid lines show V (M) for several values of χeff on a q = 1 slice (top), or several values of q on
a slice of constant χeff = 0 (bottom). The dashed line shows a power law ∝ M2.2 dependence for
reference.

Another possible source of bias in the inferred merger rates would arise if the effectualness of the

template bank in recovering signals depended sensitively on the parameters. Although this effect

is present, its magnitude is much smaller than the sensitive volume dependence for BBHs with

M < 100M⊙ computed here (Canton and Harry, 2017).

3.3.2 Model likelihood

The likelihood that a specific model for the merger rates will have the observed set of detections as

an outcome is

P ({di} | λ) ∝
∏

i∈events

∫

dpP (di | p,D)P (p | D,λ). (3.26)

Here, P (di | p,D) is the single-event likelihood Li given by (3.21), and P (p | D,λ) is the detection

prior for the event parameters p according to the model λ, which is proportional to the detector
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rate (3.22) but normalized to
∫

dpP (p | D,λ) = 1. Using this we can rewrite (3.26) as

P ({di} | λ) ∝
∏

i

∫

dpLi(p)Λ(p | λ)
[∫

dpΛ(p | λ)
]Nevents

, (3.27)

which we can compute on a grid in λ-space, given a merger-rate model R(p | λ). The p integrals in

the numerator of (3.27) only have support near the measured parameter values of each event, since

Li(p) is suppressed elsewhere. The integral in the denominator runs over all sensitive parameter

space, which we take to be M ∈ [4.3M⊙, 100M⊙], q ∈ [0.03, 1], χeff ∈ [−1, 1]. The lower limit on M

holds if all astrophysical BHs have m > 5M⊙. We chose the lower bound on q to include the regions

where the reported events have support. Note that such low values of q are outside the calibration

region of the approximants (Khan et al., 2016; Bohé et al., 2017), although the effect for the purpose

of SNR estimation should be minor, and also the approximation that (l,m) = (2,±2) is less accurate

in that regime. In any case, those mass ratios are highly suppressed in the sensitive-volume weighting

(Eq. (3.25), Fig. 3.3).

To get a posterior distribution for the λ-parameters, one should multiply the likelihood by a

prior Pprior(λ). We will take those priors to be flat.

We emphasize again that the model likelihood (3.27) accounts both for selection effects due to

the sensitive volume and for the fact that the priors that one has to use to estimate the parameters

of each event depend on the merger-rate model that one is considering.

3.4 Astrophysical implications

With only 10 detections made so far, it is not yet feasible to constrain population models that are too

complicated. For this reason, we consider several simple models that intend to probe the different

variables separately, and apply Eq. (3.27) to put constraints on their parameters (see Taylor and

Gerosa (2018) for an alternative framework tailored to constraining detailed models).

As before, we repeated all analyses using two different waveform approximants (SEOBNRv4 ROM

or IMRPhenomD). We find that our results are robust to these choices, so below we only show the

results for the SEOBNRv4 ROM approximant.

3.4.1 Spin distribution

The distribution of spins of the merger events is currently one of the more informative data the LVC

has presented. First, the spin distribution might allow us to distinguish between various formation
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channels. For example in scenarios where black holes are dynamically captured into binaries one

expects each spin to be randomly oriented. For field binaries spins might tend to be aligned with the

orbital angular momentum. Tides in binary systems before the second black hole forms might spin

up the secondary and align it with the orbital angular momentum. For a chemically homogeneous

evolution of the stars to happen, high spins are required. Thus the LVC measurements of χeff can

potentially provide very interesting constraints.

Second, one could try to ascertain whether the properties of the merging black holes are similar

to those of black holes in X-ray binaries. In particular there is some indication that local black

holes are rotating fast. The middle panel of Fig. 3.1 shows the constraints on mass and spin of a

collection of black holes in XRBs from X-ray measurements. Heavy black holes in persistent sources,

i.e. with heavy companions, which are the natural progenitors of the LIGO/Virgo sources, are close

to maximally spinning. Furthermore this spin is usually interpreted as being natal and thus perhaps

should apply to the secondary black hole as well. By comparison, the χeff reported by the LVC

seem rather low. Of course χeff constrains only one of the components of the spin and combines

both black holes with weights depending on the mass ratio. We will try to use the likelihoods we

have computed for the LIGO events to say something about the spin magnitudes and orientations

assuming they all come from the same population.

Gaussian χeff rate model

In order to understand what the data are already telling us about the distribution of spins we first

consider a merger-rate model which is simply a (truncated) Gaussian in χeff ,

R(χeff | χeff , σχeff
) ∝ G(χeff − χeff , σχeff

), |χeff | < 1; (3.28)

we will use G(x, σ) to note the Gaussian distribution

G(x, σ) =
1√
2π σ

exp

(

− x2

2σ2

)

.

We allow a nonzero mean, as expected for example from an isolated-binary formation scenario, and

a dispersion σχeff
whose value can help us constrain the typical magnitude of the individual spins.

The relevant values of σχeff
turn out to be . 0.2, so in the following we will make no distinction

between σ2
χeff

and the variance of the truncated Gaussian. For simplicity, in this example we adopt

a uniform prior in M, q.
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Figure 3.4: Merger-rate model parameter likelihood for a Gaussian distribution of χeff given by
(3.28). Probability contours enclosing 50% and 90% of the distribution are shown in the two-
dimensional plot. The one-dimensional plots show the single-parameter marginalized likelihood.
The vertical lines show the marginalized distribution median and the minimal 90% probability
interval.

The λ-parameter likelihood is shown in Fig. 3.4. The distribution is consistent with having zero

mean, with a mild preference for positive values. The figure also shows that σχeff
= 0 is inconsistent

with the data. We find an upper 90% bound σχeff
< 0.19.

To interpret these results in terms of the distributions of the individual spins we assume that

each spin is drawn from a distribution with average spin a and dispersion σa, with an angle relative

to the angular momentum whose cosine has a mean µ and a dispersion σµ. We will allow the two

angles to potentially be correlated so that 〈µ1µ2〉 = rµσ
2
µ. In this case we can compute the mean

and variance of χeff :

χeff = aµ

σ2
χeff

=
1 + q2

(1 + q)2
µ2σ2

a +

(

1 + q2 + 2qrµ
(1 + q)2

a2 +
1 + q2

(1 + q)2
σ2
a

)

σ2
µ.

(3.29)
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We can first consider situations in which there is no preference for aligned spins, µ = χeff = 0 and

σ2
µ = 1/3, such as BBH populations that would arise in dynamical capture scenarios. The variance

of χeff still depends on rµ. In the two limits of no correlation (rµ = 0) and perfect correlation

(rµ = 1) we get:

σ2
χeff

(rµ = 0) =
1

3

(

a2 + σ2
a

) 1 + q2

(1 + q)2
,

σ2
χeff

(rµ = 1) =
1

3

(

a2 + σ2
a

1 + q2

(1 + q)2

) (3.30)

The dynamical capture scenario would correspond to rµ = 0. One can envision a situation for a

binary star progenitor in which the spins are misaligned with the orbit but have similar directions,

leading to rµ = 1. For example, natal kicks at BH formation if the supernova explosion is asymmetric,

or perhaps the tidal interaction with a third body (Rodriguez and Antonini, 2018), would lead to

a spin–orbit misalignment. Spins that are misaligned with the orbit precess, which would spoil the

spin–spin alignment. Even so, precession conserves χeff to a large extent (Apostolatos et al., 1994;

Racine, 2008) so it does not affect the χeff distribution. This holds as long as the orbital angular

momentum is bigger than the BH spins, which is generally the case unless the mass ratio is very

small, q . χ1v/c (so it is valid for the sources LIGO/Virgo are most sensitive to, see Fig. 3.3). The

limit of completely random misalignment between spin and orbital angular momentum considered

here is extreme, for example the necessary kicks would unbind most systems. In any event we

consider it to understand the limits of the constraints we get.

We first consider whether the data allow for high spins as might be hinted by XRBs. For equal

mass ratios and assuming a ≈ 1, these dispersions would be σχeff
(rµ = 0, q = 1) = 1/

√
6 ≈ 0.4

and σχeff
(rµ = 1, q = 1) = 1/

√
3 ≈ 0.6. Both values appear to be too large, indicating that the

data already do not favour large spins even if both of them are randomly oriented. One could

consider small mass-ratios, in which case for high spins the dispersions become σχeff
(rµ = 0, q ≪

1) ∼ σχeff
(rµ = 1, q ≪ 1) ∼ 1/

√
3 ≈ 0.6, which again seems disfavoured.

In the binary progenitor scenario it is believed that the BHs have a preference for being aligned

with the orbital angular momentum. As an extreme version let us consider the case of perfect

spin–orbit alignment µ = 1, σµ = 0. The mean and variance become:

χeff = a

σ2
χeff

=
1 + q2

(1 + q)2
σ2
a.

(3.31)
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Fig. 3.4 shows that the data are consistent with having zero mean for χeff , and at most around

χeff . 0.1, thus a . 0.1. The data also require a non-zero variance, this demands σa 6= 0 (because

we have assumed perfect alignment, σµ = 0 and the only source of variance for χeff in Eq. (3.29)

remains σa). Since a > 0, in this limit of small spins one cannot have σa ≫ a. Thus, from Fig. 3.4

the only viable region for the aligned scenario is σa ∼ a ∼ 0.1

Rate model for individual spins

Although we have already obtained most of the interesting physical conclusions from the previous

simple analysis perhaps it is warranted to be a bit more careful with the dependence on q. Both

the model predictions Eq. (3.29) and the inferred χeff for the events (Fig. 3.1) depend on q. In the

case of the data, for the lower-mass events there is a very strong degeneracy between χeff and q.

It is only for small mass-ratios that the spin parameter becomes large. Therefore, when we look at

the constraints on σχeff
larger values are allowed due to the possibility that the events have small q.

But the models tend to predict a larger variance in this regime, because in this limit only one of the

two spins contributes to χeff and there is no possibility of cancellation. Thus, it is worth considering

directly a prior on the individual spins rather than on χeff so that the q dependence is automatically

incorporated.

With this small number of events we do not want to consider very complicated rate models.

We restrict ourselves to a two-parameter model that explores at the same time the typical value of

the individual spin magnitudes as well as their alignment with the orbit. We will consider a rate

model where each spin–orbit alignment µ is uniformly distributed between µmin and 1. For the spin

magnitude we know that in the limit of perfect alignment the data require that the spin distribution

have some variance. Thus we will consider a uniform distribution between a∗−∆a and a∗+∆a and

move a∗. When a∗ approaches the boundaries only 0 < a < 1 is allowed. We will take ∆a = 0.1.

The likelihood for a∗, µ is shown in Fig. 3.5. We find that the typical spin magnitudes have a

preferred value a∗ ≈ 0.2±0.2, in agreement with Wysocki et al. (2019). The alignment has an upper

90% bound of µ . 0.6, but there is support all the way up to µ = 1 if the typical spins are a∗ ≈ 0.1,

consistent with our estimate in §3.4.1.

Tidally-locked progenitor

We now consider the effects of tides in the binary. For a field binary, before becoming a BBH the

progenitor was a binary star where the companion of the primary BH probably was a Wolf–Rayet

star (the core of a star that lost its envelope). The minimum initial distance required for the BBH to
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Figure 3.5: Parameter likelihood for a merger-rate model in which the BBHs have spin magnitude
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orbital angular momentum uniformly distributed between µmin = 1− 2µ and 1.
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merge in the age of the Universe due to the emission of gravitational radiation is comparable to the

minimum distance required to tidally lock the companion star within its lifetime, and the time-scales

for these two processes are very steep functions of the distance, so two distinct subpopulations are

expected (Kushnir et al., 2016; Hotokezaka and Piran, 2017; Zaldarriaga et al., 2017; Qin et al.,

2018). In systems where the merger time is shorter than ∼ 108 years, the secondary would be tidally

locked and rapidly spinning. If the merger time is longer, tides are too weak. We might thus expect

two distinct populations.

A strong natal kick to the second BH could misalign the orbit, but we ignore this case as it is

rather unlikely given that at the time of the second explosion the binary is already tight, and thus

the needed kick velocity to produce large misalignments is too large. We assign the high spin to the

secondary (lighter) BH.

In Figs. 3.1 and 3.B.1, 3.B.2 we used the prescription χ1 = 0, χ2 = 1 as a proxy for the case in

which the Wolf–Rayet star is successfully locked, which defines the curve χeff = q/(1 + q) shown.

We find that GW170729, GW151226, GW151012 and GW170608 are consistent with this proxy.

The latter three are consistent if their mass ratio is low, while all the other, heavier events are more

consistent with q ∼ 1. Thus this would be slightly unlikely if all the events belong to the same

population. With the current error bars and small number of events this is at most a qualitative

hint. To further illustrate this, in Fig. 3.6 we show the likelihood as a function of a rescaled χeff in

units of the proxy q/(1 + q). The rescaled effective spin can take values between ±(1 + q)/q, which

for a reference q = 1/2 is ±3. Zaldarriaga et al. (2017) predicted a bimodal distribution in this

variable, with peaks at 0 and 1 corresponding to the two subpopulations.

We implement a two-parameter model of this scenario, described by the fraction f of systems

where the progenitor has been tidally-locked, and the standard deviation σχeff
in the effective spin

of the other subpopulation. We assume that the aligned spin of each black hole either comes from

the same zero-mean Gaussian distribution, or is unity for a fraction f of the secondaries. That is,

the standard deviation of the distributions of individual spin and effective spin are related by

σχ1
= σχ2

=
1 + q
√

1 + q2
σχeff

, (3.32)

valid for the black holes that do not come from a tidally-locked progenitor. This results in a

superposition of two Gaussian distributions for χeff :

R(χeff , q | f, σχeff
) = (1− f)G(χeff , σχeff

) + fG

(

χeff − q

1 + q
,

σχeff
√

1 + q2

)

. (3.33)
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Figure 3.6: Single-event likelihood in terms of χeff rescaled by the tidally-locked-progenitor proxy
q/(1 + q), and marginalized over q. This channel predicts a bimodal distribution in this variable,
with peaks at 0 and 1.

The second term describes the locked-progenitor subpopulation, it has a positive mean due to the

maximally-spinning secondary, and a smaller variance because in this case only the primary is

random.

It should be noted that varying the prescriptions used for stellar winds and tides it can also be

possible to obtain intermediate distributions where the secondary may not be maximally spinning

after being tidally locked (Qin et al., 2018). However, it would be hard to constrain models more

complicated than (3.33) with the present number of events; and the upper bound on f would get

stronger as long as we interpret f as the fraction of maximally-spinning secondaries.

The likelihood for f, σχeff
is shown in Fig. 3.7. We see that the data are consistent with f = 0

and puts an upper 90% bound f < 0.3. One can see a hint of two peaks, one in which the random

spin is used to explain all the events, leading to a larger variance, and the other where the higher-

spin events are explained using tides and the random component of the spins is low. The current

number of events is too small to discriminate but it should become possible in the next LIGO run.

Furthermore if a negative χeff were to be observed, especially a large one compared with the width

of the random component, then this scenario would be disfavoured.

Trends with mass and GW170729

It is important to notice that in the analysis so far we have assumed that all the LIGO events are

samples from a unique population. Fig. 3.1 shows some noticeable differences between the light and
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heavy systems. The most obvious difference is just related to the parameter combination than can

be measured best, the change in the degeneracy direction from being between spin and mass ratio

to being between spin and mass. Of course this is just a feature of the way the strain depends on

the parameters.

However, prior to the detection of GW170729, a hint that the lightest systems might be the

ones with a clearer positive spin was apparent. With such small number of events we did not dare

start splitting the sample in subsets and especially in such an a posteriori fashion. However, a trend

with mass could be expected on theoretical grounds and is sometimes used as input in population

synthesis models (see for example figure 1 of Belczynski et al. (2017)). Of course one has to worry

about those inputs because even though they might be physically motivated, some of them were

chosen after seeing the first set of LIGO BBHs.

GW170729 is heavy and has a moderately high spin, which breaks this potential trend and

could mean either that there is no such trend or that a different physical mechanism originated its

spin. Formation scenarios that would naturally account for this event include tidal-locking after a

common-envelope phase as discussed in §3.4.1; a chemically-homogeneous formation, which predicts

masses in the range of GW170729, near-equal mass ratio, aligned spins and a peak merger rate at

redshift 0.5 (Mandel and de Mink, 2016); or a repeated merger within the globular cluster scenario,

which would also have high mass and spin (although randomly aligned) and would represent a

fraction of the mergers coming from globular clusters that could be as high as 20% if the spins at

birth are small (Rodriguez et al., 2018).

3.4.2 Mass distribution

Another interesting question is the distribution in mass and the potential lack of heavy systems.

This was already pointed out in Fishbach and Holz (2017). Here we repeat that analysis with

six additional events, allowing for spin (through χeff only) and including the source-frame mass

dependence on redshift. For simplicity we directly model the distribution as a function of M and

adopt a power-law prior with a cutoff. One could model the distribution of the individual masses and

make further assumptions about how correlated the two masses are. We feel that this is unnecessary

at this stage as the events have mass ratios q ∼ 1 and a cutoff in the mass distribution would also lead

to a cutoff in the chirp mass distribution at a very similar mass, especially given the current errors

and small number of events. We adopt a 5M⊙ low-mass cutoff and a free high-mass cutoff parameter

Mmax for the model distribution. We recall that we assumed that the detector network is sensitive
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Figure 3.8: Parameter likelihood for a merger-rate model where the source-frame chirp-mass dis-
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s , with a low-mass cutoff at 5M⊙ and a high-mass cutoff at
Mmax.

to events with M < 100M⊙, which is similar to and less conservative than the m1 +m2 < 200M⊙

case analysed in Fishbach and Holz (2017).

We show our results in Fig. 3.8, which qualitatively agree with Fishbach and Holz (2017) and

give a preliminary indication of the presence of a maximum mass. The distribution median is

Mmax = 41M⊙, which would correspond to m1,2 = 47M⊙ if q = 1, also in agreement with Abbott

et al. (2019b). The lower bound on Mmax is determined by the heaviest event detected, GW170729.

One potential caveat is that the glitch background in LIGO might increase with mass, partially

compensating the increase in volume up to which heavy systems can be seen. To investigate this we

estimate how sensitive our results are to an increase in the background. From fig. 9 of Abbott et al.

(2016c), the background of triggers during O1 is a steeply decreasing function of the detector network

SNR ρ and it is approximated by a straight line for log10Nbg(ρ). This also holds for unmodeled

searches (Lynch et al., 2018). The background is dominated by detector glitches. GW signals from
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heavy BBHs have short duration and fewer cycles in the detector band, so glitches can more easily

resemble them. The background level is then dependent on the mass scale and a stricter threshold

on the SNR might be necessary for heavier events, which has the effect of reducing the sensitive

volume relative to our previous estimate (3.25). We can make a simple estimate of this effect as

follows. In an Euclidean spacetime (setting zrs(DL) = 0 in Eq. (3.25)), the sensitive volume scales

as V (p) ∝ ρ30(p), since the SNR of a source decays as D−1. If we allow for a parameter-dependent

threshold on the SNR, V gets a correction

V (p)

V (p0)
=

(

ρ0(p)

ρ0(p0)

)3(
ρthresh(p0)

ρthresh(p)

)3

, (3.34)

where p0 is some reference parameter value. The first term in the right hand side comes from

Eq. (3.25), and the second describes the reduction in sensitive volume if the threshold ρthresh(p) >

ρthresh(p0). In an expanding Universe, the (1 + zrs)
−4 term in Eq. (3.25) suppresses the large-

luminosity-distances contribution to V , so the relative decrease in sensitive volume due to raising

the threshold for large masses is smaller than the estimate (3.34).

As an example, if the glitch rate increased from the one reported in fig. 9 of Abbott et al.

(2016c) by a factor of 100 above a certain chirp mass, the SNR threshold would have to be raised by

∆ρthresh ≈ 1.07 for those events to have the same false-alarm rate. Assuming a detection threshold

of ρthresh(p0) = 9, the sensitive-volume correction factor in Eq. (3.34) is 0.71. There is no indication

of such a dramatic increase in the background even when going beyond M > 100M⊙ (Abbott et al.,

2017a). A thorough test with an injection campaign was performed by Abbott et al. (2019b) and

found correction factors consistent with this estimate. Thus we believe the hint of a cutoff mass to

be a robust result.

3.4.3 Mass-ratio distribution

Finally, we consider what we can say about the mass-ratio distribution. The likelihoods themselves

are rather flat in q so we do not expect particularly good constraints. We consider a power law

in q and try to constrain the exponent. We present our results in Fig. 3.9. We find that typical

mass ratios below 0.7 seem disfavoured. For comparison, the average mass ratio of a distribution

where the binary masses are independently taken from a power-law P (m) ∝ m−α is q = 1 − 1/α.

From Fig. 3.8 we obtain that α ≈ 3 is favoured by the data if we impose no cutoff (Mmax → ∞);

independent draws from this distribution which would yield q = 2/3, consistent with our lower

bound on q. If we use the Salpeter mass function α = 2.35, then q = 0.575, which is disfavoured.
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Figure 3.9: Parameter likelihood for the average mass-ratio q, in a merger-rate model where the
mass-ratio distribution follows a power law qα, with α adjusted to yield 〈q〉 = q.

A uniform distribution in q would have q = 1/2, also disfavoured. We note that the statement

that equal mass-ratios are favoured holds for the physical merger-rate in the Universe, even after

accounting for selection effects due to the higher sensitive volume of the detector to those systems.

Due to the degeneracy between spin and mass ratio we could consider the combination of a

Gaussian in χeff and a power law in q. However, when this is done we find the constraints on the

variance of the Gaussian and the mean q to be the same as those we report in Figs. 3.4 and 3.9.

3.5 Discussion

It is clear that even with the small number of events reported so far the LIGO–Virgo data already

provide hints that have interesting astrophysical consequences. Most interestingly, the data suggest

that the BHs do not all spin rapidly, perhaps in tension with the simplest interpretation of the X-ray

binary results. This is even true in dynamical scenarios where the spins are randomly oriented and

even more so in the field binary case where there might be a tendency towards alignment between

spins and angular momentum.

These results are largely consistent with those presented in Farr et al. (2017), where aligned high

spin distributions were disfavoured. Quantitatively we differ because we have more events, have a

61



better estimate of the likelihoods for each event including the degeneracy between mass ratio and

spin, and rather than comparing discrete models we have continuous parameters that connect them,

allowing us to perhaps have a better sense of the typical spins that are favoured or disfavoured in

individual scenarios.

There are many potential explanations for the difference between the typical spins of high-mass

XRBs and the LIGO/Virgo systems. Of course both data sets contain a small number of events

and thus this could be a statistical fluke. Perhaps there is an unrecognized systematic in one or

both measurements. There could be astrophysical explanations, perhaps these systems come from

different populations. There could even be exotic explanations such as the effect of an axion-type

particle that through superradiance extracts energy from rotating black holes to produce a cloud of

axions around them.

At the current time the simple test of seeing if the spin distribution has a tendency towards

positive spins is not powerful enough. We do not detect a mean to the distribution and thus cannot

use that to distinguish between field binary and dynamical scenarios. Regarding tides, four of the

events are consistent with having a maximally spinning secondary, although for the lighter three this

only happens if the mass ratio for these events is lower than for the heavy ones, and in particular

GW151012 is only marginally consistent. With the data at hand we cannot make a conclusive

statement but again it is clear that the next few events are going to be very interesting.

Regarding the mass distribution we confirm previous findings that there is a hint of a cutoff in

mass. The distribution of mass ratios is not so well constrained, in part due to the degeneracy with

the spin, but distributions where the BBHs have comparable masses are favoured.

The code and data used in this work are publicly available at https://github.com/jroulet/

constraints_bbh_populations.
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Appendix

3.A Selection bias

In this appendix we discuss in further detail the equivalence between our derivation of Eq. (3.27)

and others present in the literature. Letting D be the proposition that the event was detected (and

¬D its negation), we can write the marginalized likelihood as

P (d | p) = P (d | D,p)P (D | p) + P (d | ¬D,p)P (¬D | p)

= P (d | D,p)P (D | p) + P (¬D | d,p)P (d | p)

= P (d | D,p)P (D | p).

(3.35)

The last equality follows because the data segments we analysed were detections, and the criterion

for detection depends only on the data, so P (¬D | d) = 0. The term P (D | p) is the observational

bias and can be computed as

P (D | p) =
∫ ∞

a0,min

P (a0 | p)da0

=

∫ Dh(p)

0

P (D)dD

∝ V (p),

(3.36)

where Dh(p) =
√

〈h0 | h0〉(p)Mpc/a0,min. The probability of detection depends on the parameters

because we are keeping only a subset p of the parameters, and in particular marginalizing over

distance and angles (cf. Loredo (2004); Mandel et al. (2019), keeping all the parameters would

lead to a detection probability of 1 so they can omit this term). Using Eqs. (3.35) and (3.36) we

can readily show the equivalence between our Eq. (3.27) and eq. (7) of Mandel et al. (2019). The
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expressions differ only in the integrands of the numerators of each term in the product:

P (di | p,Di)Λ(p | λ) = P (di | p,Di)V (p)R(p | λ)

∝ P (di | p,Di)P (D | p)R(p | λ)

= P (di | p)R(p | λ)

(3.37)

which is the form found in Mandel et al. (2019). Note that Eq. (3.37) is the posterior for p under a

prior labeled λ. In Fig. 3.B.1 we use the LIGO prior as an example.

We have expressed Eq. (3.27) in terms only of P (d | p,D) and Λ(p | λ) instead of the more

physically-interesting quantities P (d | p) and R(p | λ). Our motivation is that this expression is

perhaps more natural from the perspective of the observers, since the outcome of the observations can

only depend on the event rate at the detector and the events analyzed will necessarily be conditioned

to detection.

3.B Comparison with LVC results

In Fig. 3.B.1 we show the likelihood on the M, q, χeff parameter space for each event, and the

posterior distribution computed using the same prior as LIGO to facilitate the comparison. Our

reanalysis recovers both the one- and two-dimensional marginalized posteriors accurately, which is

compelling evidence that our approximations are working well and capture the degeneracies present.

The prior LIGO used for the astrophysical distribution of parameters is uniform in the individual

masses, spin magnitudes and cosine of spin tilts. This induces a nonuniform prior on the variables

we adopted. The transformation from m1,m2 to M, q is given by Eq. (3.2), taking its Jacobian

yields

PLIGOprior(M, q) ∝ 1

q

[(

1 +
1

q

)

(1 + q)

]1/5

M. (3.38)

Using Eq. (3.1), we can relate the probability of χeff to the individual aligned spins χi:

P (χeff | q) =
∫∫ 1

−1

dχ1dχ2 δ

(

χeff − χ1 + qχ2

1 + q

)

P (χ1, χ2). (3.39)

In the LIGO prior, the individual spins are uncorrelated and taken from the same distribution.
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Figure 3.B.1: Parameter estimation for the BBH merger events reported to date (continued in
Fig. 3.B.2). For each event, the plots on the diagonal show the marginalized likelihood (dashed
line), detection prior (dotted) and posterior (solid) distributions for each parameter. The detection
prior accounts for selection bias, and the likelihood is conditioned to detection. For each distribution,
vertical lines show the median and minimal interval enclosing 90%. Here we use the same prior as
LIGO to facilitate comparison to the reported values (black vertical line with shaded area). By
“LIGO posterior” we mean the posterior distribution we computed using the LIGO prior. Off-
diagonal plots show the two-dimensional marginalized likelihood and posterior. Probability contours
enclosing 50% and 90% of each distribution are shown. For the q–χeff plot, the case where the aligned
spins of the black holes are χ1 = 0, χ2 = 1 is shown by a dashed-dotted line, as a proxy for what
the outcome of a tidally-locked-secondary progenitor would be. The likelihood can be interpreted
as the posterior distribution arising from a uniform detection prior in M, q, χeff , so it illustrates
the influence of changing the prior. The values reported by the LVC are shown by black dots with
error bars. The LVC did not report the detector-frame chirp mass for the last six events (from
GW170608 on), so for those cases we show their source-frame value corrected for redshift, without
an uncertainty. 65
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Figure 3.B.2: Continuation of Fig. 3.B.1 displaying GW170729, the heaviest and highest-χeff event.

Therefore, PLIGOprior(χ1, χ2) = Pχ(χ1)Pχ(χ2), with

Pχ(χ) =

∫ 1

0

da

∫ 1

−1

dµ

2
δ(χ− aµ)

= −1

2
log |χ|, |χ| ≤ 1.

(3.40)

Using this, we can carry out the χ1 integral in Eq. (3.39):

PLIGOprior(χeff | q) = (1 + q)

∫ b

a

dχ2Pχ ((1 + q)χeff − qχ2)Pχ(χ2), (3.41)

where the integration limits are

a = max

{

(1 + q)χeff − 1

q
,−1

}

b = min

{

(1 + q)χeff + 1

q
, 1

}

.

(3.42)

In practice, we compute the integral in Eq. (3.41) by quadrature (see Ng et al. (2018) for an analytical

approximation). The total LIGO prior forM, q, χeff is given by the product of Eqs. (3.38) and (3.41).

The LIGO detection prior shown in Fig. 3.B.1 is obtained by multiplying the astrophysical prior
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by the sensitive volume of the detector. We show the detection prior so that any deviations of the

posterior from the prior are driven by the data and not by the parameter-dependent sensitivity of

the detector.
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Chapter 4

Population Inference Combining

Confident and Marginal Events

This Chapter has been adapted from Roulet et al. (2020).

We perform a statistical inference of the astrophysical population of binary black hole (BBH)

mergers observed during the first two observing runs of Advanced LIGO and Advanced Virgo,

including events reported in the GWTC-1 and IAS catalogs. We derive a novel formalism to fully

and consistently account for events of arbitrary significance. We carry out a software injection

campaign to obtain a set of mock astrophysical events subject to our selection effects, and use the

search background to compute the astrophysical probabilities pastro of candidate events for several

phenomenological models of the BBH population. We emphasize that values of pastro depend on

both the astrophysical and background models. Finally, we combine the information from individual

events to infer the rate, spin, mass, mass-ratio and redshift distributions of the mergers. The

existing population does not discriminate between random spins with a spread in the effective spin

parameter, and a small but nonzero fraction of events from tidally-torqued stellar progenitors. The

mass distribution is consistent with one having a cutoff at mmax = 41+10
−5 M⊙, while the mass ratio

favors equal masses; the mean mass ratio q > 0.67. The rate shows no significant evolution with

redshift. We show that the merger rate restricted to BBHs with a primary mass between 20–30M⊙,

and a mass ratio q > 0.5, and at z ∼ 0.2, is 1.5–5.3Gpc−3yr−1 (90% c.l.); these bounds are model

independent and a factor of ∼ 3 tighter than that on the local rate of all BBH mergers, and hence

are a robust constraint on all progenitor models. Including events from our catalog increases the

Fisher information about the BBH population by ∼ 47%, and tightens constraints on its parameters.
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4.1 Introduction

The Advanced LIGO (Aasi et al., 2015) and Advanced Virgo (Acernese et al., 2014) detectors have

detected gravitational waves (GW) from a number of compact binary mergers since the start of the

first observing run in 2015. Summarizing their first and second observing runs (O1 and O2), the

LIGO and Virgo Collaboration (LVC) released a catalog (GWTC-1, see Ref. (Abbott et al., 2019a))

with ten BBH mergers and one binary neutron star (BNS) merger. The recently concluded third

observing run (O3) has yielded a second BNS merger (Abbott et al., 2020a) and three new BBH

mergers (Abbott et al., 2020b,d,c), with more to be announced.

The LVC has released the raw strain data from O1 and O2 (Abbott et al., 2021), and several

independent teams have reanalyzed this dataset (Nitz et al., 2019a, 2020; Antelis and Moreno, 2019;

Venumadhav et al., 2019, 2020; Zackay et al., 2019a). In previous work, we identified nine additional

BBH events with significance ranging from high to marginal levels (Venumadhav et al., 2019; Zackay

et al., 2019b; Venumadhav et al., 2020; Zackay et al., 2019a) (for simplicity, we will refer to these

events using the abbreviation IAS, after the Institute for Advanced Study). Several of these events

were independently confirmed by Ref. (Nitz et al., 2020), who also identified another significant

event.

Despite being among the most detectable and accurately modeled GW sources, the origin of merg-

ing BBHs remains unclear. A variety of astrophysical formation mechanisms have been proposed,

including isolated binary stellar evolution through a common envelope phase (Nelemans et al., 2001;

Belczynski et al., 2002; Voss and Tauris, 2003; Belczynski et al., 2007, 2008; Dominik et al., 2013;

Belczynski et al., 2014; Mennekens and Vanbeveren, 2014; Spera et al., 2015; Eldridge and Stanway,

2016; Stevenson et al., 2017b; Mapelli et al., 2017; Giacobbo et al., 2017; Mapelli and Giacobbo,

2018; Kruckow et al., 2018; Giacobbo and Mapelli, 2018), chemically homogeneous stellar evolution

(Marchant et al., 2016; de Mink and Mandel, 2016; Mandel and de Mink, 2016), or dynamic capture

and hardening of binaries in dense stellar systems such as globular clusters (Zwart and McMillan,

1999; O’Leary et al., 2006; Sadowski et al., 2008; Downing et al., 2010, 2011; Samsing et al., 2014;

Rodriguez et al., 2015, 2016a; Askar et al., 2016), nuclear clusters (Antonini and Rasio, 2016; Petro-

vich and Antonini, 2017), and young open clusters (Ziosi et al., 2014; Mapelli, 2016; Banerjee, 2017;

Chatterjee et al., 2017). Alternatively, mergers can be prompted by interactions with gas and stars

in AGN disks (McKernan et al., 2012; Stone et al., 2016; Bartos et al., 2017), or through the Kozai–

Lidov effect in the presence of a supermassive black hole (Antonini and Perets, 2012) or in triple (or

higher multiplicity) systems (Antonini et al., 2014; Kimpson et al., 2016; Antonini et al., 2017; Liu
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and Lai, 2018; Hamers et al., 2015).

The growing number of detections has spawned many efforts to statistically characterize the

population of these systems, with the main goal of comparing the observed sample statistics with

the predictions of different proposed formation channels. The distributions of the BBH merger rate,

masses, spins and redshifts have been studied in the literature (Vitale et al., 2017b; Talbot and

Thrane, 2017; Abbott et al., 2016c; Fishbach and Holz, 2017; Hotokezaka and Piran, 2017; Fishbach

et al., 2018; Farr et al., 2018; Wysocki et al., 2018, 2019; Roulet and Zaldarriaga, 2019; Abbott et al.,

2019b; Fishbach and Holz, 2020). Several of these works were based on the entirety or a subset of

the ten confident BBH detections reported in GWTC-1. Other recent works also included events

from the IAS catalog in the BBH population analyses (Piran and Piran, 2020; Gayathri et al., 2020;

Galaudage et al., 2020; Pratten and Vecchio, 2020). However, when considering the events as a

population, we have to appropriately account for the marginal significance of some of these events:

for such events, the probability of astrophysical origin itself can depend on the population model

being considered (this was previously noted in Ref. (Nitz et al., 2020)). Moreover, the probability of

astrophysical origin for a candidate depends on the search pipeline that found it, since the definition

involves the levels of comparable foreground and background triggers, subject to the same selection

effects. Hence, the sensitivity of the search pipeline is a crucial piece of information when inferring

astrophysical event rates and correcting for selection effects. In this work, we inject synthetic signals

into the O1 and O2 runs to empirically measure the spacetime-volume our pipeline is sensitive to.

In this paper, we develop a general framework to treat the problem of population inference using

detections of arbitrary significance, and apply it in an analysis that accounts for the BBH events

in the GWTC-1 and IAS catalogs. This problem was first studied by Gaebel et al. (2019), who

introduced a formalism for population inference using a mixture of noise and signal triggers. They

demonstrated its implementation for a simulation on a simplified parameter space with analytical

prescriptions for the foreground and background distributions. Our work expands on this by devel-

oping a framework that can be cast in terms of a small number of quantities that are straightforward

to compute, and thus more amenable to real-data applications, and implementing it on the O1 and

O2 datasets. Galaudage et al. (2020) developed a different implementation and applied it to include

the events in the IAS catalog. We address some issues with this treatment, and how our formalism

deals with them, in Appendix 4.C.

Three BBH mergers from the O3 run have been recently reported (Abbott et al., 2020b,d,c). We

exclude them from the present analysis since as highlights from a (yet unreleased) O3 catalog, they

cannot be simply added to a set of homogeneously selected events for population inference.
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We organize the rest of the paper as follows: in §4.2, we derive the likelihood of a population model

as a function of events of arbitrary significance, and then we present the algorithm to compute in

practice the various quantities involved. In addition, we estimate the gain in the Fisher information

from the inclusion of marginal triggers, and use it as a guide to set a convenient threshold for which

triggers to include in the analysis. In §4.3, we report new constraints on the astrophysical population

of BBH mergers. In particular, we study the merger rate distribution’s dependence on spin, mass,

mass ratio and source redshift. Finally, we draw conclusions in §4.4. We quantify the sensitive

volume–time of our search pipeline by means of software injection in Appendix 4.A. We describe

technical details of computing the astrophysical probability, pastro, in Appendix 4.B. We address the

relation to previous related work in Appendix 4.C. We provide evidence that our method is robust

to importance sampling stochastic errors in Appendix 4.D.

4.2 Framework

In this section we derive the likelihood function for the set of triggers above a given threshold in a

pipeline due to a distribution of BBHs, present an algorithm for its practical evaluation, and derive

the amount of Fisher information contained in the marginal triggers. The likelihood constrains

which population models are consistent with the data. We will follow the notation of Mandel et al.

(2019), see also Refs. (Thrane and Talbot, 2019; Vitale, 2020) for an introductory treatment.

4.2.1 Model likelihood

As a preliminary matter, we define the data as the observable quantities that detectors output,

along with any quantities derived from this that we use in the search. A datum d consists of (a)

a measured strain timeseries at each detector, long enough to capture all astrophysical information

available in a putative signal, and (b) derived quantities, e.g. detection statistics or statistics used

for signal quality tests. Note that this excludes BBH parameters such as masses and spins, which are

not directly observable. The full dataset (here, O1 and O2) can be thought of a large set of points

in this high-dimensional space, one for every datum. These realizations contain detector noise plus,

in comparatively very few cases, astrophysical signals.

We restrict the analysis to a small set of selected data realizations {di} (“triggers”) defined under

some criteria such that each excluded individual datum is very unlikely to contain an astrophysical

signal. This set may contain both secure and marginal events. We will select the triggers using the

search pipeline described in Ref. (Venumadhav et al., 2019) and a threshold on its detection statistic
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(henceforth “detection threshold”, we discuss our choice in §4.2.4); it is the task of the search pipeline

to compute the detection statistic for all data. We will assume triggers to be independent: since

triggers are rare, the fact that a trigger uses a sample does not affect significantly the total number

of available samples for other triggers to happen. The assumption of independence could be invalid,

though, if different triggers of astrophysical origin were produced by multiple images of a single

gravitationally lensed source (Dai et al., 2020); we will not consider such possibility in this analysis.

Under this assumption, the search for BBHs in the full dataset is a Poisson process that generates

a set {di} of Ntrig triggers in the above-threshold subregion of the phase space of data. The likelihood

of observing this set of triggers is given by the Poisson distribution

P (Ntrig, {di} | λ) = e−Na(λ)−Nb

Ntrig!

Ntrig
∏

i=1

(

dNa
dd

∣

∣

∣

∣

di

(λ) +
dNb
dd

∣

∣

∣

∣

di

)

, (4.1)

where Na(λ) is the expected number of triggers in the set with astrophysical origin under a model

for the source population described by a set of parameters λ, Nb is the expected number of noise

background triggers in the set, and the terms dNa/dd, dNb/dd are the rate densities for triggers

under the astrophysical and background hypotheses.

We express the expected rate density of astrophysical triggers in terms of the physical merger

rate through

dNa
dd

∣

∣

∣

∣

d

(λ) =

∫

dθ P (d | θ) dNa
dθ

(θ | λ), (4.2)

where θ are a set of parameters that characterize each merger (e.g. masses, spins, distance, sky

position, orbital orientation, time, etc.) and P (d | θ) is the parameter likelihood. For triggers that

pass all signal quality tests, a Gaussian noise model is typically a good description of the parameter

likelihood:

P (d | θ) ∝ exp

(

−1

2
〈d− h(θ) | d− h(θ)〉

)

, (4.3)

where h(θ) is the GW strain model and, in a slight abuse of notation, d is the measured strain. As

is standard in the GW literature (Thorne, 1987), the argument of the exponential in Eq. (4.3) is the

inverse-variance weighted inner product between two real-valued time series x and y,

〈x | y〉 = 4Re

∫ ∞

0

df
x̃∗(f) ỹ(f)

Sn(f)
, (4.4)

where Sn(f) is the one-sided power spectral density (PSD) of the detector noise, tildes indicate

Fourier transforms, and asterisks complex conjugation.
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The expected rate density of background triggers also depends on the detection pipeline. We

will estimate it using the method of timeslides, see Appendix 4.B for further details.

The expected number of astrophysical triggers is

Na(λ) =

∫

d>th

dd
dNa
dd

∣

∣

∣

∣

d

(λ)

=

∫

dθ
dNa
dθ

(θ | λ) pdet(θ).
(4.5)

In the first line, the d integral runs over all data realizations that would result in a pipeline statistic

above the detection threshold. In the second line, we introduced the detection efficiency for a source

with parameters θ:

pdet(θ) =

∫

d>th

ddP (d | θ), (4.6)

The probability pastro,i that the ith trigger is of astrophysical origin depends on models for both

astrophysical events and noise triggers. In this work, we will fix the model for noise triggers, but

vary the astrophysical one. Given an astrophysical model described by parameters λ,

pastro,i(λ) =
dNa(λ)

dNa(λ) + dNb

∣

∣

∣

∣

di

. (4.7)

For practical evaluation, we rescale Eq. (4.1) into the following form while keeping the dependence

on the model parameters λ,

P (Ntrig, {di} | λ) ∝ P (Ntrig, {di} | λ)
P (Ntrig, {di} | λ0)

∝ e−Na(λ)

Ntrig
∏

i=1

dNa(λ) + dNb
dNa(λ0) + dNb

∣

∣

∣

∣

di

= e−Na(λ)

Ntrig
∏

i=1

[

dNa(λ)

dNa(λ0)

∣

∣

∣

∣

di

dNa(λ0)

dNa(λ0) + dNb

∣

∣

∣

∣

di

+
dNb

dNa(λ0) + dNb

∣

∣

∣

∣

di

]

= e−Na(λ)

Ntrig
∏

i=1

[

dNa(λ)

dNa(λ0)

∣

∣

∣

∣

di

pastro,i(λ0) +
(

1− pastro,i(λ0)
)

]

,

(4.8)

where λ0 corresponds to a fiducial source population model that we are free to choose. Equation (4.8)

converges to a meaningful number as one relaxes the detection threshold and includes arbitrarily

insignificant triggers with pastro → 0 (we will discuss this point further in §4.2.4). In the opposite

limit in which we only include events with absolute certainty of astrophysical origin (pastro = 1), we
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recover the standard result (e.g. in the notation of Mandel et al. (2019))

P (Ntrig, {di} | λ, pastro,i = 1) =
e−Na(λ)

Ntrig!

Ntrig
∏

i=1

dNa
dd

∣

∣

∣

∣

di

(λ)

=
e−Na(λ)

Ntrig!
[Na(λ)]

Ntrig

Ntrig
∏

i=1

∫

dθ P (di | θ)
dNa
dθ

(θ | λ)
Na(λ)

= P (Ntrig | λ)
Ntrig
∏

i=1

∫

dθ Ppop(θ | λ′)P (di | θ)
∫

dθ Ppop(θ | λ′) pdet(θ)
,

(4.9)

where P (Ntrig | λ) follows standard Poisson statistics (this can also be obtained by marginalizing

over {di} in Eq. (4.1)). In the above formula, λ′ are the population parameters that characterize the

shape of the un-normalized astrophysical distribution Ppop, separated out from an overall merger

rate, which we will call R. The overall rate R cancels inside the product since both dNa/dθ and Na

are linearly proportional to it. However, note that once we include events with 0 < pastro < 1, the

value of pastro(λ) depends on the rate even at fixed population shape and such a clean separation

does not occur.

Nevertheless, we can exploit the linear dependence of Na(λ) and dNa/dθ on the rate parameter

to evaluate these terms efficiently. We make explicit the decomposition of the population parameters

λ into rate R and shape λ′:

dNa
dθ

(θ | λ) = Rf(θ | λ′), (4.10)

where f(θ | λ′) is normalized according to

lim
V→0

1

V T

∫

V T

dθ f(θ | λ′) = 1 (4.11)

in the local Universe, so that R is the local merger rate per unit time per unit volume. Note that

the source distance and the arrival time of the signal are among the parameters θ, and for these we

do not normalize their distribution to integrate to unity over some domain since they do not have a

natural scale. From Eqs. (4.2) and (4.10), the astrophysical number density ratio for the ith trigger

in Eq. (4.8) is

dNa(λ)

dNa(λ0)

∣

∣

∣

∣

di

=
R

R0
wi(λ

′;λ′0), (4.12)

where we define

wi(λ
′;λ′0) :=

∫

dθ P (di | θ) f(θ | λ′)
∫

dθ P (di | θ) f(θ | λ′0)
. (4.13)
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Likewise, the expected detection rate is

Na(λ) = R · V T (λ′), (4.14)

where, in accord with Eq. (4.5),

V T (λ′) =

∫

dθ f(θ | λ′) pdet(θ) (4.15)

is the population-averaged sensitive volume–time of the detector network (analogous to α(λ′) of

Mandel et al. (2019) but with a different normalization choice; equivalent to V(Λ) of Galaudage

et al. (2020)). V T (λ′) depends on the search pipeline and detection threshold used.

In terms of these quantities, Eq. (4.8) takes the form

P (Ntrig, {di} | λ) ∝ e−RV T (λ′)

Ntrig
∏

i=1

[

R

R0
wi(λ

′;λ′0) pastro,i(λ0) + (1− pastro,i(λ0))

]

. (4.16)

4.2.2 Likelihood evaluation

In order to evaluate Eq. (4.16), we need to evaluate three types of terms: wi(λ
′;λ′0), V T (λ

′) and

pastro,i(λ0).

We estimate wi(λ
′;λ′0) from the integral in Eq. (4.13) using a Monte Carlo method:

wi(λ
′;λ′0) ≈ Wi(λ

′;λ′0) :=

Si
∑

j=1

1

π(θij)
f(θij | λ′)

Si
∑

j=1

1

π(θij)
f(θij | λ′0)

, (4.17)

where {θij : j = 1, . . . , Si} are samples from the posterior distribution of the parameters for the ith

trigger, obtained under a prior π(θ).

Similarly, we can evaluate V T (λ′) by reweighting a set of injections (Tiwari, 2018). We add

synthetic signals to the data in software and run the detection pipeline (with vetoes and choices

that are as close as possible to those in the ‘production’ run1) to determine which injections would

have been found. From Eq. (4.15) we can construct the estimator

V T (λ′) ≈ VT (λ′) :=
1

Ninj

∑

j>th

f(θj | λ′)
P (θj | λ′inj)

. (4.18)

1We change some choices in order to keep computational cost manageable, as detailed in Appendix 4.A.1.
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Here, we denote by P (θ | λ′inj) the distribution of source parameters from which we generate injec-

tions. Note that Ninj is the total (found and missed) number of injections, but the sum runs only

over those above the detection threshold.

Finally, we have to compute the reference pastro(λ0) for all triggers under consideration. Note

that these correspond to a particular astrophysical model λ0, so we cannot use the numbers reported

by a pipeline at face value without regard to λ0. In §4.2.3 we describe our choice of λ0. According to

Eq. (4.7), pastro requires estimating both the foreground and the background of the search pipeline.

We estimate the foreground using injections and the background using timeslides (see Appendix 4.B

for details). We report the values of pastro(λ0) in Table 4.3.1.

As long as the population models λ of interest do not have too many parameters, we can evaluate

the rate-independent estimators {Wi(λ
′;λ′0)} and VT (λ′) on an auxiliary λ′ grid. We then use them

to evaluate Eq. (4.16) on a λ grid, that incorporates the dependence with rate avoiding redundant

reevaluation of {Wi(λ
′;λ′0)} and VT (λ′). Note that this procedure extends readily to a situation

where dNa depends linearly on multiple population parameters, a commonly encountered case being

the branching ratios of a “mixture model” which consists of a linear combination of several sub-

populations.

The BBH merger GW170608 occurred while one LIGO detector was not in nominal observing

mode (Abbott et al., 2017c). Data from such periods are not publicly accessible so our injections

do not simulate this type of events. Although we cannot use GW170608 to inform the astrophysical

rate, the event contains valuable information about the shape parameters λ′. In order to include

GW170608 consistently in our analysis, we single it out as an additional event with pastro = 1 that

is not counted in Na(λ). We replace Eq. (4.8) by

P ({di}, Ntrig | λ) = P ({di 6=GW170608}, Ntrig − 1 | λ)P (dGW170608 | λ′), (4.19)

where we choose to normalize

P (dGW170608 | λ′) = 1

Na(pastro ≈ 1)

dNa
dd

∣

∣

∣

∣

GW170608

(4.20)

so that it integrates to 1 over all non-observing-mode data realizations that would have yielded

a pastro ≈ 1 event. We implement Eq. (4.19) under the approximation Na(pastro ≈ 1) ∝∼ Na(λ),

which in practice amounts to dividing Eq. (4.8) by Na(λ) (and in general, by [Na(λ)]
n to include n

additional events).
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4.2.3 Choice of reference and injection distributions

The Monte Carlo estimators {Wi(λ
′;λ′0)} and VT (λ′) (Eqs. (4.17) and (4.18)) are unbiased, in the

sense that their expectation values are

〈Wi(λ
′;λ′0)〉 = wi(λ

′;λ′0) (4.21)

〈VT (λ′)〉 = V T (λ′) (4.22)

regardless of the choice of reference and injection populations, λ′0 and λ′inj. However, due to the

finite number of samples used, they have variances that depend on the choice of λ′0 and λ′inj. In this

subsection, we discuss choices that allow robust estimation of wi(λ
′;λ′0) and V T (λ

′).

The main requirement for these importance sampling estimators is that the proposal distribution

from which the samples are taken does not vanish at places where the integrand (target distribution)

is nonzero, lest the reweighting become pathological. Thus, neither the parameter estimation prior

π(θ) nor the reference population f(θ | λ′0) in Eq. (4.17) should vanish anywhere the likelihood P (di |

θ) has support. In general, the estimator variance will be smaller when the proposal distribution

more closely matches the target distribution.

The effective spin

χeff :=
χ1z + qχ2z

1 + q
(4.23)

is the spin variable that can be measured best, where q = m2/m1 is the mass ratio and χ1z, χ2z are

the dimensionless spin components in the direction of the binary’s orbital angular momentum. Spin

components in the orbital plane are harder to measure than and no evidence for or against them

has been found for any of the mergers of O1 and O2. The same is true for gravitational radiation

modes beyond the quadrupolar (ℓ, |m|) = (2, 2). To simplify the analysis, we will neglect in-plane

spin components and higher-order modes in the following, and we do not expect that this will change

the results significantly. In particular, we will use the aligned-spin, quadrupolar radiation waveform

approximant IMRPhenomD (Khan et al., 2016) to model gravitational wave signals throughout this

work. For parameter estimation, we use the relative binning method for likelihood evaluation (Zackay

et al., 2018) coupled to the PyMultinest sampler (Buchner et al., 2014).

We adopt a parameter estimation prior π(θ) that is uniform in detector-frame masses, effective

spin χeff and luminosity volume. Some events, most notably GW151216 (Zackay et al., 2019b),

have high effective spins, so a prior that does not vanish for extreme values of χeff is convenient.

We parametrize the two spins in terms of the well measured χeff and a poorly measured variable
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χdiff := (qχ1z − χ2z)/(1 + q) that controls how much either binary component contributes to χeff .

We implement the spin prior as flat in χeff , and flat in χdiff conditioned on χeff within the Kerr

bound |χ1,2| < 1.

For the reference population f(θ | λ′0), we narrow our focus to θ = {m1s, q, χeff , DL}, which

are the measurable variables that lack a natural prior, and adopt the following (factorized) joint

distribution: truncated power-law in the primary source-frame mass m1s and uniformity in q, χeff

and luminosity volume, with λ′0 that lie in the bulk of reported posterior distributions (see e.g.

Abbott et al., 2019b):

f(m1s, q, χeff , DL | λ′0) ∝ m−α0

1s D2
L (4.24)

for m1min < m1s < m1max and qmin < q < 1, with α0 = 2.35, m1min = 3M⊙, m1max = 120M⊙ and

qmin = 1/20. These ranges are broad enough to encompass the likelihood support of all the triggers

we include. Throughout this work we will implicitly assume a uniform distribution for χdiff , arrival

time, orbital phase, orbital orientation and sky position. When computing pastro(λ0) we will use

a fiducial rate R0 = 101.5 Gpc−3 yr−1. Note that the choice of λ0 does not affect the final results

(provided the reweighing process presents no pathologies, as we demonstrate in Appendix 4.D) and

therefore using previous analyses to inform our choice does not bias our conclusions.

Finally, we choose an injection distribution (Eq. (4.18)) that approximately matches the integrand

in Eq. (4.15). We adopt

P (θ | λ′inj) = Z−1 f(θ | λ′0) p̂det(θ), (4.25)

Z =

∫

dθ f(θ | λ′0) p̂det(θ)

≈ 7.1Gpc3 Tobs,

(4.26)

where p̂det(θ) is some semianalytical approximation of pdet(θ), Tobs is the observation time span on

which the injections are made, and the value of Z reported in Eq. (4.26) corresponds to the choices

that follow. We use

p̂det(θ) =

∫ ∞

ρ2
th

dρ2χ2(ρ2, 10, ρ2∗(θ)). (4.27)

Here, we use ρ2th = 60 as an approximate detection threshold. We define the expected signal-to-noise

ratio (SNR) of an event with parameters θ:

ρ∗(θ) = ρ1Mpc(m
det
1 , q, χ1z, χ2z)A(α, δ, ι, ψ, t)

1Mpc

DL
. (4.28)
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This is computed for a fiducial noise PSD, which we define in each frequency bin as the 10th percentile

of 200 random 4096 s segments of Hanford and Livingston O2 data. In addition, A =
√

A2
H +A2

L is

the Hanford–Livingston antenna pattern, where the angular factors 0 < AH,L < 1 can be found, e.g.,

in Ref. (Sathyaprakash and Schutz, 2009). We define ρ1Mpc = 〈h | h〉1/2 to be the single-detector

SNR of an optimally oriented source at a fiducial distance of 1Mpc, which we interpolate on a grid

of intrinsic parameters.

The non-central chi-squared distribution in Eq. (4.27) models the distribution of SNR2 recovered

by a search pipeline for a signal with parameters θ in the presence of Gaussian noise and maximized

over ten degrees of freedom (Jaranowski and Królak, 2012). Six degrees of freedom model maxi-

mization by the pipeline over the signal amplitude, phase and arrival time independently in the two

LIGO detectors. The remaining four model maximization over template parameters (our waveform

templates are elements of a metric space of up to 4 dimensions (Roulet et al., 2019)). Eq. (4.27)

neglects a variety of effects present in the search process, such as template bank discreteness and

boundaries, signal coherence across detectors, detector sensitivity variations, noise non-stationarity

and non-Gaussianity, and signal quality vetoes. This is acceptable, since p̂det is only used for choos-

ing a convenient injection distribution: all these effects are accounted for by the injections as per

Eq. (4.18). Moreover, they make p̂det a somewhat optimistic estimate of pdet, which is desirable as

it makes the proposal distribution (Eq. (4.25)) broader than the target distribution (Eq. (4.15)).

We generate the set of source parameters {θj} for injected signals by drawing samples from the

distribution in Eq. (4.25) with the PyMultinest sampler (Buchner et al., 2014), with which we

simultaneously evaluate the normalization constant Z as reported in Eq. (4.26). Eqs. (4.18) and

(4.25) yield

VT (λ′) =
Z

Ninj

∑

j>th

f(θj | λ′)
f(θj | λ′0) p̂det(θj)

. (4.29)

We report technical details and results from the injection campaigns in Appendix 4.A.

4.2.4 Choice of detection threshold

We now derive a criterion for the choice of the threshold at which a trigger is deemed sufficiently

informative to be included in the analysis. To that end we compute the Fisher information as a

function of detection threshold. This also serves as an estimate of the amount of information about

the BBH population gained by including marginal events in the present analysis.
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The information that the data carry about the BBH distribution is encoded in the Fisher matrix

I(λ)mn = −
〈

∂2mn logP ({di}, Ntrig | λ)
〉

{di},Ntrig
. (4.30)

Here, ∂2mn = ∂2/∂λm∂λn is the second derivative with respect to population parameters λm and

λn, and the subscript denotes that the expectation value is over the distribution of observations

(Eq. (4.1)):

P ({di}, Ntrig | λ) = P (Ntrig | λ)
Ntrig
∏

i=1

P (di | λ), (4.31)

with

P (Ntrig | λ) = e−N(λ)[N(λ)]Ntrig

Ntrig!
, (4.32)

P (di | λ) =
1

N(λ)

dN(λ)

dd

∣

∣

∣

∣

di

, (4.33)

N(λ) = Na(λ) +Nb. (4.34)

N is the expected number of astrophysical and background triggers above detection threshold,

and hence depends on the threshold choice. Below we quantify how this choice affects I(λ)mn.

Eqs. (4.30), (4.1) and (4.34) yield

I(λ)mn = −
〈

−∂2mnN +

Ntrig
∑

i=1

∂2mn log
dN

dd

∣

∣

∣

∣

di

〉

{di},Ntrig

= ∂2mnN −
〈

Ntrig
∑

i=1

∂2mndN/dd

dN/dd

〉

+

〈

Ntrig
∑

i=1

(

∂m log
dN

dd

)(

∂n log
dN

dd

)

〉

.

(4.35)

Using Eqs. (4.32) and (4.33) we evaluate the first sum:

〈

Ntrig
∑

i=1

∂2mndN/dd

dN/dd

〉

= 〈Ntrig〉
∫

dd
1

N

dN

dd

∂2mndN/dd

dN/dd

= ∂2mn

∫

dd
dN

dd

= ∂2mnN.

(4.36)
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Further, from Eqs. (4.34) and (4.7) we obtain

∂m log
dN

dd
=

dNa
dN

∂m log
dNa
dd

= pastro(d) ∂m log
dNa
dd

,

(4.37)

which we use to evaluate the second sum in Eq. (4.35). Equations (4.35), (4.36) and (4.37) yield

I(λ)mn =

〈

Ntrig
∑

i=1

p2astro,i

(

∂m log
dNa
dd

)(

∂n log
dNa
dd

)

〉

. (4.38)

The special case where λm = λn = R is the astrophysical merger rate is particularly simple, because

dNa/dd is proportional to the rate:

∂

∂R
log

dNa
dd

=
1

R
, (4.39)

so the Fisher information about the rate is

I(R) =
1

R2

〈

Ntrig
∑

i=1

p2astro,i

〉

. (4.40)

In general, the information each trigger carries about the population depends on its parameters and

the population model through the terms in parentheses in Eq. (4.38), weighted by its p2astro. The

threshold should therefore be set such that the summed p2astro of excluded triggers is much smaller

than that of included triggers, while keeping their number manageable.

As an illustrative example, in Fig. 4.2.1 we study a simple toy model in which the only parameter

measured on triggers is the SNR ρ, and there is a population of signals with a power-law distribu-

tion dNa/dρ
2 ∝ ρ−5 in a Gaussian background dNb/dρ

2 ∝ exp
(

−ρ2/2
)

, intended to qualitatively

describe features of GW signals (Schutz, 2011) and detector noise. We consider the problem of infer-

ring the astrophysical rate R, that is, the normalization of the power-law component in this model.

For Fig. 4.2.1 we adopt fiducial normalizations so that there are respectively Na(ρ
2 > 65) = 15 and

Nb(ρ
2 > 65) = 1 expected foreground and background events with a ρ2 louder than 65, roughly

matching the numbers observed in O1 and O2. The ratio between the foreground and background

distributions determines pastro(ρ
2) through Eq. (4.7), which in turn allows us to compute the Fisher

information I(R) with Eq. (4.40). In the top panel of Fig. 4.2.1 we show the Fisher information as a

function of a detection threshold ρ2th above which triggers are included in the likelihood, Eq. (4.8).

We find that the information contained in the faint triggers is limited: even though there are many

faint signals, their contribution to I(R) is strongly suppressed by p2astro, shown in the bottom panel.
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Figure 4.2.1: Top panel: Fisher information about rate as a function of detection threshold, in a toy
model where there is a foreground power-law in SNR with unknown rate and a Gaussian background.
The information saturates as the threshold is lowered, thus, faint events carry a limited amount of
information. Bottom panel: p2astro as a function of squared SNR in this model. This quantity
determines the average information contributed by each trigger.

The relative contributions to the information from loud and faint events can be different for other

parameters, e.g. if the logarithmic terms in Eq. (4.38) preferentially select faint events. An exam-

ple of this situation was demonstrated in Smith et al. (2020), who studied a putative cutoff in the

distance distribution.

We choose the detection threshold (for actual triggers as well as for injections) as follows. We

include all triggers from O1 and O2 that were found in Hanford–Livingston coincidence with a

false-alarm rate (FAR)—within their chirp-mass bank, note that we searched in 5 such banks (Venu-

madhav et al., 2019; Roulet et al., 2019)—below one per three times the respective observing run.

With this threshold choice, the summed p2astro(λ0) of the 30 excluded triggers with lowest FAR is

only 0.35, while for the events in Table 4.3.1 is 14.65. In order to include GW170817A consistently,

we also include Livingston single-detector triggers from O2 that satisfy the cuts in templates and

ρ2L described in Appendix 4.B (Zackay et al., 2019a). The exception is GWC170402, a Livingston

single-detector trigger for which we do not have a satisfactory astrophysical model (Zackay et al.,

2019a). We exclude GWC170402 from this analysis. From Table 4.3.1 we see that, with some depen-

dence on the population model, including the events from the IAS catalog increases the accumulated

p2astro by ∼ 47%, so as a crude estimation we might a priori expect uncertainties in the population

parameters to shrink with a factor of order ∼ 1.47−1/2 = 0.82 owing to this additional source of
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information.

Note that Eq. (4.40) defines the Jeffreys prior for the astrophysical merger rate, π(R | λ′) ∝
√

I(R). In practice, pastro depends on the rate only for a few near-threshold events and is otherwise

very close to either 0 or 1, so we can approximate Eq. (4.40) by

I(R) ≈ Na(pastro ≈ 1)

R2
∝∼
Na(λ)

R2
=
V T (λ′)

R
. (4.41)

Under this approximation we find

π(R | λ′) ∝
√

V T (λ′)/R, (4.42)

or π(Na) ∝ 1/
√
Na, the Jeffreys prior for a single Poisson component. This differs from several

other studies that adopt another prior, π(R) ∝ 1/
√
R. In practice the difference is mild.

4.3 Astrophysical implications

In this section we report our results on the constraints on the BBH population parameters under

various astrophysical models and compare their performances. To better visualize the effect of

including the events from the IAS catalog, we repeat the analysis with a higher detection threshold

(inverse false-alarm rate IFAR > 3000 observing runs in our pipeline) that restricts to events in the

GWTC-1 catalog (Abbott et al., 2019a). GW170608 and GW170818 do not satisfy that cut so we

include them ad hoc with pastro = 1, appropriately modifying the likelihood using Eq. (4.19) with

both events.

We will explore a number of phenomenological models that probe the various measurable source

parameters m1s, q, χeff , DL. For convenience, we define a “default” distribution f̂ that takes the

following factorized form:

f̂(m1s, q, χeff , DL) = f̂m1s
(m1s) f̂q(q) f̂χeff

(χeff) f̂DL
(DL), (4.43)
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pastro pastro
λ0 Default A1 A2 A3 B C D Combined

GW150914 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170809 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170814 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170729 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170608 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170823 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW151226 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW151012 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170818 0.92 0.96 0.99 0.99 0.99 0.97 0.97 0.95 1.00
GW170304 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00
GW170727 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 1.00
GW170121 0.98 0.99 0.98 0.98 0.97 0.99 0.99 0.98 0.99
GW170817A 0.75 0.27 0.14 0.20 0.20 0.07 0.43 0.30 0.01
GW170202 0.62 0.69 0.78 0.75 0.73 0.72 0.68 0.68 0.76
GW170403 0.62 0.53 0.16 0.12 0.08 0.50 0.61 0.53 0.11
GW170425 0.61 0.46 0.71 0.71 0.71 0.51 0.52 0.47 0.84
GW151216 0.51 0.47 0.00 0.01 0.00 0.55 0.52 0.47 0.00
170412B2 0.02 0.06 0.11 0.08 0.06 0.00 0.04 0.06 0.00

Table 4.3.1: Value of pastro for the BBH events considered in this work under various astrophysical
models. Events first reported in the GWTC-1 and IAS catalogs are respectively above and below the
horizontal line. pastro(λ0) is the probability of astrophysical origin under the fiducial (unimportant)
astrophysical model λ0 described in §4.2.3. The remaining columns report the marginalized pastro
under the population models considered in §4.3: the Default model (Eq. (4.43)) serves as a baseline
from which Models A–E explore various departures as follows. A1: Gaussian in χeff ; A2: tidally-
locked progenitors with highly spinning remnants, or A3: with moderately spinning remnants; B:
truncated power-law in the primary mass; C: power-law in the mass ratio; D: power-law in the
redshift. The Combined model incorporates the maximum likelihood solutions of models A1, B
and C (§4.3.6). pastro(λ0) approximately matches previously reported values from our pipeline
(Venumadhav et al., 2019, 2020; Zackay et al., 2019a), except for GW170818 due to an improvement
in the search algorithm, see Appendices 4.A and 4.B. We do not reproduce the results of (Galaudage
et al., 2020, table II), see Appendix 4.C for a discussion.
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with

f̂m1s
∝ m−2.35

1s , 5M⊙ < m1s < 50M⊙ (4.44)

f̂q = U(1/20, 1) (4.45)

f̂χeff
= U(−1, 1) (4.46)

f̂DL
=

4πD2
L

(1 + z)4

(

1− DL

1 + z

dz

dDL

)

, (4.47)

and explore the effect of varying individual factors. U(a, b) denotes a uniform distribution between

a and b. Note that f̂ differs from f(λ′0) (Eq. (4.24)) in that it has tighter lower and upper mass

cutoffs, the merger rate is a free parameter, and the rate is set to be uniform in comoving volume–

time (rather than luminosity volume and observer time) through the factor

dtc
dt

dVc
dVL

=
dtc
dt

D2
c

D2
L

dDc

dDL

=
1

1 + z
· 1

(1 + z)2
· 1

1 + z

(

1− DL

1 + z

dz

dDL

) (4.48)

in Eq. (4.47). f(λ′0) is chosen to have support throughout all the sensitive parameter space, while

f̂ is meant to be a convenient reference point in the space of relevant population models and more

closely comparable with the models explored in (Abbott et al., 2019b).

To obtain a posterior distribution for the population parameters, the likelihood Eq. (4.8) has to

be multiplied by a prior. We take the priors to be flat except for the rate parameter, where we adopt

a Jeffreys prior, Eq. (4.42).

For each of the models that we will consider below, in Table 4.3.1 we report for every event the

astrophysical probability pastro,i marginalized over uncertainties in the population model parameters:

pastro,i =

∫

dλP (λ | {d}) pastro,i(λ). (4.49)

To evaluate Eq. (4.49), we obtain pastro,i(λ) from Eqs. (4.7) and (4.12) as

pastro,i(λ) =

R

R0
wi(λ

′;λ′0) pastro,i(λ0)

1 +

(

R

R0
wi(λ

′;λ′0)− 1

)

pastro,i(λ0)

(4.50)

and marginalize over λ by quadrature.
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4.3.1 Spin distribution

Model A1: Gaussian χeff distribution

We first consider a distribution that is Gaussian in χeff

fχeff
(χeff | χeff , σχeff

) = Nt(χeff | χeff , σχeff
) (4.51)

and follows the default f̂ (4.43) in the other parameters. Nt(x | µ, σ) denotes the normal distribution

with mean µ and dispersion σ truncated at ±1. With this simple model we can explore the symmetry

of the χeff distribution, i.e. whether there is a tendency for alignment between the spins and orbit

or not. Dynamical formation models predict the spins of the black holes to be randomly oriented,

thus symmetrically distributed about χeff = 0, while in the isolated binary evolution scenario a

tendency for alignment might be expected (note that while spin-dependent selection effects can bias

the detected distribution towards positive effective spins (Ng et al., 2018; Roulet and Zaldarriaga,

2019), f describes the underlying astrophysical distribution). This model also probes the width of

the distribution, which is especially interesting in light of predictions that natal BH spins might be

very small, barring tidal torques to the stellar progenitors (Fuller and Ma, 2019).

The results are shown in Fig. 4.3.1. In agreement with previous studies (Farr et al., 2018; Wysocki

et al., 2018, 2019; Roulet and Zaldarriaga, 2019; Abbott et al., 2019b; Miller et al., 2020), the

distribution is consistent with χeff = 0 and shows no statistically significant preference for positive

χeff , which remains consistent with dynamical formation scenarios. The width of the distribution is

measured to be σχeff
≈ 0.13+0.12

−0.07 (median and 90% c.l.), disfavoring values close to 0 (cf. Miller et al.,

2020). Including the events from the IAS catalog yields consistent results. The constraints become

tighter for the rate, and broader for the χeff mean and dispersion. We verified that GW170121, a

confident detection with support for negative χeff (Venumadhav et al., 2020), rules out the end of

the distribution compatible with GWTC-1 with higher χeff and smaller σχeff
, which may drive the

change in these constraints. In the rest of this section, we will explore whether the spread of the

χeff distribution can be explained by tidal torques.

Model A2: tidally-locked stellar progenitors

We now study a model that considers the effects of tides in the BBH progenitor system. For field

binaries, the typical aftermath of the common-envelope phase is a black hole in a tight orbit with

a stripped star. Depending on the binary separation, the star may be subject to strong tides. If
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Figure 4.3.1: Model A1: Gaussian χeff distribution. Solid blue curves show the constraints on the
model derived from only the GWTC-1 catalog. Dashed orange curves show the constraints derived
from the GWTC-1 and IAS catalogs combined. Two-dimensional contours enclose 50% and 90% of
the distribution. Vertical lines show the median and 90% symmetric interval of the one-dimensional
posteriors, also reported numerically for the GWTC-1 + IAS analysis.
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the separation is small, corresponding to merger times . 108 yr, the timescale for tidal locking is

shorter than the star lifetime and thus it can tidally lock to the orbit. In this case the second-

formed black hole would have a high, aligned spin. The tidal-locking timescale depends strongly

on the separation, so that for greater separations tides quickly become negligible. In addition,

the maximum separation allowed for a circular binary to merge within the age of the Universe is

comparable to this distance scale, so two sub-populations with comparable abundances might be

expected (Kushnir et al., 2016; Hotokezaka and Piran, 2017; Zaldarriaga et al., 2017). It has been

pointed out that with different wind and tide models, less extreme distributions may result, with

the possibility of having intermediate spins even after tidal locking (Qin et al., 2018; Bavera et al.,

2020). We will first probe the more extreme model which is easier to constrain, keeping in mind

that the bounds we obtain apply to the fraction of black holes with maximal spin, and later explore

the consequences of a milder spin distribution.

Following Ref. (Roulet and Zaldarriaga, 2019), we implement a model of this scenario as follows.

We consider that component black holes have χz ∼ Nt(0, σχ) in the absence of tidal effects, and

a fraction ζ of the secondary (lighter) BHs have χz = 1 due to a tidally locked progenitor. This

distribution is very different from both the injection distribution and the parameter estimation prior

in the space of component spins. In order to have well-behaved reweighting of samples (see §4.2.3),

in practice we implement it under the approximation that the strain waveform depends on the spins

only through χeff . We therefore use

fχeff
(χeff | q, ζ, σχ) =

∫∫

dχ1zdχ2zf(χ1z, χ2z | ζ, σχ)δ
(

χeff − χ1z + qχ2z

1 + q

)

= (1− ζ)Nt(χeff | µ0, σ0) + ζNt(χeff | µ1, σ1),

(4.52)

where the subscript 0 represents the case in which no tidal locking occurred and 1 the case where

the progenitor of the secondary was locked:

µ0 = 0 σ0 =

√

1 + q2

1 + q
σχ

µ1 =
q

1 + q
σ1 =

σχ
1 + q

.

(4.53)

We show our constraints in the top panel of Fig. 4.3.2. As in Ref. (Roulet and Zaldarriaga,

2019), we find that the fraction of locked systems ζ is consistent with 0. We bind it to ζ < 0.2 at

90% confidence. Interestingly, the extreme version of this model σχ ≈ 0, where black holes are born

with nearly zero spins except for tidal effects (Fuller and Ma, 2019), is in mild tension. Even when
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Top panel: Population parameter constraints. Bottom panels: Individual marginalized likelihood
for each of the events in the GWTC-1 catalog.
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restricted to the GWTC-1 catalog, this conclusion is in disagreement with (Roulet and Zaldarriaga,

2019). The immediate cause of the difference is that in this work we found shorter tails in the

mass-ratio distribution of some events, and these tails can affect how consistent an event is with the

maximally-spinning-secondary hypothesis.3 The main differences between the parameter estimation

methods of the two analyses, which could explain the disagreement, are that in this work we apply

an exact treatment of the detector locations and orientations instead of the approximations made

in (Roulet and Zaldarriaga, 2019) and we have a more careful estimation of the noise PSD (Zackay

et al., 2019c; Huang et al., 2020), thus the new results are preferred. In Fig. 4.3.3 we show the

events’ posteriors in the q–χeff plane, and the curve χeff = q/(1 + q) corresponding to χ1z = 0,

χ2z = 1 as representative of the tidally-locked progenitor scenario. In particular GW151226, whose

effective spin is positive and well-measured, is only marginally consistent with having a χ2z as high

as 1 and prefers lower values. In the bottom panels of Fig. 4.3.2 we show this situation in further

detail. For the events in the GWTC-1 catalog, we plot the individual marginalized likelihoods (i.e.

the terms inside the product in Eq. (4.9)) for ζ and σχ. We see that the low-σχ solution is disfavored

by GW151226. Additionally, GW170729 is more consistent with having χ2z = 1 than with coming

from a low spin distribution, thus it pushes the locked fraction upwards.

To keep the number of parameters small, in Model A2 we have implicitly assumed that the

second-formed black hole, whose progenitor can be subject to strong tides, is the lightest. While

lighter stars have longer lifetimes in isolation, for binary evolution the mass ratio may be reversed

by mass transfer episodes (Gerosa et al., 2013; Steinle and Kesden, 2020). Moreover, depending on

the detailed ordering of mass transfer and core collapses both stars may be subject to strong tides

(Steinle and Kesden, 2020). We explored the impact of this simplification using a model where either

BH has small or high-aligned spin independently with some probability, when we do this we obtain

similar constraints on the total fraction of tidally-locked progenitors and natal spin dispersion as

with Model A2.

Model A3: tidally-torqued progenitors with moderately spinning remnants

Is the tension with very low natal BH spins robust to a less extreme model for the spin of remnant of

a tidally torqued star? Motivated by (Qin et al., 2018; Bavera et al., 2020) we now study a version

of the model where these black holes have spin aligned with the orbit, but with a broad distribution,

which we take to be P (χ2z) = U(0, 1) for simplicity. We assume that otherwise all black holes have

3Parameter estimation samples are available at github.com/jroulet/O2_samples.
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Figure 4.3.3: Posterior on the q–χeff plane for the events considered in this work that are consistent
(top) or inconsistent (bottom) with having a non-spinning primary and a maximally spinning, aligned
secondary at the 90% confidence level.

very low spin (Fuller and Ma, 2019). We parameterize the χeff distribution as

fχeff
(χeff | q; ζ) = ζ U(χeff | 0, q/(1 + q)) + (1− ζ)Nt(χeff | 0, 0.05). (4.54)

For the subpopulation where tides did not play an important role, we have set a nonzero width

in χeff comparable to measurement uncertainties, and made the approximation that the likelihood

depends on the spins through χeff only, in order to avoid pathological reweighting. We show the

constraints on Fig. 4.3.4. Interestingly, under these assumptions we find that a fraction ζ = 0.22+0.29
−0.19

of the BBHs needs to have been subject to strong tidal effects in order to explain the events that

are measured to have positive χeff . We have verified that if we allow for a further spread σχ in the

natal BH spin distribution, this spread is well consistent with 0, unlike for Model A2.

In conclusion, the data is consistent with either a natal distribution of spins with nonzero disper-

sion σχ ∼ 0.1, or a model where the remnant may have a moderate spin even after tidal torquing. In

the first case, the result holds even if we allow a fraction of tidally-locked progenitors (the inferred

fraction is consistent with zero); in the latter, which better aligns with the predictions of Refs. (Qin

et al., 2018; Fuller and Ma, 2019; Bavera et al., 2020), a fraction ζ ∼ 0.2 of tidally torqued events is

favored. Later, in §4.3.6, we will show results for the relative evidence for these families of models
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Figure 4.3.4: Model A3, a modified version of Model A2 where the remnant of the tidally-locked
progenitor has χ2z distributed uniformly in [0, 1] for a fraction ζ of the mergers, and otherwise black
holes have very low spins.

and find some preference for Model A3 over A1 and A2. Again, we find that including the events

from the IAS catalog improves the constraints on these population models.

4.3.2 Model B: truncated power-law in primary mass

Next we consider a model where the source-frame mass of the primary black hole follows a truncated

power-law distribution

fm1s
(m1s | α,mmin,mmax) ∝ m−α

1s ; mmin < m1s < mmax (4.55)

fq(q | m1s,mmin) = U(mmin/m1s, 1). (4.56)

Eq. (4.56) enforces that the secondary mass also satisfies the lower cutoff. This model was first

studied by Ref. (Fishbach and Holz, 2017) (see also (Roulet and Zaldarriaga, 2019; Abbott et al.,

2019b)) and is motivated by the prediction of a gap in the stellar black hole mass function due to the

pair instability supernova and pulsational pair instability supernova processes (Fowler and Hoyle,

1964; Barkat et al., 1967; Bond et al., 1984; Heger et al., 2003).

92



1.3+0.4
0.3

2
0
2
4

0.8+1.4
1.7

3.0
4.5
6.0
7.5
9.0

m
m

in
 (M

)

7.3+1.5
3.8M

0.8 1.2 1.6 2.0

log10(RGpc3yr)

40
48
56
64
72

m
m

ax
 (M

)

3.0 1.50.0 1.5 3.03.0 4.5 6.0 7.5 9.0

mmin (M )
40 48 56 64 72
mmax (M )

41+10
4 M

GWTC-1
GWTC-1 + IAS
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We show our constraints in Fig. 4.3.5. These might be approximately compared to the models

explored in (Abbott et al., 2019b, figure 2). When restricting to the events in GWTC-1 we obtain

similar results to Ref. (Abbott et al., 2019b), except we recover a merger rate that is lower by ∼ 0.4

decades, which is smaller than the current statistical uncertainty. Interestingly, we obtain a tighter

constraint mmax < 51M⊙ at 90% confidence by including the events from the IAS catalog. This is

accompanied by a slight shift in the allowed power-law index towards shallower slopes. A putative

lower cutoff mmin in the mass function is harder to detect since low-mass mergers are intrinsically

fainter. Thus, similar to Abbott et al. (2019b), we can only put an upper bound on mmin given by

the lightest confident merger considered, GW170608.

We comment that the O3 event GW190521 has a primary black hole mass 85+21
−14 M⊙ (Abbott

et al., 2020c), in tension with the constraints in Fig. 4.3.5. This suggests that the truncated power-

law model may not be a good description of the tails of the distribution once a larger number

of events is included, and that parametrizations with more complexity might be needed in future

analyses.

4.3.3 Model C: power-law in the mass ratio

Now we study a model where the mass ratio follows a power law distribution (Roulet and Zaldarriaga,

2019; Fishbach and Holz, 2020)

fq(q | q) ∝ qβ (4.57)

with β = (2 q−1)/(1−q) so that the distribution has a mean q. We show our constraints in Fig. 4.3.6.

In line with previous results (Roulet and Zaldarriaga, 2019; Abbott et al., 2019b; Fishbach and Holz,

2020), we find that distributions leaned towards equal mass ratios are favored. Including the events

from the IAS catalog enables a more precise measurement of both the rate and mean mass-ratio. We

find a mild quantitative difference in the q distribution with (Roulet and Zaldarriaga, 2019, figure

9), which we verified is due to the difference in the underlying mass distribution models (truncated

power-law in primary mass per Eq. (4.44) vs. flat in chirp mass); the one used here is strongly favored

in terms of model selection by a difference in log-likelihood ∆maxλ lnP ({di}, Ntrig | λ) = 24.
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Figure 4.3.6: Model C: a power-law in the mass ratio with mean q, Eq. (4.57).

4.3.4 Model D: power-law in the redshift

Finally, we consider a model where the comoving merger rate follows a power-law in the redshift

with index λz (Fishbach et al., 2018)

fDL
(DL | λz) = f̂DL

(DL)(1 + z)λz , (4.58)

so that λz = 0 corresponds to a constant merger rate per unit comoving volume (see Eq. (4.47)). We

show the constraints on λz in Fig. 4.3.7: it is poorly constrained and is consistent with a constant

merger rate per unit comoving volume. Adding the new events from the IAS catalog improves the

constraints both on the rate and on λz.

4.3.5 Merger rate

As seen from Figs. 4.3.1–4.3.7, the measurements of the local merger rate R using each of the models

we studied are consistent within uncertainties, however, they have broad distributions and may have

large correlations with some of the population parameters. This happens because the rate parameter

is measured through the combination Na(λ) = R · V T (λ′), and the population-averaged sensitive-
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Figure 4.3.7: Model D: a power-law in the redshift evolution of the merger rate with exponent λz,
Eq. (4.58). R is the local rate.

volume V T (λ′) can exhibit a large dependence on the population shape. In other words, most of the

information comes from the region in parameter space where most events lie. This region depends

on the interplay between the astrophysical population and the detector selection function; the rate

within this region should be relatively well constrained compared to the overall rate.

The most extreme example is Model D (power-law in the redshift, Fig. 4.3.7), where the rate

exhibits a strong correlation with the exponent λz. In this case, the merger rate at some intermediate

redshift z ∼ 0.2 is much better constrained than the local rate R, owing to the larger phase space

that the detectors are sensitive to. To various extents, a similar effect occurs with some shape

parameters in the other models studied in this section. In Model B (power-law in the primary mass,

Fig. 4.3.5), for steep power-laws the rate can be dominated by the low-mass end of the distribution,

which is poorly constrained because the sensitive volume to these signals is smaller.

A simple prescription to get a robust constraint that can inform theoretical models is to measure

the rate of mergers within the part of parameter space where most events were observed. In Fig. 4.3.8

we plot the posterior distribution for the restricted rate of mergers Rrestricted, which we define as the

merger rate of events with 20M⊙ < m1s < 30M⊙, q > 0.5, evaluated at redshift z = 0.2. We show

this quantity for the default model (Eq. (4.43)), Models A1–D (§A1–4.3.4), and a ‘Combined’ model
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Figure 4.3.8: Posterior for the local rate of mergers (top) or the comoving rate restricted to 20M⊙ <
m1s < 30M⊙, q > 0.5 and evaluated at redshift z = 0.2 (bottom), under the various models we
studied (§A1–4.3.4, annotated with the variable each of them is intended to explore). We add a
model that combines the maximum likelihood solutions of models A1, B and C. The restricted rate
is better measured, and in better agreement across models, than the total local rate R. Dotted lines
indicate the minimum over models of the 5% quantile, and the maximum of the 95% quantiles.

that combines the maximum likelihood solutions of models A1, B and C, namely the product of fχeff

from Eq. (4.51) with χeff = 0, σχeff
= 0.1; fm1s

from Eq. (4.55) with α = 1,mmin = 8.5M⊙,mmax =

40M⊙; fq from Eq. (4.57) with q = 0.88; and f̂DL
from Eq. (4.47). Note that the primary mass is

distributed with a truncated power-law of index −2.35 in all except the B and Combined models,

and for the Combined model it is flat-in-log, which makes Fig. 4.3.8 largely comparable to (Abbott

et al., 2019a, fig. 12); this may also be the main driver of the residual discrepancies between restricted

rates across models in Fig. 4.3.8.

We find that the restricted rate is much better measured than the total local merger rate and

that all models largely agree on its value. Taking the union of the symmetric 90% quantiles, we

obtain that the rate lies in the range 1.5–5.3Gpc−3yr−1, which amounts to a factor 3.6 uncertainty

in the restricted rate as opposed to 21 in the absolute rate, within the models we explored. Thus,

the restricted rate is well suited to put population models to a more stringent test.
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Model ∆max lnL ∆ lnZ

Default 0 0
A1
A2
A3

}

χeff

14.6+1.3
−1.1 10.3+1.1

−0.8

14.9+1.3
−0.9 12.0+1.1

−0.8

14.6+1.5
−1.2 13.4+1.4

−1.1

B: m1s 3.8+0.6
−0.5 −2.1+0.5

−0.3

C: q 4.6+0.6
−0.6 2.8+0.5

−0.4

D: z 0.07+0.19
−0.06 −2.84+0.29

−0.12

Combined 22+3
−3 22+2

−2

Table 4.3.2: Scores for the population models we study (§4.3.1–4.3.4, annotated with the variable
each of them is intended to explore) relative to the Default model, Eq. (4.43). We add a model
that combines the maximum likelihood solutions of models A1, B and C. We report the maximum
likelihood and the Bayesian evidence as complementary indicating scores. Error-bars indicate 90%
confidence levels on the uncertainties from the Monte Carlo method employed.

4.3.6 Comparison between population models

We conclude this section by comparing the performances of the models we studied. In Table 4.3.2 we

provide the maximum likelihood and the Bayesian evidence achieved by models A1–D and Combined

discussed above, relative to the default model Eq. (4.43). The maximum likelihood has the advantage

of being independent of the arbitrary prior choices for the population parameters (in particular, their

ranges), on the other hand it does not penalize models with more degrees of freedom. The ordering

and qualitative conclusions are found to be largely similar using either metric. Our method involves

multiple Monte Carlo integrations (numerator and denominator of Eq. (4.17), and Eq. (4.18)), which

can introduce stochastic errors. We estimate these with the bootstrap method, by computing the

scores 100 times using samples taken with replacement from the original sets.

We find that among Models A1–D, those that perform best are A1 (Gaussian in χeff), A2 and

A3 (tidally locked progenitors, with χ2z = 1 or χ2z ∼ U(0, 1) respectively), which vary the spin

distribution away from the flat-in-χeff one the default model uses. This is a clear indication that

the average effective spins of the population are lower. The three models achieve similar likelihoods,

Model A3 has a somewhat higher Bayesian evidence, which can be related to the fact that it has one

less parameter. Note that these models cannot accommodate the high effective spin of GW151216,

which requires both spins to be high and aligned; its pastro is suppressed as a result (Table 4.3.1).

To a lesser extent, a similar effect holds for GW170817A and GW170403.

The Combined model, which is defined from the best likelihood solutions of Models A1, B and C,

indeed outperforms its individual components and, as expected, the likelihood ratio to the default

model is approximately the product of the component likelihood ratios to the default model. This

vindicates our approach of individually varying the components of the population model.
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Figure 4.3.9: Events considered in this work as a function of total source-frame mass, mass-ratio
and effective spin. Underlaid in black is the prediction of a model that combines the maximum
likelihood solutions for the effective spin (Model A1), primary mass (Model B) and mass-ratio
(Model C) distributions, including selection effects and without measurement uncertainty. The
events’ posteriors are color-coded according to their values of pastro under the same model (these
are different from the values reported by the search pipeline). Note however that these posteriors
are computed using a prior that differs from the model. Model outliers are labeled.

In Fig. 4.3.9 we plot the BBH events from O1 and O2 considered in this work, showing posteriors

in the space of total source-frame mass versus mass-ratio and effective spin. 1σ contours (enclosing

1 − e−1/2 ≈ 0.39 of the distribution) are drawn in blue for events in the GWTC-1 catalog or

color-coded by pastro for events in the IAS catalog. The broad parameter estimation prior π(θ),

defined in §4.2.3, is used for event contours in order to make the resulting posteriors trace more

closely the single-event likelihoods from Eq. (4.3). Shown in black is the expected distribution of

detectable sources under the Combined model, with a 90% contour. It is obtained by reweighting

found injections with this model. The pastro values shown in the color scale of Fig. 4.3.9 correspond

to this model. Note that this is just one example out of the set of models consistent with the data,

and others may exhibit somewhat different behavior.

This simple model appears to explain the observations reasonably well, albeit with some outliers.

The confident event GW170729 (Abbott et al., 2019a; Venumadhav et al., 2020) is a mild outlier

within 2σ of the 90% contour, note however that under this population model its posterior would shift

towards lower mass and χeff (Fishbach et al., 2020). The other outliers (GW170817A, GW170403,

GW151216 and 170412B) have less detection significance, so their pastro(λ) can be suppressed without
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too large a penalty to the model likelihood. As our knowledge of the astrophysical distribution

improves, the pastro of these events might be revised. A potential limitation of the models studied

in this work is the assumption that the distribution is factorizable in the variables m1s, q, χeff , DL

(Models A2 and A3 do have a correlation between q and χeff , and Model B between m1s and

q). Indeed, Fig. 4.3.9 might hint that models in which the χeff mean or variance depends on

the mass (Safarzadeh et al., 2020) or distance (Hotokezaka and Piran, 2017) could perhaps better

accommodate some of these outliers. Looking forward, as the catalog of events grows there might

be a need for increasingly complex models.

We comment that 170412B is consistent with having a secondary mass similar to that of the O3

event GW190814 (Abbott et al., 2020d), although its χeff would be higher especially if such a small

mass-ratio is imposed.

4.4 Conclusions

In this work, we presented a general framework to include marginal GW events when characterizing

the astrophysical population of BBH mergers. Similar to other proposed methods, ours requires that

we characterize the sensitivity of the search pipeline. We achieved this using software injections,

which we generated using a fiducial distribution and reweighted as needed. We generated the

parameters of the injected events from a reference population model weighted by an approximate

detector sensitivity function; this simple prescription achieved a good balance between accepted and

rejected injections. We implemented an injection campaign using the above strategy, and empirically

measured the sensitive volume–time of our search to be ≃ 0.17Gpc3 yr, for the population model

in Eq. (4.43) and with a FAR threshold of one per all our O1 and O2 BBH searches combined

(Appendix 4.A.3). In its own right, quantifying the sensitivity of our pipeline solidifies the evidence

in favor of the detections that we previously reported.

We demonstrated our method by using events reported in the IAS catalog, in addition to the

ones originally reported by the LVC, to characterize the BBH population. In particular, we studied

various phenomenological population models that explored the spin, mass, mass-ratio and redshift

distributions. For models that have been previously explored, our results are broadly consistent with

previous studies, with reduced uncertainties due to the extra information that the additional events

contribute. We quantified the information gain from including these additional events, e.g. for the

astrophysical rate, it scales with their summed p2astro and amounts to a ∼ 47% increase.

In models where the effective spin parameter, χeff , of all mergers is drawn from a normal dis-

100



tribution, we do not find any statistically significant deviations from χeff = 0, and infer a typical

spread of σχeff
∼ 0.1. If we allow a fraction ζ of the secondary black holes to have aligned spins due

to tidal effects on their progenitors, the conclusions depend on how efficient the tides can be. If the

tides, when operative, are strong enough that the secondary BBH ends up with maximal spin, the

fraction ζ is consistent with zero and bounded to ζ < 0.2 (the spread σχeff
of the mergers without

tides is similar to the previous case). If the tides are weak enough or the details of the collapse allow

for an aligned, but not necessarily maximally-spinning secondary, the data can be explained by a

fraction ζ ∼ 0.2 of BBHs with tidally torqued progenitors, with the rest having very low natal spins.

Future data might be able to distinguish between these two scenarios; it is intriguing that two of

the BBH mergers reported so far in the O3 run have non-zero and positive values of χeff (Abbott

et al., 2020b,d).

The mass, mass-ratio, and redshift distributions are consistent with previous work: if the masses

are drawn from a truncated power-law distribution, we bound the upper cutoff in the primary mass

to mmax < 51M⊙ at 90% confidence. The data favor a mass-ratio distribution that leans towards

the equal-mass case, q > 0.67, and a redshift distribution that is consistent with uniform in comoving

volume.

We additionally argued that the merger rate is better measured if restricted to the region of

parameter space where most events are found. We find that the merger rate restricted to BBHs

with a primary mass between 20–30M⊙, mass ratio q > 0.5, and at z ∼ 0.2, is 1.5–5.3Gpc−3yr−1

(90% c.l.). Unlike for the total local merger rate, this constraint is model independent and a factor

of ∼ 3 tighter, and thus well-suited for testing progenitor models.

Apart from the results on the population models for the data we included, we foresee that the

methodology presented here will continue to prove useful as future data releases will generically

include marginal detections. We have emphasized the dependence of pastro on the astrophysical

model and the search pipeline used. An intermediate step in our method is to compute the pastro

of the triggers of interest for a specified reference source population model, which we make as

permissive as possible to facilitate reweighting. Looking forward, this can be a convenient convention

for reporting values of pastro, especially for marginal triggers whose final interpretation may depend

on the population model.
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Appendix

4.A Sensitivity of the search pipeline

In this appendix we report results of our injection campaign and characterize the sensitivity of our

primary search for BBH mergers (Venumadhav et al., 2019, 2020).

4.A.1 Injection campaigns

We make 50 000 software injections in each of the O1 and O2 observing runs, at random times

without regard to the duty cycle of the detectors, with source parameters distributed according to

Eq. (4.25). We then run all stages of our search as described in Refs. (Venumadhav et al., 2019,

2020), except for the following two modifications.

First, for the injection campaigns we disable the initial stage of noise transient (glitch) rejection

and inpainting (Venumadhav et al., 2019; Zackay et al., 2019c), which would otherwise greatly

increase the computational cost. Instead, we keep track of the locations where glitches were identified

in the original search. The pipeline does not record triggers within 1 s of an identified glitch for

templates shorter than 10 s, so we treat those times as invalid for observation.

Second, we implement an improved version of the coherent score—this is the piece of the detection

statistic that accounts for signal coherence across detectors (Nitz et al., 2017; Venumadhav et al.,

2019), and depends on the difference in the arrival times, as well as the relative phase between

the detectors. Our implementation of the coherent score uses the best measured values of these

parameters from the data, and accounts for the requisite amounts of measurement noise in each of

these values. However, in previous work, we had neglected the effect of the correlation between the

measurements of the arrival times and phases that are input to the coherent score; we found that

this ultimately caused us to assign a high FAR to the LVC event GW170818 in our coincidence

search (using only Hanford and Livingston data;4 the FAR was however not biased since this effect

4Our search pipeline is so far restricted to LIGO Hanford and Livingston data, on which all our significance
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Run Event GPS time IFAR (run)

O1

GW150914 1126259462.41 > 20 000
GW151012 1128678900.43 > 20 000
GW151226 1135136350.59 > 20 000
GW151216 1134293073.16 26.70

O2

GW170823 1187529256.50 > 20 000
GW170809 1186302519.74 > 20 000
GW170729 1185389807.31 > 20 000
GW170814 1186741861.52 > 20 000
GW170104 1167559936.58 > 20 000
GW170727 1185152688.02 256.41
GW170121 1169069154.57 185.19
GW170304 1172680691.36 78.74
GW170818 1187058327.08 30.40
170412B5 1175991666.07 6.51
GW170403 1175295989.22 6.25
GW170425 1177134832.18 5.30
GW170202 1170079035.72 4.19

Table 4.A.1: Inverse false-alarm rate for the events considered in this work assigned by our primary
search (Venumadhav et al., 2019, 2020) with an improved detection statistic. Note that GW170817A
was found in a different, targeted search (Zackay et al., 2019a). The IFAR reported here is referred
to the individual observing run and template bank each event was found in, without penalizing for
the fact that we searched two observing runs and five template banks, see §4.A.3. These are all
events we found with Hanford–Livingston coincident triggers with an IFAR > 3 runs in their bank.

impacted the timeslides as well). The new version we use in this paper accounts for the correlations

in the measurements, and hence should be closer to optimality (in the sense of being closer to the

likelihood ratio test). When we apply this improvement to the coincidence search itself (both the

zero-lag triggers and those obtained using timeslides), we obtain a higher significance for GW170818

than our previous result (Venumadhav et al., 2020) (see also (Zackay et al., 2019a)). This also

changes the values of the IFAR of the rest of the candidates, as we report in Table 4.A.1.

4.A.2 Search completeness

A binary merger might fail to be detected for a variety of reasons. In our primary search (Venumad-

hav et al., 2019), a successful detection requires identifying triggers in coincidence at both LIGO

detectors, and these coincident triggers must survive a battery of signal quality tests (vetoes). Fi-

nally, the candidate has to stand out from the noise background in order to be detected with any

significance.

As a diagnosis of the performance of our search pipeline, in Fig. 4.A.1a we show the recovery

fraction of injections as a function of their squared injected SNR (defined below), as well as the

estimates are based. In this work we used Virgo data only for parameter estimation of events whenever these are
available.
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relative frequency of various failure modes. We include in Fig. 4.A.1a only injections with parameters

within the target region of our template bank (Roulet et al., 2019), and that happened during times

flagged by both the LVC (Abbott et al., 2021) and our pipeline (Venumadhav et al., 2019) as valid

for search. Injections labeled ‘Missed’ (blue) are those that failed to produce a coincident trigger.

These include cases when the recovered signal in one of the two LIGO detectors was below our

collection threshold (ρ2 < 16), or when a noise transient caused a different template to generate a

louder trigger in one of the detectors (some of these second cases could have passed a full ‘production’

search, since we did not do data-cleaning as part of this injection campaign). ‘Vetoed’ injections

(orange) are those that triggered the signal quality checks, and consequently rejected. We designed

these tests to have a false positive rate of a few percent with Gaussian noise for signals having ρ < 20

(with an increased rate for much louder events). This is in line with what we observe in Fig. 4.A.1a.

Finally, we distinguish injections that we found below or above a moderate inverse false-alarm rate

of 10 observing runs in their template bank (of which we searched five). We show these in light and

dark gray, respectively; the four curves in Fig. 4.A.1a add up to unity. We derived the fractions

using a sliding window in ρ2inj that averages over 200 contiguous injection samples.

Since we performed independent searches for five different template banks, the same injection

might have a different outcome in each search; and likewise at each of the two LIGO detectors. We

summarized this information by assigning to each injection the latest stage it got to in the worst

detector, and (then) the best bank.

We distinguish between ‘injected’ and ‘recoverable’ squared SNR; respectively:

ρ2inj =
∑

k∈H,L

〈h | h〉k, (4.59)

ρ2rec =
∑

k∈H,L

〈d | h〉k, (4.60)

where d and h are the strains of the data and injection respectively. Both ρ2inj and ρ
2
rec depend on

the signal parameters as well as the detector sensitivities and orientations at the time of the event.

Note that ρ2inj is independent of the particular noise realization and thus unobservable, unlike ρ2rec.

Both are independent of the template bank of the search.

We find that the results for O1 and O2 are comparable. The completeness of the search saturates

around 90–95% for signals with ρ2inj & 150. At lower SNR values, the dominant failure mode is missed

injections, and at higher values it is false rejections (vetoes).

Figure 4.A.1b shows the outcome of the injections made in the O2 run (with the same cuts
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Figure 4.A.1: Probabilities for the possible outcomes of an injection as a function of SNR in our
primary search for triggers in Hanford–Livingston coincidence. Only injections with parameters
within the target region of our template bank (Roulet et al., 2019), and that happened during
times flagged by both the LVC (Abbott et al., 2021) and our pipeline (Venumadhav et al., 2019) as
valid for search are included. The four outcomes are exhaustive. Left panel: Outcome probabilities
as a function of injected squared SNR, for the O1 (top) and O2 (bottom) observing runs. Right

panel: Outcomes in the O2 observing run in terms of recoverable squared SNRs at the Hanford and
Livingston detectors. Dashed lines are drawn at the single-detector collection threshold ρ2recH,L = 16

and at the approximate Gaussian limit ρ2rec = 68. Several injections with ρ2rec > 68 have ρ2rec,H < 16
due to disparate detector responses (Zackay et al., 2019a).
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used for Fig. 4.A.1a) scatter-plotted in the ρ2rec,L, ρ
2
rec,H plane. Recall that by virtue of Eq. (4.25)

the injection distribution approximately follows that of astrophysical events in the high SNR limit

ρ2 > ρ2th = 60. The incoherent detection limit of our primary search can be approximated by a

Gaussian noise limit ρ2rec > 68 and single-detector collection thresholds ρ2recH,L > 16 (Venumadhav

et al., 2020, figure 6a). 60% of the injections with ρ2rec > 68 that are missed from the primary search

(or 4.6% of all injections with ρ2rec > 68) have ρ2rec,H < 16, i.e. below our single-detector collection

threshold, even though their network SNR is above the Gaussian limit for detection. We performed

a targeted search for such signals in (Zackay et al., 2019a), which for computational limitation we

do not reproduce here with injections. Such events would stand a second chance of being found

in the targeted search, which is not accounted for in Fig. 4.A.1a. Figure 4.A.1b also supports the

approximate incoherent detection thresholds for our pipeline used in (Venumadhav et al., 2020,

figure 6a).

4.A.3 Sensitive volume–time

Quantifying the sensitive volume–time requires defining a detection threshold, see Eq. (4.18). We will

define this threshold in terms of IFAR, that can be compared across different search pipelines. We

measure FAR empirically using timeslides, i.e. adding artificial time-shifts between the Hanford and

Livingston data streams to generate background triggers, and counting the number of background

triggers that have a better detection statistic than a trigger of interest. Our search procedure

divides the BBH parameter space into 5 template banks that are explored independently except for

the restriction that any trigger is assigned to only one search; further, the O1 and O2 observing runs

are analyzed separately. Therefore, the FAR we obtain has units of per bank per V T of the relevant

observing run.6 To aid eventual comparisons we express them per all our O1 and O2 BBH searches

combined, for which we use (O1 + O2) as notation. For a trigger j:

FARj = Nb(ρ̃ > ρ̃j)[runj bankj ]
−1

= Nb(ρ̃ > ρ̃j)
(V T )O1+O2

(V T )runj
Nbanks[O1 + O2]−1,

(4.61)

where ρ̃ is the detection statistic of our pipeline andNb(ρ̃ > ρ̃j) is the expected number of background

triggers above j estimated from timeslides. We use Eq. (4.61) to aggregate the results from all BBH

6This is the reason we report FARs in units of observing runs instead of physical time—the ranking statistic
includes a time-dependent volumetric correction factor to account for the significant and systematic changes in the
network sensitivity over the run (Venumadhav et al., 2019). If the network sensitivity were constant during the
observing run, the units “O1” ≈ 46 days and “O2” ≈ 118 days.
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Figure 4.A.2: Sensitive volume–time of our search pipeline on O1 and O2 as a function of IFAR
threshold for the default population model defined in Eq. (4.43). The IFAR is referred to the full
O1+O2 search and accounts for the fact that multiple template banks were searched per Eq. (4.61).

banks and observing runs. Note that the V T estimation in Eq. (4.18) requires a threshold on the

FAR, and conversely the FAR in Eq. (4.61) necessitates a computed V T ratio between runs. We find

a self-consistent solution numerically. Using the default population model defined in Eq. (4.43) and

an IFAR threshold of 1(O1 + O2) we obtain V TO2/V TO1 = 4.13. This is approximately valid for

other population models and thresholds as well since the dependence largely cancels in the ratio. We

show the result for V T as a function of the IFAR threshold in Fig. 4.A.2, for the default population

model of Eq. (4.43).

4.B Computation of the reference pastro

As per Eq. (4.7), pastro,i depends on the ratio of the trigger densities expected from foreground and

background locally at the data di of each trigger. In principle, di consists of the strain time series,

or equivalently its Fourier modes. In practice we do not have a reliable model for the background

trigger density in terms of these, as we do for the astrophysical events (Eqs. (4.2) and (4.3)). Thus,

we instead approximate (for all events except GW170608 and GW170817A, see below):

dNa
dNb

∣

∣

∣

∣

di

(λ0) ≈
dNa/dρ̃

2

dNb/dρ̃2
(ρ̃2i | T ≈ Ti, λ0), (4.62)

where ρ̃2 is the detection statistic of our pipeline (Venumadhav et al., 2019) and T identifies the

waveform template associated to a trigger. We expect these variables to contain most of the dis-

cerning power between astrophysical and background events. The detection statistic is an estimator

of the likelihood ratio between the astrophysical and noise hypotheses that incorporates information
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from the trigger SNR at Hanford and Livingston, the phase and time differences between detec-

tors and the instantaneous detector sensitivities. It includes only very coarse information about

the signal parameters, based on which subbank the triggering template resides in. Since both the

astrophysical and background trigger rate densities exhibit dependence on the triggering template,

we incorporate the template identity in Eq. (4.62).

We compute Eq. (4.62) for each trigger as follows. We first generate large sets of astrophysical

and background triggers. For the former we use the injections described in §4.2.3 and for the latter

we use the method of timeslides. We restrict to the triggers that have a similar template to the

triggering template Ti: we demand that they are found in the same chirp mass bank (Roulet et al.,

2019) and have a match 〈T | Ti〉 above some threshold. We choose the highest match threshold that

admits at least 100 injection and 100 background triggers.7 This achieves a compromise between

making a density measurement that is local in intrinsic-parameter space and that has an acceptable

statistical error. We then do a kernel density estimation of dNa/dρ̃
2 and dNb/dρ̃

2, using these

triggers with weights (see Eq. (4.25))

winj
j =

R0 Z

Ninj p̂det(θj)
(4.63)

wbg =
1

Ntimeslides
(4.64)

for injections and background respectively.

As mentioned in Appendix 4.A, for GW170818 we obtained a pastro(λ0) = 0.92 based on Hanford

and Livingston data, higher than reported in (Venumadhav et al., 2020) owing to an improved version

of the coherent score, as we described in Sec. 4.A.1. Note the GstLAL pipeline (Sachdev et al., 2019)

found pastro = 1 by including Virgo data. As discussed in §4.2.2, following Abbott et al. (2017c) we

set pastro = 1 for GW170608.

The event GW170817A was found in a targeted search for signals that are loud in the Livingston

detector and faint in the Hanford detector (Zackay et al., 2019a), as opposed to our primary search for

signals in Hanford–Livingston coincidence (Venumadhav et al., 2019, 2020). Most of its significance

comes from being the loudest Livingston trigger apart from previously confirmed confident signals.

As such, the method of timeslides cannot be used to generate empirical background for this event.

We compute its pastro(λ0) following (Zackay et al., 2019a, eqs. (5) and (6)): we define the clean

region of parameter space as those templates with chirp mass M > 10M⊙ for which there were ≤ 5

7For bank BBH 0 (Roulet et al., 2019) we only recovered 24 injections in O2; we just include those in the computation
of the pastro of 170412B.
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loud Livingston triggers (ρ2L > 60) in O2 from similar templates (match > 0.9) in times where the

Hanford detector was also operating. We obtain the expected number of triggers in this region with

ρ2L > 66 by counting the injections that satisfy all these conditions weighted per Eq. (4.63). We set

the expected number of background events to 1.

Recently, Ashton and Thrane (2020) have concluded that the event GW151216 (Zackay et al.,

2019b) has pastro = 0.03, based on an analysis of background triggers obtained with a different

pipeline, as well as foreground triggers generated under an astrophysical prior isotropic in spin

directions. A similar method was used by Pratten and Vecchio (2020). Those analyses overlook

the fact that different pipelines treat the systematics in the data differently and thus suffer from

different backgrounds. As an example, our pipeline applies different data quality checks and signal

consistency vetoes. Even within our pipeline, removing or modifying these stages would significantly

lower the pastro of near-threshold triggers like GW151216. These tests are not applied in the analysis

of (Ashton and Thrane, 2020; Pratten and Vecchio, 2020). They instead characterize the background

in terms of its projection onto parameter space when modeled as a GW signal in Gaussian noise. That

is a different test that a priori does not have the same discerning power between signals and noise.

Ultimately, the choices that maximize the pipeline sensitivity (see Appendix 4.A) should be pursued.

As a result of these considerations, pastro is inherently a pipeline-dependent quantity. In addition,

pastro depends on the astrophysical population model. As shown in Table 4.3.1, for GW151216 (as

well as other near-threshold events with nonzero spin) pastro is particularly sensitive to the spin

distribution. Ashton and Thrane (2020); Pratten and Vecchio (2020) used an isotropic spin model,

under which the astrophysical interpretation is indeed strongly disfavored. We emphasize however

that for different spin models GW151216 has a sizable pastro. We should consistently account for

this dependence when interpreting GW151216 and assessing its implications for the astrophysical

BBH population.

4.C Differences with Galaudage et al. (2020)

Galaudage et al. (2020) have presented a framework similar but inequivalent to the one presented

in Section 4.2. In this appendix we compare both treatments and identify the differences between

them. Our point of comparison is the model likelihood, our Eq. (4.8) or their equation (36), which

are not compatible.

The correspondence between their notation and ours is as follows. Their astrophysical hypothesis
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prior is

ξ ≡ Na
Na +Nb

(4.65)

in our notation. Their signal likelihood is

L(d | Λ, det) = Vtot

V(Λ)L(d | Λ) ≡ 1

Na

dNa
dd

=
1

V T (λ′)

∫

dθf(θ | λ′)P (d | θ), (4.66)

where their Λ ≡ λ′, V(Λ) ≡ V T (λ′) and we have used Eqs. (4.2), (4.10) and (4.14). Their noise

likelihood is

L(d | ∅, det) ≡ 1

Nb

dNb
dd

=
Na
Nb

· dNb
dNa

· 1

Na

dNa
dd

=
ξ

1− ξ
· 1− pastro

pastro
· L(d | Λ, det),

(4.67)

using Eqs. (4.7), (4.65) and (4.66). Equation (4.67) is (Galaudage et al., 2020, eq. (7)) generalized

to account for selection effects.

In their equation (29), Galaudage et al. (2020) use a prescription for the normalization of the

background term in the likelihood, p∅ = V(Λ0)/Vtot, which holds for Λ on the vicinity of Λ0. Instead,

the exact expression that satisfies Eq. (4.67) is

p∅(Λ) =
V(Λ)
Vtot

. (4.68)

In (Galaudage et al., 2020, eq. (35)) it is stated that (p−1
astro − 1)L(d | Λ) is independent of

Λ, so they equate this term to its value for a fiducial Λ0. However, pastro also depends on the

rate of mergers, so the fiducial model should include the rate (encoded in ξ). Additionally, their

equation (35) relies on equation (7) which does not include selection effects. The correct form of

(Galaudage et al., 2020, eq. (35)) is thus

ξ

1− ξ

1− pastro(ξ,Λ)

pastro(ξ,Λ)

L(d | Λ)
V(Λ) =

ξ0
1− ξ0

1− pastro(ξ0,Λ0)

pastro(ξ0,Λ0)

L(d | Λ0)

V(Λ0)
, (4.69)

where ξ0,Λ0 are the values used to compute the fiducial pastro.

Lastly, in (Galaudage et al., 2020, eq. (34)) the expression ξ = N/n is used, where N ≡ Ntrig

is the number of triggers and n the number of data segments analyzed. But ξ encodes a (model

dependent) prior expectation of the ratio of counts of astrophysical and noise events, and not the
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actual outcome of the experiment. The correct expression is instead

ξ =
RV(Λ)

RV(Λ) +RgTobs
. (4.70)

Once the changes in Eqs. (4.68), (4.69) and (4.70) have been applied, their equation (36) becomes

P ({di}, N | Λ)

=
e−(RV(Λ)+RgTobs)(RV(Λ))N

N !

∏

i

Vtot

V(Λ)
L(di | Λ)

pastro,i(R,Λ)

=
e−(RV(Λ)+RgTobs)(R0Vtot)

N

N !

∏

i

(

1− pastro,i(R0,Λ0)

pastro,i(R0,Λ0)

Rg
Rg,0

+
R

R0

L(di | Λ)
L(di | Λ0)

)

L(di | Λ0),

(4.71)

which is compatible with Eq. (4.8). The rate R does not factor out, so we cannot marginalize it

analytically in Eq. (4.71) without expanding the binomial first.

As a consequence of Eq. (4.69),

pastro(ξ,Λ) =

(

ξ0
1− ξ0

L(d | Λ0)

V(Λ0)

1− ξ

ξ

V(Λ)
L(d | Λ) + 1

)−1

, (4.72)

instead of (Galaudage et al., 2020, eq. (42)). This difference might explain why Table 4.3.1 does not

reproduce the results of (Galaudage et al., 2020, table II). We emphasize that the fiducial pastro have

to correspond to R0,Λ0 and reported values must be interpreted with this in mind. In Table 4.3.1

we have computed the pastro of the top triggers our pipeline found under a specific astrophysical

model λ0 to facilitate this task.

4.D Robustness of the reweighting procedure

Our framework involves Monte Carlo computation of integrals by reweighting samples: the nu-

merator and denominator of Eq. (4.17) use source parameter estimation samples, and Eq. (4.18))

uses injection samples. These methods are subject to stochastic errors, especially if the target and

proposal distributions are mismatched. We have chosen the proposal distributions with this consid-

eration in mind, in this appendix we show that our procedure indeed achieved sufficient robustness.

We use the bootstrap method to estimate the impact that stochastic error in these integrations

has on the population inference. For each population model, we do 100 bootstrap repetitions of the

inference of population parameters λ, each time employing a set of samples taken randomly with
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Figure 4.D.1: 100 bootstrap realizations for the population Models A1–D explored in this work
(thin black), along with our results from §4.3.1–4.3.4 (dashed orange). These quantify the impact
of stochastic errors associated with the various Monte Carlo integrations involved, which remains
small at the current uncertainty level. Contours enclose 90% of the distribution.
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replacement from the corresponding original sets for all Monte Carlo integrations involved—i.e.,

from the source parameter estimation samples of each event for the computation of Wi(λ
′ | λ′0)

in Eq. (4.17), and from the set of injections for VT (λ′) in Eq. (4.18). The collection of these

inference realizations may be interpreted as the ensemble of solutions compatible with our stochastic

sampling errors. Figure 4.D.1 shows the results of this exercise for Models A1–D and the combined

GWTC-1 and IAS catalog. Thin black lines show the 100 bootstrap realizations and dashed orange

lines show our original results. These stochastic errors are smaller than the uncertainty levels,

providing evidence that the proposal distribution choices and the number of injections and parameter

estimation samples were adequate to achieve a robust reweighting.
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Chapter 5

Effective Spins and Masses from

O1–O3a

This chapter has been adapted from Roulet et al. (2021).

The distribution of effective spin χeff , a parameter that encodes the degree of spin–orbit alignment

in a binary system, has been widely regarded as a robust discriminator between the isolated and

dynamical formation pathways for merging binary black holes. Until the recent release of the GWTC-

2 catalog, such tests have yielded inconclusive results due to the small number of events with

measurable nonzero spins. In this work, we study the χeff distribution of the binary black holes

detected in the LIGO–Virgo O1–O3a observing runs. Our focus is on the degree to which the χeff

distribution is symmetric about χeff = 0 and whether the data provides support for a population of

negative-χeff systems. We find that the χeff distribution is asymmetric at 95% credibility, with an

excess of aligned-spin binary systems (χeff > 0) over anti-aligned ones. Moreover, we find that there

is no evidence for negative-χeff systems in the current population of binary black holes. Thus, based

solely on the χeff distribution, dynamical formation is disfavored as being responsible for the entirety

of the observed merging binary black holes, while isolated formation remains viable. We also study

the mass distribution of the current binary black hole population, confirming that a single truncated

power law distribution in the primary source-frame mass, m1s, fails to describe the observations.

Instead, we find that the preferred models have a steep feature at m1s ∼ 40M⊙ consistent with a

step and an extended, shallow tail to high masses.
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5.1 Introduction

The growing number of gravitational wave sources observed by the LIGO and Virgo detectors is

leading to an improved picture of the astrophysical population of binary mergers. The recent release

of the second Gravitational-Wave Transient Catalog, GWTC-2 (Abbott et al., 2020e), by the LIGO–

Virgo Collaboration (LVC) has roughly tripled the sample size of observed binary black hole mergers

(Abbott et al., 2019a; Nitz et al., 2019a; Venumadhav et al., 2019; Zackay et al., 2019b; Venumadhav

et al., 2020; Zackay et al., 2019a; Nitz et al., 2020) and is starting to offer hints about the astrophysical

origin of these binary systems (Abbott et al., 2020f; Wong et al., 2021; Zevin et al., 2021; Bouffanais

et al., 2021).

Indeed, the distribution of binary black hole parameters (e.g. masses, spins, redshift) is an

observable that allows us to test models of formation pathways for these systems. Proposed scenarios

include dynamical assembly and hardening of binary black holes in dense stellar environments, such

as globular clusters (Zwart and McMillan, 1999; O’Leary et al., 2006; Sadowski et al., 2008; Downing

et al., 2010, 2011; Samsing et al., 2014; Rodriguez et al., 2015, 2016a; Askar et al., 2016), nuclear

star clusters (Antonini and Rasio, 2016; Petrovich and Antonini, 2017), and young stellar clusters

(Ziosi et al., 2014; Mapelli, 2016; Banerjee, 2017; Chatterjee et al., 2017); isolated evolution of a

binary star in the galactic field, which undergoes either a common envelope phase (Nelemans et al.,

2001; Belczynski et al., 2002; Voss and Tauris, 2003; Belczynski et al., 2007, 2008; Dominik et al.,

2013; Belczynski et al., 2014; Mennekens and Vanbeveren, 2014; Spera et al., 2015; Eldridge and

Stanway, 2016; Stevenson et al., 2017b; Mapelli et al., 2017; Giacobbo et al., 2017; Mapelli and

Giacobbo, 2018; Kruckow et al., 2018; Giacobbo and Mapelli, 2018) or a chemically homogeneous

evolution (Marchant et al., 2016; de Mink and Mandel, 2016; Mandel and de Mink, 2016); and binary

mergers prompted by interactions with a supermassive black hole (Antonini and Perets, 2012), gas

and stars in the accretion disk of an active galactic nucleus (McKernan et al., 2012; Stone et al.,

2016; Bartos et al., 2017), or additional companions in higher-multiplicity systems (Antonini et al.,

2014; Kimpson et al., 2016; Antonini et al., 2017; Liu and Lai, 2018; Hamers et al., 2015).

Since the individual components of the dimensionless spin vectors χ1 and χ2 are hard to mea-

sure (Vitale et al., 2014; Pürrer et al., 2016; Vitale et al., 2017a) and their directions generally

evolve with time due to precession (Apostolatos et al., 1994; Kidder, 1995), a well-known effective

aligned-spin parameter was introduced (Racine, 2008; Ajith et al., 2011; Santamaria et al., 2010)

χeff :=
χ1 + qχ2

1 + q
· L̂, (5.1)
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where L̂ is the unit vector along the Newtonian orbital angular momentum of the binary, q =

m2/m1 ≤ 1 is the mass ratio. The effective spin is motivated by the fact that it can be measured

relatively precisely in the data, and is approximately conserved throughout the binary coalescence

after orbit averaging (Racine, 2008). No less important, two of the main broad classes of binary black

hole formation channels make predictions about qualitative features of the effective spin distribution

that are robust to model uncertainties. Dynamical formation channels in general predict that the

spins and orbit should be isotropically distributed and uncorrelated with each other. In particular,

this implies that for these systems the χeff distribution is symmetric about 0. Isolated formation

channels instead predict correlations in the spins and orbit directions due to mass transfer episodes

or tidal interactions between the component stars. As a result, the isolated scenario predicts a

distribution of χeff with little support at negative values. Within this channel, a small fraction of

mergers with negative χeff could still possibly be explained by anisotropic supernova explosions at

the black holes formation, which impart a natal kick that can change the plane of the orbit and thus

the value of χeff (Rodriguez et al., 2016b; Gerosa et al., 2018). However, if these kicks were strong

enough to invert the direction of the orbit in a sizeable fraction of the cases, they would also unbind

the binaries so frequently that the observed rates would be hard to explain (Belczynski and Bulik,

1999; Callister et al., 2020).

In this work we will study in detail the degree to which these two qualitative features of the χeff

distribution, namely its symmetry about 0 and support at negative values, hold for the observed

sample. Both features become hard to test if black hole spins are small, which is predicted from

stellar evolution models (Fuller and Ma, 2019; Bavera et al., 2020) and is also the case of most

observations. Indeed, until the recent release of the GWTC-2 catalog these simple but general tests

were mostly inconclusive due to the small number of events with measurable nonzero χeff (Farr

et al., 2017, 2018; Roulet and Zaldarriaga, 2019; Roulet et al., 2020). Including events from the O3a

observing run, Abbott et al. (2020f) first reported evidence for both features in the population: they

found the χeff distribution to have a positive mean and support at negative values. Together, these

observations suggest that neither dynamical nor isolated formation channels alone can explain the

entirety of the detections. Combining this information with the observed mass distribution, Zevin

et al. (2021); Bouffanais et al. (2021) reached a similar conclusion, and applied a further layer of

interpretation to constrain uncertain parameters of physical models of binary black hole formation.

Here, we instead constrain a phenomenological description of the binary black hole population, more

akin to the analysis of Abbott et al. (2020f).

The mass distribution is another observable that can inform binary black hole formation chan-
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nels, as well as physical processes of stellar evolution. Of special interest is the high-mass end

of the mass distribution observable by LIGO–Virgo, m & 40M⊙. Due to the (pulsational) pair

instability supernova process, black holes with mass between ∼ 45M⊙ and 135M⊙ are not ex-

pected to form from stellar collapse (“upper mass gap”) (Fowler and Hoyle, 1964; Barkat et al.,

1967; Bond et al., 1984; Heger et al., 2003; Farmer et al., 2019). A natural way to produce black

holes in this mass range is through mergers of lighter black holes. In dense environments these

so-called “second-generation” black holes can become paired and merge again, emitting an observ-

able gravitational wave signal. This process is contingent on retention of the remnant black hole,

so its efficiency depends on the interplay between the merger kick (a recoil of the remnant black

hole due to asymmetric gravitational wave emission at merger) and the local escape velocity. The

magnitude of the kicks is sensitive to the spins of the merging black holes, smaller spins usually

yielding smaller kicks. In turn, different types of dense environments have different escape veloci-

ties, typical numbers being 10–102 km s−1 for globular clusters and up to ∼ 103 km s−1 for nuclear

clusters. Second generation mergers do not happen for binaries formed in isolation. Some alternative

pathways to produce black holes in this mass range may involve accretion of gas (Safarzadeh et al.,

2020) or extreme values of the 12C(α, γ)16O nuclear cross section, which can shift the location of

the mass gap (Farmer et al., 2019), see (Gerosa and Fishbach, 2021) and references therein for a re-

cent review. On the observational side, current interferometers are particularly sensitive to mergers

in this high-mass region of parameter space, which makes it a promising discriminator (Fishbach

and Holz, 2017). Indeed, some events were observed to have significant support for one or both

component black holes in this mass range (e.g. GW190521, GW190602 175927, GW190706 222641,

GW190519 153544, GW190929 012149 (Abbott et al., 2020e), GW170817A (Zackay et al., 2019a)).

While analyses prior to O3a found evidence for a cut-off in the mass distribution at ∼ 40M⊙ (Fish-

bach and Holz, 2017; Wysocki et al., 2019; Roulet and Zaldarriaga, 2019; Roulet et al., 2020), this

picture changed with the inclusion of O3a and models with more structure, including a tail at high

mass, became favored (Abbott et al., 2020f). Here, we will also explore parametric models of the

primary mass distribution in order to validate these results.

Our main findings are:

1. The χeff distribution is inconsistent with being symmetric about zero at the 95% credible level,

with aligned-spin binary systems (χeff > 0) predominating over those with anti-aligned spins

(χeff < 0). This result provides some evidence against the formation scenario in which the

entire population of binary black holes has isotropically-distributed spins, as predicted if all
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merging binary black holes are formed dynamically in dense stellar environments;

2. We find no evidence for negative χeff in the population, in contrast to Abbott et al. (2020f).

We are able to reproduce their results, but find that the parametrized model they used in order

to reach this conclusion is disfavored by the data and that the inferred presence of negative

spins is contingent on this parametrization;

3. We find that the primary-mass distribution steepens at ∼ 40M⊙ and then flattens, with an

extended tail to high masses whose detailed shape is hard to constrain with current data.

This paper is organized as follows: in Section 5.2, we describe the data investigated in this

work, our sample selection criteria, and the parameter estimation method used to infer the source

parameters of the binary black holes. In Section 5.3, we conduct a model-free exploration of the data,

with a special focus on the empirical distribution of χeff . In Section 5.4, we describe our statistical

methods for model selection and apply them to several parametrized models for the distributions of

the effective spin and primary mass. We conclude in Section 5.5. We provide details of the sample

of events that we use in Appendix 5.A.

5.2 Data

The data explored in this work consists of the binary black hole events reported in the LVC GWTC-

1 (Abbott et al., 2019a) and GWTC-2 (Abbott et al., 2020e) catalogs, and those identified in the

independent IAS O1–O2 catalog (Venumadhav et al., 2019; Zackay et al., 2019b; Venumadhav et al.,

2020; Zackay et al., 2019a). Some of the events reported in the IAS O1–O2 catalog have been

independently confirmed by Nitz et al. (2019a, 2020). Following the main analysis conducted by the

LVC in their population study (Abbott et al., 2020f), we exclude GW190814 (Abbott et al., 2020d)

in this work as it is an outlier with respect to the rest of the observed population, and for ease

of comparison between our results and the LVC’s results (see Section 5.4). We do not include the

recent 3-OGC catalog (Nitz et al., 2021), which was published as this work was being completed. A

summary of the events used in this work is provided in Appendix 5.A.

Depending on how easily our models for astrophysical signals and detector noise can account for

the properties of a given trigger, some detections are more statistically significant than the others.

Roulet et al. (2020) provided a framework to take this into account when using triggers of arbitrary

significance. However, in order to simplify the interpretation of the results shown in Section 5.3, we

find it convenient to define a “gold sample” of events that are confidently astrophysical in origin. For
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a similar reason, we also exclude from the gold sample those events that happened when a detector

exhibited non-Gaussian noise transients, which makes estimation of their parameters and significance

more challenging. We include an event in the gold sample if (i) it was identified by at least two

search pipelines with a false-alarm rate FAR < 0.1 yr−1; and (ii) none of the detectors exhibited

non-Gaussian transient noise in its vicinity (see Appendix 5.A for details). These criteria are neither

explicitly dependent on nor expected to correlate significantly with the binary black hole intrinsic

parameters; as such, our gold sample constitutes an unbiased representation of the distribution for

the intrinsic parameters of detectable mergers. Indeed, as we shall see in Section 5.4, our conclusions

are not strongly affected by this choice of sample. Out of the total 55 events considered in this work,

30 are in the gold sample (see Appendix 5.A).

We infer the source parameters of each binary system with the IMRPhenomXPHM model, which de-

scribes the gravitational waves emitted by a quasi-circular binary black hole (Pratten et al., 2020).

This model accounts for spin–orbit precession and the (ℓ, |m|) = {(2, 2), (2, 1), (3, 3), (3, 2), (4, 4)}

harmonics of the gravitational radiation. We use the relative binning algorithm to evaluate the

likelihood (Zackay et al., 2018), and PyMultiNest (Buchner et al., 2014) to sample the posterior

distribution. For the events identified near non-Gaussian transient noise (summarized in Ref. (Ab-

bott et al., 2020e, table V)), we do not make special mitigation efforts, though we verify that we

obtain parameter estimation results that are similar to those reported by Abbott et al. (2020e),

who applied glitch subtraction algorithms before performing parameter estimations (Cornish and

Littenberg, 2015; Littenberg et al., 2016; Cornish et al., 2021).

For each event, we sample the posterior distribution using a prior that is uniform in detector-

frame component masses, χeff and luminosity volume. For the remaining spin components, we adopt

a uniform prior for the poorly-measured variable χdiff := (qχ1−χ2) · L̂/(1+ q), conditioned on χeff

and enforcing the Kerr limit on the individual spin magnitudes, |χ1| ≤ 1 and |χ2| ≤ 1. χeff and χdiff

together determine the two spin components that are aligned with the orbital angular momentum,

χ1z and χ2z. We then take the prior of the in-plane spin components of the black holes, χix and χiy

with i = 1, 2, to be uniformly distributed in the disk χ2
ix + χ2

iy ≤ 1− χ2
iz.

Our parameter estimation results are broadly consistent with LVC’s after accounting for the

differences in spin priors, with two notable exceptions. Firstly, we find that the posterior distribution

for GW151226 (Abbott et al., 2016b) significantly changes towards more unequal mass ratio, larger

positive χeff and more misaligned primary spin when higher harmonics and precession are included

in the parameter estimation (Chia et al., 2021). Another remarkable event is GW190521, which

was reported to have component source-frame masses m1s = 85+21
−14 M⊙, m2s = 66+17

−18 M⊙ by the
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LVC (Abbott et al., 2020c). Using a different prior for the masses and distance, and allowing for a

broader parameter range, Nitz and Capano (2021) found a qualitatively different trimodal solution,

with roughly similar total mass and peaks at q ∼ 1/2, 1/5, and 1/12. Instead, we find a bimodal

solution which is approximately consistent with the first two of these modes (Olsen et al.), similar

to that reported in (Estellés et al., 2021).

5.3 Model-free exploration

In this section, we carry out a model-free exploration of the data. Our emphasis is on the symmetry,

or lack thereof, between positive and negative values of χeff in the observed χeff distribution. We

also investigate if the data requires a distribution with support at negative values of χeff . To ease the

interpretation of the plots shown in this section, we shall restrict ourselves to the events identified in

the gold sample (see Section 5.2). We defer a model-dependent analysis of the data to Section 5.4.

5.3.1 Support for nonzero χeff

We first test the simplest hypothesis that all binary black holes have χeff = 0, with any appar-

ent deviation away from zero arising due to measurement uncertainty. This test is motivated

by the fact that, while the χeff measurements of some of the events have most of their sup-

port at χeff < 0 (GW170121, GW150914, GW170818, GW190421 213856, GW170104, GW151012,

GW190915 235702, GW170727, GW190521, GW190408 181802), none of them confidently excludes

χeff = 0. In the left panel of Fig. 5.3.1, we explore whether the observed scatter in the χeff dis-

tribution is consistent with noisy measurements of a χeff = 0 population. We plot the empirical

distribution of the quantity 〈χeff〉/σ, i.e. the mean χeff of each of the event’s posterior samples divided

by their standard deviation, and compare it with the cumulative of a standard Gaussian distribution

with zero mean and amplitude N0, where N0 is the number of events in this distribution. Provided

that the likelihood is approximately Gaussian as a function of χeff , these distributions should match

if the true χeff were 0. In particular, with the current number of observed events, we would not

expect to find events that are more than 2σ away from χeff = 0. In the left panel of Fig. 5.3.1, we

observe that although N0 ≈ 20 out of the 30 events in the gold sample are consistent with noisy

measurements of a χeff = 0 distribution, there is an excess of about 10 events with χeff > 0 that

cannot be explained by measurement uncertainty. On the other hand, no such tail seems to be

needed in the χeff < 0 interval.
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Figure 5.3.1: Empirical spin distributions of the events in the gold sample (see Appendix 5.A).
For each event, parameter estimation samples were obtained using a uniform prior in χeff . To avoid
clutter, event names were abbreviated when this did not cause ambiguity. Left panel: Mean effective
spin scaled by the standard deviation for each event’s posterior. We see that about N0 ≈ 20 events
in the gold sample are consistent with noisy measurements of a χeff = 0 subpopulation, but a tail
in the positive χeff end of the distribution is clearly needed in order to accommodate the remaining
≈ 10 events. Conversely, no such tail seems to be needed at the negative end. Middle panel: χeff

distribution, where markers and error bars indicate mean and standard deviation. In the cumulative,
each event is weighted by the ratio of the event’s sensitive volume to a similar event with zero spins
in order to cancel spin selection effects. We see that there are several events with small but well-
measured χeff > 0 for which spin selection effects are not important. Right panel: ratio of observed
χeff to its characteristic value if strong tides were acted on the secondary (blue circles) or primary
(orange triangles) black hole progenitor. A number of events are inconsistent with any of these
variables being 0 or 1, thereby excluding the strong-tide model as the only mechanism generating
black hole spins.

5.3.2 Symmetry of the χeff distribution

The observed excess of χeff > 0 events relative to those with χeff < 0 in the left panel of Fig. 5.3.1

does not immediately imply that the astrophysical χeff distribution is asymmetric about χeff = 0:

an important caveat is that, other parameters being equal, mergers with large and positive values

of χeff are louder due to the so-called “orbital hangup” effect (Campanelli et al., 2006). This effect

leads to a selection bias favoring more observations of χeff > 0 events, even if the astrophysical χeff

distribution is symmetric (Ng et al., 2018; Roulet and Zaldarriaga, 2019). The observed excess of

χeff > 0 events thus requires careful interpretation.1 In the middle panel of Fig. 5.3.1, we plot the

1Strictly speaking, this observational bias is also present in the left panel of Fig. 5.3.1 through the parameter
estimation prior: in order to match the observed amplitude of a signal, higher-χeff solutions are located farther out
in distance and thus have more phase space volume available. In other words, a flat prior for the astrophysical χeff

distribution is implicitly skewed towards positive χeff values when conditioned on the strain amplitude measured at
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empirical distribution of χeff correcting for this observational bias. The bias is computed as follows:

for each event, we compute the weight factor

w = 〈Vno spin/V 〉, (5.2)

which is inversely proportional to the sensitive volume V to the corresponding event. Here, we

approximate V of a source that has (detector-frame) intrinsic parameters θint = {m1,m2, χ1z, χ2z}

as

V (θint) ∝ ρ30(θint), (5.3)

with ρ0 the single-detector signal-to-noise ratio (SNR) of an overhead, face-on source at a fiducial

luminosity distance with a fiducial sensitivity. Vno spin is defined similarly but with χ1z = χ2z = 0.

For simplicity, we set the in-plane spin components to zero and neglect cosmological evolution

throughout this computation. We then average the ratio of these two volumes over the posterior

distribution of each event in order to obtain the weight w. In the middle panel of Fig. 5.3.1,

we see that many of the events that deviate most significantly away from χeff = 0 have small

values of χeff and hence a small impact in the sensitive volume. In particular, GW190728 064510,

GW190521 074359, GW190720 000836, GW190930- 133541, GW190828 063405 and GW190412 are

& 2σ away from χeff = 0 and have relatively small values of χeff ∼ 0.1–0.25. The vertical spacing

between events in this plot is given by the volume weight w of the event: for the first four of these

events w is approximately 0.95, and for the last two approximately 0.75. Since these are small volume

corrections, there is no compelling reason as to why the same number of corresponding events on

the negative side of χeff should not be seen, for an astrophysical χeff distribution that is symmetric

about zero. There are also events that are more than 2σ away from zero χeff but with relatively large

values of χeff ∼ 0.5 (GW170729, GW190519 153544, GW190706 222641 and GW190517 055101).

The selection effect for these events is more appreciable, w ∼ 0.5, so it would be easier to miss

similar events with the opposite sign of χeff . Altogether, the left and middle panels of Fig. 5.3.1

hint that the empirical effective spin distribution is consistent with a distribution with no support

for negative spins, but not so much with one symmetric about χeff = 0.

the detector. As a result, noisy measurements of a χeff = 0 distribution would be slightly biased towards χeff > 0.
However, within that scenario this effect is small, as the measured χeff would be small.
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5.3.3 Testing tidal models

Finally, we explore whether the observed events with positive χeff can be explained by a simple

model of tides acting on the progenitor of one of the component black holes. The simplest and most

extreme model for tides assumes that tides sourced by the companion are either very efficient at

spinning up the progenitor star or negligible depending on the orbital separation after a common

envelope phase, because tidal torques are very sensitive to the orbital separation. Then, a fraction

of the component black holes would come from tidally-torqued progenitors and would have a large,

aligned spin χz ≈ 1 (Kushnir et al., 2016; Zaldarriaga et al., 2017). If, barring tides, natal black hole

spins were small (Fuller and Ma, 2019; Bavera et al., 2020), the χeff distribution would have peaks at

χeff = 0, q/(1+q), 1/(1+q), 1 when the tides were inefficient, torqued the progenitor of the secondary

black hole, torqued the progenitor of the primary, or torqued both, respectively. In the right panel

of Fig. 5.3.1 we show the empirical distribution of χeff rescaled by the value under the hypotheses

that either the secondary or the primary black hole is maximally spinning and aligned with the

orbit. We find that several of the events with well-measured nonzero spin do not seem to be well

explained by this model (GW190728 064510, GW190521 074359, GW190720 000836, GW170809,

GW190930 133541 and GW190828 063405). This is in agreement with earlier findings that either

a less extreme model of tidal torques (as argued in (Qin et al., 2018; Bavera et al., 2020)) or a

distribution of natal spins with some dispersion is needed in order to explain the observed spins

with tides (Roulet et al., 2020).

5.4 Model selection

In order to validate and quantify our findings in Section 5.3, in this section we perform selection of

parametric models for the observed binary black hole population. We first provide a brief review of

our statistical framework, and then constrain the parameters of several models for the astrophysical

effective spin and primary mass distributions.

5.4.1 Statistical framework

Following Roulet et al. (2020), we evaluate the likelihood P ({di} | λ) of an observed set of triggers

{di}, given a phenomenological population model λ for the distributions of binary black hole source
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parameters, as:

P ({di} | λ) ∝ e−Na(λ)

Ntrig
∏

i=1

(

dNa(λ)

dNa(λ0)

∣

∣

∣

∣

di

pastro,i(λ0) + 1− pastro,i(λ0)

)

. (5.4)

Here, Na(λ) is the expected number of triggers of astrophysical origin under the population model

λ (as opposed to detector noise), over a fixed and arbitrary detection threshold; dNa(λ)/dNa(λ0)|di
is the ratio of expected densities, in data space, of astrophysical triggers similar to that of the ith

event between the population model λ and a fixed, arbitrary reference model λ0; and pastro,i(λ0) is

the probability of astrophysical origin of the ith trigger under the reference population model. The

data space contains observable quantities that carry information about the astrophysical population,

like measured detector strains and derived detection statistics. All the quantities described above

depend on the search pipeline used; in addition, Na(λ) and the set of triggers itself depend on the

detection threshold chosen. Three ingredients are required in order to estimate these quantities: a

set of software injections labeled by whether they exceed the detection threshold, to quantify the

sensitivity of the search; posterior samples characterizing the parameters of each individual event;

and the set of {pastro,i(λ0)} encoding the events’ significance (Roulet et al., 2020).

Equation (5.4) naturally factors into the product of likelihoods from searches on disjoint datasets,

such as different observing runs. Since the full strain data from observing runs O1 and O2 are publicly

accessible (Abbott et al., 2021), for these data sets we base our analysis on our searches for binary

black holes (Venumadhav et al., 2019, 2020; Zackay et al., 2019a). The strain data for O3a has also

recently been released, and analyzed by Nitz et al. (2021) when this work was close to completion;

we do not include these results here. The LVC provides a set of software injections with FAR

estimates from the search pipelines they used (cWB, GstLAL, PyCBC and PyCBC BBH), and the

GWTC-2 catalog itself which reports {pastro,i} for the latter 3 pipelines (Abbott et al., 2020e). For

O3a we use these data products, which are adequate for computing the quantities in Eq. (5.4) with

the following caveat. Our method requires knowing {pastro,i(λ0)} under some specific astrophysical

model, which was not explicited in the GWTC-2 release. We take two alternative approaches: (i)

we conservatively consider only O3a events that are in the gold sample, so that all pastro = 1 under

any model allowed by observations; or (ii) we consider the same O3a binary black hole mergers as

in Ref. (Abbott et al., 2020f)—i.e. with an inverse false-alarm rate IFAR > 1 yr in any pipeline

and excluding GW190814—taking the reported pastro at face value and assigning it to an arbitrary

model λ0 featuring a broad distribution in black hole parameters, described below. We will refer to

these two samples as GWTC-1 + IAS + Gold O3a and GWTC-1 + IAS + GWTC-2, respectively.
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We will find that our conclusions are not strongly affected by the sample used. We implement the

sample choices by setting appropriate thresholds on the IFAR, which are reported for both events

and injections in GWTC-2. The O3a injections do not report whether they fall near a glitch (one

of the criteria of the gold sample), but these should be present in only a few percent of the events

given the reported rate of ∼ 1 glitch/min (Abbott et al., 2020e).

Following (Roulet et al., 2020), we adopt a fiducial population model λ0 that is described by the

following distribution function:

f(m1s, q, χeff , DL | λ′0) ∝ m−α0

1s D2
L, (5.5)

where DL is the luminosity distance and α0 = 2.35. We adopted the λ′ notation for the parameters

that control the shape of the distribution, while the rate R controls its normalization, i.e. λ = (R, λ′).

The ranges of the parameters in Eq. (5.5) are taken to be m1min < m1s < m1max and qmin < q < 1,

where m1min = 3M⊙, m1max = 120M⊙ and qmin = 1/20.

5.4.2 Spin distribution

Motivated by Fig. 5.3.1 and the discussion in Section 5.3, as well as Refs. (Farr et al., 2018; Abbott

et al., 2020f), we will consider a phenomenological model for the effective spin distribution that

allows us to explore the degree of symmetry of the distribution about χeff = 0. This model will also

allow us to quantify the support for positive and negative values of χeff in the population.

Firstly, we model the effective spin distribution as a mixture of three subpopulations with nega-

tive, zero, and positive χeff :

fχeff
(χeff | ζpos, ζneg, σχeff

) = ζ0N (χeff ;σ0 = 0.04)

+ ζnegN<0(χeff ;σχeff
)

+ ζposN>0(χeff ;σχeff
) .

(5.6)

Here, the various parameters ζj ∈ [0, 1] are the branching ratios for each subpopulation, constrained

to have unit sum; N (x;σ) is the normal distribution with zero mean, dispersion σ, truncated at

x = ±1; N<0(x;σ) is a similar normal distribution but truncated at x = −1 and x = 0, while

N>0(x;σ) is truncated at x = 0 and x = 1. The functional form Eq. (5.6) is sketched in Fig. 5.4.1

for a particular choice of parameters. Note that we have enforced the dispersion parameters of the

positive and negative subpopulations to be equal, such that setting ζpos = ζneg yields a symmetric
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Figure 5.4.1: Sketch of the functional form Eq. (5.6), which we use to parametrize the χeff distribution
as the sum of three subpopulations. These subpopulations have positive, negative or zero effective
spins, with each described by truncated Gaussians that peak at χeff = 0. We use three independent
shape parameters: the width of the positive and negative distributions, σχeff

, which are constrained
to be equal, and the three branching ratios ζj which sum to unity. For technical reasons, we fix the
width of the χeff ≈ 0 subpopulation to have a small but non-vanishing dispersion of σ0 = 0.04.

χeff distribution. For the χeff ≈ 0 subpopulation, we adopt a small (relative to typical measure-

ment uncertainties) but nonvanishing dispersion σ0 = 0.04 in order to ensure that the reweighting

procedure used in our algorithm is well behaved (Roulet et al., 2020).

In this Section we will only vary the effective spin distribution, while the remaining spin compo-

nents are assumed to follow the parameter estimation prior described in Section 5.2. For the other

binary black hole parameters, we will assume the following fixed distribution :

f(χeff ,m1s, q,DL) = fχeff
(χeff)fm1s

(m1s)fq(q)fDL
(DL). (5.7)

Following Abbott et al. (2020f) we adopt a broken power-law distribution for the primary mass:

fm1s
(m1s) ∝































0, m1s < 5M⊙
(

m1s

mbreak

)−α1

, 5M⊙ < m1s < mbreak

(

m1s

mbreak

)−α2

, mbreak < m1s,

(5.8)

with α1 = 1.6, α2 = 5.6, mbreak = 40M⊙. For simplicity, we adopt a mass-ratio distribution that is

uniform in 1/20 < q < 1 and take the distance distribution to be uniform in comoving volume-time.

We use the likelihood in Eq. (5.4) to obtain a posterior distribution for the population parameters,

by adopting a Jeffreys prior for the overall merger rate π(R | λ′) ∝
√

Na(R, λ′)/R; recall that λ
′
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Figure 5.4.2: Constraints on the model parameters of the population model Eq. (5.6). We see
that a symmetric χeff distribution (black dashed line), with ζpos = ζneg, is disfavored by the data.
In addition, the population is consistent with having no negative-spin subpopulation. The two-
dimensional contours enclose the 50% and 90% credible regions. Parameter values (median and 90%
confidence level) are reported for the GWTC-1 + IAS + Gold O3a sample.

127



∆ max ln L ∆ ln Z

Symmetric χeff 0 0
Positive χeff 2.1+0.5

−0.4 1.6+0.5
−0.3

Positive/Negative mixture χeff 2.1+0.5
−0.4 1.4+0.4

−0.2

Gaussian χeff 0.2+0.7
−0.6 −0.2+0.6

−0.8

Table 5.4.1: Scores for models of the χeff distribution. Difference in the maximum log likelihood and
log evidence relative to the symmetric χeff model ζpos = ζneg. Error bars indicate the 90% confidence
level and account for stochastic errors due to the finite number of injections and parameter samples
used, and are estimated with 100 bootstrap realizations of the analysis similarly to (Roulet et al.,
2020).

are the shape parameters (ζpos, ζneg, σχeff
). For these we adopt a uniform prior π(λ′) = const. This

prior is invariant to the choice of which two out of the three branching ratios are used to parametrize

the distribution.

We show our constraints on the parameters of this model in Fig. 5.4.2, for the two samples

used. We find two remarkable results: first, 95% of the posterior lies at ζpos > ζneg and a symmetric

distribution ζpos = ζneg (dashed line) is disfavored; second, the population is consistent with ζneg = 0,

i.e. no spins anti-aligned with the binary orbit. These conclusions do not depend on which of the

two event samples are considered.

We quantify these statements using the Bayesian evidence and maximum likelihood as model

scores: we report in Table 5.4.1 the scores achieved by the following models: a symmetric χeff

distribution given by Eq. (5.6) with ζpos = ζneg, a positive χeff distribution setting ζneg = 0, and

the full mixture. The symmetric χeff model is representative of a scenario completely dominated by

dynamical formation in clusters, while the positive χeff model represents a case dominated by isolated

binaries—with the caveat that in this channel there exist mechanisms to achieve some spin–orbit

misalignment, e.g. supernova kicks.

The first result that positive χeff predominates over negative is in general agreement with the

analysis of Abbott et al. (2020f). Indeed, parametrizing the χeff distribution with a Gaussian, they

find that a positive mean is preferred; likewise, they favor spin orientation distributions with at least

some degree of anisotropy.

On the other hand, our second finding that there is yet no evidence for negative χeff in the

population is in contrast with the results of Abbott et al. (2020f), who found that all Gaussian fits

to the observed χeff distribution had a sizable support at negative χeff . We suggest that their result

is contingent on the assumed parametrization of the population as a Gaussian distribution, while

our parametrization has more freedom to accommodate features near χeff = 0. In particular, the
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maximum likelihood solution has parameters (ζpos, ζneg, ζ0, σχeff
) = (0.45, 0.00, 0.55, 0.23), featuring

a sharp peak at χeff ≈ 0, a rapid decline at negative χeff and an extended tail at positive χeff which

are hard to capture with a single Gaussian. To test this hypothesis we try a similar Gaussian model

for the χeff distribution, shown in Fig. 5.4.3. With this model, we indeed find good quantitative

agreement with Abbott et al. (2020f, figure 11) and would recover their same conclusions: we find

that models without support at negative χeff (σχeff
≪ χeff) are excluded. In Table 5.4.1 we see that

the Gaussian model performs worse than other models we tried, in particular the model restricted

to positive χeff . Abbott et al. (2020f) did consider the possibility that their finding of negative

spins could be driven by the Gaussian parametrization. Indeed, in Abbott et al. (2020f, figure 27)

they show that adding a free parameter χmin
eff below which the Gaussian is truncated, they exclude

χmin
eff ≥ 0 at 99% credibility and find that small negative values −0.2 . χmin

eff . 0 are preferred.

We interpret that the large number of events at χeff ≈ 0 drives the exclusion of positive χmin
eff ,

furthermore, the fact that small negative values of χmin
eff are preferred over large negative values

indicates that the Gaussian model χmin
eff = −1, which motivated the claim of existence of negative

χeff systems, does not fit well the observed population. We conclude that, while it is certainly

possible that there are negative χeff systems in the population, there is not enough evidence for

them yet.

Within isolated formation channels, the fraction of negative χeff systems ζneg is an indicator of

typical natal (supernova) kick velocities, larger kicks generally giving larger ζneg. Gerosa et al. (2018,

figure 6) find that measurements of ζneg to a precision better than 0.1 would start putting meaningful

constraints on kick velocities. Our current bound ζneg . 0.3 is compatible with even extreme kicks,

but with a factor of few more detections this would be a promising source of information.

We point out that the GWTC-1 + IAS + GWTC-2 sample differs from that of the analysis in

Abbott et al. (2020f) in that it includes events in the IAS catalog. However, having included these

events only weakens our conclusions due to the presence of GW170121, the confident detection with

the most support for negative χeff in the sample.

5.4.3 Mass distribution

We now turn to the distribution of merging binary black hole masses. Using data from the first

two observing runs, several past studies have identified that the primary mass distribution was well

described by a power-law truncated at mmax ≈ 40M⊙ (Fishbach and Holz, 2017; Wysocki et al.,

2019; Roulet and Zaldarriaga, 2019; Abbott et al., 2019b; Roulet et al., 2020). The third observing
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run revealed that the mass distribution has a tail that extends to higher masses, and that models

with more features, e.g. a broken power-law, were favored. One diagnostic that a single truncated

power-law did not fit the O3a data was that its inferred parameter values experienced a large shift

when including the new events, in particular, mmax was found to increase from 40.8+11.8
−4.4 M⊙ to

78.5+14.1
−9.4 M⊙ (Abbott et al., 2020f).

As this development evidenced, one has to bear in mind that with a finite number of events

one cannot probe the tail of the distribution arbitrarily far out. Thus, constraints obtained on

the population are to be interpreted as a characterization of the bulk of the distribution, up to a

quantile that depends on the number of events: with Ntrig triggers, a fraction ∼ O(1/Ntrig) of the

distribution cannot be probed; with the present sample this is at the few-percent level. At this

point we introduce a feature in our analysis that makes this notion explicit: we add to the model

a second subpopulation of astrophysical triggers that come from a broad parameter distribution λ′0

accounting for a small fraction ǫ of the total rate:

dNa
dθ

(θ | λ, λ′0, ǫ) = R
[

(1− ǫ)f(θ | λ′) + ǫf(θ | λ′0)
]

; (5.9)

for ǫ = 0 we recover the previous analysis. Recall that we call the distribution shape parameters

λ′, so that λ = (R, λ′). For simplicity, we will fix the parameter ǫ = 0.05. This change makes

little difference for events that are well described by the population model λ, but since the broad

subpopulation can accommodate any of its outliers, the model λ is no longer forced to explain all the

observations. A practical advantage of this is that we get a sensitive diagnostic that some specific

events may be poorly accommodated by the (ultimately arbitrary) parametrizations we chose, if they

get classified with high confidence as belonging to the other subpopulation λ′0—evidencing that a

model with more freedom is needed to explain all events. We also construct a simple goodness-of-fit

test for the λ model based on the Bayes factor between a model with ǫ = 0 or a small fixed value

ǫ = 0.05. If the ǫ = 0 model is already a good description of all observed events, adding a broad

subpopulation should not increase the evidence significantly.

The likelihood for this augmented model can be evaluated in post-processing from the same

auxiliary quantities wi(λ
′, λ′0),VT (λ′), pastro,i(λ0) we use in the evaluation of Eq. (5.4) (see (Roulet
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Figure 5.4.4: Adding a broad subpopulation λ′0 with a fraction ǫ = 0.05 of the astrophysical rate
affects the inferred parameters of the mass distribution. This is a major effect for the truncated
power law model (a), moderate for the broken power law model (b) and minor for the power law
+ peak model (c). These constraints are derived using the GWTC-1 + IAS + Gold O3a sample of
events; we find similar results with GWTC-1 + IAS + GWTC-2.

et al., 2020)):

P ({di} | λ, λ′0, ǫ) ∝ exp
{

−R[(1− ǫ)VT (λ′) + ǫVT (λ′0)]
}

×
Ntrig
∏

i=1

{

R

R0

[

wi(λ
′, λ′0)(1− ǫ) + ǫ

]

pastro,i(λ0) + 1− pastro,i(λ0)

}

.

(5.10)

Likewise, we can also extract the classification of each event as coming from the main component λ

or the broader component λ′0: the probability that the ith event came from the λ′0 population is

poutlier,i(λ, λ
′
0, ǫ) =

Rǫ

R[(1− ǫ)wi(λ′, λ′0) + ǫ] +R0(1/pastro,i(λ0)− 1)
. (5.11)

We apply this procedure to three models of the mass distribution that are simplified versions

of the Truncated, Broken Power Law and Power Law + Peak models studied in Abbott

et al. (2020f). Our broken power law model is given by Eq. (5.8), with α1, α2,mbreak promoted

to free parameters. Our truncated model corresponds to α2 → ∞. Our power law + peak model

corresponds to α2 = α1, plus the addition of a Gaussian component with mean mpeak and dispersion

σ = 5M⊙ that accounts for a fraction ζpeak of the total rate. In all three cases we assume a uniform

distribution for χeff , and identical distributions as in Section 5.4.2 for the remaining parameters.

With these choices, the models λ′ and λ′0 only differ in the primary source-frame mass distribution,

which will ease the interpretation of our results.

Fig. 5.4.4 shows the constraints we obtain using the GWTC-1 + IAS + Gold O3a sample; these
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the power-law index nor the normalization of the high-mass tail.

plots are largely unchanged if we use the GWTC-1 + IAS + GWTC-2 sample (not shown). For

the case ǫ = 0 we find large quantitative agreement with Abbott et al. (2020f) in the constraints

for the corresponding model parameters; in particular, that the data favor a break with α1 > α2

(region above the dashed line in Fig. 5.4.4b). When we set ǫ = 0.05, allowing these models to not fit

all events, we find that the model parameter constraints are affected: for the truncated power-law

model the effect is catastrophic, in the sense that the posteriors for ǫ = 0 and 0.05 are inconsistent

with each other; while for the broken power-law model there remains a region of overlap and for the

power law + peak model the inferred parameters remain largely unaffected. This is in line with the

discussion of (Abbott et al., 2020f, figure 2) and suggests that the truncated power-law model with

ǫ = 0 fails to describe the astrophysical distribution. It is interesting to note that, with ǫ = 0.05,

the truncated and broken power law parametrizations are consistent with the same physical solution

α ≈ α1, mmax ≈ mbreak, α2 ≫ 1, which exhibits a sharp step at mbreak and a tail that extends to

high masses. The power law + peak parametrization cannot produce a step. We show these inferred

distributions in Fig. 5.4.5 to further illustrate the point that both parametrizations give consistent

answers, especially for the bulk of the distribution. Note that the differential merger rate is best

constrained around m1s ∼ 20M⊙, where most observations lie (Roulet et al., 2020).

In Table 5.4.2 we report the maximum likelihood and evidence for each of the models studied.

We find that, although the broken power law model outperforms the truncated model when ǫ = 0,
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ǫ ∆ max ln L ∆ ln Z

Truncated power law
0 −7.4+0.3

−0.3 −6.21+0.29
−0.19

0.05 0 0

Broken power law
0 −2.51+0.14

−0.12 −3.12+0.13
−0.14

0.05 −0.23+0.07
−0.11 0.02+0.03

−0.04

Power law + peak
0 −1.03+0.18

−0.17 −3.18+0.22
−0.13

0.05 0.04+0.21
−0.17 −1.56+0.15

−0.17

Table 5.4.2: Scores for models of the primary mass distribution. Maximum log likelihood and log
evidence for truncated power law and broken power law models, plus a fraction ǫ = 0 or 0.05 of
the population coming from a broad distribution λ′0 per Eq. (5.9). The scores are referred to the
preferred truncated power law model with ǫ = 0.05. In all three cases ǫ = 0 is disfavored, implying
that the models struggle to accommodate all observations.

both perform poorly relative to their ǫ = 0.05 counterparts. This suggests that neither is a good

description of the mass distribution. The power law + peak model achieves similar scores as the

broken power law model with ǫ = 0, but it gets only a slight improvement from ǫ = 0.05, thus getting

similarly disfavored. Among all the variations, thus, the preferred models in terms of evidence are

either the truncated or broken power law with ǫ = 0.05, i.e. with a small fraction of events in a

broad tail that extends to high masses. The fact that these two models achieve similar likelihood

and evidence, together with the above observation that they are consistent with the same physical

solution, suggests that both are comparably good descriptions of the bulk of the distribution and

their different scores for ǫ = 0 are driven by the few outlier events. This is confirmed in Fig. 5.4.5.

Comparing the ǫ = 0 entries in Table 5.4.1 to Abbott et al. (2020f, table 2), we find agreement in

that the truncated power law model is rejected, however, Abbott et al. (2020f) find a preference for

the power law + peak model over the broken power law, which we instead find comparable. Some

differences are expected because, for simplicity, in our implementation of these models we fixed or

omitted some parameters, so the models and associated phase spaces are not equivalent.

We can get some insight by inspecting the probabilities poutlier of coming from the broad sub-

population λ′0 assigned to each event, which we report in Table 5.4.3. Events with a high value of

poutlier are better explained by the broad subpopulation and drive a preference for ǫ 6= 0. However,

note that even if the true astrophysical population was well described by the parametrization λ, in

a catalog of many events some are bound to be in the tail of the distribution and might individually

be better described by a broad distribution. The expected distribution of poutlier under a model λ is

hard to compute, which is why we do not use the values of poutlier as a quantitative model test. This

said, it is apparent that GW190521 is an extreme outlier of the truncated power law model, and

there are two other events that are in some tension. For the broken power law model, GW190521
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Truncated
power law

Broken
power law

Power law
+ peak

GW190521 1.00 0.94 0.68
GW190602 175927 0.95 0.72 0.66
GW190706 222641 0.88 0.72 0.75
GW190519 153544 0.76 0.54 0.59
GW190929 012149 0.57 0.46 0.51
GW190620 030421 0.43 0.34 0.47
GW190701 203306 0.33 0.19 0.29
GW190413 134308 0.27 0.25 0.31

Table 5.4.3: Probability that each event is a model outlier, as defined in Eq. (5.11) and marginalized
over model parameters λ, with ǫ = 0.05, for the mass models studied. Only events in the gold sample
with the highest values of poutlier are shown, for brevity. Note that this naturally selects the events
with highest primary mass.

is in some tension but the other values of poutlier are milder. For the power law + peak model, no

single event is a strong outlier.

Another interesting effect is that GW170817A, a candidate event with m1s = 56+16
−10 M⊙ and a

rather low false-alarm rate of 1/(36O2) observing runs (Zackay et al., 2019a), had an estimated

probability of astrophysical origin marginalized over population parameters of pastro = 0.07, under

the truncated power law model favored after O1 and O2 (Roulet et al., 2020). This low value was

driven by the lack of observations of other events with similar properties, mainly mass. Under the

newly favored models, it has a moderately different pastro = 0.22 for the truncated power law and

0.26 for the broken power law, both with ǫ = 0.05. This showcases that pastro values for marginal

events in the tails of the distribution are bound to get updated as our knowledge of the population

improves.

To summarize, Table 5.4.2, Figs. 5.4.4 and 5.4.5 suggest that the mass distribution exhibits a

steepening around 40M⊙ and an extended, shallow high-mass tail. From Table 5.4.3 we conclude

that the need for this tail is dominated by GW190521, so at this point we do not attempt to model

its shape based on a single event. Future data releases will allow to probe these features in the mass

distribution.

5.5 Conclusions

We have investigated the properties of the effective spin and primary mass distributions of binary

black holes identified in the GWTC-1 (Abbott et al., 2019a), GWTC-2 (Abbott et al., 2020e), and

IAS O1–O2 (Venumadhav et al., 2019; Zackay et al., 2019b; Venumadhav et al., 2020; Zackay et al.,
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2019a) event catalogs. Our study involved re-analyzing all binary black hole signals with the recently

developed IMRPhenomXPHM waveform model (Pratten et al., 2020), which includes orbital precession

and higher-order modes.

We designed a parametric model of the χeff distribution which has three components — with

negative, approximately zero and positive χeff — to test some general predictions of the dynamic

and isolated formation channels for merging binary black holes. Namely, dynamical formation

channels predict a χeff distribution that is symmetric about 0, while negative χeff (i.e., large spin–

orbit misalignment) should be very rare for isolated field binaries. Interestingly, we found that a

symmetric distribution is disfavored: the data suggests that the number of positive χeff events is

larger than that with negative χeff at 95% credibility. Although the evidence at this point is not

conclusive, this simple test is already becoming powerful enough to hint that not all binary black

holes are dynamically assembled, in agreement with other analyses of these data (Abbott et al.,

2020f; Zevin et al., 2021; Bouffanais et al., 2021). The number of detections is expected to roughly

double with the forthcoming release of the O3b catalog, which should settle this question if the same

trend continues.

Moreover, we find no evidence for negative χeff in the population. This result is in tension with

Ref. (Abbott et al., 2020f); we attribute the discrepancy to the different parametrizations of the

spin distribution chosen. We were able to reproduce the results of Ref. (Abbott et al., 2020f) with

a Gaussian model for χeff , but found that this model fares worse at describing the features in the

spin distribution, in particular, a large concentration of events near χeff = 0. Our conclusion is

in agreement with a model-free inspection of the empirical χeff distribution, which suggests that

all events with significant support at χeff < 0 are consistent with coming from a population with

χeff = 0. Therefore, we conclude that the observed effective spin distribution does not rule out that

all observations are explained by isolated binary formation.

Regarding the distribution of primary masses, we confirmed the result of (Abbott et al., 2020f)

that a truncated power law fails to describe the observations. Moreover, we found evidence that

a broken power law model or a power law plus a Gaussian peak, which assume a continuous dis-

tribution, compare poorly to a model in which a small fraction of the events comes from a broad

subpopulation, with an extended tail at high masses. This suggests that the tail of the mass distri-

bution has interesting features that will be probed with the coming data releases.
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Appendix

5.A Sample Selection

In this appendix, we inventorize the binary black hole mergers used in this work, which are listed

in Table 5.A.1. We define the gold sample (third column of Table 5.A.1) as the set of events that

(i) were detected by at least two search pipelines with a FAR < 0.1 yr−1 (fourth column); and

(ii) on strain data that are free of non-Gaussian transient noise (fifth column). We consider the

following pipelines: cWB (Abbott et al., 2020e), GstLAL (Abbott et al., 2020e), PyCBC (Abbott

et al., 2020e; Nitz et al., 2019a, 2020), PyCBC BBH (Abbott et al., 2020e; Nitz et al., 2020), and IAS

(Venumadhav et al., 2020). Events with non-Gaussian artifacts are reported in (Abbott et al., 2020f,

table V). We do not include GW190814 in the GWTC-1 + IAS + Gold O3a sample because it was

detected near non-Gaussian transient noise (Abbott et al., 2020e). Nor do we include GW190814 in

the GWTC-1 + IAS + GWTC-2 sample (Section 5.4.2) as it was not included in the main GWTC-2

population analysis due to being an outlier in the mass ratio distribution (Abbott et al., 2020f). For

events in the O1 and O2 observing runs, pastro(λ0) is computed in (Roulet et al., 2020). For events

in O3a, it is taken at face value from (Abbott et al., 2020e) as the maximum pastro over pipelines,

and may not accurately correspond to the model λ0.

While the present work was being completed, Nitz et al. (2021) reported their analysis of the

O3a data, providing independent confirmation of all the sources reported in GWTC-2 except for

GW190426 152155 and GW190909 114149, and further finding four previously unreported events.

We defer the inclusion of these results to future work. Including this catalog, the two-pipeline

condition would be fulfilled by most of the O3a events in Table 5.A.1, thereby enlarging the gold

sample. Still, note that the sample restriction did not change the qualitative conclusions of our

analysis.
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Run Name Gold ≥ 2 pip. Clean pastro(λ0)

O1 GW150914 X X X 1.00
GW151012 X X X 1.00
GW151226 X X X 1.00
GW151216 X 0.50

O2 GW170823 X X X 1.00
GW170809 X X X 1.00
GW170729 X X X 1.00
GW170814 X X X 1.00
GW170104 X X X 1.00
GW170727 X X X 0.99
GW170121 X X X 0.97
GW170304 X 1.00
GW170818 X X X 0.92
170412B X 0.02
GW170403 X 0.61
GW170425 X 0.60
GW170202 X 0.61
GW170817A X 0.74
GW170608 X X X 1.00

O3a GW190408 181802 X X X 1.00
GW190412 X X X 1.00
GW190413 052954 X 0.98
GW190413 134308 0.98
GW190421 213856 X X X 1.00
GW190424 180648 0.91
GW190503 185404 X 1.00
GW190512 180714 X X X 1.00
GW190513 205428 X 1.00
GW190514 065416 0.96
GW190517 055101 X X X 1.00
GW190519 153544 X X X 1.00
GW190521 X X X 1.00
GW190521 074359 X X X 1.00
GW190527 092055 X 0.99
GW190602 175927 X X X 1.00
GW190620 030421 X 1.00
GW190630 185205 X 1.00
GW190701 203306 1.00
GW190706 222641 X X X 1.00
GW190707 093326 X X X 1.00
GW190708 232457 X 1.00
GW190719 215514 X 0.82
GW190720 000836 X X X 1.00
GW190727 060333 X 1.00
GW190728 064510 X X X 1.00
GW190731 140936 X 0.97
GW190803 022701 X X X 0.99
GW190828 063405 X X X 1.00
GW190828 065509 X X X 1.00
GW190909 114149 X 0.89
GW190910 112807 X 1.00
GW190915 235702 X X X 1.00
GW190924 021846 X 1.00
GW190929 012149 X 1.00
GW190930 133541 X X X 1.00

Table 5.A.1: Binary black hole events used in this work. Checkmarks from the third to fifth columns
indicate events that are in the gold sample, were identified by at least two pipelines with IFAR >
10 yr, and was observed in the absence of glitches, respectively. The pastro values shown here are
evaluated with the reference model λ0 described in Eq. (5.5).
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Chapter 6

Conclusion

In this thesis we made the journey from raw gravitational wave data to its implications for the

astrophysics of binary black holes. In the process we developed a search pipeline with several

innovations, including a geometric template bank. We approximately doubled the sensitive volume

of previous searches, allowing us to find nine new events in LIGO–Virgo O1 and O2 public datasets.

We introduced and implemented a statistical framework to extract the astrophysical interpretation

of these signals, which required careful accounting of their measurement uncertainty, selection effects

and statistical significance. Over these few years, we saw the field of gravitational wave astrophysics

quickly evolve as new data was gathered. The picture is improving, but still far from clear for

binary black hole formation channels. Some key takeaway points that we have learned are that

the distribution of black hole spins is anisotropic, with a preference for alignment with the orbital

angular momentum. This disfavors dynamical assembly of binary black holes in dense clusters as the

only formation channel in operation. On the other hand, the black hole mass distribution features

a tail to high masses inside the mass-gap region predicted by the pair instability supernova process,

which is challenging for binaries formed in isolation but a natural prediction of dynamical channels.

Regarding the merger rate, we found that it is much better constrained if one restricts it to the

region of parameter space where most detections lie. We expect this realization to enable powerful

tests of physically-motivated binary black hole population synthesis predictions.

This thesis highlights the importance of public data, without which none of these projects could

have taken place. My collaborators and I are very grateful to the LIGO–Virgo Collaboration for

their open data policy.

Looking forward, we are quickly reaching the point where improvements in detector sensitivity
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and gravitational waveform models enable measurement of subtle subdominant General Relativity

effects that carry crucial astrophysical information. Inspiraling binaries emit dominantly quadrupo-

lar gravitational radiation, yet very recently higher-order modes have been unambiguously detected.

These enable new tests of General Relativity and break parameter degeneracies, allowing precise

measurement of the component masses and distance to the source. Spin–orbit precession occurs

only if the black hole spins and binary orbit are misaligned, which in turn would shed light on the

formation mechanism of the system: misaligned spins are natural for binaries formed dynamically

from independent black holes in dense stellar environments, but are harder to produce for BBHs

formed from isolated binary stars. Likewise, detecting an eccentric merger would clearly indicate a

prompt dynamical formation, as binary orbits circularize on a shorter timescale than they merge.

Despite the motivations, state-of-the-art search pipelines do not include these physical effects, pre-

senting a direct avenue for improving our sensitivity to these most interesting sources.

Coupled to the steady progress in the waveform modeling front, parameter estimation methods

are another area of active development. Computational cost and sensitivity to algorithm systematics

are currently a significant bottleneck in analysis workflows. The forecasted dramatic increase in

rate of detections, together with the need of using more advanced and computationally expensive

waveform models (and testing them on software injections to calibrate systematic errors) will require

major advancements in parameter estimation algorithms.

Altogether, it is clear that the field of gravitational wave astrophysics is undergoing rapid progress

and that the coming few years are going to be full of delightful surprises.
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