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Abstract

Over the last six years, the LIGO and Virgo gravitational wave detectors have revolutionized grav-
itational wave astronomy by discovering the first compact binary mergers. There is much to learn
about how these systems form in nature, and these discoveries have allowed to start characterizing
the astrophysical population of binary black holes. Many layers of data processing are needed in the
path from raw gravitational wave data to inference of astrophysical implications. In this thesis, I
worked on algorithms to search for signals from compact binary mergers, estimating their parameters
and analyzing them collectively to infer properties of the astrophysical population, ultimately aimed
at unveiling key questions in gravitational wave astronomy: What is the rate of binary mergers in
the Universe? What is the distribution of masses and spins? What is the formation mechanism of
merging binary black holes?

I construct a bank of waveform templates suitable for searching compact binary mergers in grav-
itational wave data through matched-filtering. The resulting bank is defined on a geometric space,
whose notion of distance between waveforms naturally corresponds to their response mismatch. Be-
yond aiding intuition, this feature enables optimal placement of templates, dynamical refinement of
the search, and powerful and robust signal quality tests. Using this template bank, my collabora-
tors and I carried a search for binary black holes in public LIGO-Virgo data, confirming previous
detections and identifying nine new events.

I compute the likelihood function for the parameters of the individual sources, such as black
hole masses and spins. I derive a framework to combine these pieces of information into a likeli-
hood for the collective distribution of these parameters, that accounts for measurement uncertainties,
selection effects and statistical significance of the events. With this, I test and constrain phenomeno-
logical models for the distribution of binary black hole masses, spins, merger rates and cosmological
evolution. I find that the mass distribution features a steep drop around 40 Mg, as predicted by
the pair-instability supernova mechanism; but also features an extended tail to higher masses. The
distribution of spin orientations is anisotropic, disfavoring dynamical formation channels as the only

pathway for merging binary black holes.
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Chapter 1
Introduction

1.1 Gravitational waves

Gravitational waves are disturbances of space-time that propagate at the speed of light, predicted
over 100 years ago by General Relativity. Their physical effect is to stretch or compress distances
between free-falling objects, along directions transverse to the propagation of the wave. Gravitational
wave detectors operate on this principle to measure them. Currently there are three gravitational
wave detectors in operation: two Advanced LIGO located in Hanford, WA, and Livingston, LA,
in the United States, and Advanced Virgo in Cascina, Italy. Advanced LIGO and Advanced Virgo
became operational in 2015 and 2017, respectively, and use laser interferometry to precisely monitor
variations in the distance between test masses caused by gravitational waves.

Gravitational waves are produced in nature by rapidly accelerating, compact massive objects. A
gravitational wave is characterized by the dimensionless strain tensor h;;, which can be interpreted as
the fractional change in distances it produces along the various directions. Emission of gravitational
waves is described by the quadrupole formula (to leading order in the strength of the gravitational

field and velocity of the source, and in the wave zone far from the source):

2G

hig = ctD

Qij» (1.1)

where G is the gravitational constant, ¢ is the speed of light, D is the (luminosity) distance to the

source and

Qij = /dga: p(z) <x7xj - ;&jrz) (1.2)



is the traceless mass quadrupole moment, with p the mass density. The strain is highly suppressed
by the factor G/c* ~ 107*s?kg™'m~! in Eq. (1.1), which makes detection of gravitational waves
extremely challenging from a technological point of view. Detection is impossible for all but the
loudest sources, which involve motion of objects multiple times heavier than the solar system at
velocities comparable to the speed of light. The classic example of a source of gravitational waves
is a binary system made of compact objects, like black holes or neutron stars, in tight orbit (and
indeed these have been the only so far observed). Gravitational wave emission causes the binary to
lose energy, tightening the orbit and further increasing gravitational wave emission. If the orbit is
initially tight enough, this is a runaway process which ends in a violent merger of the two objects in
less than the age of the universe. We can crudely estimate the order of magnitude of gravitational
waves emitted from a binary as follows. For a binary with mass M and orbital separation R, the
quadrupole moment is

Q ~ MR (1.3)

The timescale for its variation is given by the orbital frequency, Q ~ w?Q, which in turn follows

from Newton’s laws: GM?/R? ~ M Rw? or

Putting everything together,

G 2GM(GM)21 R

h~ —MR*Z - = — ~ s 1.
M s 2 ) RD " RD’ (15)

c

where Rg = 2GM /c? is the Schwarzschild radius of a black hole of mass M. Emission is largest for
small orbital separation R, which can only be as small as the component objects’ size. This is why
merging black holes or neutron stars, whose size is comparable to their Schwarzschild radius, are

prime sources of gravitational waves. For these, R ~ Rg and Eq. (1.5) becomes

M 100M
ho~ B8 _ g2 M 100 Mpe

1.6
i) M. D (1.6)

where Mg is the mass of the Sun and a megaparsec Mpc is comparable to intergalactic separations
(as it turns out, it is necessary to probe out to hundreds of Mpc in order to observe events at a rate
of several per year). This means that gravitational wave detectors need to be sensitive to strain on

the order of 1072, For a kilometer-scale detector such as LIGO or Virgo, this requires measuring



a change in separation between the test masses of AL = hL ~ 107® m—a thousandth part of the
diameter of a proton. Considering that test masses are made of atoms, and laser interferometry
uses micron-wavelength light, this is an astonishing achievement. A historical review of how this
formidable challenge was overcome is given in Saulson (2019).

Advanced LIGO achieved the first direct detection of gravitational waves from a binary black
hole merger on 2015, September 14, which opened a new observational window to the universe and
revolutionized astrophysics (Abbott et al., 2016a). Since then, three observing runs (01, 02, O3)
took place in 2015, 2017 and 2019, interspersed with periods of detector upgrades that progressively
increased their sensitivity. Altogether, about fifty binary black holes and two binary neutron stars
have been identified.

A compact binary merger signal exhibits a waveform of characteristic shape (“chirp”), with
increasing frequency and amplitude during the inspiral and terminating at merger (Abbott et al.,
2016d). By analyzing the detailed shape of the waveform and comparing it to physical models
of binary mergers, we can estimate the parameters of the source, like masses, spins, location and
orientation. This is very valuable to shed light on the astrophysics of these systems and their
progenitors, particularly since binary black holes can only be observed through gravitational waves.

A pressing question that these observations can inform is what is the astrophysical origin of
merging binary black holes. Several ideas have been put forward, broadly encompassing two classes
of mechanisms: dynamical formation, where binaries are assembled from independently-formed black
holes; or isolated formation, where a binary star evolves into a merging binary black hole. I briefly
describe some of the main ideas below, see Mandel and Farmer (2018) for a review.

The leading mechanism to dynamically form a binary from unbound objects is through a three-
body interaction that binds the binary and deposits the excess energy in the third object. Further
few-body interactions are required to tighten the orbit of the binary, until gravitational wave emission
can take over and lead to a merger within the age of the Universe. Dynamical formation can thus
only happen in dense stellar clusters; where the rate of three-body encounters is appreciable. Such
clusters include globular clusters (old clusters of ~ 10° stars, of which each galaxy typically has
hundreds), nuclear clusters (dense clusters of ~ 10° stars at the center of most galaxies) or open
clusters (small, young clusters of ~ 103 stars, where stars are born). A robust, testable prediction of
dynamical formation channels is that the spin orientations of the independently-formed black holes
in a merger are distributed isotropically, uncorrelated with each other and with the direction of the
orbit. Dynamical formation channels also tend to produce binaries of black holes with comparable

masses. This is because gravitational interactions induce mass-segregation: heavier objects move



quickly to the core of the cluster where they get paired with each other. Furthermore, three-
body scatterings tend to eject the lighter object with high probability, which enhances exchange of
companions for unequal-mass binaries. An interesting exception are “second-generation” mergers,
that are possible within dynamic formation channels: if the remnant black hole is retained in the
cluster after merger, it can become paired and merge again. Second-generation mergers would be
characterized by a high mass, a ~ 2 : 1 mass ratio, and a large spin of the heavier black hole of
~ 0.7 GM?/c due to the orbital angular momentum from the first merger.

In isolated-formation channels, instead, a binary star in a generic location of its galaxy (the
“galactic field”) evolves into a binary black hole that then merges. The main challenge in this
pathway is that mechanisms other than gravitational waves are required to bring the objects together:
a binary black hole with an initial separation larger than the maximum (giant phase) radius of its
progenitor stars would take longer than the age of the Universe to merge by gravitational wave
emission. Omne natural mechanism is a common-envelope phase, which is a short unstable mass
transfer episode triggered by the expansion of one of the two stars. When a star exhausts hydrogen at
its core, fusion temporarily stops and the core contracts and heats until helium fusion is ignited. The
heating of the core causes the hydrogen envelope to expand; a star in a binary can overflow its Roche
lobe (the region in the co-rotating frame in which trajectories are bound to that star), and transfer
mass to its companion. Mass transfer has two effects: conservation of angular momentum requires
the orbital separation to change (heavy-to-light transfer decreases the separation, and vice versa),
it also alters the hydrodynamic equilibrium of the donor. Depending on the interplay between these
effects, mass transfer can enhance or inhibit itself, leading to unstable or stable transfer, respectively.
Unstable mass transfer triggers a common envelope episode that lasts only a few orbital periods; a
large amount of orbital energy is dumped into the envelope of the star, which gets ejected. If this
process stops before the two stars merge, it results in a tight binary that can ultimately merge by
gravitational wave emission. After common envelope, at least one of the objects is still a stellar core
(the other may already be a black hole). An interesting possibility that arises is that, if the orbital
separation is small enough, the companion can torque the star through tides before it too becomes a
black hole. This would lead to a high black hole spin aligned with the orbit. Mass transfer episodes
can also spin up the objects; altogether, isolated formation generally predicts a tendency for spins to
be aligned with the orbital angular momentum. Black hole spin orientations are thus of paramount

importance as a discriminator between dynamical and isolated formation channels.



1.2 Thesis overview

In order to use gravitational wave data to constrain the properties of the astrophysical population,
several layers of data analysis need to take place. Namely, identifying signals present in the noisy
data and establishing their statistical significance, estimating their source parameters, and using the

aggregated set of detections to test and inform models of the population.

1.2.1 Search pipeline

The current policy of the LIGO-Virgo Collaboration (LVC) regarding accessibility of their data is
as follows. Once data are acquired, there is a proprietary period of 18 months during which these
are calibrated and analyzed by the LVC. An initial search is performed at low-latency and limited
information about candidate triggers is reported within minutes to hours, in order to aid follow-
up of counterparts by the community of astronomers. This information includes source location
and estimated probability of electromagnetic emission (e.g. by a kilonova, the explosion following
a binary neutron star merger). The more refined results of an offline search are reported within
the proprietary period in the form of a catalog of events, along with short segments of data that
contain the events identified. After the proprietary period ends, the full strain data are released to
the public (Abbott et al., 2021).

The availability of these data motivated my collaborators and me to develop a pipeline to search
for compact-object binary mergers (Venumadhav et al., 2019). The task of the search pipeline is to
define a detection statistic, that tests the hypothesis H; that there is a signal present in a piece of
data against the null hypothesis Hy that the data only contains noise. By Neyman—Pearson lemma,

the optimal statistic is (a monotonic function of) the likelihood ratio
(1.7)

The pipeline needs to identify all data segments where the statistic Eq. (1.7) has a high value.
A useful model to orient the discussion is that detector noise is stationary and Gaussian—this is
only approximately true for real data, and can be thought as a theoretical limit for detection. Under

this model, the noise likelihood

P(d | Hp) x exp{—;(d | d)}7 (1.8)



where

<a|b>:4Re/Ooode (1.9)

is the inverse-variance-weighted inner product. Here S(f) is the one-sided power spectral density
(PSD) of detector noise, which is diagonal in frequency space by the stationarity hypothesis, tildes

indicate Fourier transforms and asterisks complex conjugation. The signal likelihood is
P(d| H) = [ a6P(d] 6,8)P(6 | M), (1.10)
where 6 are parameters of the gravitational wave signal and, again for stationary Gaussian noise,

P(d| 6, Hy) ocexp{—;<d—h(e) | d—h(9)>}7 (1.11)

where h() is the model gravitational wave strain. For Gaussian noise, the log-likelihood ratio of a
specific signal model 0 is thus

P(d ‘ 97H1)

1
8 "P(d | Ho)

1 1
=—-{d—h|d—h)+=(d|d)

2 1 2 (1.12)
= {d|h) = 5(h|h).

We can readily estimate the number of independent models 6§ that the pipeline needs to test. These
source parameters can be divided into intrinsic (masses and spins) and extrinsic (location, orien-
tation and time of arrival). Intrinsic parameters control the shape of the waveform, while (in the
approximation that gravitational radiation is quadrupolar and that the spins are aligned with the

orbit) extrinsic parameters change the amplitude, phase and time of arrival seen at each detector k:
Ek(f7 oinh eext) - Ak (eext)ei(bk(ecm)eiﬁﬂftk (ch‘:) hO(fa Gint) (113)

As we will see in Chapter 2, there are ~ 10* binary black hole templates with sufficiently different
shapes to be regarded as independent trials, and an order of magnitude more for the lighter binary
neutron stars or neutron-star—black-hole binaries, whose signals are much longer; these cover the
variability from intrinsic parameters. Typical autocorrelation times of these templates (whitened
with the detector noise spectrum) are on the order of a millisecond, so there are ~ 10'? independent
possible arrival times for each template in a few-month long observing run. Depending on the sky

location of the source, there is a time delay between detectors up to the gravitational wave travel



time—of +10 ms for Livingston—Hanford, the most sensitive pair of detectors—which multiplies the
options by 20. The remaining extrinsic parameters (distance and orientation), which determine the

amplitude and phase, can be analytically maximized over; for example for the amplitude

mgxlogm = A.(d | ho) — %Ai(ho | ho) (1.14)
_ _;m - —§§ (1.15)

A, = M; (1.16)

o= W (1.17)

We have introduced the signal-to-noise ratio p, which is the cross-correlation of a normalized template
ho/ \/W with the data. For the phase, maximization is achieved by changing the real part
in Eq. (1.9) by an absolute value. Maximizing over amplitude and phase means that the detection
statistic follows a chi-squared distribution with two degrees of freedom on Gaussian noise.

The need for trying 10% - 10'° - 20 ~ 10'® models has two implications: First, it sets a limit for

detectability of a signal p2; = 70, set by

o0
Nirials /pz dp®x*(p*,2) ~ 1 (1.18)
(roughly, ePamin/? 2 Nirials). An optimal pipeline will be limited by the fact that, given the number
of models tried, Gaussian noise will produce = 8¢ fluctuations over the course of the observing run,
this is sometimes termed look-elsewhere effect. For a sub-optimal pipeline, the detection bar will in
general be higher.

Second, the sheer size of parameter space means that the cost of computing the detection statistic
needs to be optimized. The solution is to introduce several stages in the pipeline which compute
increasingly better approximations to the detection statistic and filter out data that, at that stage,
are already inconsistent with having a detectable signal.

A first approximation counsists of replacing the integral in Eq. (1.10) by a maximization over
model parameters, P(d | H1) X P(d | ). Extrinsic parameters are optimized by maximizing the
likelihood over amplitude, phase and time of arrival. For intrinsic parameters, we construct a bank
of template waveforms that cover the target space of signals sufficiently densely and test all of them
by brute force. This template bank is described in Chapter 2; its most remarkable property is

that it has a geometric structure. This means that template waveforms live on a coordinate space



whose Euclidean distance corresponds to their “mismatch”—a measure of how the response of the
template to a signal degrades if their shapes are different. This feature provides a few analytical
and algorithmic advantages: First, a set of templates with optimal coverage can be obtained by a
regular tiling of the target geometric space. Second, the search can be refined on demand around
promising triggers by adding more templates locally, which decreases the overall computational
cost. Finally, signal quality tests can be made orthogonal (insensitive) to mismatches that are
due to the discreteness of the bank. This allows to perform more stringent tests at fixed false-
rejection rate, which improves the sensitivity of the search. Another improvement we introduced
with this bank is that we divide the parameter space into disjoint regions (by mass of the binary), in
which we expect comparable numbers of astrophysical signals but require largely different number
of templates to cover. This helps insulate the different look-elsewhere penalties associated to these
regions of parameter space, as well as the different classes of background noise that predominate,
and prevent these problems from cross-contaminating the rest of the search.

As discussed above, the main ingredient of the detection statistic is the cross correlation between
the template and the data: whenever the data contain a signal similar to the template, the cross
correlation is high. This would be the optimal detection statistic for a single detector with Gaussian,
stationary noise. Since there are multiple detectors, and the noise is only approximately stationary
and Gaussian, the detection statistic requires several corrections that are implemented by different
stages of the pipeline as follows.

Detectors exhibit non-Gaussian transients at a rate of several per hour. These so-called “glitches”
are short, abrupt disturbances whose origin is often unknown. We first identify and remove as many
glitches as we can by iteratively whitening the data, running several excess power tests, and excising
the glitches. The excess power tests are calibrated to guarantee a fixed, small false rejection rate
of astrophysical signals with a moderate signal to noise ratio p < 20 on Gaussian noise (we assume
that any louder signals have already been found in previous searches). To excise the glitches, the
approach of simply gating the data with a window function would hurt the sensitivity of the search.
This is because, due to narrowband lines in the detector noise power spectrum, the whitening filter
has a long impulse response time of several tens of seconds. Gating would thus pollute model scores
tens of seconds away from the glitch. Instead, we introduce the following change to the detection
statistic (Zackay et al., 2019¢). Recall from Eq. (1.17) that the signal-to-noise ratio in stationary

Gaussian noise is
(d | h) B Wrc-1d

Pk Vit (1.19)




where in the time domain the inverse of the covariance C~! is a non-diagonal matrix. Our model
for glitches is that they completely destroy information over a short segment in the time domain,

but leave data outside it unaffected. Let us write

d= (95) (1.20)
y

where x denotes data that is clean, and y data that was corrupted by a glitch and became unusable;

in the time domain these are well separated. The optimal detection statistic in this case becomes

(d | Hy) (z | Hy)
(d | Ho) (z | Ho)

P P P(y | xaHl)
1 =1 1 1.21
=P %P T8 By T, ) (121

where the last term vanishes, since our model is that glitches are allowed to do anything. For the

first term we still assume that z is described by Gaussian noise under Hy, or Gaussian noise plus a

signal under Hi:

P(x |0, H
IOglg(:zJHo;) = —%(w—hw(ﬂ))

1
TC;; (z = ha(0)) + §a:TC Ly (1.22)

xrxr

where h,(0) is the part of the template that lands on clean data and C,, is the noise covariance

outside the glitch. This can be mapped to the previous formulas for the detection statistic by

c.l 0
H = ; (1.23)
0 0

~ hTHd
N~

replacing the metric C~1 by

for example, Eq. (1.17) becomes
(1.24)

With this technique in place, removing glitches becomes harmless and we can do it aggressively to
obtain cleaner background distributions.

A second problem of real detector noise is that it is not stationary: the PSD undergoes ~ 10%
variations on scales 2 10s. However, due to the aforementioned narrow spectral lines, thousands
of seconds of data are required in order to resolve the lines while keeping 2 100 independent PSD
samples to keep statistical measurement errors low. Our workaround is to use a fiducial spectrum
measured over few thousand seconds and then normalize the score (1.17) by its local standard
deviation, empirically measured over 10* autocorrelation times (~ 10s) to keep statistical errors

under 1% (Zackay et al., 2019¢c). The effect of this “PSD-drift correction” on the distribution of
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Figure 1.1: Complementary cumulative distribution of single-detector signal-to-noise ratios, for a
low-mass template bank BBH (0, 0) (top) or a high-mass bank BBH (3, 0) (bottom), in the Liv-
ingston (left) or Hanford (right) detectors. Four curves are shown, toggling PSD-drift correction
and vetoes on and off. These distributions are completely dominated by background noise (detected
events have been removed); distributions with more support at high values of p? thus correspond to
smaller sensitivity. Figure taken from Zackay et al. (2019c¢).

background triggers is illustrated in Fig. 1.1: it takes the blue distribution to the orange one, which
more closely resembles a x? distribution (a straight line in this plot). The main improvement happens
at low signal to-noise-ratios.

However, especially for high-mass templates that are a few cycles long (bottom panels in Fig. (1.1))
the orange distribution still exhibits a non-Gaussian tail that would hurt sensitivity at high signal-
to-noise ratios. This tail is caused by glitches that survived the generic excess power tests performed
at the initial data processing stage. At this point, a series of signal-quality tests are applied to
loud triggers in the form of vetoes. Since we do not have a good model for glitches, we design the
tests to have a fixed false-rejection rate of ~ 1% for signals on Gaussian noise. We test that the
template plus Gaussian noise is a good description of the data by checking that different parts of
the template accumulate signal-to-noise ratio with the expected amplitude and phase. The template

to veto is chosen by maximizing a joint score p? + p? over the two LIGO detectors, Hanford and
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Livingston. This step requires refining the template bank grid around the trigger, because sub-
tracting an incorrect template would leave non-Gaussian residuals, that could spuriously trigger the
test. In addition, the tests are orthogonalized with respect to departures from the template along
directions spanned by the template bank. The geometric structure of our template bank is crucial
for the implementation of both these steps. The effect of vetoes on the background distribution is
also shown in Fig. 1.1 by the black and green lines. For low-mass templates the distribution after
PSD-drift correction and vetoes is Gaussian all the way up to 8¢. For higher masses and especially
in Hanford, there remains a non-Gaussian tail that dominates above 7o; still, the background level
gets reduced by several orders of magnitude.

The next stage of the pipeline is to combine triggers from Hanford and Livingston (Virgo joined
late in O2 and has a lower sensitivity than the LIGO detectors, so for simplicity we do not use it
for detection). The final detection statistic is the joint log likelihood-ratio for the data at the two

detectors

P(dy,dy, | Hy)

log —————————~¢
& Pdu, dy, | Ho)

= log P(dy,dy, | H1) — log P(du | Hy) — log P(dy, | Ho), (1.25)

under the assumption that dg and dy, are uncorrelated in the noise hypothesis. The detection statistic
involves a coherent score log P(dy,dy, | H1) and an incoherent score —log P(dy | Ho) — log P(dy, |
Hp). Due to the non-Gaussian tails, we need to estimate the incoherent score from the empirical
background distribution at each detector. For triggers that have a chance of reaching the detection
bar, we compute the coherent score Eq. (1.10) by maximization over intrinsic parameters and Monte
Carlo integration over extrinsic parameters.

Once the top triggers have been determined, there remains to estimate their significance. We do
this by a bootstrap method, borrowed from LVC’s PyCBC pipeline: we generate data realizations
free of coincident astrophysical signals by artificially time-shifting the data between detectors beyond
the 10 ms gravitational wave travel time. We then rerun the pipeline on these data and empirically
reconstruct the background distribution, which we use to establish the frequentist’s false-alarm rate
of a trigger as a function of the value of its detection statistic.

There is one regime in which the strategy described above fails, which is when a signal is much
louder in one detector than the other. This can happen for a combination of reasons: the detectors
have different intrinsic sensitivities, orientations and noise realizations. The different orientations
mean that for fortuitous source polarization and sky location, a detector may be more sensitive than

the other to a particular source. The above strategy fails in this regime because a trigger may not
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Figure 1.2: Approximate detection limits in the space of incoherent Hanford and Livingston squared
signal-to-noise ratio, for high-mass (M > 20Mg) binary black holes. The detection limit of our
main (2-detector coincidence) search on the O2 observing run is shown in orange, that of LVC’s
pipelines in blue. The green region indicates the regime in which the coincidence search may miss
detectable events that are loud in Livingston and faint in Hanford, there we run a dedicated search
for signals with disparate detector responses. Blue circles show events first reported by the LVC,
yellow squares events first found in our coincidence search and red stars in the search for signals
with disparate detector responses. A logarithmic histogram of 2 x 10? background realizations is
shown in gray scale.

be found in coincidence—we impose a minimum p? > 16 to record a single-detector trigger, in order
to keep memory usage under control. In Zackay et al. (2019a) we carried a dedicated search to cover
this case, where we first ranked single-detector Livingston triggers and then directly computed their

coherent score including Hanford.

1.2.2 Detections

Owing to the improvements described above, we were able to improve the sensitivity over previous
searches and approximately double the sensitive volume. Figure 1.2 shows the improvement in
detection limit. Our searches confirmed previous detections reported by the LVC and identified nine
new signals in O1 and O2 (Zackay et al., 2019b; Venumadhav et al., 2020; Zackay et al., 2019a). We
are currently analyzing the recently released first half of the third observing run, O3a.

We identified seven of these signals in Hanford-Livingston coincidence: one in O1 (GW151216,
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Figure 1.3: Binary black holes in O1 and O2, in terms of total mass and effective spin. Events
found by the LVC are shown in blue, and those found in our coincidence search are color coded by
probability of astrophysical origin. Figure from Zackay et al. (2019a).

after its birthday) and six in 02 (GW170121, GW170202, GW170304, GW170403, GW170425,
GW170727). The remaining two (GW170817A and GWC170402) were found in a dedicated search
for signals with disparate responses at Livingston and Hanford. Of these, the most significant are
GW170727, GW170121 and GW170304, which are confidently astrophysical in origin with false-
alarm rates of one per 256, 185 and 79 O2 observing runs, respectively. The other events have more
modest inverse false-alarm rates, which means it is possible that some of them are due to detector
noise. Events from the first two observing runs are shown in Fig. 1.3 in terms of their total mass

Mot = my + mao and effective spin

Yo = X3 T MaX2 p (1.26)
my + mo

where x = Gm?2S/c is the dimensionless spin and L is the direction of the orbital angular momentum.
Events found in our coincidence search are color-coded by their probability of astrophysical origin.

In terms of their parameters, notable events include GW170121, which shows a preference for
spin anti-aligned with the orbit (xeg < 0) at 95% credibility. GW170304 also has anti-aligned
spins, but the event itself has a smaller significance. GW151216, conversely, requires large spins
with a high degree of alignment with the orbit. This is interesting because it is very unlikely to
get both spins aligned from the isotropic distribution expected in dynamical channels, while other
formation channels do have mechanisms for producing large aligned spins (e.g. through tides).

Another remarkable event is GW170817A, which at the time was the most massive event detected
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and also has a moderately large spin aligned with the orbit. In the O3a run, more events similar
to it were found, which increases our confidence in its astrophysical origin. Finally, GWC170402 is
interesting in that, despite its rather low false-alarm rate, we were unable to find a physical model
that describes well the data. We found two different physical solutions with comparable signal-to-
noise ratio, which means that an unphysical linear combination of these fits the data significantly
better. This might be due to waveform systematics like physical effects missing from our waveform

models (e.g., eccentricity), or simply to a rare non-Gaussian noise transient.

1.2.3 Population inference

Once signals have been identified, their individual source parameters need to be estimated. Often
there are large measurement uncertainties and correlations in these parameters; in addition, grav-
itational wave detectors have nontrivial selection effects (for example, from Eq. (1.6) we already
see that heavier systems emit louder gravitational waves and can be observed to further distances).
These complications need to be accounted for in order to get unbiased constraints. Chapters 3, 4
and 5 describe a series of works on this area, carried out as events from O2 were being announced by
the LVC (2018-2019), after our O1 and O2 reanalyses (2019-2020), and after the LVC announced
events from O3a (2020-2021), respectively. Each iteration progressively involved more events, re-
quired more sophisticated methods and yielded more insights.

The analysis in Chapter 3 is based on events reported in the first Gravitational Wave Transient
Catalog by the LVC (GWTC-1, Abbott et al. (2019a)), which contains 10 binary black hole events
from O1 and O2. At that time, short segments of data around each event had been released. I
introduce some approximations that help develop intuition and allow to marginalize the likelihood
function of individual event parameters semi-analytically. I then develop a method to combine
these into a likelihood function for population parameters, which I use to place constraints on the
distribution of astrophysical binary black hole spins and masses.

In Chapter 4, I carry a full end-to-end population analysis of the results of our search for binary
black holes in O1 and O2. Some events in our catalog have marginal significance, in the sense that
there is a non-negligible probability that they are due to detector noise instead of astrophysical
signals. I develop a novel framework that enables inclusion of candidate events with arbitrary
significance in the population inference. This allows to extract the information that these marginal
triggers collectively carry about the astrophysical population without introducing biases. Applying

this framework to our catalog, I find improved constraints on the spin, mass, rate and cosmological
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evolution of the population of binary black holes.

In Chapter 5, I incorporate the GWTC-2 catalog, which includes events from O3a identified by
the LVC, in the population inference. Due to improvements in detector sensitivity, the number of
events tripled with the inclusion of GWTC-2. With this larger statistical sample, tests for qualitative,
robust features of the distribution of black hole spin orientations predicted by different classes of
formation channels become powerful enough to place meaningful bounds. Most interestingly, I find
that there is an excess of black hole spins aligned with the orbit over anti-aligned, which disfavors

dynamical formation as an explanation for the entirety of the events.

15



Chapter 2

Template Bank

This Chapter has been adapted from Roulet et al. (2019).

We introduce an algorithm for placing template waveforms for the search of compact binary
mergers in gravitational wave interferometer data. We exploit the smooth dependence of the ampli-
tude and unwrapped phase of the frequency-domain waveform on the parameters of the binary. We
group waveforms with similar amplitude profiles and perform a singular value decomposition of the
phase profiles to obtain an orthonormal basis for the phase functions. The leading basis functions
span a lower-dimensional linear space in which the unwrapped phase of any physical waveform is
well approximated. The optimal template placement is given by a regular grid in the space of linear
coefficients. The algorithm is applicable to any frequency-domain waveform model and detector
sensitivity curve. It is computationally efficient and requires little tuning. Applying this method,
we construct a set of template banks suitable for the search of aligned-spin binary neutron star,

neutron-star—black-hole and binary black hole mergers in LIGO—-Virgo data.

2.1 Introduction

The optimal algorithm to search for known signals in the presence of Gaussian noise is matched-
filtering, in which a signal template is cross-correlated with the data and triggers are recorded
whenever the correlation exceeds some threshold. In the context of gravitational wave detection
with the LIGO (Aasi et al., 2015) and Virgo (Acernese et al., 2014) interferometers, compact binary
coalescences are a good example of predictable signals for which we have accurate models, and
thus are well suited for matched filtering (Dhurandhar and Sathyaprakash, 1994; Allen et al., 2012).

Indeed, the LIGO and Virgo Collaborations have reported gravitational wave signals from 10 binary
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black hole (BBH) and one binary neutron star (BNS) mergers during their first and second observing
runs (Abbott et al., 2019a, 2016a,b,c, 2017b,c,d,e), all of which were found by search pipelines based
on matched-filtering (Sachdev et al., 2019; Usman et al., 2016) (seven of these BBHs were also
found by an unmodeled search (Klimenko et al., 2016; Abbott et al., 2019a)). Searches in the public
LIGO-Virgo data by independent groups have found seven additional BBHs (Zackay et al., 2019b;
Venumadhav et al., 2020), additional BBH candidates (Nitz et al., 2019a) and a BNS candidate (Nitz
et al., 2019b), also employing matched filtering.

Since the source parameters describing the waveform are not known a priori, one needs a bank
of waveform templates that adequately cover the parameter space. The notion of good coverage is
characterized by the warranty that any physical waveform the search aims to detect has a sufficiently
large match with at least one waveform in the bank. For example, the LIGO and Virgo Collaborations
have aimed at a minimum match of 97% for any aligned-spin binary merger with component masses
between 1 and ~ 200 M, for which they require a template bank consisting of ~ 4 x 10° waveforms
(Canton and Harry, 2017). Due to the large number of templates involved, matched filtering is a
sizeable computational task. This means that an efficient bank should not over-cover the parameter
space. In other words, the templates should be uniformly spaced with respect to a distance defined in
terms of the matched-filtering mismatch between templates (defined in §2.2). This incorporates the
notion that, from the perspective of signal detection, two waveforms that sufficiently resemble each
other are essentially indistinguishable in the presence of noise. Source parameters can be mutually
degenerate in the sense that different parameter combinations may describe similar waveforms. The
optimal placement of templates in physical parameter space is very non-uniform; for example, an
order of magnitude more templates are needed to search for mergers with 1-3 Mg components
(“neutron stars”) than for mergers with 3-200 Mg, (“black holes”).

Two broad classes of template-placement algorithms have been developed in the literature. One
robust method is “stochastic placement” (Harry et al., 2009; Ajith et al., 2014; Privitera et al.,
2014; Capano et al., 2016): waveforms are randomly drawn from the desired parameter space, and
one gradually builds up the bank by only accepting newly drawn waveforms that differ sufficiently
from the ones the bank already has, and rejecting those that are too similar to at least one existing
waveform. Stochastic placement, however, has the shortcoming that a large number of trial wave-
forms needs to be drawn before convergence is achieved (much more than the required number of
templates in the bank). This method also tends to over-cover the parameter space, in the sense that
the average template density is higher than optimal at fixed minimum match (Roy et al., 2017).

A different method to construct the bank is “geometric placement”. Here, a metric in the
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parameter space is defined based on the matched-filtering overlap between waveforms (Owen, 1996;
Owen and Sathyaprakash, 1999). This metric is then used to define a regular lattice (Babak et al.,
2006; Cokelaer, 2007; Babak et al., 2013). However, it is in general difficult to derive this metric,
especially if the parameter space is high dimensional or if the waveform model is not analytic.
Approximations to the metric have first been found by using suitably reparameterized analytic,
post-Newtonian (PN) non-spinning waveform models (Owen, 1996; Owen and Sathyaprakash, 1999;
Tanaka and Tagoshi, 2000); later generalizations include the use of phenomenological waveform
models and template parameters (Ajith et al., 2008), the inclusion of aligned-spin PN models (Brown
et al., 2012; Harry et al., 2014), or numerical evaluation from arbitrary waveform models (Roy et al.,
2019).

In practice, a combination of the two methods is often a better strategy. For example, one can
place templates geometrically at low masses and stochastically at high masses (Capano et al., 2016;
Canton and Harry, 2017), or one can use many small patches with regularly spaced templates, which
are themselves placed stochastically to cover the entire parameter space (Roy et al., 2019).

In this work, we develop a fast and general method to construct a high-effectualness template
bank using geometric placement. Our method relies on the construction of a flat, linear space of
orthonormal phase functions that embeds the space of physical waveforms. The Euclidean distance in
this space coincides with the mismatch distance between similar waveforms, making these coordinates
naturally suited for geometric placement of templates. Besides optimal template placement, having
this geometrical notion turns out to be helpful for a number of reasons. It allows to refine the bank
locally around triggers at the time of search, reducing the amount of templates in the bank at fixed
effective coverage. Moreover, a crucial stage of searches involves signal consistency checks, that
assess the probability that the residual between a best-fitting template and a candidate signal is
explained by Gaussian noise in order to reject non-Gaussian noise transients (Allen, 2005; Sachdev
et al., 2019; Usman et al., 2016; Venumadhav et al., 2019). With the bank described here, these tests
can be made orthogonal to the linear space of waveforms, so that they are insensitive to mismatches
due to the discreteness of the bank. This allows to make the tests more stringent and improves the
sensitivity of the search (Venumadhav et al., 2019). We further require that the template bank be
built from sub-banks that can be approximated to have a fixed amplitude profile A(f). This feature
is useful for implementing the noise amplitude-spectral-density drift correction, a key component for
precise matched filtering (Venumadhav et al., 2019; Zackay et al., 2019¢). Together, these analytical
properties make our template bank appealing, even considering that there are other template banks

with comparable effectualness and number of templates in the literature. Finally, building a new
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template bank enables us to customize a number of other choices, like the frequency range and
parameter space covered, in the context of our search pipeline (Venumadhav et al., 2019) and the
detector performances during the observation time analyzed. The coordinates presented in this work
are similar in essence to the ones introduced in Brown et al. (2012), except that we generalize them
to arbitrary waveform models and component mass ranges.

The paper is organized as follows. In §2.2 we define a metric based on the mismatch between
templates and show how the desired Euclidean space can be constructed. In §2.3 we apply this
formalism to the construction of a search-quality template bank that targets stellar-mass compact
binary mergers. We summarize our results in §2.4. The bank presented here was used in the searches

described in Refs. (Venumadhav et al., 2019, 2020).

2.2 Linear metric space

In this section, we define the notion of distance between templates and describe the construction of
a low-dimensional linear space of phase functions in which the metric is Euclidean. We build this
linear space based on the intuition that the unwrapped phases are smooth functions of the wave
frequency (Cutler and Flanagan, 1994) and hence are linear combinations of a small number of basis

functions (Tanaka and Tagoshi, 2000; Brown et al., 2012).

2.2.1 Mismatch distance

We first introduce the noise-weighted inner product in the frequency domain (Allen et al., 2012)

hi(f)RE(S)

7Sn(f) . (2.1)

(hi\hj)::Zl/ df
0
Here, S, (f) is a fiducial one-sided power spectral density (PSD) of the detector noise and tildes
indicate Fourier transforms. The match between h; and h; is given by Re z;;, where

o (hi | hy)

ij =

(hi | hi)(hj | hy) (2.2)
= (hi | hy).

In the second line, we normalize the waveforms to

(h|h) =1, (2.3)
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Figure 2.1: An example of two waveforms that look very different to each other in the frequency
domain (top panel) but have very similar amplitude and phase profiles (middle and bottom panels).

The amplitude and phase profiles can be well captured by a low-dimensional linear space spanned
by a few basis functions. Waveform amplitudes are shown in arbitrary units.

as usually the template waveforms are defined up to an overall normalization. Since all possible
coalescence times and phases are searched for, waveforms related by time and phase offsets are
described by the same waveform in template bank. Thus, the match is maximized over time and
phase offsets:

m;; ‘= max (Re 2i; (70, qSO))

To,90

(2.4)

= max |Zij(7'0)‘,
To

where 79 and ¢ are the time and phase offsets between h; and hj, respectively. We define the

mismatch distance d;; between the two waveforms by
d7; =1 —my;. (2.5)

We seek a parametrization of waveforms under which the mismatch distance has an Euclidean metric

for similar waveforms.
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2.2.2 Linear space

A general frequency-domain waveform model can be cast to the form
h(f;p) = A(f;p)eIP. (2.6)

Under the approximation that the dominant mode of gravitational radiation has (¢, |m|) = (2,2)
and that spin-orbital precession and eccentricity effects are insignificant, the frequency dependent
functions A and v vary slowly with the binary parameters p, as illustrated in Fig. 2.1. For matched
filtering, the phase v is the most important to describe with high accuracy, since loss of phase
coherence leads to a rapid degradation of the signal-to-noise ratio (SNR).

Moreover, it is important to analyze templates with different amplitude profiles A(f) separately
as the matched filtering correction from PSD drifts depends on A(f) (Zackay et al., 2019¢). Thus we
assume in the following that A(f;p) ~ A(f) is valid for a suitably chosen subset of parameters. To
achieve this, we sort a large number of randomly sampled physical input waveforms into groups of
similar amplitude profile. In each group, we require that the match of the amplitudes to a reference

A(f) exceeds a minimum
> HADA)

(A¢|Z):4/O Af =gy > 096 (2.7)

for all input waveforms h; in the group. Note that the match of the amplitudes sets an upper bound
on the match of the waveforms. Our approach will be to split a template bank into “subbanks”,
each subbank describing one group of input waveforms which share the same approximate amplitude
profile A(f).

We design the subbanks in order to minimize the average amplitude mismatch as follows. We
start with a single subbank that contains all the input waveforms, and define its reference amplitude

profile as the root-mean-square

A(f) = V(A2)(f), (2.8)

where the angled brackets indicate average over the input waveforms in the subbank. This choice
inherits the normalization of the input waveforms. We compute the amplitude match Eq. (2.7) for
all the waveforms; if the worst match satisfies the chosen bound we stop. If it does not, we add a new
subbank with a reference amplitude given by the waveform with the worst amplitude match. We
then optimize the choice of reference amplitudes using the k-means algorithm: we reassign waveforms
to subbanks by their best amplitude match, redefine the amplitude profile of the subbanks using

Eq. (2.8), and iterate these two steps a few times to achieve convergence. Finally we recompute the
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worst match and decide if a new subbank is needed, in which case we repeat the above process.
Having decided on the division of subbanks, we wish to find an efficient representation of the set

of phases 9 (f) as a linear combination of a small number of basis functions,

few

G(f5p) = 0(f) + Y ca®)Valf), (2.9)

where « is an integer index that enumerates the basis functions and (f) is an average phase
which we are free to define. From now on, we abandon the physical parameters p and describe the

waveforms in terms of their ¢, components:

h(fse) = Al exo [i(B() + Y cavalh)]. (2.10)

We now express the match between two waveforms using the above decomposition. As mentioned
earlier, template waveforms are defined up to arbitrary time and phase offsets, namely an additive
piece to the phase that is a linear function of the frequency A (f) = ¢+ 27 f19. We choose the first
two basis functions 1o (f) and ¢ (f) to span the subspace of linear phases so that ¢y and ¢; capture
phase and time offsets, respectively, and in particular o (f) = 1. If two waveforms are similar, their

inner product Eq. (2.1) to second order in dc,, is approximately

(h(c) | h(c+ dc))

B * A iy seava(h)
*4/0 Ys.ne
A2

0o .
~ 4ei600 / df
0

(2.11)

(f) . 1
S (/) {l—i—zgécalba(f)—Q Z 5o 65 Vo (f)Up(f)] +O(5c3).

a,f>1

This motivates a new inner product, with respect to which we will orthonormalize the basis functions:

Y )
(Wart) =4 | df Gy Yal ) a()) o12)

= da8,

which we enforce by a suitable choice of the basis functions v, (f) (described below). In particular,
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the first condition (g, %) = 1 is the normalization Eq. (2.3), and the two first basis functions are

1/’0(f) = 17
_f 2.13
n(n ==L 219
-7
where we define f :=4 [ dff"A%(f)/Sa(f).
Using orthonormality, Eq. (2.11) becomes
(h(e) | e+ be)) ~ e (1 - % ; 52 + O(6c%) (2.14)

Thus, for nearby templates the distance Eq. (2.5) is

1
e erse ™ 5 ) 0ch +0(0¢%), (2.15)

az2

which means that the mismatch distance is given by an Euclidean metric in ¢ space at small dis-
placements. We construct the bank on a regular grid in ¢ space with spacings Ac, < 1, chosen
sufficiently small so as to guarantee a minimal loss of match.

We note in passing that we can also compute the distance in the opposite limit of large separation,
which is useful for estimating the long-range correlations between triggers from different templates
during a search. Assuming now that the templates are separated by dc¢ = D#, with > n? =1
and D > 1, we can perform a stationary phase approximation around the frequencies f; at which

Yo ah(f;) = 0. This yields

2

(h(c)| h(c+ D)) = 4/ df Eg exp (z‘DZnawa(f)>

Z fj \/%GXP(_Z% +iD Za na"/}a(fj))
\/7 Sn(f5) >0 Na0(f5) .

(2.16)

Thus, the long-range correlation between two templates separated by D decays as 1/ VD (this holds
for the match without maximization over time).

In practice we choose the set of basis functions ¢, (f) as follows:

1. Define a discrete frequency grid {fx} (our choice is described in §2.3). The integrals over

frequency will be approximated by quadratures ), Afy .. .;

2. Compute a moderately large number of waveforms for random parameter choices (we use
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5x 10%), and extract the unwrapped phases, {1/()(fx)}, as illustrated in the top panel of
Fig. 2.2;

. Subtract the average phase ¥(f);

. Subtract the projection onto the first two dimensions so that the phase residuals

1

SO (f) = (s Z — ¥, %a) Ya(f) (2.17)

are orthogonal to ¥y and 1 (f) with respect to the inner product Eq. (2.12) (middle panel of
Fig. 2.2);

. Construct a matrix of weighted phase residuals

My, = wi 9D (f.),

(2.18)
wr =2 A(fr) V AL/ S (1),
and find its singular-value decomposition (SVD)
Miy = UiaDoVak- (2.19)

U,V are orthogonal matrices and we sort the axes so that the eigenvalues D, > 0 are in

decreasing order. From the orthogonality of V', i.e. >~ VorVar = dag, we can identify

Vark = wi Ya(fr) (2.20)

which satisfies the orthonormality Eq. (2.12) and defines the basis functions, with the conven-

tion that the « start at 2 (bottom panel of Fig. 2.2).

From Egs. (2.9) and (2.19) it follows that the components of the input waveforms are

D = U,y Dy, (2.21)

(o3

Since U is an orthogonal matrix, |U;o| < 1 and |c,| < D,, that is, the extent spanned by the

input samples along each dimension in component space is bounded by D,. This means that the

information in the templates is captured by the first few components along the larger dimensions,

and we can reduce the dimensionality of our description by dropping dimensions that have D, < 1.
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Figure 2.2: Construction of the basis functions ,. Top panel: (a subset of 100) input unwrapped
phases for random parameters. Middle panel: phase residuals after subtraction of the average phase

and orthogonalization with respect to time and phase offsets.
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2.3 Constructing a search quality template bank

In this Section, we apply the method developed in §2.2 to the construction of a template bank suitable
to the search of gravitational wave strain signals from binary neutron stars, neutron-star—black-hole
and binary black hole mergers.

We choose lower and upper frequency cutoffs of fin = 24 Hz, and fi,ax = 512 Hz, respectively.
These cutoffs are chosen such that the resulting loss in SNR? is lower than 2% for binary neutron star
templates (the amplitude profiles of these whitened waveforms, i.e., A(f)/ \/m , are essentially
independent of parameters since the cut-off scale is outside the LIGO sensitivity band). Formally,
the accumulated SNR? = 4 f024HZ dfA%(f)/Sn(f) ~ 4f5°1°2HZ dfA%(f)/Sn(f) ~ 10~2 outside our
frequency range. It is advisable to restrict the frequency range because the linear-free phase, and
thus the basis functions, grow rapidly at both ends (see Fig. 2.2), and our Taylor expansion Eq. (2.11)
would become inaccurate. As we noted above, it is exactly at these frequencies where the contribution
to the matched-filtering SNR vanishes. It is better to discard these frequencies rather than to try
and capture the negligible information content within by adding extra dimensions to the template
bank. Furthermore, this has the additional benefit that the strain data can be down-sampled during
analysis, which reduces the computational cost of the search.

We define the fiducial PSD empirically from the PSDs of 200 LIGO Handford and LIGO Liv-
ingston data files chosen randomly from the Second Advanced LIGO Observing Run (O2) re-
lease (Abbott et al., 2021). Each individual PSD was computed as described in (Venumadhav et al.,
2019). The fiducial PSD is constructed using the 10th percentile of all the sample PSDs in each
frequency bin. This choice is robust to large fluctuations in the sample PSDs, and is representative
of optimal detector conditions.

We choose a target parameter space of compact binary mergers satisfying the following bounds:

1M® <Mmgo <my < 100 M@, (222)

1/50  if my < 3Mg
q> (2.23)

1/18 otherwise,

[X1,2] < 0.99, (2.24)

where m; and mgy are the primary and secondary masses, respectively, ¢ = mo/m; < 1 is the mass
ratio, and x1 and yo are the individual dimensionless spin projections in the direction of the orbital

angular momentum. The parameter ranges and approximant used are not a constraint from the
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LIGO and Virgo detectors or the method presented here, but a documentation of the choices we
made. In particular, the mass ratio cut for BBHs was due to the calibration regime of the IMRPhenomD
approximant (Khan et al., 2016). For NSBH, we extend the maximal ¢ because a substantial part
of the NSBH parameter space lies outside the calibrated range of IMRPhenomD. For the purpose of
signal detection (as opposed to parameter estimation), the calibration tolerance is less stringent, as
long as a signal can be recovered by the model with some combination of parameters. Compared to
other template banks in the literature, the one presented here covers a larger spin range for low-mass
objects. Indeed, bounds of |x| < 0.05 (Canton and Harry, 2017; Brown et al., 2012; Roy et al., 2019)
or |x| < 0.4 (Brown et al., 2012) have been used in the BNS mass range, the former motivated by the
known binary neutron star spins and the latter by the known pulsar spins (Miller and Miller, 2015).
Neutron stars can in principle have dimensionless spins up to a mass-shedding limit of |x| ~ 0.7 (Lo
and Lin, 2011; Tacik et al., 2015). Other types of compact objects, including light black holes, may
in principle have even higher spins. This motivates us to cover this unexplored part of the parameter
space.

As mentioned before, the number of templates required to describe waveforms from low-mass
mergers is significantly larger than that for high-mass mergers, due to the larger number of wave
cycles in band. Searches with larger template banks suffer a penalty in sensitivity because of the
increased look-elsewhere effect. To prevent the high penalty inherent to the lower-mass region of
parameter space from affecting the higher-mass regions, we propose to divide the search space into
a number of regions and perform an independent search in each. Each search then only pays an
additional look-elsewhere penalty that a few other searches are performed, but is unaffected by the
potentially huge size of the other banks. This division can be interpreted as implementing a prior
about which templates are more likely to produce an astrophysical trigger: if we expect comparable
numbers of high- and low-mass signals but have vastly more templates at low-mass, any particular
low-mass template is much less likely to produce an astrophysical trigger. In addition, templates in
different regions of parameter space are sensitive to different types of noise transients in the strain
data. Dividing the search into several regions enables us to recognize the different types of noise
background that a search using each class of templates is subject to.

Under the above motivations, we divide the search space into regions based on the component
masses, and construct a separate template bank for each of them. The division is illustrated in
Fig. 2.3 and is defined as follows. We refer to binary components with masses between 1 and 3 Mg
as neutron stars, and to components with masses between 3 and 100 My as black holes. We make

three binary neutron star template banks, three neutron-star—black-hole (NSBH) banks, and five
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Figure 2.3: Component masses of the input waveforms used for constructing our template banks. We
divide the parameter space according to the component masses into three banks of binary neutron
star waveforms (BNS 0-2), three banks of neutron-star—black-hole waveforms (NSBH 0-2), and five
banks of binary black hole waveforms (BBH 0-4). We further divide each bank into subbanks (color
coded) under the criterion that the match of the amplitude profiles with a reference profile specific
to each subbank exceeds 0.96. The dots show the 5 x 10* input waveforms we use to build each
bank. We do not scatter plot here individual template waveforms in each bank, as those lack an
explicit representation in terms of the source physical parameters.

binary black hole banks. The banks within each of these categories are defined by bins in the
chirp mass M = (mym2)®®/(m; + mg)*/5. We put the bounds between the three BNS banks
at M = {1.1,1.3} M. This choice is motivated by the observation that the chirp masses of the
known Galactic binary neutron stars expected to merge within a Hubble time lie in a narrow range
(Farrow et al., 2019), and therefore we might expect more astrophysical signals from this chirp
mass range (which we further expand to account for the redshift of the detector-frame masses up
to z ~ 0.05, or a luminosity distance d;, ~ 200Mpc). In this way, we minimize the number of
templates in the most astrophysically probable BNS bank, BNS 1, enhancing our sensitivity to those
systems. A similar strategy was adopted in Refs. (Magee et al., 2019; Nitz et al., 2019b). For other
banks, we use logarithmic chirp-mass bins: we place the bounds between the three NSBH banks at
M = {3,6} Mg, and those between the five BBH banks at M = {5,10,20,40} M. We generate
5 x 10* input waveforms in each bank using the IMRPhenomD approximant (Khan et al., 2016). Based
on the amplitude profiles 4;(f) of the input waveforms, we further divide each bank into subbanks
as explained in §2.2. We find that a single subbank is sufficient for waveforms with m4 o < 15 Mg,
but multiple amplitude subbanks are needed for heavier mergers as the frequency at which A(f) is

cut-off falls within the LIGO sensitive band. Table 2.1 summarizes the parameters of all template
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Bank ma (MQ) ma (MQ) M (MQ) Qmin C Aca ]Vsubbanks dsubbanks Lmax,subbanks Ntemplates

BNS 0 <11 1 2 777.0 48 806
BNS 1 (1,3)  (1,3) (L1,1.3) — 005055 1 2 434.3 23856
BNS 2 > 1.3 1 2 824.6 43781
NSBH 0 <3 1 4 753.4 84641
NSBH 1 (3,100) (1,3) (3,6) 1/50 0.05 0.5 2 6,6 259.5,166.8 85149
NSBH 2 >6 3 5,4,4 87.5,61.2,9.4 15628
BBH 0 <5 0.55 1 3 270.6 8246
BBH 1 (5,10) 0.55 2 4,4 113.7,50.0 4277
BBH 2 (3,100) (3,100) (10,20) 1/18 0.05 0.5 3 3,4,3 41.5,33.5,10.3 1607
BBH 3 (20, 40) 0.45 3 2,2,2 11.7,10.8,4.9 225
BBH 4 > 40 035 5  2,2,2,1,129,2.0,1.1,0.7,0.5 46
Total 316 262

Table 2.1: Summary of the parameters of the template banks. Columns 2 to 5 describe the bounds
of physical parameter space that each bank is designed to cover. ( is a tunable fudge parameter
that controls the tolerance for removing nonphysical grid points. Ac, is the grid spacing that we
chose for each bank. Ngupbanks is the resulting number of subbanks in each bank. dg,pbanks and
Linax,subbanks are the dimensionalities of each subbank (sorted by increasing mean total mass) and
the size of their largest dimension, respectively. Niemplates is the total number of templates in each
bank.

banks. The banks differ greatly in size, which justifies the division of the search space into multiple
banks.

For each subbank, we apply the procedure outlined in §2.2 to define a set of basis phase functions
that generate a linear space and obtain the projections of the input waveforms onto that space.
These are shown in Fig. 2.4 for the example case of the BBH 0 bank, with the points color-coded
by their chirp mass. The first three dimensions capture practically all the diversity of the input
waveforms. Also note the large differences in size from the leading dimension to the sub-leading
ones. The number of cycles, proportional to M~5/3_ is the best-measured parameter and thus
should approximately correspond to the coefficient of the leading dimension (Cutler and Flanagan,
1994; Dhurandhar and Sathyaprakash, 1994). Indeed, this is observed in Fig. 2.4, confirming that
the decomposition is working as expected.

Next, we choose a grid spacing Ac, common to all dimensions and define a rectangular grid
in component space as follows. We force the point ¢ = 0 to be a grid point, because the SVD
typically aligns the highest density regions (where the input physical waveforms tend to be) with
the axes. Along each dimension, we add uniformly-spaced points until the whole range spanned by
the input waveforms is covered. We allow the spacing to slightly decrease so that the most extreme
input component is half the grid spacing away from the most extreme grid point. We do this for
each dimension and in the positive and negative directions separately. Finally, not all the points

of the rectangular grid describe physically viable waveforms. We only keep the templates that are
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Figure 2.4: Our three-dimensional BBH 0 template bank in the component space (black dots, which
at this scale appear as lines), projected along two different axes. Underlaid are the input waveforms
used to build the bank, projected according to Eq. (2.21) and color-coded by their chirp mass.

close to at least one input waveform, with the following criterion. For every input waveform set of
components, we keep the closest grid point and a patch of the grid around it, with size equal to the
corresponding dimension times a tunable fudge factor ¢ ~ 0.1.

Indeed, as Fig. 2.4 shows, the input physical waveforms do not fill the entire rectangular volume
but are distributed within some irregularly shaped region. Furthermore, the density of input wave-
forms is low in the low-M region, where the waveforms have more wave cycles in band and hence are
mutually more distinguishable. Holes can be produced in the physically viable region if the fudge
factor ( is too small, and there is an excess of unphysical templates if ¢ is too large. We choose the
Ac,, and ( parameters such that we achieve a good balance between economic template bank size
and high bank effectualness. The values chosen for each bank are reported in Table 2.1.

In Table 2.1 we observe a general trend with the mass: the banks for lighter mergers tend to have
fewer subbanks and the first dimension spans a wider range. By comparison, the banks for heavier
mergers have more subbanks, with smaller dimensions. The increase in the number of subbanks for
heavier mergers is caused by the cutoff frequency falling in the band, which increases the variety of
amplitude profiles.

There are interesting implications of the number of dimensions and their size for parameter
estimation. Given an astrophysical signal, in the limit of high SNR p, the parameter likelihood is
approximately given by P(d | p) o exp(p?|z|?/2), where z = (h(ps) | h(p)) is the complex match of

p to the best-fit parameters p,. (Roulet and Zaldarriaga, 2019). By virtue of Eq. (2.15), this means
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that the likelihood is approximately an isotropic Gaussian in terms of the ¢, coordinates, with a
width ~ 1/p. The number of dimensions can therefore be interpreted as the number of independent
parameters that can be measured, and the size of each dimension as the relative precision that can be
obtained for a fixed SNR, (with the caveat that we have restricted the frequency range; for example,
information about the tidal deformability comes from frequencies higher than our 512 Hz cutoff).

For example, for BNS (and effectively for light BBH) the banks have two dimensions, with a large
first dimension well correlated with the chirp mass (Fig. 2.4). The two measurable parameters are the
chirp mass, which indeed can be measured to much higher precision than for heavy systems, and a
combination of the mass ratio and effective spin which can be measured with a lower precision. These
are the leading contributions to the phase evolution as can be understood from the post-Newtonian
expansion.

An important advantage of our geometric coordinates is that they are well suited for a two-step
search that effectively achieves a smaller grid spacing at reduced computational cost. We realize this
by refining the template grid on demand around all triggers that exceed an appropriately lowered
SNR threshold (Venumadhav et al., 2019; Gadre et al., 2019). During the search, we first use a
coarse grid, and refine every trigger using neighboring templates from a denser grid that has half the
spacing along each dimension. The fact that the distance between ¢, components translates directly
to mismatch (Eq. (2.15)) makes this method straightforward to implement.

To characterize the effectualness of the bank at recovering the target physical signals, we gener-
ate a set of 10* random “test waveforms” within the parameter range of each bank, using the same
approximant with which the input waveforms were generated. We choose the parameters from a
distribution that is uniform in the component masses m1, mo and aligned spins X1, x2. In principle,
we would have to match each test waveform against every waveform in the bank to look for the
best match. To save computational effort, we select a candidate best-match based on the approxi-
mate metric Eq. (2.15) by extracting the phase of the test waveform () (f), projecting it onto the
linear space, 9 = (@ — ) 1h,), and finding the closest grid point with respect to the Euclidean
metric (2.15). Since a priori we do not know which subbank best describes the test waveform,
we pick the best candidate from each subbank and compute the match with all. The best match
with our reduced set of candidates is a lower bound on the best match over all the waveforms in
the bank. Rather than using Eq. (2.4) directly, we compute the match by following the detection
strategy described in Venumadhav et al. (2019): we account for the finite time resolution of the
Fourier transform by downsampling the waveforms to 512 Hz and sinc-interpolating the matched-

filter output twice. We show the result of this test in Fig. 2.5, in terms of the cumulative fraction of
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Figure 2.5: Effectualness of our template banks, tested on random waveforms drawn from a distri-
bution uniform in individual masses and aligned spins. The vertical axis shows the fraction of the
random trials that do not achieve a given match in the bank.

the matches with each bank before and after applying the grid refinement, which we use to assess
the collection threshold on the coarse grid and the effectualness achieved for each bank, respectively.

We find that depending on the bank 99% of the templates have a match higher than 0.95 to 0.98.

2.4 Conclusions

We have developed a general and computationally efficient geometric placement algorithm to con-
struct high-effectualness template banks for detecting gravitational waves from compact binary
mergers. We have constructed a basis of functions that generate a linear space of phase profiles
on which the mismatch metric is Euclidean. For the purpose of signal detection, we shift the focus
away from physical parameters to the linear coefficients for the basis phase profiles. We identified
which components carry the largest amount of information about physical waveforms and what is
the minimal set required to guarantee a desired match. The basis functions can be determined from

a set of input waveforms whose size is small compared to that of the bank. The basis functions
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can be generated with any frequency-domain waveform model. The resolution of the bank can be
decided independently after the basis functions have been found; in particular, it can be increased
arbitrarily at negligible computational cost since no further evaluations of the physical waveform
approximants need to be done. Our algorithm guarantees that within each of the few subbanks
that make up one template bank, all templates share the same amplitude profile, a property that is
critical for the correction of the power-spectral-density drift in signal processing.

We have applied our algorithm to the construction of a collection of eleven template banks
that together cover the parameter space associated to stellar-mass compact binary mergers with
aligned spins. We find the effectualness and total number of templates to be comparable to the
ones obtained by other algorithms in the literature (Canton and Harry, 2017; Roy et al., 2019);
detailed comparisons are difficult due to the different parameter spaces targeted in various works.
We note that our template bank includes rapidly spinning neutron stars, which to date have not
been searched for in the gravitational wave data. We implement a two-step search with a coarse
grid that we refine around triggers at the time of search, a task for which our new formalism is
ideally suited. This is an important step to reduce the number of templates while preserving a high
effectualness.

Looking forward, an accurate and fast interpolation from physical parameters to the ¢, compo-
nent space would be extremely useful for rapid parameter estimation. First, because waveforms can
be generated at negligible computational cost once the components are known. At least in cases
where analytical waveform models are not valid, waveform generation dominates the computational
cost of parameter estimation. Moreover, the likelihood would look close to an isotropic Gaussian
in terms of the ¢, coordinates due to orthonormality, making them a suitable choice from the data
analysis perspective. Other natural extensions of the work presented here are to include the effects
of precession, due to misalignment between the spins and the orbital angular momentum, and ec-
centricity. These are deferred for future work. The inclusion of eccentricity is currently limited by
the availability of robust public waveform generation codes.

The template bank described here is available at https://github.com/jroulet/template_

bank.
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Chapter 3

Early Constraints on Binary Black

Hole Populations

This Chapter has been adapted from Roulet and Zaldarriaga (2019).

We reanalyse the LIGO-Virgo strain data of the 10 binary black hole mergers reported to date
and compute the likelihood function in terms of chirp mass, mass ratio and effective spin. We
discuss the strong degeneracy between mass ratio and spin for the three lighter events. We use this
likelihood and an estimate of the horizon volume as a function of intrinsic parameters to constrain
the properties of the population of merging binary black holes. The data disfavour large spins.
Typical spins are constrained to @ < 0.4, even if the underlying population has randomly-oriented
spins. For aligned spins the constraints are tighter, with typical spins required to be around @ ~ 0.1
and have comparable dispersion. We detect no statistically significant tendency towards a positive
average spin in the direction of the orbital angular momentum. We put an upper limit on the fraction
of systems where the secondary could have been tidally locked prior to the formation of the black
holes (corresponding to merger times shorter than 10% years) f < 0.3. Four events are consistent
with having a maximally-spinning secondary, although one only marginally. We confirm previous
findings that there is a hint of a cutoff at high mass. The data favour distributions of mass ratios

with an average § 2 0.7.

34



3.1 Introduction

Binary black holes (BBH) have been observed for the first time with the recent advent of gravitational
wave (GW) observatories (Abbott et al., 2016a,b,c, 2017b,c,d, 2019a). The astrophysical origin
of these systems remains a major open question. Potential formation channels that have been
proposed in the literature include isolated binary evolution through a common envelope phase, a
chemically homogeneous evolution in a tidally locked binary, the dynamical formation in dense stellar
environments such as globular clusters or in triple systems and the formation in galactic nuclear disks
assisted by the presence of gas (references to various scenarios and how they fare in comparison with
the LIGO data can be found in Abbott et al. (2016¢)). Although the gravitational wave data are
yet insufficient to decide between these scenarios, constraints on specific models can already start
to be set (see for example results in Abbott et al. (2016¢); Vitale et al. (2017b); Talbot and Thrane
(2017); Farr et al. (2017); Hotekezaka and Piran (2017); Farr et al. (2018); Abbott et al. (2019b)).

To use the LIGO—Virgo events to constrain the properties of the population of merging black holes
we need the likelihood of individual events as a function of the parameters of the binary. Although
constraints on individual parameters have been reported by the LIGO and Virgo collaborations
(LVC), the full likelihoods have not been provided to the community yet (posterior samples have
been recently released). These are necessary in order to properly include the correlations between
parameters, which as we will see are substantial. Thus in this paper we set out to reanalyse the
LIGO—-Virgo strain data (under some simplifying assumptions) to obtain likelihoods for the events
and then use those to set constraints on the parameters of population models for the BBHs. The
attempts to put constraints on the populations already presented in the literature were limited by
the lack of the individual event likelihoods, so approximate constraints were based on properties of
the one-dimensional posteriors gathered from the LVC figures and papers.

Neglecting center-of-mass acceleration (e.g. due to a third body), BBH merger events are com-
pletely characterized by 17 parameters (two masses, six spin components, two angles for the orbit
orientation, two for the sky location, distance, merger phase and time, orbital eccentricity and peri-
center angle). However, the following key observations allow us to significantly reduce the number
of parameters considered.

First, not all the parameters are informative of the population properties. Population models
generally predict a homogeneous and isotropic GW-source distribution on scales resolvable by GW
detectors, so the source location is irrelevant to distinguish among these models. Similarly, the

source orientation and the time and phase of merger are uniformly distributed. Moreover, the signal
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dependence on these parameters is well understood, so the likelihood can be marginalized over them.
Second, not all the parameters can be constrained by the data at the current sensitivity levels.
Only one of the spin combinations, Y., is relatively well measured (see for example Vitale et al.
(2014, 2017a)). It is defined by
midy + mods -

=—— L 3.1
Xeft m1 + mo ; ( )

where @; = ¢S, /Gm? and L is the direction of the orbital angular momentum. Spin components
orthogonal to xeg are largely unconstrained. Thus, including these parameters in the analysis
increases the computational cost without significantly changing the results. Moreover, the waveform
templates currently used for detection and parameter estimation have no eccentricity, so LIGO is
not able to measure it. We will assume no eccentricity as well.

Third, astrophysical models for the populations are quite crude and thus small shifts in the
parameters or error bars are not likely to change the astrophysical conclusions one might draw. At
this stage one is interested in more qualitative questions such as whether the BHs are spinning fast,
whether the spins tend to be aligned normal to the orbital plane or what the range of masses of the
BBHs is.

As a result of these considerations, there is a clear hierarchy in the parameters based on how
much they can constrain BBH population models. xeg and the two masses are measurable and have
distributions dependent on the models (Mandel and O'Shaughnessy, 2010; Rodriguez et al., 2016b;
Zevin et al., 2017; Stevenson et al., 2017a). The other spin components and the eccentricity, while
dependent on the population model, are still poorly constrained by the data, so we henceforth ignore
them. The various angles, phase, time of merger and distance are uninformative of the population,
so they are nuisance parameters for our purposes. They have a known effect on the signal, so we
marginalize over them in §3.2.

We will parametrize the two masses in terms of the chirp mass M and the mass ratio ¢, given

by

(3.2)

because M, q are generally less correlated than my,ms, as these are the combinations that respec-
tively enter the GW waveform at the leading and the next-to-leading order in the post-Newtonian

expansion. To implement our restriction to a single spin variable, we will use the prescription that
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the spins are aligned with the orbital angular momentum, and that x1 = x2 = Xesr, Where x; = a; L.
At the current level of sensitivity the exact way one distributes the spin to obtain a given y.g does
not affect the parameter constraints in a meaningful way.

We will denote the informative parameters by p = (M, q, Xer). Unless otherwise stated, we
will refer to the detector-frame mass, whose value is redshifted from the source-frame mass by

M = (14 2) Msource- Both ¢ and x.g are independent of redshift.

3.2 Single-event likelihood

In this section we describe our computation of the BBH-parameter likelihood of a GW event and
its analytical marginalization over the nuisance parameters. What we do is rather standard but we
detail our procedure so that we can report all our simplifications. We first analyse the case of a
single detector.

We will define the noise-weighted inner product between two functions in the frequency domain

= (Nyf)

2|y :4Re/ AW g, 3.3

@y =ake [~ TN (3.3

where o2 (f) is the one-sided power spectral density (PSD) of the detector noise and the tildes indicate

Fourier transforms. Under the assumption that the noise is additive, stationary and Gaussian, the

single-detector likelihood £ = P(d | h) that the data d have been produced by a model GW signal
h is

1
log£:—§<d—h|d—h>. (3.4)

We have access to both d and h, because the strain data for all reported events and the approximants
for generating template waveforms have been released by the Gravitational Wave Open Science Cen-
ter (GWOSC) (Vallisneri et al., 2015). We use two different approximants, SEOBNRv4_ROM, based on
the effective-one-body formalism (Bohé et al., 2017), and IMRPhenomD, based on a phenomenological
approach (Khan et al., 2016), as a robustness test of our results. We estimate the PSD using the
PyCBC (Biwer et al., 2018) implementation of the median-mean spectrum described in Allen et al.
(2012) on a segment of 32s of data centered around each event. As recommended by the GWOSC,
we use a lower frequency cutoff of 10 Hz except for GW170608, which we cut at 20 Hz for Livingston
and 30 Hz for Hanford.
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We decompose the modeled signal into the form

i(2m fto—¢o) ho(f;p)

V(ho [ ho)

B(fapa aOath (bo) = ap¢€ (35)

Here BO( f;p) is the waveform template, that depends on the set of physical parameters p =
(M, q, Xerr) that are intrinsic to the binary. We work in the quadrupole radiation approximation,
i.e. that the dominant spherical harmonics of the emitted GW are (I, m) = (2,+2). The shape of hg
is then independent of the nuisance parameters, which only enter through ag, ¢g,to. The inclusion
of other multipole moments would introduce a dependence of the waveform shape on the orientation
of the binary (Cotesta et al., 2018). We divide hg by the norm to eliminate its arbitrary normal-
ization. We may then compute hg at any fiducial configuration, e.g. directly above the detector
at a 1 Mpc distance, with a face-on alignment. tg and ¢y are the time and phase of the merger as
seen in the detector. ag is the amplitude, which can be interpreted as the expectation value for the
signal-to-noise ratio (SNR) with which a signal identical to h would be measured in the detector,
given by \/W . For multiple detectors, each one will have different values of ag, tg, ¢9 that are
related by the various angles between source and detectors.

Combining (3.4) and (3.5) we obtain

log £ = 3 ((d] d) —2(d | )+ (b | W)

1 (3.6)
=3 ((d | d) — 2ao|2| cos(¢g — arg 2) + af) ,
where z(p, to) is the complex matched filter output (Allen et al., 2012):
4 > d*(f)ilo(f%p) 27 ft
2(p,to) = / et . (3.7)
\/ <h0 | h0> 0 U2(f)

Note that, for any set of parameters p, we can compute z for all ¢y with a single Fast Fourier

Transform.

3.2.1 Likelihood marginalization

We will now marginalize the likelihood (3.6) over the nuisance parameters ag, ¢g, to, since their priors
do not depend on the BBH population model, and we will keep the dependence on p. Our approach

will be to do the marginalization subject to the condition D that the event has been detected, that
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is, we will define

L(p)=P(d|p.D)
= /da0d¢0dtopprior(a07 ¢0; tO | D, D)‘C(aOa ¢07 thp | D)

= /daod%dtoPprior(ao,¢o,to | D)L(ao, ¢o,t0,P)- (3.8)

The last equality follows because, as we will show, the prior for ag, ¢g,ty does not depend on p
once conditioned to detectability; and the likelihood L is suppressed for combinations of parameters
that yield undetectable signals, since the data under consideration correspond to detections and
detectability is a property of the data only. P(d | p, D) differs from P(d | p) in that it excludes the
selection bias of the detector, whose sensitivity depends on p. Indeed, for data corresponding to

detections

P(d|p)=P(d|D,p)P(D|p), (3.9)

where P(D | p) is the selection bias (see Appendix 3.A). By imposing the detection condition D we
are taking the observer’s point of view, where the events analysed are conditioned to detection and
the selection bias enters in the form of a prior for p. We show the equivalence to the alternative,
physical approach usually taken in the literature (e.g. Fishbach and Holz (2017); Mandel et al.
(2019)) in Appendix 3.A.

We compute the prior in Eq. (3.8) as follows. ¢¢ and t¢ have uniform priors. ag is proportional
to D™, where D is the luminosity distance to the event. At low redshifts, the prior for the distance
is Pprior (D) o< D?, so demanding Pprior(D)dD = Ppyior(ag)dag yields Ppyior(ag) o aa4. For the event
to have been a detection, ag must exceed a certain threshold value, for which we take a conservative
(low) value of ag min = 9 (see fig. 9 of Abbott et al. (2016¢)).

The priors for the nuisance parameters are then

1
Prrior(d0) = — 3.10
P (¢0) 2r ( )
1
Pprior(tO) = T (311)
Sa’g min
Pprior(a()) = T;L’ ag > @0, min (312)
0

where T is the duration of the data being analysed and the priors have been normalized to integrate
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to 1 over their domains, as required by the detection condition.

Using (3.6), (3.10) and (3.12), the marginalization of the likelihood over ¢y and aq yields:

0o 27
d
/ daOPprior(ao) / (boﬁ - 3aO e 2 <d|d>[(|zl) (313)
a 0 271—

0,min

where we have defined

< I (aplz)e 2%
I(]2) = / %d (3.14)
a0, min 0

Here, Ij is the modified Bessel function of the first kind of order zero. In practice, we ignore the
constant factor in front of I(]z]) in (3.13) as it does not depend on the parameters. To implement
the computation of I(|z|) efficiently, we tabulate its more smoothly varying logarithm for several
values of |z| and interpolate in between.

Finally, we can further marginalize Eq. (3.13) with respect to ¢y using (3.7) and (3.11), computing

) 2 d¢0 dto T
daOPprior(aO) 7‘6 p7 a07¢07t0) I(|Z(pv t0)|)dt0 (315)
a0, min 0

by numerical quadrature.

Eq. (3.15) gives the one-detector likelihood marginalized over the nuisance parameters ag, ¢, to,
assuming non-precessing spins and that the dominant mode of GW emission is (I, m) = (2, £2). For
the case of multiple detectors, the total likelihood is the product of all the one-detector likelihoods,
but the marginalization should be made over the source parameters (location, orientation, phase
and time of coalescence), that correlate the values of ag, ¢, tg observed at each detector.

The case of LIGO is particularly extreme because by design, the two detectors at Hanford and
Livingston have the same orientation to a good approximation (plus a 90° rotation in the plane of
the detector). Under the approximation that the two detectors are co-aligned, a signal must have
the same phase ¢y and strain amplitude Ag = ao\/m in both detectors. The arrival times,
however, can be different depending on the location of the source, so these must be marginalized over
separately. The time delay between detectors is dt = t4 cos 0, where t; = 10.012ms is the GW travel
time between sites and 6 is the angle between the source and a line passing through both detectors.
Although an isotropic distribution of sources is uniform in cos# and thus in §t¢, the antenna pattern
of the detectors induces a selection bias because sources above or below the plane of the detectors

are more likely to be detected (Sathyaprakash and Schutz, 2009; Chen et al., 2017). The resulting
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prior for §t is well fit by (Cornish et al., 2017)

St 2
P, 1—(—= <t 1
orior (01) (10.65 ms) , |0t] < tq (3.16)

Since both detectors measure the same polarization, for any given ¢ we can combine the Hanford
and Livingston streams of data coherently into a single “combined channel”, dy o, in a way that

minimises the relative variance:

; du(f) _ _ioepsrdi(f)
-5t) = 0_2 H —e 2w fot )
dLIGO(f7 t) LIGO(f) (UIQ_I(f) U%(f)) 5 (3 17)

where H and L refer to Hanford and Livingston, and o5 = (05> + 07, ?) ™! is the noise PSD of
the combined channel. The minus sign accounts for the relative 90° rotation between the two LIGO
sites. Since the true value of ¢ is not known, this parameter has to be marginalized over. With the
combined channel, we can use the single-detector formulas to get the marginalized likelihood of the

LIGO network. From (3.17) and (3.7) we obtain

zLico(p, to, 0t) = fé/zzH(n to) — f11,/2ZL(P7 to + dt), (3.18)

where
<h0 | h0>a

fo= (ho | ho)u + (ho | ho)L.’

a € {H,L}. (3.19)

We finally obtain the LIGO-network marginalized likelihood using (3.15), (3.16) and (3.18):

ta

T
Liico(p) O</ dto dét Pyrior (0t)I (21160 (P, to, 01)]), (3.20)
0

—tq

which we evaluate by quadrature. Note that ag min is now interpreted as the detection threshold on
the LIGO-network SNR.

Although in this analysis we have been careful to analyse the data of both detectors coherently
we have checked that this is largely unimportant for the constraints on the populations we obtain.
One gets effectively the same constraints if one treats each detector independently using Eq. (3.15)
and combines them incoherently, log Lr.1go (p) ~ log L (p) +log L1, (p). The change in the likelihood
distribution compared to its width was on the few-percent level or smaller in all cases.

The first five detections reported to date, as well as the last one, are LIGO-only, for which (3.20) is

accurate. The remaining four events were also observed in Virgo. Since Virgo is not co-aligned with

41



LIGO, we cannot apply the treatment above. Instead, we make the approximation that ag, ¢g, to are
uncorrelated between LIGO and Virgo. This amounts to ignore the fact that we know the relative
orientations, locations and timing between those detectors. Since we are discarding information, this
approximation will increase the uncertainties in p without biasing the maximum-likelihood values.

For the three-detector events, then, we use

Ly (p) o ZLIGO(P)/O I (|zv(p,to)]) dto, (3.21)

where V stands for Virgo. As we explained before, treating the detectors independently is sufficient
for our purposes even for LIGO, so this is an excellent approximation in the context of our simplified
analysis.

Since we have kept only three parameters, it is practical to evaluate the likelihood (3.21) over
a grid in p = (M, q, Xer) for each event. We use a regular grid of 64% points, centered around
the values reported by the LVC and with an extent of twice the reported uncertainties (subject to
the bounds 0 < ¢ < 1,—1 < xeg < 1). In all cases we verify on random parameter values that
interpolating the likelihood from the grid has good agreement with the actual computation. By
using a grid, we have to compute the likelihood only once, and we are able to apply any prior easily
a posteriori. This is a key requirement for model inference, since the prior for the parameter values
depends on the population model. Working in a low-dimensional parameter space enables us to

circumvent the need for Monte Carlo Markov chains.

3.2.2 LIGO-Virgo reported binary black holes

The single-event marginalized likelihood computed in this way is shown as a function of the pa-
rameters in Fig. 3.1. We obtained very similar results using the SEOBNRv4_ROM and IMRPhenomD
approximants, so we only show the results for SEOBNRv4_ROM. The likelihood can be interpreted as
the posterior distribution that would arise form a uniform prior in M, q, xeg- In Appendix 3.B we
show each event in greater detail, and apply the LIGO prior as a check of our pipeline.

In the middle panel of Fig. 3.1 we superimposed the masses and spins of the black holes in X-ray
binaries (XRBs) as reported in McClintock et al. (2013). The variables for XRBs (m,a) and BBHs
(M, xeost) are different, so care has to be taken when comparing them. By definition (Eq. (3.2)), the
individual masses of the BBHs are guaranteed to satisfy ma < 2'/°M < my, with 21/% ~ 1.15. We
recall that y.g is a mass-weighted average of the spin components of the two black holes parallel to

the orbital angular momentum. We comment on the XRBs in §3.4.1.
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Figure 3.1: Marginalized likelihood contours enclosing 50% and 90% of the distribution for each of
the six events reported to date. In the middle panel, the persistent and transient X-ray binaries
reported in McClintock et al. (2013) are shown by ellipses, whose position in the plane represents
the black hole mass m and its dimensionless spin a. In the bottom panel, the case where the aligned
spins of the black holes are x; = 0, x2 = 1 is shown by a dashed-dotted line, as a proxy for what
the outcome of a tidally-locked-secondary progenitor would be (see §3.4.1).
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Figure 3.2: Parameter likelihood for the three lighter likely events, marginalized over M, as a
function of n = ¢/(1 + ¢)? and xe. At low mass, 7 and X are degenerate.

It is interesting to note that there are clear degeneracies between the parameters and that those
degeneracies change with the mass of the system. At low mass there is a strong degeneracy between
mass ratio and effective spin. This was of course expected (for an early discussion see Cutler
and Flanagan (1994)). Low mass binaries merge at a higher frequency and thus the detector is
more sensitive to the inspiral, where the post-Newtonian (PN) expansion is accurate. The leading
PN corrections including spin are approximately degenerate with the leading corrections including
mass ratio. This correlation is simpler when expressed using Y. and the symmetric mass-ratio
n = q/(1 + q)? as variables (Baird et al., 2013; Ng et al., 2018), as we show in Fig. 3.2 (compare
to the bottom panel of Fig. 3.1). It is apparent that a linear combination of the two parameters is
better constrained than each of them. We report this combination in Table 3.1.

At high mass we observe a different degeneracy, between the chirp mass and effective spin (middle
panel of Fig. 3.1). In General Relativity, the mass can be scaled out of the problem as a time-scale.
That is, a system with a smaller chirp mass and all other dimensionless parameters constant yields
the same waveform, but sped up, or shifted to higher frequencies. A positive aligned spin can mimic
this effect: it acts as an effective repulsive force between the BHs, which delays the plunge and makes
them merge at a higher frequency (Campanelli et al., 2006). Since at high masses the chirp mass
is not too well constrained, the degeneracy appears. Like before, a linear combination of M, xeg is
better constrained than either parameter, which we also report on Table 3.1.

Thus it is more convenient to change parameter basis and use a different combination for the
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Event A xerr + A(n—1/4)

GW151226 2.8 0.1670 03
CW151012 3 —0.0970 12
GW170608 3.4 0.0245:05

B (Mg) M — Bxest (Mo)

CW170104 8 25.9798
CW170814 8 26.1708
CGW170809 9 28.970-8
GW150914 12 31.0708
GW170818 11 327709
CW170823 15 3713

GW170729 27 4173

Table 3.1: Best constrained linear combination of 7, x.g for the three lighter events, and of M, xeg
for the seven heavier ones, with 90% confidence uncertainties. A and B are coefficients chosen to
minimise the correlation.

heavy and light events. In the new basis the constraints can be better approximated by a sim-
ple Gaussian. Such approximation can provide a quick way to make estimates of the population

parameters for astrophysical use.

3.3 Model inference

3.3.1 Universe- and detector-rates

We turn now to the task of constraining population models combining the data of all events. We
will do that by introducing a new set of population-parameters A, that will depend on the specific
model at hand and which we want to constrain. We make two remarks in that respect.

First, we note that what we can constrain is the rate at which BBHs with certain parameter values
(masses, spins) merge, which is not necessarily proportional to the abundance of those systems, since
their dynamics depend on the parameter values. Light binaries, for example, need to start closer in
order to merge in less than the age of the Universe, since GW emission is less efficient than for heavy
BBHs. Then, our definition of a model, parametrized by A, is given by the volumetric merger rate
R(ps, zrs | A), that can depend on the cosmological redshift z,s and the source-frame parameters
Ps = (M, q, Xerr). We recall that Mg = M/(1 + z.), while g, xerr are independent of redshift. R
can explicitly depend on redshift if the merger rate depends on time. For example, star formation

peaked at zs ~ 2, so if the delays between black hole formation and merger are short compared to
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the age of the Universe, the merger rate can be expected to be higher at large redshifts. Instead, we
will assume the rate to be uniform in comoving volume, so that R(ps | A)dps is the rate at which
BBHs with parameter values within dps of ps merge per unit comoving volume and source-frame
time.

Second, the rate of events observed at the detector network is not proportional to the merger rate
in the Universe, because of two effects. First, the strength of the GW signal, and thus the horizon
distance up to which an event can be observed, again depends on the parameters, inducing a selection
bias. And second, the detector- and source-frame masses differ because of cosmological redshift.
There are additional redshift considerations because GW detectors are sensitive to a luminosity-
volume, while we defined the rate per comoving-volume, and because the merger rate is redshifted.
To incorporate these effects, we introduce the detection rate A, such that A(p | A)dp is the rate of
detection of events with detector-frame parameters p per unit time. It is related to the physical rate

R by

R(ps|)‘)
A =4 s | dD. D225 17
(p|A) ﬂ'/dM/d : 1+er(5

1 DL dz M
=47 | dDyD? 1— o
7r/ L L(1+er)5< 1+deL>R<1+er’q7XH

Here, D, is the comoving distance to the source, and Dy, = (1 + z5)D.. is the luminosity distance.

(M — M1 + 2))f(p, Dr)
(3.22)

)\> f(p,Dr).

We have assumed a spatially-flat Universe. Following Fishbach and Holz (2017), we have defined
f(p,Dr) to be the fraction of events with p, Dy, that are detected, averaging over source position
(0, ¢) and orientation (¢,1)). We take the detection probability to be one if the expectation value of
its SNR exceeds a threshold pinresh = 9 and zero if it does not. In practice, the SNR measured by the
detector network will differ from its expectation value due to the noise. The measured SNR would
be obtained by maximizing |z11c0| over tg, 0t, p; its variance over noise realizations is approximately
1 (Allen et al., 2012). The effect that noise fluctuations have on detectability is important only near
the boundary of the sensitive volume, and we ignore it for simplicity. The expectation value of the

SNR of an event depends on the angles through
p=A0,0, W)ipo(p) : (3.23)

Drivpe)

where po(p) = (ho(p) | ho(p))'/? is the SNR. that an optimally aligned source at 1 Mpc would have,
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and the angular factor 0 < A <1 is given e.g. in Sathyaprakash and Schutz (2009). Then,

f(pa DL) = P(p > pthresh)

Pthresh
=P|A> D ¢ ) .
( po(p) FNpe]

(3.24)

We estimate P(A > A,) from a histogram of A computed over 10® isotropically distributed realiza-
tions of the angles. In Eq. (3.22), we use the redshift-distance relation given in Adachi and Kasai
(2012), taking the values of the cosmological parameters from Ade et al. (2016). We evaluate the
Dy, integral by quadrature.

To compute pg(p), we use a grid over p-space and a reference noise PSD. This is valid provided
that the shape of the noise curve of the detectors (i.e. the relative values of the PSD at different
frequencies) is approximately constant throughout the observation time, at least in the frequency
range relevant for BBH detection. We construct the reference PSD as the harmonic mean of the

combined-channel PSDs of the first six events: o2,

(f) = <0’ﬁ21(f) + Uif(f)fl, where 7 labels each
event and the brackets indicate an average over all the events considered. We consider three BBH
events in each observing run, so we expect that this average is representative of the typical PSD
during O1 and O2. We find that our results do not sensitively depend on the waveform approximant
used.

If one ignored the fact that the source-frame mass depends on redshift, the detector rate would

take the form A(p | A) = R(p | )V (p), where

1 Dy d
V(p) = 4r / dD.D? ( L 2

(gt 7 1+deL)f(p’DL) (3:25)

is the sensitive (comoving-) volume of the detector network. Fig. 3.3 shows the sensitive volume
computed with the SEOBNRv4_ROM approximant. V indeed depends on all the three parameters
M, q, xet- As already pointed out in Fishbach and Holz (2017), the mass dependence follows an
approximate power law V oc M?2 for ¢ > 0.5, i.e. heavier BBH mergers are louder. Moreover,
events with large xog (where the spins are aligned with the orbital angular momentum) are also
louder, because yeg first enters the post-Newtonian expansion as an effective force that is repulsive
for xefr > 0 (Campanelli et al., 2006). This effect is irrelevant for the dynamics of the inspiral while
the BHs are far apart, but it means that the signal lasts longer in the detector band before the
plunge, and thus more SNR is accumulated. Finally, the dependence with ¢ at fixed M is very weak

if ¢ 2 0.5, but the sensitive volume drops rather strongly for smaller g.
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Figure 3.3: Dependence of the detector network sensitive volume on the parameters p = (M, g, Xeft)-

The solid lines show V(M) for several values of et on a ¢ = 1 slice (top), or several values of ¢ on
a slice of constant x.g = 0 (bottom). The dashed line shows a power law o< M?2 dependence for

reference.

Another possible source of bias in the inferred merger rates would arise if the effectualness of the
template bank in recovering signals depended sensitively on the parameters. Although this effect
is present, its magnitude is much smaller than the sensitive volume dependence for BBHs with

M < 100 My computed here (Canton and Harry, 2017).

3.3.2 Model likelihood

The likelihood that a specific model for the merger rates will have the observed set of detections as

an outcome is

P{d} N ] /dde | p,D)P(p| D, N). (3.26)

i€events

Here, P(d; | p, D) is the single-event likelihood £; given by (3.21), and P(p | D, A) is the detection

prior for the event parameters p according to the model A, which is proportional to the detector
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rate (3.22) but normalized to [ dpP(p | D,A) = 1. Using this we can rewrite (3.26) as

[L [ dpLi(p)A(p | N)

P di A) x )
(13 o

(3.27)

which we can compute on a grid in A-space, given a merger-rate model R(p | A). The p integrals in
the numerator of (3.27) only have support near the measured parameter values of each event, since
L;(p) is suppressed elsewhere. The integral in the denominator runs over all sensitive parameter
space, which we take to be M € [4.3 Mg, 100 Mg], g € [0.03, 1], xer € [—1, 1]. The lower limit on M
holds if all astrophysical BHs have m > 5 Mg. We chose the lower bound on ¢ to include the regions
where the reported events have support. Note that such low values of ¢ are outside the calibration
region of the approximants (Khan et al., 2016; Bohé et al., 2017), although the effect for the purpose
of SNR estimation should be minor, and also the approximation that (I, m) = (2, 42) is less accurate
in that regime. In any case, those mass ratios are highly suppressed in the sensitive-volume weighting
(Eq. (3.25), Fig. 3.3).

To get a posterior distribution for the A-parameters, one should multiply the likelihood by a
prior Pprior(X). We will take those priors to be flat.

We emphasize again that the model likelihood (3.27) accounts both for selection effects due to
the sensitive volume and for the fact that the priors that one has to use to estimate the parameters

of each event depend on the merger-rate model that one is considering.

3.4 Astrophysical implications

With only 10 detections made so far, it is not yet feasible to constrain population models that are too
complicated. For this reason, we consider several simple models that intend to probe the different
variables separately, and apply Eq. (3.27) to put constraints on their parameters (see Taylor and
Gerosa (2018) for an alternative framework tailored to constraining detailed models).

As before, we repeated all analyses using two different waveform approximants (SEOBNRv4_ROM
or IMRPhenomD). We find that our results are robust to these choices, so below we only show the

results for the SEOBNRv4_ROM approximant.

3.4.1 Spin distribution

The distribution of spins of the merger events is currently one of the more informative data the LVC

has presented. First, the spin distribution might allow us to distinguish between various formation
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channels. For example in scenarios where black holes are dynamically captured into binaries one
expects each spin to be randomly oriented. For field binaries spins might tend to be aligned with the
orbital angular momentum. Tides in binary systems before the second black hole forms might spin
up the secondary and align it with the orbital angular momentum. For a chemically homogeneous
evolution of the stars to happen, high spins are required. Thus the LVC measurements of x.g can
potentially provide very interesting constraints.

Second, one could try to ascertain whether the properties of the merging black holes are similar
to those of black holes in X-ray binaries. In particular there is some indication that local black
holes are rotating fast. The middle panel of Fig. 3.1 shows the constraints on mass and spin of a
collection of black holes in XRBs from X-ray measurements. Heavy black holes in persistent sources,
i.e. with heavy companions, which are the natural progenitors of the LIGO/Virgo sources, are close
to maximally spinning. Furthermore this spin is usually interpreted as being natal and thus perhaps
should apply to the secondary black hole as well. By comparison, the y.g reported by the LVC
seem rather low. Of course yeg constrains only one of the components of the spin and combines
both black holes with weights depending on the mass ratio. We will try to use the likelihoods we
have computed for the LIGO events to say something about the spin magnitudes and orientations

assuming they all come from the same population.

Gaussian y.g rate model

In order to understand what the data are already telling us about the distribution of spins we first

consider a merger-rate model which is simply a (truncated) Gaussian in ye,

R(XGH | ﬁ? UXeff) S G(Xeff - Xﬁv GXeff)’ |XefT| < 1; (3'28)

we will use G(z,0) to note the Gaussian distribution

1 z?
G(m,o):mexp _ﬁ .

We allow a nonzero mean, as expected for example from an isolated-binary formation scenario, and
a dispersion oy, whose value can help us constrain the typical magnitude of the individual spins.

The relevant values of o, ., turn out to be < 0.2, so in the following we will make no distinction

2

between O st

and the variance of the truncated Gaussian. For simplicity, in this example we adopt

a uniform prior in M, q.
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Figure 3.4: Merger-rate model parameter likelihood for a Gaussian distribution of xeg given by
(3.28). Probability contours enclosing 50% and 90% of the distribution are shown in the two-
dimensional plot. The one-dimensional plots show the single-parameter marginalized likelihood.
The vertical lines show the marginalized distribution median and the minimal 90% probability
interval.

The A-parameter likelihood is shown in Fig. 3.4. The distribution is consistent with having zero
mean, with a mild preference for positive values. The figure also shows that o, _, = 0 is inconsistent
with the data. We find an upper 90% bound o, < 0.19.

To interpret these results in terms of the distributions of the individual spins we assume that
each spin is drawn from a distribution with average spin @ and dispersion o, with an angle relative
to the angular momentum whose cosine has a mean 1z and a dispersion o,. We will allow the two
angles to potentially be correlated so that (uus) = ruaﬁ. In this case we can compute the mean

and variance of Yeg:

Xeft = apl

3.29
o2 = 1+¢° 2 1+q2+2qT”62 L+ o2 ) . ( !
Xt (14q)2t " (1+4q) (I+q2 )"
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We can first consider situations in which there is no preference for aligned spins, i = Yeg = 0 and

2:

I

1/3, such as BBH populations that would arise in dynamical capture scenarios. The variance
of Xeg still depends on r,. In the two limits of no correlation (r, = 0) and perfect correlation

(r,=1) we get:

1 1+ q2
2 2 2
o =0)=- +0%) ————
chf(TM ) 3 (a a) (1 q)z’

L/ 1+¢°
2 2 2
1
O3 ee (T ) 3 <a + o, a q)Q)

The dynamical capture scenario would correspond to 7, = 0. One can envision a situation for a

(3.30)

binary star progenitor in which the spins are misaligned with the orbit but have similar directions,
leading to 7, = 1. For example, natal kicks at BH formation if the supernova explosion is asymmetric,
or perhaps the tidal interaction with a third body (Rodriguez and Antonini, 2018), would lead to
a spin—orbit misalignment. Spins that are misaligned with the orbit precess, which would spoil the
spin—spin alignment. Even so, precession conserves x.g to a large extent (Apostolatos et al., 1994;
Racine, 2008) so it does not affect the yog distribution. This holds as long as the orbital angular
momentum is bigger than the BH spins, which is generally the case unless the mass ratio is very
small, ¢ < x1v/c (so it is valid for the sources LIGO/Virgo are most sensitive to, see Fig. 3.3). The
limit of completely random misalignment between spin and orbital angular momentum considered
here is extreme, for example the necessary kicks would unbind most systems. In any event we
consider it to understand the limits of the constraints we get.

We first consider whether the data allow for high spins as might be hinted by XRBs. For equal
mass ratios and assuming @ ~ 1, these dispersions would be o, ,(r, = 0,¢ = 1) = 1/V/6 ~ 0.4
and o, (r, = 1,¢g = 1) = 1//3 ~ 0.6. Both values appear to be too large, indicating that the
data already do not favour large spins even if both of them are randomly oriented. One could
consider small mass-ratios, in which case for high spins the dispersions become o, . (r, = 0,¢ <
1) ~ oy u(ry =1, < 1) ~ 1/v/3 ~ 0.6, which again seems disfavoured.

In the binary progenitor scenario it is believed that the BHs have a preference for being aligned
with the orbital angular momentum. As an extreme version let us consider the case of perfect

spin-orbit alignment 7t = 1,0, = 0. The mean and variance become:

Xeft = @

3.31
9 1+ q2 9 ( )

Oxett — 1+ q)za
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Fig. 3.4 shows that the data are consistent with having zero mean for x.g, and at most around
Yot S 0.1, thus @ < 0.1. The data also require a non-zero variance, this demands o, # 0 (because
we have assumed perfect alignment, o, = 0 and the only source of variance for x.s in Eq. (3.29)
remains o,). Since a > 0, in this limit of small spins one cannot have o, > a. Thus, from Fig. 3.4

the only viable region for the aligned scenario is o, ~ @ ~ 0.1

Rate model for individual spins

Although we have already obtained most of the interesting physical conclusions from the previous
simple analysis perhaps it is warranted to be a bit more careful with the dependence on ¢g. Both
the model predictions Eq. (3.29) and the inferred yes for the events (Fig. 3.1) depend on ¢. In the
case of the data, for the lower-mass events there is a very strong degeneracy between y.g¢ and q.
It is only for small mass-ratios that the spin parameter becomes large. Therefore, when we look at
the constraints on o, larger values are allowed due to the possibility that the events have small g.
But the models tend to predict a larger variance in this regime, because in this limit only one of the
two spins contributes to xeg and there is no possibility of cancellation. Thus, it is worth considering
directly a prior on the individual spins rather than on xeg so that the ¢ dependence is automatically
incorporated.

With this small number of events we do not want to consider very complicated rate models.
We restrict ourselves to a two-parameter model that explores at the same time the typical value of
the individual spin magnitudes as well as their alignment with the orbit. We will consider a rate
model where each spin—orbit alignment g is uniformly distributed between iy and 1. For the spin
magnitude we know that in the limit of perfect alignment the data require that the spin distribution
have some variance. Thus we will consider a uniform distribution between a, — A, and a, + A, and
move a,. When a, approaches the boundaries only 0 < a < 1 is allowed. We will take A, = 0.1.

The likelihood for a.,z is shown in Fig. 3.5. We find that the typical spin magnitudes have a
preferred value a, &~ 0.240.2, in agreement with Wysocki et al. (2019). The alignment has an upper
90% bound of @ < 0.6, but there is support all the way up to @ = 1 if the typical spins are a, ~ 0.1,

consistent with our estimate in §3.4.1.

Tidally-locked progenitor

We now consider the effects of tides in the binary. For a field binary, before becoming a BBH the
progenitor was a binary star where the companion of the primary BH probably was a Wolf-Rayet

star (the core of a star that lost its envelope). The minimum initial distance required for the BBH to
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Figure 3.5: Parameter likelihood for a merger-rate model in which the BBHs have spin magnitude
a uniformly distributed between a, — 0.1 and a, + 0.1, and alignment between the BH spin and the
orbital angular momentum uniformly distributed between pumi, = 1 — 2 and 1.
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merge in the age of the Universe due to the emission of gravitational radiation is comparable to the
minimum distance required to tidally lock the companion star within its lifetime, and the time-scales
for these two processes are very steep functions of the distance, so two distinct subpopulations are
expected (Kushnir et al., 2016; Hotokezaka and Piran, 2017; Zaldarriaga et al., 2017; Qin et al.,
2018). In systems where the merger time is shorter than ~ 108 years, the secondary would be tidally
locked and rapidly spinning. If the merger time is longer, tides are too weak. We might thus expect
two distinct populations.

A strong natal kick to the second BH could misalign the orbit, but we ignore this case as it is
rather unlikely given that at the time of the second explosion the binary is already tight, and thus
the needed kick velocity to produce large misalignments is too large. We assign the high spin to the
secondary (lighter) BH.

In Figs. 3.1 and 3.B.1, 3.B.2 we used the prescription y; = 0, x2 = 1 as a proxy for the case in
which the Wolf-Rayet star is successfully locked, which defines the curve xeg = ¢/(1 + q) shown.
We find that GW170729, GW151226, GW151012 and GW170608 are consistent with this proxy.
The latter three are consistent if their mass ratio is low, while all the other, heavier events are more
consistent with ¢ ~ 1. Thus this would be slightly unlikely if all the events belong to the same
population. With the current error bars and small number of events this is at most a qualitative
hint. To further illustrate this, in Fig. 3.6 we show the likelihood as a function of a rescaled x.g in
units of the proxy ¢/(1 + ¢). The rescaled effective spin can take values between +(1 + ¢)/q, which
for a reference ¢ = 1/2 is £3. Zaldarriaga et al. (2017) predicted a bimodal distribution in this
variable, with peaks at 0 and 1 corresponding to the two subpopulations.

We implement a two-parameter model of this scenario, described by the fraction f of systems
where the progenitor has been tidally-locked, and the standard deviation o, in the effective spin
of the other subpopulation. We assume that the aligned spin of each black hole either comes from
the same zero-mean Gaussian distribution, or is unity for a fraction f of the secondaries. That is,

the standard deviation of the distributions of individual spin and effective spin are related by

_ 1+g¢

g =0 = —F—0
X1 X2 Xeff ?
V14 ¢?

valid for the black holes that do not come from a tidally-locked progenitor. This results in a

(3.32)

superposition of two Gaussian distributions for y.g:

R(ch‘f7q | fa JXeff) = (1 - f)G(Xef'fa UXeff) + fG (chf - L O—XQH) (333)

AN e
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Figure 3.6: Single-event likelihood in terms of y.g rescaled by the tidally-locked-progenitor proxy
q/(1 + q), and marginalized over ¢q. This channel predicts a bimodal distribution in this variable,
with peaks at 0 and 1.

The second term describes the locked-progenitor subpopulation, it has a positive mean due to the
maximally-spinning secondary, and a smaller variance because in this case only the primary is
random.

It should be noted that varying the prescriptions used for stellar winds and tides it can also be
possible to obtain intermediate distributions where the secondary may not be maximally spinning
after being tidally locked (Qin et al., 2018). However, it would be hard to constrain models more
complicated than (3.33) with the present number of events; and the upper bound on f would get
stronger as long as we interpret f as the fraction of maximally-spinning secondaries.

The likelihood for f, oy, is shown in Fig. 3.7. We see that the data are consistent with f =0
and puts an upper 90% bound f < 0.3. One can see a hint of two peaks, one in which the random
spin is used to explain all the events, leading to a larger variance, and the other where the higher-
spin events are explained using tides and the random component of the spins is low. The current
number of events is too small to discriminate but it should become possible in the next LIGO run.
Furthermore if a negative x.g were to be observed, especially a large one compared with the width

of the random component, then this scenario would be disfavoured.

Trends with mass and GW170729

It is important to notice that in the analysis so far we have assumed that all the LIGO events are

samples from a unique population. Fig. 3.1 shows some noticeable differences between the light and
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Figure 3.7: Parameter likelihood for a merger-rate model where a fraction f of the sources comes
from a tidally-locked progenitor. The distribution of g is given by (3.33).
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heavy systems. The most obvious difference is just related to the parameter combination than can
be measured best, the change in the degeneracy direction from being between spin and mass ratio
to being between spin and mass. Of course this is just a feature of the way the strain depends on
the parameters.

However, prior to the detection of GW170729, a hint that the lightest systems might be the
ones with a clearer positive spin was apparent. With such small number of events we did not dare
start splitting the sample in subsets and especially in such an a posteriori fashion. However, a trend
with mass could be expected on theoretical grounds and is sometimes used as input in population
synthesis models (see for example figure 1 of Belczynski et al. (2017)). Of course one has to worry
about those inputs because even though they might be physically motivated, some of them were
chosen after seeing the first set of LIGO BBHs.

GW170729 is heavy and has a moderately high spin, which breaks this potential trend and
could mean either that there is no such trend or that a different physical mechanism originated its
spin. Formation scenarios that would naturally account for this event include tidal-locking after a
common-envelope phase as discussed in §3.4.1; a chemically-homogeneous formation, which predicts
masses in the range of GW170729, near-equal mass ratio, aligned spins and a peak merger rate at
redshift 0.5 (Mandel and de Mink, 2016); or a repeated merger within the globular cluster scenario,
which would also have high mass and spin (although randomly aligned) and would represent a
fraction of the mergers coming from globular clusters that could be as high as 20% if the spins at

birth are small (Rodriguez et al., 2018).

3.4.2 Mass distribution

Another interesting question is the distribution in mass and the potential lack of heavy systems.
This was already pointed out in Fishbach and Holz (2017). Here we repeat that analysis with
six additional events, allowing for spin (through ye.g only) and including the source-frame mass
dependence on redshift. For simplicity we directly model the distribution as a function of M and
adopt a power-law prior with a cutoff. One could model the distribution of the individual masses and
make further assumptions about how correlated the two masses are. We feel that this is unnecessary
at this stage as the events have mass ratios ¢ ~ 1 and a cutoff in the mass distribution would also lead
to a cutoff in the chirp mass distribution at a very similar mass, especially given the current errors
and small number of events. We adopt a 5 M, low-mass cutoff and a free high-mass cutoff parameter

M nax for the model distribution. We recall that we assumed that the detector network is sensitive
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Figure 3.8: Parameter likelihood for a merger-rate model where the source-frame chirp-mass dis-
tribution follows a power law M “, with a low-mass cutoff at 5 Mg and a high-mass cutoff at

Minax-

to events with M < 100 M, which is similar to and less conservative than the mq + mo < 200 Mg
case analysed in Fishbach and Holz (2017).

We show our results in Fig. 3.8, which qualitatively agree with Fishbach and Holz (2017) and
give a preliminary indication of the presence of a maximum mass. The distribution median is
Mpmax = 41 Mg, which would correspond to m 2 = 47 Mg if ¢ = 1, also in agreement with Abbott
et al. (2019b). The lower bound on M, is determined by the heaviest event detected, GW170729.

One potential caveat is that the glitch background in LIGO might increase with mass, partially
compensating the increase in volume up to which heavy systems can be seen. To investigate this we
estimate how sensitive our results are to an increase in the background. From fig. 9 of Abbott et al.
(2016¢), the background of triggers during O1 is a steeply decreasing function of the detector network
SNR p and it is approximated by a straight line for log,, Nbg(p). This also holds for unmodeled

searches (Lynch et al., 2018). The background is dominated by detector glitches. GW signals from
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heavy BBHs have short duration and fewer cycles in the detector band, so glitches can more easily
resemble them. The background level is then dependent on the mass scale and a stricter threshold
on the SNR might be necessary for heavier events, which has the effect of reducing the sensitive
volume relative to our previous estimate (3.25). We can make a simple estimate of this effect as
follows. In an Euclidean spacetime (setting z,s(Dr) = 0 in Eq. (3.25)), the sensitive volume scales
as V(p) x p3(p), since the SNR of a source decays as D~1. If we allow for a parameter-dependent

threshold on the SNR, V' gets a correction

V(p) _ pO(p) ’ pthresh(po) 3
V(po) (PO(PO)) ( Pthresh (P) ) ’ (3.34)

where pg is some reference parameter value. The first term in the right hand side comes from
Eq. (3.25), and the second describes the reduction in sensitive volume if the threshold pipresh(p) >
pihresh (Po). In an expanding Universe, the (1 + z,5)~* term in Eq. (3.25) suppresses the large-
luminosity-distances contribution to V', so the relative decrease in sensitive volume due to raising
the threshold for large masses is smaller than the estimate (3.34).

As an example, if the glitch rate increased from the one reported in fig. 9 of Abbott et al.
(2016¢) by a factor of 100 above a certain chirp mass, the SNR threshold would have to be raised by
Apihresh &~ 1.07 for those events to have the same false-alarm rate. Assuming a detection threshold
of pehresh (Po) = 9, the sensitive-volume correction factor in Eq. (3.34) is 0.71. There is no indication
of such a dramatic increase in the background even when going beyond M > 100 M, (Abbott et al.,
2017a). A thorough test with an injection campaign was performed by Abbott et al. (2019b) and
found correction factors consistent with this estimate. Thus we believe the hint of a cutoff mass to

be a robust result.

3.4.3 Mass-ratio distribution

Finally, we consider what we can say about the mass-ratio distribution. The likelihoods themselves
are rather flat in ¢ so we do not expect particularly good constraints. We consider a power law
in g and try to constrain the exponent. We present our results in Fig. 3.9. We find that typical
mass ratios below 0.7 seem disfavoured. For comparison, the average mass ratio of a distribution
where the binary masses are independently taken from a power-law P(m) x m~® isg=1—1/a.
From Fig. 3.8 we obtain that a ~ 3 is favoured by the data if we impose no cutoff (Myax — 00);

independent draws from this distribution which would yield § = 2/3, consistent with our lower

bound on §. If we use the Salpeter mass function o = 2.35, then § = 0.575, which is disfavoured.
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Figure 3.9: Parameter likelihood for the average mass-ratio g, in a merger-rate model where the
mass-ratio distribution follows a power law ¢, with a adjusted to yield (¢) = 3.

A uniform distribution in ¢ would have § = 1/2, also disfavoured. We note that the statement
that equal mass-ratios are favoured holds for the physical merger-rate in the Universe, even after
accounting for selection effects due to the higher sensitive volume of the detector to those systems.

Due to the degeneracy between spin and mass ratio we could consider the combination of a
Gaussian in x.g and a power law in q. However, when this is done we find the constraints on the

variance of the Gaussian and the mean g to be the same as those we report in Figs. 3.4 and 3.9.

3.5 Discussion

It is clear that even with the small number of events reported so far the LIGO-Virgo data already
provide hints that have interesting astrophysical consequences. Most interestingly, the data suggest
that the BHs do not all spin rapidly, perhaps in tension with the simplest interpretation of the X-ray
binary results. This is even true in dynamical scenarios where the spins are randomly oriented and
even more so in the field binary case where there might be a tendency towards alignment between
spins and angular momentum.

These results are largely consistent with those presented in Farr et al. (2017), where aligned high

spin distributions were disfavoured. Quantitatively we differ because we have more events, have a
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better estimate of the likelihoods for each event including the degeneracy between mass ratio and
spin, and rather than comparing discrete models we have continuous parameters that connect them,
allowing us to perhaps have a better sense of the typical spins that are favoured or disfavoured in
individual scenarios.

There are many potential explanations for the difference between the typical spins of high-mass
XRBs and the LIGO/Virgo systems. Of course both data sets contain a small number of events
and thus this could be a statistical fluke. Perhaps there is an unrecognized systematic in one or
both measurements. There could be astrophysical explanations, perhaps these systems come from
different populations. There could even be exotic explanations such as the effect of an axion-type
particle that through superradiance extracts energy from rotating black holes to produce a cloud of
axions around them.

At the current time the simple test of seeing if the spin distribution has a tendency towards
positive spins is not powerful enough. We do not detect a mean to the distribution and thus cannot
use that to distinguish between field binary and dynamical scenarios. Regarding tides, four of the
events are consistent with having a maximally spinning secondary, although for the lighter three this
only happens if the mass ratio for these events is lower than for the heavy ones, and in particular
GW151012 is only marginally consistent. With the data at hand we cannot make a conclusive
statement but again it is clear that the next few events are going to be very interesting.

Regarding the mass distribution we confirm previous findings that there is a hint of a cutoff in
mass. The distribution of mass ratios is not so well constrained, in part due to the degeneracy with
the spin, but distributions where the BBHs have comparable masses are favoured.

The code and data used in this work are publicly available at https://github.com/jroulet/

constraints_bbh_populations.
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Appendix

3.A Selection bias

In this appendix we discuss in further detail the equivalence between our derivation of Eq. (3.27)
and others present in the literature. Letting D be the proposition that the event was detected (and

—D its negation), we can write the marginalized likelihood as

P(d|p)=P(d|D,p)P(D |p)+ P(d| -~D,p)P(-D | p)
=P(d|D,p)P(D|p)+P(-D|d,p)P(d|p) (3.35)

=P(d|D,p)P(D|p).

The last equality follows because the data segments we analysed were detections, and the criterion
for detection depends only on the data, so P(=D | d) = 0. The term P(D | p) is the observational

bias and can be computed as

oo

P(D | p) = / P(ao | p)dag

0,min

= / o P(D)dD (3.36)
0
x V(p),

where Dy, (p) = v/{ho | ho)(P) Mpc/ag min. The probability of detection depends on the parameters
because we are keeping only a subset p of the parameters, and in particular marginalizing over
distance and angles (cf. Loredo (2004); Mandel et al. (2019), keeping all the parameters would
lead to a detection probability of 1 so they can omit this term). Using Eqs. (3.35) and (3.36) we

can readily show the equivalence between our Eq. (3.27) and eq. (7) of Mandel et al. (2019). The
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expressions differ only in the integrands of the numerators of each term in the product:

P(di | p, Di)A(p | A) = P(di | p, Di)V(p)R(p | A)
o P(di | p, Di)P(D | p)R(p | A) (3.37)

= P(d; | p)R(p | N)

which is the form found in Mandel et al. (2019). Note that Eq. (3.37) is the posterior for p under a
prior labeled A. In Fig. 3.B.1 we use the LIGO prior as an example.

We have expressed Eq. (3.27) in terms only of P(d | p,D) and A(p | A) instead of the more
physically-interesting quantities P(d | p) and R(p | A). Our motivation is that this expression is
perhaps more natural from the perspective of the observers, since the outcome of the observations can
only depend on the event rate at the detector and the events analyzed will necessarily be conditioned

to detection.

3.B Comparison with LVC results

In Fig. 3.B.1 we show the likelihood on the M, q, xog parameter space for each event, and the
posterior distribution computed using the same prior as LIGO to facilitate the comparison. Our
reanalysis recovers both the one- and two-dimensional marginalized posteriors accurately, which is
compelling evidence that our approximations are working well and capture the degeneracies present.
The prior LIGO used for the astrophysical distribution of parameters is uniform in the individual
masses, spin magnitudes and cosine of spin tilts. This induces a nonuniform prior on the variables
we adopted. The transformation from mq, ms to M,q is given by Eq. (3.2), taking its Jacobian
yields
1 1 1/5
Pri1co prior(M, q) 4 [(1 + q) (1+ Q)} M. (3.38)

Using Eq. (3.1), we can relate the probability of x.g to the individual aligned spins x;:

1
_l’_
P(xerr | q) = // dyx1dxe 5<Xeff - Xll_i_qqm) P(x1,x2)- (3.39)
-1

In the LIGO prior, the individual spins are uncorrelated and taken from the same distribution.
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Figure 3.B.1: Parameter estimation for the BBH merger events reported to date (continued in
Fig. 3.B.2). For each event, the plots on the diagonal show the marginalized likelihood (dashed
line), detection prior (dotted) and posterior (solid) distributions for each parameter. The detection
prior accounts for selection bias, and the likelihood is conditioned to detection. For each distribution,
vertical lines show the median and minimal interval enclosing 90%. Here we use the same prior as
LIGO to facilitate comparison to the reported values (black vertical line with shaded area). By
“LIGO posterior” we mean the posterior distribution we computed using the LIGO prior. Off-
diagonal plots show the two-dimensional marginalized likelihood and posterior. Probability contours
enclosing 50% and 90% of each distribution are shown. For the g—x.g plot, the case where the aligned
spins of the black holes are x; = 0, x2 = 1 is shown by a dashed-dotted line, as a proxy for what
the outcome of a tidally-locked-secondary progenitor would be. The likelihood can be interpreted
as the posterior distribution arising from a uniform detection prior in M, q, xem, so it illustrates
the influence of changing the prior. The values reported by the LVC are shown by black dots with
error bars. The LVC did not report the detector-frame chirp mass for the last six events (from
GW170608 on), so for those cases we show their source-frame value corrected for redshift, without
an uncertainty. 65
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Figure 3.B.2: Continuation of Fig. 3.B.1 displaying GW170729, the heaviest and highest-y.g event.

Theref0r67 Prico prior(Xla XQ) = PX (Xl)PX (X2)7 with

Py(x) = /01 da/11 %5@ —ap)

(3.40)
1
=—zloglxl,  Ixl=1.
Using this, we can carry out the x; integral in Eq. (3.39):
b
PL1GO prior(Xest | @) = (1 + Q)/ dx2 Py (1 + @)xer — ax2) Px(x2), (3.41)
where the integration limits are
1 off — 1
a4 = max {Hq)Xﬂ, 1}
1 (3.42)

b:min{(1+q)xeﬂ+l,l}.
q

In practice, we compute the integral in Eq. (3.41) by quadrature (see Ng et al. (2018) for an analytical
approximation). The total LIGO prior for M, g, x.s is given by the product of Egs. (3.38) and (3.41).

The LIGO detection prior shown in Fig. 3.B.1 is obtained by multiplying the astrophysical prior
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by the sensitive volume of the detector. We show the detection prior so that any deviations of the
posterior from the prior are driven by the data and not by the parameter-dependent sensitivity of

the detector.
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Chapter 4

Population Inference Combining

Confident and Marginal Events

This Chapter has been adapted from Roulet et al. (2020).

We perform a statistical inference of the astrophysical population of binary black hole (BBH)
mergers observed during the first two observing runs of Advanced LIGO and Advanced Virgo,
including events reported in the GWTC-1 and TAS catalogs. We derive a novel formalism to fully
and consistently account for events of arbitrary significance. We carry out a software injection
campaign to obtain a set of mock astrophysical events subject to our selection effects, and use the
search background to compute the astrophysical probabilities pastro Of candidate events for several
phenomenological models of the BBH population. We emphasize that values of pastro depend on
both the astrophysical and background models. Finally, we combine the information from individual
events to infer the rate, spin, mass, mass-ratio and redshift distributions of the mergers. The
existing population does not discriminate between random spins with a spread in the effective spin
parameter, and a small but nonzero fraction of events from tidally-torqued stellar progenitors. The
mass distribution is consistent with one having a cutoff at my.x = 41fé0 Mg, while the mass ratio
favors equal masses; the mean mass ratio ¢ > 0.67. The rate shows no significant evolution with
redshift. We show that the merger rate restricted to BBHs with a primary mass between 20-30 Mg,
and a mass ratio ¢ > 0.5, and at z ~ 0.2, is 1.5-5.3 Gpc=3yr~! (90% c.L.); these bounds are model
independent and a factor of ~ 3 tighter than that on the local rate of all BBH mergers, and hence
are a robust constraint on all progenitor models. Including events from our catalog increases the

Fisher information about the BBH population by ~ 47%, and tightens constraints on its parameters.
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4.1 Introduction

The Advanced LIGO (Aasi et al., 2015) and Advanced Virgo (Acernese et al., 2014) detectors have
detected gravitational waves (GW) from a number of compact binary mergers since the start of the
first observing run in 2015. Summarizing their first and second observing runs (O1 and O2), the
LIGO and Virgo Collaboration (LVC) released a catalog (GWTC-1, see Ref. (Abbott et al., 2019a))
with ten BBH mergers and one binary neutron star (BNS) merger. The recently concluded third
observing run (O3) has yielded a second BNS merger (Abbott et al., 2020a) and three new BBH
mergers (Abbott et al., 2020b,d,c), with more to be announced.

The LVC has released the raw strain data from O1 and O2 (Abbott et al., 2021), and several
independent teams have reanalyzed this dataset (Nitz et al., 2019a, 2020; Antelis and Moreno, 2019;
Venumadhav et al., 2019, 2020; Zackay et al., 2019a). In previous work, we identified nine additional
BBH events with significance ranging from high to marginal levels (Venumadhav et al., 2019; Zackay
et al., 2019b; Venumadhav et al., 2020; Zackay et al., 2019a) (for simplicity, we will refer to these
events using the abbreviation IAS, after the Institute for Advanced Study). Several of these events
were independently confirmed by Ref. (Nitz et al., 2020), who also identified another significant
event.

Despite being among the most detectable and accurately modeled GW sources, the origin of merg-
ing BBHs remains unclear. A variety of astrophysical formation mechanisms have been proposed,
including isolated binary stellar evolution through a common envelope phase (Nelemans et al., 2001;
Belczynski et al., 2002; Voss and Tauris, 2003; Belczynski et al., 2007, 2008; Dominik et al., 2013;
Belczynski et al., 2014; Mennekens and Vanbeveren, 2014; Spera et al., 2015; Eldridge and Stanway,
2016; Stevenson et al., 2017b; Mapelli et al., 2017; Giacobbo et al., 2017; Mapelli and Giacobbo,
2018; Kruckow et al., 2018; Giacobbo and Mapelli, 2018), chemically homogeneous stellar evolution
(Marchant et al., 2016; de Mink and Mandel, 2016; Mandel and de Mink, 2016), or dynamic capture
and hardening of binaries in dense stellar systems such as globular clusters (Zwart and McMillan,
1999; O’Leary et al., 2006; Sadowski et al., 2008; Downing et al., 2010, 2011; Samsing et al., 2014;
Rodriguez et al., 2015, 2016a; Askar et al., 2016), nuclear clusters (Antonini and Rasio, 2016; Petro-
vich and Antonini, 2017), and young open clusters (Ziosi et al., 2014; Mapelli, 2016; Banerjee, 2017;
Chatterjee et al., 2017). Alternatively, mergers can be prompted by interactions with gas and stars
in AGN disks (McKernan et al., 2012; Stone et al., 2016; Bartos et al., 2017), or through the Kozai-
Lidov effect in the presence of a supermassive black hole (Antonini and Perets, 2012) or in triple (or

higher multiplicity) systems (Antonini et al., 2014; Kimpson et al., 2016; Antonini et al., 2017; Liu
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and Lai, 2018; Hamers et al., 2015).

The growing number of detections has spawned many efforts to statistically characterize the
population of these systems, with the main goal of comparing the observed sample statistics with
the predictions of different proposed formation channels. The distributions of the BBH merger rate,
masses, spins and redshifts have been studied in the literature (Vitale et al., 2017b; Talbot and
Thrane, 2017; Abbott et al., 2016¢; Fishbach and Holz, 2017; Hotokezaka and Piran, 2017; Fishbach
et al., 2018; Farr et al., 2018; Wysocki et al., 2018, 2019; Roulet and Zaldarriaga, 2019; Abbott et al.,
2019b; Fishbach and Holz, 2020). Several of these works were based on the entirety or a subset of
the ten confident BBH detections reported in GWTC-1. Other recent works also included events
from the IAS catalog in the BBH population analyses (Piran and Piran, 2020; Gayathri et al., 2020;
Galaudage et al., 2020; Pratten and Vecchio, 2020). However, when considering the events as a
population, we have to appropriately account for the marginal significance of some of these events:
for such events, the probability of astrophysical origin itself can depend on the population model
being considered (this was previously noted in Ref. (Nitz et al., 2020)). Moreover, the probability of
astrophysical origin for a candidate depends on the search pipeline that found it, since the definition
involves the levels of comparable foreground and background triggers, subject to the same selection
effects. Hence, the sensitivity of the search pipeline is a crucial piece of information when inferring
astrophysical event rates and correcting for selection effects. In this work, we inject synthetic signals
into the O1 and O2 runs to empirically measure the spacetime-volume our pipeline is sensitive to.

In this paper, we develop a general framework to treat the problem of population inference using
detections of arbitrary significance, and apply it in an analysis that accounts for the BBH events
in the GWTC-1 and IAS catalogs. This problem was first studied by Gaebel et al. (2019), who
introduced a formalism for population inference using a mixture of noise and signal triggers. They
demonstrated its implementation for a simulation on a simplified parameter space with analytical
prescriptions for the foreground and background distributions. Our work expands on this by devel-
oping a framework that can be cast in terms of a small number of quantities that are straightforward
to compute, and thus more amenable to real-data applications, and implementing it on the O1 and
02 datasets. Galaudage et al. (2020) developed a different implementation and applied it to include
the events in the IAS catalog. We address some issues with this treatment, and how our formalism
deals with them, in Appendix 4.C.

Three BBH mergers from the O3 run have been recently reported (Abbott et al., 2020b,d,c). We
exclude them from the present analysis since as highlights from a (yet unreleased) O3 catalog, they

cannot be simply added to a set of homogeneously selected events for population inference.
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We organize the rest of the paper as follows: in §4.2, we derive the likelihood of a population model
as a function of events of arbitrary significance, and then we present the algorithm to compute in
practice the various quantities involved. In addition, we estimate the gain in the Fisher information
from the inclusion of marginal triggers, and use it as a guide to set a convenient threshold for which
triggers to include in the analysis. In §4.3, we report new constraints on the astrophysical population
of BBH mergers. In particular, we study the merger rate distribution’s dependence on spin, mass,
mass ratio and source redshift. Finally, we draw conclusions in §4.4. We quantify the sensitive
volume—time of our search pipeline by means of software injection in Appendix 4.A. We describe
technical details of computing the astrophysical probability, pastro, in Appendix 4.B. We address the
relation to previous related work in Appendix 4.C. We provide evidence that our method is robust

to importance sampling stochastic errors in Appendix 4.D.

4.2 Framework

In this section we derive the likelihood function for the set of triggers above a given threshold in a
pipeline due to a distribution of BBHs, present an algorithm for its practical evaluation, and derive
the amount of Fisher information contained in the marginal triggers. The likelihood constrains
which population models are consistent with the data. We will follow the notation of Mandel et al.

(2019), see also Refs. (Thrane and Talbot, 2019; Vitale, 2020) for an introductory treatment.

4.2.1 Model likelihood

As a preliminary matter, we define the data as the observable quantities that detectors output,
along with any quantities derived from this that we use in the search. A datum d consists of (a)
a measured strain timeseries at each detector, long enough to capture all astrophysical information
available in a putative signal, and (b) derived quantities, e.g. detection statistics or statistics used
for signal quality tests. Note that this excludes BBH parameters such as masses and spins, which are
not directly observable. The full dataset (here, O1 and O2) can be thought of a large set of points
in this high-dimensional space, one for every datum. These realizations contain detector noise plus,
in comparatively very few cases, astrophysical signals.

We restrict the analysis to a small set of selected data realizations {d;} (“triggers”) defined under
some criteria such that each excluded individual datum is very unlikely to contain an astrophysical
signal. This set may contain both secure and marginal events. We will select the triggers using the

search pipeline described in Ref. (Venumadhav et al., 2019) and a threshold on its detection statistic
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(henceforth “detection threshold”, we discuss our choice in §4.2.4); it is the task of the search pipeline
to compute the detection statistic for all data. We will assume triggers to be independent: since
triggers are rare, the fact that a trigger uses a sample does not affect significantly the total number
of available samples for other triggers to happen. The assumption of independence could be invalid,
though, if different triggers of astrophysical origin were produced by multiple images of a single
gravitationally lensed source (Dai et al., 2020); we will not consider such possibility in this analysis.

Under this assumption, the search for BBHs in the full dataset is a Poisson process that generates

aset {d;} of Nirig triggers in the above-threshold subregion of the phase space of data. The likelihood

> , (4.1)
d;

where N, () is the expected number of triggers in the set with astrophysical origin under a model

of observing this set of triggers is given by the Poisson distribution

Ny

P(Nuig, {di} | A) = (A + dd

e~ Na()=Ny Nis [ g
Norg! d

i=1 d;

for the source population described by a set of parameters A, N, is the expected number of noise
background triggers in the set, and the terms dN,/dd,dN;,/dd are the rate densities for triggers
under the astrophysical and background hypotheses.

We express the expected rate density of astrophysical triggers in terms of the physical merger

rate through
dN,
dd

O, (1.2

» :/dep(d 10

where 0 are a set of parameters that characterize each merger (e.g. masses, spins, distance, sky
position, orbital orientation, time, etc.) and P(d | ) is the parameter likelihood. For triggers that
pass all signal quality tests, a Gaussian noise model is typically a good description of the parameter

likelihood:

P(d | 6)  exp (;<d —h(O) | d— h(9)>) : (4.3)

where h(f) is the GW strain model and, in a slight abuse of notation, d is the measured strain. As
is standard in the GW literature (Thorne, 1987), the argument of the exponential in Eq. (4.3) is the

inverse-variance weighted inner product between two real-valued time series x and y,
wly)=4re [ar T, (4.4)
0

where S, (f) is the one-sided power spectral density (PSD) of the detector noise, tildes indicate

Fourier transforms, and asterisks complex conjugation.
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The expected rate density of background triggers also depends on the detection pipeline. We
will estimate it using the method of timeslides, see Appendix 4.B for further details.

The expected number of astrophysical triggers is

(4.5)
(0).

In the first line, the d integral runs over all data realizations that would result in a pipeline statistic
above the detection threshold. In the second line, we introduced the detection efficiency for a source

with parameters 6:

pace(8) = /d _daP(]6) (4.6)

The probability pastro,; that the ith trigger is of astrophysical origin depends on models for both
astrophysical events and noise triggers. In this work, we will fix the model for noise triggers, but

vary the astrophysical one. Given an astrophysical model described by parameters A,

dN. (V)

AN, (\) + AN |, (1)

pastro,i()\) =

For practical evaluation, we rescale Eq. (4.1) into the following form while keeping the dependence

on the model parameters A,

P(Nirig, {di} | N)
P(Nirig, {di} | Ao)

P(Nixig, {di} | A) o

Nisie
(V) H ANa(A) + dNy.
AN, (o) + ANy |,
brig 4.8
A)J\i—[ dNa(Xo) n dNy (48)
., /\0 AN, (A) + ANy |, T AN, (ho) + AN |,
d di di

ng

e Ne® H [dN o) pastro z(/\O) (1 _paStrO’iO\O))

)

where g corresponds to a fiducial source population model that we are free to choose. Equation (4.8)
converges to a meaningful number as one relaxes the detection threshold and includes arbitrarily
insignificant triggers with pastro — 0 (we will discuss this point further in §4.2.4). In the opposite

limit in which we only include events with absolute certainty of astrophysical origin (pastro = 1), we
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recover the standard result (e.g. in the notation of Mandel et al. (2019))

e=Na(3) i g

Niig! 14 dd

P(Ntriga {dz} | /\apastro,i = 1)

dN,
e v [0 P 16) 5010

— Ntrig! [Na()\)]Ntrig H Na(/\)

J d0 Poop (6| \') P(d:i | 6)
Td0 Poop (8| V) paci(6)

(4.9)

i=1

where P(Nig | A) follows standard Poisson statistics (this can also be obtained by marginalizing
over {d;} in Eq. (4.1)). In the above formula, A’ are the population parameters that characterize the
shape of the un-normalized astrophysical distribution Pp,.p, separated out from an overall merger
rate, which we will call R. The overall rate R cancels inside the product since both dN,/df and N,
are linearly proportional to it. However, note that once we include events with 0 < pastro < 1, the
value of pastro(A) depends on the rate even at fixed population shape and such a clean separation
does not occur.

Nevertheless, we can exploit the linear dependence of N,(\) and dN,/dé on the rate parameter
to evaluate these terms efficiently. We make explicit the decomposition of the population parameters

A into rate R and shape \':
dN,
dé

O 1A =RfO|N), (4.10)

where f(6 | A’) is normalized according to

1
\;iino VT /VT dofO|N)=1 (4.11)
in the local Universe, so that R is the local merger rate per unit time per unit volume. Note that
the source distance and the arrival time of the signal are among the parameters 6, and for these we
do not normalize their distribution to integrate to unity over some domain since they do not have a
natural scale. From Eqs. (4.2) and (4.10), the astrophysical number density ratio for the ith trigger
in Eq. (4.8) is
dN, () R

= (V3 N), 4.12
O], = Ry O (4.12)

where we define
_ J 0P 16)F(6| N)
JAOP(di [ 0) f(0 X))

wi (N5 Ap) (4.13)
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Likewise, the expected detection rate is
N,(\) =R-VT(X), (4.14)
where, in accord with Eq. (4.5),

V() = / A9 £(6 | N) paet (0) (4.15)

is the population-averaged sensitive volume-time of the detector network (analogous to a(\') of
Mandel et al. (2019) but with a different normalization choice; equivalent to V(A) of Galaudage
et al. (2020)). VT(X') depends on the search pipeline and detection threshold used.

In terms of these quantities, Eq. (4.8) takes the form
L Nirig R
P(Ntrig7 {dz} | )\) X e_RVT()\ ) H |:]%0 wi()‘/; )‘:J)pastro,i()‘O) + (1 _pastro,i()‘O)> . (416)
i
4.2.2 Likelihood evaluation

In order to evaluate Eq. (4.16), we need to evaluate three types of terms: w;(\; ), VT'(\') and
pastro,i()\o)~

We estimate w;(X\'; Aj) from the integral in Eq. (4.13) using a Monte Carlo method:

S;
491 N
20 [ A)
wi(N500) = Wi(\V5 X)) == 5 , (4.17)
F(051X6)
Jj=1 (@
where {9; :j=1,...,5;} are samples from the posterior distribution of the parameters for the ith

trigger, obtained under a prior 7(6).

Similarly, we can evaluate VT(\') by reweighting a set of injections (Tiwari, 2018). We add
synthetic signals to the data in software and run the detection pipeline (with vetoes and choices
that are as close as possible to those in the ‘production’ run') to determine which injections would
have been found. From Eq. (4.15) we can construct the estimator

DTV o L ZARY
" Nip; P | X

inj j>th

5 (4.18)

1We change some choices in order to keep computational cost manageable, as detailed in Appendix 4.A.1.
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Here, we denote by P(6 | A{,;) the distribution of source parameters from which we generate injec-
tions. Note that Niy; is the total (found and missed) number of injections, but the sum runs only
over those above the detection threshold.

Finally, we have to compute the reference pasiro(Ao) for all triggers under consideration. Note
that these correspond to a particular astrophysical model Ag, so we cannot use the numbers reported
by a pipeline at face value without regard to A\g. In §4.2.3 we describe our choice of A\g. According to
Eq. (4.7), pastro Tequires estimating both the foreground and the background of the search pipeline.
We estimate the foreground using injections and the background using timeslides (see Appendix 4.B
for details). We report the values of pastro(Ao) in Table 4.3.1.

As long as the population models A of interest do not have too many parameters, we can evaluate
the rate-independent estimators {W;(\'; \j)} and VT ()\') on an auxiliary A’ grid. We then use them
to evaluate Eq. (4.16) on a A grid, that incorporates the dependence with rate avoiding redundant
reevaluation of {W;(\; )} and VT (N). Note that this procedure extends readily to a situation
where d N, depends linearly on multiple population parameters, a commonly encountered case being
the branching ratios of a “mixture model” which consists of a linear combination of several sub-
populations.

The BBH merger GW170608 occurred while one LIGO detector was not in nominal observing
mode (Abbott et al., 2017¢). Data from such periods are not publicly accessible so our injections
do not simulate this type of events. Although we cannot use GW170608 to inform the astrophysical
rate, the event contains valuable information about the shape parameters \'. In order to include
GW170608 consistently in our analysis, we single it out as an additional event with p,stro = 1 that

is not counted in N, (A). We replace Eq. (4.8) by

P({d;}, Niig | ) = P({dixawi70608 }, Nwig — 1 | A) P(dawirosos | A'), (4.19)

where we choose to normalize

1 dN,
Na(pastro 2 1) dd | Gwi70608

P(dawirosos | A') = (4.20)

so that it integrates to 1 over all non-observing-mode data realizations that would have yielded
a Pastro ~ 1 event. We implement Eq. (4.19) under the approximation Ng(pastro = 1) X Ng(X),
which in practice amounts to dividing Eq. (4.8) by N,(A) (and in general, by [N, (A)]™ to include n

additional events).
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4.2.3 Choice of reference and injection distributions

The Monte Carlo estimators {W;(\;A\y)} and VT (\') (Eqgs. (4.17) and (4.18)) are unbiased, in the

sense that their expectation values are

Wi(N500)) = wi(X5Xp) (4.21)

VTN)) =VT(N) (4.22)

regardless of the choice of reference and injection populations, A and )\{nj. However, due to the
finite number of samples used, they have variances that depend on the choice of A\ and A{;. In this
subsection, we discuss choices that allow robust estimation of w;(\; \y) and V().

The main requirement for these importance sampling estimators is that the proposal distribution
from which the samples are taken does not vanish at places where the integrand (target distribution)
is nonzero, lest the reweighting become pathological. Thus, neither the parameter estimation prior
() nor the reference population f(6 | Aj) in Eq. (4.17) should vanish anywhere the likelihood P(d; |
) has support. In general, the estimator variance will be smaller when the proposal distribution
more closely matches the target distribution.

The effective spin

— X1z + qx2z

4.23
1+¢ ( )

Xeft

is the spin variable that can be measured best, where ¢ = mgy/m; is the mass ratio and x1., x2. are
the dimensionless spin components in the direction of the binary’s orbital angular momentum. Spin
components in the orbital plane are harder to measure than and no evidence for or against them
has been found for any of the mergers of O1 and O2. The same is true for gravitational radiation
modes beyond the quadrupolar (¢,|m|) = (2,2). To simplify the analysis, we will neglect in-plane
spin components and higher-order modes in the following, and we do not expect that this will change
the results significantly. In particular, we will use the aligned-spin, quadrupolar radiation waveform
approximant IMRPhenomD (Khan et al., 2016) to model gravitational wave signals throughout this
work. For parameter estimation, we use the relative binning method for likelihood evaluation (Zackay
et al., 2018) coupled to the PyMultinest sampler (Buchner et al., 2014).

We adopt a parameter estimation prior 7(6) that is uniform in detector-frame masses, effective
spin X and luminosity volume. Some events, most notably GW151216 (Zackay et al., 2019b),
have high effective spins, so a prior that does not vanish for extreme values of x.g is convenient.

We parametrize the two spins in terms of the well measured Y.g and a poorly measured variable
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Xdift := (gx12 — X22)/(1 + ¢) that controls how much either binary component contributes to -
We implement the spin prior as flat in yeg, and flat in x4 conditioned on Y within the Kerr
bound |x1,2| < 1.

For the reference population f(6 | Aj), we narrow our focus to 6 = {ms,q, Xesr, D1}, which
are the measurable variables that lack a natural prior, and adopt the following (factorized) joint
distribution: truncated power-law in the primary source-frame mass mis and uniformity in ¢, Xes
and luminosity volume, with A} that lie in the bulk of reported posterior distributions (see e.g.
Abbott et al., 2019b):

F(mis, ¢, Xetr; D | Ag) ox mi2° DY (4.24)

for Mimin < M1s < Mimax and ¢min < ¢ < 1, with ag = 2.35, Mimin = 3Mpe, M1imax = 120Mg and
gmin = 1/20. These ranges are broad enough to encompass the likelihood support of all the triggers
we include. Throughout this work we will implicitly assume a uniform distribution for yqig, arrival
time, orbital phase, orbital orientation and sky position. When computing pastro(Ao) we will use
a fiducial rate Ry = 1015 Gpc ™2 yr~—!. Note that the choice of Ao does not affect the final results
(provided the reweighing process presents no pathologies, as we demonstrate in Appendix 4.D) and
therefore using previous analyses to inform our choice does not bias our conclusions.

Finally, we choose an injection distribution (Eq. (4.18)) that approximately matches the integrand
in Eq. (4.15). We adopt

PO | Xj) = Z71 F(0 | X) Paer (0), (4.25)

inj

7 /d9 F(O] Xo) Pact (0) (4.26)

~ 7.1 Gpc3 Tobs,

where pget (0) is some semianalytical approximation of pget(0), Tobs is the observation time span on
which the injections are made, and the value of Z reported in Eq. (4.26) corresponds to the choices

that follow. We use

o) = | T A (0710, 2(0). (4.27)

2
th
Here, we use p = 60 as an approximate detection threshold. We define the expected signal-to-noise
Pth

ratio (SNR) of an event with parameters 6:

1 Mpc

D, (4.28)

P (0) = lepC(mClietv q; X1z, XQZ) A(Oé, 57 Ly 1/)7 t)
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This is computed for a fiducial noise PSD, which we define in each frequency bin as the 10th percentile
of 200 random 40965 segments of Hanford and Livingston 02 data. In addition, A = \/A% + A? is
the Hanford-Livingston antenna pattern, where the angular factors 0 < Ay 1, < 1 can be found, e.g.,
in Ref. (Sathyaprakash and Schutz, 2009). We define piype = (b | B)'/? to be the single-detector
SNR of an optimally oriented source at a fiducial distance of 1 Mpc, which we interpolate on a grid
of intrinsic parameters.

The non-central chi-squared distribution in Eq. (4.27) models the distribution of SNR? recovered
by a search pipeline for a signal with parameters 6 in the presence of Gaussian noise and maximized
over ten degrees of freedom (Jaranowski and Krélak, 2012). Six degrees of freedom model maxi-
mization by the pipeline over the signal amplitude, phase and arrival time independently in the two
LIGO detectors. The remaining four model maximization over template parameters (our waveform
templates are elements of a metric space of up to 4 dimensions (Roulet et al., 2019)). Eq. (4.27)
neglects a variety of effects present in the search process, such as template bank discreteness and
boundaries, signal coherence across detectors, detector sensitivity variations, noise non-stationarity
and non-Gaussianity, and signal quality vetoes. This is acceptable, since pqet is only used for choos-
ing a convenient injection distribution: all these effects are accounted for by the injections as per
Eq. (4.18). Moreover, they make pget a somewhat optimistic estimate of pget, which is desirable as
it makes the proposal distribution (Eq. (4.25)) broader than the target distribution (Eq. (4.15)).

We generate the set of source parameters {6;} for injected signals by drawing samples from the
distribution in Eq. (4.25) with the PyMultinest sampler (Buchner et al., 2014), with which we
simultaneously evaluate the normalization constant Z as reported in Eq. (4.26). Egs. (4.18) and
(4.25) yield

= Z UZERY!

T = Ny 2 T 1) b0 29

We report technical details and results from the injection campaigns in Appendix 4.A.

4.2.4 Choice of detection threshold

We now derive a criterion for the choice of the threshold at which a trigger is deemed sufficiently
informative to be included in the analysis. To that end we compute the Fisher information as a
function of detection threshold. This also serves as an estimate of the amount of information about

the BBH population gained by including marginal events in the present analysis.
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The information that the data carry about the BBH distribution is encoded in the Fisher matrix

)\) n = = <a'r2nn log P({dl}’ Ntrig ‘ )\)>{di}1Ntrig . (430)

Here, 02,, = 0%/0\, 0\, is the second derivative with respect to population parameters ), and

An, and the subscript denotes that the expectation value is over the distribution of observations

(Eq. (4.1)):

Nirig

P({di}, Nusg | ) = P(Nasig | N) [] P(ds | M), (4.31)
i=1
with

e NN ) e

P (N | 1) = = (132
P(di| \) = N;) dﬁy) . (4.33)
N(A) = No(A) + N, (4.34)

N is the expected number of astrophysical and background triggers above detection threshold,

and hence depends on the threshold choice. Below we quantify how this choice affects T(\)pp.

di>{di}yNtrig

Egs. (4.30), (4.1) and (4.34) yield

Nirig
I\ N 1
() < +Z Ogdd

(4.35)
& 92, dN/dd R AN AN
=02 1 1
TV <Z TANjdd >+<; (a o8 dd> (a 8 qd
Using Egs. (4.32) and (4.33) we evaluate the first sum:
W 92, dN/dd 1 dN 82,,dN/dd
Z = (Nuig) [ dd— S FmnCA/CE
TdNjdd Ndd dNjdd
AN (4.36)
_ 92 il
=2 / dd*=

faQ

mn
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Further, from Egs. (4.34) and (4.7) we obtain

0, logﬂ = % log dNo
m dd an " dd (4.37)
= pastro(d) am log AN
dd ’

which we use to evaluate the second sum in Eq. (4.35). Equations (4.35), (4.36) and (4.37) yield

Nirig
dN, dN,
I\ n = <Z Pletro.d (am log 1 ) (an log 1 )> (4.38)

i=1

The special case where A\,, = \,, = R is the astrophysical merger rate is particularly simple, because

dN, /dd is proportional to the rate:
0 dN, 1

so the Fisher information about the rate is

Nirig
1
I(R) = F <Z pgsm’i> . (4.40)
i=1

In general, the information each trigger carries about the population depends on its parameters and
the population model through the terms in parentheses in Eq. (4.38), weighted by its p2,,. The
threshold should therefore be set such that the summed p2,., of excluded triggers is much smaller
than that of included triggers, while keeping their number manageable.

As an illustrative example, in Fig. 4.2.1 we study a simple toy model in which the only parameter
measured on triggers is the SNR, p, and there is a population of signals with a power-law distribu-
tion dN,/dp? o« p~° in a Gaussian background dN,/dp? o exp(fp2/2), intended to qualitatively
describe features of GW signals (Schutz, 2011) and detector noise. We consider the problem of infer-
ring the astrophysical rate R, that is, the normalization of the power-law component in this model.
For Fig. 4.2.1 we adopt fiducial normalizations so that there are respectively N,(p? > 65) = 15 and
Ny(p? > 65) = 1 expected foreground and background events with a p? louder than 65, roughly
matching the numbers observed in O1 and O2. The ratio between the foreground and background
distributions determines pasiro(p?) through Eq. (4.7), which in turn allows us to compute the Fisher
information I(R) with Eq. (4.40). In the top panel of Fig. 4.2.1 we show the Fisher information as a
function of a detection threshold p2, above which triggers are included in the likelihood, Eq. (4.8).
We find that the information contained in the faint triggers is limited: even though there are many

faint signals, their contribution to I(R) is strongly suppressed by p2,,, shown in the bottom panel.
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Figure 4.2.1: Top panel: Fisher information about rate as a function of detection threshold, in a toy
model where there is a foreground power-law in SNR with unknown rate and a Gaussian background.
The information saturates as the threshold is lowered, thus, faint events carry a limited amount of
information. Bottom panel: p2,, as a function of squared SNR in this model. This quantity
determines the average information contributed by each trigger.

The relative contributions to the information from loud and faint events can be different for other
parameters, e.g. if the logarithmic terms in Eq. (4.38) preferentially select faint events. An exam-
ple of this situation was demonstrated in Smith et al. (2020), who studied a putative cutoff in the
distance distribution.

We choose the detection threshold (for actual triggers as well as for injections) as follows. We
include all triggers from O1 and O2 that were found in Hanford-Livingston coincidence with a
false-alarm rate (FAR)—within their chirp-mass bank, note that we searched in 5 such banks (Venu-
madhav et al., 2019; Roulet et al., 2019)—below one per three times the respective observing run.
With this threshold choice, the summed p2,,(\o) of the 30 excluded triggers with lowest FAR is
only 0.35, while for the events in Table 4.3.1 is 14.65. In order to include GW170817A consistently,
we also include Livingston single-detector triggers from O2 that satisfy the cuts in templates and
p? described in Appendix 4.B (Zackay et al., 2019a). The exception is GWC170402, a Livingston
single-detector trigger for which we do not have a satisfactory astrophysical model (Zackay et al.,
2019a). We exclude GWC170402 from this analysis. From Table 4.3.1 we see that, with some depen-
dence on the population model, including the events from the IAS catalog increases the accumulated
P2eiro Dy ~ 47%, so as a crude estimation we might a priori expect uncertainties in the population

1/2

parameters to shrink with a factor of order ~ 1.477%/% = 0.82 owing to this additional source of
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information.
Note that Eq. (4.40) defines the Jeffreys prior for the astrophysical merger rate, (R | \') x
v/ I(R). In practice, pastro depends on the rate only for a few near-threshold events and is otherwise

very close to either 0 or 1, so we can approximate Eq. (4.40) by

Na (pastro ~ 1)

NN _ VT(Y)

I(R) = x 4.41
( ) R2 ~ R2 R ( )
Under this approximation we find

7(R|N) o< \/VT(N)/R, (4.42)

or m(N,) x 1/4/N,, the Jeffreys prior for a single Poisson component. This differs from several

other studies that adopt another prior, 7(R) oc 1/v/R. In practice the difference is mild.

4.3 Astrophysical implications

In this section we report our results on the constraints on the BBH population parameters under
various astrophysical models and compare their performances. To better visualize the effect of
including the events from the TAS catalog, we repeat the analysis with a higher detection threshold
(inverse false-alarm rate IFAR > 3000 observing runs in our pipeline) that restricts to events in the
GWTC-1 catalog (Abbott et al., 2019a). GW170608 and GW170818 do not satisfy that cut so we
include them ad hoc with pastro = 1, appropriately modifying the likelihood using Eq. (4.19) with
both events.

We will explore a number of phenomenological models that probe the various measurable source
parameters mysg, q, Xeff, Dr,. For convenience, we define a “default” distribution f that takes the

following factorized form:

f(mlsa q; Xeff, DL) = fmls (mls) fq(Q) erff (Xeﬁ) fDL (DL)7 (443)

83



Pastro Pastro

Ao Default A1 A2 A3 B C D Combined

GW150914  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170809  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170104  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170814  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170729  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170608  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170823  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW151226  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW151012  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GW170818  0.92 0.96 0.99 0.99 0.99 0.97 0.97 0.95 1.00
GW170304  1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00
GW170727  0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 1.00
GW170121  0.98 0.99 0.98 0.98 0.97 0.99 0.99 0.98 0.99
GWI170817A 0.75 0.27 0.14 0.20 0.20 0.07 0.43 0.30 0.01
GW170202  0.62 0.69 0.78 0.75 0.73 0.72 0.68 0.68 0.76
GW170403  0.62 0.53 0.16 0.12 0.08 0.50 0.61 0.53 0.11
GW170425  0.61 0.46 0.71 0.71 0.71 0.51 0.52 0.47 0.84
GW151216  0.51 0.47 0.00 0.01 0.00 0.55 0.52 0.47 0.00
17041282 0.02 0.06 0.11 0.08 0.06 0.00 0.04 0.06 0.00

Table 4.3.1: Value of p.siro for the BBH events considered in this work under various astrophysical
models. Events first reported in the GWTC-1 and IAS catalogs are respectively above and below the
horizontal line. p,stro(Ag) is the probability of astrophysical origin under the fiducial (unimportant)
astrophysical model \g described in §4.2.3. The remaining columns report the marginalized Pastro
under the population models considered in §4.3: the Default model (Eq. (4.43)) serves as a baseline
from which Models A-E explore various departures as follows. Al: Gaussian in xeg; A2: tidally-
locked progenitors with highly spinning remnants, or A3: with moderately spinning remnants; B:
truncated power-law in the primary mass; C: power-law in the mass ratio; D: power-law in the
redshift. The Combined model incorporates the maximum likelihood solutions of models Al, B
and C (84.3.6). pastro(Ao) approximately matches previously reported values from our pipeline
(Venumadhav et al., 2019, 2020; Zackay et al., 2019a), except for GW170818 due to an improvement
in the search algorithm, see Appendices 4.A and 4.B. We do not reproduce the results of (Galaudage
et al., 2020, table II), see Appendix 4.C for a discussion.
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with

fone 0xmi2®, 5Mg < mys < 50 Mg (4.44)
f,=1U(1/20,1) (4.45)
chff = U(—l, 1) (4.46)
R 4rD? Dy dz
- 1— 4.4
o= 1 (1 125ap;) (7

and explore the effect of varying individual factors. U(a,b) denotes a uniform distribution between
a and b. Note that f differs from f(\}) (Eq. (4.24)) in that it has tighter lower and upper mass
cutoffs, the merger rate is a free parameter, and the rate is set to be uniform in comoving volume—
time (rather than luminosity volume and observer time) through the factor

dt. dV.  dt. D? dD.
dt dV,  dt D% dDy,

(4.48)

_ 1 1 1 ( Dy de )

Cl4z (142)2 1+2 1+2dDy,
in Eq. (4.47). f(X{) is chosen to have support throughout all the sensitive parameter space, while
f is meant to be a convenient reference point in the space of relevant population models and more
closely comparable with the models explored in (Abbott et al., 2019b).

To obtain a posterior distribution for the population parameters, the likelihood Eq. (4.8) has to
be multiplied by a prior. We take the priors to be flat except for the rate parameter, where we adopt
a Jeffreys prior, Eq. (4.42).

For each of the models that we will consider below, in Table 4.3.1 we report for every event the

astrophysical probability Dastro,; marginalized over uncertainties in the population model parameters:
Pastro,i = /d)\ P(>\ | {d})pastro,i()\)~ (449)
To evaluate Eq. (4.49), we obtain pagsiro,i(A) from Egs. (4.7) and (4.12) as

R
-5 Wi ()‘l; A/0) pastro,i()\o)

R
Pastro.i(A) = RO (4.50)
1+ (wi()\’; /\6) — 1) pastro,i(/\O)
Ry

and marginalize over A by quadrature.
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4.3.1 Spin distribution
Model Al: Gaussian y.g distribution

We first consider a distribution that is Gaussian in yeg

erff (Xeff | Xeft s GXeff) = M(Xeff ‘ Xeff UXeff) (4'51)

and follows the default f (4.43) in the other parameters. N (z | 1, o) denotes the normal distribution
with mean p and dispersion o truncated at 1. With this simple model we can explore the symmetry
of the xeg distribution, i.e. whether there is a tendency for alignment between the spins and orbit
or not. Dynamical formation models predict the spins of the black holes to be randomly oriented,
thus symmetrically distributed about x.g = 0, while in the isolated binary evolution scenario a
tendency for alignment might be expected (note that while spin-dependent selection effects can bias
the detected distribution towards positive effective spins (Ng et al., 2018; Roulet and Zaldarriaga,
2019), f describes the underlying astrophysical distribution). This model also probes the width of
the distribution, which is especially interesting in light of predictions that natal BH spins might be
very small, barring tidal torques to the stellar progenitors (Fuller and Ma, 2019).

The results are shown in Fig. 4.3.1. In agreement with previous studies (Farr et al., 2018; Wysocki
et al., 2018, 2019; Roulet and Zaldarriaga, 2019; Abbott et al., 2019b; Miller et al., 2020), the
distribution is consistent with Xeg = 0 and shows no statistically significant preference for positive
Xeff, Which remains consistent with dynamical formation scenarios. The width of the distribution is
measured to be o, ~ 0.1310 02 (median and 90% c.1.), disfavoring values close to 0 (cf. Miller et al.,
2020). Including the events from the IAS catalog yields consistent results. The constraints become
tighter for the rate, and broader for the y.s mean and dispersion. We verified that GW170121, a
confident detection with support for negative xex (Venumadhav et al., 2020), rules out the end of
the distribution compatible with GWTC-1 with higher Xcg and smaller oy, which may drive the
change in these constraints. In the rest of this section, we will explore whether the spread of the

Xeft distribution can be explained by tidal torques.

Model A2: tidally-locked stellar progenitors

We now study a model that considers the effects of tides in the BBH progenitor system. For field
binaries, the typical aftermath of the common-envelope phase is a black hole in a tight orbit with

a stripped star. Depending on the binary separation, the star may be subject to strong tides. If
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Figure 4.3.1: Model Al: Gaussian yg distribution. Solid blue curves show the constraints on the
model derived from only the GWTC-1 catalog. Dashed orange curves show the constraints derived
from the GWTC-1 and IAS catalogs combined. Two-dimensional contours enclose 50% and 90% of
the distribution. Vertical lines show the median and 90% symmetric interval of the one-dimensional
posteriors, also reported numerically for the GWTC-1 + TAS analysis.
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the separation is small, corresponding to merger times < 108 yr, the timescale for tidal locking is
shorter than the star lifetime and thus it can tidally lock to the orbit. In this case the second-
formed black hole would have a high, aligned spin. The tidal-locking timescale depends strongly
on the separation, so that for greater separations tides quickly become negligible. In addition,
the maximum separation allowed for a circular binary to merge within the age of the Universe is
comparable to this distance scale, so two sub-populations with comparable abundances might be
expected (Kushnir et al., 2016; Hotokezaka and Piran, 2017; Zaldarriaga et al., 2017). It has been
pointed out that with different wind and tide models, less extreme distributions may result, with
the possibility of having intermediate spins even after tidal locking (Qin et al., 2018; Bavera et al.,
2020). We will first probe the more extreme model which is easier to constrain, keeping in mind
that the bounds we obtain apply to the fraction of black holes with maximal spin, and later explore
the consequences of a milder spin distribution.

Following Ref. (Roulet and Zaldarriaga, 2019), we implement a model of this scenario as follows.
We consider that component black holes have x, ~ N;(0,0,) in the absence of tidal effects, and
a fraction ¢ of the secondary (lighter) BHs have x, = 1 due to a tidally locked progenitor. This
distribution is very different from both the injection distribution and the parameter estimation prior
in the space of component spins. In order to have well-behaved reweighting of samples (see §4.2.3),
in practice we implement it under the approximation that the strain waveform depends on the spins

only through xeg. We therefore use

I+4q (4.52)
= (1 - C)M(Xeff | NO;UO) +§M(Xeﬁ | ,ul,Ul),

chff (Xeff | Q7Cagx) = // Xmdesz(XImXQz | Caax)a(Xeff -

where the subscript 0 represents the case in which no tidal locking occurred and 1 the case where

the progenitor of the secondary was locked:

V1+q?

to =0 0g = 0y
I+4q (4.53)
Mlziq 01:7")(
1+gq 14+q

We show our constraints in the top panel of Fig. 4.3.2. As in Ref. (Roulet and Zaldarriaga,
2019), we find that the fraction of locked systems ( is consistent with 0. We bind it to ¢ < 0.2 at
90% confidence. Interestingly, the extreme version of this model o, =~ 0, where black holes are born

with nearly zero spins except for tidal effects (Fuller and Ma, 2019), is in mild tension. Even when
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(x2- = 1) and the remaining (1 — ¢) fraction follow the Gaussian distribution xf, ~ N;(0,0y).
Top panel: Population parameter constraints. Bottom panels: Individual marginalized likelihood
for each of the events in the GWTC-1 catalog.

89



restricted to the GWTC-1 catalog, this conclusion is in disagreement with (Roulet and Zaldarriaga,
2019). The immediate cause of the difference is that in this work we found shorter tails in the
mass-ratio distribution of some events, and these tails can affect how consistent an event is with the
maximally-spinning-secondary hypothesis.®> The main differences between the parameter estimation
methods of the two analyses, which could explain the disagreement, are that in this work we apply
an exact treatment of the detector locations and orientations instead of the approximations made
in (Roulet and Zaldarriaga, 2019) and we have a more careful estimation of the noise PSD (Zackay
et al., 2019¢; Huang et al., 2020), thus the new results are preferred. In Fig. 4.3.3 we show the
events’ posteriors in the ¢—y.s plane, and the curve xog = ¢/(1 + ¢q) corresponding to x1, = 0,
X2. = 1 as representative of the tidally-locked progenitor scenario. In particular GW151226, whose
effective spin is positive and well-measured, is only marginally consistent with having a o, as high
as 1 and prefers lower values. In the bottom panels of Fig. 4.3.2 we show this situation in further
detail. For the events in the GWTC-1 catalog, we plot the individual marginalized likelihoods (i.e.
the terms inside the product in Eq. (4.9)) for ¢ and o,,. We see that the low-o, solution is disfavored
by GW151226. Additionally, GW170729 is more consistent with having x2, = 1 than with coming
from a low spin distribution, thus it pushes the locked fraction upwards.

To keep the number of parameters small, in Model A2 we have implicitly assumed that the
second-formed black hole, whose progenitor can be subject to strong tides, is the lightest. While
lighter stars have longer lifetimes in isolation, for binary evolution the mass ratio may be reversed
by mass transfer episodes (Gerosa et al., 2013; Steinle and Kesden, 2020). Moreover, depending on
the detailed ordering of mass transfer and core collapses both stars may be subject to strong tides
(Steinle and Kesden, 2020). We explored the impact of this simplification using a model where either
BH has small or high-aligned spin independently with some probability, when we do this we obtain
similar constraints on the total fraction of tidally-locked progenitors and natal spin dispersion as

with Model A2.

Model A3: tidally-torqued progenitors with moderately spinning remnants

Is the tension with very low natal BH spins robust to a less extreme model for the spin of remnant of
a tidally torqued star? Motivated by (Qin et al., 2018; Bavera et al., 2020) we now study a version
of the model where these black holes have spin aligned with the orbit, but with a broad distribution,

which we take to be P(x2.) = U(0, 1) for simplicity. We assume that otherwise all black holes have

3Parameter estimation samples are available at github.com/jroulet/02_samples.
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Figure 4.3.3: Posterior on the ¢—x.gs plane for the events considered in this work that are consistent
(top) or inconsistent (bottom) with having a non-spinning primary and a maximally spinning, aligned
secondary at the 90% confidence level.

very low spin (Fuller and Ma, 2019). We parameterize the x.g distribution as

Fxerr (Xeft | ¢5C) = CU(Xert | 0,¢/(1+q)) + (1 — ) Ni(xest | 0,0.05). (4.54)

For the subpopulation where tides did not play an important role, we have set a nonzero width
in yeg comparable to measurement uncertainties, and made the approximation that the likelihood
depends on the spins through xeg only, in order to avoid pathological reweighting. We show the
constraints on Fig. 4.3.4. Interestingly, under these assumptions we find that a fraction { = 0.22*_'8:%3
of the BBHs needs to have been subject to strong tidal effects in order to explain the events that
are measured to have positive x.¢. We have verified that if we allow for a further spread o, in the
natal BH spin distribution, this spread is well consistent with 0, unlike for Model A2.

In conclusion, the data is consistent with either a natal distribution of spins with nonzero disper-
sion o, ~ 0.1, or a model where the remnant may have a moderate spin even after tidal torquing. In
the first case, the result holds even if we allow a fraction of tidally-locked progenitors (the inferred
fraction is consistent with zero); in the latter, which better aligns with the predictions of Refs. (Qin
et al., 2018; Fuller and Ma, 2019; Bavera et al., 2020), a fraction ¢ ~ 0.2 of tidally torqued events is

favored. Later, in §4.3.6, we will show results for the relative evidence for these families of models
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Figure 4.3.4: Model A3, a modified version of Model A2 where the remnant of the tidally-locked
progenitor has xs, distributed uniformly in [0, 1] for a fraction ¢ of the mergers, and otherwise black
holes have very low spins.

and find some preference for Model A3 over A1l and A2. Again, we find that including the events

from the TAS catalog improves the constraints on these population models.

4.3.2 Model B: truncated power-law in primary mass

Next we consider a model where the source-frame mass of the primary black hole follows a truncated

power-law distribution

fmls (mls ‘ aamminvmmax) X m;sa; Mmin < M1s < Mmax (455)

fq(q | mis, mmin) - U(mmin/mlsa 1) (456)

Eq. (4.56) enforces that the secondary mass also satisfies the lower cutoff. This model was first
studied by Ref. (Fishbach and Holz, 2017) (see also (Roulet and Zaldarriaga, 2019; Abbott et al.,
2019b)) and is motivated by the prediction of a gap in the stellar black hole mass function due to the
pair instability supernova and pulsational pair instability supernova processes (Fowler and Hoyle,

1964; Barkat et al., 1967; Bond et al., 1984; Heger et al., 2003).
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We show our constraints in Fig. 4.3.5. These might be approximately compared to the models
explored in (Abbott et al., 2019b, figure 2). When restricting to the events in GWTC-1 we obtain
similar results to Ref. (Abbott et al., 2019b), except we recover a merger rate that is lower by ~ 0.4
decades, which is smaller than the current statistical uncertainty. Interestingly, we obtain a tighter
constraint mmax < 51 Mg at 90% confidence by including the events from the IAS catalog. This is
accompanied by a slight shift in the allowed power-law index towards shallower slopes. A putative
lower cutoff mpy;, in the mass function is harder to detect since low-mass mergers are intrinsically
fainter. Thus, similar to Abbott et al. (2019b), we can only put an upper bound on myuy;i, given by
the lightest confident merger considered, GW170608.

We comment that the O3 event GW190521 has a primary black hole mass 8572 Mg (Abbott
et al., 2020c), in tension with the constraints in Fig. 4.3.5. This suggests that the truncated power-
law model may not be a good description of the tails of the distribution once a larger number
of events is included, and that parametrizations with more complexity might be needed in future

analyses.

4.3.3 Model C: power-law in the mass ratio

Now we study a model where the mass ratio follows a power law distribution (Roulet and Zaldarriaga,

2019; Fishbach and Holz, 2020)

fala | 9) < ¢’ (4.57)

with 8 = (2g—1)/(1—79) so that the distribution has a mean g. We show our constraints in Fig. 4.3.6.
In line with previous results (Roulet and Zaldarriaga, 2019; Abbott et al., 2019b; Fishbach and Holz,
2020), we find that distributions leaned towards equal mass ratios are favored. Including the events
from the TAS catalog enables a more precise measurement of both the rate and mean mass-ratio. We
find a mild quantitative difference in the g distribution with (Roulet and Zaldarriaga, 2019, figure
9), which we verified is due to the difference in the underlying mass distribution models (truncated
power-law in primary mass per Eq. (4.44) vs. flat in chirp mass); the one used here is strongly favored

in terms of model selection by a difference in log-likelihood A maxy In P({d;}, Nerig | A) = 24.
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Figure 4.3.6: Model C: a power-law in the mass ratio with mean g, Eq. (4.57).

4.3.4 Model D: power-law in the redshift

Finally, we consider a model where the comoving merger rate follows a power-law in the redshift

with index A, (Fishbach et al., 2018)

foo (DL | A2) = fp, (Dr)(1+2)™, (4.58)

so that A, = 0 corresponds to a constant merger rate per unit comoving volume (see Eq. (4.47)). We
show the constraints on A, in Fig. 4.3.7: it is poorly constrained and is consistent with a constant
merger rate per unit comoving volume. Adding the new events from the IAS catalog improves the

constraints both on the rate and on A,.

4.3.5 Merger rate

As seen from Figs. 4.3.1-4.3.7, the measurements of the local merger rate R using each of the models
we studied are consistent within uncertainties, however, they have broad distributions and may have
large correlations with some of the population parameters. This happens because the rate parameter

is measured through the combination N,(\) = R-VT()), and the population-averaged sensitive-
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Figure 4.3.7: Model D: a power-law in the redshift evolution of the merger rate with exponent .,
Eq. (4.58). R is the local rate.

volume VT'()\') can exhibit a large dependence on the population shape. In other words, most of the
information comes from the region in parameter space where most events lie. This region depends
on the interplay between the astrophysical population and the detector selection function; the rate
within this region should be relatively well constrained compared to the overall rate.

The most extreme example is Model D (power-law in the redshift, Fig. 4.3.7), where the rate
exhibits a strong correlation with the exponent A,. In this case, the merger rate at some intermediate
redshift z ~ 0.2 is much better constrained than the local rate R, owing to the larger phase space
that the detectors are sensitive to. To various extents, a similar effect occurs with some shape
parameters in the other models studied in this section. In Model B (power-law in the primary mass,
Fig. 4.3.5), for steep power-laws the rate can be dominated by the low-mass end of the distribution,
which is poorly constrained because the sensitive volume to these signals is smaller.

A simple prescription to get a robust constraint that can inform theoretical models is to measure
the rate of mergers within the part of parameter space where most events were observed. In Fig. 4.3.8
we plot the posterior distribution for the restricted rate of mergers Ryestricted, Which we define as the
merger rate of events with 20 Mg < mis < 30 Mg, g > 0.5, evaluated at redshift z = 0.2. We show

this quantity for the default model (Eq. (4.43)), Models A1-D (§A1-4.3.4), and a ‘Combined’ model
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Figure 4.3.8: Posterior for the local rate of mergers (top) or the comoving rate restricted to 20 Mg, <
mis < 30Mg, g > 0.5 and evaluated at redshift z = 0.2 (bottom), under the various models we
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model that combines the maximum likelihood solutions of models A1, B and C. The restricted rate
is better measured, and in better agreement across models, than the total local rate R. Dotted lines
indicate the minimum over models of the 5% quantile, and the maximum of the 95% quantiles.

that combines the maximum likelihood solutions of models Al, B and C, namely the product of f,
from Eq. (4.51) with Xeg = 0,0y, = 0.1; fin,, from Eq. (4.55) with o = 1, mmin = 8.5 Mg, Mmax =
40Mg; f, from Eq. (4.57) with § = 0.88; and fp, from Eq. (4.47). Note that the primary mass is
distributed with a truncated power-law of index —2.35 in all except the B and Combined models,
and for the Combined model it is flat-in-log, which makes Fig. 4.3.8 largely comparable to (Abbott
et al., 2019a, fig. 12); this may also be the main driver of the residual discrepancies between restricted
rates across models in Fig. 4.3.8.

We find that the restricted rate is much better measured than the total local merger rate and
that all models largely agree on its value. Taking the union of the symmetric 90% quantiles, we

obtain that the rate lies in the range 1.5-5.3 Gpc—3yr—!

, which amounts to a factor 3.6 uncertainty
in the restricted rate as opposed to 21 in the absolute rate, within the models we explored. Thus,

the restricted rate is well suited to put population models to a more stringent test.
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Model AmaxIn L AlnZz

Default 0 0
Al 14.671% 103754
Xeff

A2 14.9753 12070
A3 14.6715  13.4%H
B: mu, 3.870° 21703
C: q 46%p¢ 28505
D: 2 0.07+580 —2.847929
Combined 2213 222

Table 4.3.2: Scores for the population models we study (§4.3.1-4.3.4, annotated with the variable
each of them is intended to explore) relative to the Default model, Eq. (4.43). We add a model
that combines the maximum likelihood solutions of models A1, B and C. We report the maximum
likelihood and the Bayesian evidence as complementary indicating scores. Error-bars indicate 90%
confidence levels on the uncertainties from the Monte Carlo method employed.

4.3.6 Comparison between population models

We conclude this section by comparing the performances of the models we studied. In Table 4.3.2 we
provide the maximum likelihood and the Bayesian evidence achieved by models A1-D and Combined
discussed above, relative to the default model Eq. (4.43). The maximum likelihood has the advantage
of being independent of the arbitrary prior choices for the population parameters (in particular, their
ranges), on the other hand it does not penalize models with more degrees of freedom. The ordering
and qualitative conclusions are found to be largely similar using either metric. Our method involves
multiple Monte Carlo integrations (numerator and denominator of Eq. (4.17), and Eq. (4.18)), which
can introduce stochastic errors. We estimate these with the bootstrap method, by computing the
scores 100 times using samples taken with replacement from the original sets.

We find that among Models A1-D, those that perform best are Al (Gaussian in Yef), A2 and
A3 (tidally locked progenitors, with x2. = 1 or x2. ~ U(0,1) respectively), which vary the spin
distribution away from the flat-in-y.g one the default model uses. This is a clear indication that
the average effective spins of the population are lower. The three models achieve similar likelihoods,
Model A3 has a somewhat higher Bayesian evidence, which can be related to the fact that it has one
less parameter. Note that these models cannot accommodate the high effective spin of GW151216,
which requires both spins to be high and aligned; its Dastro is suppressed as a result (Table 4.3.1).
To a lesser extent, a similar effect holds for GW170817A and GW170403.

The Combined model, which is defined from the best likelihood solutions of Models A1, B and C,
indeed outperforms its individual components and, as expected, the likelihood ratio to the default
model is approximately the product of the component likelihood ratios to the default model. This

vindicates our approach of individually varying the components of the population model.
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Figure 4.3.9: Events considered in this work as a function of total source-frame mass, mass-ratio
and effective spin. Underlaid in black is the prediction of a model that combines the maximum
likelihood solutions for the effective spin (Model Al), primary mass (Model B) and mass-ratio
(Model C) distributions, including selection effects and without measurement uncertainty. The
events’ posteriors are color-coded according to their values of pastro under the same model (these
are different from the values reported by the search pipeline). Note however that these posteriors
are computed using a prior that differs from the model. Model outliers are labeled.

In Fig. 4.3.9 we plot the BBH events from O1 and O2 considered in this work, showing posteriors
in the space of total source-frame mass versus mass-ratio and effective spin. 1o contours (enclosing
1 — e Y2 ~ 0.39 of the distribution) are drawn in blue for events in the GWTC-1 catalog or
color-coded by pastro for events in the IAS catalog. The broad parameter estimation prior 7(6),
defined in §4.2.3, is used for event contours in order to make the resulting posteriors trace more
closely the single-event likelihoods from Eq. (4.3). Shown in black is the expected distribution of
detectable sources under the Combined model, with a 90% contour. It is obtained by reweighting
found injections with this model. The pasiro values shown in the color scale of Fig. 4.3.9 correspond
to this model. Note that this is just one example out of the set of models consistent with the data,
and others may exhibit somewhat different behavior.

This simple model appears to explain the observations reasonably well, albeit with some outliers.
The confident event GW170729 (Abbott et al., 2019a; Venumadhav et al., 2020) is a mild outlier
within 2 of the 90% contour, note however that under this population model its posterior would shift
towards lower mass and xeg (Fishbach et al., 2020). The other outliers (GW170817A, GW170403,

GW151216 and 170412B) have less detection significance, so their pastro(A) can be suppressed without
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too large a penalty to the model likelihood. As our knowledge of the astrophysical distribution
improves, the pasiro Of these events might be revised. A potential limitation of the models studied
in this work is the assumption that the distribution is factorizable in the variables mis, q, Xeft, DL
(Models A2 and A3 do have a correlation between ¢ and yeg, and Model B between ms and
q). Indeed, Fig. 4.3.9 might hint that models in which the y.g mean or variance depends on
the mass (Safarzadeh et al., 2020) or distance (Hotokezaka and Piran, 2017) could perhaps better
accommodate some of these outliers. Looking forward, as the catalog of events grows there might
be a need for increasingly complex models.

We comment that 170412B is consistent with having a secondary mass similar to that of the O3
event GW190814 (Abbott et al., 2020d), although its x.g would be higher especially if such a small

mass-ratio is imposed.

4.4 Conclusions

In this work, we presented a general framework to include marginal GW events when characterizing
the astrophysical population of BBH mergers. Similar to other proposed methods, ours requires that
we characterize the sensitivity of the search pipeline. We achieved this using software injections,
which we generated using a fiducial distribution and reweighted as needed. We generated the
parameters of the injected events from a reference population model weighted by an approximate
detector sensitivity function; this simple prescription achieved a good balance between accepted and
rejected injections. We implemented an injection campaign using the above strategy, and empirically
measured the sensitive volume-time of our search to be ~ 0.17 Gpc? yr, for the population model
in Eq. (4.43) and with a FAR threshold of one per all our O1 and O2 BBH searches combined
(Appendix 4.A.3). In its own right, quantifying the sensitivity of our pipeline solidifies the evidence
in favor of the detections that we previously reported.

We demonstrated our method by using events reported in the IAS catalog, in addition to the
ones originally reported by the LVC, to characterize the BBH population. In particular, we studied
various phenomenological population models that explored the spin, mass, mass-ratio and redshift
distributions. For models that have been previously explored, our results are broadly consistent with
previous studies, with reduced uncertainties due to the extra information that the additional events
contribute. We quantified the information gain from including these additional events, e.g. for the
astrophysical rate, it scales with their summed p2,, and amounts to a ~ 47% increase.

In models where the effective spin parameter, e, of all mergers is drawn from a normal dis-
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tribution, we do not find any statistically significant deviations from Y. = 0, and infer a typical
spread of o, ., ~ 0.1. If we allow a fraction ¢ of the secondary black holes to have aligned spins due
to tidal effects on their progenitors, the conclusions depend on how efficient the tides can be. If the
tides, when operative, are strong enough that the secondary BBH ends up with maximal spin, the
fraction ¢ is consistent with zero and bounded to ¢ < 0.2 (the spread oy, of the mergers without
tides is similar to the previous case). If the tides are weak enough or the details of the collapse allow
for an aligned, but not necessarily maximally-spinning secondary, the data can be explained by a
fraction { ~ 0.2 of BBHs with tidally torqued progenitors, with the rest having very low natal spins.
Future data might be able to distinguish between these two scenarios; it is intriguing that two of
the BBH mergers reported so far in the O3 run have non-zero and positive values of y.¢ (Abbott
et al., 2020b,d).

The mass, mass-ratio, and redshift distributions are consistent with previous work: if the masses
are drawn from a truncated power-law distribution, we bound the upper cutoff in the primary mass
t0 Mmax < 51 Mg at 90% confidence. The data favor a mass-ratio distribution that leans towards
the equal-mass case, § > 0.67, and a redshift distribution that is consistent with uniform in comoving
volume.

We additionally argued that the merger rate is better measured if restricted to the region of
parameter space where most events are found. We find that the merger rate restricted to BBHs
with a primary mass between 20-30 M, mass ratio ¢ > 0.5, and at z ~ 0.2, is 1.5-5.3 Gpc™3yr—!
(90% c.1.). Unlike for the total local merger rate, this constraint is model independent and a factor
of ~ 3 tighter, and thus well-suited for testing progenitor models.

Apart from the results on the population models for the data we included, we foresee that the
methodology presented here will continue to prove useful as future data releases will generically
include marginal detections. We have emphasized the dependence of pastro On the astrophysical
model and the search pipeline used. An intermediate step in our method is to compute the pasiro
of the triggers of interest for a specified reference source population model, which we make as
permissive as possible to facilitate reweighting. Looking forward, this can be a convenient convention
for reporting values of pastro, €specially for marginal triggers whose final interpretation may depend

on the population model.
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Appendix

4.A Sensitivity of the search pipeline

In this appendix we report results of our injection campaign and characterize the sensitivity of our

primary search for BBH mergers (Venumadhav et al., 2019, 2020).

4.A.1 Injection campaigns

We make 50000 software injections in each of the O1 and O2 observing runs, at random times
without regard to the duty cycle of the detectors, with source parameters distributed according to
Eq. (4.25). We then run all stages of our search as described in Refs. (Venumadhav et al., 2019,
2020), except for the following two modifications.

First, for the injection campaigns we disable the initial stage of noise transient (glitch) rejection
and inpainting (Venumadhav et al., 2019; Zackay et al., 2019¢), which would otherwise greatly
increase the computational cost. Instead, we keep track of the locations where glitches were identified
in the original search. The pipeline does not record triggers within 1s of an identified glitch for
templates shorter than 10s, so we treat those times as invalid for observation.

Second, we implement an improved version of the coherent score—this is the piece of the detection
statistic that accounts for signal coherence across detectors (Nitz et al., 2017; Venumadhav et al.,
2019), and depends on the difference in the arrival times, as well as the relative phase between
the detectors. Our implementation of the coherent score uses the best measured values of these
parameters from the data, and accounts for the requisite amounts of measurement noise in each of
these values. However, in previous work, we had neglected the effect of the correlation between the
measurements of the arrival times and phases that are input to the coherent score; we found that
this ultimately caused us to assign a high FAR to the LVC event GW170818 in our coincidence

search (using only Hanford and Livingston data;* the FAR was however not biased since this effect

4Qur search pipeline is so far restricted to LIGO Hanford and Livingston data, on which all our significance
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Run Event GPS time IFAR (run)

GW150914 1126259462.41 > 20000
GW151012 1128678900.43 > 20000
GW151226 1135136350.59 > 20000
GW151216 1134293073.16 26.70
GW170823 1187529256.50 > 20000
GW170809 1186302519.74 > 20000
GW170729 1185389807.31 > 20000
GW170814 1186741861.52 > 20000
GW170104 1167559936.58 > 20000
GW170727 1185152688.02 256.41
02 GW170121 1169069154.57 185.19

01

GW170304 1172680691.36 78.74
GW170818 1187058327.08 30.40
170412B5  1175991666.07 6.51
GW170403 1175295989.22 6.25
GW170425 1177134832.18 5.30
GW170202 1170079035.72 4.19

Table 4.A.1: Inverse false-alarm rate for the events considered in this work assigned by our primary
search (Venumadhav et al., 2019, 2020) with an improved detection statistic. Note that GW170817A
was found in a different, targeted search (Zackay et al., 2019a). The IFAR reported here is referred
to the individual observing run and template bank each event was found in, without penalizing for
the fact that we searched two observing runs and five template banks, see §4.A.3. These are all
events we found with Hanford-Livingston coincident triggers with an IFAR > 3 runs in their bank.

impacted the timeslides as well). The new version we use in this paper accounts for the correlations
in the measurements, and hence should be closer to optimality (in the sense of being closer to the
likelihood ratio test). When we apply this improvement to the coincidence search itself (both the
zero-lag triggers and those obtained using timeslides), we obtain a higher significance for GW170818
than our previous result (Venumadhav et al., 2020) (see also (Zackay et al., 2019a)). This also

changes the values of the IFAR of the rest of the candidates, as we report in Table 4.A.1.

4.A.2 Search completeness

A binary merger might fail to be detected for a variety of reasons. In our primary search (Venumad-
hav et al., 2019), a successful detection requires identifying triggers in coincidence at both LIGO
detectors, and these coincident triggers must survive a battery of signal quality tests (vetoes). Fi-
nally, the candidate has to stand out from the noise background in order to be detected with any
significance.

As a diagnosis of the performance of our search pipeline, in Fig. 4.A.1a we show the recovery

fraction of injections as a function of their squared injected SNR (defined below), as well as the

estimates are based. In this work we used Virgo data only for parameter estimation of events whenever these are
available.
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relative frequency of various failure modes. We include in Fig. 4.A.1a only injections with parameters
within the target region of our template bank (Roulet et al., 2019), and that happened during times
flagged by both the LVC (Abbott et al., 2021) and our pipeline (Venumadhav et al., 2019) as valid
for search. Injections labeled ‘Missed’ (blue) are those that failed to produce a coincident trigger.
These include cases when the recovered signal in one of the two LIGO detectors was below our
collection threshold (p? < 16), or when a noise transient caused a different template to generate a
louder trigger in one of the detectors (some of these second cases could have passed a full ‘production’
search, since we did not do data-cleaning as part of this injection campaign). ‘Vetoed’ injections
(orange) are those that triggered the signal quality checks, and consequently rejected. We designed
these tests to have a false positive rate of a few percent with Gaussian noise for signals having p < 20
(with an increased rate for much louder events). This is in line with what we observe in Fig. 4.A.1a.
Finally, we distinguish injections that we found below or above a moderate inverse false-alarm rate
of 10 observing runs in their template bank (of which we searched five). We show these in light and
dark gray, respectively; the four curves in Fig. 4.A.1a add up to unity. We derived the fractions
using a sliding window in Pian that averages over 200 contiguous injection samples.

Since we performed independent searches for five different template banks, the same injection
might have a different outcome in each search; and likewise at each of the two LIGO detectors. We
summarized this information by assigning to each injection the latest stage it got to in the worst
detector, and (then) the best bank.

We distinguish between ‘injected’ and ‘recoverable’ squared SNR; respectively:

Pog = > (h| D), (4.59)

kEH,L
Prec =D (d|h)x, (4.60)
kEH,L
where d and h are the strains of the data and injection respectively. Both pign_]- and p2,. depend on
the signal parameters as well as the detector sensitivities and orientations at the time of the event.
Note that Pian is independent of the particular noise realization and thus unobservable, unlike p2...
Both are independent of the template bank of the search.
We find that the results for O1 and O2 are comparable. The completeness of the search saturates
around 90-95% for signals with p?nj 2 150. At lower SNR values, the dominant failure mode is missed
injections, and at higher values it is false rejections (vetoes).

Figure 4.A.1b shows the outcome of the injections made in the O2 run (with the same cuts
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Figure 4.A.1: Probabilities for the possible outcomes of an injection as a function of SNR in our
primary search for triggers in Hanford-Livingston coincidence. Only injections with parameters
within the target region of our template bank (Roulet et al., 2019), and that happened during
times flagged by both the LVC (Abbott et al., 2021) and our pipeline (Venumadhav et al., 2019) as
valid for search are included. The four outcomes are exhaustive. Left panel: Outcome probabilities
as a function of injected squared SNR, for the O1 (top) and O2 (bottom) observing runs. Right
panel: Outcomes in the O2 observing run in terms of recoverable squared SNRs at the Hanford and
Livingston detectors. Dashed lines are drawn at the single-detector collection threshold pZ. mr = 16
and at the approximate Gaussian limit p2,. = 68. Several injections with p2,. > 68 have pfec’H <16
due to disparate detector responses (Zackay et al., 2019a).
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used for Fig. 4.A.1a) scatter-plotted in the pZ..p, pre i Plane. Recall that by virtue of Eq. (4.25)
the injection distribution approximately follows that of astrophysical events in the high SNR limit
p* > p% = 60. The incoherent detection limit of our primary search can be approximated by a
Gaussian noise limit p2,. > 68 and single-detector collection thresholds pfeCH’L > 16 (Venumadhav
et al., 2020, figure 6a). 60% of the injections with p2,. > 68 that are missed from the primary search
(or 4.6% of all injections with pZ,. > 68) have pZ.. 5 < 16, i.e. below our single-detector collection
threshold, even though their network SNR is above the Gaussian limit for detection. We performed
a targeted search for such signals in (Zackay et al., 2019a), which for computational limitation we
do not reproduce here with injections. Such events would stand a second chance of being found
in the targeted search, which is not accounted for in Fig. 4.A.1a. Figure 4.A.1b also supports the
approximate incoherent detection thresholds for our pipeline used in (Venumadhav et al., 2020,

figure 6a).

4.A.3 Sensitive volume—time

Quantifying the sensitive volume—time requires defining a detection threshold, see Eq. (4.18). We will
define this threshold in terms of IFAR, that can be compared across different search pipelines. We
measure FAR empirically using timeslides, i.e. adding artificial time-shifts between the Hanford and
Livingston data streams to generate background triggers, and counting the number of background
triggers that have a better detection statistic than a trigger of interest. Our search procedure
divides the BBH parameter space into 5 template banks that are explored independently except for
the restriction that any trigger is assigned to only one search; further, the O1 and O2 observing runs
are analyzed separately. Therefore, the FAR we obtain has units of per bank per VT of the relevant
observing run.% To aid eventual comparisons we express them per all our O1 and O2 BBH searches

combined, for which we use (O1 + O2) as notation. For a trigger j:

FAR,; = Ny(p > p;)[run; bank;] ™!

(@ouoz
(VT)runj

(4.61)

= No(p > ) Npanks[01 4+ 02] 71,

where § is the detection statistic of our pipeline and N, (5 > 5,) is the expected number of background

triggers above j estimated from timeslides. We use Eq. (4.61) to aggregate the results from all BBH

6This is the reason we report FARs in units of observing runs instead of physical time—the ranking statistic
includes a time-dependent volumetric correction factor to account for the significant and systematic changes in the
network sensitivity over the run (Venumadhav et al., 2019). If the network sensitivity were constant during the
observing run, the units “O1” ~ 46 days and “O2” = 118 days.
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Figure 4.A.2: Sensitive volume-time of our search pipeline on O1 and O2 as a function of IFAR
threshold for the default population model defined in Eq. (4.43). The IFAR is referred to the full
01+02 search and accounts for the fact that multiple template banks were searched per Eq. (4.61).

banks and observing runs. Note that the VT estimation in Eq. (4.18) requires a threshold on the
FAR, and conversely the FAR in Eq. (4.61) necessitates a computed VT ratio between runs. We find
a self-consistent solution numerically. Using the default population model defined in Eq. (4.43) and
an IFAR threshold of 1(O1 + O2) we obtain VT 0s/VT o1 = 4.13. This is approximately valid for
other population models and thresholds as well since the dependence largely cancels in the ratio. We
show the result for VT as a function of the IFAR threshold in Fig. 4.A.2, for the default population

model of Eq. (4.43).

4.B Computation of the reference p,sio

As per Eq. (4.7), Pastro,i depends on the ratio of the trigger densities expected from foreground and
background locally at the data d; of each trigger. In principle, d; consists of the strain time series,
or equivalently its Fourier modes. In practice we do not have a reliable model for the background
trigger density in terms of these, as we do for the astrophysical events (Egs. (4.2) and (4.3)). Thus,
we instead approximate (for all events except GW170608 and GW170817A, see below):

AN |y ) o ANa/d7?
ANy |, " ANy /d?

(77 | T =T, M), (4.62)

where p? is the detection statistic of our pipeline (Venumadhav et al., 2019) and 7 identifies the
waveform template associated to a trigger. We expect these variables to contain most of the dis-
cerning power between astrophysical and background events. The detection statistic is an estimator

of the likelihood ratio between the astrophysical and noise hypotheses that incorporates information
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from the trigger SNR at Hanford and Livingston, the phase and time differences between detec-
tors and the instantaneous detector sensitivities. It includes only very coarse information about
the signal parameters, based on which subbank the triggering template resides in. Since both the
astrophysical and background trigger rate densities exhibit dependence on the triggering template,
we incorporate the template identity in Eq. (4.62).

We compute Eq. (4.62) for each trigger as follows. We first generate large sets of astrophysical
and background triggers. For the former we use the injections described in §4.2.3 and for the latter
we use the method of timeslides. We restrict to the triggers that have a similar template to the
triggering template 7;: we demand that they are found in the same chirp mass bank (Roulet et al.,
2019) and have a match (7 | T;) above some threshold. We choose the highest match threshold that
admits at least 100 injection and 100 background triggers.” This achieves a compromise between
making a density measurement that is local in intrinsic-parameter space and that has an acceptable
statistical error. We then do a kernel density estimation of dN,/dp? and dN,/dp?, using these

triggers with weights (see Eq. (4.25))

ini Ry Z
wY = 4.63
J Ninj Paet(0;) (4.63)
1
bg _
WSt = ——m— 4.64
Ntimeslides ( )

for injections and background respectively.

As mentioned in Appendix 4.A, for GW170818 we obtained a pastro(Ao) = 0.92 based on Hanford
and Livingston data, higher than reported in (Venumadhav et al., 2020) owing to an improved version
of the coherent score, as we described in Sec. 4.A.1. Note the GstLAL pipeline (Sachdev et al., 2019)
found pastro = 1 by including Virgo data. As discussed in §4.2.2, following Abbott et al. (2017c) we
set Pastro = 1 for GW170608.

The event GW170817A was found in a targeted search for signals that are loud in the Livingston
detector and faint in the Hanford detector (Zackay et al., 2019a), as opposed to our primary search for
signals in Hanford—Livingston coincidence (Venumadhav et al., 2019, 2020). Most of its significance
comes from being the loudest Livingston trigger apart from previously confirmed confident signals.
As such, the method of timeslides cannot be used to generate empirical background for this event.
We compute its pastro(Ao) following (Zackay et al., 2019a, eqgs. (5) and (6)): we define the clean

region of parameter space as those templates with chirp mass M > 10 Mg, for which there were < 5

"For bank BBH 0 (Roulet et al., 2019) we only recovered 24 injections in O2; we just include those in the computation
of the pastro of 170412B.
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loud Livingston triggers (p? > 60) in O2 from similar templates (match > 0.9) in times where the
Hanford detector was also operating. We obtain the expected number of triggers in this region with
p? > 66 by counting the injections that satisfy all these conditions weighted per Eq. (4.63). We set
the expected number of background events to 1.

Recently, Ashton and Thrane (2020) have concluded that the event GW151216 (Zackay et al.,
2019b) has pastro = 0.03, based on an analysis of background triggers obtained with a different
pipeline, as well as foreground triggers generated under an astrophysical prior isotropic in spin
directions. A similar method was used by Pratten and Vecchio (2020). Those analyses overlook
the fact that different pipelines treat the systematics in the data differently and thus suffer from
different backgrounds. As an example, our pipeline applies different data quality checks and signal
consistency vetoes. Even within our pipeline, removing or modifying these stages would significantly
lower the pastro of near-threshold triggers like GW151216. These tests are not applied in the analysis
of (Ashton and Thrane, 2020; Pratten and Vecchio, 2020). They instead characterize the background
in terms of its projection onto parameter space when modeled as a GW signal in Gaussian noise. That
is a different test that a priori does not have the same discerning power between signals and noise.
Ultimately, the choices that maximize the pipeline sensitivity (see Appendix 4.A) should be pursued.
As a result of these considerations, pastro 1S inherently a pipeline-dependent quantity. In addition,
Pastro depends on the astrophysical population model. As shown in Table 4.3.1, for GW151216 (as
well as other near-threshold events with nonzero spin) pastro is particularly sensitive to the spin
distribution. Ashton and Thrane (2020); Pratten and Vecchio (2020) used an isotropic spin model,
under which the astrophysical interpretation is indeed strongly disfavored. We emphasize however
that for different spin models GW151216 has a sizable pasiro. We should consistently account for
this dependence when interpreting GW151216 and assessing its implications for the astrophysical

BBH population.

4.C Differences with Galaudage et al. (2020)

Galaudage et al. (2020) have presented a framework similar but inequivalent to the one presented
in Section 4.2. In this appendix we compare both treatments and identify the differences between
them. Our point of comparison is the model likelihood, our Eq. (4.8) or their equation (36), which
are not compatible.

The correspondence between their notation and ours is as follows. Their astrophysical hypothesis
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prior is

N,
= —— 4.
SN (46
in our notation. Their signal likelihood is
Viot 1 dN, 1 / ,
L(d| A,det) = LA|AN)=— == dof(@ | N)P(d |0 4.66
(@ A det) = s 00| 8) = -t = s [ 0701 V)P@10), (160

where their A = ), V(A) = VT()\') and we have used Egs. (4.2), (4.10) and (4.14). Their noise
likelihood is

1 dN;
L(d] @, det) = ETJ
_No dN, 1N,
Ny dN, N, dd
5 1 — Dastro
—5 2 TS pd | A, det),
1- g Pastro ( | )

(4.67)

using Eqs. (4.7), (4.65) and (4.66). Equation (4.67) is (Galaudage et al., 2020, eq. (7)) generalized
to account for selection effects.

In their equation (29), Galaudage et al. (2020) use a prescription for the normalization of the
background term in the likelihood, pg = V(Ag)/Viot, which holds for A on the vicinity of Ag. Instead,

the exact expression that satisfies Eq. (4.67) is

v(a)

pg(A): Vt " *

(4.68)

In (Galaudage et al., 2020, eq. (35)) it is stated that (p,.i., — 1)£(d | A) is independent of
A, so they equate this term to its value for a fiducial Ag. However, pastro also depends on the
rate of mergers, so the fiducial model should include the rate (encoded in §). Additionally, their
equation (35) relies on equation (7) which does not include selection effects. The correct form of

(Galaudage et al., 2020, eq. (35)) is thus

5 1- pastro(ga A) ﬁ(d | A) _ 50 1-— pastro(§O7AO) £(d | AO)
1-¢ pastro(§7 A) V(A) 1 =8  Pastro (fo, AO) V(AO) ’

(4.69)

where &y, Ay are the values used to compute the fiducial pagiro-
Lastly, in (Galaudage et al., 2020, eq. (34)) the expression { = N/n is used, where N = Nyig
is the number of triggers and n the number of data segments analyzed. But £ encodes a (model

dependent) prior expectation of the ratio of counts of astrophysical and noise events, and not the
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actual outcome of the experiment. The correct expression is instead

RV(A)

&= RV(A) + RyTops

(4.70)

Once the changes in Eqgs. (4.68), (4.69) and (4.70) have been applied, their equation (36) becomes

P({di},N | A)
e~ (RV()+RyTovs) (RY(A))N Viot  L(d; | A)
N! i V(A) pastro,i(Ra A)
e (BY)+ R Tow) (Ro Vo )V H (1 — Pastro,i(Ro, Ao) Ry R L(di | A)
N! Pastro,i(Ro, Ao)  Rgo  Ro L(d; | Ag)

) L(d; | Ao),

i

(4.71)

which is compatible with Eq. (4.8). The rate R does not factor out, so we cannot marginalize it
analytically in Eq. (4.71) without expanding the binomial first.

As a consequence of Eq. (4.69),

& LA 1-€ V() H)l (4.72)
) , .

pastro(gvA) = <1 _ 50 V(Ao) § ‘C(d | A

instead of (Galaudage et al., 2020, eq. (42)). This difference might explain why Table 4.3.1 does not
reproduce the results of (Galaudage et al., 2020, table IT). We emphasize that the fiducial pagstro have
to correspond to Ry, Ag and reported values must be interpreted with this in mind. In Table 4.3.1
we have computed the pasiro Of the top triggers our pipeline found under a specific astrophysical

model \g to facilitate this task.

4.D Robustness of the reweighting procedure

Our framework involves Monte Carlo computation of integrals by reweighting samples: the nu-
merator and denominator of Eq. (4.17) use source parameter estimation samples, and Eq. (4.18))
uses injection samples. These methods are subject to stochastic errors, especially if the target and
proposal distributions are mismatched. We have chosen the proposal distributions with this consid-
eration in mind, in this appendix we show that our procedure indeed achieved sufficient robustness.

We use the bootstrap method to estimate the impact that stochastic error in these integrations
has on the population inference. For each population model, we do 100 bootstrap repetitions of the

inference of population parameters A, each time employing a set of samples taken randomly with
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Figure 4.D.1: 100 bootstrap realizations for the population Models A1-D explored in this work
(thin black), along with our results from §4.3.1-4.3.4 (dashed orange). These quantify the impact
of stochastic errors associated with the various Monte Carlo integrations involved, which remains
small at the current uncertainty level. Contours enclose 90% of the distribution.
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replacement from the corresponding original sets for all Monte Carlo integrations involved—i.e.,
from the source parameter estimation samples of each event for the computation of W;(\ | Aj)
in Eq. (4.17), and from the set of injections for VT (\') in Eq. (4.18). The collection of these
inference realizations may be interpreted as the ensemble of solutions compatible with our stochastic
sampling errors. Figure 4.D.1 shows the results of this exercise for Models A1-D and the combined
GWTC-1 and IAS catalog. Thin black lines show the 100 bootstrap realizations and dashed orange
lines show our original results. These stochastic errors are smaller than the uncertainty levels,
providing evidence that the proposal distribution choices and the number of injections and parameter

estimation samples were adequate to achieve a robust reweighting.
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Chapter 5

Effective Spins and Masses from

01-03a

This chapter has been adapted from Roulet et al. (2021).

The distribution of effective spin xef, a parameter that encodes the degree of spin—orbit alignment
in a binary system, has been widely regarded as a robust discriminator between the isolated and
dynamical formation pathways for merging binary black holes. Until the recent release of the GWTC-
2 catalog, such tests have yielded inconclusive results due to the small number of events with
measurable nonzero spins. In this work, we study the xeg distribution of the binary black holes
detected in the LIGO-Virgo O1-03a observing runs. Our focus is on the degree to which the g
distribution is symmetric about ye.g = 0 and whether the data provides support for a population of
negative-yog systems. We find that the y.g distribution is asymmetric at 95% credibility, with an
excess of aligned-spin binary systems (s > 0) over anti-aligned ones. Moreover, we find that there
is no evidence for negative-yog systems in the current population of binary black holes. Thus, based
solely on the yg distribution, dynamical formation is disfavored as being responsible for the entirety
of the observed merging binary black holes, while isolated formation remains viable. We also study
the mass distribution of the current binary black hole population, confirming that a single truncated
power law distribution in the primary source-frame mass, mig, fails to describe the observations.
Instead, we find that the preferred models have a steep feature at mys ~ 40 Mg consistent with a

step and an extended, shallow tail to high masses.
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5.1 Introduction

The growing number of gravitational wave sources observed by the LIGO and Virgo detectors is
leading to an improved picture of the astrophysical population of binary mergers. The recent release
of the second Gravitational-Wave Transient Catalog, GWTC-2 (Abbott et al., 2020e), by the LIGO-
Virgo Collaboration (LVC) has roughly tripled the sample size of observed binary black hole mergers
(Abbott et al., 2019a; Nitz et al., 2019a; Venumadhav et al., 2019; Zackay et al., 2019b; Venumadhav
et al., 2020; Zackay et al., 2019a; Nitz et al., 2020) and is starting to offer hints about the astrophysical
origin of these binary systems (Abbott et al., 2020f; Wong et al., 2021; Zevin et al., 2021; Bouffanais
et al., 2021).

Indeed, the distribution of binary black hole parameters (e.g. masses, spins, redshift) is an
observable that allows us to test models of formation pathways for these systems. Proposed scenarios
include dynamical assembly and hardening of binary black holes in dense stellar environments, such
as globular clusters (Zwart and McMillan, 1999; O’Leary et al., 2006; Sadowski et al., 2008; Downing
et al., 2010, 2011; Samsing et al., 2014; Rodriguez et al., 2015, 2016a; Askar et al., 2016), nuclear
star clusters (Antonini and Rasio, 2016; Petrovich and Antonini, 2017), and young stellar clusters
(Ziosi et al., 2014; Mapelli, 2016; Banerjee, 2017; Chatterjee et al., 2017); isolated evolution of a
binary star in the galactic field, which undergoes either a common envelope phase (Nelemans et al.,
2001; Belczynski et al., 2002; Voss and Tauris, 2003; Belczynski et al., 2007, 2008; Dominik et al.,
2013; Belczynski et al., 2014; Mennekens and Vanbeveren, 2014; Spera et al., 2015; Eldridge and
Stanway, 2016; Stevenson et al., 2017b; Mapelli et al., 2017; Giacobbo et al., 2017; Mapelli and
Giacobbo, 2018; Kruckow et al., 2018; Giacobbo and Mapelli, 2018) or a chemically homogeneous
evolution (Marchant et al., 2016; de Mink and Mandel, 2016; Mandel and de Mink, 2016); and binary
mergers prompted by interactions with a supermassive black hole (Antonini and Perets, 2012), gas
and stars in the accretion disk of an active galactic nucleus (McKernan et al., 2012; Stone et al.,
2016; Bartos et al., 2017), or additional companions in higher-multiplicity systems (Antonini et al.,
2014; Kimpson et al., 2016; Antonini et al., 2017; Liu and Lai, 2018; Hamers et al., 2015).

Since the individual components of the dimensionless spin vectors x1 and x2 are hard to mea-
sure (Vitale et al., 2014; Piirrer et al., 2016; Vitale et al., 2017a) and their directions generally
evolve with time due to precession (Apostolatos et al., 1994; Kidder, 1995), a well-known effective

aligned-spin parameter was introduced (Racine, 2008; Ajith et al., 2011; Santamaria et al., 2010)

X1+4axz 3
off i = === L, 5.1
X 1+ (5.1)
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where L is the unit vector along the Newtonian orbital angular momentum of the binary, ¢ =
mao/my < 1 is the mass ratio. The effective spin is motivated by the fact that it can be measured
relatively precisely in the data, and is approximately conserved throughout the binary coalescence
after orbit averaging (Racine, 2008). No less important, two of the main broad classes of binary black
hole formation channels make predictions about qualitative features of the effective spin distribution
that are robust to model uncertainties. Dynamical formation channels in general predict that the
spins and orbit should be isotropically distributed and uncorrelated with each other. In particular,
this implies that for these systems the yeg distribution is symmetric about 0. Isolated formation
channels instead predict correlations in the spins and orbit directions due to mass transfer episodes
or tidal interactions between the component stars. As a result, the isolated scenario predicts a
distribution of xeg with little support at negative values. Within this channel, a small fraction of
mergers with negative y.g could still possibly be explained by anisotropic supernova explosions at
the black holes formation, which impart a natal kick that can change the plane of the orbit and thus
the value of xe.x (Rodriguez et al., 2016b; Gerosa et al., 2018). However, if these kicks were strong
enough to invert the direction of the orbit in a sizeable fraction of the cases, they would also unbind
the binaries so frequently that the observed rates would be hard to explain (Belczynski and Bulik,
1999; Callister et al., 2020).

In this work we will study in detail the degree to which these two qualitative features of the xeg
distribution, namely its symmetry about 0 and support at negative values, hold for the observed
sample. Both features become hard to test if black hole spins are small, which is predicted from
stellar evolution models (Fuller and Ma, 2019; Bavera et al., 2020) and is also the case of most
observations. Indeed, until the recent release of the GWTC-2 catalog these simple but general tests
were mostly inconclusive due to the small number of events with measurable nonzero x.g (Farr
et al., 2017, 2018; Roulet and Zaldarriaga, 2019; Roulet et al., 2020). Including events from the O3a
observing run, Abbott et al. (2020f) first reported evidence for both features in the population: they
found the xeg distribution to have a positive mean and support at negative values. Together, these
observations suggest that neither dynamical nor isolated formation channels alone can explain the
entirety of the detections. Combining this information with the observed mass distribution, Zevin
et al. (2021); Bouffanais et al. (2021) reached a similar conclusion, and applied a further layer of
interpretation to constrain uncertain parameters of physical models of binary black hole formation.
Here, we instead constrain a phenomenological description of the binary black hole population, more
akin to the analysis of Abbott et al. (2020f).

The mass distribution is another observable that can inform binary black hole formation chan-
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nels, as well as physical processes of stellar evolution. Of special interest is the high-mass end

of the mass distribution observable by LIGO-Virgo, m 2

~

40Mg. Due to the (pulsational) pair
instability supernova process, black holes with mass between ~ 45Mg and 135Mg are not ex-
pected to form from stellar collapse (“upper mass gap”) (Fowler and Hoyle, 1964; Barkat et al.,
1967; Bond et al., 1984; Heger et al., 2003; Farmer et al., 2019). A natural way to produce black
holes in this mass range is through mergers of lighter black holes. In dense environments these
so-called “second-generation” black holes can become paired and merge again, emitting an observ-
able gravitational wave signal. This process is contingent on retention of the remnant black hole,
so its efficiency depends on the interplay between the merger kick (a recoil of the remnant black
hole due to asymmetric gravitational wave emission at merger) and the local escape velocity. The
magnitude of the kicks is sensitive to the spins of the merging black holes, smaller spins usually
yielding smaller kicks. In turn, different types of dense environments have different escape veloci-
ties, typical numbers being 10-10% kms~! for globular clusters and up to ~ 10 kms~! for nuclear
clusters. Second generation mergers do not happen for binaries formed in isolation. Some alternative
pathways to produce black holes in this mass range may involve accretion of gas (Safarzadeh et al.,
2020) or extreme values of the 2C(a, )0 nuclear cross section, which can shift the location of
the mass gap (Farmer et al., 2019), see (Gerosa and Fishbach, 2021) and references therein for a re-
cent review. On the observational side, current interferometers are particularly sensitive to mergers
in this high-mass region of parameter space, which makes it a promising discriminator (Fishbach
and Holz, 2017). Indeed, some events were observed to have significant support for one or both
component black holes in this mass range (e.g. GW190521, GW190602_175927, GW190706_222641,
GW190519_153544, GW190929_012149 (Abbott et al., 2020e), GW170817A (Zackay et al., 2019a)).
While analyses prior to O3a found evidence for a cut-off in the mass distribution at ~ 40 Mg (Fish-
bach and Holz, 2017; Wysocki et al., 2019; Roulet and Zaldarriaga, 2019; Roulet et al., 2020), this
picture changed with the inclusion of O3a and models with more structure, including a tail at high
mass, became favored (Abbott et al., 2020f). Here, we will also explore parametric models of the
primary mass distribution in order to validate these results.

Our main findings are:

1. The y.g distribution is inconsistent with being symmetric about zero at the 95% credible level,
with aligned-spin binary systems (xes > 0) predominating over those with anti-aligned spins
(Xet < 0). This result provides some evidence against the formation scenario in which the

entire population of binary black holes has isotropically-distributed spins, as predicted if all

117



merging binary black holes are formed dynamically in dense stellar environments;

2. We find no evidence for negative xog in the population, in contrast to Abbott et al. (2020f).
We are able to reproduce their results, but find that the parametrized model they used in order
to reach this conclusion is disfavored by the data and that the inferred presence of negative

spins is contingent on this parametrization;

3. We find that the primary-mass distribution steepens at ~ 40 Mg and then flattens, with an

extended tail to high masses whose detailed shape is hard to constrain with current data.

This paper is organized as follows: in Section 5.2, we describe the data investigated in this
work, our sample selection criteria, and the parameter estimation method used to infer the source
parameters of the binary black holes. In Section 5.3, we conduct a model-free exploration of the data,
with a special focus on the empirical distribution of y.g. In Section 5.4, we describe our statistical
methods for model selection and apply them to several parametrized models for the distributions of
the effective spin and primary mass. We conclude in Section 5.5. We provide details of the sample

of events that we use in Appendix 5.A.

5.2 Data

The data explored in this work consists of the binary black hole events reported in the LVC GWTC-
1 (Abbott et al., 2019a) and GWTC-2 (Abbott et al., 2020e) catalogs, and those identified in the
independent IAS O1-02 catalog (Venumadhav et al., 2019; Zackay et al., 2019b; Venumadhav et al.,
2020; Zackay et al., 2019a). Some of the events reported in the IAS O1-O2 catalog have been
independently confirmed by Nitz et al. (2019a, 2020). Following the main analysis conducted by the
LVC in their population study (Abbott et al., 2020f), we exclude GW190814 (Abbott et al., 2020d)
in this work as it is an outlier with respect to the rest of the observed population, and for ease
of comparison between our results and the LVC’s results (see Section 5.4). We do not include the
recent 3-OGC catalog (Nitz et al., 2021), which was published as this work was being completed. A
summary of the events used in this work is provided in Appendix 5.A.

Depending on how easily our models for astrophysical signals and detector noise can account for
the properties of a given trigger, some detections are more statistically significant than the others.
Roulet et al. (2020) provided a framework to take this into account when using triggers of arbitrary
significance. However, in order to simplify the interpretation of the results shown in Section 5.3, we

find it convenient to define a “gold sample” of events that are confidently astrophysical in origin. For
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a similar reason, we also exclude from the gold sample those events that happened when a detector
exhibited non-Gaussian noise transients, which makes estimation of their parameters and significance
more challenging. We include an event in the gold sample if (i) it was identified by at least two
search pipelines with a false-alarm rate FAR < 0.1yr~!; and (ii) none of the detectors exhibited
non-Gaussian transient noise in its vicinity (see Appendix 5.A for details). These criteria are neither
explicitly dependent on nor expected to correlate significantly with the binary black hole intrinsic
parameters; as such, our gold sample constitutes an unbiased representation of the distribution for
the intrinsic parameters of detectable mergers. Indeed, as we shall see in Section 5.4, our conclusions
are not strongly affected by this choice of sample. Out of the total 55 events considered in this work,
30 are in the gold sample (see Appendix 5.A).

We infer the source parameters of each binary system with the IMRPhenomXPHM model, which de-
scribes the gravitational waves emitted by a quasi-circular binary black hole (Pratten et al., 2020).
This model accounts for spin—orbit precession and the (¢,|m|) = {(2,2),(2,1),(3,3),(3,2),(4,4)}
harmonics of the gravitational radiation. We use the relative binning algorithm to evaluate the
likelihood (Zackay et al., 2018), and PyMultiNest (Buchner et al., 2014) to sample the posterior
distribution. For the events identified near non-Gaussian transient noise (summarized in Ref. (Ab-
bott et al., 2020e, table V)), we do not make special mitigation efforts, though we verify that we
obtain parameter estimation results that are similar to those reported by Abbott et al. (2020e),
who applied glitch subtraction algorithms before performing parameter estimations (Cornish and
Littenberg, 2015; Littenberg et al., 2016; Cornish et al., 2021).

For each event, we sample the posterior distribution using a prior that is uniform in detector-
frame component masses, Xeg and luminosity volume. For the remaining spin components, we adopt
a uniform prior for the poorly-measured variable xaqifr := (¢x1 — X2) - L /(14 q), conditioned on yeft
and enforcing the Kerr limit on the individual spin magnitudes, |x1]| < 1 and |x2| < 1. Xexr and xaifr
together determine the two spin components that are aligned with the orbital angular momentum,
X1- and x2.. We then take the prior of the in-plane spin components of the black holes, x;; and X,
with i = 1,2, to be uniformly distributed in the disk x7, + x3, <1 — x7..

Our parameter estimation results are broadly consistent with LVC’s after accounting for the
differences in spin priors, with two notable exceptions. Firstly, we find that the posterior distribution
for GW151226 (Abbott et al., 2016b) significantly changes towards more unequal mass ratio, larger
positive yeg and more misaligned primary spin when higher harmonics and precession are included
in the parameter estimation (Chia et al., 2021). Another remarkable event is GW190521, which

was reported to have component source-frame masses mis = SSﬁi Mg, mog = 66ﬂg Mg by the
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LVC (Abbott et al., 2020¢). Using a different prior for the masses and distance, and allowing for a
broader parameter range, Nitz and Capano (2021) found a qualitatively different trimodal solution,
with roughly similar total mass and peaks at ¢ ~ 1/2,1/5, and 1/12. Instead, we find a bimodal
solution which is approximately consistent with the first two of these modes (Olsen et al.), similar

to that reported in (Estellés et al., 2021).

5.3 Model-free exploration

In this section, we carry out a model-free exploration of the data. Our emphasis is on the symmetry,
or lack thereof, between positive and negative values of g in the observed xeg distribution. We
also investigate if the data requires a distribution with support at negative values of x.g. To ease the
interpretation of the plots shown in this section, we shall restrict ourselves to the events identified in

the gold sample (see Section 5.2). We defer a model-dependent analysis of the data to Section 5.4.

5.3.1 Support for nonzero y.g

We first test the simplest hypothesis that all binary black holes have y.g = 0, with any appar-
ent deviation away from zero arising due to measurement uncertainty. This test is motivated
by the fact that, while the y.s measurements of some of the events have most of their sup-
port at xer < 0 (GW170121, GW150914, GW170818, GW190421_213856, GW170104, GW151012,
GW190915.235702, GW170727, GW190521, GW190408_181802), none of them confidently excludes
Xef = 0. In the left panel of Fig. 5.3.1, we explore whether the observed scatter in the y.g dis-
tribution is consistent with noisy measurements of a xeg = 0 population. We plot the empirical
distribution of the quantity (xef)/o, i.e. the mean y.g of each of the event’s posterior samples divided
by their standard deviation, and compare it with the cumulative of a standard Gaussian distribution
with zero mean and amplitude Ny, where Ny is the number of events in this distribution. Provided
that the likelihood is approximately Gaussian as a function of y.g, these distributions should match
if the true yo.g were 0. In particular, with the current number of observed events, we would not
expect to find events that are more than 20 away from x.g = 0. In the left panel of Fig. 5.3.1, we
observe that although Ny =~ 20 out of the 30 events in the gold sample are consistent with noisy
measurements of a xeg = 0 distribution, there is an excess of about 10 events with xeg > 0 that
cannot be explained by measurement uncertainty. On the other hand, no such tail seems to be

needed in the y.g < 0 interval.
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Figure 5.3.1: Empirical spin distributions of the events in the gold sample (see Appendix 5.A).
For each event, parameter estimation samples were obtained using a uniform prior in ye.g. To avoid
clutter, event names were abbreviated when this did not cause ambiguity. Left panel: Mean effective
spin scaled by the standard deviation for each event’s posterior. We see that about Ny =~ 20 events
in the gold sample are consistent with noisy measurements of a y.g = 0 subpopulation, but a tail
in the positive xeg end of the distribution is clearly needed in order to accommodate the remaining
~ 10 events. Conversely, no such tail seems to be needed at the negative end. Middle panel: X
distribution, where markers and error bars indicate mean and standard deviation. In the cumulative,
each event is weighted by the ratio of the event’s sensitive volume to a similar event with zero spins
in order to cancel spin selection effects. We see that there are several events with small but well-
measured Yeg > 0 for which spin selection effects are not important. Right panel: ratio of observed
Xeft to its characteristic value if strong tides were acted on the secondary (blue circles) or primary
(orange triangles) black hole progenitor. A number of events are inconsistent with any of these
variables being 0 or 1, thereby excluding the strong-tide model as the only mechanism generating
black hole spins.

5.3.2 Symmetry of the y.s distribution

The observed excess of xeg > 0 events relative to those with xeg < 0 in the left panel of Fig. 5.3.1
does not immediately imply that the astrophysical x.g distribution is asymmetric about x.g = O:
an important caveat is that, other parameters being equal, mergers with large and positive values
of Xesr are louder due to the so-called “orbital hangup” effect (Campanelli et al., 2006). This effect
leads to a selection bias favoring more observations of x.g > 0 events, even if the astrophysical xeg
distribution is symmetric (Ng et al., 2018; Roulet and Zaldarriaga, 2019). The observed excess of

Yo > 0 events thus requires careful interpretation.’ In the middle panel of Fig. 5.3.1, we plot the

1Strictly speaking, this observational bias is also present in the left panel of Fig. 5.3.1 through the parameter
estimation prior: in order to match the observed amplitude of a signal, higher-x.g solutions are located farther out
in distance and thus have more phase space volume available. In other words, a flat prior for the astrophysical xem
distribution is implicitly skewed towards positive xeg values when conditioned on the strain amplitude measured at
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empirical distribution of y.g correcting for this observational bias. The bias is computed as follows:

for each event, we compute the weight factor

w = (Vhospin/V), (5.2)

which is inversely proportional to the sensitive volume V to the corresponding event. Here, we
approximate V of a source that has (detector-frame) intrinsic parameters i, = {m1, m2, X1z, X2- }

as

V (Bine) o< 95 (Gint) (5.3)

with pgp the single-detector signal-to-noise ratio (SNR) of an overhead, face-on source at a fiducial
luminosity distance with a fiducial sensitivity. Vjospin is defined similarly but with xi, = x2. = 0.
For simplicity, we set the in-plane spin components to zero and neglect cosmological evolution
throughout this computation. We then average the ratio of these two volumes over the posterior
distribution of each event in order to obtain the weight w. In the middle panel of Fig. 5.3.1,
we see that many of the events that deviate most significantly away from y.g = 0 have small
values of yef and hence a small impact in the sensitive volume. In particular, GW190728_064510,
GW190521_074359, GW190720-000836, GW190930- _133541, GW190828_063405 and GW190412 are
2 20 away from yeg = 0 and have relatively small values of y.g ~ 0.1-0.25. The vertical spacing
between events in this plot is given by the volume weight w of the event: for the first four of these
events w is approximately 0.95, and for the last two approximately 0.75. Since these are small volume
corrections, there is no compelling reason as to why the same number of corresponding events on
the negative side of e should not be seen, for an astrophysical xeg distribution that is symmetric
about zero. There are also events that are more than 20 away from zero x.g but with relatively large
values of xeg ~ 0.5 (GW170729, GW190519_153544, GW190706_222641 and GW190517_055101).
The selection effect for these events is more appreciable, w ~ 0.5, so it would be easier to miss
similar events with the opposite sign of xeg. Altogether, the left and middle panels of Fig. 5.3.1
hint that the empirical effective spin distribution is consistent with a distribution with no support

for negative spins, but not so much with one symmetric about y.g = 0.

the detector. As a result, noisy measurements of a x.g = 0 distribution would be slightly biased towards x.g > 0.
However, within that scenario this effect is small, as the measured x.g would be small.
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5.3.3 Testing tidal models

Finally, we explore whether the observed events with positive yeg can be explained by a simple
model of tides acting on the progenitor of one of the component black holes. The simplest and most
extreme model for tides assumes that tides sourced by the companion are either very efficient at
spinning up the progenitor star or negligible depending on the orbital separation after a common
envelope phase, because tidal torques are very sensitive to the orbital separation. Then, a fraction
of the component black holes would come from tidally-torqued progenitors and would have a large,
aligned spin y, ~ 1 (Kushnir et al., 2016; Zaldarriaga et al., 2017). If, barring tides, natal black hole
spins were small (Fuller and Ma, 2019; Bavera et al., 2020), the x.g distribution would have peaks at
Xeft = 0,q/(14q),1/(1+¢q), 1 when the tides were inefficient, torqued the progenitor of the secondary
black hole, torqued the progenitor of the primary, or torqued both, respectively. In the right panel
of Fig. 5.3.1 we show the empirical distribution of y.g rescaled by the value under the hypotheses
that either the secondary or the primary black hole is maximally spinning and aligned with the
orbit. We find that several of the events with well-measured nonzero spin do not seem to be well
explained by this model (GW190728.064510, GW190521_074359, GW190720.000836, GW 170809,
GW190930-133541 and GW190828_063405). This is in agreement with earlier findings that either
a less extreme model of tidal torques (as argued in (Qin et al., 2018; Bavera et al., 2020)) or a
distribution of natal spins with some dispersion is needed in order to explain the observed spins

with tides (Roulet et al., 2020).

5.4 Model selection

In order to validate and quantify our findings in Section 5.3, in this section we perform selection of
parametric models for the observed binary black hole population. We first provide a brief review of
our statistical framework, and then constrain the parameters of several models for the astrophysical

effective spin and primary mass distributions.

5.4.1 Statistical framework

Following Roulet et al. (2020), we evaluate the likelihood P({d;} | \) of an observed set of triggers

{d;}, given a phenomenological population model A for the distributions of binary black hole source
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parameters, as:

Ntrig
_ dN,())
P dz A Na(X) — astro,i A 1- astro,i A . 4
({0} 1) x e T { G, paseos 00) 1= prsiO) (5.4)

Here, N,()) is the expected number of triggers of astrophysical origin under the population model
A (as opposed to detector noise), over a fixed and arbitrary detection threshold; dN,(\)/dN,(Ao)|4,
is the ratio of expected densities, in data space, of astrophysical triggers similar to that of the ith
event between the population model A and a fixed, arbitrary reference model Ag; and pastro,i(Ao) is
the probability of astrophysical origin of the ith trigger under the reference population model. The
data space contains observable quantities that carry information about the astrophysical population,
like measured detector strains and derived detection statistics. All the quantities described above
depend on the search pipeline used; in addition, N,(\) and the set of triggers itself depend on the
detection threshold chosen. Three ingredients are required in order to estimate these quantities: a
set of software injections labeled by whether they exceed the detection threshold, to quantify the
sensitivity of the search; posterior samples characterizing the parameters of each individual event;
and the set of {Pastro.i(Ao)} encoding the events’ significance (Roulet et al., 2020).

Equation (5.4) naturally factors into the product of likelihoods from searches on disjoint datasets,
such as different observing runs. Since the full strain data from observing runs O1 and O2 are publicly
accessible (Abbott et al., 2021), for these data sets we base our analysis on our searches for binary
black holes (Venumadhav et al., 2019, 2020; Zackay et al., 2019a). The strain data for O3a has also
recently been released, and analyzed by Nitz et al. (2021) when this work was close to completion;
we do not include these results here. The LVC provides a set of software injections with FAR
estimates from the search pipelines they used (¢cWB, GstLAL, PyCBC and PyCBC BBH), and the
GWTC-2 catalog itself which reports {pastro,i } for the latter 3 pipelines (Abbott et al., 2020¢). For
0O3a we use these data products, which are adequate for computing the quantities in Eq. (5.4) with
the following caveat. Our method requires knowing {pastro,i(Ao)} under some specific astrophysical
model, which was not explicited in the GWTC-2 release. We take two alternative approaches: (i)
we conservatively consider only O3a events that are in the gold sample, so that all pastro = 1 under
any model allowed by observations; or (ii) we consider the same O3a binary black hole mergers as
in Ref. (Abbott et al., 2020f)—i.e. with an inverse false-alarm rate IFAR > 1yr in any pipeline
and excluding GW190814—taking the reported pasiro at face value and assigning it to an arbitrary
model \g featuring a broad distribution in black hole parameters, described below. We will refer to

these two samples as GWTC-1 + TAS + Gold O3a and GWTC-1 + TAS + GWTC-2, respectively.
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We will find that our conclusions are not strongly affected by the sample used. We implement the
sample choices by setting appropriate thresholds on the IFAR, which are reported for both events
and injections in GWTC-2. The O3a injections do not report whether they fall near a glitch (one
of the criteria of the gold sample), but these should be present in only a few percent of the events
given the reported rate of ~ 1 glitch/min (Abbott et al., 2020e).

Following (Roulet et al., 2020), we adopt a fiducial population model A that is described by the

following distribution function:

f(mlsu 4, Xeff DL | )\6) X ml_saOD%ﬂ (55)

where Dy is the luminosity distance and ag = 2.35. We adopted the A\’ notation for the parameters
that control the shape of the distribution, while the rate R controls its normalization, i.e. A = (R, \).
The ranges of the parameters in Eq. (5.5) are taken to be mimin < M1s < Mimax and gmin < ¢ < 1,

where mimin = 3Mg, Mimax = 120 Mg and gupin = 1/20.

5.4.2 Spin distribution

Motivated by Fig. 5.3.1 and the discussion in Section 5.3, as well as Refs. (Farr et al., 2018; Abbott
et al., 2020f), we will consider a phenomenological model for the effective spin distribution that
allows us to explore the degree of symmetry of the distribution about x.g = 0. This model will also
allow us to quantify the support for positive and negative values of x.g in the population.

Firstly, we model the effective spin distribution as a mixture of three subpopulations with nega-

tive, zero, and positive Yef:

erff (Xeff | Cpos> Cnegu UXeff) = CON(XSH; 00 = 0'04)
+ CnegN<O(Xeff§ UXeff) (5'6)

+ CposN>0(XeFf; Uchf) .

Here, the various parameters (; € [0, 1] are the branching ratios for each subpopulation, constrained
to have unit sum; N (z;0) is the normal distribution with zero mean, dispersion o, truncated at
z = +1; Noo(x;0) is a similar normal distribution but truncated at x = —1 and =z = 0, while
Nso(z;0) is truncated at z = 0 and & = 1. The functional form Eq. (5.6) is sketched in Fig. 5.4.1
for a particular choice of parameters. Note that we have enforced the dispersion parameters of the

positive and negative subpopulations to be equal, such that setting (o5 = (neg yields a symmetric

125



,.% - fpos
S 31 fneg
g — "
5 21 ———- f
a
N
=S
[
= Zoos

0 T T T 1

—-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
Xeff

Figure 5.4.1: Sketch of the functional form Eq. (5.6), which we use to parametrize the xoq distribution
as the sum of three subpopulations. These subpopulations have positive, negative or zero effective
spins, with each described by truncated Gaussians that peak at yog = 0. We use three independent
shape parameters: the width of the positive and negative distributions, o, which are constrained
to be equal, and the three branching ratios (; which sum to unity. For technical reasons, we fix the
width of the xeg ~ 0 subpopulation to have a small but non-vanishing dispersion of gy = 0.04.

Xeft distribution. For the y.g =~ 0 subpopulation, we adopt a small (relative to typical measure-
ment uncertainties) but nonvanishing dispersion oy = 0.04 in order to ensure that the reweighting
procedure used in our algorithm is well behaved (Roulet et al., 2020).

In this Section we will only vary the effective spin distribution, while the remaining spin compo-
nents are assumed to follow the parameter estimation prior described in Section 5.2. For the other

binary black hole parameters, we will assume the following fixed distribution :

f(Xeffvmlqua DL) = chff (Xeﬂ)fmls(mls)fq(Q)fDL (DL) (5'7)

Following Abbott et al. (2020f) we adopt a broken power-law distribution for the primary mass:

O, mis < 5M@
m T
1
Jmy (Mas) o (m . ) , 5Mg < mis < Mpreak (5.8)
break
mis T
m y  Mbpreak < Mis,
break

with a; = 1.6, ag = 5.6, Mpreak = 40 M. For simplicity, we adopt a mass-ratio distribution that is
uniform in 1/20 < ¢ < 1 and take the distance distribution to be uniform in comoving volume-time.
We use the likelihood in Eq. (5.4) to obtain a posterior distribution for the population parameters,

by adopting a Jeffreys prior for the overall merger rate (R | \') < v/Ny(R, N')/R; recall that X
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Figure 5.4.2: Constraints on the model parameters of the population model Eq. (5.6). We see
that a symmetric xeg distribution (black dashed line), with (pos = Cneg, is disfavored by the data.
In addition, the population is consistent with having no negative-spin subpopulation. The two-
dimensional contours enclose the 50% and 90% credible regions. Parameter values (median and 90%
confidence level) are reported for the GWTC-1 + IAS + Gold O3a sample.
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AmaxIn L AlnZ

Symmetric Xeg 0 0
Positive xef 2.170% 1.6755
Positive/Negative mixture e Z.Ifgé 1.41'8:‘% ]
Gaussian Yeg 0.275°% -0.279:3

Table 5.4.1: Scores for models of the y.g distribution. Difference in the maximum log likelihood and
log evidence relative to the symmetric Xeg model (pos = Cneg. Error bars indicate the 90% confidence
level and account for stochastic errors due to the finite number of injections and parameter samples
used, and are estimated with 100 bootstrap realizations of the analysis similarly to (Roulet et al.,
2020).

are the shape parameters (Cpos; Cneg, Oxore)- FoOr these we adopt a uniform prior m(\) = const. This
prior is invariant to the choice of which two out of the three branching ratios are used to parametrize
the distribution.

We show our constraints on the parameters of this model in Fig. 5.4.2, for the two samples
used. We find two remarkable results: first, 95% of the posterior lies at (pos > Cneg and a symmetric
distribution (pos = Cneg (dashed line) is disfavored; second, the population is consistent with (g = 0,
i.e. no spins anti-aligned with the binary orbit. These conclusions do not depend on which of the
two event samples are considered.

We quantify these statements using the Bayesian evidence and maximum likelihood as model
scores: we report in Table 5.4.1 the scores achieved by the following models: a symmetric yeq
distribution given by Eq. (5.6) with (pos = Cneg, @ positive xeq distribution setting (neg = 0, and
the full mixture. The symmetric y.g¢ model is representative of a scenario completely dominated by
dynamical formation in clusters, while the positive x.g model represents a case dominated by isolated
binaries—with the caveat that in this channel there exist mechanisms to achieve some spin—orbit
misalignment, e.g. supernova kicks.

The first result that positive x.g predominates over negative is in general agreement with the
analysis of Abbott et al. (2020f). Indeed, parametrizing the yeg distribution with a Gaussian, they
find that a positive mean is preferred; likewise, they favor spin orientation distributions with at least
some degree of anisotropy.

On the other hand, our second finding that there is yet no evidence for negative y.g in the
population is in contrast with the results of Abbott et al. (2020f), who found that all Gaussian fits
to the observed yeg distribution had a sizable support at negative y.g. We suggest that their result
is contingent on the assumed parametrization of the population as a Gaussian distribution, while

our parametrization has more freedom to accommodate features near x.g = 0. In particular, the
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maximum likelihood solution has parameters (Cpos, Cneg, G0s Oxer) = (0.45,0.00,0.55,0.23), featuring
a sharp peak at xeg ~ 0, a rapid decline at negative y.g and an extended tail at positive g which
are hard to capture with a single Gaussian. To test this hypothesis we try a similar Gaussian model
for the yeg distribution, shown in Fig. 5.4.3. With this model, we indeed find good quantitative
agreement with Abbott et al. (2020f, figure 11) and would recover their same conclusions: we find
that models without support at negative xer (0y.; < Xemr) are excluded. In Table 5.4.1 we see that
the Gaussian model performs worse than other models we tried, in particular the model restricted
to positive . Abbott et al. (2020f) did consider the possibility that their finding of negative

spins could be driven by the Gaussian parametrization. Indeed, in Abbott et al. (2020f, figure 27)

i

they show that adding a free parameter xof" below which the Gaussian is truncated, they exclude

i min

Xop® > 0 at 99% credibility and find that small negative values —0.2 < x24" < 0 are preferred.
We interpret that the large number of events at xeg ~ 0 drives the exclusion of positive ng“,
furthermore, the fact that small negative values of Xg}fi“ are preferred over large negative values
indicates that the Gaussian model ng“ = —1, which motivated the claim of existence of negative
Xeff Systems, does not fit well the observed population. We conclude that, while it is certainly
possible that there are negative y.g systems in the population, there is not enough evidence for
them yet.

Within isolated formation channels, the fraction of negative xeg systems (neg is an indicator of
typical natal (supernova) kick velocities, larger kicks generally giving larger (neq. Gerosa et al. (2018,
figure 6) find that measurements of ,eg t0 a precision better than 0.1 would start putting meaningful
constraints on kick velocities. Our current bound (nes S 0.3 is compatible with even extreme kicks,
but with a factor of few more detections this would be a promising source of information.

We point out that the GWTC-1 4+ IAS + GWTC-2 sample differs from that of the analysis in
Abbott et al. (2020f) in that it includes events in the IAS catalog. However, having included these
events only weakens our conclusions due to the presence of GW170121, the confident detection with

the most support for negative xeg in the sample.

5.4.3 Mass distribution

We now turn to the distribution of merging binary black hole masses. Using data from the first
two observing runs, several past studies have identified that the primary mass distribution was well
described by a power-law truncated at mpax ~ 40 Mg (Fishbach and Holz, 2017; Wysocki et al.,
2019; Roulet and Zaldarriaga, 2019; Abbott et al., 2019b; Roulet et al., 2020). The third observing
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Figure 5.4.3: Constraints assuming a Gaussian model for the y.g distribution. The black dashed
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contrary to Fig. 5.4.2, under this model one would conclude that negative x.g are present in the
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run revealed that the mass distribution has a tail that extends to higher masses, and that models
with more features, e.g. a broken power-law, were favored. One diagnostic that a single truncated
power-law did not fit the O3a data was that its inferred parameter values experienced a large shift
when including the new events, in particular, mmp., was found to increase from 40.87;%8 Mg to
78.5T4 M, (Abbott et al., 2020f).

As this development evidenced, one has to bear in mind that with a finite number of events
one cannot probe the tail of the distribution arbitrarily far out. Thus, constraints obtained on
the population are to be interpreted as a characterization of the bulk of the distribution, up to a
quantile that depends on the number of events: with Ny, triggers, a fraction ~ O(1/Nyig) of the
distribution cannot be probed; with the present sample this is at the few-percent level. At this
point we introduce a feature in our analysis that makes this notion explicit: we add to the model
a second subpopulation of astrophysical triggers that come from a broad parameter distribution \j

accounting for a small fraction € of the total rate:

dN,
do

(O 1A X0,€) = R[(1 =€) f(O| N) +ef (0] Xp)]5 (5.9)

for € = 0 we recover the previous analysis. Recall that we call the distribution shape parameters
N, so that A = (R, \). For simplicity, we will fix the parameter ¢ = 0.05. This change makes
little difference for events that are well described by the population model A, but since the broad
subpopulation can accommodate any of its outliers, the model A is no longer forced to explain all the
observations. A practical advantage of this is that we get a sensitive diagnostic that some specific
events may be poorly accommodated by the (ultimately arbitrary) parametrizations we chose, if they
get classified with high confidence as belonging to the other subpopulation Aj—evidencing that a
model with more freedom is needed to explain all events. We also construct a simple goodness-of-fit
test for the A model based on the Bayes factor between a model with e = 0 or a small fixed value
€ = 0.05. If the e = 0 model is already a good description of all observed events, adding a broad
subpopulation should not increase the evidence significantly.

The likelihood for this augmented model can be evaluated in post-processing from the same

auxiliary quantities w; (X, A), VT (X'), Pastro.i(Ao) We use in the evaluation of Eq. (5.4) (see (Roulet
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Figure 5.4.4: Adding a broad subpopulation A{ with a fraction e = 0.05 of the astrophysical rate
affects the inferred parameters of the mass distribution. This is a major effect for the truncated
power law model (a), moderate for the broken power law model (b) and minor for the power law
+ peak model (c). These constraints are derived using the GWTC-1 + IAS + Gold O3a sample of
events; we find similar results with GWTC-1 + TAS + GWTC-2.

et al., 2020)):

P({di} | \, X5, €) o exp{—R[(1 — )VT(X) + VT ()] }
R (5.10)
X H {RO [wi()‘/a >‘6)(1 - 6) + e]pastro,i(AO) + 1- pastro,i(AO)}-

Likewise, we can also extract the classification of each event as coming from the main component A

or the broader component A: the probability that the ith event came from the A{, population is

Re

R[(1 — €)w; (N, \)) + € + Ro(1/Pastro,i(Xo) — 1) (5.11)

poutlier,i()H )‘67 6) =

We apply this procedure to three models of the mass distribution that are simplified versions
of the TRUNCATED, BROKEN POWER LAw and POWER LAw + PEAK models studied in Abbott
et al. (2020f). Our broken power law model is given by Eq. (5.8), with a1, aa, Mpreax promoted
to free parameters. Our truncated model corresponds to as — oco. Our power law + peak model
corresponds to ap = aq, plus the addition of a Gaussian component with mean mpea1 and dispersion
o = 5Mg that accounts for a fraction (,eak Of the total rate. In all three cases we assume a uniform
distribution for x.g, and identical distributions as in Section 5.4.2 for the remaining parameters.
With these choices, the models X and Aj, only differ in the primary source-frame mass distribution,
which will ease the interpretation of our results.

Fig. 5.4.4 shows the constraints we obtain using the GWTC-1 + TAS + Gold O3a sample; these
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Figure 5.4.5: Mass distribution predicted by the models favored by the data: truncated power law or
broken power law, in both cases with an additional broad subpopulation with a fraction ¢ = 0.05 of
the total rate responsible for the shallow tail to high masses. These distributions feature a steepening
around 40 Mg, consistent with a step, and a flattening at higher mass. Note that we do not fit for
the power-law index nor the normalization of the high-mass tail.

plots are largely unchanged if we use the GWTC-1 + TAS + GWTC-2 sample (not shown). For
the case e = 0 we find large quantitative agreement with Abbott et al. (2020f) in the constraints
for the corresponding model parameters; in particular, that the data favor a break with a3 > as
(region above the dashed line in Fig. 5.4.4b). When we set € = 0.05, allowing these models to not fit
all events, we find that the model parameter constraints are affected: for the truncated power-law
model the effect is catastrophic, in the sense that the posteriors for ¢ = 0 and 0.05 are inconsistent
with each other; while for the broken power-law model there remains a region of overlap and for the
power law + peak model the inferred parameters remain largely unaffected. This is in line with the
discussion of (Abbott et al., 2020f, figure 2) and suggests that the truncated power-law model with
€ = 0 fails to describe the astrophysical distribution. It is interesting to note that, with ¢ = 0.05,
the truncated and broken power law parametrizations are consistent with the same physical solution
Q& A1, Mmax = Mpreak, &2 > 1, which exhibits a sharp step at mpearx and a tail that extends to
high masses. The power law + peak parametrization cannot produce a step. We show these inferred
distributions in Fig. 5.4.5 to further illustrate the point that both parametrizations give consistent
answers, especially for the bulk of the distribution. Note that the differential merger rate is best
constrained around mis ~ 20 Mg, where most observations lie (Roulet et al., 2020).

In Table 5.4.2 we report the maximum likelihood and evidence for each of the models studied.

We find that, although the broken power law model outperforms the truncated model when € = 0,
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€ AmaxInL AlnZ

—7.4%93 —6.21792

Truncated power law 005 0 0
0  —251%510  —3.12700%
Broken power law 0.05 _0123+§j(11)% 0.02+§,’é§
0 —1.037015 —3.18707

Power law + peak 0.21 0.15
0.05 0.047031  —1.567073

Table 5.4.2: Scores for models of the primary mass distribution. Maximum log likelihood and log
evidence for truncated power law and broken power law models, plus a fraction ¢ = 0 or 0.05 of
the population coming from a broad distribution A per Eq. (5.9). The scores are referred to the
preferred truncated power law model with € = 0.05. In all three cases ¢ = 0 is disfavored, implying
that the models struggle to accommodate all observations.

both perform poorly relative to their € = 0.05 counterparts. This suggests that neither is a good
description of the mass distribution. The power law + peak model achieves similar scores as the
broken power law model with € = 0, but it gets only a slight improvement from e = 0.05, thus getting
similarly disfavored. Among all the variations, thus, the preferred models in terms of evidence are
either the truncated or broken power law with ¢ = 0.05, i.e. with a small fraction of events in a
broad tail that extends to high masses. The fact that these two models achieve similar likelihood
and evidence, together with the above observation that they are consistent with the same physical
solution, suggests that both are comparably good descriptions of the bulk of the distribution and
their different scores for € = 0 are driven by the few outlier events. This is confirmed in Fig. 5.4.5.
Comparing the € = 0 entries in Table 5.4.1 to Abbott et al. (2020f, table 2), we find agreement in
that the truncated power law model is rejected, however, Abbott et al. (2020f) find a preference for
the power law + peak model over the broken power law, which we instead find comparable. Some
differences are expected because, for simplicity, in our implementation of these models we fixed or
omitted some parameters, so the models and associated phase spaces are not equivalent.

We can get some insight by inspecting the probabilities poutiier Of coming from the broad sub-
population A} assigned to each event, which we report in Table 5.4.3. Events with a high value of
Doutlier are better explained by the broad subpopulation and drive a preference for € # 0. However,
note that even if the true astrophysical population was well described by the parametrization A, in
a catalog of many events some are bound to be in the tail of the distribution and might individually
be better described by a broad distribution. The expected distribution of poutiier under a model A is
hard to compute, which is why we do not use the values of poutiier as & quantitative model test. This
said, it is apparent that GW190521 is an extreme outlier of the truncated power law model, and

there are two other events that are in some tension. For the broken power law model, GW190521
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Truncated Broken Power law
power law power law 4+ peak

GW190521 1.00 0.94 0.68
GW190602.175927  0.95 0.72 0.66
GW190706-222641 0.88 0.72 0.75
GW190519.153544  0.76 0.54 0.59
GW190929.012149  0.57 0.46 0.51
GW190620_030421 0.43 0.34 0.47
GW190701-203306  0.33 0.19 0.29
GW190413.134308  0.27 0.25 0.31

Table 5.4.3: Probability that each event is a model outlier, as defined in Eq. (5.11) and marginalized
over model parameters A, with € = 0.05, for the mass models studied. Only events in the gold sample
with the highest values of poutiier are shown, for brevity. Note that this naturally selects the events
with highest primary mass.

is in some tension but the other values of poutiier are milder. For the power law + peak model, no
single event is a strong outlier.

Another interesting effect is that GW170817A, a candidate event with mys = 561’%8 Mg and a
rather low false-alarm rate of 1/(36 O2) observing runs (Zackay et al., 2019a), had an estimated
probability of astrophysical origin marginalized over population parameters of Pastro = 0.07, under
the truncated power law model favored after O1 and O2 (Roulet et al., 2020). This low value was
driven by the lack of observations of other events with similar properties, mainly mass. Under the
newly favored models, it has a moderately different pastro = 0.22 for the truncated power law and
0.26 for the broken power law, both with € = 0.05. This showcases that past;o values for marginal
events in the tails of the distribution are bound to get updated as our knowledge of the population
improves.

To summarize, Table 5.4.2, Figs. 5.4.4 and 5.4.5 suggest that the mass distribution exhibits a
steepening around 40 M and an extended, shallow high-mass tail. From Table 5.4.3 we conclude
that the need for this tail is dominated by GW190521, so at this point we do not attempt to model
its shape based on a single event. Future data releases will allow to probe these features in the mass

distribution.

5.5 Conclusions

We have investigated the properties of the effective spin and primary mass distributions of binary
black holes identified in the GWTC-1 (Abbott et al., 2019a), GWTC-2 (Abbott et al., 2020e), and
TAS 01-02 (Venumadhav et al., 2019; Zackay et al., 2019b; Venumadhav et al., 2020; Zackay et al.,
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2019a) event catalogs. Our study involved re-analyzing all binary black hole signals with the recently
developed IMRPhenomXPHM waveform model (Pratten et al., 2020), which includes orbital precession
and higher-order modes.

We designed a parametric model of the y.g distribution which has three components — with
negative, approximately zero and positive y.g — to test some general predictions of the dynamic
and isolated formation channels for merging binary black holes. Namely, dynamical formation
channels predict a xog distribution that is symmetric about 0, while negative x.g (i.e., large spin—
orbit misalignment) should be very rare for isolated field binaries. Interestingly, we found that a
symmetric distribution is disfavored: the data suggests that the number of positive y.g events is
larger than that with negative yog at 95% credibility. Although the evidence at this point is not
conclusive, this simple test is already becoming powerful enough to hint that not all binary black
holes are dynamically assembled, in agreement with other analyses of these data (Abbott et al.,
2020f; Zevin et al., 2021; Bouffanais et al., 2021). The number of detections is expected to roughly
double with the forthcoming release of the O3b catalog, which should settle this question if the same
trend continues.

Moreover, we find no evidence for negative y.g in the population. This result is in tension with
Ref. (Abbott et al., 2020f); we attribute the discrepancy to the different parametrizations of the
spin distribution chosen. We were able to reproduce the results of Ref. (Abbott et al., 2020f) with
a Gaussian model for x.g, but found that this model fares worse at describing the features in the
spin distribution, in particular, a large concentration of events near x.g = 0. Our conclusion is
in agreement with a model-free inspection of the empirical y.g distribution, which suggests that
all events with significant support at y.g < 0 are consistent with coming from a population with
Xeft = 0. Therefore, we conclude that the observed effective spin distribution does not rule out that
all observations are explained by isolated binary formation.

Regarding the distribution of primary masses, we confirmed the result of (Abbott et al., 2020f)
that a truncated power law fails to describe the observations. Moreover, we found evidence that
a broken power law model or a power law plus a Gaussian peak, which assume a continuous dis-
tribution, compare poorly to a model in which a small fraction of the events comes from a broad
subpopulation, with an extended tail at high masses. This suggests that the tail of the mass distri-

bution has interesting features that will be probed with the coming data releases.
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Appendix

5.A Sample Selection

In this appendix, we inventorize the binary black hole mergers used in this work, which are listed
in Table 5.A.1. We define the gold sample (third column of Table 5.A.1) as the set of events that
(i) were detected by at least two search pipelines with a FAR < 0.1yr—! (fourth column); and
(ii) on strain data that are free of non-Gaussian transient noise (fifth column). We consider the
following pipelines: ¢cWB (Abbott et al., 2020e), GstLAL (Abbott et al., 2020e), PyCBC (Abbott
et al., 2020e; Nitz et al., 2019a, 2020), PyCBC BBH (Abbott et al., 2020e; Nitz et al., 2020), and TAS
(Venumadhav et al., 2020). Events with non-Gaussian artifacts are reported in (Abbott et al., 2020f,
table V). We do not include GW190814 in the GWTC-1 + TAS + Gold O3a sample because it was
detected near non-Gaussian transient noise (Abbott et al., 2020e). Nor do we include GW190814 in
the GWTC-1 4+ TAS + GWTC-2 sample (Section 5.4.2) as it was not included in the main GWTC-2
population analysis due to being an outlier in the mass ratio distribution (Abbott et al., 2020f). For
events in the O1 and O2 observing runs, pastro(Ao) is computed in (Roulet et al., 2020). For events
in O3a, it is taken at face value from (Abbott et al., 2020e) as the maximum p,s;o Over pipelines,
and may not accurately correspond to the model \g.

While the present work was being completed, Nitz et al. (2021) reported their analysis of the
0O3a data, providing independent confirmation of all the sources reported in GWTC-2 except for
GW190426_152155 and GW190909-114149, and further finding four previously unreported events.
We defer the inclusion of these results to future work. Including this catalog, the two-pipeline
condition would be fulfilled by most of the O3a events in Table 5.A.1, thereby enlarging the gold
sample. Still, note that the sample restriction did not change the qualitative conclusions of our

analysis.
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Run Name Gold > 2 pip. Clean pastro(Ao)

01 GW150914 v v v 1.00
GW151012 v v v 1.00
GW151226 v v v 1.00
GW151216 v 0.50

02 GW170823 v v v 1.00
GW170809 v v v 1.00
GW170729 v v v 1.00
GW170814 v v v 1.00
GW170104 v v v 1.00
GW170727 v v v 0.99
GW170121 v v v 0.97
GW170304 v 1.00
GW170818 v v v 0.92
170412B v 0.02
GW170403 v 0.61
GW170425 v 0.60
GW170202 v 0.61
GW170817A v 0.74
GW170608 v v v 1.00

03a GW190408.181802 v v v 1.00
GW190412 v v v 1.00
GW190413_052954 v 0.98
GW190413.134308 0.98
GW190421_213856 v/ v v 1.00
GW190424_180648 0.91
GW190503-185404 v 1.00
GW190512_180714 v v v 1.00
GW190513_205428 v 1.00
GW190514_065416 0.96
GW190517_055101 v v v 1.00
GW190519_153544 v v v 1.00
GW190521 v v v 1.00
GW190521.074359 v v v 1.00
GW190527_092055 v 0.99
GW190602_175927 Vv v v 1.00
GW190620-030421 v 1.00
GW190630-185205 v 1.00

GW190701-203306 1.00

GW190706_222641 v v 1.00
GW190707.093326 v v 1.00
GW190708_232457 v 1.00
GW190719-215514 v 0.82
GW190720-000836 v v v 1.00
GW190727_060333 v 1.00
GW190728_064510 v/ v v 1.00
GW190731_140936 v 0.97
GW190803.022701 Vv v v 0.99
GW190828_063405 v v v 1.00
GW190828_065509 v v v 1.00
GW190909-114149 v 0.89
GW190910-112807 v 1.00
GW190915_235702 Vv v v 1.00
GW190924_021846 v 1.00
GW190929_012149 v 1.00
GW190930_133541 v v v 1.00

Table 5.A.1: Binary black hole events used in this work. Checkmarks from the third to fifth columns
indicate events that are in the gold sample, were identified by at least two pipelines with IFAR >
10yr, and was observed in the absence of glitches, respectively. The pastyo values shown here are
evaluated with the reference model Ag described in Eq. (5.5).
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Chapter 6

Conclusion

In this thesis we made the journey from raw gravitational wave data to its implications for the
astrophysics of binary black holes. In the process we developed a search pipeline with several
innovations, including a geometric template bank. We approximately doubled the sensitive volume
of previous searches, allowing us to find nine new events in LIGO—Virgo O1 and O2 public datasets.
We introduced and implemented a statistical framework to extract the astrophysical interpretation
of these signals, which required careful accounting of their measurement uncertainty, selection effects
and statistical significance. Over these few years, we saw the field of gravitational wave astrophysics
quickly evolve as new data was gathered. The picture is improving, but still far from clear for
binary black hole formation channels. Some key takeaway points that we have learned are that
the distribution of black hole spins is anisotropic, with a preference for alignment with the orbital
angular momentum. This disfavors dynamical assembly of binary black holes in dense clusters as the
only formation channel in operation. On the other hand, the black hole mass distribution features
a tail to high masses inside the mass-gap region predicted by the pair instability supernova process,
which is challenging for binaries formed in isolation but a natural prediction of dynamical channels.
Regarding the merger rate, we found that it is much better constrained if one restricts it to the
region of parameter space where most detections lie. We expect this realization to enable powerful
tests of physically-motivated binary black hole population synthesis predictions.

This thesis highlights the importance of public data, without which none of these projects could
have taken place. My collaborators and I are very grateful to the LIGO-Virgo Collaboration for
their open data policy.

Looking forward, we are quickly reaching the point where improvements in detector sensitivity
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and gravitational waveform models enable measurement of subtle subdominant General Relativity
effects that carry crucial astrophysical information. Inspiraling binaries emit dominantly quadrupo-
lar gravitational radiation, yet very recently higher-order modes have been unambiguously detected.
These enable new tests of General Relativity and break parameter degeneracies, allowing precise
measurement of the component masses and distance to the source. Spin—orbit precession occurs
only if the black hole spins and binary orbit are misaligned, which in turn would shed light on the
formation mechanism of the system: misaligned spins are natural for binaries formed dynamically
from independent black holes in dense stellar environments, but are harder to produce for BBHs
formed from isolated binary stars. Likewise, detecting an eccentric merger would clearly indicate a
prompt dynamical formation, as binary orbits circularize on a shorter timescale than they merge.
Despite the motivations, state-of-the-art search pipelines do not include these physical effects, pre-
senting a direct avenue for improving our sensitivity to these most interesting sources.

Coupled to the steady progress in the waveform modeling front, parameter estimation methods
are another area of active development. Computational cost and sensitivity to algorithm systematics
are currently a significant bottleneck in analysis workflows. The forecasted dramatic increase in
rate of detections, together with the need of using more advanced and computationally expensive
waveform models (and testing them on software injections to calibrate systematic errors) will require
major advancements in parameter estimation algorithms.

Altogether, it is clear that the field of gravitational wave astrophysics is undergoing rapid progress

and that the coming few years are going to be full of delightful surprises.
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