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Abstract. In quark model, the strange axial vector mesons K1(1270) and K;(1400) are defined
as the mixtures of orbital angular momentum states K14 and Kig. In this work, by using the
orthogonality of the mass eigenstates, we have estimated the K;(1270,1400) mixing angle 0k,
where we have found that 0x, ~ —(39 £ 4)°.

The Particle Data Group lists the axial vector, I = 1/2, P-wave strange mesons K(1270) and
K1(1400) with masses 1273 &7 MeV and 1402 £ 7 MeV, respectively [1]. The decays of these
mesons are constrained by a selection rule such that I'( K7 (1270) — Kp) > I'(K1(1270) — K*x)
and I'(K;(1400) — K*m) > I'(K1(1400) — Kp). This rule suggests a large mixing angle close
to |45]° between the pure orbital angular momentum and the G-parity states, Kj4(13P;) and
Ki1p(11Py), leading to the physical K1(1270) and K (1400) states [2, 3]. This mixing is written
as

’K1(1270)> = Sin9K1’K1A>+COSHK1‘KlB>,
|K1(1400)) = cosOk,|K14) —sinfk, |Kip), (1)

where 0k, is the mixing angle [4]. An accurate determination of 0, is crucial to understand
the physical properties of the axial-vector strange mesons. There are various approaches to
this problem in the literature. In 1977, Carnegie et al. obtained 0x, = (41 £+ 4)° by making
a fit to the available data [3]. Brundell et al. estimated the mixing angle to be in the range
—30° < 0k, < 50° by using the data on the ratio BR(t — K1(1270)v;)/BR(t — K1(1400)v;).
The favored value in this range from their analysis is 0, =~ 45° [5]. It was found from
experimental data that the mixing angle has a value |0, | ~ 325" or |0, | ~ 5712° and among
these |0k, | ~ 33° is favored [6]. Burakovsky et al used a nonrelativistic constituent quark model
and estimated 35° < |0k, | < 55°[7]. In addition to these analyses the mixing angle has been
extracted from the updated data on 7 — K1(1270)v, decays as |0k, | ~ 37° or |0k, | ~ 58°[8].
It is apparent from above results in the literature that there exists a sign ambiguity in O,
due to different definitions. In Ref. [9], the decay constants of K;4 and K;p are defined positive
and the sign ambiguity is removed which results in a negative value of 0, . Hatanaka and Yang
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analyzed the latest data on B — K;(1270,1400)y and 7 — K;(1270,1400)r, and they have
found O, = —(34 £ 13)°.

In the present work we have used a theoretical approach, which has been introduced by T.
M. Aliev, A. Ozpineci and V.S. Zamiralov [10], to determine the mixing angle fx,. In this
approach, the correlator function is constructed in terms of the interpolating currents of the
pure K14 and Kip states. Then the mixing angle can be calculated using the orthogonality
of the mass eigenstates, i.e., K1(1270) and K;(1400). Using operator product expansion, the
mixing is expressed in terms of quark and gluon degrees of freedom.

We start our analysis with the correlator function

]-_-[,u,u(pQ) = 1_.[51/1(1270)[(1(1400) (p2)

= i / dei?® (0| T {71400 (1) ;K 0270) ()} ) = 0+ ... (2)

which should vanish since there is no transition possible between the mass eigenstates. To
calculate the correlator in Eq. (2), the interpolating currents of K;(1270,1400) mesons should
be written in terms of pure states K4 p). Using the definition of mixing in Eq. (1), we obtain
the relation

j1(1270)

GEQ400) - — o5 0 j514 — sin KB (3)

= sin HKlelA + cos jK1B,

where jKl(A«B> are the currents for the pure states Kl(A,B)- In the SU(3) limit, K14 and Kip
couple to axial-vector and tensor currents respectively. When SU(3) symmetry is broken, the
contributions to pure currents are proportional to the Gagenbauer moments, and since they are
either zero or comparable to zero, we can assume the pure axial-vector and tensor currents for
K14 and Kip, respectively [4, 11]. Then we write

[Kia(p, ) = Aam/10) and  [Kip(p,e)) = Apn,|0), (4)

where Ay = (ifama)~™!, Ap = (meQB)_l are the coefficients, 77;:‘ = 57,75d and 775 = 50uap"Y5d

are the pure axial-vector and tensor currents. Here f4 p and m4 p are the decay constants and
masses of K4 p) states, respectively. After inserting the definitions of mixing in Eq. (3) and
the pure currents in Eq. (4), the correlator in Eq. (2) can be written in terms of the mixing
angle as follows:

tan O, (A3 — ABIIED) + (1 + tan® 0, )AaABITE =0+ .., (5)

where

I, (p°) = i / dae™ Tr[Yf () (iSa(—2)) Y2 (0) (iS5 ()] (6)

is the two-point correlator of pure states with i,j = A, B, Tﬁ‘ = YuYs and Tf = 0uap™ 5 are
the Lorentz structures in pure currents and iS,(z) is the full quark propagator in position
space. The correlator for pure states can be expressed in terms of Lorentz coefficients as
I, = ra’ Juv + Fijpupy. We choose the p,p, structure and apply a Borel transformation
with respect to p?. Then Eq. (5) results in an expression for the mixing angle as

—2\ \p[4B

tan(20g, ) = T AA — X TEB (7)

where T is the Borel transformed I' with respect to p?. Here M? is the Borel mass and sq is the
continuum threshold.
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In this work we have taken the following numerical inputs:

mg = 10038 MeV, f4 =250+ 13 MeV, fp =190+ 10 MeV, my = 1.31GeV,mp = 1.34 GeV.

(8)
Our numerical results for tan 20k, and 6k, are shown in figures 1(a) and 1(b). We plot the
dependence of tan 20, and 0, on M 2 for different values of sg. The plots suggest that tan 26 K,
lies in the region —13 < tan20g, < —3 and i, = —(39 £4)°. This value is consistent with the
previous results in the literature. We will give our detailed analytical expressions and improved
analysis in a future work.
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Figure 1. (a)tan20g, vs. M2 and (b) 0k, vs M?, for different values of sq.
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