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Abstract. In quark model, the strange axial vector mesonsK1(1270) andK1(1400) are defined
as the mixtures of orbital angular momentum states K1A and K1B . In this work, by using the
orthogonality of the mass eigenstates, we have estimated the K1(1270, 1400) mixing angle θK1 ,
where we have found that θK1 ' −(39± 4)◦.

The Particle Data Group lists the axial vector, I = 1/2, P-wave strange mesons K1(1270) and
K1(1400) with masses 1273 ± 7 MeV and 1402 ± 7 MeV, respectively [1]. The decays of these
mesons are constrained by a selection rule such that Γ(K1(1270)→ Kρ) � Γ(K1(1270)→ K∗π)
and Γ(K1(1400) → K∗π) � Γ(K1(1400) → Kρ). This rule suggests a large mixing angle close
to |45|◦ between the pure orbital angular momentum and the G-parity states, K1A(13P1) and
K1B(11P1), leading to the physical K1(1270) and K1(1400) states [2, 3]. This mixing is written
as

|K1(1270)〉 = sin θK1 |K1A〉+ cos θK1 |K1B〉,
|K1(1400)〉 = cos θK1 |K1A〉 − sin θK1 |K1B〉, (1)

where θK1 is the mixing angle [4]. An accurate determination of θK1 is crucial to understand
the physical properties of the axial-vector strange mesons. There are various approaches to
this problem in the literature. In 1977, Carnegie et al. obtained θK1 = (41 ± 4)◦ by making
a fit to the available data [3]. Brundell et al. estimated the mixing angle to be in the range
−30◦ < θK1 < 50◦ by using the data on the ratio BR(τ → K1(1270)ντ )/BR(τ → K1(1400)ντ ).
The favored value in this range from their analysis is θK1 ' 45◦ [5]. It was found from

experimental data that the mixing angle has a value |θK1 | ' 32+8
−2
◦

or |θK1 | ' 57+2
−3
◦

and among
these |θK1 | ' 33◦ is favored [6]. Burakovsky et al used a nonrelativistic constituent quark model
and estimated 35◦ < |θK1 | < 55◦[7]. In addition to these analyses the mixing angle has been
extracted from the updated data on τ → K1(1270)ντ decays as |θK1 | ' 37◦ or |θK1 | ' 58◦[8].

It is apparent from above results in the literature that there exists a sign ambiguity in θK1

due to different definitions. In Ref. [9], the decay constants of K1A and K1B are defined positive
and the sign ambiguity is removed which results in a negative value of θK1 . Hatanaka and Yang
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analyzed the latest data on B → K1(1270, 1400)γ and τ → K1(1270, 1400)ντ and they have
found θK1 = −(34± 13)◦.

In the present work we have used a theoretical approach, which has been introduced by T.
M. Aliev, A. Ozpineci and V.S. Zamiralov [10], to determine the mixing angle θK1 . In this
approach, the correlator function is constructed in terms of the interpolating currents of the
pure K1A and K1B states. Then the mixing angle can be calculated using the orthogonality
of the mass eigenstates, i.e., K1(1270) and K1(1400). Using operator product expansion, the
mixing is expressed in terms of quark and gluon degrees of freedom.

We start our analysis with the correlator function

Πµν(p2) ≡ ΠK1(1270)K1(1400)
µν (p2)

= i

∫
d4xeipx〈0|T {jK1(1400)†

µ (x)jK1(1270)
ν (0)}|0〉 = 0 + . . . (2)

which should vanish since there is no transition possible between the mass eigenstates. To
calculate the correlator in Eq. (2), the interpolating currents of K1(1270, 1400) mesons should
be written in terms of pure states K1(A,B). Using the definition of mixing in Eq. (1), we obtain
the relation

jK1(1270) = sin θK1j
K1A + cos jK1B ,

jK1(1400) = cos θK1j
K1A − sin jK1B , (3)

where jK1(A,B) are the currents for the pure states K1(A,B). In the SU(3) limit, K1A and K1B

couple to axial-vector and tensor currents respectively. When SU(3) symmetry is broken, the
contributions to pure currents are proportional to the Gagenbauer moments, and since they are
either zero or comparable to zero, we can assume the pure axial-vector and tensor currents for
K1A and K1B, respectively [4, 11]. Then we write

|K1A(p, ε)〉 = λAη
A
µ |0〉 and |K1B(p, ε)〉 = λBη

B
µ |0〉, (4)

where λA = (ifAmA)−1, λB = (fBm
2
B)−1 are the coefficients, ηAµ = s̄γµγ5d and ηBµ = s̄σµαp

αγ5d
are the pure axial-vector and tensor currents. Here fA,B and mA,B are the decay constants and
masses of K1(A,B) states, respectively. After inserting the definitions of mixing in Eq. (3) and
the pure currents in Eq. (4), the correlator in Eq. (2) can be written in terms of the mixing
angle as follows:

tan θK1(λ2AΠAA
µν − λ2BΠBB

µν ) + (1 + tan2 θK1)λAλBΠAB
µν = 0 + ... , (5)

where

Πij
µν(p2) = i

∫
dxeipx Tr[Υi†

µ (x)(iSd(−x))Υj
ν(0)(iSs(x))] (6)

is the two-point correlator of pure states with i, j = A,B, ΥA
µ = γµγ5 and ΥB

µ = σµαp
αγ5 are

the Lorentz structures in pure currents and iSq(x) is the full quark propagator in position
space. The correlator for pure states can be expressed in terms of Lorentz coefficients as
Πij
µν = Γij′gµν + Γijpµpν . We choose the pµpν structure and apply a Borel transformation

with respect to p2. Then Eq. (5) results in an expression for the mixing angle as

tan(2θK1) =
−2λ†AλBΓ̄AB

λ2AΓ̄AA − λ2BΓ̄BB
, (7)

where Γ̄ is the Borel transformed Γ with respect to p2. Here M2 is the Borel mass and s0 is the
continuum threshold.
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In this work we have taken the following numerical inputs:

ms = 100+30
−20 MeV, fA = 250± 13 MeV, fB = 190± 10 MeV, mA = 1.31GeV,mB = 1.34 GeV.

(8)
Our numerical results for tan 2θK1 and θK1 are shown in figures 1(a) and 1(b). We plot the
dependence of tan 2θK1 and θK1 on M2 for different values of s0. The plots suggest that tan 2θK1

lies in the region −13 ≤ tan 2θK1 ≤ −3 and θK1 = −(39± 4)◦. This value is consistent with the
previous results in the literature. We will give our detailed analytical expressions and improved
analysis in a future work.
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Figure 1. (a)tan 2θK1 vs. M2 and (b) θK1 vs M2, for different values of s0.
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