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The strong coupling constants of newly observed Ω0𝑐 baryons with spins 𝐽 = 1/2 and 𝐽 = 3/2 decaying into Ξ+𝑐𝐾− are estimated
within light cone QCD sum rules. The calculations are performed within two different scenarios on quantum numbers of Ω𝑐
baryons: (a) all newly observedΩ𝑐 baryons are negative parity baryons; that is, theΩ𝑐(3000),Ω𝑐(3050),Ω𝑐(3066), andΩ𝑐(3090)have
quantum numbers 𝐽𝑃 = (1/2)− and 𝐽𝑃 = (3/2)− states, respectively; (b) the states Ω𝑐(3000) and Ω𝑐(3050) have quantum numbers𝐽𝑃 = (1/2)− and 𝐽𝑃 = (1/2)+, while the states Ω𝑐(3066) and Ω𝑐(3090) have the quantum numbers 𝐽𝑃 = (3/2)− and 𝐽𝑃 = (3/2)+,
respectively. By using the obtained results on the coupling constants, we calculate the decay widths of the corresponding decay.The
results on decay widths are compared with the experimental data of LHCCollaboration.We found out that the predictions on decay
widths within these scenarios are considerably different from the experimental data; that is, both considered scenarios are ruled out.

1. Introduction

Lately, in the invariant mass spectrum of Ξ+𝑐𝐾−, very
narrow excited Ω𝑐 states (Ω𝑐(3000), Ω𝑐(3050), Ω𝑐(3066),Ω𝑐(3090), and Ω𝑐(3119)) have been observed at LHCb [1].
Quantum numbers of these newly observed states have not
been determined in the experiments yet. Hence, various
possibilities about the quantum numbers of these states
have been speculated in recent works. In [2], the statesΩ𝑐(3050) and Ω𝑐(3090) are assigned as radial excitation of
ground state Ω𝑐(3000) and Ω∗(3066) baryons with the 𝐽𝑃 =(1/2)+ and (3/2)+, respectively. On the other hand, in [3–
7] these new states are assumed as the 𝑃-wave states with𝐽𝑃 = (1/2)−, (1/2)−, (3/2)−, (3/2)−, and (5/2)−, respectively.
Moreover the new states are assumed as pentaquarks in [8].
Similar quantum numbers of these new states are assigned in
[9]. Analysis of these states is also studied with lattice QCD,
and the results indicated that most probably these states have𝐽𝑃 = (1/2)−, (3/2)−, (5/2)− quantum numbers [3]. Another
set of quantum number assignments, namely, (3/2)−, (3/2)−,(5/2)−, and (3/2)+, is given in [4]. In [10], it is obtained
that the prediction on mass supports assigning Ω𝑐(3000) as𝐽𝑃 = (1/2)−, Ω𝑐(3090) as 𝐽𝑃 = (3/2)− or the 2𝑆 state with𝐽𝑃 = (1/2)+, and Ω𝑐(3119) as 𝐽𝑃 = (3/2)+.

In this work, we estimate the strong coupling constants ofΩ0𝑐 → Ξ+𝑐𝐾− in the framework of light cone QCD sum rules.
In our calculations, two different possibilities on quantum
numbers of Ω𝑐 baryons are explored:

(a) All newly observed Ω𝑐 states have negative parities.
More precisely,Ω𝑐(3000) andΩ𝑐(3050)have quantum
numbers 𝐽𝑃 = (1/2)−, Ω𝑐(3066), and Ω𝑐(3090) have(3/2)−, andΩ𝑐(3119) has quantum numbers (5/2)−.

(b) Part of newly observed Ω𝑐 baryons have negative
parity, and another part represents a radial excitations
of ground state baryons; that is, Ω𝑐(3000) has 𝐽𝑃 =(1/2)−, Ω𝑐(3050) has 𝐽𝑃 = (1/2)+, and Ω𝑐(3066) andΩ𝑐(3090) states have quantum numbers 𝐽𝑃 = (3/2)−
and (3/2)+, respectively.

Note that the strong coupling constants of Ω𝑐 → Ξ+𝑐𝐾−
decay within the same framework are studied in [11] and in
chiral quark model [12], respectively. However, the analysis
performed in [11] is incomplete. First of all, the contribution
of negative parity Ξ𝑐 baryons is neglected entirely. Second,
in our opinion the numerical analysis presented in [11] is
inconsistent.
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The article is organized as follows. In Section 2 the light
cone sum rules for the coupling constants of Ω𝑐 → Ξ+𝑐𝐾−
decay are derived. Section 3 is devoted to the analysis of the
sum rules obtained in the previous section. In this section,
we also estimate the widths of corresponding decay, and
comparison with the experimental data is presented.

2. Light Cone Sum Rules for
the Strong Coupling Constants ofΩ𝑐→ Ξ+𝑐𝐾− Transitions

For the calculation of the strong coupling constants ofΩ𝑐 →Ξ+𝑐𝐾− transitions we consider the following two correlation
functions in both pictures:

Π = 𝑖∫𝑑4𝑥𝑒𝑖𝑝𝑥 ⟨𝐾 (𝑞) 󵄨󵄨󵄨󵄨󵄨𝜂Ξ𝑐 (𝑥) 𝜂Ω𝑐 (0)󵄨󵄨󵄨󵄨󵄨 0⟩ ,
Π𝜇 = 𝑖 ∫ 𝑑4𝑥𝑒𝑖𝑝𝑥 ⟨𝐾 (𝑞) 󵄨󵄨󵄨󵄨󵄨󵄨𝜂Ξ𝑐 (𝑥) 𝜂𝜇Ω∗𝑐 (0)󵄨󵄨󵄨󵄨󵄨󵄨 0⟩ , (1)

where 𝜂Ξ𝑐(𝜂Ω𝑐) is the interpolating current of Ξ𝑐(Ω𝑐) baryon
and 𝜂𝜇Ω∗𝑐 is the interpolating current of 𝐽𝑃 = (3/2)Ω∗𝑐 baryon:
𝜂Ξ𝑐 = 1√6𝜖𝑎𝑏𝑐 {2 (𝑢𝑎

𝑇𝐶𝑠𝑏) 𝛾5𝑐𝑐 + 2𝛽 (𝑢𝑎𝑇𝐶𝛾5𝑠𝑏) 𝑐𝑐
+ (𝑢𝑎𝑇𝐶𝑐𝑏) 𝛾5𝑠𝑐 + 𝛽 (𝑢𝑎𝑇𝐶𝛾5𝑐𝑏) 𝑠𝑐 + (𝑐𝑎𝑇𝐶𝑠𝑏) 𝛾5𝑢𝑐
+ 𝛽 (𝑐𝑎𝑇𝐶𝛾5𝑠𝑏) 𝑢𝑐}

(2)

𝜂Ω𝑐 = 𝜂Ξ𝑐 (𝑢 󳨀→ 𝑠) (3)

𝜂𝜇Ω∗𝑐 = 1√3𝜖𝑎𝑏𝑐 {(𝑠𝑎
𝑇𝐶𝛾𝜇𝑠𝑏) 𝑐𝑐 + (𝑠𝑎𝑇𝐶𝛾𝜇𝑐𝑏) 𝑠𝑐

+ (𝑐𝑎𝑇𝐶𝛾𝜇𝑠𝑏) 𝑠𝑐} ,
(4)

where 𝑎, 𝑏, and 𝑐 are color indices, 𝐶 is the charge conjuga-
tion operator, and 𝛽 is arbitrary parameter.

We calculate Π (Π𝜇) employing the light cone QCD sum
rules (LCSR). According to the sum rules method approach,
the correlation functions in (1) can be calculated in two
different ways:

(i) In terms of hadron parameters.

(ii) In terms of quark-gluons in the deep Euclidean
domain.

These two representations are then equated by using the
dispersion relation, and we get the desired sum rules for
corresponding strong coupling constant. The hadronic rep-
resentations of the correlation functions can be obtained by
saturating (2) and (3) with corresponding baryons.

Here we would like to note that the currents 𝜂Ξ𝑐 , 𝜂Ω𝑐 , and𝜂Ω∗𝑐 interact with both positive and negative parity baryons.
Using this fact for the correlation functions from hadronic
part we get

Π(had) = ∑
𝑖=+,−
𝑗=+,−

⟨0 󵄨󵄨󵄨󵄨󵄨𝜂Ξ𝑐 󵄨󵄨󵄨󵄨󵄨 Ξ𝑗𝑐 (𝑝)⟩ ⟨𝐾 (𝑞) Ξ𝑗𝑐 (𝑝) 󵄨󵄨󵄨󵄨󵄨Ω𝑖𝑐 (𝑝 + 𝑞)⟩ ⟨Ω𝑖𝑐 (𝑝 + 𝑞) 󵄨󵄨󵄨󵄨󵄨𝜂Ω𝑐 󵄨󵄨󵄨󵄨󵄨 0⟩
(𝑝2 − 𝑚2Ξ𝑐𝑗) ((𝑝 + 𝑞)2 − 𝑚2

Ω𝑐(𝑖)
) ,

Π𝜇(had) = ∑
𝑖=+,−
𝑗=+,−

⟨0 󵄨󵄨󵄨󵄨󵄨𝜂Ξ𝑐 󵄨󵄨󵄨󵄨󵄨 Ξ𝑗𝑐 (𝑝)⟩ ⟨𝐾 (𝑞) Ξ𝑗𝑐 (𝑝) 󵄨󵄨󵄨󵄨󵄨Ω𝑖𝑐∗ (𝑝 + 𝑞)⟩ ⟨Ω𝑖𝑐∗ (𝑝 + 𝑞) 󵄨󵄨󵄨󵄨󵄨𝜂𝜇Ω𝑐 󵄨󵄨󵄨󵄨󵄨 0⟩
(𝑝2 − 𝑚2Ξ𝑐𝑗) ((𝑝 + 𝑞)2 − 𝑚2

Ω∗𝑐 (𝑖)
) .

(5)

The matrix elements in (5) are determined as

⟨0 󵄨󵄨󵄨󵄨𝜂𝐵󵄨󵄨󵄨󵄨 𝐵(+) (𝑝)⟩ = 𝜆+𝑢 (𝑝) ,
⟨0 󵄨󵄨󵄨󵄨𝜂𝐵󵄨󵄨󵄨󵄨 𝐵(−) (𝑝)⟩ = 𝜆−𝑢 (𝑝) ,

⟨𝐾 (𝑞) 𝐵 (𝑝) |𝐵 (𝑝 + 𝑞)⟩ = 𝑔𝑢 (𝑝) 𝑖Γ𝑢 (𝑝 + 𝑞) ,
⟨𝐾 (𝑞) 𝐵 (𝑝) 󵄨󵄨󵄨󵄨𝐵∗ (𝑝 + 𝑞)⟩ = 𝑔∗𝑢 (𝑝) Γ󸀠𝑢𝜇 (𝑝 + 𝑞) 𝑞𝜇,

(6)

where

Γ = {{{
𝛾5 for − (+) 󳨀→ − (+)
1 for − (+) 󳨀→ + (−) transitions,

Γ󸀠 = {{{
1 for − (+) 󳨀→ − (+)
𝛾5 for − (+) 󳨀→ + (−) transitions,

(7)

𝑔 is strong coupling constant of the corresponding decay, 𝜆𝐵(𝑖)
are the residues of the corresponding baryons, and 𝑢𝜇 is the
Rarita-Schwinger spinors. Here the sign +(−) corresponds
to positive (negative) parity baryon. In further discussions,
we will denote the mass and residues of ground and excited
states of Ω𝑐(Ω∗𝑐 ) baryons as 𝑚0, 𝜆0(𝑚∗0 , 𝜆∗0), 𝑚1, 𝜆1(𝑚∗1 , 𝜆∗1),
and 𝑚2, 𝜆2(𝑚∗2 , 𝜆∗2) for scenario (a) and for scenario (b); the
same notation is used as in previous case by just replacing𝑚2, 𝜆2(𝑚∗2 , 𝜆∗2) to 𝑚3, 𝜆3(𝑚∗3 , 𝜆∗3). Moreover, the mass and
residues of Ξ𝑐 baryons are denoted as 𝑚󸀠0, 𝜆󸀠0, and 𝑚󸀠1, 𝜆󸀠1.
Using the matrix elements defined in (6) for the correlation
functions given in (1) we get (for case (a))

Π = 𝑖𝐴1 (�𝑝 + 𝑚󸀠0) 𝛾5 (�𝑝 + ���𝑞 + 𝑚0)
+ 𝑖𝐴2 (�𝑝 + 𝑚󸀠0) (�𝑝 + ���𝑞 + 𝑚1) (−𝛾5)
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+ 𝑖𝐴3𝛾5 (�𝑝 + 𝑚󸀠1) (�𝑝 + ���𝑞 + 𝑚0)
+ 𝑖𝐴4𝛾5 (�𝑝 + 𝑚󸀠1) 𝛾5 (�𝑝 + ���𝑞 + 𝑚1) (−𝛾5)
+ 𝑖𝐴5 (�𝑝 + 𝑚󸀠0) (�𝑝 + ���𝑞 + 𝑚2) (−𝛾5)
+ 𝑖𝐴6𝛾5 (�𝑝 + 𝑚󸀠1) 𝛾5 (�𝑝 + ���𝑞 + 𝑚2) (−𝛾5)

(8)

Π𝜇 = +𝐴∗1 (�𝑝 + 𝑚󸀠0) (�𝑝 + ���𝑞 + 𝑚∗0 ) (−𝑞𝜇)
+ 𝐴∗2 (�𝑝 + 𝑚󸀠0) 𝛾5 (�𝑝 + ���𝑞 + 𝑚∗1 ) (−𝛾5) (−𝑞𝜇)
+ 𝐴∗3𝛾5 (�𝑝 + 𝑚󸀠1) 𝛾5 (�𝑝 + ���𝑞 + 𝑚∗0 ) (−𝑞𝜇)
+ 𝐴∗4𝛾5 (�𝑝 + 𝑚󸀠1) (�𝑝 + ���𝑞 + 𝑚∗1 ) (−𝛾5) (−𝑞𝜇)
+ 𝐴∗5 (�𝑝 + 𝑚󸀠0) 𝛾5 (�𝑝 + ���𝑞 + 𝑚∗2 ) (−𝛾5) (−𝑞𝜇)
+ 𝐴∗6𝛾5 (�𝑝 + 𝑚󸀠1) (�𝑝 + ���𝑞 + 𝑚∗2 ) (−𝛾5) (−𝑞𝜇)
+ other structures,

(9)

where

𝐴(∗)1 = 𝜆(∗)0 𝜆󸀠0𝑔(∗)1
(𝑚󸀠02 − 𝑝2) (𝑚(∗)0 2 − (𝑝 + 𝑞)2)

𝐴(∗)2
= 𝐴1 (𝑚(∗)0 󳨀→ 𝑚(∗)1 , 𝑔(∗)1 󳨀→ 𝑔(∗)2 , 𝜆(∗)0 󳨀→ 𝜆(∗)1 )

𝐴(∗)3 = 𝐴1 (𝑚󸀠0 󳨀→ 𝑚󸀠1, 𝑔(∗)1 󳨀→ 𝑔(∗)3 , 𝜆󸀠0 󳨀→ 𝜆󸀠1)
𝐴(∗)4

= 𝐴3 (𝑚(∗)0 󳨀→ 𝑚(∗)1 , 𝑔(∗)3 󳨀→ 𝑔(∗)4 , 𝜆(∗)0 󳨀→ 𝜆(∗)1 )
𝐴(∗)5

= 𝐴2 (𝑚(∗)1 󳨀→ 𝑚(∗)2 , 𝑔(∗)2 󳨀→ 𝑔(∗)5 , 𝜆(∗)1 󳨀→ 𝜆(∗)2 )
𝐴(∗)6 = 𝐴5 (𝑚󸀠0 󳨀→ 𝑚󸀠1, 𝑔(∗)5 󳨀→ 𝑔(∗)6 , 𝜆󸀠0 󳨀→ 𝜆󸀠1) .

(10)

The result for scenario (b) can be obtained from (8) and (9)
by following replacements:

𝐴5 (�𝑝 + 𝑚󸀠0) (�𝑝 + ���𝑞 + 𝑚2) (−𝛾5) 󳨀→
𝐴5 (�𝑝 + 𝑚󸀠0) 𝑖𝛾5 (�𝑝 + ���𝑞 + 𝑚3)

𝐴6𝛾5 (�𝑝 + 𝑚󸀠1) 𝛾5 (�𝑝 + ���𝑞 + 𝑚2) (−𝛾5) 󳨀→
𝐴6𝛾5 (�𝑝 + 𝑚󸀠1) (�𝑝 + ���𝑞 + 𝑚3)

𝐴∗5 (�𝑝 + 𝑚󸀠0) 𝛾5𝑞𝛼 (�𝑝 + ���𝑞 + 𝑚∗2 ) (−𝛾5) (−𝑔𝜇𝛼) 󳨀→
𝐴5 (�𝑝 + 𝑚󸀠0) 𝑞𝛼 (�𝑝 + ���𝑞 + 𝑚∗3 ) (−𝑔𝜇𝛼)

𝐴∗6𝛾5 (�𝑝 + 𝑚󸀠1) 𝑞𝛼 (�𝑝 + ���𝑞 + 𝑚∗2 ) (−𝑔𝜇𝛼) (−𝛾5) 󳨀→
𝐴6𝛾5 (�𝑝 + 𝑚󸀠1) 𝑞𝛼𝛾5 (�𝑝 + ���𝑞 + 𝑚∗3 ) (−𝑔𝜇𝛼) .

(11)

Note that to derive (9), we used the following formula
for performing summation over spins of Rarita-Schwinger
spinors:

∑𝑢𝛼 (𝑝) 𝑢𝛽 (𝑝) = − (�𝑝 + 𝑚)
⋅ (𝑔𝛼𝛽 − 𝛾𝛼𝛾𝛽3 + 2𝑝𝛼𝑝𝛽3𝑚2 + 𝑝𝛼𝛾𝛽 − 𝑝𝛽𝛾𝛼3𝑚 ) , (12)

and in principle one can obtain the expression for the
hadronic part of the correlation function. At this stage two
problems arise. One of them is dictated by the fact that the
current 𝜂𝜇 interacts not only with spin 3/2 but also with spin
1/2 states. The matrix element of the current 𝜂𝜇 with spin 1/2
state is defined as

⟨0 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 12 ⟩ = 𝐴(𝛾𝜇 − 4𝑚𝑝𝜇) 𝑢 (𝑝) ; (13)

that is, the terms in the RHS of (12) ∼ 𝛾𝜇 and the right end(𝑝 + 𝑞)𝜇 contain contributions from 1/2 states, which should
be removed. The second problem is related to the fact that
not all structures appearing in (9) are independent. In order
to cure both these problems we need ordering procedure of
Dirac matrices. In present work, we use ordering of Dirac
matrices as �𝑝�𝑞𝛾𝜇. Under this ordering, only the term ∼𝑔𝜇𝛼
contains contributions solely from spin 3/2 states. For this
reason, we will retain only 𝑔𝜇𝛼 terms in the RHS of (9).

In order to find sum rules for the strong coupling
constants of Ω𝑐 → Ξ+𝑐𝐾− transitions we need to calculate Π
and Π𝜇 from QCD side in the deep Euclidean region, 𝑝2 →−∞, (𝑝 + 𝑞)2 → −∞. The correlation from QCD side can be
calculated by using the operator product expansion.

Now let us demonstrate steps of calculation of the
correlation function from QCD side. As an example let us
consider one term of correlation Π𝜇; that is, consider

Π𝜇 ∼ 𝜖𝑎𝑏𝑐𝜖𝑎1𝑏1𝑐1 ∫𝑑4𝑥𝑒𝑖𝑝𝑥 ⟨𝐾 (𝑞)󵄨󵄨󵄨󵄨 1√62 (𝑢𝑎𝑇𝐶𝛾5𝑠𝑏1)
⋅ 𝑐𝑐1 (𝑥) [𝑐𝑐1(0) (𝑠𝑏1 (0) 𝛾𝜇𝐶𝑠𝑎1𝑇) |0⟩] .

(14)

By using Wick’s theorem, this term can be written as

Π𝜇 ∼ 𝜖𝑎𝑏𝑐𝜖𝑎1𝑏1𝑐1 ∫𝑑4𝑥𝑒𝑖𝑝𝑥 ⟨𝐾 (𝑞)󵄨󵄨󵄨󵄨
⋅ {𝑠𝑎11 (𝛾𝜇𝐶)𝑇 𝑆𝑏𝑏1𝑇𝑠 (𝑥) 𝐶𝑇𝑢𝑎1 (𝑥) 𝛾5𝑆𝑐𝑐1𝑐 (𝑥)
− (𝑠𝑏1 (0) 𝛾𝜇𝐶𝑆𝑏𝑎1𝑇𝑠 𝐶𝑇𝑢𝑎) 𝛾5𝑆𝑐𝑐1𝑐 (𝑥)} |0⟩ .

(15)

From this formula, it follows that, to obtain the correlation
function(s) from QCD side, first of all we need the expres-
sions of light and heavy quark propagators. The expressions
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of the light quark propagator in the presence of gluonic and
electromagnetic background fields are derived in [13]

𝑆 (𝑥) = 𝑖��𝑥2𝜋2𝑥4 −
𝑚𝑞4𝜋𝑥2 − 𝑖𝑔𝑠16𝜋2

⋅ ∫ 𝑑𝑢{𝑢��𝑥𝜎𝛼𝛽 + 𝑢𝜎𝛼𝛽��𝑥𝑥2 [𝑔𝑠𝐺𝛼𝛽 (𝑢𝑥) + 𝑒𝑞𝐹𝛼𝛽]
− 𝑖𝑚𝑞2 [𝑔𝑠𝐺𝜇]𝜎𝜇] + 𝑒𝑞𝐹𝜇]𝜎𝜇]]
⋅ (ln−𝑥2Λ24 + 2𝛾𝐸)} .

(16)

The heavy quark propagator is given as

𝑆𝑄 = ∫ 𝑑4𝑘
(2𝜋)4 𝑒−𝑖𝑘𝑥

𝑖 (���𝑘 + 𝑚𝑄)𝑘2 − 𝑚2𝑄 − 𝑖𝑔𝑠 ∫ 𝑑4𝑘
(2𝜋)4 𝑖

⋅ ∫1
0
𝑑𝑢[

[
���𝑘 + 𝑚𝑄

2 (𝑚2𝑄 − 𝑘2)2𝐺
𝜇] (𝑢𝑥) 𝜎𝜇]

+ 𝑖𝑥𝜇𝑚2𝑄 − 𝑘2𝐺𝜇] (𝑢𝑥) 𝛾]]]
,

(17)

where 𝛾𝐸 is the Euler constant.
For calculation of the correlator function(s) we need

another ingredient of light cone sum rules, namely, the
matrix elements of nonlocal operators 𝑞(𝑥)Γ𝑞(𝑦) and𝑞(𝑥)Γ𝐺𝜇]𝑞(𝑦) between vacuum and the 𝐾-meson, that is,⟨𝐾(𝑞)|𝑞(𝑥)Γ𝑞(𝑦)|0⟩ and ⟨𝐾(𝑞)|𝑞(𝑥)Γ𝐺𝜇]𝑞(𝑦)|0⟩. Here Γ is
the any Dirac matrix, and 𝐺𝜇] is the gluon field strength
tensor, respectively. These matrix elements are defined in
terms of 𝐾-meson distribution amplitudes (DAs). The DAs
of𝐾meson up to twist-4 are presented in [12].

From (8) and (9) it follows that the different Lorentz
structures can be used for construction of the relevant sum
rules. Among of six couplings, we need only 𝐴2(𝐴∗2) and𝐴5(𝐴∗5) and 𝐴2(𝐴∗2) and 𝐴5(𝐴∗5) for cases (a) and (b),
respectively. For determination of these coupling constants,
we need to combine sum rules obtained from different
Lorentz structures. From (8) and (9) (for case (a)) it follows
that the Lorentz structures �𝑝���𝑞𝛾5, �𝑝𝛾5, ���𝑞𝛾5, 𝛾5 and �𝑝���𝑞𝑞𝜇,
�𝑝𝑞𝜇, ���𝑞𝑞𝜇, and 𝑞𝜇 appear. We denote the corresponding
invariant functionsΠ1, Π2, Π3, Π4 andΠ∗1 , Π∗2 , Π∗3 , andΠ∗4 ,
respectively. Explicit expressions of the invariant functionsΠ𝑖
andΠ∗𝑖 are very lengthy, and thereforewe donot present them
in the present study.

The sum rules for the corresponding strong coupling
constants are obtained by choosing the coefficients afore-
mentioned structures and equating to the corresponding
results from hadronic and QCD sides. Performing doubly
Borel transformation with respect to variable 𝑝2 and (𝑝 + 𝑞)2
in order to suppress the contributions of higher states and

continuum we get the following four equations (for each
transition):

Π𝐵1 = −𝐴(𝐵)1 − 𝐴(𝐵)2 + 𝐴(𝐵)3 + 𝐴(𝐵)4 − 𝐴(𝐵)5 + 𝐴(𝐵)6 ,
Π𝐵2 = 𝐴(𝐵)1 (𝑚0 − 𝑚󸀠0) + 𝐴(𝐵)2 (−𝑚1 − 𝑚󸀠0)

+ 𝐴(𝐵)3 (−𝑚0 − 𝑚󸀠1) + 𝐴(𝐵)4 (𝑚1 − 𝑚󸀠1) + 𝐴(𝐵)5 (−𝑚2
− 𝑚󸀠0) + 𝐴(𝐵)6 (𝑚2 − 𝑚󸀠1)

Π𝐵3 = 𝐴(𝐵)1 (−𝑚󸀠0) + 𝐴(𝐵)2 (−𝑚󸀠0) + 𝐴(𝐵)3 (−𝑚󸀠1)
+ 𝐴(𝐵)4 (−𝑚󸀠1) + 𝐴(𝐵)5 (−𝑚󸀠0) + 𝐴(𝐵)6 (−𝑚󸀠1)

Π𝐵4 = 𝐴(𝐵)1 (𝑚0𝑚󸀠0 − 𝑚󸀠02) + 𝐴(𝐵)2 (−𝑚󸀠0𝑚1 − 𝑚󸀠02)
+ 𝐴(𝐵)3 (𝑚0𝑚󸀠1 + 𝑚󸀠12) + 𝐴(𝐵)4 (−𝑚󸀠1𝑚1 + 𝑚󸀠12)
+ 𝐴(𝐵)5 (−𝑚󸀠0𝑚2 − 𝑚󸀠02) + 𝐴(𝐵)6 (−𝑚2𝑚󸀠1 + 𝑚󸀠12)

Π∗𝐵1 = − {𝐴∗1(𝐵) + 𝐴∗2(𝐵) − 𝐴∗3(𝐵) − 𝐴∗4(𝐵) + 𝐴∗5(𝐵)
− 𝐴∗6(𝐵)} ,

Π∗𝐵2 = − {𝐴∗1(𝐵) (𝑚∗0 + 𝑚󸀠0) + 𝐴∗2(𝐵) (𝑚󸀠0 − 𝑚∗1 )
+ 𝐴∗3(𝐵) (−𝑚∗0 + 𝑚󸀠1) + 𝐴∗4(𝐵) (𝑚∗0 + 𝑚󸀠1)
+ 𝐴(𝐵)5 (−𝑚2∗ + 𝑚󸀠0) + 𝐴(𝐵)6 (𝑚󸀠1 + 𝑚2∗)}

Π∗𝐵3 = − {𝐴∗1(𝐵)𝑚󸀠0 + 𝐴∗2(𝐵)𝑚󸀠0 + 𝐴∗3(𝐵)𝑚󸀠1 + 𝐴∗4(𝐵)𝑚󸀠1
+ 𝐴∗5(𝐵)𝑚󸀠0 + 𝐴∗6(𝐵)𝑚󸀠1}

Π∗𝐵4 = − {𝐴∗1(𝐵) (𝑚∗0𝑚󸀠0 + 𝑚󸀠02)
+ 𝐴∗2(𝐵) (𝑚󸀠02 − 𝑚∗1𝑚󸀠0) + 𝐴∗3(𝐵) (−𝑚󸀠12 + 𝑚󸀠1𝑚∗0)
+ 𝐴∗4(𝐵) (−𝑚󸀠12 − 𝑚󸀠1𝑚∗1) + 𝐴∗5(𝐵) (𝑚󸀠02 − 𝑚󸀠0𝑚∗2)
+ 𝐴∗6(𝐵) (−𝑚󸀠12 − 𝑚󸀠1𝑚∗2)} ,

(18)

where superscript 𝐵means Borel transformed quantities,

𝐴𝐵(∗)𝛼 = 𝑔(∗)𝛼 𝜆𝑖𝜆󸀠𝑗𝑒−𝑚2𝑖 /𝑀21−𝑚2𝑗/𝑀22 . (19)

The masses of the initial and final baryons are close to
each other; hence in the next discussions, we set 𝑀21 =𝑀22 = 2𝑀2. In order to suppress the contributions of
higher states and continuum we need subtraction procedure.
It can be performed by using quark-hadron duality; that is,
starting some threshold the spectral density of continuum
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coincides with spectral density of perturbative contribution.
The continuum subtraction can be done using formula

(𝑀2)𝑛 𝑒−𝑚2𝑐 /𝑀2 󳨀→ 1Γ (𝑛) ∫
𝑠0

𝑚2
𝑑𝑠𝑒−

𝑠𝑀2 (𝑠 − 𝑚2𝑐)𝑛−1 . (20)

For more details about continuum subtraction in light cone
sum rules, we refer readers to work [14].

As we have already noted in case (a) we need to determine
two coupling constants 𝑔2(𝑔∗2 ) and 𝑔5(𝑔∗5 ) for each class of
transitions. From (18) it follows that we have six unknown
coupling constants but have only four equations. Two extra
equations can be obtained by performing derivative over
(1/𝑀2) of the any two equations. In result, we have six
equations and six unknowns and the relevant coupling
constants 𝑔2(𝑔∗2 ) and 𝑔5(𝑔∗5 ) can be determined by solving
this system of equations.

The results for scenario (b) can be obtained from the
results for scenario (a) with the help of aforementioned
replacements.

From (18), it follows that, to estimate strong coupling
constants 𝑔2(𝑔∗2 ) and 𝑔5(𝑔∗5 ) responsible for the decay ofΩ𝑐 → Ξ𝑐𝐾 andΩ∗𝑐 → Ξ𝑐𝐾, we need the residues ofΩ𝑐 andΞ𝑐
baryons. For calculation of these residues forΩ𝑐, we consider
the following two point correlation functions:

Π(𝑝) = ∫𝑑4𝑥𝑒𝑖𝑝𝑥 ⟨0 󵄨󵄨󵄨󵄨󵄨𝑇 {𝜂Ω𝑐 (𝑥) 𝜂Ω𝑐 (0)}󵄨󵄨󵄨󵄨󵄨 0⟩ ,
Π𝜇] (𝑝) = ∫𝑑4𝑥𝑒𝑖𝑝𝑥 ⟨0 󵄨󵄨󵄨󵄨󵄨𝑇 {𝜂𝜇Ω𝑐 (𝑥) 𝜂]Ω𝑐 (0)}󵄨󵄨󵄨󵄨󵄨 0⟩ .

(21)

The interpolating currents 𝜂Ω𝑐 and 𝜂𝜇Ω𝑐 couple not only
to ground states, but also to negative (positive) parity excited
states; therefore their contributions should be taken into
account. In result, for physical parts of the correlation
functions we get
Π(𝑝)

= ⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω𝑐 (𝑝, 𝑠)⟩ ⟨Ω𝑐 (𝑝, 𝑠) 󵄨󵄨󵄨󵄨𝜂 (0)󵄨󵄨󵄨󵄨 0⟩−𝑝2 + 𝑚20
+ ⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω1𝑐 (𝑝, 𝑠)⟩ ⟨Ω1𝑐 (𝑝, 𝑠) 󵄨󵄨󵄨󵄨𝜂 (0)󵄨󵄨󵄨󵄨 0⟩−𝑝2 + 𝑚21
+ ⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω2(3)𝑐 (𝑝, 𝑠)⟩ ⟨Ω2(3)𝑐 (𝑝, 𝑠) 󵄨󵄨󵄨󵄨𝜂 (0)󵄨󵄨󵄨󵄨 0⟩−𝑝2 + 𝑚22
+ ⋅ ⋅ ⋅ ,

Π𝜇]
= ⟨0 󵄨󵄨󵄨󵄨󵄨𝜂𝜇󵄨󵄨󵄨󵄨󵄨 Ω∗𝑐 (𝑝, 𝑠)⟩ ⟨Ω∗𝑐 (𝑝, 𝑠) 󵄨󵄨󵄨󵄨𝜂] (0)󵄨󵄨󵄨󵄨 0⟩𝑚∗20 − 𝑝2

+ ⟨0 󵄨󵄨󵄨󵄨󵄨𝜂𝜇󵄨󵄨󵄨󵄨󵄨 Ω∗1𝑐 (𝑝, 𝑠)⟩ ⟨Ω∗1𝑐 (𝑝, 𝑠) 󵄨󵄨󵄨󵄨𝜂] (0)󵄨󵄨󵄨󵄨 0⟩𝑚∗21 − 𝑝2
+ ⟨0 󵄨󵄨󵄨󵄨󵄨𝜂𝜇󵄨󵄨󵄨󵄨󵄨 Ω∗2(3)𝑐 (𝑝, 𝑠)⟩ ⟨Ω∗2(3)𝑐 (𝑝, 𝑠) 󵄨󵄨󵄨󵄨𝜂] (0)󵄨󵄨󵄨󵄨 0⟩𝑚∗22 − 𝑝2
+ ⋅ ⋅ ⋅ ,

(22)

where the dots denote contributions of higher states and
continuum. The matrix elements in these expressions are
defined as

⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω𝑐 (𝑝, 𝑠)⟩ = 𝜆0𝑢 (𝑝) ,
⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω1(2)𝑐 (𝑝, 𝑠)⟩ = 𝜆1(2)𝛾5𝑢 (𝑝)

⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω∗𝑐 (𝑝, 𝑠)⟩ = 𝜆∗0𝑢𝜇 (𝑝) ,
⟨0 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 Ω1(2)𝑐 (𝑝, 𝑠)⟩ = 𝜆∗1(2)𝛾5𝑢𝜇 (𝑝) .

(23)

As we already noted, only the structure 𝑔𝜇] describes the
contribution coming from 3/2 baryons. Therefore we retain
only this structure.

For the physical parts of the correlation function, we get

Πphy = (���𝑝 + 𝑚0) 𝜆20𝑚20 − 𝑝2 + (�𝑝 − 𝑚1) 𝜆21𝑚21 − 𝑝2
+ (�𝑝 ∓ 𝑚2(3)) 𝜆22(3)𝑚2

2(3)
− 𝑝2

Πphy
𝜇] = (�𝑝 + 𝑚∗0 ) 𝑔𝜇]𝜆∗20𝑚∗20 − 𝑝2 + (�𝑝 − 𝑚∗1 ) 𝑔𝜇]𝜆∗21𝑚∗21 − 𝑝2

+ (�𝑝 ∓ 𝑚∗2(3)) 𝜆22(3)𝑚∗2
2(3)

− 𝑝2 .

(24)

Here in the last term, upper (lower) sign corresponds to
case (a) (case (b)).

Denoting the coefficients of the Lorentz structures �𝑝 and𝐼 operators Π1, Π2 and �𝑝𝑔𝜇], 𝑔𝜇] asΠ∗1 , Π∗2 , respectively, and
performing Borel transformations with respect to −𝑝2, for
spin 1/2 case, we find

Π𝐵1 = 𝜆20𝑒−𝑚20/𝑀2 + 𝜆21𝑒−𝑚21/𝑀2 + 𝜆22(3)𝑒−𝑚22/𝑀2 ,
Π𝐵2 = 𝜆20𝑚0𝑒−𝑚20/𝑀2 − 𝜆21𝑚1𝑒−𝑚21/𝑀2

∓ 𝜆22(3)𝑚2(3)𝑒−𝑚22(3)/𝑀2 .
(25)

The expressions for spin 3/2 case formally can be obtained
from these expressions by replacing 𝜆 → 𝜆∗, 𝑚 → 𝑚∗, andΠ → Π∗. The invariant functionsΠ𝑖,Π∗𝑖 from QCD side can
be calculated straightforwardly by using the operator product
expansion. Their expressions are presented in [15] (see also
[5]).

Similar to the determination of the strong coupling
constant, for obtaining the sum rule for residues we need the
continuum subtraction. It can be performed in followingway.
In terms of the spectral density 𝜌(𝑠) the Borel transformedΠ𝐵
can be written as

Π𝐵𝑖 = ∫∞
𝑚2𝑐

𝜌𝑖 (𝑠) 𝑒−𝑠/𝑀2𝑑𝑠. (26)
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The continuum subtraction can be done by using the quark-
hadron duality and for this aim it is enough to replace

∫∞
𝑚2𝑐

𝜌𝑖 (𝑠) 𝑒−𝑠/𝑀2𝑑𝑠 󳨀→ ∫𝑠0
𝑚2𝑐

𝜌𝑖 (𝑠) 𝑒−𝑠/𝑀2𝑑𝑠. (27)

It follows from the sum rules that we have only two
equations, but six (three masses and three residues) are
unknowns. In order to simplify the calculations, we take the
masses of Ω𝑐 as input parameters. Hence, in this situation,
we need only one extra equation, which can be obtained by
performing derivatives over (−1/𝑀2) on both sides of the
equation. Note that the residues of Ξ𝑐 baryons are calculated
in a similar way.

3. Numerical Analysis

In this section we present our numerical results of the
sum rules for the strong coupling constants responsible forΩ𝑐(3000) → Ξ+𝑐𝐾− and Ω𝑐(3066) → Ξ+𝑐𝐾− decay derived in
previous section. The Kaon distribution amplitudes are the
key nonperturbative inputs of sum rules whose expressions
are presented in [12]. The values of other input parameters
are

𝑓𝐾 = 0.16 GeV,
𝑚20 = (0.8 ± 0.2)GeV2,

⟨𝑞𝑞⟩ = − (0.240 ± 0.001)3 GeV3,
⟨𝑠𝑠⟩ = 0.8 ⟨𝑞𝑞⟩ .

(28)

The sum rules for 𝑔−+ and 𝑔∗−+ contain the continuum
threshold 𝑠0, Borel variable 𝑀2, and parameter 𝛽 in inter-
polating current for spin 1/2 particles. In order to extract
reliable values of these constants from QCD sum rules, we
must find the working regions of 𝑠0, 𝑀2, and 𝛽 in such a
way that the result is insensitive to the variation of these
parameters. The working region of 𝑀2 is determined from
conditions that the operator product expansion (OPE) series
is convergent and higher states and continuum contributions
should be suppressed. More accurately, the lower bound
of 𝑀2 is obtained by demanding the convergence of OPE
and dominance of the perturbative contributions over the
nonperturbative one. The upper bound of𝑀2 is determined
from the condition that the pole contribution should be
larger than the continuum and higher states contributions.
We obtained that both conditions are satisfied when 𝑀2 lies
in the range

2.5 GeV2 ≤ 𝑀2 ≤ 5 GeV2. (29)

The continuum threshold 𝑠0 is not arbitrary and related to the
energy of the first excited state; that is, 𝑠0 = (𝑚ground + 𝛿)2.
Analysis of various sum rules shows that 𝛿 varies between 0.3
and 0.8GeV, and in this analysis 𝛿 = 0.4GeV is chosen. As an
example, in Figures 1 and 2 we present the dependence of the
residues of Ω𝑐(3000) and Ω𝑐(3050) on cos 𝜃 for the scenario
(a) at 𝑠 = 11GeV2 and several fixed values of𝑀2, respectively.
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Figure 1: The dependence of residue for Ω𝑐(3000) on cos 𝜃 at 𝑠0 =11GeV2 and at various fixed values of𝑀2 for scenario (a).
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Figure 2: Same as in Figure 1, but for Ω𝑐(3050).

From these figures, we obtain that when cos 𝜃 lies between −1
and−0.5 the residues exhibit good stability with respect to the
variation of cos 𝜃 and the results are practically insensitive to
the variation of𝑀2. And we deduce the following results for
the residues:

𝜆1 = (0.08 ± 0.03)GeV3,
𝜆2 = (0.11 ± 0.04)GeV3. (30)

Performing similar analysis forΩ𝑐 baryons in scenario (b)
we get (Figures 3 and 4)

𝜆1 = (0.030 ± 0.001)GeV3,
𝜆3 = (0.04 ± 0.01)GeV3. (31)
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Figure 3: Same as in Figure 1, but for scenario (b).
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Figure 4: Same as in Figure 2, but for scenario (b).

The detailed numerical calculations lead to the following
results for spin 3/2Ω𝑐 baryon residues:

𝜆∗1 = (0.18 ± 0.02)GeV3,
𝜆∗2 = (0.17 ± 0.02)GeV3,
𝜆∗1 = (0.024 ± 0.002)GeV3,
𝜆∗3 = (0.05 ± 0.01)GeV3.

(32)

From these results we observe that the residues of Ω𝑐
baryons in scenario (a) are larger than that one for the
scenario (b).This leads to the larger strong coupling constants
for scenario (b) because it is inversely proportional to the
residue.

Having obtained the values of the residues, our next
problem is the determination of the corresponding coupling
constants using the values of 𝑀2 and 𝑠0 in their respective
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Figure 5: The dependence of strong coupling constant forΩ𝑐(3066) → Ξ𝑐𝐾 on cos 𝜃 at 𝑠0 = 11GeV2 and at three fixed values
of𝑀2 for scenario (a).
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Figure 6: Same as in Figure 5, but for Ω𝑐(3090) → Ξ𝑐𝐾 transition.

working regions which are determined frommass sum rules.
In Figures 5, 6, 7, and 8, we studied the dependence of the
strong coupling constants for Ω∗𝑐 → Ξ𝑐𝐾0 transitions for the
scenarios (a) and (b) on cos 𝜃, respectively. We obtained that
when 𝑀2 varies in its working region the strong coupling
constant demonstrates weak dependence on 𝑀2, and the
results for the spin-3/2 states also practically do not change
with the variation of 𝑠0. Our results on the coupling constants
are as follows:

For scenario (a),

𝑔2 = 19 ± 2
𝑔∗2 = 40 ± 10
𝑔5 = 20 ± 2
𝑔∗5 = 42 ± 10.

(33)
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Table 1: Decay widths for the two-scenarios considered are shown.

Scenario (a) Scenario (b)
(GeV) (GeV)Γ(Ω𝑐(3000) → Ξ𝑐𝐾) 8.1 ± 1.8 0.10 ± 0.02Γ(Ω𝑐(3050) → Ξ𝑐𝐾) 14.1 ± 3 (3.8 ± 1.2) × 10−3Γ(Ω𝑐(3066) → Ξ𝑐𝐾) (6.6 ± 3) × 10−3 (1.6 ± 0.6) × 10−5Γ(Ω𝑐(3090) → Ξ𝑐𝐾) (1.3 ± 0.5) × 10−2 0.10 ± 0.04
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Figure 7: Same as in Figure 5, but for scenario (b).

For scenario (b),

𝑔2 = 2.2 ± 0.2
𝑔∗2 = 2.0 ± 0.5
𝑔5 = 6 ± 1
𝑔5∗ = 8 ± 1.

(34)

The decay widths of these transitions can be calculated
straightforwardly and we get

Γ = 𝑔2𝑖16𝜋𝑚3𝑖 [(𝑚𝑖 + 𝑚󸀠0)2 − 𝑚2𝐾] 𝜆1/2 (𝑚2𝑖 , 𝑚󸀠20 , 𝑚2𝐾)
Γ = 𝑔∗2𝑖192𝜋𝑚∗5𝑖 [(𝑚∗𝑖 + 𝑚󸀠0)2 − 𝑚2𝐾]

⋅ 𝜆3/2 (𝑚∗2𝑖 , 𝑚󸀠20 , 𝑚2𝐾) ,

(35)

where 𝑚𝑖(𝑚∗𝑖 ) and 𝑚󸀠0 are the mass of initial spin 1/2 (spin3/2)Ω𝑐 baryon and Ξ𝑐 baryons, respectively, and 𝜆(𝑥, 𝑦, 𝑧) =𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦 − 2𝑥𝑧 − 2𝑦𝑧. Having the relevant strong
coupling constants, the decay width values for scenario (a)
and (b) are shown in Table 1.

Our results on the decay widths are also drastically
different than the one presented in [11]. In our opinion, the
source of these discrepancies is due to the following facts:
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Figure 8: Same as in Figure 6, but for scenario (b).

(i) In [11], the contributions coming from Ξ−𝑐 baryons are
all neglected.

(ii) The second reason is due to the procedure presented
in [11]; namely, by choosing the relevant threshold𝑠0, isolating the contributions of the correspondingΩ𝑐 baryons is incorrect. From analysis of various
sum rules, it follows that 𝑠0 = (𝑚ground + 𝛿)2,
where 0.3GeV ≤ 𝛿 ≤ 0.8GeV. Since the mass
difference between Ω𝑐(3000) and Ω𝑐(3090) is around0.1GeV, isolating the contribution of each baryon is
impossible while their contributions should be taken
into account simultaneously. For these reasons our
results on decay widths are different than those one
predicted in [11]. From experimental data on the
width ofΩ𝑐, there are [16]

Γ (Ω𝑐 (3000) 󳨀→ Ξ+𝑐𝐾−) = (4.5 ± 0.6 ± 0.3)MeV

Γ (Ω𝑐 (3050) 󳨀→ Ξ+𝑐𝐾−) = (0.8 ± 0.2 ± 0.1)MeV

Γ (Ω𝑐 (3066) 󳨀→ Ξ+𝑐𝐾−) = (3.5 ± 0.4 ± 0.2)MeV

Γ (Ω𝑐 (3090) 󳨀→ Ξ+𝑐𝐾−) = (8.7 ± 1.0 ± 0.8)MeV

Γ (Ω𝑐 (3119) 󳨀→ Ξ+𝑐𝐾−) = (1.1 ± 0.8 ± 0.4)MeV.

(36)

We find out that our predictions strongly differ from the
experimental results.
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By comparing our predictionswith the experimental data,
we conclude that both scenarios are ruled out.

4. Conclusion

In conclusion, we calculated the strong coupling constants
of negative parity Ω𝑐 baryon with spins 1/2 and 3/2 withΞ𝑐 and 𝐾 meson in the framework of light cone QCD sum
rules. Using the obtained results on coupling constants we
estimate the corresponding decay widths. We find that our
predictions on the decay widths under considered scenarios
are considerably different from experimental data as well
as theoretical predictions and considered both scenarios are
ruled out. Therefore further theoretical studies for determi-
nation of the quantum numbers of Ω𝑐 states as well as for
correctly reproducing the decay widths of Ω𝑐 baryons are
needed.
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