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Abstract
Physics-based representations constructed using only atomic positions and nuclear charges (also
known as quantum machine learning, QML) allow for the reliable and efficient inference of
molecular properties from training data. Chemistry is a science rooted in chemical reactions,
naturally involving multiple molecular species. Here, we extend QML’s capabilities to include the
prediction of reaction properties by defining reaction representations: representations taking as
input multiple molecules participating in a reaction, each represented by their corresponding
atomic charges and three-dimensional coordinates. Several reaction representations are
constructed from established molecular ones and benchmarked on four datasets representative of
thermodynamic or kinetic reaction properties. One of these, the Hydroform-22-TS dataset (2350
energy barriers), is introduced as part of this work. The relevant ingredients for a high-performing
reaction representation are extracted and used to construct the Bond-Based Reaction
Representation (B2R2) for the prediction of quantum-chemical properties of chemical reactions.
Finally, variations of B2R2 with varying representation size vs. performance are provided.

1. Introduction

Physics-based or quantum machine learning (QML) [1–4] representations form a comprehensive class of
chemical fingerprints that are inspired by fundamental laws of physics and basic laws of symmetry. These
representations rely on the fact that all (static) information about a chemical system is uniquely encoded into
the system-specific parameters that fix the electronic Schrödinger equation: nuclear charges (ZI) and
positions (RI). Because QML representations are rooted in foundational laws of nature, they are extremely
transferable and do not need to be adapted to each specific learning task. Given their transferability,
generality, and deep connection to electronic targets, QML representations have been the forefront of
machine learning applied to solve chemical problems [2–7].

Despite their conceptual and mathematical differences, existing QML representations always focus
on encoding either an entire molecule (‘global’) or a molecule as a set of atomic environments (‘local’).
These representations can then accurately and efficiently predict molecular and atomic properties,
such as atomisation energies [1, 8, 9], forces [10–13], potential energy surfaces [14–16], excited state
properties [17], polarisabilities [18, 19] and electron densities [20, 21]. Free energies can be predicted with a
Boltzmann-weighted ensemble of molecular representations [22]. While atoms and molecules are the
instruments of chemistry, chemical reactions are its orchestra. The prediction of reaction properties such as
reaction energies, activation barriers, changes in dipole moments, catalytic yields and turnover, are not yet
routine within the framework of QML. As opposed to single molecule properties, reaction properties always
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include a notion of transformation: quantities change from reactants to products. These changes may be
subtle, but they dictate chemistry. To be valuable within this context, a representation should capture both
transformations from reactants and products, as well as differences between reactions.

Outside the domain of QML, the development of predictive models for reaction properties has been an
active field for the last few years. Descriptors derived from 2D molecular graphs of reactants and products
[23, 24] are the standard choice for the prediction of reaction properties that are not highly sensitive to subtle
changes in three-dimensional molecular structure. An alternative is expert-selected (ab-initio) descriptors
[25, 26], which often correlate well with reaction properties, but typically rely on a mechanistic
understanding of the reaction, and are not transferable across reaction classes. In some cases, simple one-hot
encoded descriptors [27, 28] perform equally well to ab-initio descriptors for significantly lower
computational cost. Finally, representations derived from graphs in deep learning models [29, 30] have
shown promising performance on several reaction properties, but are expensive to train, and tend to perform
well only for large dataset sizes.

Compared to the above descriptors, QML reaction representations offer a greater degree of generality
(vide supra). Recently [31], it has been demonstrated that reaction representations derived from molecular
ones can be modified to better describe the transformational nature of chemical reactions. Inspired by
this initial work, here we analyse the essential characteristics of accurate and efficient QML reaction
representations in greater depth. Leveraging three key design principles, we propose the Bond-Based
Reaction Representation (B2R2)—a specialised fingerprint for reaction property prediction.

2. Methods

2.1. Datasets
To assess the robust performance of the reaction representations, we use four datasets of chemical reactions
which are categorised according to their reaction type, property and year of publication. For example, the
Proparg-21-TS dataset corresponds to propargylation reactions (Proparg), was published in 2021 (21), and is
labelled with barriers (TS). The only set that is not associated with barriers, the SN2-20, correspondingly is
missing the -TS. The four sets are SN2-20, GDB7-20-TS, Proparg-21-TS and Hydroform-22-TS. All datasets
are available alongside with the source code at https://github.com/lcmd-epfl/b2r2-reaction-rep. The data is
also available separately at https://zenodo.org/record/6937747.

2.1.1. SN2-20
This dataset is adapted from the original set of reactants and transition states published as QMrxn by von
Rudorff et al [32]. The reactants consists of (i) variations of ethane functionalised with four substituents and
(ii) a nucleophile. The products consist of (iii) the corresponding substituted product and (iv) the leaving
group. The lowest energy conformation of (i) and (iii), along with their corresponding energy were extracted
from QMrxn. We then computed the energies of (ii) and (iv) at the MP2 [33]/6-311G(d) [34–36] using
ORCA 4.0.1 [37, 38], as per the procedure in QMrxn. The eventual dataset consists of 2670 reactions with
corresponding reactant and product structures, and reaction energies. While barriers were published as part
of the original work, these correspond to barriers between the reactant complex and transition state, rather
than isolated reactants and transition state. Correspondingly, we focus on thermodynamics as a target, and
consider kinetic properties in the other three datasets.

2.1.2. GDB7-20-TS
This dataset is taken from [39]. The dataset consists of 11 961 diverse organic reactions constructed from the
GDB7 dataset [40–42], with corresponding energy barriers computed at the ωB97X-D3/def2-TZVP level.
Unlike in the previous deep learning model [29], we do not mix forward and backward reactions to double
the dataset size. As noted by Heid and Green [30], this practice results in misleading low prediction errors if,
for example, a forward reaction is in the training set and a backward reaction in the test set.

2.1.3. Proparg-21-TS
This dataset is taken from [43]. It contains 760 structures of intermediates before and after the
enantioselective transition state of the propargylation of benzaldehyde, as well as the barriers computed at
the B97D/TZV(2p, 2d) level. As in our previous work [31], we target the energy barriers, which could
eventually further been used to derive enantiomeric excess (e.e.) values.

2.1.4. Hydroform-22-TS
As part of this work, we built the Hydroform-22-TS dataset. It consists of 2350 structures of intermediates
before and after the alkene insertion transition state in the catalytic cycle of olefin hydroformylation [44],
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Figure 1. The Hydroform-22-TS dataset contains transition-metal complexes involved in the hydroformylation reaction of olefin.
The dataset is built using combinations of three transition metals (Co, Rh, Ir) and two type of ligands (phosphine, phosphite
anions).

Figure 2. Left: the distribution of the activation barriers of Hydroform-22-TS for each metal. Right: probability density of the
separate metal subsets and the combined set, as given by kernel density estimation (KDE).

with associated barriers. The initial set of catalysts were designed from combinations of three group 9 metals
(Co, Rh, Ir) with different phosphine/phosphite ligands. The ligands were designed using 29 different
substituents appended in an R1/R2/R2 fashion to form monodentate phosphine/phosphite ligands as in the
original paper [44]. The step of the hydroformylation reaction of interest, shown in figure 1, converts an
olefin-bound π-complex to a σ-complex via a 1,2-insertion process. Transition state geometries were
generated from a model template through functionalisation with the phosphine/phosphite ligands using the
AARON program [45, 46]. The generated structures were then optimised in the gas phase at the PBE0
[47, 48]-D3(BJ) [49, 50]/def2-SVP [51] level followed by single points at the PBE0-D3(BJ)/def2-TZVP level
including solvation (in benzene) using the SMD model [52] in Gaussian16 [53]. The π- and σ-intermediate
complexes were optimised following the imaginary vibrational mode of the transition state, followed by
geometry optimisation at the PBE0-D3(BJ)/def2-SVP level. Free energy corrections (using the def2-SVP
basis set) for all species were determined using the rigid-rotor harmonic oscillator model [54] as
implemented in the GoodVibes program, version 3.0.1 [55]. Default settings were used.

Finally, additional filters were applied. Some structures had missing hydrogen atoms after optimisation,
which were removed. Additionally, many structures relaxed to the cis configuration between the CO and
hydride group. The cis structures are not the relevant ones in the chemical process (thermodynamically
higher than trans) but are local minima. These were removed such that only the trans structures remain. The
final dataset is composed of cobalt (726), iridium (809), and rhodium (815) complexes for which the final
barrier distribution is illustrated in figure 2.

2.1.5. General remarks
The SN2-20 and GDB7-20-TS datasets focus on small molecules (up to seven heavy atoms per molecule),
whereas the Proparg-21-TS and Hydroform-22-TS sets contain larger complexes (up to 52 and 67 heavy
atoms per molecule, respectively). The SN2-20 dataset, as many other examples in the literature [29, 30, 56],
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consists of textbook chemical reactions that are readily interpretable. However, robust reaction
representations should also be capable of describing the chemistry of large molecules. While the
GDB7-20-TS set is made of small molecules, it spans a broader range of chemical reactions with an associated
large range of activation energies (0–200 kcalmol−1), making it the most challenging dataset of the four.

2.2. Representations
2.2.1. Molecular representations
The tested molecular representations are separated into three categories: (i) Coulomb Matrix (CM) [8, 9]
and Bag of Bond (BoB) [57]; (ii) SLATM [58] and FCHL19 [59, 60] and (iii) SOAP [18, 61]. The CM relies
upon pairwise interactions using Coulomb potential terms [8, 9]. The BoB takes CM terms and organises the
elements of the CM into atom-pairwise types ‘bags’ [57]: e.g. all interactions between pairs of C atoms are
organised into a C–C bag. SLATM and FCHL19 append higher-order interaction terms (between triplets of
atoms) with different potentials [58–60]. SOAP rather considers atoms in molecules according to their
neighbouring atom density. While SOAP was introduced in the context of its kernel, the power spectrum is
often treated as a representation and can be fed into any arbitrary kernel functions [3, 62].

2.2.2. Reaction representations
Representations are constructed either using only representations of reactants (Xr), products (Xp) or
combinations of reactants and products (Xd and Xrp). CM and BoB use an internal sorting of features by
row-norm, which makes these representations non-additive. Representations of individual molecules are
therefore concatenated to give reaction representations Xr , Xp and Xrp where the latter is a concatenation of
the first two. For the remaining representations, Xr is a summation of the N reactant representations:

Xr =
N∑
i

X(i). (1)

Xp is a summation of theM product representations:

Xp =
M∑
j

X( j) (2)

and Xd is a difference in the summed product and reactant representations:

Xd = Xp −Xr (3)

where X denotes the molecular representation.
SOAP was generated using the dscribe python package [63]. The other molecular representations were

generated using the QML python package [64]. The default parameters are used for all representations. Our
B2R2 representation (vide infra) is available as part of the code repository. The most important parameter,
the cut-off radius Rcut, is optimised for each dataset on a grid. Optimal Rcut values are provided in the
supplementary information.

2.3. Machine learning models
In all cases, Kernel-Ridge Regression (KRR) models were used. While other models, like deep neural
networks, might also be suitable, data-efficient KRR has historically dominated the physics-based machine
learning landscape [3, 65] with benchmark studies [66] demonstrating its superior performance on
prototypical quantum chemistry datasets. For this reason, we choose to initially benchmark our reaction
representations using KRR models only.

All KRR models are trained with a Gaussian kernel K. The predicted property p for a reaction X, either
the reaction energy or barrier, is then given by:

p(X) =
N∑
i=1

αiK(X,X
′) (4)

K(X,X ′) = exp

(
− ||X−X ′||22

2σ2

)
(5)

where the coefficients α are learned from the training set:

α= (K+λI)−1ptrain. (6)
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The kernel width σ and regularisation parameter λ are optimised using five-fold cross validation. In
other words, after initially shuffling the datasets, they are split into five folds, where the first 4 (80%) are used
for testing, and the last (20%) for validation. The best hyperparameters are those with a minimal MAE on
the test set across the five folds. Details of the hyperparameters tested and the eventual optimal values are
given in the supplementary material.

For all datasets except the Hydroform-22-TS set, learning curves are generated using standard ten-fold
cross validation. The last fold (10%) of the data is held out as a test set. Of the 90% available for train,
increasing fractions of the data are included to generate the learning curves. The MAEs on the test set are
averaged over the ten folds. Learning curves for the Hydroform-22-TS set are generated in a different way,
owing to its multi-modal nature (see figure 2). The data is split into ten folds as before, where the last fold is
always held out as a test set. Rather than including the first 200, 400, etc points for training, the most diverse
200, 400, etc points are included at a time. Farthest point sampling (FPS) is used greedily to determine the
most diverse points in the training set. The out-of-sample MAEs are again averaged over the ten folds.

3. Results and discussion

3.1. Frommolecular to reaction representations
In order to maximise transferability, we benchmark the selected reaction representations (see section 2.2) on
the four datasets covering a range of reaction types, properties and molecular sizes. The learning curves in
figure 3 report the performance of one molecular representation per category (BoB, SLATM and SOAP) but
the remaining ones (CM and FCHL19) can be found in the supplementary material.

With the kernel models used herein, thermodynamic properties can be learned to higher accuracy
than kinetic properties as illustrated by the lowest prediction errors obtained for the SN2-20 set. This
result is expected, as the reaction energy (thermodynamic) depends on the isolated reactant and product
structures and not on the reaction barrier. In contrast, other test sets with energy barriers as a target
(e.g. Proparg-21-TS, Hydroform-22-TS) are more difficult to learn, as they depend on transition state
structures [31]. As noted by previous authors [29, 30], the large errors observed for the GDB7-20-TS dataset
arise from the inherent challenging nature of this set caused by the significant spread in the target property
(0–200 kcalmol−1). While pre-training combined with deep neural network architectures can offer
improvements for reaction tasks [30], such a comparison is beyond the scope of this work dedicated to
physics-based reaction representations.

In the following analysis, we identify three key design principles for an effective reaction representation:
first, the difference between products and reactants should be meaningful (i.e. the representation should be
additive). Second, emphasis should be placed on the pairwise (two-body) interactions. Third, distinct
pairwise interactions should be distinguished. Each of these ingredients and their motivation are discussed in
the next sections.

3.1.1. Representations of meaningful differences
In figure 3, it is evident that representations including both reactants and products (i.e. Xrp and Xd)
systematically outperform the equivalent representations based on the reactants or products only (i.e. Xr and
Xp). For most datasets, the slope of Xrp and Xd models are steeper, leading to an improved performance over
Xr and Xp. For the Proparg-21-TS set, it is instead the offset of Xd that improves the predictions. Previous
efforts in the literature suggested that a single reactant might be sufficient to learn reaction properties
[56, 67]. This was motivated for example by Hammond’s postulate [56, 68], where the transition state (and
therefore reaction barrier) should closely resemble either the reactant or product. In general, a description of
both sides of the chemical equation is fundamental, as neither the reactant nor the product consistently
resemble the transition state. Additionally, in a given reaction dataset, the same set of reactants may have
multiple products. A representation based on reactants alone therefore leads to a direct violation of the
representation uniqueness and injectivity. Therefore a transferable reaction representation must describe all
of the participating molecules in the reaction.

As mentioned in section 2.2.2, some representations, like CM and BoB, use an internal sorting procedure
which renders the notion of difference between representations meaningless. Representations based on
additive potentials (FCHL and SLATM) or densities (SOAP) allow for a suitable notion of difference.
Figure 3 illustrates that difference-based representations Xd outperform those that concatenate reactants and
products Xrp in the prediction of reaction properties. The additivity criterion is well-justified from physical
laws, as most reaction properties are algebraically additive. For instance, reaction energies are defined as:

∆Er =
∑

products

Eproducts −
∑

reactants

Ereactants. (7)
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Figure 3. Learning curves are shown for reaction representations constructed from molecular representations of reactants only
Xr , products only Xp, concatenations Xrp or a difference Xd.

If a representation is additive, then we can write similarly:

Xd =
∑

products

Xproducts −
∑

reactants

Xreactants. (8)

Assuming that molecular representations contain sufficient information to regress molecular energies,
then the algebraic sum of the molecular fingerprints should also correlate well with the algebraic sum of the
energies. Reaction barriers are not an explicit algebraic difference like reaction energies. However, transition
state structures often can be reasonably approximated as a (weighted) interpolation between reactant and
product structures, analogous to interpolation in the Nudged Elastic Band [69] method. This allows Xd to
resemble XTS:

Xd ≈ XTS = aXp − bXr. (9)

In the simplest case, a= b= 0.5. In previous work [31], it was found that adapting a ̸= b ̸= 0.5 did not
improve the performance of the reaction representation. Taking the simplest interpolation allows for a
consistent definition of Xd which performs well for thermodynamic and kinetic property prediction.
Additionally, Xd has the same dimensions as the single-molecule representation equivalent X, whereas Xrp

doubles the number of features. Xd thereby enhances the predictive performance of reaction properties in the
same number of features as single-molecule features.

6



Mach. Learn.: Sci. Technol. 3 (2022) 045005 P van Gerwen et al

Figure 4. Learning curves are shown for full SLATMd and the two-body only version SLATM
(2)
d . SLATMr is included for reference.

3.1.2. Importance of two-body features
While representations incorporating higher-order terms (SLATM, SOAP) outperform those with two-body
interactions only (BoB) in figure 3, it is known that the two-body interactions are critical, and that higher
order interactions only modestly improve upon the initial necessary terms [3]. For chemical reactions in
particular, the predominant interactions are bonds breaking and forming. We hypothesised that only
two-body interactions were necessary for good predictive performance of reaction properties. To this aim, we

tested the two-body terms of SLATM (SLATM(2)
d ) and compared it to full SLATMd. Figure 4 illustrates that

SLATM(2)
d indeed performs almost equivalently to SLATMd across the four datasets. The eventual MAE of

SLATM(2)
d and SLATMd models is very close. For the smaller molecule datasets (SN2-20 and GDB7-20-TS),

the slope of SLATM(2)
d is a little more shallow, but not significantly so. We note that SLATM places a higher

weight on short-range interactions by describing pairwise interactions using the London potential 1/R6 [70]

which diminishes the description of longer-range interactions, which might be needed to allow SLATM(2)
d to

match SLATMd in all cases. Removing or reducing this higher weight on shorter-range interactions might
allow for a two-body only representation to be sufficiently accurate.

3.1.3. Separation of distinct two-body features
The two-body terms of SLATMd are separated into pairwise bags of element types (C–C, C–N, C–O, etc).
This separation allows for the isolation of the description of important bonds that are involved in a reaction.
In figure 5, we leverage the conceptual simplicity of an SN2 reaction to look at SLATMr , SLATMp and
SLATMd two-body features. A C–F bond is broken and C–H bond is formed, while all other bonds remain
unchanged during the reaction. The pairwise interaction bags are organised into a fixed order, such that the
same bond type (e.g. C–H) is at the same position in the reactant and product representation vector. The
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Figure 5. Two-body features of SLATMr , SLATMp and SLATMd for a simple SN2 reaction.

ultimate difference captured in SLATMd then highlights the breaking of the C–F bond and creation of a C–H
bond, with a large amplitude in these bags. Further moderate structural rearrangements in the reactant and
product are highlighted in H–H, C–C, and H–F feature bags.

The pairwise bagging approach provides clearly separated and interpretable features, but has relatively
inefficient computational scaling at O(n2), where n is the number of unique elements in the dataset. We
present the B2R2 representation first with the same scaling, and later propose alternative approaches: at O(n),
still separating two-body features, and at O(1), reducing feature separation and slightly suffering in
performance accordingly.

3.2. The bond-based reaction representation
SLATMd is a robust reaction representation as a consequence of three key ingredients: (i) a meaningful
difference, (ii) an emphasis on two-body interactions and (iii) separation of the relevant two-body features.
These ingredients enable SLATMd to capture and amplify changes in individual bonding environments,
which are the ultimate drivers of reaction properties. Relying upon these concepts, we present the
Bond-Based Reaction Representation (B2R2), a dedicated reaction representation built on the notion of
difference in pairwise interactions between reactants and products. There are three variations depending on
the bagging strategy: (i) the canonical variation, with pairwise bags (O(n2)); (ii) a linear variation (O(n))
and (iii) a constant-size variation (O(1)). In all cases, the B2R2 is significantly smaller than SLATM or other
higher-order potential based representations which scale as O(n3).

3.2.1. Canonical B2R2

The canonical variant of B2R2 employs the same bagging strategy as SLATM: that is, by pairwise element
types. To describe an interaction between a pair of atoms I and J (in a reactant or product molecule), with
nuclear charges ZI and ZJ respectively, only the distance between the atoms RIJ is needed, since the element
types are encoded in the bag. Here, we use simple Gaussian functions to encode pairwise interactions, which
we found to offer good predictive accuracy without the need for physically-informed potential terms (as is
typical in QML representations [8, 9, 71, 72]). As outlined in section 3.1, it is the additivity of the functions
employed that is responsible for their performance. We choose Gaussian functions centred on the bond
between two atoms (µ= RIJ/2), with a standard deviation that we found to perform well on average across
the datasets tested (σ = RIJ/8).

For each bag, all p ∈ P bond distances Rp in the products and r ∈ R bond distances Rr in the reactants are
collected and used to construct a difference:

B2R2
bag =

√
32

π

 P∑
p

1

Rp
exp

(
−
32(x−Rp/2)2

R2
p

)
−

R∑
r

1

Rr
exp

(
−32(x−Rr/2)2

R2
r

) . (10)
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Figure 6. Dissimilarity plots, i.e. difference in target values (barriers) vs the normalised Euclidean distance are shown for

SLATM
(2)
r , SLATM

(2)
d and B2R2 on the GDB7-20-TS dataset.

To emphasize the relevant bond distances, only RIJ < Rcut are included in the representation. Rcut is
optimised for each dataset (see supplementary material), but typically lies between 3 and 5Å. This suggests
that most information needed to predict reaction properties is local, i.e. within the range of a few bond
lengths. Depending on the dataset, in some cases longer-range interactions are needed to describe the
structural rearrangements associated with bond-breaking and -making. Unlike in SLATM, the shorter-range
interactions are not weighted. Instead, Rcut accounts for the nature of bonding interactions per dataset. For
example, if longer-range interactions dominate, a longer Rcut would be optimal.

Figure 6 illustrates B2R2’s desirable properties based on diagnostics introduced in our previous work
[31]. Dissimilarity plots were introduced to determine whether a representation correlates with the target
property. These plots map the pairwise Euclidean distance between representations against the pairwise
difference between target values. A suitable representation should recognise that a small distance between
representations should correspond to a small difference in the target property. Plots are constructed

for SLATM(2)
r , SLATM(2)

d and B2R2 on the GDB7-20-TS dataset (plots for other sets are given in the

supplementary material). Both SLATM(2)
d and B2R2 exhibit ideal behaviour, whereas SLATM(2)

r results in a
noisy dissimilarity plot which actually increases the distance between representations around zero barrier
difference.

Correspondingly, in figure 7, except for minor performance differences, SLATM(2)
d and B2R2 perform

similarly well, while SLATM(2)
r fails to accurately predict the target property. Except for the SN2-20 set, the

B2R2 curves have the same slope as SLATMd, or even steeper (Proparg-21-TS). While B2R2 does not offer an
overall improvement in performance vs. SLATMd, it does encapsulate the same critical information in far
fewer features (vide infra).

3.2.2. Linear- and constant-size versions
While pairwise bags are the canonical choice, and they allow for interpretable features, they also scale as
O(n2). While less than SLATM’s O(n3), other bagging strategies reduce the scaling.

To reduce the scaling to O(n), B2R2
l uses bags constructed using elements rather than pairwise elements.

In other words, bags contain information about ZI only rather than about ZI and ZJ . As a consequence,
information about ZJ should be included in the representation. To this aim, we use a skew-normal
distribution rather than a Gaussian distribution to describe pairwise interaction terms:

B2R2
l,bag = 16

 P∑
p

ZJ

Rp
ϕ

(
x−Rp/2

Rp/8

)
Φ

(
ZJ
x−Rp/2

Rp/8

)
−

R∑
r

ZJ

Rr
ϕ

(
x−Rr/2

Rr/8

)
Φ

(
ZJ
x−Rr/2

Rr/8

) (11)
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Figure 7. Learning curves are presented for our reaction representation B2R2. SLATMr and SLATMd are included for reference.

where ϕ(x) is the standard normal probability density function:

ϕ(x) =
1√
2π

exp−x2

2
(12)

and Φ(x) is the cumulative distribution function:

Φ(x) =
1

2

[
1+ erf

(
x√
2

)]
. (13)

The degree of skewness is modulated by the second nuclear charge ZJ , which also amplifies the
magnitude of the function. A similar form is used for the third no bags B2R2

n representation, where
interaction terms are no longer separated by pairs of elements (as in B2R2) or elements (as in B2R2

l ), instead
collected in the same fixed-size vector. Since there is no bagging to isolate ZI , the magnitude is modulated by
ZI rather than ZJ as in B2R2

l :

B2R2
n = 16

 P∑
p

ZI

Rp
ϕ

(
x−Rp/2

Rp/8

)
Φ

(
ZJ
x−Rp/2

Rp/8

)
−

R∑
r

ZI

Rr
ϕ

(
x−Rr/2

Rr/8

)
Φ

(
ZJ
x−Rr/2

Rr/8

) . (14)

3.2.3. Evaluation and performance
The features of B2R2

n correspond to equation (14) evaluated for each grid point equally spaced between 0Å
and Rcut. The same grid-spacing of 0.03 Å is used in all B2R2 variations, such that the length of B2R2

n is
determined only by the cut-off Rcut. Similarly, for B2R2 and B2R2

l , the features of each bag are evaluated using
equations (10) and (11) respectively across an equally spaced grid. Their size is determined by both Rcut and

10
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Figure 8. The features of the three variations of B2R2 (pairwise B2R2, linear B2R2
l and constant-size B

2R2
n) are shown for a simple

SN2 reaction. SLATMd is included for reference.

the number of unique element types which determine the number of bags. For each dataset and variation of
B2R2, Rcut is optimised on a grid. Optimal Rcut values are provided in the supplementary material.

Features of the three B2R2 variants are illustrated for an SN2 reaction example in figure 8. Akin to

SLATM(2)
d , B2R2 emphasises bonds breaking and forming in pairwise bags. B2R2

l encodes the same
information, but collects it in element bags, where now the relevant features are in the H, C and F bags.
Finally, B2R2

n no longer separates the features into bags, and simply collects all pairwise interactions into the

11
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Figure 9. Learning curves are presented for the three variations of B2R2: pairwise B2R2, linear B2R2
l and constant-size B

2R2
n.

same feature vector. Moving between variations subsequently reduces the representation size, all of which are
significantly smaller than the baseline SLATMd.

Figure 9 compares the predictive accuracy of the three B2R2 variants. Interestingly, B2R2
l achieves nearly

identical performance to B2R2. Except for the GDB7-20-TS and Proparg-21-TS sets, the slopes are also
equally steep. This suggests that incorporating information about ZJ in the functional form of the interaction
terms, and bagging only by ZI , is as effective as incorporating information about both ZI and ZJ . A similar
strategy is employed in the design of FCHL19 [10], which uses element bags rather than pairwise bags, and
typically achieves similar performance to SLATM in the prediction of molecular properties. FCHL19 does
not construct a single function for each pairwise interaction, but rather, in the spirit of ACSF [73], a set of
radial basis functions for each unique element type. B2R2

l maintains the single function concept of SLATM
while employing an intelligent bagging strategy similar to that of FCHL19. The B2R2

l results thus
demonstrates the relevance of this approach for reaction properties.

Finally, B2R2
n (variant with no bags) achieves surprisingly good predictive capabilities. As illustrated for

an SN2 example in figure 8, features that are otherwise separated into four (B2R2) or three (B2R2
l ) distinct

bags now overlap. Nevertheless, the overall reduction in performance is not drastic, especially for the
Hydroform-22-TS and Proparg-21-TS sets. Both sets correspond to larger molecules containing a more
diverse set of chemical elements than those in SN2-20 and GDB7-20-TS. As a consequence of the diversity in
chemical elements, there are a larger range in bond lengths, likely preventing significant overlap in the same
features and allowing for the effects of different pairwise interactions to be distinguished. For GDB7-20-TS,
B2R2

n exhibits unusual behaviour, with increased out-of-sample MAE for intermediate training set sizes.
Since this is the most challenging dataset, B2R2

n is not the most suitable choice here. In any case, such
oscillations at intermediate training set sizes can likely be corrected with FPS learning curves as done for the
Hydroform-22-TS set.

12
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In practice, all three variations of B2R2 are available but we recommend the users to default to B2R2
l for a

compromise in representation size and predictive capability. Overall, the B2R2 series emphasize the necessary
attributes for an effective reaction representation and constitutes a first step towards exploring more
sophisticated functional forms. We note that the B2R2 representations might not perform well in all cases.
For example, they do not naturally encode symmetry of reaction energies: a model trained on a dataset of
forward reactions with their corresponding reaction energies will not naturally predict the same reaction
energy with opposing sign for a dataset of backward reactions. Additionally, while a trained model tested on
reactions consisting of identical reactants and products should recognise that the reaction energy should be
zero, it will not necessarily recognise that the barrier should not be. Previous authors [29, 30] addressed such
issues by including both forward and backward reactions in the training set. However, it might be feasible to
encode such symmetries in the representation directly.

4. Conclusion

We systematically explore the construction of reaction representations from existing molecular ones, and
benchmark their performance on four illustrative datasets of chemical reaction properties. One of these, the
Hydroform-22-TS (2350 hydroformylation reaction barriers), is introduced as part of this work. Key design
principles for a high-performing, transferable reaction representation are extracted: (i) a meaningful notion
of difference between products and reactants (i.e. additivity); (ii) an emphasis on bonding (pairwise)
interactions and (iii) effective separation of the description of these bonding interactions. We use these
principles to design the Bond-Based Reaction Representation (B2R2) and illustrate its competitive
performance. Finally, strategies are proposed to manipulate the size of the representation while maintaining
excellent predictive capabilities. We expect these findings will expand QML from a molecule-focused
discipline to a reaction-focused one.
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