
CDF Note 452

Specification for a Hardware Event Builder

A.W. Booth, M. Bowden, H. Gonzalez

1

CDF Note 452

Contents

1.0 Introduction

1 .1 The Goals for a Hardware Event Builder
1.2 Role of Event Builder in CDF Data Acquisition System
1.3 CDF . Event Builder Configuration
1.4 Greater Throughput

2.0 Event Builder Architecture

2.1 Controller board

2.1.1 Application Processor
2.1 .2 Program Memory
2.1.3 FASTBUS Control Sequencer

2.1.3.1 AM291 0 Sequence~

2.1.3.2 ALU
2.1.3.3 Microcode Memory / Pipeline Register
2.1.3.4 FASTBUS Control/Status Encoder
2.1.3.5 Timers / Multiplexors / Comparator

2.1.4 FASTBUS Master Interface
2.1.4.1 Coprocessor Concept

2.1.5 FASTBUS Slave Interface

2.2 Reformatter board

2.2.1 Processor
2.2.2 Event Memory and FIFO's
2.2.3 DMA Table

2.3 Front Panel Interfaces

2.3.1 Front Panel Bus
2.3.2 Logic Analyzer Port
2.3.3 Status Display

2

CDF Note 452

2.4 Auxiliary Board

3.0 FASTBUS CSR Assignments

4.0 Event Builder Operation

5.0 Software
5.1 Communication with Other Pipeline Stages
5.2 Communication with Other Event Builders
5.3 Communication with Host
5.4 Downloading of Scan Lists
5.5 Reformatting
5.6 Exception Handling

5.6.1 Retry Philosophy
5.6.2 Arbitration Requests
5.6.3 BUSY / WAIT

5.7 Interrupt Handlers
5.8 Self-test Diagnostics

6.0 System Integration

6.1 Overview
6.2 Readout list
6.3 Data Flow Control Messages
6.4 Event readout by host VAX

7.0 System Development

3

CDF Note 452

1.0 Introduction

1.1 The Goals for a Hardware Event Builder

The goals for the hardware event builder were established through
several discussions with people who are very knowledgeable about different
aspects of the CDF data acquisition system and about physics data
acquisition in general. The reader is directed to the bibliography.

Whilst people had different ideas about which goals were the most
important for CDF, all of the goals listed below were felt to be important
by at least someone.

a) To read event data or calibration data from front end scanners

b) To reformat the data into YBOS detector bank format

c) To write the data into a level 111 system·

d) To have a throughput of 100 events per second

e) To read data from the cable segment at cable segment
bandwidth (40 Mbytes/sec)

f) To have extra memory capacity (to allow for increase in
event size)

g) To send and receive messages over FASTBUS

h) To have some degree of parallelism (so that several events
may be processed concurrently)

i) To enable readout of unformatted or formatted events by a
remote FASTBUS master

4

CDF Note 452

1.2 The Role of the Event Builder in the CDF DAQ System

The Event Builder (EVB), as shown in figure 1, is a central element in
the DAQ pipeline. It collects event or calibration data from front end
scanners and forwards this data to the Level III system. The Event Builder
also has the ability to perform some level of data reformatting. The data
gather and reformatting functions are currently performed by a software
Event Builder executing on the VAX and accessing FASTBUS via the UPI. EVB
operations occur in response to control messages from the Buffer Manager.
The steps involved in the readout of one event are;

(1) Trigger supervisor broadcasts START-SCAN message to
front-end scanners

(2) On receipt of "DONE", the Trigger Supervisor sends
a message to the Buffer Manager

(3) The Buffer Manager then sends a' PULL EVENT message to
the EVB

(4) The Event Builder reads out the designated buffer for all
front-end scanners associated with the selected partition and
resets scanners

(5) EVB transmits PULL OK message which tells the Buffer
Manager that scanner buffers are free for a subsequent event

(6) EVB performs necessary data reformatting and transmits
REFORMAT COMPLETE message

(7) Buffer Manager instructs EVB to PUSH EVENT to Level III
processor

(8) EVB responds with PUSH OK which indicates that it is ready
to accept another event

5

CDF Note 452

Buffer

Manager

HOST Level III
System

E
V
B

Scanner Scanner Scanner

Scanner Scanner Scanner

Figure 1 CDF Data Acquisition System

6

CDF Note 452

1 .3 Event Builder Configuration

The initial configuration of the hardware Event Builder consists of a
central controller on the FASTBUS crate segment and an auxiliary controller
for each of the two cable segments. Associated with each cable is a
reformatter board comprising two reformatting "engines". Since the
current CDF system uses two front-end cable segments, a minimum
configuration is shown in figure 2. The central controller is a crate segment
controller and is responsible for a) communicating with the buffer manager,
b) instructing the cable controllers when to read out an event, c) keeping a
record of which reformatter is reformatting which event, and d) setting up
the FASTBUS master interface on the crate segment for the push of an event
to level III.

...
Q) Q)

Q) -... 0 0 0 ... '-Q) ~ 'E '- ~ -- c: _c: - -0 -ro ~8 ~() Q)O ro
E ::0 0 E
'- DC/) roC/) roC/) '-
0 ro:::J '-:::J O:::J 0 - U m U m -Q) -CD Q)

a: -f- -f- f- a: C/) C/) C/)
LE LE LE

Segment 1 Segment 2

Figure 2 CDF Event Builder (Initial Configuration)
Each of the cable segment controllers are responsible for setting up their

7

. ,

CDF Note 452

FASTBUS master interfaces to read out events and for controlling their
associated reformatter board during the read out .

1.4 Greater Throughput

. Each Reformatter board is already double buffered and is organised r-i
so that it can perform simultaneously two of three operations: readout
event, reformat event_ and push event to level III. However, with the initial to
configuration for the event builder (as shown in figure 2 above), and the
mean event size as projected in ref. 1, the possible throughput is in the
range 30-50 events per second accounting for fluctuations in event size and
trigger rate. (This assumes that level III can accept data at 20Mb/sec).

In order to achieve greater throughput, it is necessary to add more
reformatting boards (Le. more buffering). Figure 3 gives an indication of
what can be expected from several reformatter boards. If required, it
should be possible to fill a FASTBUS crate with reformatter boards.

2.0 Event Builder Architecture

2.1 Controller Board

The following description of the controller board refers to both the
crate and cable segment controllers. They are logically the same but differ
in their electrical connection to FASTBUS. The controller board in the CDF
event builder is based on the controller board of the CERN ALEPH Event
Builder 6. The essential differences are in the FASTBUS slave circuitry (CDF
requires more interrupt receivers , for example), in the front panel bus (the
CDF EVB front panel bus is primarily for control), and the ALEPH board
incorporates a LAN controller (there is no such requirement at CDF7). These
and other minor changes are documented.

8

· .
CDF Note 452

90·150 Hz 90·150 Hz ----_ _-_.
I I

.- -----. --- --- - . ---,
60·100 Hz I 60.100 Hz I

30·50 Hz 30·50 Hz

I

...
Q) Q)

Q)

... 2 0 e
! Q) Q)

...
Q) ! Q) c: c: co .. 0 c: .. co co C\I C\I 0 0 0 C\I

E E E 0 0 E E E en en en
0 0 0 :::J :::J :::J 0 0 0 CD
Q) Q) Q) CD CD Q) Q) Q)

a: a: a: t; l- I- a: a: a: en
it en

it it

.. '- I.-
I I
I I
I
I

Segment 1

Figure 3 Multi-buffering EVB

2.1 . 1 Application Processor

9

CDF Note 452

The controller board has a Motorola MC68020 microprocessor, which
was selected for its high computational throughput and a 32bit input/output
capability (hence a desirable candidate for FASTBUS). An attractive
additional feature is its ability to support coprocessor hardware which
enables FASTBUS to appear as a 'native' bus to the MC68020.

--
2.1.2 Program Memory

The 68020 program memory is composed of 8 32K x 8 static RAMs.
Access to this memory complies with the minimum 68020 bus cycle timing.
The 68020 has access to program memory at all times.

2.1.3 FASTBUS Control Sequencer

2.1.3.1 AM2910 Sequencer

The FASTBUS master port is controlled by an AM2910 sequencer
(figure 4). The sequencer executes 88 bit microcode instructions with a 75
ns cycle time. The AM2910 allows addressing of up to 4k words of
microprogram.

FASTBUS operations are initiated by the 68020 writing 3 or 4 words
through the coprocessor interface to the register file of the ALU(29116's);
these words are typically primary address, secondary address, word count
and microcode jump address (opcode).

Low level FASTBUS functions are performed by discrete logic under
direction of the sequencer. This includes skewing of control signals, bus
arbitration and block transfer synchronization.

2.1.3.2 ALU

The FASTBUS master port includes a dual 16-bit ALU (AM29116). In
the FASTBUS context this is particularly useful for performing bit tests and
making low level decisions. It has a 32 word register file which is also used
for coprocessor parameter passing.

10

· .'
CDF Note 452

COPROCESSOR DATA BUS

o

RESET ~
FASTBUS, B I

ETC.

,

"

CCMUX ...
~ ..

INTVECTOR

+
- B I

r

,
2910

SEDJENCCR

...
4KX88

RAM

-

I
=0 I
I , +

512 X 8
PROM

.,....

.,....
o o
~ I
~
w z

68020 DATA

BUS

MICrocaJE
LOADER

" (ADDRESS) "
,---.1.---,

L I I x I '--------' j~

"

MICROCCX)E
LO.ADER
(DATA)

MADDO-11

MCDATAO-7 ... ,,-'-------+'III-----1 ... ~ L 1"III 1----+---------~ ~ -
LATCH

... ... 512 X 32
PFK».1

CPU INSTRUO-15

Figure 4 Sequencer

...
29116

..
29116

2.1.3.3 Microcode Memory I Pipeline Register

1 1

....

..

..

CDF Note 452

The microcode memory is addressable from either the 68020 (as 11 k
x 8) for downloading, or the sequencer (as 1 K X 88). The 68020 determines
which path is enabled. Memory output is latched by a pipeline register
which drives the sequencer and peripheral logic.

2.1.~.4 FASTBUS Control/Status Encoder

FASTBUS control, status and mode select lines drive the sequencer
status encoder.

FASTBUS control logic is driven directly from microcode, with the
exception of time-critical functions such as bus arbitration and control
signal skewing.

2.1.3.5 Timers

Two bus timers are available; a 1 second timer for arbitration and
WAIT timeouts and a 2500 nsec timer for address/data response timeouts.

2.1.4 FASTBUS Master Interface

2.1.4.1 Coprocessor Concept

The FASTBUS Master port is implemented as a 68020 coprocessor.
This means that it can be considered as a piece of special purpose hardware
attached to the main processor (in the same way as a floating point unit).
The coprocessor concept allows the capabilities and performance of a
general purpose processor to be enhanced for a particular application . The
interactions between the main processor and the coprocessor that are
necessary for the coprocessor to provide a given service, are transparent to
the programmer. That is, no knowledge of the communication protocol
between the main processor and the coprocessor is required of the
programmer since the protocol is implemented in hardware. This differs
from the more traditional approach to dealing with standard peripheral

12

...
CDF Note 452

hardware, which is generally accessed through interface registers which are
mapped into the memory space of the main processor, and where the
programmer is responsible for writing code (using standard processor
instructions) to handle that peripheral.

The coprocessor therefore adds new instructions and registers so
that FASTBUS commands become part of the instruction set of an enhanced
68020, and FASTBUS itself appears as a 'native' bus to the 68020. To
illustrate how the coprocessor mechanism functions let us consider as an
example, a FASTBUS single word write to data space. This typically appears
in a FORTRAN program as :-

CALL FBSWWD (Prim_Add,Sec_Add,Write_data)

This is compiled12 into a number of assembly language instructions:-

MOVEA.L
MOVEA.L
MOVE.L
FBSWWD

Prim_Add,AO
Sec_Add,A1
Write_data,DO
AO,A1,DO

These instructions are then assembled into object code by an
assembler 13 which can recognize that FBSWWD is a FASTBUS coprocessor
instruction and so must be assembled into an "F-Iine" instruction . During
execution, when the 68020 encounters an F-Iine instruction, it initiates
communication with a coprocessor. Communication with the FASTBUS
coprocessor is achieved by the 68020 addressing one of the FASTBUS
coprocessor interface registers (CIR), which are mapped into CPU address
space. Some protocol then takes place in which the 68020 writes to the
"command" register in the coprocessor and then reads a "response" register
to determine whether the coprocessor needs further service. In this way the
FASTBUS parameters are passed to the coprocessor, which then performs
the operation on FASTBUS. The 68020 waits for completion of the FASTBUS
cycle (except for block transfers).

2.1.5 FASTBUS Slave Interface

1 3

CDF Note 452

2.2 Reformatter board

The reformatter board consists of a MC68020 and two reformatting
"engines". Each reformatting engine is capable of "spying" on the FASTBUS
data bus and consists of 0.5~~yt~ .. ()L~J~ti9J3AMLa D~\I~tA_1a_bJe_and-a-F-l~

~efo~!f1atter----boatd ca_n-~_e ___ ~iuf!1ultane()~§!Y_J:~erforming anL~ the three ~~
:fud~QtlQns:;) reaaou(--fable building (reformatting) and pushing (writing to

level III).

2.2.1 Processor

The 68020 is used for building a table of pointers to the data so
that the data can be assembled into YBOS format as it is pushed to level III.
The 68020 is also used for communicating with the controller board.

2.2.2 Event Memory, FIFO's and Multiplexors

The memory is accessible from the 68020 (or anything that
controls its bus through the Front Panel bus interface) and as a FASTBUS
slave. Data transfers between the memory and FASTBUS will be buffered
by FIFO's to accommodate asynchronous FASTBUS block transfers and
achieve block transfer rates of approximately 100 ns/word. Multiplexors
are provided to enable word swapping (for example, when 16 bit MX data has
an odd word count).

2.2.3 DMA Table

The DMA table is used to hold pointers to the actual event
data so that when the data is pushed to level III, it goes in the order
required by YBOS.

1 5

· .

CDF Note 452

2.3 Front Panel Interfaces

2.3.1 Front Panel Bus

The front panel bus is used for communication between the 68020
processors on the controller and reformatter boards.

2.3.2 Logic Analyzer Port

Connectors located on the circuit board behind the front panel
permit direct connection of a Kontron logic analyzer to the buffered 68020
bus.

2.3.3 Status Display

Front panel indicators are provided for the following modes;

FASTBUS Master on Crate Segment (green)

FASTBUS Master on Cable Segment (green)

FASTBUS Slave on Crate Segment (yellow)

FASTBUS Slave on Cable Segment (yellow)

Front Panel Master (green)
set by 68020 to indicate it is controlling the FP bus.

ACTIVE (green)
set by 68020 to indicate that it is currently processing an
event.

Module Fault (red)
set by power-up or module reset.
cleared by 68020 on completion of self-test.

A 32-element Liquid Crystal Display Module is also envisaged for the front
panel bus to display more meaningful messages.

16

~ CDF Note 452

2.4 Auxiliary Board

The cable segment connection is made through the EVB auxiliary
port. Signals at the auxiliary connector are identical to those at the crate
segment connector, i.e. single-ended ECl FASTBUS. To implement a FASTBUS
cable segment, an auxiliary board is used to convert these signals to
differential ECl using hybrid cable segment drivers and standard 10KH
differential receivers.

3.0 FASTBUS eSR Assignments

Contents of these registers will be described in greater detail in the
next release. Basic FASTBUS CSR assignments for the CDF EVB are:

CSR 0000000016 - General Control/Status Register

Bit 00
02
06

07

14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

Read Significance Write Significance
Error flag Set error flag
Running RUN *
FASTBUS crate Set error
segment error
FASTBUS cable
segment error
FASTBUS parity error
Active
Module 10 = C816

"

"
"
"
"

"
"
"
"
"

"
"

17

Set error

Set error

Clear Errors *

Clear bit 06
Clear bit 07

· ,

CDF Note 452

29
30
31

It

It

It

RESET *
Clear data *

* Operation involves 68020 interrupt routine

CSR 00000001 16 - Crate/cable segment error control

-Read Significance Write Significance
Bit 03

04
05
06
07

FASTBUS master error
Device retry flag
Network retry flag
Device retry overflow
Network retry overflow

Device retry on SS=6,7. Network retry on SS=1,3.

CSR 0000000216 - Auxiliary Control/Status Register

Bit04
08
20

Read Significance
Interrupts enabled
Non-existent address
Interrupt pending

Write Significance
Enable interrupts
Set error
Disable interrupts

CSR 0000000816 - Arbitration level

(Crate and cable segments)

CSR 0000000916 - Timer control

Bit04
05
06
07

Read Significance
Long timer enabled
Wait timer enabled
Address timer enabled
Data timer enabled

18

Write Significance
Enable Long timer
Enable Wait timer
Enable Address timer
Enable Data timer

GDF Note 452

GSR 0000000A16 - Interrupt Destination Primary Address

(Buffer Manager)

GSR 0000000B16 - Interrupt Destination Secondary Address

(Buffer Manager)

GSR 0000000G16 - Interrupt Destination Primary Address
-(Buffer Manager)

GSR 0000000D16 - Interrupt Destination Secondary Address

(Buffer Manager)

GSR 0000000E16 - Interrupt Destination Primary Address
(Buffer Manager)

GSR 0000000F16 - Interrupt Destination Secondary Address

(Buffer Manager)

GSR 000000Ax16 - Interrupt Message block (Source)

GSR 0000010x16 - Interrupt Message block (Receiver)

GSR 000000Bx16 - Interrupt Message block (Source)

GSR 0000011x16 - Interrupt Message block (Receiver)

GSR 000000Gx16 - Interrupt Message block (Source)

GSR 0000012x16 - Interrupt Message block (Receiver)

EVB data memory is accessible in data space at 00xxxxxx16. EVB

program memory is not directly accessible from FASTBUS but may be copied

19

". CDF Note 452

to/from data memory in response to an interrupt message.
In a multi-board EVB system, all control messages from the Buffer

Manager are sent to the central controller which then allocates reformatter
modules as needed.

4.0 Event Builder Operation

Consider the situation where the EVB has been initialised (loaded
with scan lists etc.), and is now waiting for a message from the Buffer
Manager (BM). What follows is a typical sequence of events.

- BM sends a message to the EVB saying "PULL EVENT"
68020 on the crate controller board is interrupted

68020 decodes the message
68020 checks its "scoreboard" to see which reformatting engine
is free
68020 sets a bit in a CSR register of the reformatter board
enabling one of the two "engines" to start spying on the data

68020 sends a message over the front panel bus to the 68020's
on the cable segment controller boards to "PULL EVENT"

68020's on the controller boards now set up their FASTBUS
Master Interface's to perform primary and secondary address
cycles to scanners on their respective cables

When the cable segment controllers have finished "PULLING", they
send a message over the front panel bus to the central controller

saying "PULL COMPLETE"
When the central controller has received a "PULL COMPLETE"

message from both cables, it sends a message over FASTBUS to
the BM saying "PULL COMPLETE"
the central controller updates its scoreboard
the central controller then sends a message over the front panel
bus to the 68020's on the reformatter boards to

"START PROCESSING", which means they start building the DMA
table of pointers so that the data will be ready to go to level III

in YBOS format.
When the cable reformatting 68020's have finished "PROCESSING"

20

~ CDF Note 452

they send a message over the front panel bus to the central
controller saying "PROCESSING COMPLETE"

- When the central controller has received a "PROCESSING
COMPLETE" message from both cables, it sends a message over

FASTBUS to the BM saying "PROCESSING COMPLETE"
the central controller updates its scoreboard
the event builder is then in a state of waiting for another
message from the BM
the BM sends a message to the EVB saying "PUSH EVENT"
the EVB central controller is interrupted and decodes the
message

the central controller now sets up its FASTBUS Master port for
a write to Level III
the central controller sends a message to one reformatter board
to "write its data" to level III (1/2 of the event)

when this is complete, the central controller sends a message to
a reformatter board (on the other cable) to write its half of the

event to level III
when this is complete, the central controller sends a "PUSH OK"

message to the BM

5.0 Software

21

CDF Note 452

Functional Requirements

(i) communication with other pipeline stage elements
(i i) communication with other EVB modules

(over the front panel bus)
(i i i) communication with the host computer
(iv) downloading of scan lists and control tables
(v) refo r_matti ng
(vi) error handling
(vii) diagnostics

Considering each of the above in greater detail;

5.1 Communication with Other Pipeline Stages

a) Receiving messages

Any FASTBUS master can write an interrupt message to the EVB by
geographically addressing the module, performing· a secondary address to
CSR 1 XX16 and then a block transfer of up to 16 words. Single-word writes

to secondary addresses in the 100-1 FF16 range will perform the same

function. On release of the AS/AK lock, the 68020 is interrupted to read the
message from the register file and take appropriate action.

b) sending messages

When the 68020 wishes to send a message to any other pipeline
element it must first load the primary address of that device into CSR A16 ,

secondary address into CSR B16 and the actual message into CSR AO-AF16•

The 68020 then invokes the sequencer which acquires mastership of
FASTBUS and enables the block transfer.

5.2 Communication with Other Event Builders

22

CDF Note 452

Although the EVB consists of several FASTBUS boards, the crate
segment controller is the overall controller of the EVB. It is with this
module that all other pipeline elements communicate, over FASTBUS.
However, this EVB controller communicates with other EVB modules over a
private front panel bus. Typically, the EVB controller writes into the
memory space of a "slave" module, releases the local 68020 processor and
then writes to the FP bus slave port control/status register to generate a
processor interrupt. The 68020 of the "slave" EVB module will then execute
the requested interrupt program (e.g., read out its half of the event).

The EVB controller can return at some later time (probably after
receipt of a Buffer Manager interrupt message) to inspect the status of the
slave EVB. Interrupt routine completion is normally indicated by setting a
bit in the FP bus slave port control/status register.

The EVB controller therefore has the choice of operating the "slave"
as either a loosely coupled auxiliary processor (as outlined above), or in a
tightly coupled mode (by directly accessing "slave" module memory and
FASTBUS sequencer with the 68020 halted).

5.3 Communication with the Host Computer

Communication with the host computer is accomplished through
FASTBUS interrupt messages or indirectly through the RS232 serial port.

5.4 Downloading of Scan lists and Control Tables

There are three ways in which scanlists and control tables can be
loaded into the 68020's program memory:

a} Over the RS232 link

The serial data would be transmitted to the 8052 which would
perform serial/parallel conversion and then via the parallel port load the
data into the 68020 program memory.

b) From FASTBUS

23

., CDF Note 452

A remote FASTBUS master can address the event builder and write
a new scan list (or control table) into data memory and then write a message
into the slave register file. The 68020 will then be interrupted to read the
new scanlist from data memory into its program memory.

c) Over the front panel bus

A front panel master (FPM) could halt the 68020 and then write a
new scan list directly into the 68020's program memory. When the 68020
comes back to life it would service an interrupt to make any necessary
adjustments.

5.5 Reformatting

Reformatting is accomplished by a two step process; firstly a 68020
processor scans the event data and constructs a table of pointers to that
data. This table is used in the second step, which is a DMA operation where
the data is pushed to level III in the order specified by the table. This
means that the data is moved once only, i.e. when it is pushed to level III.

5.6 Exception Handling

5.6.1 Retry Philosophy

The 68020 control program incorporates an error handling strategy
which essentially attempts to recover from any error situation, but under
certain circumstances will send an error message to the Buffer Manager.
There is a class of errors that the sequencer can resolve, a class of errors
that the 68020 can resolve, and a class of errors where the 68020 requires
help or information from other pipeline stages. See section 6 of this
document.

5.6.2 Arbitration Requests

24

CDF Note 452

START-SCAN broadcasts from the Trigger Supervisor and Interrupt
messages from the Buffer Manager share the FASTBUS segments with event
data. The Event Builder must detect arbitration requests (AR) on either
FASTBUS segment and release the bus. For all operations other than block
transfers, the AR line is ignored. If AR is present, the sequencer waits for
the pipeline to empty (FIFO empty and all DK's returned), releases the bus
and interrupts the 68Q20. The 68020 will read the current memory address
to compute a new secondary address. Continuation· of the transfer is queued
as if it were a separate operation begining at the point where the previous
transfer was interrupted. Maximum bus access latency is approximately 20
Jlsec.

5.6.3 BUSY I WAIT

The EVB is able to handle WT and SS=1 (BUSY) responses from
attached devices. It will also generate WT for cases where it is addressed
as a slave and cannot respond immediately.

5.7 Interrupt Handlers

The 68020 receives interrupts at 7 possible levels. Level 7 is a
non-maskable interrupt used for system reset. All interrupts are
auto-vectored except level 4 which receives a vector mapped from the slave
NTA register.

Interrupt Level
7
6
5
4
3
2
1

Function
RESET
FP bus interface
undefined
FASTBUS slave operation
undefined (sequencer)
undefined (sequencer)
FASTBUS error

25

CDF Note 452

5.8 Diagnostics

Some diagnostic software already exists for testing the controller
board of the event builder. VAX-based diagnostic software is presently being
designed.

6.0 System Integration

6.1 Overview

See figure 1 of this specification, and for a more detailed description
of the way in which the event builder integrates into the data acquisition
system as a whole, see CDF 378. In terms of system integration, the main
points brought out by CDF 378 are as follows:-

a) Regardless of the degree of formatting by the event builder, the
event must be transformed into detector banks prior to its delivery to any
consumer

b) The event readout is a list-driven operation
c) The readout list must be sent to the EVB by the partition

Run_control at the initialization of each readout sequence
d) The event data is always read over FASTBUS from the front-end

scanners
e) The EVB must allow • • • • FASTBUS event data transfer to

overlap the event formatting
f) Both the Trigger Supervisor and the EVB must gain sufficient use

of the FASTBUS to permit events to be digitized and transmitted to level III
at the system design throughput of 100Hz.

g) The Trigger Supervisor must be configured to allow FASTBUS
arbitration for the "start scan" to continue in the event of collision with the
EVB.

h) Even though the EVB may consist of several hardware modules, it
must appear to the online system as a single entity (especially to the Buffer
Manager)

26

.,' CDF Note 452

NAME

PULL EVENT

PUSH EVENT

RESET
SCANNERS

MEANING

Gain mastership of FASTBUS cable segment and read
data from front end scanners. If the event builder is
also reformatting the data, then reformatting will
commence at the end of the readout.

Gain mastership of FASTBUS crate segment and
write data to level III.

This command halts execution of all scanners, sets
status="empty" for all front end buffers and returns
all scanners to an initial state waiting for the next
start scan broadcast.

Messages sent TO the Buffer Manager

the

the

NAME

PULL OK

FORMATIING
COMPLETE

MEANING

This message is sent to the Buffer Manager when
event builder has completed readout of
MEP/SSP/Scanner buffer memory.

This message is sent to the Buffer Manager when
event builder has finished reformatting the event.

PUSH OK This message is sent to the Buffer Manager when
transfer of event data to level III is complete.

EVENT ERROR This message is sent to the Buffer Manager when a
class of error is encountered which the sequencer
and 68020 are unable to resolve.

MESSAGE This message is sent to the Buffer Manager when

28

· .
CDF Note 452

the event builder receives a message which it is unable
to interpret.

EVB STATUS This message is sent in response to a RESET
SCANNER command.

6.4 Event Re_adout by Host VAX

It is possible for the host VAX to readout an event from the Event
Builder in either scanner bank or detector bank format. Although the exact
procedure for accomplishing this has not been decided, there are several
possibilites. An interrupt message could be sent to the EVB followed by a
read of data space, or, a particular CSR bit could be set, again followed by a
read from data space, or two distinct data space addresses could be
associated with scanner bank data and detector bank data. The format of the
actual scanner data will be the same as if the VAX had read the scanner
directly through a UPI.

7.0 System Deyelopment

A Language Resources 68020 system with an IBM-AT or XT will be
used for assembly level programming and symbolic debugging. Application
programs will be developed in FORTRAN and/or assembly. Schematics will
be generated on a Daisy CAE workstation. Netlists will be generated using
"wiremaster".

Acknowled gements

29

CDF Note 452

We would like to thank Ed Barsotti for his advice and encouragement - his
experience has been a great asset. We would also like to thank Sam Segler
and Kathy Turner for input on the philosophy of the design and for providing
additional resources. We are grateful to Sandro Marchioro and George
Mcpherson for many fruitful discussions and invaluable assistance with
ALEPH Event builder Schematics, wirelists, PAUPROM listings etc. Wolfgang
Von Ruden's ALEPH team have helped expedite this project. Thanks also to
Hans von der Schmitt Jor the FORTRAN Compiler and Horst Von Eicken for the
Motorola 68K Assembler. Not least, we would like to thank Roy Schwitters,
Alvin Tollestrup, John Cooper and all our colleagues at CDF who have helped
ensure that this specification meets CDF needs.

Bibliography

1. van Ingen Event Builder System Integration Specification,
CDF Note 378,1986.

2. Elias CDF Hardware Event builder considerations,1986.
3. Day Buffer Manager Software Design,

CDF Note 326,1985.
4. Segler & Turner Private Communication,1986.
5. Vidal Private Communication,1986.
6. Benetta,Marchioro, The ALEPH Event Builder,CERN,1985.

McPherson,von Ruden
7. CDF Data Acquisition Board Meeting, March 1986.
8. Carro II Comments on Level 3 Reformatting ,1986.
9. Carroll YBOS Scanner Bank Format,CDF Note 264,1984.
10. Quarrie et al CDF Event Structure,CDF Note 152,1983.
11. Quarrie Dataflow within the CDF Data Acquisition System,

CDF Note 183,1983.
12. von der Schmitt RTF68K FORTRAN Compiler, CERN,1986.
13. von Eicken M68MIL Cross Macro Assembler,CERN/DD 83-12,

CERN,1983.

30

