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Abstract

This thesis presents advancements in optimising coherence for Group IV semiconductor
quantum dot hole spin qubits. Given their maturity in the modern semiconductor industry,
Group IV semiconductors offer an ideal platform for quantum information processing.
However, the challenge of achieving high coherence in these systems remains.

Our study examines several theoretical properties of Group IV semiconductor quantum
dots, focusing on the creation of high-quality hole spin qubits. We employ the k · p
method as the theoretical framework to analyse spin-orbit couplings for rapid quantum
state manipulation. Additionally, we investigate hole-phonon interactions to estimate
relaxation times and delve into charge defect-induced dephasing time (T ∗

2 ), aiming to
understand and mitigate decoherence mechanisms. Our models incorporate environmental
influences, such as magnetic field fluctuations and charge noise, to provide an overview of
factors impacting coherence.

The implications of these findings extend beyond the realm of quantum computing, offering
insights into general semiconductor studies and condensed matter physics.

The first chapter introduces key concepts in quantum computation and quantum infor-
mation processing. It also reviews various architectures for realising scalable quantum
computing and highlights the unique advantages and challenges of semiconductor quan-
tum dot hole spin qubits. This is followed by a literature review on semiconductor quantum
dot electron and hole spin qubits.

The second chapter includes the essential theoretical frameworks required to discuss the
results in the following chapters, including the k ·p approach in solid-state systems, mech-
anisms of phonon-induced relaxations, and charge defect-induced dephasings.

The third chapter presents the study of decoherence properties and the electric control
of germanium semiconductor quantum dot hole spin qubits. We identified the optimal
operation points where the charge-induced dephasing time is optimised, favouring fast
electrical manipulations.

The fourth chapter further expands the theory developed in the third chapter. The planar
silicon quantum dot hole spin qubits in a metal-oxide-semiconductor platform are studied,
which can be fully integrated into industry-level solid-state device engineering. We find
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that fast electrical manipulations of spin states can be optimised by dot geometries and
magnetic fields, and large g-factor modulations are verified, which agrees with various
recent experiments.

Additionally, we dedicate a standalone chapter to study the helical edge states in a Dirac
semimetal Na3Bi system. We show that in a diffusive sample, a magnetic field can dras-
tically increase the mean free path and drive the system into the ballistic regime with
a Landauer-Büttiker conductance. A strong nonlinear nonreciprocal current emerges in
the diffusive regime with opposite signs on each edge and vanishes in the ballistic limit.
This chapter includes its own introduction, model and methodology, and discussion and
conclusion sections.
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Chapter 1

Introduction

1.1 Concepts of quantum computations

The rapid developments in quantum information science have significantly changed the

paradigm of storage, transmission, and processing of information, by leveraging the unique

properties of quantum mechanics, such as quantum superpositions and entanglements. As

the hardware platform to deploy quantum information processing, quantum computers

have become an important research topic over the past several decades. A variety of phys-

ical systems, spanning a broad range of physics, have emerged as competitive candidates

as fundamental building blocks for quantum computers. In this section, we begin by intro-

ducing the capabilities of quantum information processing and the criteria for designing a

quantum computer. Then, we will provide a brief overview of several frequently studied

quantum computer architectures, recognising the pioneering work and substantial efforts

being made in this field.

Classical electronic devices operate on binary logic, where the basic unit of information is

the bit [447]. A bit can be in one of two possible states, either 0 or 1, which are mutually

exclusive, following the Boolean algebra [47]. These states correspond to the on and off

state respectively. For instance, in electrical circuits, on represents a closed circuit, while
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off indicates an open circuit. While this classical paradigm has significantly benefited our

daily life, it inherently faces limitations in information handling capacity, predominantly

restricted by the tremendous amount of energy and time required [126].

For example, a fundamental challenge in cryptography is the factorization of large integer

numbers into a product of two prime numbers, which has long been a significant obstacle

for computer scientists [185, 397]. The most efficient algorithms available on classical

computers for this task still require exponential time. This means that the time taken

for factorization increases exponentially as the size of the number grows, resulting in the

consumption of excessive amount of time and energy [419]. In 1996, after correcting a

critical error, Peter Shor republished his groundbreaking work titled Polynomial-Time

Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

[455]. In this paper, he proposed an algorithm capable of factorizing large integers in

polynomial time, faster than any existing factorization algorithm on classical computers.

The cornerstone of this triumphant achievement lies in the superposition state nature

of the quantum bit, commonly abbreviated as qubit. Unlike a classical bit, a qubit can

be in a quantum state of |0⟩ or |1⟩, or any superposition of these states, according to

quantum mechanics. To illustrate quantitatively, n classical bits can encode one out of

2n possible states. In contrast, n qubits can encode all 2n states simultaneously, however,

one measurement of a system of n qubits, will only allow one of these 2n possible results.

The challenges of performing measurement, or more broad topics related to quantum

metrology, stand as a separate field of research, which is beyond the scope of this thesis,

readers who are interested in these topic may find some useful information in Ref [184, 87,

171, 57, 13]. This over simplified example of qubits does not demonstrate the ingenuity

of Shor’s algorithm. For a more comprehensive and detailed demonstration of the large

number factorization problem, please refer to [454, 455].

Computers based on quantum architectures have proven to be effective in addressing

problems which are challenging for classical computers [32, 126, 399]. Another feature

of quantum computers is that the interacting qubits themselves also provide a natural

platform for studying quantum many-body systems. This has led to the development of
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a flourishing research area known as quantum simulations, proposed by Feynman in the

1980s [157]. Understanding the complex molecular structures and their dynamics is central

to condensed matter physics [162, 3]. However, incorporating the many-body interactions

among electrons, nucleons, and protons presented significant challenges. While state-

of-the-art computational techniques, such as density functional theory and the Hartree-

Fock method, have advanced our knowledge considerably [457, 211, 15, 233], quantum

simulations, with the inherent inclusion of many-body interactions among qubits, offer

an alternative approach to make predictions about complex systems. It should be noted

that quantum simulations also play a significant role in other fields like particle physics

and quantum chemistry. Readers interested in these topics are referred to references

[178, 336, 29].

Despite the insights offered by quantum computers, there are stringent criteria for physical

systems to qualify as qubit candidates, making the road to commercial quantum computers

arduous. In 2000, DiVincenzo systematically outlined five criteria that delineate the phys-

ical requirements for realising a fault-tolerant quantum computer [132, 133, 134]. These

criteria have since become the guiding principles in the development of quantum comput-

ing technologies over the past several decades. Here, we rephrase the original statements

into a shorter version.

1. The qubit of a quantum computer must be a scalable physical system, and is well-

defined. This criterion implies the ability to include a large number of qubits for

realistic problems.

2. The state of the qubits must be able to be initialised, e.g., all states can be written

as |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ · · · ≡ |0, 0, 0, ...⟩.

3. The system must maintain quantum coherence long enough to perform operations.

Therefore, the qubit must have considerably long decoherence time.

4. A universal set of quantum gates can be constructed to perform all the rotations

and operations.
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5. The measurement can be performed on individual qubits without destroying other

qubits. This requirement paves the way for the application of quantum error correc-

tion procedures on quantum circuits, which consist of many qubits.

In the engineering of quantum computers, the scalability requirement, together with de-

fects in experimental apparatus, will introduce unwanted couplings between environments

and qubits. Furthermore, these couplings will expose the information stored in qubits

to various noise like electromagnetic waves, phonons, and magnetic impurities. As a

result, the information will leak into environments, caused by disturbances from noise

[576, 474, 272]. This leakage destroys fragile quantum superposition states and quantum

entanglements between qubits, ultimately leading to faulty results [25, 86, 292]. This de-

structive process due to interactions between environments and qubits is known as the

decoherence process [575, 351, 350]. In this process, pure quantum states eventually tran-

sition into mixed states [568, 469, 272]. In the language of density matrix formalism, which

is widely used to study open quantum systems, the non-diagonal elements of the system’s

density matrix will vanish.

There are two particular time scales commonly used to characterize the decoherence in

quantum computation, however their original concepts are established in the research of

nuclear magnetic resonance [43, 44, 487]. The first time scale is known as the relaxation

decoherence time, denoted by T1. Due to interactions between environments and qubits, a

higher energy state |1⟩ will relax to a lower energy state |0⟩, accompanied by an emission

of energy. The time scale of such a transition defines the relaxation decoherence time

T1. The other important time scale is called ensemble dephasing time, denoted by T ∗
2 ,

which is typically much shorter than T1. It measures how long the phase of a qubit will

stay intact in real experiments. It is worth mentioning that there is another time scales

T2, which is known as the pure dephasing time or transverse relaxation time. T ∗
2 is more

relevant in experimental level since it considers more interactions (like inhomogeneities

of the magnetic field) that can cause a dephasing, while T2 focus on intrinsic relaxation

process, for a detailed comparison of the two dephasing times, please refer to Section 2.7.
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Exclusion of decoherence in a scalable quantum computer appears to be impossible;

however, various schemes have been proposed to minimise decoherence and consequent

errors. At the experimental level, dynamic decoupling technology is widely used to

suppress dephasing by averaging out random noise through precise pulse engineering

[516, 517, 470, 248, 37]. Another widely used technique is called quantum error cor-

rection, which focuses on correcting errors by deploying extra auxiliary qubits. These

auxiliary qubits monitor the operations of the working qubits in a non-destructive manner

[386, 454, 72, 250, 472, 374]. Quantum error correction will further expand the scale of the

quantum computer, since each logical qubit consists of many physical qubits; therefore,

quantum error corrections will be less effective when the decoherence in hardware level

can not be optimised [374]. Another aspect physicists are working on is the design of

qubits and gates which will produce less decoherence in the first place. Consequently, the

properties of the physical systems composing the qubits have been extensively examined.

Thanks to advancements in theoretical understanding and developments in experimen-

tal techniques in quantum computation, scientists have identified many possible qubit

schemes with only a small amount of decoherence, which will be unfolded in the following

subsections [408, 322, 501, 279, 60, 160, 197, 215, 164, 122, 495, 258, 81, 120, 41, 27, 193].

1.2 Quantum computer architectures

The first qubit candidate we will introduce is the photonic qubit. Photons have many

properties that can be used to encode quantum information, such as polarization, optical

path, and angular momentum [60, 373, 261, 538]. We will focus on the polarization prop-

erty of photons as an example. The polarization state of a photon can be easily initialized

using wave-plates, which can also perform polarization rotations as one-qubit gates. Be-

sides the mature techniques in the manipulation of polarization states, the relatively long

decoherence time (up to 31µs [310]) is another advantage, the long decoherence time is

attributed to the zero rest mass of photons, which results in relatively weak interactions

with other matters. However, this relatively weak interaction is a double-edged sword;
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interactions with photons become very challenging, requiring strong optical nonlinearities

to design a large-scale quantum computer. Over the past several decades, physicists have

proposed many innovative solutions to address these shortcomings, such as the applica-

tion of electromagnetically induced transparency (which uses a laser to tune the optical

properties of the medium) [443], cavity quantum electrodynamics [139], and even the de-

velopment of a single-photon source to achieve scalable high-coherence photonic quantum

computers [254]. The advances in photonic quantum computers also stimulate further

exploration in related fields such as quantum communication, solid-state physics, and

quantum metrology [555, 316, 310, 210].

Trapped atoms also provide an ideal platform for quantum computations for their well-

known long coherence time of a single qubit in the order of several seconds. State-of-the-art

experimental techniques in the manipulation of electric and magnetic fields allow the isola-

tion of a single atom [85]. Quantum information can be encoded in the two lowest energy

levels of a trapped atom, and operations of the qubits are performed with the help of

laser or microwave signals [220, 353]. Entanglements of multiple trapped atom qubits are

achieved through laser-tuned collective oscillation modes, such as changes in frequency or

phase [352]. Initializations of a qubit can be done by optical pumping, and the state of a

qubit can be effectively determined through state-dependent optical fluorescence detection

[212]. However, challenges in realizing scalable trapped atom quantum computers also ex-

ist. As the number of trapped atoms increases, the collective oscillation modes become

sophisticated; the laser cooling will loss its efficiency, and the whole system is susceptible

to noise. Moreover, mode crosstalk will cause the operation of one qubit to inadvertently

affect a nearby qubit, resulting in errors and faults [42]. These issues are being gradually

addressed by updating the laser manipulations, finer control of temperature and mag-

netic fields, and optimization of the distance between trapped atoms to reduce noise and

eliminate crosstalk [219, 163, 96, 297, 511].

Single qubits based on nuclear magnetic resonance and nuclear spins in molecules have a

comparably long decoherence time to trapped atoms. Nuclear spin systems had already

been studied for many years when they were proposed as a qubit candidate in 1996 [95,
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180]. Before this proposal, nuclear spin resonance technologies were already familiar in

real-life applications, such as spectrum analysis and medical diagnosis [407, 385, 382, 416].

Quantum information can be encoded in the nuclear spin states (depending on the number

of protons and neutrons in the nuclei), which can be identified by their Larmor frequencies.

Entanglement of nuclear spin states can be realised through various methods, such as spin-

spin interactions or exchange interactions via pulse engineering or nuclear spin resonance,

which can be used in gate operations as well [338]. Electrons surrounding the nuclei

will effectively screen out the noise, leading to a long coherence time. Furthermore, the

size of a single nuclear spin qubit is relatively small, therefore favours spatial scalability

[502]. However, initialisation of the nuclear spin states presented a lot of challenges [59].

In early years, pseudo-pure-state techniques were demonstrated on single nuclear spin

qubits by isolating the signal of an initialised pure state from a high-entropy background

[279]. Further research on nuclear spin resonance and algorithmic cooling techniques have

demonstrated feasible solutions to the initialisation procedure [366, 428].

As a close analogy to classical electrical circuits, which are on and off states, encouraged

scientists to propose the superconducting qubit based on superconducting circuits. A

superconductor circuit includes capacitors, inductors, resistors, and most importantly, a

Josephson junction [364, 16, 379]. A Josephson junction, which is made by pinching a

non-superconducting material between two superconductors, can support the tunnelling

of Cooper pairs. With the help of Josephson junctions, we can bring the anharmonicity

into the parabolic energy band of a superconducting circuit [322]. Therefore, we can

have a well seperate ground state |0⟩ and the first excited state |1⟩, which will be used

encode the quantum information [129]. There are four widely studied qubit schemes based

on superconducting circuits: the charge qubit, the phase qubit, the flux qubit, and the

transmon [364, 377, 500, 80, 259, 544]. We will use the transmon as an an example. In a

transmon qubit, the Hamiltonian of the superconducting circuit can be written as

H = 4Ecn
2 − EJ cosϕ. (1.1)

Where n is the number of Cooper pairs, and ϕ is the phase of the superconducting elec-

trons. Experimentally, Ec (charging energy) and EJ (Josephson junction energy) can be
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tuned individually [332, 259]. Therefore, the dynamics of the superconducting circuits

are governed by the ratio EJ/Ec. When EJ ≤ Ec, the circuit is more sensitive to charge

noise, which is difficult to suppress, leading to possibly stronger decoherence. Transmons

are defined in the regime where EJ ≫ Ec, and at the same time, the energy difference

between the two lowest energy levels falls within a range which is accessible to normal

microwave pulses for qubit gate operations [259, 522, 544]. Entanglements between trans-

mons are achieved through couplings via resonators, which are also used in measuring the

state of the qubit due to the quantum non-destructive nature of cavity quantum electrody-

namics [367, 314, 191]. Superconducting qubits are highly integrable with industry-level

solid-state platforms, which favours its scalability. However, short decoherence times and

precise temperature dependencies are still obstacles towards commercialization [460]. Fu-

ture investigations will focus on mitigating virous electrical and magnetic noises.

Understanding complex energy band structures requires a significant amount of efforts, as

we have seen in trapped atom qubits, nuclear spin qubits, and superconducting qubits. It

would be ideal to fabricate an artificial atom, who has well-defined discrete energy levels,

which is analogous to an electron or a nuclei in natural atoms, but with simpler structures

[239]. Such an artifical atom could potentially be integrated into the well-developed solid-

state industry [501, 197, 68, 580]. This spirit has inspired many new schemes, including

electron or hole spin qubits (Loss-DiVincenzo spin qubit) [308], exchange-only qubits [131],

resonant-exchange qubit [426], donor-acceptor type qubits [236], and the singlet-triplet

transition qubits [282, 390]. The hole spin qubit is the major focus of this thesis, which

will have its own seperate introductory subsections. In this subsection, we only focus on

donor-accepter type qubits as an example. Similarly to the nuclear spins in molecules, spin-

1/2 nucleus of a 31P donor in silicon can also be used to construct a qubit. While in natural

atoms, the noise from other nuclear spins are hard to manager, in artificial atoms, the host

material, silicon, can be isotopically purified, reducing the noise significantly [226, 227].

Qubit gates can be realized using electrical gate confinement to pull the donor electron into

the silicon host, which controls the nuclear spin resonance frequency [234]. Entanglements

between qubits are achieved by changing the overlap of the electron wave-functions between

two donors, which can also be used in the measurement and initialization of a qubit [203].
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The most significant challenge on donor-accepter type qubits is the precise placement of

the donors, which requires further efforts to improve the precision of fabrication and donor

implementation [319].

These five types qubits we introduced above only spans a small portion of the current range

of qubit schemes. There are many other talented ideas and competitive candidates, such as

spins in point defects, anyons in fractional quantum statistics [365, 429, 11, 75], Majorana

fermions [223, 554, 513], neutrinos [18, 422], and so on. These schemes are not covered in

our brief introductions, which are only intended to provide a quick overview of the rapid

growing field of quantum computation research. At the end of this introductory subsection,

profound reverence should be expressed to all the theorists and experimentalists who have

carried us into an exciting quantum world.
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1.3 Literature review: semiconductor quantum dot electron

spin qubits

In this section and the next, we present a brief literature review of semiconductor quan-

tum dot spin qubits and its sub-category - the semiconductor quantum dot hole spin

qubits, tracing their developments in chronological order. Semiconductor quantum dot

spin qubits, a competitive hardware platform for realizing quantum computing, have wit-

nessed significant advancements over the past several decades.

It’s noteworthy that while our review is concentrated on semiconductor quantum dot spin

qubits, the broader field of quantum dot research, semiconductor research, and quantum

information research encompasses a vast variety of research topics. Each of them is rich

enough to deserve its own detailed literature review. Subjects such as quantum metrology

[183, 184, 391], quantum cryptography [185, 397], and quantum simulations [162, 353]

represent the frontier of research in quantum matters and quantum information. Kondo

effects [100, 228, 403], spin-orbit couplings (SOCs) [546, 548, 224], and hyperfine interac-

tions [444, 19, 442] are all important topics for understanding low-dimensional electronic

systems like quantum wells, nanowires, and quantum dots. Experimentally, the challenges

of semiconductor fabrication techniques, laser manipulations, and resonance technologies

are also integrated into industry-level designs [83, 372, 235, 463].

However, limited by the scope of this thesis, many of the areas mentioned above have

been omitted from this particular review. Again, it is worth noting that the development

of semiconductor quantum dot spin qubits cannot stand by itself; rather, it is deeply

rooted in those areas. The methodologies for qubit state preparation, the complex gate

manipulation techniques, and the qubit state read-out schemes all owe their advancements

to the foundational work done in these allied fields. Therefore, while they are not the

primary focus of this review, some related works will permeate throughout.

The initial consideration of using spin as a qubit to encode quantum information is difficult

to trace, as it may have appeared in colloquial discussions before being formally presented
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in a research article. A starting point might be the pioneering theoretical work of David

P. DiVincenzo in 1995 in Ref.[132]. In this work, the spin of electrons, a natural two-level

system, is used to construct the basic Boolean logics. Moreover, this article considered an

isolated spin in the presence of a static magnetic field Bz and an oscillating magnetic field

Bx, which can be described by the following Hamiltonian:

H = 1
2gµBBzσz + 1

2gµBByσyP (t) sin(ωt) , (1.2)

where g is the g-factor of the particle, either electron or protons, as mentioned in his orig-

inal work, µB represents the magnetic moment. P (t) is the pulse used to generate various

state operations. This Hamiltonian established the fundamental theoretical framework for

spin qubits in semiconductor quantum dot systems. Many semiconductor quantum dot

spin qubit architectures developed in the following years can be effectively described by

this Hamiltonian. This article also included some examples of quantum gates and circuits

realized by the relevant modifications of the Hamiltonian.

Encouraged by the successful experimental demonstration of two-qubit gates in ion trap

systems, cavity quantum electrodynamics systems, and earlier theoretical speculations on

coupled quantum dots as quantum gates, Loss and DiVincenzo published the first mature

proposal on semiconductor quantum dot spin qubits in 1997 [308]. This proposal used

the localized spin of carriers in semiconductor systems to encode quantum information.

In this groundbreaking work, they pointed out that a full set of universal operations

is possible using auxiliary spins in quantum dots, achieving both single-qubit and two-

qubit gate operations. As an initial attempt to implement two-qubit operations, Loss and

DiVincenzo considered the height of tunnelling barrier, via electrostatic gate engineering.

They examined the decoherence issue within the framework of quantum master equations,

treating the qubits in a magnetic environment as an open quantum system. Over the

subsequent 26 years, various spin qubit architectures, including exchange qubits [136, 337],

singlet-triplet transition qubits [232, 268], hole spin qubits [63, 64], and many hybrids

[512, 202], have been proposed based on this work.

In 1998, Burkard et al. in Ref. [66] discussed quantum gates in semiconductor quantum

dots, which can be used to create entanglements between different qubits. They explored
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how the Coulomb exchange interaction, combined with the Pauli exclusion principle, leads

to the formation of a spin singlet as the ground state of coupled electrons. In this scenario,

the spin-spin interaction can be described by Heisenberg-type exchange interactions:

Hs(t) = J(t)S1 · S2 , (1.3)

where J(t), representing the exchange interaction strength, is controlled by external mag-

netic fields, electric field, and geometry of the quantum dot. Furthermore, this work

highlights that dephasing due to nuclear spins in gallium arsenide, a major platform for

semiconductor quantum dot electron spin qubits, is a significant concern. Another finding

of Ref. [66] is that the dephasing time can be optimised through dynamical nuclear spin

polarization with appropriate magnetic field angles.

A year later, Burkard et al. in Ref. [67] began working on quantum error corrections,

aiming to protect quantum computations at the software level. This represents the first

tentative step towards implementing quantum algorithms on spin qubit systems. In the

same year, Imamoğlu et al. in Ref. [225] proposed a scheme to tune the interactions be-

tween two spin qubits using the cavity quantum electrodynamics method. In this frame-

work, parallel controlled NOT gates and arbitrary SU(2) rotations of the spin state were

achieved using conduction band-to-valence band hole Raman transitions induced by laser

fields. Notably, a year prior, in 1998, Sherwin et al. in Ref. [451] had theoretically proposed

using circularly polarized light in cavity quantum electrodynamics to couple quantum dots

for the entanglement of qubits. However, their focus was primarily on the orbital levels

of the quantum dots. This article also posed a critical issue that became a major topic

in subsequent years: the gate operation time should be much shorter than the spin re-

laxation and decoherence time. How to evaluate the realistic decoherence time became

a question. In previous experiments, coherence times of up to 1µs for conduction band

electrons had been observed in doped quantum wells and bulk semiconductor structures.

However, in 1998, Gupta et al. in Ref. [194] reported a much shorter relaxation time, only

3 ns in chemically prepared CdSe quantum dots, posing a challenge. More details on this

relaxation problem will be introduced in other literature in the following text.

In 2000, Hu et al. in Ref. [217] used GaAs as the platform to study the electron spin
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qubits, adopting several experimental-relevant parameters from single-electron transistor

designs. They demonstrated that achieving a substantial exchange coupling for fast gate

operations is not compatible with a vanishing double occupation probability, which is

necessary for maintaining a low error rate. The Hilbert space structure was examined in

detail to understand decoherence, magnetic control, and error correction mechanisms.

In 2000, Hu et al. in Ref. [217] used GaAs as the platform to study electron spin qubits,

adopting several experimental-relevant parameters from single-electron transistor designs.

They demonstrated that achieving substantial exchange coupling for fast gate operations

is not compatible with a vanishing double occupation probability, which is necessary for

maintaining a low error rate. The Hilbert space structure was examined in detail to

understand decoherence, magnetic control, and error correction mechanisms.

Parallel to the developments of spin qubits in semiconductor quantum dot systems, spin-

tronics has emerged as a competitive candidate for the next generation of solid-state

devices. Research in spintronics has revealed that SOCs in semiconductors can lead to

anisotropic exchange interactions among a pair of localized conduction-band electrons,

i.e., the spins of electrons in quantum dots. In this context, Kavokin in Ref. [242] found

that the Heisenberg-type exchange Hamiltonian, considered in coupled quantum dots, ex-

hibits anisotropic exchange interactions. Furthermore, SOC is present due to the lack

of inversion symmetry in GaAs. It was also pointed out that the anti-symmetric SOC,

known as Dzyaloshinskii-Moriya interactions, significantly contributes to spin relaxation

and decoherence. The role of SOC in semiconductor quantum dot systems is further ex-

plored in work done by Khaetskii et al. in Ref. [246], which considers the Bulk inversion

asymmetry-induced Dresselhaus SOC:

H = β(σypy − σxpx) . (1.4)

This work indicates that SOC is the dominant mechanism for phonon-assisted spin-flip

transitions between two relevant Zeeman sub-levels of a spin qubit in SQDs. Another

study by Merkulov et al. in Ref. [340] examined electron spin relaxation due to nuclear

interactions, determined by electron spin-nuclear spin interactions and the nuclear spin in

the dipole field of its nuclear neighbours.
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In 2001, Salis et al. in Ref. [435] successfully demonstrated electrical control of spin coher-

ence in semiconductor nanostructures, verifying the potential of using quantum dots as

a spin qubit platform. Their experiments showed that the spin coherence time T ∗
2 could

reach up to 450 ps, while the coherent spin precession frequency could reach 13 GHz for a

fixed magnetic field of 6 T in AlxGa1−xAs quantum wells, where x varies across the sam-

ple. In these experiments, the applied electric field could alter the wave-function shape

and electronic g-factors, thereby changing the spin splittings. In the same year, Gupta

et al. in Ref. [195] demonstrated all-optical control over electron spins on a femtosecond

timescale. Their work involved time-resolved Faraday rotation experiments, using ultra-

fast laser pulses to produce coherent rotations of electron spins. The study also examined

the effects of below-band-gap tipping pulses in creating an effective magnetic field through

the optical Stark effect, crucial for rotating the electron spins.

In 2002, Khaetskii et al. in Ref. [247] theoretically calculated that spin decoherence of

an electron in a semiconductor quantum dot is due to coupling between the electron spin

and nuclei at different atomic sites, with a decoherence time scale of several milliseconds.

Furthermore, they found that the decay of the electron spin correlation follows a power

law or an inverse logarithmic law. In another work, Erlingsson et al. further explored this

nature and pointed out that decoherence time due to nuclear spin is determined by the

flipping of spin, therefore, a standard Markovian approach is not applicable [147]. Woods

et al. in Ref. [550] discussed how, at low temperatures, the size of the quantum dot is

another crucial factor in improving relaxation time, and that two-phonon relaxation pro-

cesses become significant at higher temperatures. For quantum gate operations, Burkard

et al. in Ref. [65] pointed out that in an ideal case, where the CNOT gate operation may

cancel the SOC effects due to similar pulse shapes, the gate error can be significantly

mitigated by designing the pulse shape.

Experimentally, Petta et al. in Ref. [388] measured the full angular dependence of the

Zeeman splitting in copper nanoparticles at a constant magnetic field. This work revealed

highly anisotropic g-factors, supported by considering the SOCs in the context of random

matrix theory. Although copper nanoparticles are not a platform for spin qubits, this
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research still provides important insights into g-factor modulation and the effects of SOCs.

Another achievement of Ref. [388] is the demonstration of tuning electron-spin-nuclear-spin

interactions using only gate voltages in two-dimensional electron gas systems, paving the

way for more advanced manipulation of spin states.

In 2003, Golovach et al. in Ref. [187] theoretically examined the phonon-induced decay of

the electron spin in GaAs quantum dots. This article considered an effective Hamiltonian

that includes the spin qubit, phonons, confinement potentials, and both the Rashba SOC

and the Dresselhaus SOC; it predicted that the dephasing time T2 can be comparable

with spin relaxation T1. Another work done by Sousa et al. in Ref. [121] further discussed

the interactions between the electronic wave-functions and the gate electric field and the

interface electric field, pointing out that due to the presence of the SOCs, g-factors and the

T1 relaxation time are very sensitive to the dot geometry and the magnetic field applied.

These SOCs and g-factors can be tuned by the gate electric field, which is a possible way

to scale up the computations.

The electron spin relaxation time was experimentally determined in GaAs quantum dots

by Hanson et al. this year [196]. The Zeeman energy splitting was measured by electronic

transport experiments directly. In the experiments, a magnetic field up to 7.5 T was

applied, resulting in a spin relaxation time of more than 50µs, which is much longer than

the spin relaxation time measured in bulk n-type GaAs, GaAs quantum wells, and InAs

quantum dots.

In 2004, Pryor et al. studied the Landé g-factors in GaAs semiconductor quantum dots

[401]. They highlighted that in quantum dot structures, the electronic g-factors can vary

significantly (the bare value is far beyond the bulk material’s values as previous exper-

iments suggested), influenced by the dot geometries, the strain, and the confinements.

These variations in g-factors can lead to rich spin dynamics, emphasizing the role of

quantum confinements and strains in tuning spin splitting and anisotropic exchange inter-

actions. The electrical control of g-factors, which is a probe of the qubit Zeeman splitting,

started to become an important topic.
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Kroutvar et al. in Ref. [265] demonstrated a novel technique for optically programming

electron spin in semiconductor quantum dots. Their work shows that a single electron

spin could be programmed and read out optically, with spin lifetimes extending up to

20 ms at a temperature of 1 K. Elzerman et al. in Ref. [146] demonstrated the readout of

the state of an individual electron spin in a quantum dot. Their approach, characterized

by a visibility of about 65%, leverages the differences in tunnel rates for different spin

states. This visibility is significant in the context of quantum measurement and indicates

a high degree of accuracy in detecting spin states. The method’s success hinges on the

spin-to-charge conversion mechanism and the sensitivity of the quantum point contact

used as a charge detector. Another experimental advance is using strain to create spin

splittings. Kato et al. in Ref. [240] demonstrated coherent spin manipulation in strained

semiconductor quantum wells without an external magnetic field, owing to the SOCs.

They used electric fields only to induce spin precession in GaAs quantum wells. A key

feature of their experiment was achieving Rabi frequencies up to 30 MHz, measured by

optical techniques, demonstrating precise control over the spin states. The role of strains

is further explored, which is the main reason for the spin splitting.

In 2005, Stano et al. in Ref. [464] presented a detailed theoretical analysis of phonon-

induced spin relaxation in coupled lateral quantum dots in the presence of SOC, including

the Bychkov-Rashba term, the linear Dresselhaus term, and the cubic Dresselhaus term.

This work highlights that spin relaxation in coupled quantum dots is highly anisotropic as

a result of the interplay between Bychkov-Rashba and Dresselhaus spin-orbit terms and

is limited by the in-plane inversion symmetry. Another discovery is the identification of

spin-hot spots, which are really the anti-crossings caused by SOC that significantly enhance

spin relaxation under certain conditions. Stepanenko et al. in Ref. [467] introduced a

novel approach theoretically to enhance the electron spin coherence in quantum dots using

optical preparation of the nuclear spins. This work showed that light can be used as a

probe to measure the nuclear spins and hyperfine field, to make better preparation of the

electron spin coherence. From this method, one can improve the electron coherence time

from 5 ns to 10µs. Bulaev et al. in Ref. [62] explored both the Rashba SOC and the

Dresselhaus SOC of electrons in two-dimensional QDs under a perpendicular magnetic
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field, calculated that the two SOCs will lead to anti-crossings and spin mixings. A key

finding is that Rashba SOC leads to level anti-crossing and a cusp-like structure in the

spin relaxation rate as a function of the magnetic field, which is present in Dresselhaus

SOCs. A theoretical prediction of long single-spin relaxation times in GaAs quantum dot

is given up to 0.85 ms, and up to 20 ms in GaInAs quantum dots.

In experiments, Johnson et al. in Ref. [232] investigated the spin relaxation mechanisms

in confined electron systems within a GaAs double quantum dot (forming a triplet-singlet

state). The study reveals that spin flips, which cause an electron to lose its spin orien-

tation memory, are primarily dominated by interactions with nuclear spins, as predicted

in single spin qubit in semiconductor quantum dot. It’s noted that these spin flips are

significantly slowed down when a magnetic field of a few millitesla is applied. Petta et al.

in Ref. [389] demonstrated the coherent control of a quantum two-level system based on

two-electron spin states in semiconductor quantum dots. Using GaAs as the platform, the

researchers developed techniques for rapid electrical control of the exchange interaction be-

tween electron spins, enabling them to prepare, manipulate, and read out the spin states.

The dephasing time was measured to be about 10 ns, which was limited by hyperfine inter-

actions with the GaAs host nuclei. Rabi oscillations in two-spin space, and 180 ps SWAP

operation between two electron spins were demonstrated. Moreover, Spin-echo pulse se-

quences were implemented to suppress hyperfine-induced dephasing, extending the spin

coherence time beyond 1 ms.

In 2006, Flindt et al. in Ref. [161] proposed that SOCs can be a route to control electron

spins in quantum dots for quantum computing applications. This approach allows for

both single-qubit and two-qubit operations. Compared to the exchange coupling method,

the spin-orbit-induced coupling is less sensitive to random electrical fluctuations, making

it a potentially more robust option. For two-qubit operations, the coupling mechanism

involves a combination of SOC and the long-range Coulomb interaction. This approach

differs from traditional methods that use exchange coupling, offering a potentially more

stable alternative that is less affected by electrical noise. The study focuses on a simplified

one-dimensional model with electrons localized in quantum dots, considering a perpendic-
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ular magnetic field and SOC of a specific form. San-Jose et al. in Ref. [437] studied the

spin-orbit mediated relaxation and dephasing of electron spins in quantum dots. The study

reveals that higher-order contributions, often overlooked in literature, provide a dominant

relaxation mechanism in low magnetic fields and have a geometrical origin. In the low-field

limit, relaxation is mainly due to couplings to electron-hole excitations and possibly 1/f

noise, rather than phonons. The researchers show that in the low magnetic field regime,

relaxation processes related to the diffusion of the Berry phase become significant. These

processes are analogs to Elliott’s spin relaxation in bulk semiconductors and metals and

have a geometric interpretation. The study emphasizes that spin relaxation is induced by

any fluctuating electric field, not just phonons, and can include Ohmic fluctuations from

electrodes and quantum point contacts, shot noise, and 1/f background charge fluctua-

tions common in mesoscopic systems. Witzel et al. in Ref. [549] studied the decoherence of

a single localized electron spin due to its coupling to the lattice nuclear spin bath in semi-

conductor quantum computer architectures. This complex quantum decoherence problem

involves spectral diffusion of the electron spin resonance frequency, arising from tempo-

rally fluctuating nuclear magnetic fields caused by dipolar interaction-induced flip-flops of

nuclear spin pairs. The study provides a formally exact solution to this non-Markovian

quantum decoherence problem and numerically calculated accurate spin decoherence at

short times, which is particularly relevant.

In 2007, Trif et al. in Ref. [488] theoretically studied the electron spins in nanowire quan-

tum dots within a transmission line resonator. Calculations showed that SOCs enable

coherent manipulation, storage, and read-out of quantum information in an all-electrical

manner. The study discussed both cases of strong longitudinal and transverse confine-

ments, focusing on the potential for longitudinal confinement.

Fasth et al. in Ref. [153] experimentally demonstrated the control of electron numbers

down to the last electron in tunable few-electron quantum dots in InAs nanowires. The

researchers developed a method to directly determine the magnitude of SOC in a two-

electron quantum dot. They observed that due to a large effective g-factor, the transition

between the singlet state and the triplet state is dominated by the Zeeman energy rather
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than by orbital effects. This argument is supported by an experimentally measured avoided

crossing with a magnitude of 0.25 meV. The experiment, conducted using low-temperature

transport spectroscopy in the Coulomb blockade regime, allowed the creation of highly tun-

able quantum dot systems with significant SOC. Amasha et al. in Ref [14] demonstrated

electrical control over the spin relaxation time between Zeeman splitting in a lateral quan-

tum dot. The key result is that the spin relaxation, mediated by the spin-orbit interaction,

can be varied by over an order of magnitude through manipulation of the orbital states

using gate voltages (up to 1 s). Further, the spin relaxation rate depends only on the

confinements of the electron wave function along the direction of the applied in-plane

magnetic field. This observation verified the theoretical expectations introduced above in

GaAs. Another experimental advance is the mitigation of the dephasing in quantum dot

spin qubits due to the Larmor precession around a random effective field from the nuclear

spins in GaAs by Koppens et al. in Ref. [263] The authors demonstrated the suppression

of this dephasing to a large extent via a spin-echo pulse, achieving a spin-echo decay time

of about 0.5µs at 70 mT. This result is within the range of theoretical predictions for

the electron spin coherence time governed by electron-nuclear dynamics. The researchers

used a two-quantum dot system, where one electron always resides in the right dot, and

a second electron can flow through the two dots only if the spins are antiparallel. By ma-

nipulating the electron spins with a sequence of radio-frequency pulses, they could control

the spin states and study their dynamics. This experiment also verified that the spin-echo

decay time T2 is much longer than the dephasing time T ∗
2 , which will be further explored

in Chapter 2-Section 2.7.

In 2008, Cywiński et al. in Ref. [111] theoretically investigated the pure dephasing deco-

herence (free induction decay and spin echo) of a spin qubit interacting with a nuclear

spin bath. Focusing on the hyperfine-mediated interactions between nuclear spins, the

decoherence at higher magnetic fields has a small oscillation superimposed on the spin

echo signal due to spectral diffusion, while at lower fields, the coherence decays to zero in

characteristic times of about 0.1-1µs in gated GaAs dots.

In experiments, Hu et al. in Ref. [216] presented a novel quantum non-demolition method
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for measuring a single-electron spin in a quantum dot inside a microcavity using a gi-

ant optical Faraday rotation near the resonant regime, where different phase shifts for

left-circularly and right-circularly polarized lights reflected from the cavity result in sig-

nificant Faraday rotation. This rotation, caused by cavity quantum electrodynamics and

the optical spin selection rule, can be easily detected experimentally. The paper proposes

a photon-spin entangling gate and a scalable scheme for creating remote spin entangle-

ment via a single photon. The study considers a singly charged quantum dot, such as a

self-assembled In(Ga)As quantum dot or a GaAs interface quantum dot inside an optical

resonant cavity. It details how the optical transitions of a negatively charged exciton in

the quantum dot show spin-dependent behavior. The interaction between the cavity field

and the charged exciton results in a significant Faraday rotation, which can be exploited

for quantum non-demolition measurement of a single-electron spin. Reilly et al. addressed

the challenge of spin dephasing caused by fluctuating nuclear spins in GaAs. The study

introduces a method for preparing the nuclear spin environment that remarkably sup-

presses the relevant component of nuclear spin fluctuations by a factor of approximately

70%. This suppression made the inhomogeneous dephasing time for the two-electron spin

state extend beyond 1µs.

By 2009, it was becoming clear that obtaining high coherence using GaAs quantum dots

as the platform for fabricating electron spin qubits was challenging due to the strong hy-

perfine interactions, which are a built-in problem arising from the magnetic moments of

the Ga and As nuclei. Alternative materials like Silicon or Germanium have been exten-

sively studied after 2009, either using the donor-acceptor type architecture or quantum

dots. These materials were very appealing for spin qubits due to the low concentration of

magnetic nuclei, allowing for the overcoming of the hyperfine-induced dephasing present

in GaAs semiconductors. There have been many exciting advances, both theoretically and

experimentally [243]. A reconfigurable gate architecture in the Silicon/Germanium system

has been demonstrated [566]. In Silicon systems, various milestones have been achieved,

including a two-qubit logic gate [507], a fault-tolerant addressable spin qubit [478], circuit

quantum electrodynamics manipulations [341], a resonantly driven CNOT gate [567], a

spin-photon interface [342], a programmable two-qubit quantum processor [535], and the
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measurement of spin lifetime and charge noise [387].
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1.4 Literature review: semiconductor quantum dot hole spin

qubit

As we introduced in the last section, the decoherence issue due to the nuclear spin in III-

V semiconductor quantum dot electron spin qubit is hard to address. Scientists started

looking at using holes in the valence band to encode quantum information. Firstly, hole

systems possess strong SOC [412, 545, 546, 114, 103, 325, 251, 252, 79, 140, 356, 38,

347, 348, 329, 483, 2, 291], which enables pure electrical manipulation of spin states via

EDSR [188, 64, 413, 414]. Secondly, the absence of valley degeneracy avoids complications

associated with the increase in Hilbert space that occurs for electrons [190, 167, 106,

107, 166, 199, 432, 48, 56, 155, 519, 462, 520]. Thirdly, the hyperfine interaction is a

strong decoherence source in other materials such as III-V group semiconductors [226,

247, 90, 389, 271, 159, 89, 158, 77, 20, 78, 252, 398, 526], some materials which had

been studied in p-type devices like silicon can be isotopically purified. In this section, we

will explored how the hole spin qubits becomes to an important candidate in solid-state

quantum computations.

Hole devices have been studied in various semiconductor contexts before being considered

as candidates for qubits [354, 12, 249, 278, 119, 160, 197, 441]. However, the focus on hole

systems for quantum information processing, particularly in the context of semiconductor

quantum dot spin qubits, gained significant momentum after the seminal proposal by Loss

and DiVincenzo in 1997 [308].

The early discussions on using holes in the valence band for quantum information pro-

cessing primarily revolved around the spin relaxation time. The relaxation time in III-V

semiconductor quantum dot electronic spin qubits is limited by nuclear spins via hyperfine

interactions. This limitation can be mitigated in hole systems because the hole wave func-

tions exhibit p-like orbital symmetry near each atom in the crystal. As a result, the holes

do not experience the contact-type hyperfine interactions that are a significant source of

decoherence in electron spin qubits.
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This characteristic of hole systems makes them particularly attractive for quantum com-

puting applications. The reduced interaction with nuclear spins potentially leads to longer

coherence times, making hole spin qubits a promising platform for quantum information

processing. The exploration of hole spin qubits has thus been driven by the quest to over-

come the decoherence challenges faced by electron spin qubits in semiconductor quantum

dots, paving the way for more stable and reliable quantum computing technologies.

Woods et al. in 2003 presented a theoretical analysis of hole spin relaxation in quantum

dots [551]. While there were many articles on hole spin relaxation in quantum wells

and bulk semiconductors, quantum dots present distinct characteristics. The research

focused on acoustic phonon-assisted spin flips at low temperatures with a magnetic field.

A detailed numerical diagonalization of the Luttinger Hamiltonian with the Bir-Pikus

Hamiltonian is discussed, alongside the perturbation treatment of the magnetic field. Key

findings include the decoherence time for hole spins in quantum dots, with a size around

20 nm, the decoherence time is estimated to be on the order of 100 ns, which is actually

shorter than the decoherence time for electron spins mentioned before. This difference is

attributed to the stronger phonon scattering in hole systems. Furthermore, the relaxation

rate is influenced by the diameter of the quantum dot and the mass of the hole, providing

possibilities to design qubits using other materials.

In 2004, Lu et al. in Ref. [309] expanded on the relaxation problem of hole spins in GaAs

quantum dots. This research improved the previous result by adding more terms such

as strain, magnetic field, quantum dot diameter, quantum well width, and temperatures.

The study reveals that strain impacts quantum dot spin relaxation differently based on

the quantum well’s growth direction. For instance, in quantum dots within [001]-oriented

quantum wells, strain alters the energy levels of heavy and light holes, whereas in [111]-

oriented wells, it introduces additional spin mixing and subsequent relaxation. This work

also highlights the significance of both piezoelectric interaction and deformation potential

in hole-phonon scattering, marking a contrast to electron spins in quantum dots where

relaxation is mainly due to piezoelectric interactions, which is different from [551]. The

research also delves into the effects of quantum dot diameter and magnetic field on spin
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relaxation, showing that relaxation time can increase with quantum dot diameter at lower

temperatures and exhibit a peak at higher temperatures. Additionally, the temperature

dependence of spin relaxation is analyzed, demonstrating a reduction in relaxation time

with rising temperature due to increased phonon activity.

In 2005, Bulaev et al. in Ref. [63] investigated the heavy-hole spin relaxation and deco-

herence in quantum dots subjected to perpendicular magnetic fields. This study shows

that at low temperatures, the spin decoherence time is twice as long as the spin relaxation

time. Additionally, it is found that the spin relaxation time for heavy holes can be com-

parable to, or even longer than, that for electrons in strongly two-dimensional quantum

dots. The research explores two primary spin relaxation mechanisms for electron spins in

quantum dots: interaction with phonons and hyperfine interaction with surrounding nu-

clear spins. Due to the valence band’s p-type symmetry, the hyperfine interaction of holes

with lattice nuclei is reduced compared to that of electrons, making hole spins potentially

more suitable for long-lived quantum information carriers. The paper also investigates

the effect of SOCs (Rashba and Dresselhaus) and the coupling between heavy-hole and

light-hole sub-bands on spin relaxation and decoherence, using an effective Hamiltonian

for two-dimensional heavy holes in a perpendicular magnetic field.

In 2006, Sleiter et al. in Ref. [458] raised a question regarding the use of holes in GaAs

quantum dots as qubits for quantum computing. This research estimated the Rabi fre-

quency for coherent quantum state manipulations, finding the Rabi frequency for holes in

these quantum dots to be notably low, around 10 kHz, primarily due to the minor cou-

pling between the heavy-hole states and the light-hole states (|M = 3/2⟩ and |M = −3/2⟩

states in the original article). This finding is crucial for achieving effective qubit opera-

tions through external radio-frequency magnetic fields. It also points out the dependency

of the Rabi frequency on the specific nature of the quantum dot’s confining potential and

the orientation of the magnetic field. This question is later addressed by considering the

electrical control of the spin qubits using strong SOCs, which will be further explained in

subsequent discussions.

In the same year, Bulaev et al. in Ref. [64] proposed an innovative approach for manipu-
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lating the spin of heavy holes in quantum dots called EDSR, distinguished from electron

spin resonance used in electron spin qubits. EDSR uses the SOC between states of dif-

ferent orbital momentum and opposite spin orientations, enabling the use of an applied

electric radio-frequency field to induce transitions between spin-up and spin-down states.

The study pointed out the potential of using heavy-hole spins, instead of electron spins,

as carriers of quantum information due to their reduced hyperfine interaction with lattice

nuclei owing to the valence band’s p-symmetry. It suggests that the spin relaxation and

decoherence times for holes could be comparable to, or even longer than, those for elec-

trons, making them attractive for quantum computing applications. This approach offers

a solution to the challenge of manipulating hole spins, which do not couple to magnetic

fields in the leading dipole approximation. By demonstrating that an applied electric field

can induce transitions between hole spin states due to spin-orbit interaction, the paper

opens up a new window for detecting heavy-hole spin resonance signals and controlling

spin dynamics in two-dimensional systems. The method can also be used to determine

parameters of heavy holes such as the g-factor, effective mass, SOC constants, and spin

relaxation and decoherence times.

In 2008, Fischer et al. in Ref. [159] conducted a theoretical study on the interaction

of a heavy-hole state with nuclear spins in a quasi-two-dimensional III-V semiconductor

quantum dot and its implications for spin decoherence. Contrary to previous conclusions

that heavy-hole states have negligible interaction with nuclear spins, the study reveals

that the interaction can be quite strong and potentially dominant in some cases. The

paper pointed out that, for unstrained quantum dots, the interaction is Ising-like, leading

to unique decoherence properties that could be advantageous for using dot-confined hole

spins in quantum information processing. The nuclear-spin interactions were derived,

leading to an effective spin Hamiltonian for quantum-dot-confined heavy-hole states. The

dynamics of the transverse heavy-hole spins were calculated for different external magnetic

field directions, and the coupling strengths were estimated for a GaAs quantum dot.

This work also explored the interactions in both an atom and a quantum dot, noting

that the strong coupling of the HH to the nuclear spins is not due to confinement but

is also present in bulk crystals, while the Ising-type interaction is a feature of quasi-
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two-dimensional systems. In the same year, Rashba in Ref. [413] presented a detailed

theoretical discussion for understanding EDSR in quantum dots in a mean field theory

view (this is not only aimed at hole spin qubits; experimental demonstration of EDSR in

electron spin qubits can be found in Ref. [362]). This paper discussed three mechanisms

of EDSR: SOCs, inhomogeneous Zeeman coupling, and hyperfine interaction with nuclear

spins. This approach allows the replacement of the nuclear spin reservoir with a classical

field, facilitating the analysis of electron-spin dynamics. Another finding was that the

hyperfine interaction between electron and nuclear spins can be strong and plays a critical

role in the dynamics of EDSR. This interaction is particularly important in low magnetic

fields, where it becomes the dominant mechanism for EDSR.

Experimentally, Gerardot et al. in Ref. [179] demonstrated the initialization of a single hole

spin in a semiconductor quantum dot using optical pumping techniques. This research

achieves a remarkably high fidelity (about 99%) in initializing the hole spin in a self-

assembled quantum dot even at zero magnetic field. The experimental approach involves

using an Sz-polarized laser to drive a single hole within the quantum dot to an exciton

state, achieving high-fidelity initialization. This is the first experimental demonstration

of the valence hole in the quantum dot. Experiments also verified that in a quantum dot,

with strong strain and quantization, the heavy hole, which typically has a spin-3/2, can be

effectively described by a pseudo-spin-1/2 system, contributing to the observed weak spin

decoherence mechanisms. Furthermore, the researchers observed a hole spin relaxation

time at a low field of about 1 ms, which is comparable to electron spin relaxation times

under similar conditions. These findings support the development of quantum computing

and spintronic devices, as they suggest a route to realizing solid-state quantum networks

capable of intra-converting the spin state with the polarization of a photon.

In the same year, Eble et al. in Ref. [142] provided an experimental investigation of

hole spin dynamics in p-doped InAs/GaAs quantum dots, and the hyperfine interactions

between hole and nuclear spins. The study considers pump-probe and time-resolved pho-

toluminescence experiments to observe the dynamics and interactions of spins in these

quantum dots. A key finding of the research is the experimental evidence of the existence
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of hyperfine interactions between hole spins and nuclear spins, even though the contact

hyperfine is declared not to be present. The paper also reports that in the absence of

an external magnetic field, calculations based on dipole-dipole coupling between the hole

and the quantum dot nuclei yield a hole-spin dephasing time for an ensemble of dots of

approximately 14 ns. The quantum dots used are based on self-assembled InAs, separated

by GaAs spacer layers, with a surface density of about 1010 cm−2. These structures are

p-modulation doped with carbon; the circularly polarized pump beams are used to gener-

ate spin-polarized electrons, and the spontaneous decay of the trion state leads to efficient

hole-spin cooling. Unlike the perpendicular magnetic field considered in previous experi-

ments, this study considers the external magnetic field parallel to the growth axis of the

sample.

In 2009, Trif et al. in Ref. [489] explored the spin relaxation in heavy-hole quantum dots

at low external magnetic fields, focusing on the role of two-phonon processes combined

with spin-orbit interaction in explaining the observed saturation of spin-relaxation rates

in heavy-hole quantum dots at small magnetic fields. A major finding of the paper is the

theoretical demonstration that two-phonon processes are experimentally relevant and pro-

vide a quantitative explanation for the recently observed behaviours in heavy-hole quan-

tum dots. The study proposes further experiments to identify the relevant spin-relaxation

mechanisms at low magnetic fields. The model considered a heavy hole confined to a quan-

tum dot interacting with the surrounding phonon bath with various elements, including

the dot Hamiltonian, Zeeman energy, spin-orbit Hamiltonian, and the interaction of the

heavy hole charge with the phonon field. In the absence of an external magnetic field, the

hole-spin dephasing time for an ensemble of quantum dots is approximately 14 ns, which

is about the same as the experimental result. In the same year, Testelin et al. in Ref. [485]

provided detailed calculations of the spin interaction of a hole confined in a quantum dot

with surrounding nuclei. The study primarily focuses on the effective magnetic field re-

sulting from the hyperfine interaction and its impact on the dephasing time of hole spins.

In contrast to electrons, the hyperfine interaction for holes is predominantly dipole-dipole

in nature due to the p-symmetry of valence-band states. This interaction is anisotropic

for both pure and mixed hole states, with the coupling constants of the hole-nuclear in-
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teraction being only one order of magnitude smaller than those of the electron-nuclear

interaction. An important finding is that the ensemble dephasing time for hole spins in

III-V quantum dots is of the order of 10 ns, which is significantly longer than that for

electrons due to the weaker nature of the hole-nuclear interaction.

Experimentally, Crooker et al. in Ref. [101] measured spin noise spectroscopy and probed

the dynamical properties of spins localized in semiconductor quantum dot ensembles. They

analyzed the frequency spectra of random spin fluctuations in ensembles of InAs/GaAs

quantum dots at low temperatures. Both electron and hole spin fluctuations generate

distinct noise peaks that shift and broaden with magnetic field, serving as a direct probe

to test their g-factors and dephasing rates within the ensemble. The paper reports a

large, energy-dependent anisotropy of the in-plane hole g-factor, reflecting variations in the

average quantum dot confinement potential. The experimental setup involved a sensitive

optical Faraday rotation magnetometer, coupled to a digitizer and field-programmable

gate array, to measure and average noise spectra from 0-1 GHz continuously in real time

with sub-nano sensitivity. This is the first spin noise spectroscopy of fully quantum-

confined electrons and holes in quantum dots. The research provides direct measurements

of g-factors and dephasing times.

In 2010, Fischer et al. in Ref. [158] theoretically investigated the spin dynamics of a

heavy hole confined in an unstrained III-V semiconductor quantum dot, interacting with

a narrowed nuclear-spin bath. The study focused on the band hybridization-induced ex-

ponential decay of hole-spin superpositions due to hyperfine-mediated nuclear pair flips.

Calculations demonstrate that the single-hole-spin decoherence time T2 can be significantly

manipulated by varying external parameters, including the formation of band hybridiza-

tion non-Ising (transverse) terms in the hyperfine Hamiltonian. The magnitude of these

terms depends on the quantum dot’s geometry, leading to fluctuations in the Overhauser

field and consequently causing exponential single-hole-spin decoherence. This contrasts

with the predominantly Ising-like coupling of heavy holes to nuclear spins. The paper also

shows that under certain experimentally accessible conditions, hyperfine-mediated nuclear-

pair-flip processes can be significantly suppressed, thereby extending the coherence times
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of hole spins. The hole-nuclear spin interactions within the quantum dot are estimated by

considering the contributions of conduction band and light-hole states to the hybridized

heavy-hole states. This paper also explores the impact of various factors, such as magnetic

field strength and quantum dot dimensions, on the hole-spin decoherence rate. Roloff et al.

in Ref. [423] investigated high-fidelity single-qubit operations on a hole spin in a quantum

dot through electric g-tensor control. This paper verified the increased dephasing time due

to reduced interaction with nuclear spins and efficient g-tensor control. It discusses the

optimization of pulse shapes for various qubit operations using process-tomography-based

optimal control, revealing that these operations can be performed with minimal fidelity

loss despite decoherence and dissipation arising from interactions with host-lattice nuclear

spins and phonons. Another finding is that gate operation times of approximately 10 ns

can achieve a fidelity loss of only about 1%, highlighting the robustness of the proposed

scheme against decoherence factors.

Experimentally, Fallahi et al. in Ref. [150] performed measurements of the hyperfine in-

teraction strength and sign of a heavy hole with nuclear spins in single self-assembled

quantum dots. This study used quantum dot resonance locking to an incident laser fre-

quency for generating nuclear spin polarization. By monitoring the resulting Overhauser

shift in optical transitions split by electron or exciton Zeeman energy, determining the

ratio of the heavy-hole to electron hyperfine interactions becomes possible. This ratio

was found to be approximately 0.09 ± 0.02 in three different quantum dots. The study

was conducted using charge-tunable InGaAs self-assembled quantum dots embedded in

a Schottky-diode structure. The experiments were carried out at a temperature of 4.2 K

with an external field in the Faraday geometry. Circularly polarized pump beams were

used to generate spin-polarized electrons, and the spontaneous decay of the trion state

led to efficient hole-spin cooling. The experimental results indicate that the hyperfine

interactions for heavy holes are not only significant but also have an opposite sign to those

of electrons.

In 2011, Kloeffel et al. in Ref. [251] theoretically studied the low-energy hole states in

Germanium/Silicon core/shell nanowires, highlighting that the low-energy valence band
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in these nanowires is quasi-degenerate, formed by two doublets with different orbital an-

gular momentum. These holes can be controlled through the relative shell thickness and

external fields. A direct coupling to a moderate electric field is possible, leading to a

notably large Rashba-type spin-orbit interaction, resulting in pronounced helical states

that enable electrical spin control. The nanowires, which are sensitive to external mag-

netic fields, exhibit g-factors dependent on the field orientation and the hole momentum.

Another important term of the study is the direct Rashba spin-orbit interaction, arising

from direct dipolar coupling to an external electric field. This interaction is substantially

larger than the conventional Rashba spin-orbit interaction for holes, appearing in the third

order. The direct Rashba SOC scales linearly with the core diameter, ensuring that spin-

orbit interaction remains strong even in larger nanowires. The study demonstrates that

Germanium/Silicon nanowires can act as a unique platform for helical hole states and

potentially for Majorana fermions.

This theoretical proposal was immediately followed by an experimental study in the same

year. Hu et al. in Ref. [218] measured hole spin relaxation in Germanium–Silicon core–shell

nanowire-based quantum dots. Experiments demonstrated a series of state preparation,

pulsed gate control, and charge-sensing spin read-out of hole spins. T1 spin relaxation

times of up to 0.6 ms in coupled quantum dots at zero magnetic field were reported.

Furthermore, the spin relaxation time was found to increase as the magnetic field was

reduced, consistent with the spin–orbit mechanism.

In 2012, Szumniak et al. in Ref. [475] presented a new hole-based nano-device, which

can control the spin state of heavy holes. This device uses the Dresselhaus spin-orbit

interaction, which can convert the spatial motion of the hole into a spin rotation. The

manipulation of the heavy-hole spin is achieved by moving the hole around closed loops de-

fined by metal gates. The process does not require the application of microwave radiation,

radio-frequency electric fields, or magnetic fields. Instead, the quantum gate operations

are on sub-nanosecond timescales and rely on the application of a weak static voltage (gate

field). Theoretically, the proposal is supported by the four-band Luttinger-Kohn model.

Experimentally, Godden et al. in Ref. [186] demonstrated the coherent optical control of a
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single heavy-hole spin confined in an InAs/GaAs quantum dot using an in-plane magnetic

field. The creation of a coherent superposition of hole-spin states through the ionization

of a spin-polarized electron-hole pair enabled the hole to be left in a spin-polarized state

as the electron tunnelled from the dot. From the hole spin precesses about the applied

magnetic field, and from the decay of this precession, a dephasing time of approximately

15.4 ns was measured, which is longer than that for an electron. The rotation of the hole

spin about the optical axis was realized using a circularly polarized laser pulse resonant

with the hole-trion transition. This process induced a geometric phase shift on the selected

spin, allowing for arbitrary rotations of the hole spin by combining rotations about two

axes.

In 2013, Kloeffel et al. in Ref. [320] proposed the integration of circuit quantum elec-

trodynamics with hole spins in Germanium/Silicon core/shell nanowire quantum dots.

The work theoretically highlighted how single-qubit gates can be driven through electric-

dipole-induced spin resonance, achieving spin-flip times shorter than 100 ps. Furthermore,

the study discusses the possibility of realizing long-distance qubit-qubit coupling via the

cavity electric field of a superconducting transmission line resonator, with operation times

below 20 ns for the entangling iSWAP gate. This scheme relies on the absence of Dressel-

haus spin-orbit interaction and the presence of strong Rashba-type SOCs, enabling precise

control over transverse qubit coupling through an externally applied perpendicular electric

field, which can act as a switch for quantum gates and provides control over the g-factor,

thereby allowing the independent operation of single- and two-qubit gates.

In experiments, Pribiag et al. in Ref. [400] realized electrical control of single hole spins

in InSb nanowire quantum dots. The study shows that hole spins in III-V semiconduc-

tors, due to their strong spin-orbit interaction and weak coupling to nuclear spins, can

offer longer coherence times and enhanced spin control compared to electron spins. This

work demonstrated the gate-tunable hole quantum dots in InSb nanowires, which allow

for a direct comparison of hyperfine interaction strengths, g-factors, and spin blockade

anisotropies in both hole and electron quantum dot regimes. Secondly, Pauli spin block-

ade is observed in spin-dependent transport in hole quantum dots, which is an essential
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technique for initializing and reading out spin states in quantum computing. This research

establishes InSb nanowires as a promising platform for tunable hole quantum dots.

In 2014, Dahbashi et al. in Ref. [112] explored the spin dynamics of a single heavy hole

in a flat (InGa)As quantum dot using advanced spin noise spectroscopy (SNS). The ex-

periments demonstrated that even at low magnetic fields, there is a strong magnetic field

dependence of the longitudinal heavy hole spin relaxation time, with a long T1 relaxation

time of 180µs at 31 mT and 5 K. The platform for this experiment was a single-layer

self-assembled InAs/GaAs quantum dots within an antinode of a λ-Bragg cavity. This

configuration enhanced the Faraday rotation noise signal without increasing optical shot

noise. The random fluctuations of spin polarization at thermal equilibrium were detected.

The SNS technique was used to observe the magnetic field and light intensity-dependent

spin dynamics. This discovery actually contradicts previous assumptions about saturation

at zero magnetic fields, indicating a much stronger magnetic field dependence.

In 2015, Li et al. in Ref. [287] performed a series of hole transport measurements in a

planar silicon MOS based double quantum dot, demonstrating Pauli spin blockade in the

few-hole regime and mapping the spin relaxation induced leakage current as a function of

inter-dot level spacing and magnetic field. In this experiment, the application of a strong

out-of-plane magnetic field led to an avoided singlet-triplet level crossing. Therefore,

the authors can deduced the heavy hole g-factor of approximately around 0.93 and the

strength of spin-orbit interaction of around 110µeV, which is direct evidence of strong spin-

orbit interaction of heavy holes, promising fast local spin manipulation using only electric

fields. The platform is a highly flexible multi-gate silicon p-MOS structure, allowing varied

operational modes from single to few-hole double quantum dots.

Voisin et al. in Ref. [518] demonstrated the possibility of using silicon nanowire metal-oxide

semiconductor field-effect transistors as p-type quantum dots in the few-hole regime, and

the electrical control of the g-factor in these silicon quantum dots, reported Rabi frequen-

cies exceeding several hundred MHz. The experimental work was carried out on devices

fabricated on a complementary metal-oxide semiconductor platform starting from undoped

silicon-on-insulator wafers. This precise control provided by complementary metal-oxide
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semiconductor technology is in line with the industry. The magneto-transport measure-

ments at low temperatures were performed to probe the Zeeman splitting of the first

accessible hole level, which indicated a spin doublet with predominant heavy-hole charac-

ter. Furthermore, the anisotropy and gate dependence of the hole g-factor were confirmed,

revealing that the system meets all the requirements to be used as a spin qubit electri-

cally manipulated by g-tensor modulation resonance. The findings of this research were

particularly exciting for the development of quantum computing and spintronics. They

demonstrated the feasibility of using silicon-based p-type quantum dots for spin qubit

applications, combining the benefits of reduced hyperfine interaction, expected from the

p-symmetry valence band states, with full compatibility with mainstream microelectronics

technology.

In 2016, Marcellina et al. in Ref. [329] provided a comprehensive study of spin-orbit

interactions in inversion-asymmetric two-dimensional hole gases at semiconductor hetero-

interfaces, focusing on common semiconductors like GaAs, InAs, InSb, Germanium, and

Silicon. The research adopted a semi-analytical variational method to quantify spin-orbit

interactions, accounting for both structure inversion asymmetry and bulk inversion asym-

metry. This work established a method to calculate the spin-dependent dispersion of

ground state heavy hole sub-bands. It used the Schrieffer-Wolff approximation to calcu-

late the Rashba spin splitting, pointing out the dispersion is proportional to k3. However,

it is limited in some common hetero-structures like Silicon devices. The study identifies

the parameter regimes where this occurs for the materials in focus and offers an alterna-

tive semi-analytical method to obtain the correct spin splitting, effective masses, Fermi

level, and sub-band occupancy. The results align well with both numerical calculations

and experimental findings.

In experiments, Maurand et al. in Ref. [335] further developed their platform, realizing a

silicon qubit using industry-standard complementary metal–oxide–semiconductor technol-

ogy, updated from the silicon nanowire field-effect transistors at low temperatures. The

device is based on a 300 mm silicon-on-insulator wafer and consists of a 10 nm-thick and

20 nm-wide undoped silicon channel with p-doped source and drain contact regions, and
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two parallel top gates. The first gate defines a quantum dot encoding a hole spin qubit, and

the second one is used for qubit read-out. A series of experiments, including all-electrical,

two-axis control of the spin qubit by applying phase-tunable microwave modulation to the

first gate, was performed. Spin lifetimes, including T ∗
2 and T2 (Techo in the original text),

were determined through Ramsey and spin echo manipulation sequences. For the read-out,

the Pauli spin blockade was used. Prechtel et al. in Ref. [398] performed important ex-

periments to reduce the dephasing in hole spin qubits caused by interactions with nuclear

spins. These experiments, still using InGaAs quantum dots, demonstrated the decoupling

of the hole spin from the nuclear spins by creating a large transverse nuclear spin polariza-

tion and measuring the hole Zeeman energy with a precision of 10 neV through dark-state

spectroscopy. The hole hyperfine interaction is highly anisotropic, with the transverse

coupling being less than 1% of the longitudinal coupling. This finding implies that for

unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit can be achieved down

to nano-electron-volt energies, equivalent to dephasing times up to a microsecond. The

experiments used a transverse magnetic field and monitored the polarization via the lone

electron spin in the exciton. The hole hyperfine interaction was probed in a self-assembled

InGaAs quantum dot, uncovering an extremely high anisotropy that is close to the ideal

heavy-hole limit. From 2016, attention increasingly focused on group IV semiconductor

quantum dot hole spin qubits.

In 2017, Kloeffel et al. in Ref. [253] systematically analyzed Germanium and Germa-

nium/Silicon core/shell nanowires with rectangular cross sections. The work considered

the presence of a direct Rashba spin-orbit interaction in these nanowires, finding that the

dominant contribution to the spin-orbit interaction is these direct Rashba terms, particu-

larly in Germanium and Germanium/Silicon core/shell nanowires. For Silicon nanowires,

the spin-orbit energies and the effects of direct Rashba terms depend significantly on

the orientation of the crystallographic axes. The theoretical framework is still based on

the Luttinger-Kohn Hamiltonian and the gate electric fields. The research shows that

the direct Rashba SOC in Silicon nanowires allows for spin-orbit energies of the order of

milli-electron-volts, which are controllable with moderate electric fields. The study also

considers the impact of varying nanowire dimensions, orientation of crystallographic axes.
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In experiments, Ono et al. in Ref. [375] explored the use of a p-channel silicon MOS-

FET to study sub-threshold transport and electrically driven spin resonance (EDSR) in a

double quantum dot system. The research focuses on the effects of spin-orbit interaction

and EDSR in lifting the spin blockade, a condition where spin symmetries restrict the

movement of charge carriers. The paper reports on microwave-induced transitions be-

tween mixed singlet-triplet states in the double dot, with the observed EDSR spectra and

the magnetic field dependence of the resonances providing clear evidence of spin-orbit-

coupling-induced anti-crossing. Near the anti-crossing point, a suppressed EDSR signal is

observed. Crippa et al. in Ref. [99] experimentally investigated the physical mechanisms

underlying coherent spin rotations in semiconductor spin qubits with significant SOC. This

experiment examined the angular dependence of the Rabi frequency, the gate-voltage de-

pendence of g-factor, and the anisotropy of the hole g-factor. In their experiment, the

authors used a silicon quantum dot to induce Rabi oscillations of a pseudo-spin-1/2 hole

state through gate-voltage radio-frequency modulation. The research highlights that the

electrical driving of a spin-orbit qubit can be fully characterized by measuring the g-

factors and Rabi frequencies for different magnetic-field orientations. In the same year,

Huthmacher et al. in Ref. [221] used InGaAs as a platform to study the dynamical de-

coupling of a heavy hole, which can offer a stable spin and optical coherence, potentially

forming an ideal, high-bandwidth spin-photon interface. With the help of this dynam-

ical decoupling, the longest ground-state coherence time T2 reported was 4.0µs. This

improvement in coherence is supported by an independent analysis of the local electrical

environment. The research also investigates the dependence of T ∗
2 and T2 on the external

magnetic field, revealing significant coupling to the nuclear-spin ensemble at low fields and

to electrical noise at high fields. The study also indicates that strain-induced mixing with

light-hole states enables hyperfine interactions that bound the coherence time for external

magnetic fields up to a few Tesla.

In 2018, Venitucci et al. in Ref. [510] presented a theoretical analysis of the full electrical

manipulation of semiconductor quantum dot hole spin qubits. The study introduces a

generalised g-matrix formalism, which combines the bare g-factor and its derivative with

respect to the electric field. This formalism efficiently maps the Larmor and Rabi fre-
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quencies as a function of the magnetic field orientation, offering a robust model for qubit

control. The research highlights the possibility of switching the qubit between two bias

points for efficient manipulation and coherence. Additionally, the role of residual strains

in such devices is discussed, emphasizing their potential impact on device performance.

In experiments, Marcellina et al., in Ref. [329], explored the use of semiconductor holes

with strong SOC in a GaAs quantum well, aiming to demonstrate a new mechanism for

controlling the Zeeman splitting through an electrical field. A significant advancement

of this study is the observation of a three-fold enhancement in the in-plane g-factor. To

measure the in-plane g-factor, the work introduced a novel methodology based on mag-

netotransport in crossed magnetic fields, allowing for successful detection of variations in

the spin splitting. Li et al. in Ref. [289] conducted experiments on Ge quantum dots,

leveraging its strong SOC to achieve coupling between the superconducting resonator and

the quantum dot. This design enables the extraction of the charge stability diagram of the

quantum dot independent of direct current transport measurements. The hole-resonator

coupling rate in the single quantum dot-resonator system is measured to be 148 MHz,

with the spin-resonator coupling rate measured to be in the range of 2-4 MHz, substan-

tially larger than the rate obtained by directly coupling a single spin magnetic dipole to

the magnetic field of a resonator. This advance paved the way for coupling between pho-

tons and hole spin qubits. Vukušic et al., in Ref. [521], demonstrated the first single-shot

readout of hole spins in a germanium quantum dot by integrating a charge sensor into a

high-bandwidth radiofrequency reflectometry setup. In these experiments, hole spin re-

laxation times were measured to be around 90µs at a magnetic field of 0.5 T. The study

achieved a remarkable total readout visibility of about 70%. Watzinger et al. in Ref. [537]

demonstrated two-axis control of the germanium hole spin qubit using the Pauli spin

blockade and EDSR, with fast Rabi frequencies exceeding 100 MHz reported. Addition-

ally, the study measured dephasing times of approximately 130 ns, notably longer than

those previously reported for holes in silicon. Liles et al. in Ref. [294] conducted a detailed

study on valence band holes confined in silicon quantum dots, focusing on characterising

the spin and orbital states of the first six holes in a planar silicon MOS-based quantum

dot device. The study demonstrates number shell filling consistent with the Fock-Darwin
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states of a circular two-dimensional quantum dot, revealing a spin filling sequence for

the first six holes consistent with Hund’s rule. Using pulse-bias spectroscopy, the orbital

spectrum is found to be heavily influenced by strong hole-hole interactions. Furthermore,

a stable single-hole quantum dot operating in the planar geometry is also demonstrated,

connecting silicon MOS technology with current industrial technology and providing a

path towards scalable silicon hole-spin qubits.

In 2019, Venitucci et al. in Ref. [509] provided a theoretical analysis of a hole spin qubit

in semiconductor quantum dots subjected to various fields: static magnetic and electric

fields, and a radio-frequency electric field in different materials and orientations. The

calculations demonstrate that [110]-oriented quantum dots on [001] substrates are more

efficient than [001]-oriented dots, attributed to the anisotropy of the valence band of the

host material. Furthermore, despite its relatively small SOC, Silicon’s advantage lies

in its highly anisotropic valence band, making it a favourable candidate for hole spin

qubit applications. Philippopoulos et al. in Ref. [392] offers a theoretical analysis of hole

spin-echo envelope modulation and its application in extracting hyperfine parameters for

semiconductor qubits. The study finds that in unstrained silicon, both the hyperfine and

Zeeman Hamiltonians are approximately isotropic, leading to negligible envelope modu-

lations. However, in strained silicon, where light-hole spin qubits can be energetically

isolated, the hyperfine Hamiltonian and g-tensor are sufficiently anisotropic to give sig-

nificant spin-echo envelope modulations. The researchers demonstrated that there is an

optimal magnetic-field orientation for maximising the visibility of envelope modulations

in strained silicon, estimating that the maximum modulation depth can reach about 10%

at a moderate laboratory magnetic field of approximately 200 mT.

In experiments, Lodari et al. in Ref. [305] performed measurements of the effective hole

mass across a wide range of densities, spanning from 2.0 to 11 × 1011cm−2 in undoped

germanium quantum wells. This light mass is attributed to the compressive strain in the

quantum well, leading to a phenomenon known as mass inversion, where the topmost band

develops a lighter mass compared to the lower-lying band. This light effective hole mass

has significant implications for spin qubits in quantum computing. It facilitates larger
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energy level spacing in quantum dots, enabling enhanced tunnel rates and relaxing the re-

quirements for lithographic fabrication. The findings position strained Ge/SiGe quantum

wells as an ideal planar platform for spin qubit devices, given their lightest effective mass

among similar platforms. Crippa et al. in Ref. [98] demonstrated gate-coupled radiofre-

quency reflectometry for the dispersive readout of a fully functional spin qubit device. The

device, a p-type double-gate transistor, was fabricated using standard silicon technology.

It features a unique configuration with one gate confining a hole quantum dot to encode

the spin qubit and the other serving as a helper dot for readout. This included conducting

magneto-spectroscopy of the double quantum dot and observing behaviour indicative of

an inter-dot charge transition.

In 2020, Bosco et al. in Ref. [53] theoretically studied hole spin qubits in silicon fin field-

effect transistors. A key aspect of the study is the identification of operational sweet spots

in silicon fin field-effect transistors, where charge noise can be largely reduced. These

sweet spots are consequences of the anisotropy of the material and the unique triangular

shape of the fin field-effect transistors’ cross-section. Additionally, the study considers

the effects of moderate strain on the spin-orbit switch and examines the charge noise,

showing that working near the spin-orbit sweet spots greatly suppresses the charge noise

and significantly improves the dephasing time. Mutter et al. in Ref. [360] studied the

flopping mode in germanium hole spin qubits. This work finds that these natural flopping

mode qubits exhibit highly tunable spin coupling strengths. This tunability enables qubit

gate operation times in the nanosecond range. The work also finds that the dynamics of

these qubits are affected by various factors such as the applied magnetic field, inter-dot

distance, strength of Rashba SOI, and dot detuning.

In experiments, Hendrickx et al. in Ref. [206] demonstrated a fully electrically controlled

germanium hole spin qubit by employing gate-defined quantum dots in high-mobility ger-

manium quantum wells, integrated into silicon substrates using standard manufacturing

techniques. Single-qubit rotations with frequencies exceeding 100 MHz, and two-qubit

logic operations within just 75 ns were demonstrated, marking a significant improvement

in qubit operation speed. Furthermore, high control fidelity was achieved, with single-
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qubit control reaching a fidelity of 99.3%. The coherence times of the hole spin qubits in

germanium were found to be longer compared to other semiconductor systems, indicat-

ing robustness suitable for quantum computing applications. Lawrie et al. in Ref. [276]

investigated hole spin relaxation in single- and multi-hole regimes in a 2 × 2 germanium

quantum dot array. They found spin relaxation times as high as 32 ms for quantum dots

with single-hole occupations and 1.2 ms for five-hole occupations, setting benchmarks for

spin relaxation times in hole quantum dots. Additionally, the study explored qubit ad-

dressability and electric field sensitivity by measuring the resonance frequency dependence

of each qubit on gate voltages. This approach allows for significant tuning of the resonance

frequency for both single and multi-hole qubits while maintaining minimal dependence on

neighbouring gates.

In 2021, Adelsberger et al. in Ref. [6] examined the strong spin-orbit interaction inherent

in germanium hole systems. A key focus of the study was the observation that orbital

effects will lead to a substantial renormalisation of the g-factor. The strain and cross-

sectional geometry of the nanowire are also discussed, with an identification of a sweet

spot for the nanowire g-factor, where charge noise is strongly suppressed.

In experiments, Liles et al. in Ref. [295] studied single holes confined in silicon planar MOS

quantum dots, with a particular focus on how electrode-induced strain affects the heavy-

hole–light-hole splitting and the g-tensor of these holes. A critical finding of the study

was the observation that nonuniform electrode-induced strain leads to variations in heavy-

hole-light-hole splitting across the quantum dot. This variation, which can reach up to

50%, can significantly impact the hole-spin physics and the behaviour of the g-tensor. The

researchers also demonstrated the capacity to electrically modulate the hole g-tensor by

displacing the hole relative to the nonuniform strain profile, achieving substantial tuning

of the hole g-factor by up to 500%. The study also identified a potential sweet spot for

the g-factor, where the differential of g-factor with respect to voltage is zero. It is worth

mentioning that the search for the sweet spot is receiving more and more attention.

Hendrickx et al. in Ref. [205] demonstrated the first quantum processor using hole spins in

germanium quantum dots. This processor, designed in a 2 × 2 array, which can integrate
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circuits of one-, two-, three-, and four-qubit operations, all controlled electrically. It

is an exhibition of modern advanced semiconductor manufacturing techniques, paving

the way towards scalable quantum computations. The quantum dots are formed in a

strained germanium quantum well on a silicon substrate, which have high mobility of holes

and low effective mass. The manipulation and readout of qubits are based on the Pauli

spin blockade mechanism, incorporating a latched readout process for enhanced efficiency

and accuracy. This study also demonstrated the successful execution of a quantum logic

circuit that generates a four-qubit Greenberger–Horne–Zeilinger state, coherent evolution,

and the potential for dynamical decoupling in such systems. Froning et al. in Ref. [169]

demonstrated the manipulation of a hole spin qubit in a germanium/silicon nanowire. This

study demonstrated an exceptionally strong and electrically tunable spin–orbit interaction

in hole spins. In the experiments, the Rabi frequency of the hole spin qubit can be tuned

between 31 to 219 MHz, with coherence times between 7 to 59 ns, and varying the Landé

g-factor from 0.83 to 1.27 through small changes in gate voltage. The experiment involves

a few-hole double quantum dot formed inside the nanowire. The readout was done by

Pauli spin blockade, and the spin manipulation was done by microwave burst durations

and gate voltages. Jirovec et al. in Ref. [230] demonstrated a singlet-triplet hole spin

qubit operating at fields below 10 mT in a germanium quantum dot. The qubit achieved

tunable Rabi frequencies exceeding 100 MHz and extended dephasing times of 1µs, which

were further enhanced beyond 150µs using spin echo techniques. This advance indicates

the advantage of a large g-factor and strong SOCs in germanium, supported by record-

breaking long dephasing times.

In 2022, Bosco et al. in Ref. [54] proposed fully tunable longitudinal spin-photon inter-

actions in hole spin qubits. In this study, the interactions change from transversal to

longitudinal depending on the magnetic field direction, offering a novel way to control and

measure these interactions electrically. An advantage of this approach is the feasibility

of high-fidelity two-qubit entangling gates at high temperatures, significantly advancing

the implementation of large-scale quantum processors. The longitudinal nature of these

interactions eliminates backaction on the qubit and avoids residual qubit-qubit couplings.

These interactions do not require multiple quantum dots or parametric driving and can
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be harmonically modulated by AC electric fields.

In experiments, Camenzind et al. in Ref. [73] demonstrated the operation of hole spin

qubits at temperatures above 4 Kelvin using silicon fin field-effect transistors. This study

is particularly significant as it addresses one of the greatest challenges in quantum com-

puting: scalability and integration with classical control electronics on the same chip.

The researchers achieved fast electrical control of hole spins with driving frequencies up

to 150 MHz. Another achievement is the high single-qubit gate fidelities, with a Rabi

oscillation quality factor greater than 87. The devices were fabricated using standard

CMOS techniques, ensuring industry compatibility and quality. Wang et al. in Ref. [530]

demonstrated ultrafast single-spin manipulation within a hole-based double quantum dot

in a germanium hut wire, achieving a record-setting Rabi frequency exceeding 540 MHz

at a magnetic field of 100 mT. The research employed a two-hole model to accurately de-

scribe the resonances, pointing out the distinct g-factors for the two dots. Piot et al. in

Ref. [395] demonstrated a spin–orbit qubit made of a single hole in a natural silicon MOS

device, further improving the spin coherence and qubit control. Operational sweet spots

were identified, leading to a large Hahn-echo coherence time up to 88µs, with the help of

isotopically purified silicon.

In 2023, Vecchio et al. in Ref. [123] studied the light-hole spin-orbit qubit, demonstrating

the selective confinement of light-hole states in a tensile-strained germanium quantum

well. This confinement allows for the design of an ultrafast gate-defined spin qubit under

EDSR. The qubit size-dependent g-factor and dipole moment are mapped, revealing that

the dipole moment of light-hole spin qubits is considerably higher than that of the canon-

ical heavy-hole qubits. This is attributed to the significant spin splitting caused by the

combined action of large cubic and linear Rashba spin-orbit interactions, which are unique

to light-hole states. An important finding is the relaxation rate, which is influenced by the

strong spin-orbit interaction, typically following a B7 behaviour. Michal et al. in Ref. [343]

presented a study on the interactions between a single hole in a semiconductor quantum

dot and microwave photons in a resonator, demonstrating the modulation of the g-factor

via electrical control. The gate voltages and the orientation of the magnetic field are ex-
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amined, which can act as a knob to tune the spin-photon interaction, allowing it to switch

from fully transverse to fully longitudinal. The study estimates coupling rates reaching

approximately 10 MHz in realistic settings. Moreover, the anisotropic Zeeman interaction,

device setup, and potential circuit-QED applications are also discussed. Abadillo-Uriel et

al. in Ref. [2] discussed the inhomogeneous strain fields in hole spin qubits, which give

rise to linear Rashba spin-orbit interactions and g-factor modulations, enabling fast Rabi

oscillations without requiring additional magnetic fields. An important finding is that

shear strain gradients as small as 3 × 10−6 nm−1 within quantum dots can increase Rabi

frequencies by an order of magnitude.

Yu et al. in Ref. [564] experimentally demonstrated strong coupling between a microwave

photon in a superconducting resonator and a hole spin within a silicon-based double quan-

tum dot, developed via a foundry-compatible metal–oxide–semiconductor process, report-

ing a spin–photon coupling rate surpassing 330 MHz. The investigation extends into the

domain where a spin is confined within a single quantum dot, recording a spin–photon

coupling rate around 1 MHz. Lawrie et al in Ref. [277] demonstrated the achievement

of high-fidelity operations above 99.9% for individual qubits and addresses the challenge

of maintaining this performance when driving multiple qubits simultaneously. Prior to

this work, simultaneous driving of two qubits had been limited to a fidelity of 98.67%.

The experiment is performed on a two-dimensional array of spin qubits, using a novel

benchmarking technique, N-copy randomised benchmarking, designed for simple experi-

mental implementation and accurate estimation of simultaneous gate fidelity. Through this

method, they achieve two- and four-copy randomised benchmarking fidelities of 99.905%

and 99.34% respectively.
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Methodology

In this chapter, we will introduce the necessary theoretical frameworks to understand the

discussions about semiconductor quantum dot germanium hole spin qubits and silicon hole

spin qubits. We first present time-independent perturbation theory, which is the tool used

to obtain the effective Hamiltonian in hole spin qubits. Then, we introduce the valence

band structures and the famous Luttinger-Kohn Hamiltonian, followed by the Bir-Pikus

Hamiltonian to include strains. Electric dipole spin resonance, phonon-induced relaxation

time, and charge dephasing are studied, paving the way to quantitatively characterize the

coherence properties of a hole spin qubit.

2.1 Time-independent perturbation theory

In quantum mechanics, exactly solvable models are very limited; thus, perturbative ap-

proaches are widely used across various disciplines. The aim of the perturbation approach

is to understand the global behaviors of solutions to differential equations. In standard

time-dependent perturbation problems, a Hamiltonian can be expressed as:

H = H0 +H ′ (2.1)
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where H0 is a solvable Hamiltonian, and H ′is the perturbation that renders the full model

unsolvable. Assuming the energy scale of the perturbation is small, we can use the eigen-

basis of H0 to extrapolate the influence of H ′ on the energy spectra and eigen-states.

2.1.1 Non-degenerate perturbation theory

Focusing on a non-degenerate Hermitian physical system, the term non-degenerate implies

that for our solvable Hamiltonian, each eigenenergy is associated with a one-dimensional

eigenspace (i.e., both algebraic and geometric multiplicities are equal to one). In this

context, we consider the eigenvalue problem:

H |ψn⟩ = En |ψn⟩ (2.2)

where

H = H0 +H ′ with
∥∥H ′∥∥ ≤ ∥H0∥ (2.3)

To solve this problem, we begin with the solvable unperturbed Hamiltonian:

H0
∣∣∣ψ(0)

n

〉
= E(0)

n

∣∣∣ψ(0)
n

〉
(2.4)

Here, the subscript n denotes the energy level of interest, and the superscript (0) indicates

the order of perturbation, which, in this case, is the zeroth-order perturbation. E(0)
n rep-

resents the unperturbed energy, and
∣∣∣ψ(0)

n

〉
is the corresponding unperturbed eigenstate.

As our solvable model is Hermitian (self-adjoint), its eigen-states provide a complete or-

thonormal set in accordance with the spectral theorem:

〈
ψ(0)

n

∣∣∣ψ(0)
m

〉
= δn,m (2.5)

where δn,m denotes the Kronecker delta. The perturbed eigen-states are anticipated to

closely align with the unperturbed states, attributed to the relative magnitude between

H ′ and H0. The perturbed states are expanded using the orthonormal set as:

|ψn⟩ =
∑

l

∣∣∣ψ(0)
l

〉
(2.6)
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Consequently, the original problem is reformulated as:
∑

l

al(H0 +H ′)
∣∣∣ψ(0)

l

〉
=
∑

l

al(E
(0)
l +H ′)

∣∣∣ψ(0)
l

〉
= En

∑
l

al

∣∣∣ψ(0)
l

〉
(2.7)

Subsequent simplifications lead to:
∑

l

al(En − E
(0)
l )

∣∣∣ψ(0)
n

〉
=
∑

l

alH
′
∣∣∣ψ(0)

l

〉
(2.8)

To analyze the perturbation at level m (an arbitrary level), we project the unperturbed

state
∣∣∣ψ(0)

m

〉
onto both sides, yielding:

am(En − E(0)
m ) =

∑
l

〈
ψ(0)

m

∣∣∣H ′
∣∣∣ψ(0)

l

〉
(2.9)

For simplicity, we denote: 〈
ψ(0)

m

∣∣∣H ′
∣∣∣ψ(0)

l

〉
= H ′

m,l (2.10)

From Eq. (2.9), an iterative relationship emerges, indicating that am is related to all other

an:

am = 1
En− E

(0)
m

∑
l

H ′
m,l (2.11)

equivalent to:

am(En − E(0)
m ) = amH

′
m,m +

∑
l ̸=m

alH
′
m,l (2.12)

The coefficient can thus be expressed as:

am = 1
En− E

(0)
m −H ′

m,m

∑
l ̸=m

alH
′
m,l (2.13)

This formula delineates am as a function of all other coefficients. With minimal perturba-

tion, En closely approximates E(0)
m , enabling first-order corrections by setting an to zero

and altering the index to n′ = m. To deduce second-order corrections, we transpose an to

the left and iterate the right-hand side with a distinct index:

al = 1
En′ − E

(0)
n −H ′

n,n

∑
l′ ̸=l

al′H
′
l,l′ (2.14)

This expression can be substituted into Eq. (2.13) to compute the expansion coefficients

am. For enhanced precision, this iterative process can be reiterated for third-order correc-

tions, necessitating a triple summation. Now, we proceed to calculate the exact expression

for a specific example.
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In the first-order perturbation problem, we start from:

am = 1
En − E

(0)
m −H ′

m,m

∑
l ̸=m

alH
′
m,l (2.15)

As we discussed before, the perturbation is small; therefore, we are left with:

am(Em − Em(0) −H ′
m,m) = 0 (2.16)

where am is a constant, we have:

Em = Em(0) +H ′
m,m (2.17)

Since we did not iterate Eq. (2.13), there are no corrections to the wave-functions in this

order.

For the second order, we need to iterate Eq. (2.13) once, which means:

am(Em − E(0)
m −H ′

m,m) =
∑

n̸=m

 1
Em − E

(0)
n −H ′

n,n

∑
n′′ ̸=n

[
an′′H ′

n,n′′H ′
m,n

] (2.18)

For the right-hand side, if we pick out the case n′′ = m, and truncate our perturbation,

we will have:

am

(Em − E0
m −H ′

m,m

)
−
∑

n̸=m

H ′
n,mH

′
m,n

Em − E0
n −H ′

nn

 = 0 (2.19)

Now we can write down our second-order energy corrections:

Em = E(0)
m +H ′

m,m +
∑

n̸=m

∥∥∥H ′
m,n

∥∥∥2

Em − E
(0)
n −H ′

n,n

(2.20)

Since we have iterated the coefficient once, there will be a correction to the eigenstate as

well:

|ψm⟩ =
∑

n

∣∣∣ψ(0)
n

〉
=
∣∣∣ψ(0)

m

〉
+
∑

n ̸=m

an

∣∣∣ψ(0)
m

〉
(2.21)

Recall that:

an = 1
E′

n − E0
n −H ′

n,n

∑
n′′ ̸=n

an′′H ′
n,n′′ (2.22)
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For the lowest order correction to the eigen-states, we only care about the case n′′ = m

(by setting am = 1, and disregard all the other corrections):

an =
H ′

n,m

Em − E0
n −H ′

n,n

(2.23)

The eigen-states become:

|ψm⟩ =
∣∣∣ψ(0)

m

〉
+
∑

n̸=m

H ′
n,m

∣∣∣ψ(0)
n

〉
Em − E0

n −H ′
n,n

(2.24)

From this equation, we should realize that the wavefunction depends on Em itself, which

is still not an explicit expression. To tackle this problem, the first approach is to ignore

the energy difference temporarily between the unperturbed state and the perturbed state

when calculating the corrections. This approach is known as the Rayleigh-Schrödinger

perturbation method. The second approach is using an iterative method; we substitute

the first-order energy expression after corrections into the denominator in Eq. (2.24), and

repeat the procedures until the value of Em is convergent. This iterative approach is

known as the Brillouin-Wigner perturbation method.

2.1.2 Degenerate perturbation theory

When the geometric multiplicity is greater than one, multiple eigen-states will correspond

to one single eigen-energy, indicating a degenerate energy level. In such cases, it is essential

to identify a linear combination of eigen-states that can evolve out of the degeneracy under

perturbations. Consider a system with an f -fold degeneracy of energy levels. We can

partition all eigen-states into two groups. The first, group is the degenerate set in the

eigen-subspace of the degenerate energy level:

∣∣∣ψ(0)
1

〉
,
∣∣∣ψ(0)

2

〉
,
∣∣∣ψ(0)

3

〉
, . . . ,

∣∣∣ψ(0)
f

〉
(2.25)

The second group contains eigen-states belonging to other non-degenerate energy levels:

∣∣∣ψ(0)
f+1

〉
,
∣∣∣ψ(0)

f+2

〉
, . . . (2.26)
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In this degenerate case, our iterative relation Eq. (2.13) still applies with some extra mod-

ifications. Starting from our iterative relation:

am = 1
En − E

(0)
m −H ′

m,m

∑
l ̸=m

alH
′
m,l (2.27)

In the right-hand side of this equation, we isolate all coefficients corresponding to the

degenerate energy levels and transfer them to the left-hand side. To calculate perturbation-

induced changes in the energy spectrum, we consider all an in the degenerate set to be

significant, while those outside are minor, indicating the primary contributions arise from

the eigen-subspace. At the first order, we neglect all couplings external to the eigen-

subspace. Consequently, we obtain f linear homogeneous equations:

a1
(
E0

1 +H ′
11 − E

)
+a2H

′
12 + . . . +afH

′
1f = 0

a1H
′
21 +a2

(
E0

2 +H ′
22 − E

)
+ . . . +afH

′
2f = 0

...
...

...
...

a1H
′
f1 +a2H

′
f2 + . . . +af

(
E0

f +H ′
ff − E

)
= 0

(2.28)

Solving this linear system by evaluating the secular equations yields corrections to the de-

generate eigen-energy spectrum and eigen-states. Higher-order corrections can be obtained

by modifying the sets of linear equations. In general, perturbations can lift the degener-

acy; however, if the degeneracy persists at the first order, higher-order perturbations may

be necessary.

2.1.3 Löwdin partitioning

The exact diagonalization of a Hermitian Hamiltonian is a central topic in quantum me-

chanics. The spectrum theory reveals that for a self-adjoint operator, diagonalization

through unitary transformation is alway formidable. The essence of this approach lies in

identifying a change of basis matrix that recasts the Hamiltonian into a diagonal form.

However, this process is challenging. Notably, no general algorithm exists for finding the

roots of higher-order characteristic polynomials, necessitating the alternative perturbative

approaches like the Löwdin partitioning method.
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The Löwdin partitioning method has been developed in various disciplines, adopting dif-

ferent forms. It is recognized as the Foldy-Wouthuysen transformation in the relativistic

theory of quantum mechanics, the Fröhlich transformation in phonon-electron interaction

problems, and the Nakajima transformation in superconductivities. Within the realm of

solid-state physics, this technique is also referred to as the Schrieffer-Wolff transformation.

Schrieffer and Wolff demonstrated that for a localized magnetic moment in a dilute alloy,

the Anderson Hamiltonian can be related to the Kondo Hamiltonian, particularly their

equivalence in the limit of small s-d mixing.

Our thesis will extensively employ the Löwdin partitioning method to derive several impor-

tant effective Hamiltonians in the context of k ·p theory. We will introduce this formalism

through the language of matrix algebra and, subsequently, discovering the renormalization

nature embedded in this unitary transformation techniques.

Consider a standard perturbation problem:

H = H0 +H ′ (2.29)

The spectrum of the unperturbed Hamiltonian H0 is well-understood, and its eigen-states

are denoted as ∣∣∣ψ(0)
1

〉
,
∣∣∣ψ(0)

2

〉
,
∣∣∣ψ(0)

3

〉
, . . . (2.30)

We categorize the wave-functions into two weakly interacting sets: set A and set B. As-

suming our primary interest lies in set A, we then introduce the following unitary trans-

formation:

H̃ = e−SHeS (2.31)

This transformation ensures that the matrix elements
〈
ψm

∣∣∣H̃∣∣∣ψl

〉
between states |ψm⟩

from set A and |ψl⟩ from set B vanish up to the desired order of H ′. Without loss of

generality, the total Hamiltonian can be decomposed into three components:

H = H0 +H ′ = H0 +H1 +H2 (2.32)

Here, H1 has all the non-zero elements of H ′ solely between the eigen-states within either

set A or B. H2 contains non-zero elements of H0 between sets A and B, representing the
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Figure 2.1: Löwdin partitioning A demonstartion of a simple Löwdin partitioning, the
total Hamiltonian is seperated into thwo parts: the diagnal part indicating the eigen-
energies of the system, from where we can check the renormalization gap; and the off-
digonal part descrbing the interactions between different sets.

coupling terms. To obtain a block diagonal form with respect to sets A and B, we need

to determine the matrix S. Given that eS is unitary, S must be anti-Hermitian:

S† = −S (2.33)

The expansion of S is given by:

eS = 1 + S + 1
2!S

2 + 1
3!S

3 + 1
4!S

4 + · · · (2.34)

Consequently, our Eq. (2.31) is expanded as follows:

H̃ =
[
1 − S + 1

2!S
2 + · · ·

]
H

[
1 + S + 1

2!S
2 + · · ·

]
=H + [H,S] + 1

2! [[H,S], S] + · · ·

=
∞∑
α

[ 1
α! [H,S](α)

]

=
∞∑
α

[ 1
α! [H0, S](α)

]
+

∞∑
α

[ 1
α! [H1, S](α)

]
+

∞∑
α

[ 1
α! [H2, S](α)

]
(2.35)

Considering that S is anti-Hermitian, it must be block-off-diagonal. It follows that the

product of two block-off-diagonal matrices results in a diagonal matrix, whereas the

product of two diagonal matrices remains a diagonal matrix. Furthermore, the prod-

uct of a block-diagonal matrix with a block-off-diagonal matrix yields an off-diagonal

matrix. Based on these observations, the diagonal part of H̃ must incorporate terms like

[H0 +H1, S](j) where j is even, and terms like [H2, S](j) where j is odd. The resultant

form of the diagonal component H̃d is given by:

H̃d =
∞∑

j=0

[ 1
(2j)! [H0 +H1, S](2j)

]
+

∞∑
j=0

[ 1
(2j + 1)! [H2, S](2j+1)

]
(2.36)
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Similarly, the block-off-diagonal part, H̃n, can be expressed as:

H̃n =
∞∑

j=0

[ 1
(2j + 1)! [H0 +H1, S](2j+1)

]
+

∞∑
j=0

[ 1
(2j)! [H2, S](2j)

]
(2.37)

To ensure the only term left is H̃d, S must satisfy:

H̃n =
∞∑

j=0

[
1

(2j + 1)! [H0, S](2j+1)
]

+
∞∑

j=0

[
1

(2j + 1)! [H1, S](2j+1)
]

+
∞∑

j=0

[
1

(2j)! [H2, S](2j)
]

(2.38)

Expand the matrix S by orders:

S = S(1) + S(2) + S(3) + S(4) + · · · (2.39)

Similarly, we can expand the Eq. (2.38) by orders:

H̃n =[H0, S] + [H1, S] +H2 + 1
3! [H0, S]3 + 1

3! [H1, S]3 + 1
2! [H2, S]2 + · · ·

= +
[
H0, S

(1)
]

+
[
H0, S

(2)
]

+
[
H0, S

(3)
]

+
[
H0, S

(4)
]

+
[
H0, S

(5)
]

+
[
H1, S

(1)
]

+ +
[
H1, S

(2)
]

+
[
H1, S

(2)
]

+
[
H1, S

(4)
]

+H2 + 1
3!
[
H0, S

(1)
]3

+ 1
3!
[
H0, S

(2)
]3

+ 1
3!
[
H1, S

(1)
]3

+ 1
3!
[
H1, S

(2)
]3

+ 1
2!
[
H2, S

(1)
]2

+ 1
2!
[
H2, S

(2)
]2

+ 1
2!
[
H2, S

(3)
]2

+ · · ·

(2.40)

Solve the equations above for the matrix S, we have:

[
H0, S

(1)
]

+H2 = 0 (2.41)[
H0, S

(2)
]

+
[
H1, S

(1)
]

= 0 (2.42)[
H0, S

(3)
]

+ 1
3!
[
H0, S

(1)
]3

+ 1
2!
[
H2, S

(1)
]2

+
[
H1, S

(2)
]

= 0 (2.43)[
H0, S

(4)
]

+
[
H1, S

(3)
]

+ 1
3!
[
H1, S

(1)
]3

= 0 (2.44)[
H0, S

(5)
]

+
[
H1, S

(4)
]

+ 1
2!
[
H2, S

(2)
]2

+ 1
4!
[
H2, S

(1)
]4

= 0 (2.45)

· · · (2.46)

The matrix element will read:

S
(1)
m,l = −

H ′
m,l

Em − El
(2.47)

S
(2)
m,l = 1

Em − El

[∑
m′

(
H ′

m,m′H ′
m′,l

Em′ − El

)
−
∑

l′

(
H ′

m,l′H
′
l′,l

Em − El′

)]
(2.48)
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· · · (2.49)

Here, the subscripts m,m′,m′′ correspond to states in set A, the subscripts l, l′, l′′ corre-

spond to states in set B, Hm,l = ⟨ψm|H|ψl⟩. Put these expression for S into our transfor-

mations of the diagonal blocks:

H̃d =
∞∑

j=0

1
(2j)! [H0 +H1, S](2j) +

∞∑
j=0

1
(2j + 1)! [H2, S](2j+1) (2.50)

This will be the effective Hamiltonian after the Lowdin partitioning perturbation. Here

we only list the block-diagonal part up to third orders:

H
(1)
m,m′ = H ′

m,m′ (2.51)

which is we have obtained in Eq. (2.24). The second order result is

H
(2)
m,m′ = 1

2
∑

l

[
H ′

m,lH
′
l,m′

( 1
Em − El

− 1
El − Em′

)]
(2.52)

The third order result is

H
(3)
m,m′ = − 1

2
∑
l,m′′

[
H ′

m,lH
′
l,m′′H ′

m′′,m′

(Em′ − El) (Em′′ − El)
+

H ′
m,m′′H ′

m′′,lH
′
l,m′

(Em − El) (Em′′ − El)

]

+ 1
2
∑
l,l′

H ′
m,lH

′
l,l′H ′

l′,m′

[
1

(Em − El) (Em − El′) + 1
(Em′ − El) (Em′ − El′)

] (2.53)

As a summary, we note that the primary requirement is to define the sets A and B, which

are weakly interacting with each other. In other words, sets A and B must be separated

by a large energy gap. By reordering the series in Eq. (2.31), we ‘transform out’ the high-

energy part of the Hamiltonian, leaving an effective Hamiltonian. This renormalization is

assured by the natural energy gap between sets A and B.

The Löwdin partitioning method is also valid when the Hamiltonian is a combination of

a matrix of operators and some diagonal energies Enδn,n like:

Ĥn,n′ =


E1 0 . . .

0 E2 . . .

. . . . . . . . .

+


Ĥ1,1 Ĥ1,2 . . .

Ĥ2,1 Ĥ2,2 . . .

. . . . . . . . .

 (2.54)

We have put a hat on top of the elements to emphasize that they are operators. Operators

and matrices will not be further distinguished unless specified. In this case, the matrix
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S will become operators as well, but their expression will not be altered, as assured by

the formal power series. Therefore, in expressions like Eq. (2.53), the order of the matrix

elements must be followed.

2.2 Holes in valence band: k · p theory

In this section, we provide the essential background on holes in the valence band within

semiconductor systems. Understanding this foundation is crucial for the work presented

in Chapters 3.1, 4.1, where we further explore and apply these concepts.

A perfect crystal can be described by the following Hamiltonian:

H =
∑

i

p2
i

2mi
+
∑

j

P 2
j

2Mj
+ 1

2
∑
j,j′

ZjZj′e2

4πε0
∣∣Rj − Rj′

∣∣
−
∑
j,i

Zje
2

4πε0 |ri − Rj |
+ 1

2
∑
i,i′

e2

4πε0 |ri − ri′ |

(2.55)

where ri and pi represent the position and momentum operators of the i-th electron,

respectively, Rj and Pj denote those of the j-th nucleus. Zj is the atomic number of the

j-th nucleus, and −e (where e = 1.602 × 10−19 C) represents the electron charge. This

Hamiltonian encapsulates the kinetic energy of electrons and nuclei, the inter-nuclear

repulsions, electron-electron interactions, and electron-nucleus attractions.

A central problem in condensed matter physics is to understand the energy spectrum of the

Hamiltonian in Eq. (2.55). To address this, several approximations are necessary. First,

we categorize the electrons into two groups: core and valence. Core electrons (e.g., the 1s2,

2s2, 2p6 electrons in silicon) are localized around the nuclei and can be treated collectively

with their nucleus as an ion core. This approach significantly reduces the computational

complexity by limiting the considerations to valence electrons and ion cores. Furthermore,

we apply the Born-Oppenheimer (adiabatic) approximation, presuming the ion cores are

stationary relative to the valence electrons. The Hamiltonian simplifies to:

H = Hion(Rj) +Hve(ri,Rj,0) +He-i(ri, δRj) (2.56)
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The first term describes the motion of ion cores, the second term describes the valence

electrons around the nuclei at their equilibrium positions (denoted by rj,0), and the last

term describes the interactions between valence electrons and ion cores due to the dis-

placement δRj of the ion cores, which is also known as the electron-phonon interaction.

For simplicity, we will henceforth refer to valence electrons simply as electrons. Focusing

on the Hamiltonian for these electrons, we obtain:

He =
∑

i

p2
i

2mi
+ 1

2
∑
i,i′

e2

4πε0 |ri − ri′ |
−
∑
i,j

Zje
2

4πε0 |ri − rj0|
(2.57)

Solving this many-body problem presents difficulties due to the correlations between elec-

trons. To address this challenge, we consider the Hartree-Fock mean-field approximation.

In this framework, a single electron experiences an effective potential which includes all

interactions between itself and the remaining electrons. The effective potential can be

written as:

ve(ri) =
∑
i ̸=i′

e2

4πϵ0 |ri − ri′ |
, . (2.58)

Now, for a single electron, the Hamiltonian becomes

H1e = p2

2m + V (r), , (2.59)

where

V (r) = ve(r) −
∑

j

Zje
2

4πε0 |r − Rj0|
, . (2.60)

Due to the long-range order nature of crystals, we observe that this effective potential is

invariant under the translation by any Bravais lattice vector, i.e., V (r) = V (r +Rl). Our

discussion will extend to the behaviors of holes in the valence band from Eqs. (2.60) and

(2.59). First, we will introduce the relevant concepts of the k · p method in semiconduc-

tor systems, then discuss how the Luttinger-Kohn Hamiltonian, which characterizes the

valence band structure, is derived based on the k · p approach. Finally, we will examine

several important features of the Luttinger-Kohn Hamiltonian.
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2.2.1 Bloch theorem

2.2.1 Bloch theorem

The energy spectrum of an electron in a crystal can be derived from

p2

2mΨn(r) + V (r)Ψn(r) = EnΨn(r), , (2.61)

under the condition

V (r + R) = V (r), , (2.62)

where n labels the eigen-states. The solution, Ψn(r), is known as the Bloch electron wave

function. Bloch theorem states that these wave functions can be expressed as plane waves

modulated by a periodic function of the form:

Ψn(r) = exp(ik · r)uk(r), , (2.63)

where uk(r) is the periodic function satisfying uk(r) = uk(r + Rl), and k is the wave

vector of the plane wave. By plotting the eigen-energy En as a function of k, we obtain

the electronic band structure of the crystal. It is important to note that the Bloch wave

function is not an eigen-function of the wave-vector operator; therefore, ℏk should not

be interpreted as the mechanical momentum of an electron but rather as the crystal

momentum.

2.2.2 k · p theory

To calculate the band structure explicitly, earlier attention focused on several pseudopo-

tential approaches, which usually require parameters (especially energy gaps) obtained

from experimental results. As developments in experimental techniques advanced, optical

measurements began to play an important role in the semiconductor industry, determining

both the energy gap and formidable optical transitions between different states. There-

fore, using transition matrix elements as a starting point to calculate band structures

became an alternative approach to the pseudopotential method. The k · p theory then

becomes particularly convenient against this backdrop since the entire Brillouin zone can

be extrapolated from the center, determinable by optical measurements.
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Starting with Bloch theorem, we re-expressed it using the unit cell periodic function un,k(r)(
p2

2m + ℏ
m
k · p + ℏ2k2

2m + V

)
un,k = En,kun,k, . (2.64)

At the center of the Brillouin zone, i.e., when k = k0 = (0, 0, 0), we have(
p2

2m + V

)
un,0 = En,0un,0 (n = 1, 2, 3, . . .) (2.65)

The solutions of Eq. (2.65) form a complete orthonormal set of basis functions. Once the

En,0 are known, we can treat the k · p term and the term ℏ2k2/(2m0) as perturbations,

forming a standard time-independent perturbation problem.

This k · p method yields highly accurate results without intensive computations when k

does not deviate too much from the zone center. The entire Brillouin zone band structure

is also accessible when we include sufficiently many basis functions, requiring only a limited

number of energy gaps and optical transition matrix elements from experimental results.

We will use the k · p method to discuss the top valence bands in many semiconductors

with diamond structures.

2.2.3 Luttinger-Kohn Hamiltonian

Considering the Group IV elements, their highest energy point of the valence band is at

the center of the Brillouin zone. The valence band wave-functions resemble p-orbitals,

which exhibit a three-fold degeneracy, represented by |X⟩, |Y ⟩, and |Z⟩. Later, we will

demonstrate how these can be expressed using spherical harmonics. We should also include

the spin degree of freedom, denoted by |s⟩ for spin-up states and |↓⟩ for spin-down states,

which are the eigenstates of the Sz operator.

From atomic physics, we understand that electron spins can be coupled with their orbital

degree of freedom via the spin-orbit coupling mechanism, a relativistic effect proportional

to 1/c2. This coupling is particularly strong in elements with heavier atomic masses, such

as germanium, gallium, and arsenide. Generally, the spin-orbit coupling Hamiltonian is

given by:

HSO = ℏ2

4c2m2 (∇V × p) · σ (2.66)
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2.2.3 Luttinger-Kohn Hamiltonian

Figure 2.2: Band structure A demontration of a simplifed band structure diagram of
a typical semiconductor. The center of the Brillouin zone is marked as Γ point, which is
not necessary the lowest energy of the conduction band. In our thesis, we focus on the
valence band, where we have demonstrated that the heavy-hole band (hh in the figure)
and the light-hole band (lh in the figure) will have a finite split away from the Γ point.
The split-off band is denoted as SO in the figure, the energy splitting between the split-off
band and the heavy-hole band at Γ point is denoted as ∆0. The original source of this
figure is Ref. [45].
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where V is the electric potential experienced by the electrons, and σ represents the Pauli

spin matrices:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (2.67)

The presence of spin-orbit coupling implies that neither the orbital angular momentum

operators nor the spin operators form a complete set of commuting observables. Instead,

we should consider the total angular momentum operators J = L + S. Then, the new

complete set of commutable observables is J2 and Jz:

J2 |J,M⟩ = ℏJ(J + 1) |J,M⟩ Jz |J,M⟩ = ℏM |J,M⟩ (2.68)

The total angular momentum Hilbert space can be spaned by
∣∣∣∣32 , 3

2

〉
,
∣∣∣∣32 ,−3

2

〉
,
∣∣∣∣32 , 1

2

〉
,∣∣∣∣32 ,−1

2

〉
,
∣∣∣∣12 , 1

2

〉
,
∣∣∣∣12 , 1

2

〉
. We can use Clebsh-Gordon tables to translate expressions in

|J,M⟩ basis into the |L, S; l,m⟩ basis:∣∣∣∣32 , 3
2

〉
=
∣∣∣∣1, 1

2; 1,+
〉

(2.69)∣∣∣∣32 , 1
2

〉
=
√

2
3

∣∣∣∣1, 1
2; 0,+

〉
+ 1√

3

∣∣∣∣1, 1
2; 1,−

〉
(2.70)∣∣∣∣32 ,−1

2

〉
= 1√

3

∣∣∣∣1, 1
2; −1,+

〉
+
√

2
3

∣∣∣∣1, 1
2; 0,−

〉
(2.71)∣∣∣∣32 ,−3

2

〉
=
∣∣∣∣1, 1

2; −1,−
〉

(2.72)∣∣∣∣12 , 1
2

〉
=
√

2
3

∣∣∣∣1, 1
2; 1,−

〉
− 1√

3

∣∣∣∣1, 1
2; 0,+

〉
(2.73)∣∣∣∣12 ,−1

2

〉
= 1√

3

∣∣∣∣1, 1
2; 0,−

〉
−
√

2
3

∣∣∣∣1, 1
2; −1,+

〉
(2.74)

As observed, spin-orbit coupling terms divide the entire Hilbert space into the J = 3/2

and J = 1/2 sub-manifolds. This gap, denoted by ∆0 is known as the spin-orbit splitting

of the valence band at Γ4, also known as the split-off energy.

To obtain the orbital angular momentum basis, we consider the spherical harmonics, which

satisfy the following conditions:

L2Y m
l = ℏ2l(l + 1)Y m

l LzY
m

l = ℏmY m
l (2.75)
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We express the p-orbital spherical harmonics as follows:

⟨r|1,−1⟩ = Y −1
1 = +

√
3

8π sin θe−iϕ = +
√

3
8π

x− iy√
x2 + y2 + z2 (2.76)

⟨r|1, 1⟩ = Y 1
1 = −

√
3

8π sin θe+iϕ = −
√

3
8π

x+ iy√
x2 + y2 + z2 (2.77)

⟨r|1, 0⟩ = Y 0
1 =

√
3

4π cos θ =
√

3
4π

z√
x2 + y2 + z2 (2.78)

Therefore, we have

|X⟩ = 1√
2

(|1,−1⟩ − |1, 1⟩) |Y ⟩ = i√
2

(|1,−1⟩ + |1, 1⟩) |Z⟩ = |1, 0⟩ (2.79)

We define this 1/
√

2 to ensure that the terms |X⟩ , |Y ⟩, and |Z⟩ each have a consistent

coefficient of
√

3/4π. With this nornalization, we can now inversely solve the equations:

|1,−1⟩ = |X⟩ − i |Y ⟩ |1, 1⟩ = − |X⟩ − i |Y ⟩ |1, 0⟩ = |Z⟩ (2.80)

The |J,M⟩ basis can be written into the |X⟩ , |Y ⟩ , |Z⟩ , |↑⟩ , |↓⟩ basis:∣∣∣∣32 , 3
2

〉
= − 1√

2
|X⟩ |↑⟩ − i

1√
2

|Y ⟩ |↑⟩ (2.81)∣∣∣∣32 ,−3
2

〉
= 1√

2
|X⟩ |↓⟩ − i

1√
2

|Y ⟩ |↓⟩ (2.82)∣∣∣∣32 , 1
2

〉
= −

√
1
6 |X⟩ |↓⟩ − i

√
1
6 |Y ⟩ |↓⟩ +

√
2
3 |Z⟩ |↑⟩ (2.83)∣∣∣∣32 ,−1

2

〉
=
√

1
6 |X⟩ |↑⟩ − i

√
1
6 |Y ⟩ |↑⟩ +

√
2
3 |Z⟩ |↓⟩ (2.84)

Now, we perform degenerate perturbations around the Γ4 point of the valence band.

Initially, we assume the eigenstates of our unperturbed Hamiltonian can be expressed as

follows: ∣∣∣u(0)
n,1

〉
,
∣∣∣u(0)

n,2

〉
, · · ·

∣∣∣u(0)
n,gn

〉
,
∣∣∣v(0)

n+1

〉
,
∣∣∣v(0)

n+1

〉
· · · (2.85)

Where the n-th energy level is gn-fold degenerate, we have employed the letter v to empha-

size the eigenstates outside the degenerate energy levels. We now use linear combinations

of the degenerate states to construct a new group of eigenstates, the degeneracy of which

can be lifted by perturbations.
∣∣∣ϕ(0)

n,α

〉
=

gn∑
i=1

〈
u

(0)
n,i

∣∣∣ϕ(0)
n,α

〉 ∣∣∣u(0)
n,i

〉
(2.86)
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Utilizing the Rayleigh-Schrödinger perturbation method, the problem can be formulated

as follows:

(H0 +H ′)
(∣∣∣ϕ(0)

n,α

〉
+ λ

∣∣∣ϕ(1)
n,α

〉
+ λ2

∣∣∣ϕ(0)
n,α

〉
+ · · ·

)
=(E(0)

n,α + λE(1)
n,α + λ2E(2)

n,α + · · · )
(∣∣∣ϕ(0)

n,α

〉
+ λ

∣∣∣ϕ(1)
n,α

〉
+ λ2

∣∣∣ϕ(0)
n,α

〉
+ · · ·

) (2.87)

where H0 is the unperturbed Hamiltonian and H ′ denotes the k · p Hamiltonian, we have

neglected the spin-orbit coupling Hamiltonian due to its relatively small magnitude. The

zeroth-order equation is then given by:

H0
∣∣∣ϕ(0)

n,α

〉
= E(0)

n,α

∣∣∣ϕ(0)
n,α

〉
(2.88)

The first order perturabtion is:

H0
∣∣∣ϕ(1)

n,α

〉
+H ′

∣∣∣ϕ(0)
n,α

〉
= E(0)

n,α

∣∣∣ϕ(1)
n,α

〉
+ E(1)

n,α

∣∣∣ϕ(0)
n,α

〉
(2.89)

If we project a state from the degenerate energy level:
gn∑
i

[〈
u

(0)
n,j

∣∣∣H ′
∣∣∣u(0)

n,i

〉〈
u

(0)
n,i

∣∣∣ϕ(0)
n,α

〉
− EI

n,αδα,j

〈
u

(0)
n,i

∣∣∣ϕ(0)
n,α

〉]
= 0 (2.90)

The second-order corrections can be obtained by evaluating the eigenvalues of the coeffi-

cient matrix. Setting the degeneracy gn to 3, which corresponds to the x, y, z orbits, we

obtain:

Hi,j = E0δi,j + ℏ2k2

2m0
δi,j +

∑
k>3

〈
u

(0)
n,j

∣∣∣H ′
∣∣∣u(0)

n,i

〉〈
u

(0)
n,i

∣∣∣H ′
∣∣∣u(0)

n,k

〉
E0 − Ek

(2.91)

where we have ignore the order superscriptions for E(0)
k , now the E0 is the unperturbed

energy of the level we are interested in, Em is the unperturbed energy of the remote bands
(outside the degenerate manifold). Evaluate the matrix element terms by terms, in the
basis of |X⟩ , |Y ⟩ , |Z⟩, we have:

E0 +Ak2
x +B

(
k2

y + k2
z

)
Ckxky Ckxkz

Ckxky E0 +Ak2
y +B

(
k2

x + k2
z

)
Ckykz

Ckxkz Ckykz E0 +Ak2
z +B

(
k2

x + k2
y

)
 (2.92)

where

A = ℏ2

2m0
+ ℏ2

m2
0

∑
k>3

|⟨X |px| k⟩|2

E0 − Ek
(2.93)
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B = ℏ2

2m0
+ ℏ2

m2
0

∑
k>3

|⟨X |py| k⟩|2

E0 − Ek
(2.94)

C = ℏ2

m2
0

∑
k>3

⟨X |px| k⟩ ⟨k |py|Y ⟩ + ⟨X |py| k⟩ ⟨k |px|Y ⟩
E0 − Ek

(2.95)

Here, we can refer to certain optical transition measurements and introduce the Luttinger

parameters:

γ1 = −2m0
3ℏ2 (A+ 2B) γ2 = −m0

3ℏ2 (A−B) γ3 = −m0
3ℏ2C (2.96)

solve them inversely:

A = −(γ1 + 4γ2) ℏ2

2m0
B = −(γ1 − 2γ2) ℏ2

2m0
C = −6γ3

ℏ2

2m0
(2.97)

In terms of the Luttinger-Kohn parameters, and transform the Eq. (2.92) into the |J,M⟩

basis, we have, for example,

H1,1 = E0 − ℏ2k2
z

2m0
(γ1 − 2γ2) −

ℏ2
(
k2

x + k2
y

)
2m0

(γ1 + γ2) (2.98)

Note that since Luttinger parameters are obtained for holes in a filled valence band, which

inherently have negative energy, if we flip the bands to make the energy positive, we have:

H1,1 = ℏ2k2
z

2m0
(γ1 − 2γ2) +

ℏ2
(
k2

x + k2
y

)
2m0

(γ1 + γ2) (2.99)

By repeating the procedures outlined above, we are able to write down the four-band

Luttinger-Kohn Hamiltonians (µ, ν ∈ {x, y, x}):

HLK = ℏ2

2m0

[(
γ1 + 5

2γ2

)
k2I − 2γ2δ

µ,νk2
µJ

2
ν − 4γ3δ̄

µ,ν{kµ, kν}{Jµ, Jν}
]

(2.100)

where δµ,ν is the kronecker delta, δ̄µ,ν is the anti-kronecker delta define by δ̄µ,ν = (1 −

δµ,ν)/2, and the Einstein summation notation is used. The expansion of Eq. (2.100) will

be:

HLK = ℏ2

2m0

(
γ1 + 5

2γ2

)
(k2

x + k2
y + k2

z)I4×4 − 2 ℏ2

2m0
γ2(k2

xJ
2
x + k2

yJ
2
y + k2

zJ
2
z )

− 4 ℏ2

2m0
γ3[{kx, ky}{Jx, Jy} + {kx, kz}{Jx, Jz} + {ky, kz}{Jy, Jz}]

(2.101)

The symmetrization of operators is done by:

{kx, ky} = kxky + kykx

2 (2.102)
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If we want to include the two split-off bands, we have the six-band model:

HLK =



P +Q 0 −S R − 1√
2
S

√
2R

0 P +Q R∗ S∗ −
√

2R∗ − 1√
2
S∗

−S∗ R P −Q 0 −
√

2Q
√

3
2S

R∗ S 0 P −Q

√
3
2S

∗ √
2Q

− 1√
2
S∗ −

√
2R −

√
2Q∗

√
3
2S P + ∆ 0

√
2R∗ − 1√

2
S

√
3
2S

∗ √
2Q∗ 0 P + ∆



(2.103)

P = ℏ2

2m0
γ1k

2
z + ℏ2

2m0
γ1(k2

x + k2
y) (2.104)

Q = −2 ℏ2

2m0
γ2k

2
z + ℏ2

2m0
(k2

x + k2
y) (2.105)

P +Q = ℏ2

2m0
(γ1 − 2γ2) k2

z + ℏ2

2m0
(γ1 + γ2)

(
k2

x + k2
y

)
(2.106)

P −Q = ℏ2

2m0
(γ1 + 2γ2) k2

z + ℏ2

2m0
(γ1 − γ2)

(
k2

x + k2
y

)
(2.107)

R =
√

3 ℏ2

2m0

[
−γ2

(
k2

x − k2
y

)
+ 2iγ3kxky

]
(2.108)

S = 2
√

3 ℏ2

2m0
γ3 (kxkz − ikykz) (2.109)

Another commonly used notations for the R and S terms are:

R =
√

3 ℏ2

2m0

(
γk2

+ + δk2
−

)
S = 2

√
3 ℏ2

2m0
γ3k−kz (2.110)

where

k+ = kx + iky k− = kx − iky γ = γ3 − γ2
2 δ = −γ2 + γ3

2 (2.111)

This matrix is written under the basis
∣∣∣∣32 , 3

2

〉
,
∣∣∣∣32 ,−3

2

〉
,
∣∣∣∣32 , 1

2

〉
,
∣∣∣∣32 ,−1

2

〉
,
∣∣∣∣12 , 1

2

〉
,
∣∣∣∣12 , 1

2

〉
,

noting that the order of this basis will be maintained throughout the thesis. The total
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2.2.3 Luttinger-Kohn Hamiltonian

angular momentum matrices in the x, y, and z directions are:

Jx,6×6 = Jx,4×4 ⊕ σx,2×2 = 1
2



0 0
√

3 0 0 0

0 0 0
√

3 0 0
√

3 0 0 2 0 0

0
√

3 2 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


(2.112)

Jy,6×6 = Jy,4×4 ⊕ σy,2×2 = 1
2 i



0 0 −
√

3 0 0 0

0 0 0
√

3 0 0
√

3 0 0 −2 0 0

0 −
√

3 2 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0


(2.113)

Jz,6×6 = Jz,4×4 ⊕ σz,2×2 = 1
2



3 0 0 0 0 0

0 −3 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


(2.114)

The effective mass of the hole in the valence band can be written down immediately from

Eq. (2.104) and Eq. (2.105):

mHH ≡ m0
γ1 − 2γ2

mLH ≡ m0
γ1 + 2γ2

(2.115)

mHP ≡ m0
γ1 + γ2

mLP ≡ m0
γ1 − γ2

(2.116)

where mHH is the out-of-plane heavy-hole mass, mLH is the out-of-plane light-hole mass,

mHP is the in-plane heavy-hole mass, mLP is the in-plane light-hole mass. These different

masses indicates a strong anisotropy in hole systems, which is weak in electron systems.

The Luttinger-Kohn Hamiltonian gives a detailed description of the valence band be-

haviours including the effective mass of the diamond structure material like silicon and
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germanium, which set up the foundations of semiconductor quantum dot hole spin qubits

[484].

2.3 Bir-Pikus Hamiltonian

In the semiconductor industry, strain engineering is an important topic. Firstly, strains

are unavoidable in the fabrication processes. Strains can be induced by dislocations,

mismatches, and thermal expansions, which will lead to local deformations of crystals.

Secondly, the application of strains is a well-developed technique to engineer the band

structure of crystals. This can enhance the mobility of carriers or increase the emission or

absorption rate in many optical devices. Nowadays, strain has also become an important

factor in improving the coherence properties of semiconductor spin qubits, which will be

the main focus of this section.

Figure 2.3: Strain and deformation of a lattice. a.) A lattice without strain. When
there is no strain, the local coordinate frame is just an orthogonal Cartesian coordinate
frame. b.) A lattice with strain. When there is strain, the coordinate frame is distorted,
to descrbe such a distortion, we introduce the coordinate transformation. The original
source of this figure is Ref. [473].

The local deformation of a crystal is equivalent to the coordinate transformation of the

crystal. Therefore, we can introduce the strain and stress tensors, which are invariant
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2.3. BIR-PIKUS HAMILTONIAN

under coordinate transformations, to quantify the deformations. Deformations in one

direction can be affected by displacements along the other two directions; therefore, the

strain tensor is a rank-two tensor with nine components. In the limit of small elongation,

the strain tensor can be further assumed to be symmetrical (whereas in the large elongation

or even deflection limit, the strain tensor is usually non-symmetrical). To derive the

invariant quantity, we can consider the transformation of the unit vectors of the crystal:

x̂′ = (1 + εxx) x̂ + εxyŷ + εxzẑ (2.117)

ŷ′ = εyxx̂ + (1 + εyy) ŷ + εyzẑ (2.118)

ẑ′ = εzxx̂ + εzyŷ + (1 + εzz) ẑ (2.119)

where ϵij is the strain along the direction i due to deformation along the direction j. We

have added a hat on top of the variables to indicate it is a unit vector. A demonstration

of this transformation can be found from Fig. 2.3 The strain tensor can be written as:

Ξ =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.120)

with conditions:

εxy = εyx εxz = εzx εyz = εzy (2.121)

Considering the Luttinger-Kohn Hamiltonian, we have to perform the local coordinate

transformation as well:

r′ = (1 + Ξ)r ⇒ ri = (1 − Ξ)r′
i (2.122)

hence, k · p Hamiltonian:(
p′2

2m + ℏ
m
k · p + ℏ2k2

2m + V ′
)
un,k′ = En,k′un,k′ (2.123)

We also have to perform the coordinate transformation on our differential operators:

∂

∂r′ = ∂

∂ri
− εji

∂

∂rj
⇒ p′ = p(1 − Ξ) (2.124)

where we have used Einstein summation notations. Further, we have

p′2 = p2 − 2piεijpj (2.125)
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The potential can be expanded in the small elongation limit:

V ((1 + Ξ)r) = V0 + ∂V

∂εij
ϵij (2.126)

We can introduce similar expansions on the unit-cell wavefunction as well. Now our k · p

Hamiltonian is re-written as:(
p2

2m0
+ V0 + ℏ

m0
k · p +Hstrain +Hstrain−kp

)
ũn,k(r) =

(
E − ℏ2k2

2m0

)
ũn,k(r) (2.127)

where

Hstrain = Dαβεαβ Hstrain−kp = −2 ℏ2

m0
kαεαβpβ (2.128)

The term Hstrain−kp is disregarded since it is a higher order term. The term Hstrain

is known as Bir-Pikus Hamiltonian, which has a similar structure like Luttinger-Kohn

Hamiltonian:

HBP =



Pε +Qε 0 −Sε Rε − 1√
2
Sε

√
2Rε

0 Pε +Qε R∗
ε S∗

ε −
√

2R∗
ε − 1√

2
S∗

ε

−S∗
ε Rε Pε −Qε 0 −

√
2Qε

√
3
2Sε

R∗
ε Sε 0 Pε −Qε

√
3
2S

∗
ε

√
2Qε

− 1√
2
S∗

ε −
√

2Rε −
√

2Q∗
ε

√
3
2Sε Pε 0

√
2R∗

ε − 1√
2
Sε

√
3
2S

∗
ε

√
2Q∗

ε 0 Pε



(2.129)

where

Pε = −av (εxx + εyy + εzz) (2.130)

Qε = −bv

2 (εxx + εyy − 2εzz) (2.131)

Rε =
√

3
2 bv (εxx − εyy) − idvεxy (2.132)

Sε = −dv (εxz − iεyz) (2.133)

Pε +Qε = −
(
av + bv

2

)
εxx −

(
av + bv

2

)
εyy − (av − bv)εzz (2.134)

Pε −Qε = −
(
av − bv

2

)
εxx −

(
av − bv

2

)
εyy − (av + bv)εzz (2.135)
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2.4. SPIN-ORBIT COUPLINGS IN 2D SYSTEM

We added a subscript ϵ for strains. The D matrices in Eq. (2.129) can be extracted from

the Bir-Pikus Hamiltonian, and further, the deformation potentials can be experimentally

determined. The material-specific parameters av, bv, and dv are known as the hydrostatic

deformation potential constant, the uniaxial deformation potential constant, and the shear

deformation potential constant, respectively.

To demonstrate the influence on the band structures due to the Bir-Pikus Hamiltonians, we

ignore the shear strain (εxy, εxz, εyz) first. Then, we can see that when we apply a tensile

strain, we may be able to push the LH states into the ground states at the Brillouin Zone

center. By applying compressive strains, we can push the LH states into the excited states

at the Brillouin center. Similar to the S and R terms in the Luttinger-Kohn Hamiltonian,

the shear strains can further enhance the HH-LH mixing, which is an active research topic

to improve the coherence properties of the semiconductor quantum dot hole spin qubits.

2.4 Spin-orbit couplings in 2D system

The study of spin-orbit coupling effects originates from understanding the fine structure

of the hydrogen atom spectra [224]. A direct expansion of the Dirac equation in the weak

relativistic limit will give us the following terms:

H = mec
2 + P 2

2me
+ V (R) − P 4

8m3
ec

2 + 1
2m2

ec
2

1
R

dV (R)
dR L ·S + ℏ2

8m2
ec

2 ∆V (R) + · · · (2.136)

The first term is the rest mass energy, the second and third terms are the normal kinetic

energy and potential energy, which are the major contributions to the Hamiltonian. The

fourth term is the first-order correction to the kinetic energy, which depends only on the

momentum. The fourth term is the central topic of our discussion, which is the spin-

orbit coupling (spin-orbit coupling) term. The fifth term is the so-called Darwin term,

which is related to the spatial variation of the potential. Historically, even though we can

solve the hydrogen energy spectrum analytically without doing this expansion using Dirac

equations, it is still necessary to understand the possible interactions hidden in the Dirac

equation. Furthermore, the form of these interactions can be used to study many-electron
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systems as well, e.g., many crystals.

Symmetry analysis is a powerful tool to study the spin-orbit couplings in crystal systems,

since long-range ordered crystals possess numerous natural geometrical symmetries. Let

us start the symmetry analysis from the energy dispersion point of view. Considering that

the dispersion is invariant under spatial inversion operation, we have:

E(k, ↑) = E(−k, ↑) (2.137)

under time-reversal symmetry, we will have:

E(k, ↑) = E(−k, ↓) (2.138)

Then we can see that for a crystal which is invariant under spatial inversion and time-

reversal, we have at least a two-fold degeneracy:

E(k, ↑) = E(k, ↓) (2.139)

Now, let us maintain the time-reversal symmetry; if we break this inversion symmetry by

applying an asymmetric electric potential, we will no longer have equation Eq. (2.139). On

the other hand, without introducing any magnetic field, the spin degeneracy is also lifted

by this potential. Now we have two dispersion branches:

E+(k) E−(k) (2.140)

It is worth noting that the two dispersion branches are not due to spin splitting, which

is different from the spin-momentum locking mechanism in the quantum spin hall effect.

Therefore, we have used the signs + and − respectively.

In quasi-2D structures, like quantum wells or heterostructures, the inversion asymmetry

can be the consequence of bulk inversion asymmetry in certain crystal structures, such

as zinc-blende crystals, which do not have a well-defined inversion center. Many familiar

semiconductors are in this category, like GaAs, InAs, and InSb. Another possibility to

obtain inversion asymmetry, as mentioned above, is by adding an asymmetric electric

potential. This will induce spin-orbit couplings in crystals with inversion centers, such
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2.4. SPIN-ORBIT COUPLINGS IN 2D SYSTEM

as those with a diamond structure. Group four elements like silicon, germanium, and

carbon are all in this category. Interface inversion asymmetries are another important

source of spin-orbit couplings, which present challenges to estimate; however, it requires a

detailed analysis of the semiconductor architectures. Therefore, we have ignored this type

of spin-orbit couplings in our work.

It is important to note that breaking the inversion symmetry while maintaining time-

reversal symmetry is a crucial feature distinguishing spin-orbit couplings from magnetic

fields, even though both can cause band splitting. This feature plays an important role in

topological insulators. Since the major focus of our work is on diamond structure crystals

like silicon or germanium, we will only discuss the Rashba spin-orbit couplings, which are

the structure inversion asymmetries due to asymmetric electric potentials. The current

well-developed experimental techniques can already precisely tune the Rashba spin-orbit

couplings by applying gate electrodes, enabling many new designs of spin-orbit coupling

devices [143, 475, 252, 360, 156, 231].

Consider a perpendicular electric field applied along the z-direction (the growth direction):

V (z) = eFzz (2.141)

As introduced earlier, it is a standard quantum well design. We can solve the corresponding

Schrödinger equation in the z-direction:

− ℏ2

2m∗
∂2ψ(z)
∂z2 + V (z)ψ(z) = Eψ(z) (2.142)

Now we are dealing with a quasi-2D system. To illustrate some basic features of spin-orbit

couplings in this quasi-2D system, we introduce the spin-orbit coupling term in electron

systems first, and then we will discuss spin-orbit couplings in hole systems.

In 1984, Bychkov and Rashba proposed that in the Γ6 conduction band, the spin-orbit

coupling is given by the following form:

HSO = α(σ · k) × F (2.143)

69



CHAPTER 2. METHODOLOGY

where the components of σ are Pauli matrices, α is a material-specific coefficient, and F

is the gate electric field. Considering F = (0, 0, Fz), we have:

HSO = αFz(k−σ+ − k+σ−) = αFz

 0 ik−

−ik+ 0

 (2.144)

where

k+ = kx + iky, k− = kx − iky, σ+ = (σx + iσy)/2, σ− = (σx − iσy)/2 (2.145)

Considering the normal parabolic dispersion, we can plot the dispersion for two different

branches as shown in Fig. 2.4

The evaluation of the Rashba coefficient can be obtained by performing Löwdin partition-

ing perturbation calculations on the Kane Hamiltonian, which includes the conduction

band and the valence band.

Figure 2.4: Rashba spin-orbit coupling splitting There are two branches of disper-
sions as a function of kx and ky, the read arrow in the figures indicated the effective
magnetic field, which is alway tangential to the dispersion surface counter-clockwisely.
The expectation of the spin polarization is indicated in the figure as well, denoted by
green arrows. We can notice that the spin polarization is opposite for the two dispersions.
The original source of this figure is Ref. [548].

In 2D hole systems, strong confinement in the z-direction creates a finite gap between HH

states and LH states. The magnitude of this finite gap is material-specific and usually
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depends on their out-of-plane effective mass. A rough estimation of the HH-LH splitting

in a silicon 2D hole system is around 10 meV. Note that we have not included any strains

yet. The existence of shear strain will further renormalize the HH-LH splitting gap,

which is another important topic in current hole spin qubit research. Typically, the HH-

LH splitting gap is very large, providing a natural energy gap for performing Lowdin

partitioning renormalizations of our system. We can write down an effective Hamiltonian

to capture both the manifold we are interested in and the HH-LH mixing physics.

In our work, we focus on the HH manifold, which consists of the two lowest eigen-energy

states without deliberate application of strains. Performing Lowdin partitioning up to the

second order on our Hamiltonian, we get:

HSO = α2
(
k3

+σ− − k3
−σ+

)
+ α3

({
k2

+, k−
}
σ+ −

{
k+, k

2
−

}
σ−
)

(2.146)

The asymmetrical nature is hidden in the shape of the wave-functions like ψHH and ψLH,

which are the solutions of Eq. (2.142). Thus, the spin-orbit coupling coefficients can be

tuned electrically via the external electric field. These cubic k terms have been measured

experimentally, demonstrating that the k+k−k+ term winds around the Fermi surface

once, while the k3
+ term winds around the Fermi surface three times. These spin-orbit

couplings will be further discussed in the electrical dipole spin resonance sections.

2.5 Electric dipole spin resonance

Following the introductions above, we have known that the qubit is based on the lowest

two HH states. The next step is to understand which mechanism is available to allow

the transition of the qubit between these two states. Thanks to advanced solid-state

experimental techniques, the manipulations of quantum states in a two-level system using

resonances were demonstrated on various platforms, such as nuclear magnetic resonance

(NMR) in nuclear spin systems, electron cyclotron resonance (ECR) in plasma etchings,

electron spin resonance (ESR, also known as electron paramagnetic resonance, EPR) in

electron qubits.

71



CHAPTER 2. METHODOLOGY

The central idea of these resonance techniques is based on the couplings between external

fields (electric field, magnetic fields) and the orbital degree of freedom or the spin degree

of freedom. In crystals, due to the existence of the spin-orbit couplings, the resonance is

even more complicated [51, 149, 411, 144, 188, 64, 413, 99]. In this section, we will firstly

introduce some general concepts, including Larmor frequency formulism and Rabi oscil-

lations. Then we will introduce how the electron qubit state is manipulated by the ESR

technology and why it would not be effective in hole spin qubits. Finally, we will intro-

duce the electric dipole spin resonance mechanism in Group IV semiconductor quantum

dot hole spin qubits.

2.5.1 Larmour frequency

To understand the behaviors of the spin degree of freedom, we initially omit the orbital

motions, rendering our Hilbert space purely two-dimensional. It is essential to define the

gyromagnetic ratio, which is the ratio between the magnetic moment and the angular

momentum:

γ = µ

L
(2.147)

The magnetic moment of an electron spin can be calculated as follows:

µ = geµBs (2.148)

where s is the spin quantum number of the particle (which is 1/2 for electrons), q is the

charge, me is the bare electron mass, and ge is the Landé g-factor, which is assumed to

be 2 in our thesis, and we did not consider any interactions between the electrons and

vacuum electromagnetic fluctuations. µB is the well-known Bohr magneton:

µB = eℏ
2me

≈ 5.788 × 10−5 eV /T (2.149)

Now we can write down the Hamitonian for an electron in a magnetic field:

H = −µ · B = −γB · S (2.150)
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To simplify the algebra, we only consider the magnetic field component along the Bz axis:

H = −γBzSz = −γBzℏ
2

 1 0

0 −1

 (2.151)

The eigen-energies are E+ = − (γBzℏ) /2 and E− = (γBzℏ) /2, corresponding to the eigen-

states |↑⟩ and |↓⟩ respectively. The result indicates that when the magnetic dipole moment

is parallel to the magnetic field, the system has lower energy. Since the Hamiltonian is

time-independent, can solve the time evolution of the eigen-states (denoted by |χ⟩, which

can be either |↑⟩ or |↓⟩):

iℏ
∂ |χ⟩
∂t

= H |χ⟩ (2.152)

The solution is

|χ; t⟩ = a |↑⟩ exp
(

− i

ℏ
E+t

)
+ b |↑⟩ exp

(
− i

ℏ
E−t

)
=


a exp

(
i

2γBzt

)
b exp

(
− i

2γBzt

)
 (2.153)

where the constants a and b are determined by the initial states of the spinor:

|χ; 0⟩ =

a
b

 (2.154)

Using the trigonometric identities and the normalization condition, we can express our

spinor at time t as:

|χ; t⟩ =


cos
(
α

2

)
exp

(
i

2γBzt

)
sin
(
α

2

)
exp

(
− i

2γBzt

)
 (2.155)

The expectation values of the spin polarizations can be calculated using the given spinor

expression:

⟨Sx⟩ = ℏ
2 sin(α) cos (γBzt) (2.156)

⟨Sy⟩ = −ℏ
2 sin(α) sin (γBzt) (2.157)

⟨Sz⟩ = ℏ
2 cos(α) (2.158)
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The results indicate that the angle between the spin polarization ⟨S⟩ and the ẑ-axis is

invariant, but it follows a precessional motion with Larmor frequency ω = −γBz. Mean-

while, we notice that the energy gap of the two-level system is γB̂z, if we are able to

generate a signal whose frequency matches this energy gap, we will observe Rabi oscilla-

tions.

2.5.2 Rabi oscillations

Rabi oscillations were first studied in atomic physics when coherent light acts on an atom.

In this process, the atom periodically absorbs and re-emits photons, a phenomenon known

as Rabi oscillation. Now, let us derive the important Rabi frequency formula. Consider

a non-degenerate two-level system; without loss of generality, the Hamiltonian can be

spanned by Pauli matrices:

H = E0 · σ0 +W1 · σ1 +W2 · σ2 + ∆ · σ3 =

 E0 + ∆ W1 − iW2

W1 + iW2 E0 − ∆

 (2.159)

where E0 can be thought of as the energy scale of the system, ∆ is the major energy gap

of the two-level system, and W1 and W2 are the hopping energies. The eigenvalues of the

problem are:

E+ = E0 +
√

∆2 +W 2
1 +W 2

2 = E0 +
√

∆2 + ∥W∥2 (2.160)

E− = E0 −
√

∆2 +W 2
1 +W 2

2 = E0 −
√

∆2 + ∥W∥2 (2.161)

For E+, the eigenstate is

|u+⟩ =
[
a,−a (E0 + ∆ − E+)

W1 − iW2

]T

(2.162)

Useing the normalization condition, we can express the entries of the E+ eigenstate as

follows:

a = exp
(
i

2ϕ
)

cos
(
θ

2

)
b = exp

(
− i

2ϕ
)

sin
(
θ

2

)
(2.163)

where

sin θ = ∥W∥√
∆2 + ∥W∥2

cos θ = ∆√
∆2 + ∥W∥2

(2.164)
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2.5.2 Rabi oscillations

The E+ eigen-state becomes to

|u+⟩ =

 cos
(
θ

2

)
exp (iϕ) sin

(
θ

2

)
 = cos

(
θ

2

)
|0⟩ + exp (iϕ) sin

(
θ

2

)
|1⟩ (2.165)

Similarly, we have

|u−⟩ = cos
(
θ

2

)
|0⟩ − exp (iϕ) sin

(
θ

2

)
|1⟩ (2.166)

|0⟩ = cos
(
θ

2

)
|u+⟩ + sin

(
θ

2

)
|u−⟩ (2.167)

|1⟩ = exp (−iϕ) cos
(
θ

2

)
|u+⟩ − exp (−iϕ) sin

(
θ

2

)
|u−⟩ (2.168)

Assuming that the system starts evolving in the state |0⟩ at time t = 0:

|ψ; t = 0⟩ = |0⟩ = cos
(
θ

2

)
|E+⟩ + sin

(
θ

2

)
|E−⟩ (2.169)

The time-evoluation of the state can be written as:

|ψ; t⟩ = exp
(

−iĤt
ℏ

)
|ψ; t = 0⟩ = cos

(
θ

2

)
exp

(−iE+t

ℏ

)
|E+⟩ + sin

(
θ

2

)
exp

(−iE−t

ℏ

)
|E−⟩

(2.170)

We can evaluate the probability amplitude at time t for the state |1⟩:

⟨1|ψ; t⟩ = exp (iϕ) sin
(
θ

2

)
cos

(
θ

2

)(
exp

(−iE+t

ℏ

)
− exp

(−iE−t

ℏ

))
(2.171)

The probability is:

P0→1(t) = sin2 θ

4

(
2 − 2 cos

((E+ − E−) t
ℏ

))
(2.172)

which can be futher simplified to:

P0→1(t) = sin2(θ) sin2
((E+ − E−) t

2ℏ

)
= ∥W∥2

∆2 + ∥W∥2 sin2
((E+ − E−) t

2ℏ

)
(2.173)

The result shows that the probability is periodic, with a frequency:

ω =

√
∆2 + ∥W∥2

ℏ
(2.174)

In the case of a single spin in a magnetic field, this Rabi frequency is the same as the

precession frequency we derived in Subsection. 2.5.1.
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2.5.3 Electron spin resonance

We have observed that with a perpendicular magnetic field Bz, the energy undergoes

splitting, causing the spin to precess along the ẑ-direction. Now, when an additional

oscillating magnetic field Bx cos(ωt)x̂ is introduced into the system, the total Hamiltonian

will be:

H(t) = 1
2ℏγ(Bzσz +Bx cos(ωt)σx) (2.175)

It is a time-dependent Hamiltonian, which means:

[
H(t), H(t′)

]
̸= 0 (2.176)

Therefore, we cannot simply use time evolution operators to evolve the quantum state. To

solve this Hamiltonian, we can introduce the time-ordering operator T , or we can change

the frame of reference. We will now translate our problem into a frame of reference rotating

at the Larmor frequency. The new state, which is called unwound states, is:

∣∣ψ′; t
〉

= exp
(
i

2ωLσzt

)
|ψ; t⟩ (2.177)

Here, we use the dashed variable to indicate it is in the rotating frame, and we have added

a subscript L to indicate it is the Larmor frequency. The evolution of these states is still

governed by the Schrödinger equation:

iℏ
d
dt
∣∣ψ′; t

〉
= −1

2ℏωLσz

∣∣ψ′; t
〉

+ exp
(
i

2ωLσzt

)
iℏ

d
dt |ψ; t⟩ (2.178)

The last term can be written as:

exp
(
i

2ωLσzt

)
iℏ

d
dt |ψ; t⟩ = exp

(
i

2ωLσzt

)
H(t) |ψ; t⟩ (2.179)

then the total euqation can be expressed as:

iℏ
d
dt
∣∣ψ′; t

〉
=
(

−1
2ℏωLσz + exp

(
i

2ωLσzt

)
H(t) exp

(
− i

2ωLσzt

)) ∣∣ψ′; t
〉

(2.180)

which defines the Hamiltonian in the rotating frame:

H ′(t) = −1
2ℏωLσz + exp

(
i

2ωLσzt

)
H(t) exp

(
− i

2ωLσzt

)
(2.181)
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The last term can be calculated explicitly:

exp
(

i

2
ωLσzt

)
H(t) exp

(
−

i

2
ωLσzt

)
=

ℏ
2

γ

(
Bzσz + exp

(
i

2
ωLσzt

)
Bx cos(ωt) exp

(
−

i

2
ωLσzt

))
(2.182)

Notice the following relation:

cos(ωt)σx =
((
e−iωtσ+ + eiωtσ−

)
+
(
eiωtσ+ + e−iωtσ−

))
(2.183)

Where we have decomposed the σx into two counter-rotating circular waves. Now the

total Hamiltonian can be expressed as:

H ′(t) = ℏγ
2 B1

((
ei(ωL−ω)tσ+ + ei(ω−ωL)tσ−

)
+
(
ei(ω+ωL)tσ+ + e−i(ω+ωL)tσ−

))
(2.184)

If we apply a signal identical to the Larmor frequency, i.e., ω = ωL (resonance condition),

our Hamiltonian becomes:

H ′(t) = ℏγ
2 B1

(
(σ+ + σ−) +

(
e2iωLtσ+ + e−2iωLtσ−

))
(2.185)

Now, we need to introduce the rotating wave approximation (RWA) to ignore the second

term since it is oscillating so fast that its effect on the spin dynamics is negligible. The

Hamiltonian left has a very simple form:

H ′(t) = ℏγ
2 B1 (σ+ + σ−) = ℏγ

2 Bxσx (2.186)

Which describes a spin rotation in the x̂-direction, with frequency ωR = γBx/2, which is

called the Rabi frequency of ESR.

ESR technology finds extensive use in manipulating the spin states of electron qubits

[541, 28]. In experimental setups, a micromagnet is often integrated with the sample,

allowing the emission of oscillating magnetic signals into the system. ESR is particu-

larly effective for unpaired electrons, as the Pauli Exclusion Principle prevents a pair of

electrons from yielding zero magnetic momentum. Unpaired electrons, which contribute

to the paramagnetism of electrons, also give ESR another name: Electron Paramagnetic

Resonance (EPR) [480, 542, 12]. It serves as a powerful tool for controlling the spin states

of electron qubits. However, integrating micromagnets into semiconductor systems during

fabrication is a complex task [389, 479, 498]. Additionally, generating a sufficiently large
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magnetic field using micromagnets poses a significant challenge, raising concerns about

the scalability of electron qubits. Then, physicists were seeking an alternative approach,

using an electric field to control the spin states.

2.5.4 Electric dipole spin resonance

Magnetic dipole transitions are not the sole method for manipulating spin states. In hole

systems, the electric dipole spin resonance (electric dipole spin resonance) technique is

also widely employed. Instead of relying on magnetic dipole transitions induced by an

oscillating magnetic field, electric dipole spin resonance relys on the spin-orbit couplings

in semiconductor systems to facilitate electric dipole transitions driven by an oscillating

electric field [537, 530, 73]. Using an electric field offers several advantages. Firstly,

the magnitude of an electric field can be much larger, leading to faster Rabi oscillation

frequencies. Secondly, integrating electric circuits with semiconductor quantum dot hole

spin qubits is relatively straightforward. In this subsection, we first focus on electric dipole

spin resonance using an alternating in-plane electric field. Subsequently, we briefly discuss

some important features of electric dipole spin resonance.

Focusing on the HH submanifold, the effective Hamiltonian of the quantum dot will read:

H = H0 +HSO + V0 +HZeeman +HEac (2.187)

The first term represents the kinetic energy, the second term corresponds to the effective

Hamiltonian we derived in Sec. 2.4, the third term accounts for parabolic confinement, the

fourth term introduces an out-of-plane magnetic field that induces spin quantization along

the ẑ-direction, and the last term is an in-plane alternating electric field capable of inducing

electric dipole transitions. Since the magnetic field is applied along the ẑ-direction, the

primary contribution to the energy of this Hamiltonian is exactly solvable:

(H0 + V0) |ϕ⟩ = E |ϕ⟩ (2.188)

When applying a magnetic field, we need to perform a Peierls substitution for all the
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2.5.4 Electric dipole spin resonance

wave-vectors in Equation (2.187):

k → −i∇ − e

ℏ
A (2.189)

A carrier in an out-of-plane magnetic field is known as the Fock-Darwin problem. The

in-plane wave function is obtained by solving the Fock-Darwin Hamiltonian:

H = − ℏ2

2mHP

(
∂2

∂x2 + ∂2

∂y2

)
+ 1

2mHP

(
ω2

0 + 1
4ω

2
c

)
(x2 + y2) − 1

2ωclz (2.190)

Here, we define the cyclotron frequency as:

ωc = eBz

mHP
(2.191)

The ground state of the Hamiltonian is:

ϕ0(x, y) = 1
Ra,0

√
π

exp
(

−x2 + y2

2R2
0

)
(2.192)

Here, we introduce an important quantity known as the effective dot size, denoted as Ra,0:

Ra,0 =
√

ℏ
mHPΩ0

Ω0 =
√
ω2

0 + 1
4ω

2
c (2.193)

The ground state energy is

E0 = ℏΩ0 (2.194)

The excisted state wave-functions are:

ϕ±1(x, y) = 2
R2

0
√
π

(x± iy) exp
(

−x2 + y2

2R2
0

)
(2.195)

Their eigen-energies are:

E± = ℏΩ0 ± ℏ
2ωc (2.196)

Now we can treat all the other Hamiltonians in Eq. (2.187) as perturbations. Then we

revert to our standard Lödin partitioning problem once again, yielding two sets of states:

the ground state |ϕ0⟩ and the first excited states |ϕ+1⟩ and |ϕ−1⟩. It is worth noting

that there is one more hidden degeneracy, which is the pseudospin of the HH manifolds,

denoted by |↑⟩ and |↓⟩. The renormalization gap is ℏΩ0, which is the largest energy scale.

Then, we need to project the perturbation Hamiltonians HSO, HZeeman, HEac onto our

basis to obtain their matrix forms.
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Determining which matrix elements will be left is important for understanding electric

dipole spin resonance. Then, the matrix elements of the Zeeman Hamiltonian will only

appear along the diagonal elements, which are not listed. Several important features

should be noted here. First, in a circular quantum dot (where the confinement frequency

is the same for both the x̂-direction and the ŷ-direction), only the α2 linear Rashba term

is responsible for electric dipole transitions. On the other hand, the α3 Rashba term

winds the Fermi surface three times, enabling a ∆n = 3 orbital transition, whereas the α3

Rashba term winds the Fermi surface only once, inducing a ∆n = 1 Rashba term. Notably,

as mentioned in Sec. 2.4, the α2 Rashba spin-orbit coupling coefficient can be electrically

tuned through the gate electric field, serving as the foundation for achieving purely elec-

trical control of the spin states [439]. Finally, it is worth noting that elliptical quantum

dots can activate the α3 Rashba spin-orbit coupling coefficients, offering possibilities to

enhance the spin-orbit coupling effects through anisotropic geometry designs.

In the small magnetic field limit, we can expand the electric dipole spin resonance frequency

in the first order of Bz, which takes the following form:

|fR| = eEacα2gzµBBzm
2
xR

2
0

2πℏ5 (2.197)

The situation becomes more complicated when the magnetic field is oriented along the

in-plane directions (i.e., perpendicular to the gate electric field directions). Firstly, we no

longer have analytical expressions for H0 + V0, necessitating a detailed numerical scheme.

Additionally, the Löwdin partitioning method may not be accurate since the in-plane

magnetic field results in a smaller orbital splitting. This means that the two interacting

sets may not be weakly separated. In such cases, we can only evaluate the Rabi frequency

numerically:

fRabi = 1
h

∥⟨1|H|0⟩∥ (2.198)

where |1⟩, |0⟩ is the excited state and the ground state respectively, in the qubit HH

submanifold. Here we only present a superficial analysis and the Rabi frequency, in prac-

tice, there are many other quantities can play a role, such as strain profiles, anisotropic

dot geometries, growth directions, and external fields applied. Acheiving ultrafast Rabi

oscillations is a central topic in improving the coherence of the quantum computations.
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2.6 Phonon-hole interaction

Our electric dipole spin resonance Rabi frequency calculations demonstrated that in semi-

conductor quantum dot hole spin qubits, the spin manipulation times can reach tens of

nanoseconds. However, the electric dipole spin resonance Rabi time cannot solely charac-

terize the quality of the qubit; we also need to consider the relaxation decoherence time

and dephasing time (which will be introduced in the next section). The phonon-induced

relaxation is a dominant source of decoherence, particularly at high temperatures or in

large magnetic fields. The interactions between holes and phonons are unavoidable in

solid-state devices and difficult to mitigate with external fields.

In this section, we will first introduce the properties of phonons, followed by a discussion of

the phonon-hole interaction Hamiltonian. Then, we will establish a formalism to estimate

the phonon-induced relaxation time. Finally, we will examine several important aspects

of phonon relaxations.

2.6.1 Phonons

In the context of condensed matter physics, the complex intermolecular interactions deter-

mine the macroscopic behavior of a many-body system. A solid is formed when molecules

are organized in an ordered manner, and the collective motion of these molecules yields

low-energy excitations. These low-energy excitations are known as sound waves on the

macroscopic scale. From a quantum mechanical perspective, these sound waves corre-

spond to a quasi-particle called phonons. The nature of phonon collective excitations can

be illustrated using a classical model: a one-dimensional atomic chain with N atoms, with

periodic boundary conditions [15, 370, 130, 471, 26, 490, 283]. The unit atom, assumed to

have a mass m, are connected by springs with a spring constant k0, analogous to chemical

bonds. The interatomic distance at equilibrium is a0.
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The Lagrangian of this chain can be expressed as:

L = T − V =
N∑

n=1

[
m

2 ẋ
2
n − k0

2 (xn+1 − xn − a0)2
]

(2.199)

where xn represents the position of the atom at the n-th site. Focusing on low-energy

physics, we have disregarded the anharmonicities. To further investigate the dynamics of

the system, we now rewrite the Lagrangian in terms of the displacements, defined as

xn(t) = na0 + ϕn(t) (2.200)

where ϕn(t) denotes the displacement from the equilibrium position at the n-th site. The

Lagrangian now will read:

L =
N∑

n=1

[
m

2 ϕ̇
2
n − k0

2 (ϕn+1 − ϕn)2
]

(2.201)

The periodical boundary condition is translated to:

ϕN+1 = ϕ1 (2.202)

We can write the Euler-Lagrange equation for each atom; for instance, let us consider the

case of the n-th atom:

mϕ̈n = −ks (ϕn − ϕn+1) − ks (ϕn − ϕn−1) (2.203)

Taking ϕn(t) = eiωtϕn, we have:(
−mω2 + 2ks

)
ϕn − k0 (ϕn+1 + ϕn−1) = 0 (2.204)

The solution is plane-wave like:

ϕn = 1√
N
eikna k = 2πm

Na
N/2 ≤ m < N/2 (2.205)

We can get the dispersion relations:

ωk = 2

√
ks

m
| sin(ka/2)| (2.206)

In the low energy limit, which corresponds to the long wavelength limit, the system exhibits

linear dispersion as follows:

ωk = a

√
k0
m
k (2.207)
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Here, v represents the sound wave velocity, which is a result from the collective excitations

of the vibrating atomic chain. In the continuum limit, our theoretical framework can be

updated with the following transformations:

ϕn = ϕ(x), ϕn+1 − ϕn

a
= ∂ϕ(x)

∂x
,
∑

n

→ 1
a

∫ L

0
dx (2.208)

Subsequently, we immediately obtain our Lagrangian density for the displacement field:

L(ϕ̇, ϕ) = ρ

2

(
∂ϕ

∂t

)2
− 1

2κ0a
2∂

2ϕ

∂x2 (2.209)

where ρ = m/a and κ = k/a. Applying the Euler-Lagrange equation again yields:

ρ
∂2ϕ

∂t2
− κ0a

2∂
2ϕ

∂x2 = 0 (2.210)

This equation is a standard wave-type partial differential equation. The wave speed is

given by:

v = a

√
κ0
ρ

= a

√
k0
m

(2.211)

Performing Legendre transformations of the Lagrangian density, we have:

H(ϕ, π) = πϕ̇− L(ϕ̇, ϕ) = 1
2ρπ

2 + κsa
2

2 (∂xϕ)2 (2.212)

where the canonical momentum is:

π = ∂ϕ̇L(ϕ̇, ϕ) = ρϕ̇ (2.213)

In the canonical quantization method, we preserve the commutation relation:

[
π̂(x), ϕ̂

(
x′)] = −iℏδ

(
x− x′) (2.214)

The Hamiltonian will read:

Ĥ =
∫ L

0
dx

[
1
2ρπ̂

2 + κsa
2

2
(
∂xϕ̂

)2
]

(2.215)

Now we introduce the Fourier transformation for our field operators:

ϕ̂k = 1√
L

∫ L

0
exp(−ikx)ϕ̂(x) dx π̂k = 1√

L

∫ L

0
exp(ikx)π̂(x) dx (2.216)
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and their inverse Fourier transformation (since the wave-vectors are discrete):

ϕ̂(x) = 1√
L

∑
k

eikxϕ̂k π̂(x) = 1√
L

∑
k

e−ikxπ̂k (2.217)

From Eq. (2.6.1), we can see that: [
π̂k, ϕ̂k′

]
= −iℏδkk′ (2.218)

If we now write the Hamiltonian in Fourier space, we need to solve:∫ L

0
(∂ϕ̂)2 dx =

∑
k,k′

(
ikϕ̂k

) (
ik′ϕ̂k′

) 1
L

∫ L

0
ei(k+k′)x dx =

∑
k

k2ϕ̂kϕ̂−k (2.219)

Then our Hamiltonian will read:

Ĥ =
∑

k

[ 1
2ρπ̂kπ̂−k + 1

2ρω
2
kϕ̂kϕ̂−k

]
(2.220)

where the linear dispersion is preserved:

ωk = vk (2.221)

From this Hamiltonian, as expressed in Eq. (2.220), we observe that the one-dimensional

atomic chain can be equivalently described by a series of harmonic oscillators, each with a

distinct frequency. This model reveals that each oscillator mode encompasses all N atoms

in the chain, thereby highlighting the collective excitation nature of the system.

Drawing from the idea of using ladder operators to represent momenta and positions, we

can write down our creation and annihilation operators for phonons:

âk ≡
√
mωk

2ℏ

(
ϕ̂k + i

mωk
π̂−k

)
(2.222)

â†
k ≡

√
mωk

2ℏ

(
ϕ̂−k − i

mωk
π̂k

)
(2.223)

where: [
âk, â

†
k′

]
= δkk [âk, âk′ ] =

[
â†

k, â
†
k′

]
= 0 (2.224)

Then our phonon Hamiltonian will become to:

Ĥ =
∑

k

ℏωk

(
â†

kâk + 1
2

)
(2.225)

84



2.6.2 Hole-phonon interactions

The canonical commutation relations indicate that phonons are bosons, as they obey

Bose-Einstein statistics. Their number states can be written as:

|Ψ⟩ = 1√∏
i

ni!

(
â†

k1

)n1 (
â†

k2

)n2 · · · |0⟩ (2.226)

From Eq. (2.222) and Eq. (2.223), we can work out the displacement field operators in

position space:

ϕ̂(x) =
√

ℏ
2ρV ω

(
âk exp(ikx− iωt) + â†

−k exp(ikx+ iωt)
)

(2.227)

Which will be used again when we derive the hole-phonon interactions. Our derivations

above have shown that the vibrations of our solids can be conceptualized as particles called

phonons. Therefore, any changes in electronic properties related to lattice vibrations can

be translated into a problem of phonon interactions. The well-established many-body

theory of phonons allows us to treat them as quasi-particles, thereby avoiding complicated

reasoning about microscopic degrees of freedom in a low-energy regime. There are several

important features to notice. Firstly, at low energies with long phonon wavelengths, when

k → 0, phonon excitations can have vanishingly small energy, referred to as massless

particles. This is a generic consequence of the Nambu-Goldstone theorem, where breaking

a continuous symmetry (as per Bloch theorem) generates massless collective excitations.

However, it is important to note that since our discussion is limited to a mono-atomic

system, we did not encounter optical phonons, which are not Nambu-Goldstone bosons.

They are consequences of the diatomic structure in the atomic chain. A typical phonon

spectrum is shown in the Fig. 2.5

2.6.2 Hole-phonon interactions

To derive the hole-phonon interactions in Group IV elements, we must consider several

features of phonons in these elements to simplify the calculations. Firstly, since Group IV

semiconductor systems are mono-atomic, we do not need to consider any hole-phonon in-

teractions in the optical branch. Secondly, as germanium and silicon systems are non-polar
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Figure 2.5: Phonon spectrum of the 2D graphene The phonon spectrum of the 2D
graphene. We have labelled the three different acoutisc phonon branches in the figure, the
longitudinal phonon dipsersion is denoted as LA, the first transversal phonon dispersion
is denoted as TA, the second transveral phonon dipsersion is denoted as ZA. They are the
consequence of the Nambu-Goldstone theorem, which will be the main focus of our work.
There are also three branches of optical phonons labelled by TO, LO, and ZO respectively.
The original source of this figure is Ref. [559].
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molecules, they will not induce any piezoelectric phonons. This simplifies the estimation

of relaxation decoherence times [56]. Based on these two features, our hole-phonon inter-

actions will solely involve the local displacements of the lattice. In the last subsection, we

did not discuss anything in a three-dimensional lattice. Now, we will include all three po-

larization directions a phonon can have in such a lattice. Firstly, to determine the direction

of polarizations, we select the longitudinal polarization, which is parallel to the phonon

wave-vector (To distinguish between the wave-vector k and the phonon wave-vector q, we

will use q to denote the phonon in the following derivations, unless specified deliberately):

êl = q−1 (qx, qy, qz) = (sin θ cosφ, sin θ sinφ, cos θ) (2.228)

In this context, θ is the azimuthal angle, and φ is the polar angle. We use q to denote

the magnitude of the phonon wave-vector. The components of a phonon wave-vector in

Cartesian coordinates are qx, qy, and qz. To obtain the other two transverse branches, we

rotate the frame by π/2, yielding two orthogonal directions. For the Transverse Acoustic

Branch 1, this involves a rotation of θ by π/2.

êt1 = q−1
(
q2

x + q2
y

)− 1
2
(
qxqz, qyqz,−

(
q2

x + q2
y

))
= (cos θ cosφ, cos θ sinφ,− sin θ) (2.229)

Transverse Acoustic Branch 2 is obtained by rotating the ϕ by π/2:

êt2 =
(
q2

x + q2
y

)− 1
2 (qy,−qx, 0) = (− sinφ, cosφ, 0) (2.230)

êt2 =
(
q2

x + q2
y

)− 1
2 (qy,−qx, 0) = (− sinφ, cosφ, 0) (2.231)

The form of the hole-phonon interaction is analogous to the Bir-Pikus Hamiltonian. This
similarity arises because both are derived from the k · p theory, which describes the local
deformation of the lattice. However, a key distinction should be noted: while the Bir-Pikus
Hamiltonian focuses on the strain applied by the external environment, the hole-phonon
Hamiltonian is intrinsic to the solid, characterized by local deformations as detailed in
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Eq. (2.227). The structure of the hole-phonon interaction Hamiltonian is:

Hhp,α =



Pε,α + Qε,α 0 −Sε,α Rε,α − 1√
2

Sε,α

√
2Rε,α

0 Pε,α + Qε,α Rα∗
ε Sα∗

ε −
√

2Rα∗
ε − 1√

2
Sα∗

ε

−Sα∗
ε Rε,α Pε,α − Qε,α 0 −

√
2Qε,α

√
3
2Sε,α

Rα∗
ε Sε,α 0 Pε,α − Qε,α

√
3
2Sα∗

ε

√
2Qε,α

− 1√
2

Sα∗
ε −

√
2Rε,α −

√
2Qα∗

ε

√
3
2Sε,α Pε,α 0

√
2Rα∗

ε − 1√
2

Sε,α

√
3
2Sα∗

ε

√
2Qα∗

ε 0 Pε,α



(2.232)

We use the subscript α to denote the considered polarization, where α ∈ l, t1, t2. Having

determined the form of each element in Eq. (2.6.1), our next step is to evaluate the strains.

For instance:

Pε,α = −av (εxx + εyy + εzz) (2.233)

Where av represents the hydrostatic deformation potential constant, the local deformation

is described by the derivative of the displacement field u(r):

εi,j = 1
2

(
∂ui(x)
∂xj

+ ∂uj(x)
∂xi

)
(2.234)

The displacement field operator was previously introduced in Eq. (2.227). Now, we simply
need to use its three-dimensional version and multiply it with a polarization vector.

uα = ϕ̂(x)α(x, t)êα =

√
ℏ

2ρV ωα

(
âα,q exp(iq · x − iωt) + â†

α,−q exp(iq · x + iωt)
)
êα (2.235)

To evaluate the strain, we simply insert Eq. (2.235) into Eq. (2.234). This substitution

yields the following expression:

εα(x, t) = iq

√
ℏ

2ρV ωα

(
âα,q exp(iq · x − iωt) + â†

α,−q exp(−iq · x + iωt)
)
ϵα (2.236)

where ϵ is a matrix, in Cartesian coordinates with q̂ = (qx/q, qy/q, qz/q), we enumerate

all the possible ϵ matrices for different polarization directions:

ϵl = 1
2


2q

2
x

q2 2qxqy

q2 2qxqz

q2

2qyqx

q2 2
q2

y

q2 2qyqz

q2

2qzqx

q2 2qzqy

q2 2q
2
z

q2


=



q2
x

q2
qxqy

q2
qxqz

q2

qyqx

q2
q2

y

q2
qyqz

q2

qzqx

q2
qzqy

q2
q2

z

q2


(2.237)
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ϵt1 = 1
2



2 q2
xqz

q2
√
q2

x + q2
y

2 qxqyqz

q2
√
q2

x + q2
y

qxq
2
z − qxq

2
x − qxq

2
y

q2
√
q2

x + q2
y

2 qxqyqz

q2
√
q2

x + q2
y

2
q2

yqz

q2
√
q2

x + q2
y

qyq
2
z − qyq

2
x − qyq

2
y

q2
√
q2

x + q2
y

qxq
2
z − qxq

2
x − qxq

2
y

q2
√
q2

x + q2
y

qyq
2
z − qyq

2
x − qyq

2
y

q2
√
q2

x + q2
y

−2
qz(q2

x + q2
y)

q2
√
q2

x + q2
y


(2.238)

ϵt2 = 1
2



−2 qxqy

q
√
q2

x + q2
y

q2
x − q2

y

q
√
q2

x + q2
y

− qyqz

q
√
q2

x + q2
y

q2
x − q2

y

q
√
q2

x + q2
y

2 qxqy

q
√
q2

x + q2
y

qxqz

q
√
q2

x + q2
y

− qyqz

q
√
q2

x + q2
y

qxqz

q
√
q2

x + q2
y

0


(2.239)

Using spherical coordinates can be beneficial for certain calculations, so we have also listed

them here:

ϵl = 1
2


2 sin2 θ cos2 φ sin2 θ sin 2φ sin 2θ cosφ

sin2 θ sin 2φ 2 sin2 θ sin2 φ sin 2θ sinφ

sin 2θ cosφ sin 2θ sinφ 2 cos2 θ

 (2.240)

ϵt1 = 1
2


sin 2θ cos2 φ 1

2 sin 2θ sin 2φ cos 2θ cosφ
1
2 sin 2θ sin 2φ sin 2θ sin2 φ cos 2θ sinφ

cos 2θ cosφ cos 2θ sinφ − sin 2θ

 (2.241)

ϵt2 = 1
2


− sin θ sin 2φ sin θ cos 2φ − cos θ sinφ

sin θ cos 2φ sin θ sin 2φ cos θ cosφ

− cos θ sinφ cos θ cosφ 0

 (2.242)

Taking the longitudinal polarization direction as an example, we have:

εxx = i
q2

x

q

√
ℏ

2ρV ωα

(
âα,q exp(iq · x − iωt) + â†

α,−q exp(iq · x + iωt)
)

(2.243)

We are now in a position to reformulate the hole-phonon interaction Hamiltonian as fol-

lows:

Hhp,α = Dxxεα,xx +Dxyεα,xy +Dxzεα,xz +Dyyεα,yy +Dyzεα,yz +Dzzεα,zz (2.244)
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We have omitted the polarization indices for the D matrices, as they remain identical
across different polarization directions.

D11 =



−
(
av + bv

2

)
0 0

√
3

2 bv 0
√

3
2bv

0 −
(
av + bv

2

) √
3

2 bv 0 −
√

3
2bv 0

0
√

3
2 bv −

(
av − bv

2

)
0 bv√

2
0

√
3

2 bv 0 0 −
(
av − bv

2

)
0 − bv√

2

0 −
√

3
2bv

bv√
2

0 −av 0√
3
2bv 0 0 − bv√

2
0 −av



(2.245)

D12 =



0 0 0 −idv 0 −i
√

2dv

0 0 idv 0 −i
√

2dv 0

0 −idv 0 0 0 0

idv 0 0 0 0 0

0 i
√

2dv 0 0 0 0

i
√

2dv 0 0 0 0 0


(2.246)

D13 =



0 0 dv 0 dv

2 0

0 0 0 −dv 0 dv√
2

dv 0 0 0 0 −
√

3
2dv

0 −dv 0 0 −
√

3
2 0

dv√
2

0 0 −
√

3
2 0 0

0 dv√
2

−
√

3
2dv 0 0 0



(2.247)

D22 =



−
(
av + bv

2

)
0 0 −

√
3

2 bv 0 −
√

3
2bv

0 −
(
av + bv

2

)
−

√
3

2 bv 0
√

3
2bv 0

0 −
√

3
2 bv −

(
av − bv

2

)
0 bv√

2
0

−
√

3
2 bv 0 0 −

(
av − bv

2

)
0 − bv√

2

0
√

3
2bv

bv√
2

0 −av 0

−
√

3
2bv 0 0 − bv√

2
0 −av



(2.248)
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D23 =



0 0 −idv 0 −i dv√
2

0

0 0 0 −idv 0 i
dv√

2

idv 0 0 0 0 i

√
3
2dv

0 idv 0 0 −i
√

3
2dv 0

i
dv√

2
0 0 i

√
3
2dv 0 0

0 −i dv√
2

−i
√

3
2dv 0 0 0



(2.249)

D33 =



−(av − bv) 0 0 0 0 0

0 −(av − bv) 0 0 0 0

0 0 −(av + bv) 0 −
√

2bv 0

0 0 0 −(av + bv) 0
√

2bv

0 0 −
√

2bv 0 −av 0

0 0 0
√

2bv 0 −av


(2.250)

In this way, our hole-phonon interaction Hamiltonian can be written as

Hhp,α =
∑
(i,j)

Dijεij

[
iq

√
ℏ

2ρV ωα

(
âα,q exp(iq · x − iωt) + â†

α,−q exp(iq · x + iωt)
)]

(2.251)

where (i, j) denotes the non-repeating index pairs such as xx, xy, xz, implying that pairs

like yx, yz are excluded from the summation.

We only need to consider the hole-phonon interaction induced relaxation time, which is an

advantage of semiconductor quantum dot hole spin qubits based on Group IV elements.

In group III-V elements, we have to consider the piezo-electric effect induced phonons

due to their non-polar nature of the crystal structure; the in-homogeneous distortion of

the lattice can create an internal electric fields, which will further affect the carrier band

structures.

2.6.3 Phonon induced docoherence time

The phonon-induced decoherence time, T1, can be estimated from the hole-phonon inter-

action Hamiltonian using Fermi’s golden rule. This estimation considers that the qubit

interacts with the vibrations of the solid, or equivalently, with a thermal bath of bulk
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acoustic phonons with energy ℏωα. Qubit relaxation occurs when a phonon carries energy

equal to the energy splitting between the qubit ground state and its first excited state.

We denote the first excited state of the qubit as |1⟩ and the ground state as |0⟩. We will

not specify the explicit form of these states, as they are device-specific. Examples will be

provided in the following chapters.

First, we examine the phonon absorption process, wherein a phonon is absorbed by the

qubit, facilitating the transition from the ground state |0⟩ to the excited state |1⟩:

Γ+ = 2π
ℏ
∑

α

∫
∥⟨0, Nα(q)|Hhp,α|1, Nα(q) + 1⟩∥2δ(E1 − E0 − ℏωα) V

(2π)2 d3q (2.252)

where Nα represents the phonon occupation number along the polarization direction α,

following the Bose-Einstein statistics; and V/(2π)3 denotes the density of states in the

reciprocal space. The relaxation rate for the phonon emission process can be expressed as

follows:

Γ− = 2π
ℏ
∑

α

∫
∥⟨1, Nα(q) + 1|Hhp,α|0, Nα(q)⟩∥2δ(E1 − E0 − ℏωα) V

(2π)2 d3q (2.253)

The total relaxation rate is given by:

Γ = Γ+ + Γ− (2.254)

From these expressions, it is evident that the behavior of the phonon-induced relaxation

time is quite complex. It depends on several factors: the shape of the qubit wave-functions

(|0⟩ and |1⟩, which already incorporate spin-orbit physics), the temperature (as reflected in

Nα(q)), and the phonon propagation speeds (via ωα = qvα). Additionally, it is important

to note that our current formalism is based on bulk structures. For one-dimensional nano-

wires or two-dimensional thin films, we need to modify our expressions by applying the

correct phonon boundary conditions and replacing the integrations with summations.

In recent experiments, long relaxation times 30 ms have been observed in Ref. [275], a

germanium semiconductor quantum dot hole spin qubit system. Now, more scientisits are

working on the long relaxation time in higher temperature regimes, which is the next stage

for scalable quantum computations.
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2.7 Charge dephasing

Hole spin qubits benefit from rapid electrical manipulation via spin-orbit couplings, how-

ever, they are also susceptible to electrical noise, leading to couplings between the qubit

and stray fields and defects within the device [323, 55, 68]. In the last section, we focused

on phonon relaxation time, treating our qubit states as a two-level system, and estimated

the timescale of information loss in the qubit. Concurrently, there are two other important

timescales: the dephasing times, commonly denoted as T2 and T ∗
2 which have their roots

in nuclear magnetic resonance experiments as we introduced in Section. 1.1.

In this section, we will analyze common dephasing mechanisms present in Group IV hole

spin qubits based on SQDs. Initially, we introduce the fundamental concepts of T2, known

as the transverse dephasing time due to ẑ-noise, measurable via Hahn echo experiments.

Subsequently, we will discuss T ∗
2 , which accounts for the spatial inhomogeneous broad-

ening of the external field and can be measured using Ramsey experiments [430]. After

introducing these concepts, our focus shifts to the T ∗
2 dephasing time, discussing its ori-

gins in SQD systems. Finally, we present the necessary formulas to estimate the dephasing

time for Group IV hole spin qubits based on SQDs and comment on improving dephasing

times guided by our formulations.

2.7.1 Transverse dephasing time

In our model developed in Sec. 2.5, we established that the spin polarization precesses with

the Larmor frequency ω = −γBz. An intriguing question arises when we consider adding

a noise term, δBz(t), to the out-of-plane magnetic field (which serves as the quantization

axis). This scenario is highly relevant in all semiconductor devices, with potential noise

sources including paramagnetic impurities, surrounding nuclear spins, and temperature

fluctuations [30, 415, 560, 387, 561, 344, 448]. To comprehend how this noise influences

our precession dynamics, we need to incorporate a noise term like:

H = −γℏ(Bz + δBz(t))σz (2.255)
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As the correction due to the noise term is linear, the results we derived in Sec. 2.5 will

simply incorporate an additional noise term:

ω0 = −γBz δω(t) = −γδBz(t) (2.256)

To simplify the algebra, let us assume that we can prepare our state at t = 0 as follows:

|Ψ; t = 0⟩ = 1√
2

|↑⟩ + 1√
2

|↓⟩ (2.257)

After free evolutions:

|Ψ; t⟩ = 1√
2

[
exp
(

− i

2ω0t− i

2

∫ t

0
δω(t′) dt′

)
|↑⟩ + exp

(
i

2ω0t+ i

2

∫ t

0
δω(t′) dt′

)
|↓⟩
]

(2.258)

Applying the frame of reference transformation techniques introduced in Sec. 2.5-2.5.3,

we obtain the following result:

|Ψ; t⟩ = 1√
2

[
exp

(
− i

2δΩ(t)
)

|↑⟩ + exp
(
i

2δΩ(t)
)

|↓⟩
]

(2.259)

where:

δΩ(t) =
∫ t

0
δω(t′) dt′ (2.260)

Now, to gain a deeper understanding of the behaviors of the transverse dephasing time,

it is necessary to specify a model for our noise spectrum, particularly defining how δω(t)

behaves. For a basic estimation, let us assume that δω(t) possesses an infinitesimally

short correlation time. Under this assumption, the noise spectrum Sδω(t) would resemble

random white noise. Consequently, the phase as described in Eq. (2.260) would undergo a

non-stationary random walk diffusion, akin to the Wiener-Levy process shown in Fig. 2.6.

If our interest is confined to the correlations within a single gate operation time T , then

we can deduce:

⟨δΩ(t+ τ)δΩ(t)⟩ =
∫ t+τ

0

∫ t

0

〈
∆ω

(
t′
)

∆ω
(
t′′
)〉
dt′dt′′ (2.261)

To evaluate the correlation, we must utilize the properties of the noise, specifically its

statistical stationarity and ergodicity. Consequently, we can express the correlation as a
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2.7.1 Transverse dephasing time

Figure 2.6: Wiener-Levy process in dephasings. A non-stationary random walk
means that the mean value and the standard deviations can vary with time. In this white
noise mode, the phase is increasing with time and the state will loss its coherence. The
original source of this figure is Ref. [558].

time average:

〈
δω
(
t′
)
δω
(
t′′
)〉

= lim
T →∞

1
T

∫ T
2

− T
2

δω(t+ τ)δω(t)dt

= 1
2π

∫ ∞

0
Sδω(t)(Λ) cos(Λτ) dΛ

(2.262)

Then we have:〈
δω(t)2

〉
= 1
π
Sδω(t)(Λ = 0)

∫ ∞

0

1
Λ2 [1 − cos(Λt)] dΛ = 1

2Sδω(t)(Λ = 0)t (2.263)

Again, we have assumed that Sδω is a white noise so that only the zero-frequency spectral

density will be relavant. If we introduce a phase diffusion constant DδΩ by:〈
δΩ(t)2

〉
= 2DδΩt ⇒ DδΩ = 1

4Sδω(Λ = 0) (2.264)

under the assumption that Sδ(ω) represents white noise, only the zero-frequency spectral

density is relevant. We can introduce a phase diffusion constant, DδΩ, defined as follows:

⟨↑|ρ|↓⟩ = 1
2
〈
eiδΩ(t)

〉
= 1

2 exp(−DδΩ(t)) (2.265)

which is a exponentially decaying term, with a time constant:

T2 = 1
DδΩ

= 4
Sδω(Λ = 0) (2.266)
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This decay constant of time, based on the simplest white noise model, reveals the central

idea of the transverse dephasing time T2: the noise in the ẑ-direction will destroy the

coherence of the phase. In our simple calculations, we have only considered a spatially

homogeneous DC magnetic field Bz. However, if it becomes an inhomogeneous DC mag-

netic field in a system with multiple qubits, various Larmor frequencies will exist in the

system, leading to another dephasing effect across the entire system. These spatial inho-

mogeneities in the DC field broadening are referred to as T ∗
2 , which will be the focus of

our study, a difference between the two dephasing time constant can be demonstrated in

Fig. 2.7.

Figure 2.7: T2 dephasing time and T ∗
2 dephasing time. When t=0, our system is in

phase cempeletely, due to the coupling between the noise and the system, the dephasing
start to appear. The original source of this figure is Ref. [418].

To estimate realistic dephasing times, several extra efforts can be made. Firstly, we can

explore various other noise spectrum models to describe the magnetic environmental noise

[540]. For example, 1/f noise will dominate at low frequencies due to random telegraph

noise [141, 87, 409, 363]. At higher frequencies, quantum fluctuations become more signifi-

cant. In the following sections, we will concentrate on the low-frequency random telegraph

noise and delve into the specifics of this noise in Group IV hole spin qubits based on SQDs.
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2.7.2 Random telegraph noise

In the semiconductor fabrication process, reducing charge defects remains a challeng-

ing task. This is particularly critical in devices with few carriers, such as silicon metal-

oxide-semiconductor-field-effect transistors (MOSFETs), where defects can trap and sub-

sequently re-emit carriers [514]. This discrete switching in the resistance of devices is

known as random telegraph noise (RTN). Studies on RTN have demonstrated that it can

be a microscopic origin of the low-frequency 1/f noise in these devices [21]. Recent experi-

ments utilizing conductance techniques have identified two classes of interface defects: the

first class includes those typically observed at the interface, characterized by a single time

constant; the second class consists of defects residing in the oxide layer, exhibiting a wide

range of time constants and contributing to the 1/f noise. For example, in Semiconduc-

tor Quantum Dots (SQDs), the dangling bond charge traps, often resulting from lattice

parameter mismatches in heterostructure fabrication, can be a source of RTN. Similarly,

dipole charge defects due to polar molecules, like in SiO2, also contribute to RTN.

A standard RTN observed in devices will look like Fig. 2.8. We can model the high-current

state of this spectrum as state 1, and the low-current state as 0. Now we demonstrate that

the discrete switching of the resistance is a Poisson process [34, 176]. Firstly, we denote

the transition probability from state 1 to 0 is given by 1/τ1→0, the transition probability

from state 0 to 1 is given by 1/τ0→1. The transitions is instantaneous.

Consider the probability expressed as p(t) dt, which corresponds to the scenario where

the system remains in state 1 during the interval t and then transitions between t and

t + dt. Meanwhile, the probability denoted as A(t) represents the case where the system

experiences no transition during the time interval t. Therefore, the probability p(t) can

be described as the product of A(t) and 1
τ1→0

.

p1(t) = A(t)
τ1→0

(2.267)

The probability that there is no transition during the interval t+ dt can be expressed as
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Figure 2.8: Random telegraph noise signal measured in a MOS device. a). The
signal measured from the device. b). Time averaging of the signal. c). The residual plot
of the random telegraph noise signal. The original source of this figure is Ref. [402].

follows:

A(t+ dt) = A(t) ×
(

1 − dt
τ1→0

)
(2.268)

Namely, the product of not having transition in time interval t and not having transition

sequentially in dt interval. We can rewrite Eq. (2.268) as:

dA(t)
dt = −A(t)

τ1→0
(2.269)

Solving this ordinary differential equation, we will have:

A(t) = exp
(

− t

τ1→0

)
(2.270)

With boundary condition A(0) = 1. Then we can solve for p1:

p1(t) = 1
τ1→0

exp
(

− t

τ1→0

)
(2.271)

From this result, it becomes evident that the switching time follows an exponential dis-

tribution. The mean time for which the system remains in state 1 can be calculated

as: ∫ ∞

0
tp1(t) dt = 1

τ1→0
(2.272)
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and the squared standard deviation is:∫ ∞

0
t2p1(t) dt− τ2

1→0 = τ2
1→0 (2.273)

Repeating the whole derivation for the 0 → 1 process, we can obtain the same result.

Therefore, we have demonstrated that the RTN switching process is Poisson distributed.

Next, we demonstrate that this Poisson-distributed RTN can generate a 1/f -like spectrum.

Consider a model where a carrier falls into a charge trap, as described by RTN. The

probability of observing m RTN signals in the time interval T is given by:

p(m,T ) = (rT )m

m! exp(−rT ) (2.274)

where r is the transition rate. Assuming t̃1 and t̃0 represent the mean times the system

stays in state 1 and state 0, respectively, the probability density for the duration in state

1 is given by:

p(t+) = 1
t̃1

exp
(

− t1
t̃1

)
(2.275)

Now consider the waveform x(t), which has an amplitude a. The product x(t)x(t+ τ) will

be a2 when there is an even number of transitions, and −a2 when there is an odd number

of transitions in the time interval τ . Consequently, the auto-correlation function can be

expressed as:

fx(τ) = a2[p(0) + p(2) + ...] − a2[p(1) + p(3) + ...] = a2 exp(−2rT ) (2.276)

Then we can calculate the power spectrum, using the Wiener-Khintchine theorem:

Sx(ω) = 4
∫ ∞

0
fx(τ) cos(ωt) dτ = a2 4r0

1 + ω2r2
0

(2.277)

where r0 = 1/2r is the time constant related to the charge trap. Then we can evaluate

the total carrier number fluctuations:

Sn(ω) = 4fn(τ = 0)
∫ ∞

0

r0p(r0)
1 + ω2r2

0
dr0 (2.278)

Now we introduce a model that describe the time taken to arrive at the trap:

r0 = A0 exp(B0d) (2.279)
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where d is the distance between the conducting layer and the charge trap, located between

d1 and d2. We can then express the probability as:

p(r0) = 1
r0

1
ln r2/r1

r1 < r0 < r2 (2.280)

Now we can perform the integration of the total number fluctuations:

Sn(ω) = 4fn(0)
ln r2/r1

∫ r2

r1

1
1 + ω2r2

0
dr0 = 4fn(0)

ln r2/r1

arctan(ωr2) − arctan(ωr1)
ω

(2.281)

2.7.3 Charge trap and dipole defects

Now that we have understood the significance of RTN and how it contributes to dephasing,

our focus shifts to Group IV SQDs. In this subsection, we will delve into the properties

of charge traps and dipole charge defects, as well as their formation mechanisms within

SQDs.

Figure 2.9: Formations of a charge defect in SiGe-Si layer. Misfit dislocations are
due to missing or dangling bonds in the lattice between two layers with different lattice
constant. The original source of this figure is Ref. [97].

During the fabrication of semiconductor samples, such as SiGe-Ge-SiGe heterostructures

or silicon MOSFETs, a mismatch in lattice parameters is inevitable [168, 174, 492, 40, 39,

445]. This mismatch creates regions with missing bonds, which act as traps – these are

practical examples of the traps considered in the previous sections. A demonstration of
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the formation of the charge traps is shown in Fig. 2.9. These charge traps can capture

carriers and then re-emit them, leading to what is known as a tunneling two-level system.

Building on the theory established in the last subsection, we can describe this switching

charge trap using an effective potential:

V (t) = V (−1)N(t) (2.282)

Where N(t) is a Poisson variable, as we have demonstrated, taking values of either 0 or

1, with a switching time τ . The specific form of this potential is another critical topic

in device modelling, which we will address in subsequent subsections. Notably, since this

potential depends on position, a single charge trap can affect qubits differently within

the system [104, 102, 33], playing a role analogous to the inhomogeneous magnetic field

introduced in Sec. 2.7.1. Therefore, we will denote all the dephasing times calculated here

as T ∗
2 . Furthermore, derivations from Eq. (2.278) to (2.281) indicate that the activated

charge traps are typically situated close to the conduction channels, or in other words,

near the interface and around the undepleted region.

The existence of dipole moments in many materials also contributes to charge noise, known

as dipole charge defects [574, 534, 8, 321, 145, 369]. These defects arise from asymmetric

bonding, material polarities, and sometimes the presence of defects and impurities. Such

dipoles can randomly flip polarities. Similar to single charge traps, dipole charge defects

are often located near the interface. The study of dipole charge defects remains an active

area of research, particularly due to the complexity of their formation mechanisms.

2.7.4 Screened Coulomb potential

To estimate the T ∗
2 due to charge defects for semiconductor quantum dot hole spin qubits,

we need to revise our derivations in Eq. (2.7.1), where the noise signals are replaced by

charge defect-defined potentials V :

H = H0 + 1
2V (−1)N(t)σz (2.283)
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with this model, we can evaluate the spin polarization expectations again:

⟨Sx(t)⟩ = Tr{σxρ} (2.284)

where ρ is the density matrix describing the qubit-noise system. Using the similar tech-

niques we mentioned in Sec. 2.7.1, we find:

δΩ(t) = V

ℏ

∫ t

0
(−1)N(t) dt′ (2.285)

and

⟨Sx(t)⟩ = S0 ⟨cos δΩ(t)⟩ (2.286)

where we have:

⟨cos δΩ(t)⟩ = e−t/τ

 sinh
(

(t/ℏ)
√

(ℏ/τ)2 − V 2
)

τ
ℏ
√

(ℏ/τ)2 − V 2
+ cosh

(
(t/ℏ)

√
(ℏ/τ)2 − V 2

) (2.287)

If we assume the switching time τ is the largest time scale of the system, we have:√(ℏ
τ

)2
− V 2 ≈ ℏ

τ

(
1 − V 2τ2

2ℏ2

)
(2.288)

which can give us:

⟨cosh(t)⟩ = exp
(

−V 2τ

2ℏ2 t

)
(2.289)

From here we can extract our motional narrowing dephasing time:

T ∗
2 = 2ℏ2

V 2τ
(2.290)

Now the major task becomes to find a the best model for the defect potential V .

A first guess of a carrier in a charge trap is the standard Coulomb potential:

Vc = 1
4πϵ0ϵr

1
∥r − rD∥2 (2.291)

Where ϵ0 is the vacuum permittivity, ϵr is the relative permittivity, and rD denotes the

location of the defect. Even though this model already reduces the magnitude of the

Coulomb potential by a factor of ϵr in media, it still represents a long-range interaction

due to the 1/r term. In semiconductors, the charge trap, buried within the stacking
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materials at a distance d, is screened by the surrounding carriers. Particularly when

focusing on the static response to long wavelengths, the Thomas-Fermi screened potential

becomes a more apt model [211, 273, 293]:

Uscr(q) = e2

2ϵ0ϵr
e−qd


Θ (2kF − q)
q + qTF

+ Θ (q − 2kF )

q + qTF

1 −

√
1 −

(2kF
q

)2


 (2.292)

where d is distance between the carrier and the interface, qTF is the Thomas-Fermi wave

vector:

qTF = me2

2πϵ0ϵrℏ2 (2.293)

kF is the Fermi wave vector, Θ is the Heaviside step functions. As we only focus on the

long wavelength limit, we can drop the second part:

Uscr(q) = e2

2ϵ0ϵr
e−qd 1

q + qTF
(2.294)

While the potential has a closed form in momentum space, its inverse Fourier transfor-

mation does not yield a closed form in real space. Therefore, to evaluate the potential

magnitude, we can resort to either numerical schemes or asymptotic expansion:

Uscr(r) = e2

4πϵ0ϵr
1
q2

TF

1
∥r − rD∥3 + e2

4πϵ0ϵr
1
qTF

d

∥r − rD∥3 (2.295)

Although this new model still represents a power potential without the exponential screen-

ing typically caused by carriers, it is important to note that we are dealing with a two-

dimensional case [22, 69, 456, 15]. In such a scenario, electric field lines can exit the

plane, resulting in less effective screening compared to what might be expected in three-

dimensional problems.

For the dipole charge defects, we will use its unscreened form since it has only marginally

small contribution:

Udip(r) = p · (r − rD)
4πϵ0ϵr (r − rD)3 (2.296)

where p = el represents the magnitude of the dipole. Once we have determined these

potentials, we can incorporate the defect potential terms into the total qubit Hamiltonian,

thereby facilitating an estimation of the dephasing time.

103



CHAPTER 2. METHODOLOGY

2.7.5 Dephasing time

Once we have extracted the expression related to motional narrowing dephasing time:

T ∗
2 = 2ℏ2

V 2τ
(2.297)

and the form of our potentials:

Uscr(r) = e2

4πϵ0ϵr
1
q2

TF

1
∥r − rD∥3 + e2

4πϵ0ϵr
1
qTF

d

∥r − rD∥3 (2.298)

and

Udip (r) = p · (r − rD)
4πϵ0ϵr (r − rD)3 (2.299)

We can project these expressions onto our qubit wave-functions |1⟩ and |0⟩, as mentioned

in Sec. 2.5. The resulting fluctuation in the qubit Larmor frequency, denoted as δω (to

distinguish it from the noise spectra), is given by:

V ≡ ℏ δω = ⟨1|U |1⟩ − ⟨0|U |0⟩ (2.300)

The formula used to estimate dephasing time is referred to as the ‘dephasing time in the

motional narrowing limit’, a concept originally developed in nuclear magnetic resonance

studies. The core idea of the motional narrowing effect is that the carrier moves so quickly

that the influence of the inhomogeneous field becomes less significant. In other words, the

carrier relocates before the dephasing can significantly alter the system. Consequently, it

is essential to extract the switching time τ from the noise spectrum using experimental

data.

Another important time scale to consider is known as the dephasing time in the quasi-

static limit. In this scenario, we do not account for any switching time but rather assume

that the system exists in a quasi-static state:

T ∗
2 = ℏ

V
(2.301)

Experimentally, the dephasing time T ∗
2 can be determined by Ramsey experiments, and

the dephasing time T2 can be ascertained through Hahn echo experiments. Here, we briefly
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outline their procedures to lay the foundation for discussions about our calculations in the

following chapters.

In a Ramsey experiment, we first prepare the quantum state in a ground state, such as

the spin-up state in our Larmor precession model. Then, a π/2 pulse (also known as a

Rabi pulse) is applied to the system. The purpose of this pulse is to transform the state

into a superposition state (e.g., |x,+⟩ state):

|x,+⟩ = 1√
2

|↑⟩ + 1√
2

|↓⟩ (2.302)

Next, the state is allowed to evolve freely for a certain period, during which the evolution

Hamiltonian encompasses both the qubit system and all potential noise sources, not just

the charge noise we’ve considered. During this period, environmental noise begins to

cause dephasing. After this time, another π/2 pulse is sent to rotate the qubit state again,

followed by a measurement. If there is no dephasing, the qubit should return to its original

state; otherwise, the measurement signal will differ. By repeating this procedure several

times, we can extract the dephasing time T ∗
2 , which describes the phase coherence decay

due to overall noise.

In a Hahn echo experiment, the initial preparation is similar, with the spin oriented along

the |↑⟩ direction. After applying the first π/2 pulse and allowing a period of free evolution,

the spin acquires a phase shift due to noise, similar to the Ramsey experiment. The crucial

difference is the introduction of a refocusing π pulse, which rotates the spin by π. Allowing

the spin to precess freely for the same period again, any phase shifts are refocused onto

the original direction. While magnetic resonance still disappears due to dephasing, the π

pulse regenerates the signal. This second signal is the spin echo signal, known as T2.

The dephasing problem in hole qubits presents a significant challenge in single-qubit oper-

ations, being the shortest time scale in such processes. Recent experiments have reported

Ramsey dephasing times up to 8,µs and Hahn echo dephasing times up to 36,µs. When

compared with the typical electric dipole spin resonance Rabi time of around 100 ns, this

limits the number of feasible manipulations to only several hundreds. The complexities of

dephasing include various aspects: firstly, the nature of the open quantum system itself
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poses a challenge, as the various types of noise are difficult to capture accurately. Sec-

ondly, while specific dot geometries and external fields can be chosen to bring the qubit

into a ’sweet spot’ where noise is suppressed, this presents significant challenges in fabri-

cating high-quality semiconductors. Recently, thanks to tremendous efforts by theorists

and experimentalists, these obstacles are being gradually overcome. Several spin echo

techniques have been proposed to refocus the spin state, and the quality of semiconduc-

tors has improved significantly [71]. All these accomplishments are bringing us closer to a

new quantum world.
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Chapter 3

Germanium hole spin qubit

The main content of this chapter is an adaption of a publication Ref. [532] by

the candidate. I would like to express acknowledgement to all the co-authors:

Elizabeth Marcellina, Alex R Hamilton, James H Cullen, Sven Rogger, Joe

Salfi and Dimitrie Culcer.

Strong spin-orbit couplings position hole quantum dots at the forefront of electrical spin

qubit manipulation, which is crucial for enabling fast, low-power, and scalable quantum

computation. However, it is essential to determine the extent to which spin-orbit couplings

make qubits vulnerable to electrical noise, potentially leading to increased decoherence. In

this context, using germanium as an example, we demonstrate that group IV gate-defined

hole spin qubits inherently exhibit optimal operation points. These points are determined

by the top gate electric field, where the qubits are both rapid in operation and exhibit

prolonged lifespans: the dephasing rate effectively vanishes to first order in electric field

noise across all spatial directions, the electron dipole spin resonance strength reaches its

maximum, and relaxation is significantly reduced at lower magnetic fields. The emergence

of these optimal operation points can be attributed to the crystal symmetry of group

IV elements and the unique properties of the Rashba spin-orbit interaction in spin-3/2

systems. Our findings challenge the traditional belief that faster operation necessarily

leads to reduced lifetimes and position group IV hole spin qubits as prime candidates for
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ultra-fast, highly coherent, and scalable quantum computing.

3.1 Introduction

Quantum computing architectures require reliable qubit initialization, robust single-qubit

operations, long coherence times, and a clear pathway towards scaling up. Solid-state

platforms are supported by the well-developed solid-state device industry, with mature

micro-fabrication and miniaturization technologies. Among solid-state platforms, semi-

conductor quantum dot (QD) spin qubits have been actively pursued, with an energetic

recent focus on hole spins in diamond and Zincblende nano-structures.

The primary motivation for this focus is the strong hole spin-orbit interaction, which en-

ables qubit control via electric dipole spin resonance (EDSR), making quantum computing

platforms faster, more power-efficient, and easier to operate. Electric fields are much easier

to apply and localize than magnetic fields used in electron spin resonance. Only a global

static magnetic field is required to split the qubit levels. In addition, the p-symmetry of

the hole wave function causes the contact hyperfine interaction to vanish, and complica-

tions involving valley degrees of freedom are absent. Initial studies indicate that hole spins

may possess sufficiently long coherence times for quantum computing. Meanwhile, much

progress has been made in the initialization and read-out of hole spin qubits.

The existential question that will determine the future of hole QD spin qubits is: Does

the strong spin-orbit interaction that allows fast qubit operation also enhance undesired

couplings to stray fields such as phonons and charge noise leading to intractable relaxation

and dephasing? In this chapter, we demonstrate theoretically that this is emphatically

not the case for hole spin qubits in group IV materials taking germanium as the most

prominent example.

In fact, the unique properties of the hole Rashba interaction overturn the conventional

understanding of qubit coherence in spin-orbit coupled systems, which states that, as long

as the qubit is described by an effective 2×2 Hamiltonian, holes behave in the same way as
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electrons. That is, given that the EDSR rate is linear in the spin-orbit strength, while the

relaxation and dephasing rates increase as the square of the spin-orbit strength, the Rabi

ratio can be enhanced by operating the qubit at points at which the spin-orbit interaction

is weaker. In contrast group IV hole qubits achieve the best coherence when the electrical

driving rate is at its maximum. In all other systems, one has to choose between creating

long-lived qubits by isolating them from the environment and accepting slower gate times,

or designing fast qubits strongly coupled to the environment, but which decohere rapidly.

The key realization is that holes in group IV materials are qualitatively different from group

III–V materials. They have tremendous potential for qubit coherence, with Germanium

and Silicon possessing isotopes with no hyperfine interaction, as well as a near-inversion

symmetry that eliminates piezo-electric phonons. This near-inversion symmetry will elim-

inate the Dresselhaus interaction, the interface inversion asymmetry terms are expected

to be negligible in the system. Which enables spin resonance in group III–V materials.

On the other hand, we show that strong cubic-symmetry terms enable a fully-tuneable

Rashba coupling. Unlike the Dresselhaus interaction, and unlike electron systems, the hole

Rashba interaction evolves nonlinearly as a function of the gate electric field, a fact traced

to the hole spin-3/2. The qualitative difference between the Rashba and Dresselhaus in-

teractions for holes is vital for qubit coherence. Thanks to this nonlinearity, dephasing

due to electric field fluctuations in all spatial directions can be essentially eliminated at

specific optimal operation points defined by the gate electric field. At these points electri-

cal qubit rotations are at their most efficient, with the spin resonance Rabi gate time at a

minimum. The relaxation rate due to phonons can be made as small as desired at small

magnetic fields of the order of 0.1,T, which allows 106 − 107 operations in one relaxation

time for an in-plane alternating field EAC ≈103 V/m.

3.2 Model and Methodology

Our focus in this chapter is on germanium, which has witnessed enormous recent progress.

Holes in planar germanium quantum wells have a very large out of plane Landé g-factor,
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Figure 3.1: Probability density distribution evaluated by evaluated by the norm
square of the wave-function in ẑ-direction. The probability density is plotted as a
function of the ẑ-coordinate, in the main text, the quantum well width is 13 nm placed
symmetrically. The shape of the probability density are very close if the number of sinu-
soidal wave-function used exceed seven.

g ≈20, enabling operation at very small magnetic fields, which would not impede coupling

to a superconducting resonator. The low resistivity of germanium when contacting with

metals makes couplings between other devices such as superconductors easier. In the

past decade some spectacular results have been reported, for example, EDSR detection

techniques, structures of quantum confinement systems, the anisotropy of g-tensors, spin-

orbit couplings, and transport phenomena in two-dimensional hole systems. We focus a

on single dot throughout this work. A prototype device, including a neighbouring dot, is

shown in Fig. 3.1. The Hamiltonian describing a single hole quantum dot has the general

form

H = HLK +HBP +HZ +HPH +Hconf (3.1)

where HLK represents the Luttinger-Kohn Hamiltonian, HZ is the Zeeman interaction

between the hole and an external magnetic field, and Hph the hole-phonon interaction.

Hconf is the confinement potential including the vertical and lateral confinement. The

vertical confinement is achieved by applying a gate electric field Fz in the growth direction,

leading to a term eFzz in the Hamiltonian; the lateral confinement is modelled as an in-

plane parabolic potential well. The Bir-Pikus Hamiltonian HBP represents strain, which

appears naturally as part of the quantum well growth process. A typical configuration of
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holes in germanium is achieved by growing a thin strained germanium layer (usually about

10 nm to 20 nm) between Si-Ge layers such that, if the barrier between the two layers is

high enough, a quantum well can be formed. We consider SixGe1−x, where x = 0.15.

We start from the bulk band structure of holes as derived by Luttinger and Kohn. The

spinor basis is formed by the eigenstates of total angular momentum operators:∣∣∣∣32 , 3
2

〉 ∣∣∣∣32 ,−3
2

〉 ∣∣∣∣32 , 1
2

〉 ∣∣∣∣32 ,−1
2

〉
(3.2)

We write the Luttinger-Kohn Hamiltonian as:

HLK
(
k2, kz

)
=



P +Q 0 L M

0 P +Q M∗ −L∗

L∗ M P −Q 0

M∗ −L 0 P −Q


, (3.3)

P +Q = ℏ2

2m0
(γ1 − 2γ2) k2

z + ℏ2

2m0
(γ1 + γ2)

(
k2

x + k2
y

)
(3.4)

P −Q = ℏ2

2m0
(γ1 + 2γ2) k2

z + ℏ2

2m0
(γ1 − γ2)

(
k2

x + k2
y

)
(3.5)

L =
√

3 ℏ2

2m0

[
−γ2

(
k2

x − k2
y

)
+ 2iγ3kxky

]
(3.6)

M = 2
√

3 ℏ2

2m0
γ3 (kxkz − ikykz) (3.7)

where m0 is the free electron mass, γ1, γ2, γ3 are Luttinger parameters which are deter-

mined by the band structure. The in-plane wave vectors are

k2 = k2
x + k2

y k± = kx ± iky . (3.8)

In this manuscript, we use the symmetric gauge A = (B/2)(−y, x, 0) so that k → −i∇ +

eA/ℏ. We have also used γ̄ = (γ2 + γ3) /2 and δ = (γ3 − γ2) /2 to simplify the algebra.

In Ge δ/γ̄ < 0.15, hence δ can be treated perturbatively, while bulk Dresselhaus terms

are absent. Although interface inversion asymmetry terms with the same functional form

may exist, at the strong gate fields considered here will be overwhelmed by the Rashba

interaction and are not discussed in detail.
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The strain is described by the Bir-Pikus Hamiltonian:

HBP =



Pε +Qε 0 −Sε Rε

0 Pε +Qε R∗
ε S∗

ε

−S∗
ε Rε Pε −Qε 0

R∗
ε Sε 0 Pε −Qε


(3.9)

where

Pε = −av (εxx + εyy + εzz) (3.10)

Qε = −bv

2 (εxx + εyy − 2εzz) (3.11)

Rε =
√

3
2 bv (εxx − εyy) − idvεxy (3.12)

Sε = −dv (εxz − iεyz) (3.13)

Pε +Qε = −
(
av + bv

2

)
εxx −

(
av + bv

2

)
εyy − (av − bv)εzz (3.14)

Pε −Qε = −
(
av − bv

2

)
εxx −

(
av − bv

2

)
εyy − (av + bv)εzz (3.15)

We added a subscript ϵ for strains. The material-specific parameters av, bv, and dv

are known as the hydrostatic deformation potential constant, the uniaxial deformation

potential constant, and the shear deformation potential constant, respectively. In our

chosen configuration εxx = εyy = −0.006, the minus sign indicates that the germa-

nium is compressed in xy-plane. In the ẑ-direction, the Ge layer will be stretched, and

εzz = (−2C12/C11) εxx = 0.0042, with C12 = 44GPa, C11 = 126GPa for Ge. The diagonal

terms of the strain-relaxed barrier configuration will change the HH − LH energy splitting

by a constant, which is approximately 50meV.

The growth direction provides the spin quantization axis, with the heavy hole states (HHs)

representing the |3/2,±3/2⟩ angular momentum projection onto this axis, while the light

hole states (LHs) represent |3/2,±1/2⟩. In 2D hole systems, the HHs are the ground

state. To define a quantum dot a series of gates are added on top of the 2D hole gas

confinement, as in Fig. 1, and we ultimately seek an effective Hamiltonian describing the

two lowest-lying HH states in a quantum dot. Since we expect the HH LH splitting to

be much larger than the quantum dot confinement energy, we proceed with the standard
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assumptions of k · p theory, retaining at first only terms containing kz with kx and ky

initially set to zero. This determines the approximate eigenstates ψH,L(z) corresponding

to the growth-direction. These are described by two variational Bastard wave functions

ψH and ψL
48,66,

ψH,L(z) =

√√√√4βH,L
(
π2 + β2

H,L

)
(
1 − e−2βH,L

)
dπ2 cos

(
πz

d

)
exp

[
−βH,L

(
z

d
+ 1

2

)]
, (3.16)

where the dimensionless variational parameters βH,L are sensitive to the gate electric field

due to the term eFzz, and d is the width of the quantum well in the growth direction,

which is an input parameter. The orthogonality of the HH and LH states is ensured by

the spinors. This wave function is suitable for inversion layers, as well as accumulation

layers, although our focus will be primarily on the latter. For inversion layers, the Bastard

wave function will also be appropriate, because in experiments the electric field can be

made large enough such that the hole gas sticks around the top of the quantum well.

In the xy-plane, we model the confinement potential using a harmonic oscillator[
ℏ2

2mp

(
−i∇∥ + eA

)2
+ 1

2mpω
2
0

(
x2 + y2

)]
ϕ = εϕ

where mp = m0/ (γ1 + γ2) is the in-plane effective mass of the heavy holes, the sub-

script ∥ refers to the xy-plane, ω0 is the oscillator frequency, a0 the QD radius which

satisfies, a2
0 = ℏ/ (mpω1) i.e., a magnetic field will narrow the QD radius. The solu-

tions are the well-known Fock-Darwin wave functions |ϕn1,n2⟩ with eigenen-ergies εn1,n2 =

ℏ (n1 + n2 + 1)ωl + 1
2ℏ (n2 − n1)ωc, where ω1 =

√
ω2

0 + ω2
c/4, ωc = eB/mp is the cyclotron

frequency. The Bastard wave functions account for the perpendicular confinement, in the

ẑ-direction. The Fock-Darwin wave functions |ϕn1,n2⟩ account for the quantum dot confine-

ment in the xy-plane. The Bastard and Fock-Darwin wave functions would be formally

the same for electrons, while in a hole gas is that separate Bastard wave functions are

required for the heavy and light holes.

Finally, the hole-phonon interaction is:

Hi,j,s =
∑

a,β=x,y,z

1
2

√
ℏ

2NVcρωs
Di,j

a,β

[
qaês,β + qβ ês,a

q

]
q
(
e−iq·râ†

q + eiq·râq

)
(3.17)
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where q is the phonon wave vector, Vc is the unit cell volume, NVc is the crystal volume,

ês is the polarization direction vector. The density of the material is denoted by ρ,Dα,β

represents the deformation potential matrix, and â† and â are the phonon creation and

the annihilation operators.

Our approach is semi-analytical. To incorporate the contributions from the LHs, and

the Rashba spin-orbit couplings, we start from the 4 × 4 Luttinger Hamiltonian and

project it onto the product states of the out-of-plane sub-bands HH1,LH1, each with

two spin projections, and the first four orbital levels of the in-plane confinement, such

that our Hamiltonian matrix is 40 × 40. This refers to states
{∣∣∣32 , S〉⊗ |ϕn,m⟩

}
, where

S = 3/2,−3/2, 1/2,−1/2 represent the HHs or LHs, n = 0, 1, 2, 3 and m = 0,±1, 2,±3

denote the in-plane Fock-Darwin states. We have checked that addition of the HH2,LH2

sub-bands does not modify the results, this is attributed to the significant energy gaps

separating them from HH1,LH1. Given the high computational cost of adding these sub-

bands, we have not taken them into account in the results presented here. To obtain the

matrix elements required for the dephasing and relaxation times, as well as for the EDSR

Rabi frequency, we perform a 3rd order Schrieffer-Wolff transformation on the 40 × 40

Hamiltonian. This transformation takes into account all the spin-orbit terms that are not

separable in the spatial coordinates, which are precisely the terms leading to the Rashba

interaction. To ensure the accuracy of the Schrieffer-Wolff method we compare the results

for the Larmor frequency with a full numerical diagonalization of the 40 × 40 matrix.

3.3 Result and discussion

3.3.1 Qubit Larmor frequency

The qubit Larmor frequency has been plotted in Fig. 3.2 as a function of the gate electric

field. The Schrieffer-Wolff method agrees well with the numerical diagonalization: the

location of the optimal operation point differs by only 2% in the two approaches. We

note the non-monotonic behaviour as a function of the gate field, leading to an optimal
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Figure 3.2: Qubit Zeeman splitting. Comparison of the qubit Zeeman splitting between
Schrieffer-Wolff transformation (to the third order) and exact numerical diagonalization
for four different configurations. When the gate electric field is turned off, the qubit
Zeeman splitting g0µBB ≈ 110µeV. In all these figures, the out-of-plane magnetic field is
B = 0.1 T. We can notice that the sweet spot does not change much as a function of the
quantum dot radius, but the size of the qubit Zeeman splitting will be smaller for a larger
quantum dot size. In all of these plots, we have ℏωl ≫ g0µBB. Numerical diagonalization
is the red curve, Schrieffer-Wolff method is the blue curve. a.) d = 11 nm, a0 = 50 nm.
b.) d=11 nm, a0 = 60 nm. c.) d=15 nm, a0 = 50 nm.d.)d = 15 nm, a0 = 60 nm.

operation point in the range of 30-50 MV/m. Electric fields of such magnitude are used

routinely in quantum computing experiments. The non-monotonic behaviour is directly

related to the behaviour of Rashba spin-orbit coupling discussed below. We note that the

spatial dimensionality of the qubit is determined by the relevant energy scales, namely the

ẑ-sub-band energy spacing compared to the energy splitting of the lateral wave functions.

The heavy hole-light hole splitting, given by the perpendicular confinement, is many times

larger than the in-plane qubit confinement energy, determined by the in-plane confinement,

so the system is in the quasi-2D limit. Nevertheless, our findings, such as trends with the

top gate field, can be interpreted qualitatively by analogy with the Rashba interaction

in the asymptotic 2D limit d → 0. For a system with cubic symmetry this contains two

terms with different rotational properties:

HSO = ia2
(
k3

+σ̂− − k3
−σ̂+

)
+ ia3 (k+k−k+σ̂+ − k−k+k−σ̂−) ,

where σ̂± ≡ (σ̂x ± iσ̂y) /2. The coefficients are evaluated as:

a2 = 3
2

µ2γ̄γ3
EH − EL

⟨ψH | ψL⟩
[〈
ψH

∣∣∣k̂z
∣∣∣ψL

〉
−
〈
ψL
∣∣∣k̂z
∣∣∣ψH

〉]
(3.18)
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a3 = 3
2

µ2δγ3
EH − EL

⟨ψH | ψL⟩
[〈
ψH

∣∣∣k̂z
∣∣∣ψL

〉
−
〈
ψL
∣∣∣k̂z
∣∣∣ψH

〉]
, (3.19)

where EH and EL are the energies of the lowest-lying HH and LH states, respectively, and

are strong functions of the gate electric field. These formulas explain three main features.

Firstly, the optimal operation point reflects the interplay of the quadrupole degree of

freedom with the gate electric field unique to spin-3/2 systems. The behaviour of the

qubit Zeeman splitting and Rashba coefficients is understood by recalling that the Rashba

effect for the HH sub-bands is primarily driven by the off-diagonal matrix element L

connecting the HH and LH sub-bands. This term, which is αkzk+, increases with the top

gate field. At small gate fields, the Rashba spin-orbit constants increase monotonically

due to the increase in the kz overlap integral. This continues until a critical top gate field

is reached at which the HH − LH splittings, determined by the matrix element Q, begin

to increase faster than the off-diagonal matrix element L.

The heavy hole-light hole splitting induced by the confinement potential and the gate

electric field is traced to the different effective masses for heavy and light holes. This

physics has been shown previously by Winkler and collaborators. Beyond this critical

field, the Rashba terms decrease, resulting in a relatively broad optimal operation region

at which the qubit is insensitive to background electric field fluctuations in the ẑ-direction

and the dephasing rate vanishes to first order in the ẑ-electric field. As we show below,

electric field fluctuations in the ẑ-direction are by far the most damaging to the qubit

and are the key source of decoherence to be avoided. The breadth and smoothness of the

extreme make the tuning of the electric field to reach the optimal operation point easier.

Secondly, the sweet spot shifts slightly with the dot radius, and this is fully captured by

our Schrieffer-Wolff results. The reason for this is that, in a 2D system, while the angular

form of the Rashba interaction is dictated by rotational symmetry, the Rashba coupling

constants a2 and a3 are functions of the magnitude of the wave vector. This implies they

are functions of the density, and this is vital at large densities. Hence a quantum dot can

be envisaged as having Rashba parameters that are functions of the in-plane radius a0,

and their dependence is less pronounced at larger a0, since this corresponds to smaller
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Figure 3.3: Qubit dephasing time. In all plots, the quantum well width is d = 11 nm
and dot radius a0 = 50 nm. a) Dephasing time in the motional narrowing regime. b) The
allowable number of single-qubit operations in one dephasing time in motional narrowing
regime. c) Dephasing time in the quasi-static limit. d) The allowable number of single-
qubit operations in one dephasing time in the quasi-static limit.

densities.

Thirdly, each of the two spin-orbit coupling terms can be envisaged as the interaction of

the hole spin with an effective spin-orbit field that depends on the momentum. In the

absence of a magnetic field, the a2-Rashba spin-orbit field winds around the Fermi surface

three times, whereas the a3-Rashba spin-orbit field winds only once. In the strict 2D limit

it is the a3-term that enables EDSR. Although the quantum dot is not in the exact 2D

limit, it still holds that EDSR is enabled by the cubic symmetry terms ∝ δ. Setting δ = 0

in our calculations causes the EDSR frequency to vanish.

fEDSR = 24g0µBBeEACa
2
0δm

2
p × u (3.20)

where u are a long expression can be found in Ref. [532]. A shorter similar expression

obtained in the 2D limit is [484]:

|fR| = eEACαR3gzµBBzm
2
xa

2
0

2πℏ5 . (3.21)

3.3.2 Qubit dephasings

The main dephasing mechanisms are fluctuating electrical fields such as charge noise.

We focus on random telegraph noise (RTN) due to charge defects, noting that a similar
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discussion can be presented for 1/f noise, which is typically caused by an incoherent

superposition of RTN sources. For this reason, we expect the trends for the two types

of noise to be similar, while reliable numbers for 1/f noise must await the experimental

determination of the noise spectral density S(ω) for hole qubits. To begin with, we estimate

the dephasing time T ∗
2 , which is expected to be primarily determined by fluctuations in

the Larmor frequency of the qubit induced by charge noise. The electric potential induced

at the qubit by a defect located at rD, which may give rise to RTN, can be modelled as a

quasi-2D screened Coulomb potential:

Uscr = e2

2ϵ0ϵr

∫ 2kF

0

e−iq·(r−rD)

q + qTF

dq
(2π)3 (3.22)

where ϵ0 is the vacuum permeability, ϵr is the relative permeability for Ge, qTF is the

Thomas-Fermi wave vector, and kF is the Fermi wave vector. In a dilution refrigerator,

the high energy modes of the Coulomb potential are negligible, therefore the q > 2kF part

is ignored. Another source of dephasing is dipole defects due to the asymmetry in bond

polarities.

Udip (RD) = p · RD
4πϵ0ϵrR3

D
(3.23)

where RD is the distance between the dot and the unscreened charge dipole. p is the

dipole moment of the charge p = el, the size of the dipole is about 1Å.

As a worst-case estimate of the dephasing time, we use the motional narrowing result, the

dephasing time T ∗−1
2 = (δω)2τ/2, where δω is the change in qubit Larmor frequency due

to the fluctuator, and we consider τ = 103tRabi where tRabi is the single-qubit operation

time (the inverse of the EDSR frequency), which can be found from Fig. 3.3-a. Because

of the weak coupling between the spin degree of freedom and external reservoirs, slower

fluctuators can be eliminated via pulse sequences and the spin-echo techniques. We con-

sider two sample defects separately. One is a single-charge defect located 100 nm away

from the quantum dot in the plane of the dot as a worst-case scenario for a charge trap.

We use rD = 100 nm since regions inside this range will be depleted by the top gate, and

charge traps will not be active. We also consider a dipole defect immediately under the

gate and above the dot, with RD = 20 nm in the ẑ direction. This is because within the
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depleted region the most relevant defects are charge dipoles, whose orientation fluctuates.

To estimate the pure dephasing time at the optimal operation point due to such a defect,

we first note that the in-plane electric field will not contribute to dephasing. An in-plane

electric field enters the QD Hamiltonian as E∥ · r∥. This in-plane electric field term does

not couple states with different spin orientations. When we consider the qubit Zeeman

splittings, the corrections to the effective quantum dot levels due to the in-plane electric

field will read the same for H1,1 and H2,2 up to the secondorder, therefore, fluctuations in

qubit Zeeman splitting H1,1 −H2,2 will not depend on the in-plane electric field. However,

higher order terms in the expansion of the electrostatic potential of the defects will lead to

dephasing, and these are responsible for dephasing at the optimal operation point itself.

To determine their effect, we write the ground state energy as ELK +E0 +Ez +v0 where E0

is the lateral confinement energy, Ez is the Zeeman energy, and v0 is the energy correction

due to the defect.

We estimate the approximate qubit window of operation around the optimal operation

point. Away from the optimal operation point, due to the fluctuating electric potential of

the defect, the energy levels of the quantum dot will gain a correction, i.e., ⟨ϕn1 |Usc|ϕn2⟩.

With these assumptions, the dephasing time is plotted as a function of the gate electric

field in Fig. 3.3. At the optimal operation point, the dephasing time due to the out-of-plane

fluctuations is calculated to the second-order, since the first-order fluctuation vanishes, the

in-plane fluctuations will dominate the dephasing. Away from the optimal operation point,

the motional narrowing result is much smaller than the quasi-static limit result. This is

because the first-order variation of the qubit Zeeman splitting will weaken the correlation

time, while the quasi-static limit does not consider any correlations. However, as the

gate electric field approaches the optimal operation point, the variation of qubit Zeeman

splitting decreases; at the optimal operation point, compared with the quasi-static limit

result, a longer correlation time will lead to a larger dephasing time. We also determine

the pure dephasing time in the quasi-static limit, where the switching time is the longest

time scale in the system. This is essentially given by T2 = 2π/(δω), and is plotted in

Fig. 3.3.
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Figure 3.4: Qubit phonon relaxation time and EDSR Rabi time. In all plots
d = 11 nm, a0 = 50 nm, the external magnetic field is B = 0.1 T. The density of Ge
ρ = 5.33× 103 kg/m3. The phonon propagation speed along the transverse direction
is vt = 3.57 × 103 m/s, along the longitudinal direction it is vl = 4.85 × 103 m/s. a).
Relaxation time and EDSR Rabi time as a function of the gate electric field. b.) The
allowable number of single-qubit operations in one relaxation time.

3.3.3 Electric dipole spin resonance

We briefly discuss electrically driven spin resonance. An in-plane oscillating electric field

represented in the Hamiltonian by eEAC(t)x drives spin-conserving transitions between

the QD states. For a multiple occupied hole dot, the excited state structure may be

more complex but the argument above remains valid because the α2 and α3 Rashba terms

couple the ground state to different excited states. The spin resonance Rabi time is the

time taken to accomplish an operation. The Rabi frequency can be tuned by changing

the gate electric field and with it the Rashba spin-orbit coupling constant. However, note

that because the two Rashba terms directly determine the correction to the g-factor, the

Rashba interaction and the g-factor cannot be tuned independently at present.

3.3.4 Phonon relaxation time

Given that the spin resonance frequency is a maximum at the optimal operation point, it

follows that the qubit can be tuned to have maximum coherence and maximum electrical

driving simultaneously. The nonlinearity in the hole Rashba interaction as a function of
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the gate field that enables this feature has no counterpart in electron systems. In GaAs

hole systems this nonlinearity does not lead to optimal operation points. This is because,

firstly, the spin resonance Rabi frequency in GaAs hole qubits is driven by the Dressel-

haus interaction, which is not tunable via the gate electric field, while α3 is negligible

in GaAs. Secondly, GaAs qubits are exposed to decoherence through the hyperfine in-

teraction, piezoelectric phonons, and the Dresselhaus interaction, none of which can be

mitigated.

Since the Rabi frequency is maximized at the optimal operation point, the relaxation time

T1 is minimized there. For the qubit to be operated efficiently it is vital to determine

the ratio of the EDSR and relaxation rates. Hyperfine interactions and phonon-hole

interactions are two major factors affecting the relaxation time, hence the quality of the

qubit. However, the p-type symmetry of the valence band excludes the contact hyperfine

interaction. There is no bulk inversion asymmetry in group IV elements; this leads to no

Dresselhaus spin-orbit coupling. However, there is still the Rashba spin-orbit coupling due

to the structure inversion asymmetry, which couples the heavy-hole states to the light-

hole states. Neither the spin nor the orbital angular momentum will be a good quantum

number, as the admixture of the spin-down and the spin-up states will modify the wave

functions. We emphasize that, whereas EDSR comes only from the α3-Rashba term, the

qubit relaxation is caused by both the α2- and the α3-Rashba terms.

The relaxation time evaluated using Fermi’s golden rule is shown in Fig. 3.4 . For com-

pleteness, we also consider two-phonon relaxation processes, which include virtual emission

and absorption of a phonon between two heavy hole states, since in the first-order relax-

ation calculation there is no direct matrix element between the two heavy-hole states.

However, the two-phonon process calculation returns a negligible relaxation rate, which

will not contribute significantly to the relaxation time. The relaxation rate will depend

on the external magnetic field as 1/T1 ∝ B7 for the α3-Rashba term and 1/T1 ∝ B9 for

the α2-Rashba term.

We also plot the ratio between the relaxation time and the EDSR time, demonstrating that

the system allows for a large number of operations. The allowable number of single-qubit
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operations is calculated by evaluating the ratio of the relaxation time and the EDSR

time, i.e., the Rabi ratio. The in-plane electric field we used is EAC = 103V/m. In

Fig. 3.4, we plot the relaxation time, EDSR Rabi time, comparison of the magnitude

of the relaxation time and EDSR time and an estimation of red the allowable number

of single-qubit operations as the function of the gate electric field at a magnetic field

B = 0.1T which is parallel to the growth direction. Both the relaxation time and the

EDSR time will depend on the spin-orbit coupling coefficients, therefore, their extrema

coincide. The relaxation time increases for smaller dot sizes because that corresponds

to larger confinement energy, while both the phonon and the spin-orbit coupling terms

connect the orbital ground state to higher excited states. From Fig. 3.4, we can see that

the Ge hole quantum dot has a long relaxation time and large Rabi ratio at dilution

refrigerator temperatures. It is also useful to study the relaxation time at slightly higher

temperatures, e.g., 4 K, at which both phonon absorption and emission must be taken

into account. The phonon occupation number is given by the Bose-Einstein distribution,

where N is the occupation number, ω = qv, q is the phonon wave vector and v is the

phonon propagation velocity, T is the temperature, kB is the Boltzmann constant. For

T = 4K, the relaxation time is 17 ms, suggesting that the qubit can easily be operated

at this temperature.

Although we have used a simple parabolic model for the in-plane QD confinement, our

conclusions are very general. Firstly, the dephasing optimal operation point will be present

for potentials of arbitrary complexity (for example hut wire geometries), since it is due

to the fundamental interplay between the HH and LH that gives rise to the Rashba spin-

orbit coupling in the HH manifold. Secondly, we have examined the possibility that the

insensitivity of the g-factor to in-plane electric fields is an artefact of the model. We have

tested three deviations from parabolicity and found that none of them exposes the qubit

to dephasing by fluctuating in-plane electric fields. This implies (i) that the dot does not

have to be perfectly parabolic allowing for some flexibility in the gate structure; (ii) that

in-plane electric field fluctuations generally have a negligible effect on the g-factor, while

out-of-plane electric field fluctuations cause fluctuations in the Rashba spin-orbit coupling

and affect the g-factor, therefore it is most important to avoid the effect of the out-of-plane
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field; and (iii) that dephasing at the optimal operation point itself comes about primarily

from higher-order terms in the electrical potential, i.e., electrical quadrupole and higher.

Our results hold qualitatively in Si as well, where the spin-orbit interaction is weaker than

in Ge, while δ is larger. However, the large δ and frequent failure of the Schrieffer-Wolff

approximation in Si calls for fully numerical treatment.

3.4 Conclusion and Outlook

Experimentally, the configuration we describe requires a double-gated device with separate

plunger gates and barrier gates allowing the number density and the gate electric-field

(and spin-orbit coupling) to be controlled independently. The numerical estimates above

suggest that, in general, a smooth and broad optimal operation point will enable the Ge

hole qubit to work insensitively to the charge noise inside a large range of gate electric

fields accessible to experiment. Exchange-based two-qubit gates should be possible for hole

QDs, and their speed depends on the values of exchange obtained, which are expected to

be tunable by gates. Moreover, it is likely to simplify the coupling between the two qubits

since the valley degree of freedom is absent in hole systems. However, a two-qubit gate

in the setup discussed here is not optimized for long-distance coupling, which leads to

the two-qubit gate time is of the order of microseconds for dipole-dipole interactions and

hundreds of microseconds for circuit QED, limited by the Ge Luttinger parameters. They

can be sped up by enhancing the spin-orbit interaction, but we defer the discussion to a

future publication.

A smaller g-factor will lead to a smaller Rabi frequency, a smaller change in the qubit

Zeeman splitting due to the spin-orbit interaction, and a shorter dephasing time but a

longer relaxation time and an improved Rabi ratio. The optimal operation point will not

change its location, which is determined only by the effective mass and the width of the

quantum well. A larger quantum dot radius would make the confinement energy smaller,

increasing the effect of the spin-orbit interaction and resulting in a faster Rabi frequency,

but also shorter T1 and T ∗
2 . Nevertheless, the Rabi ratio decreases with increasing dot
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radius. Moreover, since the confinement energy decreases as the square of the radius,

it is preferable to work at smaller radii to ensure the thermal broadening is overcome.

Increasing x increases the heavy hole - light hole splitting, leading to a reduced Rashba

spin-orbit coupling and a smaller change in the qubit Zeeman splitting. The change in the

Zeeman splitting will be large for smaller x e.g., 0.05-0.10, while at x= 0.3 it is essentially

not noticeable.

We have demonstrated that electrostatically defined hole quantum dot spin qubits natu-

rally exhibit an optimal operation point at which sensitivity to charge noise is minimized

while the speed of electrical operation is maximized. The location of the optimal opera-

tion point can be determined from the width of the quantum well and the strain tensors

applied. Relaxation times are long even at 4 K, while dephasing is determined by higher-

order terms in the expansion of the electrostatic potential due to charge defects, but are

expected to allow for a large window of operation around the optimal operation point. Our

results provide a theoretical guideline for achieving fast, highly coherent, low-power electri-

cally operated spin qubits experimentally. Future studies must consider in-plane magnetic

fields, which interact much more weakly with HH spins and are more complicated to treat

theoretically.
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Chapter 4

Silicon hole spin qubit

The main content of this chapter is an adaption of a publication Ref. [533] by

the candidate (accepted by Phys. Rev. B , waiting for publish 1). I would like

to express acknowledgement to all the co-authors: Abhikbrata Sarkar, S. D.

Liles, Andre Saraiva, A. S. Dzurak, A. R. Hamilton, and Dimitrie Culcer.

Silicon hole quantum dots have been the subject of considerable attention thanks to their

strong spin-orbit coupling enabling electrical control, a feature that has been demon-

strated in recent experiments combined with the prospects for scalable fabrication in

CMOS foundries. The physics of silicon holes is qualitatively different from germanium

holes and requires a separate theoretical description, since many aspects differ substan-

tially: the effective masses, cubic symmetry terms, spin-orbit energy scales, magnetic field

response, and the role of the split-off band and strain. In this work, we theoretically study

the electrical control and coherence properties of silicon hole dots with different magnetic

field orientations, using a combined analytical and numerical approach. We discuss pos-

sible experimental configurations required to obtain a sweet spot in the qubit Larmor

frequency, to optimize the electric dipole spin resonance Rabi time, the phonon relaxation

time, and the dephasing due to random telegraph noise. Our main findings are: (i) The

1Online link: https://journals.aps.org/prb/accepted/
4107dO4dWf512b4b87b942a39c3de0126130321a3
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in-plane g-factor is strongly influenced by the presence of the split-off band, as well as by

any shear strain that is typically present in the sample. The g-factor is a non-monotonic

function of the top gate electric field, in agreement with recent experiments. This enables

coherence sweet spots at specific values of the top gate field and specific magnetic field

orientations. (ii) Even a small ellipticity (aspect ratios ∼ 1.2) causes significant anisotropy

in the in-plane g-factor, which can vary by 50% − 100% as the magnetic field is rotated

in the plane. This is again consistent with experimental observations. (iii) electric dipole

spin resonance Rabi frequencies are comparable to Ge, and the ratio between the relax-

ation time and the electric dipole spin resonance Rabi time ∼ 105. For an out-of-plane

magnetic field the electric dipole spin resonance Rabi frequency is anisotropic with respect

to the orientation of the driving electric field, varying by ≈ 20% as the driving field is

rotated in the plane. Our work aims to stimulate experiments by providing guidelines on

optimizing configurations and geometries to achieve robust, fast and long-lived hole spin

qubits in silicon.

4.1 Introduction

Silicon quantum devices have emerged as an ideal platform for scalable quantum com-

putation, with remarkable advancements both theoretically and experimentally in recent

years [308, 236, 372, 270, 197, 358, 579, 234, 209, 434, 433, 508, 222, 56, 563, 499, 1,

244, 206, 205, 260, 274, 68, 256, 189, 76, 7, 151, 346, 438, 306, 49, 84, 264, 31]. Silicon

devices offer several advantages, including weak hyperfine interaction with the possibil-

ity of isotopic purification to eliminate the hyperfine coupling altogether [493, 78, 398,

563, 392, 50, 368], absence of piezoelectric phonons [477, 283], and mature silicon micro-

fabrication technology [172, 396, 334, 507, 335, 463, 535, 203, 483, 98, 165], making them

competitive candidates to realize industrial-level scalable quantum computing architec-

tures. Over the past few decades, numerous design proposals for qubits utilizing silicon

quantum devices have been actively investigated, including the singlet-triplet transition

qubit [334], single electron spin qubit [396, 243, 478], and acceptor or donor spin qubit
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[61, 234, 432, 497, 434, 203]. Among the various platforms, silicon hole spin qubits ex-

hibit additional desirable properties [425, 420, 577, 578, 489, 125, 320, 477, 208, 518, 376,

253, 333, 345, 169, 138, 323, 446]. Firstly, hole systems possess strong spin-orbit cou-

pling [545, 546, 114, 103, 324, 251, 252, 79, 140, 356, 38, 347, 348, 329, 483, 2, 291, 412],

which enables pure electrical manipulation of spin states via electric dipole spin resonance

[188, 64, 413, 414], while the hole spin-3/2 is responsible for physics with no counterpart

in electron systems [548, 103, 547, 302, 1, 110, 182, 152]. Secondly, the absence of valley

degeneracy avoids complications associated with the increase in Hilbert space that occurs

for electrons [190, 167, 106, 107, 166, 199, 432, 48, 56, 155, 519, 462, 520]. Thirdly, whereas

the hyperfine interaction is a strong decoherence source in other materials such as III-V

group semiconductors [226, 247, 90, 389, 271, 159, 89, 158, 77, 20, 78, 252, 398, 526], sil-

icon can be isotopically purified [227, 493, 243, 478, 508, 222, 395]. Recent years have

witnessed key experiments on silicon hole qubits, including successful demonstrations

on industrial standard complementary metal-oxide-semiconductor (CMOS) technologies

[214, 518, 508, 376, 266, 463, 222, 99, 285, 539, 461, 229], control of the number of holes

and shell filling [578, 294], g-tensor manipulation in both nanowire and quantum dot sys-

tems [518, 99, 539, 295], qubit operation at 25 K in the few-hole regime [453], single qubit

operation above 4 K [73], long coherence time up to 10 ms in Si:B acceptors [256], disper-

sive readout [376, 380, 98, 138, 148, 427], Pauli spin blockade [286, 46], coupling between

photons and hole spins [564], and the demonstration of the coupling between two hole

qubits via anisotropic exchange [181].

In parallel with developments in silicon, considerable attention has been devoted to hole

spin qubits in germanium [394, 135, 521, 349, 204, 436, 305, 200, 275, 177, 556, 205, 484,

440, 230, 532, 207, 361, 52, 494, 301, 525, 331, 5, 525]. This includes spin state mea-

surement and readout [420, 578, 569, 288, 241, 170], electrical control of spin states [400],

g-tensor manipulation [17, 58, 46, 536, 312, 537, 349, 572], coupling to a superconduct-

ing microwave resonator [290], fast electric dipole spin resonance Rabi oscillations up to

540 MHz [530] and relaxation times of up to 32 ms [275, 276]. Nevertheless, the under-

standing gained from the study of germanium hole qubits cannot be directly translated

to silicon. In silicon, the split-off energy is very small (44 meV) compared with gallium

127



CHAPTER 4. SILICON HOLE SPIN QUBIT

arsenide (340 meV) and germanium (296 meV) [393, 74], necessitating the use of a full

six-band Luttinger-Kohn model[315, 23, 24, 9, 309, 565, 63, 88, 450, 328]. Additionally,

the larger effective mass of holes in silicon requires smaller dots to achieve the same or-

bital confinement energy splitting. The strength of the spin-orbit coupling in silicon is

weaker than in germanium, while the cubic symmetry parameters are very strong and

cannot be accounted for perturbatively. Moreover, previous studies have shown that, for

silicon two-dimensional hole gases at experimentally relevant densities, the Schrieffer-Wolff

transformation cannot be used to reduce the three-dimensional Hamiltonian to an effective

two-dimensional one since the criteria for the applicability of the Schrieffer-Wolff trans-

formation are not satisfied [328, 10]. Furthermore, the orbital magnetic field terms are

not captured by such a Schrieffer-Wolff transformation, which will play an important role

when the magnetic field is applied perpendicular to the gate electric field. Finally, strain

effects in silicon are different from those in other materials, with axial and shear strains

strongly affecting both spin dynamics and the in-plane g-factor in planar quantum dots.

In particular, spatial strain gradients caused by thermal contraction of the gate electrodes

have a very large effect in silicon due to the thin gate oxide [295].

Theoretical studies on silicon hole qubits have also advanced rapidly in line with experi-

mental progress. The physics of spin-orbit coupling in silicon hole systems have been inves-

tigated with the aim of realizing fully electrically operated spin qubits [328, 253]. Studies

have examined device geometry, dot orientation, and strain in the silicon quantum dot to

optimize the quality of the electric dipole spin resonance Rabi frequency and qubit Larmor

frequency. These studies have identified optimal operation points and the possibility of

achieving fast electric dipole spin resonance Rabi oscillations even with small spin-orbit

coupling in silicon hole systems [509, 345, 355, 53, 169, 406, 6, 54, 156]. Decoherence

due to hyperfine interactions and dephasing due to charge noise have also been studied,

identifying experimental configurations for ultra-fast and highly coherent silicon hole spin

qubits [392, 50, 323, 446]. However, despite significant progress in both experiment and

theory, a critical question remains unanswered: When is it possible to minimize unwanted

decoherence effects without reducing the efficiency of electric dipole spin resonance?
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Figure 4.1: Schematic planar silicon quantum dot. In this specific design, we focus
on a single hole quantum dot in the silicon layer. By applying a gate electric field Fz via
gate P1, holes accumulate in silicon and are confined vertically against the silicon oxide
(indicated at the location of the two-dimensional hole gas). The single quantum dot is
formed using gates P2-P5. The gates P2 and P4 provide confinement in the x̂-direction,
while gate P5 provides confinement in the y direction. P3 is used as the top gate of the
quantum dot, accumulating a single hole in the potential well beneath. The resulting
potential is indicated schematically below the gates. On the right, we plot the coordinate
system with an arbitrary vector colored in red. The vectors indicate the orientations of
the polar and azimuthal angles.

In this chapter, we focus on electrically-driven single hole spin qubits in planar silicon

quantum dots and describe qubit dynamics in both perpendicular and in-plane magnetic

fields. We adopt a hybrid analytical and computational approach which enables us to treat

quantum dots with arbitrary confinement in a magnetic field of arbitrary orientation. For

a perpendicular magnetic field we show that coherence sweet spots exist at certain values

of the top gate field, which reflect the coupling of heavy- and light-hole states by the

gate electric field. The EDSR Rabi frequency exhibits a maximum as a function of the

top gate field, as does the relaxation rate. The large Rabi ratios (the ratio between the

phonon relaxation time and the EDSR Rabi time) can be achieved, in excess of 106 at

very small in-plane driving electric fields of 1 kV/m. For an in-plane magnetic field, we

demonstrate that the qubit Zeeman splitting exhibits a large modulation as a function

of the top gate electric field. Although extrema in the qubit Zeeman splitting exist as a

function of the top gate field, these do not protect against charge noise, and one cannot

identify coherence sweet spots, since the qubit is exposed to all three components of the
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noise electric field. At the same time, we find that the EDSR Rabi frequency reaches a

maximum of about 100 MHz, with a minimum relaxation time of 1 ms, yielding a Rabi

ratio of approximately 105 for an in-plane driving electric field of 1 kV/m. Importantly,

the g-factor of elliptical dots is strongly anisotropic, with a very small aspect ratio (1.2)

yielding a factor of 0.7-1.6 variation as the magnetic field is rotated in the plane. This is

consistent with recent experimental observations [295]. Finally, we compare the properties

and fabrication technologies of silicon and germanium and demonstrate that shear strain

and axial strain are key factors leading to a large modulation of in-plane g-factors and the

large Rabi ratio. The EDSR Rabi frequencies for a given in-plane driving electric field are

comparable in the two materials, which may reflect the fact that, while Ge has stronger

spin-orbit coupling, Si has larger cubic symmetry terms ∝ (γ3 − γ2), which enhance the

effective spin-orbit coupling experienced by planar dots. Whereas we use characteristic

values of the strain tensor components extracted from experiment, further investigation

is needed to understand the role of strain and of the strain distribution throughout the

sample.

The chapter is organized as follows. In Section 4.2, we introduce the Hamiltonian for

the silicon hole quantum dot with an arbitrary magnetic field orientation, discuss the

diagonalization technique, and outline the methodology used to determine the EDSR Rabi

frequency, relaxation time due to phonons, and dephasing time due to random telegraph

noise. In Section 4.3, we present the results in the presence of a perpendicular magnetic

field as well as an in-plane magnetic field. We discuss the effect of ellipticity of the

quantum dot and g-factor anisotropy in line with experimental observations. In Section 4.4,

we compare the properties of silicon hole qubits with germanium hole qubits from the

perspective of material parameters and fabrication details. We end with a summary and

conclusions.
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4.2 Model and Methodology

In this section, we elucidate the properties of a single silicon hole spin qubit by introduc-

ing the model device and relevant experimental parameters. Furthermore, we provide a

detailed discussion on the physical origin of the strain Hamiltonian, confinement Hamil-

tonian, and Zeeman Hamiltonian, respectively, in the context of the envelope function

approximation Hamiltonian H. We also introduce the details of the numerical diagonal-

ization used to obtain the relevant energy levels and wave-functions of the system. Then,

we present the formalism used to estimate the EDSR Rabi frequency, relaxation time, and

dephasing time.

A schematic diagram of a possible realization of a silicon hole spin qubit is described in

Fig. 4.1. The gate electric field is applied along the ẑ-direction, denoted by F = (0, 0, Fz).

Our model is designed to describe a generic magnetic field B = (Bx, By, Bz) as illustrated

in Fig. 4.1, using the vector potential A = −(Bzy,Bxz,Byx). We consider magnetic fields

either in the xy-plane or parallel to the ẑ-direction (perpendicular to the qubit plane); we

do not consider magnetic fields tilted out of the plane in this work.

4.2.1 Diagonalization of silicon hole spin qubit Hamiltonian

The total Hamiltonian for a single silicon hole quantum dot qubit is given by:

H = HLKBP +Hconf +Hgate +HZeeman (4.1)

The perpendicular electric confinement potential is represented by Hgate = eFzz for z

∈ [−L/2, L/2], where L denotes the width of the quantum well in the ẑ-direction. This

gate field induces structural inversion asymmetry (SIA) in the silicon hole system, thereby

leading to a Rashba spin-orbit coupling. Moreover, the symmetry of the diamond lattice

ensures there is no Dresselhaus-type spin-orbit coupling [137, 173, 70, 192, 339, 357, 326].

Although interface misalignment may induce Dresselhaus-type spin-orbit coupling, it is

expected to be negligible for the purposes of this chapter [328], and is therefore not
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considered. In-plane confinement is modeled by a two-dimensional harmonic oscillator

potential

Hconf = ℏ2

2m∗a4
x

x2 + ℏ2

2m∗a4
y

y2 (4.2)

where m∗ is the in-plane effective mass, and ax and ay are the two axes of an elliptical

dot.

The Zeeman Hamiltonian can be written as:

HZeeman = −2κ1µBJ · B − 2κ2µBJ3 · B (4.3)

, where J = (Jx, Jy, Jz) represents the angular momentum matrices for the direct sum of

the spin-3/2 and spin-1/2 systems. The explicit matrix form of expressions for J can be

found in the supplementary material. Additionally, in the an-isotropic term in the Zeeman

Hamiltonian, we have J3 = (J3
x , J

3
y , J

3
z ). µB is the Bohr magneton, and κ1 = −0.42,

κ2 = 0.01 for silicon.

The quantum dot studied in this chapter is produced by confining a two-dimensional hole

gas in a metal-oxide-semiconductor structure grown along the ẑ ∥[001] direction. The

strong heavy hole - light hole splitting results in angular momentum quantization per-

pendicular to the two-dimensional plane. The heavy-hole states are characterized by a ẑ-

component of the angular momentum |J = 3/2,M = ±3/2⟩, the light-hole states are char-

acterized by |J = 3/2,M = ±1/2⟩, while the split-off valence band has |J = 1/2,M = ±1/2⟩.

We orient the wave vectors kx, ky, kz along [100], [010], and [001], respectively. The valence

band and the effect of strain can be described by the Luttinger-Kohn-Bir-Pikus (LKBP)

Hamiltonian in the basis of total angular momentum eigenstates:∣∣∣∣32 , 3
2

〉
,

∣∣∣∣32 ,−3
2

〉
,

∣∣∣∣32 , 1
2

〉
,

∣∣∣∣32 ,−1
2

〉
,

∣∣∣∣12 , 1
2

〉
,

∣∣∣∣12 ,−1
2

〉
(4.4)
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The six-band Luttinger-Kohn Hamiltonian is:

HLK =



P +Q 0 −S R − 1√
2
S

√
2R

0 P +Q R∗ S∗ −
√

2R∗ − 1√
2
S∗

−S∗ R P −Q 0 −
√

2Q
√

3
2S

R∗ S 0 P −Q

√
3
2S

∗ √
2Q

− 1√
2
S∗ −

√
2R −

√
2Q∗

√
3
2S P + ∆ 0

√
2R∗ − 1√

2
S

√
3
2S

∗ √
2Q∗ 0 P + ∆



(4.5)
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x + k2
y) (4.6)
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2m0
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2
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2m0
(k2
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R =
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[
−γ2

(
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)
+ 2iγ3kxky

]
(4.10)

S = 2
√

3 ℏ2

2m0
γ3 (kxkz − ikykz) (4.11)

Here γ1 = 4.285, γ2 = 0.339, γ3 = 1.446 are the Luttinger parameters for silicon [124, 417],

m0 is the bare electron mass and ℏ is the Planck constant. Terms with subscripts ε are

matrix elements from the Bir-Pikus (BP) Hamiltonian:

HBP =


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(4.12)
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where

Pε = −av (εxx + εyy + εzz) (4.13)

Qε = −bv

2 (εxx + εyy − 2εzz) (4.14)

Rε =
√

3
2 bv (εxx − εyy) − idvεxy (4.15)

Sε = −dv (εxz − iεyz) (4.16)

Pε +Qε = −
(
av + bv

2

)
εxx −

(
av + bv

2

)
εyy − (av − bv)εzz (4.17)

Pε −Qε = −
(
av − bv

2

)
εxx −

(
av − bv

2

)
εyy − (av + bv)εzz (4.18)

The material parameter av = 2.38 eV is the hydro-static deformation potential constant,

bv = −2.10 eV is the uni-axial deformation potential constant, dv = −4.85 eV is the shear

deformation potential constant [552, 213, 94]. The strain εi,j where i, j ∈ {x, y, z} is

determined by experimental configurations and fabrication processes.

In a quantum dot placed in a magnetic field, the momentum operators in the Luttinger-

Kohn Hamiltonian are modified by the gauge potentials. The new canonical conjugate

momentum operators are given by p+ eA. To numerically diagonalize the total Hamilto-

nian H, the wave functions we used are as follows:

Ψnx,ny ,nz ,i(x, y, z) = ϕnz (z)ϕnx(x)ϕny (y) |χi⟩ (4.19)

where nx, ny, nz are the level numbers of the spatial wave functions and |χi⟩ is the i-th

spinor.

The selection of wave functions depends on the shape of the confinement potentials, which

necessitates the self-consistent solution of Poisson and Schrödinger equations to account

for the density-dependent properties of a device. Previous studies have demonstrated the

efficiency of the variational approach in gallium arsenide and germanium [328]. However,

the numerical generalization of the variational method becomes challenging as the number

of energy levels increases. Our approach is to determine a set of complete wave functions

in all directions, using a sufficient number of energy levels to include the geometry of the

quantum confinements.
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For ẑ-direction, where our focus is on a triangular quantum well eFzz, we select sinusoidal

wave functions derived from an infinite square well positioned symmetrically between

z ∈ [−L/2, L/2]. Incorporating the boundary conditions, these orthonormal complete set

of wave functions are

ϕnz (z) =
√

2
L

cos
(
nzπz

L

)
for nz = 1, 3, 5, . . . (4.20)

ϕnz (z) =
√

2
L

sin
(
nzπz

L

)
for nz = 2, 4, 6, . . . (4.21)

The in-plane wave functions we use are eigenstates of the two-dimensional harmonic os-

cillator:

ϕnx(x) = π−1/4
√

2nn!
1

√
ax

exp
(

− x2

2a2
x

)
Hnx

(
x

ax

)
, (4.22)

ϕny (y) = π−1/4
√

2nn!
1

√
ay

exp
(

− y2

2a2
y

)
Hny

(
y

ay

)
, (4.23)

where the confinement frequency can be expressed as:

ωx,y = ℏ
m∗a2

x,y

(4.24)

Hn represents Hermitian polynomials. To obtain high accuracy in numeric, we adopt 8

levels of Eq. 4.20, 14 levels of Eq.4.22, and 14 levels of 4.23. We can then diagonalize the

Hamiltonian H for specific device geometries, strains, electric fields, and magnetic fields

in the basis introduced in Eq. 4.19-4.23. After performing the diagonalization, the ground

state of the qubit Hamiltonian will be denoted by |0⟩ with energy E0, the first excited

state will be denoted by |1⟩ with energy E1 and the qubit Zeeman splitting will be defined

by ∆Ez = E1 − E0.

4.2.2 EDSR frequency and phonon relaxation time

Electric dipole spin resonance (EDSR) methods are widely used to coherently drive tran-

sitions between spin states in silicon hole spin qubits. Within the ground state orbital,

the spin of a hole qubit can be rotated by an alternating microwave signal (an alternating

in-plane electric field), the frequency of this microwave signal should be matched with
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Figure 4.2: Qubit Zeeman splitting for an out-of-plane magnetic field Bz. a) The
qubit Zeeman splitting ∆E is plotted as a function of the gate electric field Fz for two
different out-of-plane magnetic field strengths, Bz=0.1 T (solid line with square markers)
and Bz=0.2 T (dashed line with diamond markers). A flat local minimum of the qubit
Zeeman splitting is observed as a function of the gate electric field. b) The qubit Zeeman
splitting ∆E is plotted as a function of the out-of-plane magnetic field Bz for two different
top gate field strengths, Fz=20 MV/m (solid line with square markers) and Fz=30 MV/m
(dashed line with diamond markers). The parameters used to generate all the figures in
this chapter are provided in Table 4.1

the qubit Zeeman splitting ∆Ez. Therefore, the EDSR frequency can be calculated by

evaluating the transition matrix element

fRabi = e

h
∥⟨1|r · EAC|0⟩∥ (4.25)

In our case, the in-plane alternating driving electric field EAC is set to be 1 kV/m.

The phonon relaxation time can be calculated using the method detailed in numerous

studies [245, 550, 565, 309, 476, 62, 63, 465, 489, 450, 218, 283]. Unlike III-V semicon-

ductors, silicon and germanium do not have piezoelectric phonons due to their non-polar

nature [477, 283]. We assume that the silicon hole spin qubit is coupled with a thermal

bath of bulk acoustic phonons along the polarization direction α ∈ ℓ, t1, t2 (one longitu-

dinal direction and two transverse directions), with phonon wave vectors denoted by q.

The energy of the acoustic phonons is ℏωα,q. To calculate the phonon relaxation time, we
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consider the hole-phonon interaction Hamiltonian:

Hα
hp =

∑
i,j

Di,jε
α
i,j(r) (4.26)

for i, j ∈ {x, y, z}, where Di,j are deformation potential matrices. The detailed matrix

elements can be found in the chapter. 2. The local strain εα
i,j(r) has the form

εα
i,j = i

2q
√

ℏ
2ρVcωα,q

ϵαi,j

(
e−iq·râ†

α,q + eiq·râα,q

)
(4.27)

where

ϵαi,j = êα
i

qj

q
+ êα

j

qi

q
(4.28)

is a symmetric 3 × 3 matrix, ê is the unit vector in the direction of phonon propagation.
The transition rate between the first excited state E1 and the ground state E0 due to
spontaneous phonon emission can be obtained from Fermi’s golden rule:

Γα = 2π
ℏ

∫ ∞

0

∫ 2π

0

∫ π

0

∥∥〈0, Nq + 1
∣∣Hα

hp
∣∣1, Nq

〉∥∥2
q2δ

[(
E1 − E0

ℏvα

)
− q

]
sin θ Vc

(2π)3 dθ dϕ dq (4.29)

where Vc/(2π)3 is the reciprocal space density of states, Nα
q is the phonon occupation

number following Bose-Einstein statistics:

Nα
q =

[
exp

(
ℏωα

q /β
)

− 1
]−1

β = kBT (4.30)

, where T=0.1 K, and kB is the Boltzmann constant. The phonon propagation velocity is

different for different polarization directions, with vℓ = 9000 m/s for the longitudinal di-

rection, vt1 = vt2 = 5400 m/s for the other two transversal directions [552, 198, 213]. Our

calculations assume a three-dimensional phonon bath, a choice predicated on the obser-

vation that the confinement dimensions of our device are of the same order of magnitude.

However, it is important to recognize that phonon models in strongly confined materials

present sophisticated challenges and warrant more detailed scrutiny. The specific geom-

etry of the device plays a critical role in defining the relationship between the magnetic

field’s order and the phonon relaxation rate. For a comprehensive treatment of phonons

in various dimensions, readers are referred to Ref. [283].
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Figure 4.3: EDSR Rabi frequency for an out-of-plane magnetic field Bz. a) The
EDSR Rabi frequency fRabi is plotted as a function of the gate electric field Fz for two
different out-of-plane magnetic field strengths: Bz=0.1 T (solid line with square markers)
and Bz=0.2 T (dashed line with diamond markers). b) The EDSR Rabi frequency fRabi
is shown as a function of the out-of-plane magnetic field Bz for two different gate electric
field strengths: Fz=20 MV/m (solid line with square markers) and Fz=30 MV/m (dashed
line with diamond markers). In this case, an in-plane AC electric field of 1 kV/m is applied
along the x̂-direction. c) The EDSR Rabi frequency fRabi is plotted as a function of the
angle of the applied in-plane EAC alternating driving electric field. The magnetic field is
along the ẑ-direction with magnitude Bz=0.1 T. The top gate field is Fz=10 MV/m.
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4.2.3 Random telegraph noise coherence time

4.2.3 Random telegraph noise coherence time

In a silicon hole quantum dot system, the spin-orbit coupling induced by the top gate

field exposes the hole spin qubit to charge noise, primarily from charge defects known as

random telegraph noise (RTN) [496, 317]. The charge defects can lead to fluctuation in the

qubit energy spectrum, resulting in qubit dephasing [104, 410, 102, 33, 424, 307, 323]. In

our model, we particularly focus on two key sources of charge defects-induced dephasing:

screened single charge defects and dipole charge defects.

For the purposes of this discussion we have chosen to focus on defects whose electric fields

lie primarily in the plane of the qubit. This is because, as will emerge below, regardless

of the orientation of the magnetic field, the qubit Larmor frequency exhibits extrema as

a function of the top gate electric field. By operating the qubit at these extrema one

can protect against fluctuations in the out-of-plane electric field. Thus fluctuations in the

in-plane electric field are most detrimental to the qubit, and this is what our model focuses

on.

The potential of a single defect can be modelled as [33, 532]:

Uscr(q) = e2

2ϵ0ϵr
e−qd Θ (2kF − q)

q + qT F
. (4.31)

where q is the wave-vector, qTF is the Thomas-Fermi wave-vector for silicon, which is

independent of the density of holes, and kF is the Fermi wave vector. The relevant values

can be found in Table 4.1. Θ is the Heaviside step function. In position space, the single

charge defect potential can be written as [118, 33].

Uscr(r) = e2

4πϵ0ϵr
1
q2

TF

(
1

∥r − rD∥3

)
(4.32)

where rD = (xD, yD, zD) is the position vector of the single charge defect, taking the

center of the quantum dot as the origin. For silicon, the relative electrical permeability

is ϵr = 11.68; ϵ0 is the vacuum electrical permeability. The defect location xD is set to

be 30 nm from the center of the quantum dot. The resulting change in the dot’s orbital

splitting (the energy difference between the orbital ground state and first excited state)
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Figure 4.4: Relaxation time and Rabi ratio for an out-of-plane magnetic field
Bz. a) The single phonon relaxation time T1 as a function of the gate electric field Fz

is calculated for an out-of-plane magnetic field Bz=0.1 T. This relaxation time represents
the characteristic time scale for the decay of the qubit due to phonon-hole interactions.
b) The Rabi ratio is plotted as a function of the top gate electric field Fz when Bz=0.1 T.
The Rabi ratio is around 106, which provides an indication of the efficiency of the qubit
operation, with higher values indicating a stronger qubit coherence.

.

due to the defect is 1µeV at Fz=1 MV/m, consistent with Refs. [92, 93]. We also include

dipole charge defects, with

Udip (r) = p · (r − rD)
4πϵ0ϵr(r − rD)3 (4.33)

The dipole moment is p = el, where l is the dipole vector. In our calculations, we assume

the size of the dipole is 0.1 nm. The influence of the dipole charge defects on the dephasing

time is typically much smaller than the influence due to single charge defects [102, 33, 304].

By considering both single charge defect and dipole charge defects, we can calculate the

dephasing time in the quasi-static limit that estimates the upper bound of the dephasing

time, denoted by:

T ∗
2 = 2π

δω
(4.34)

In Silicon MOS devices, the single charge defects are the dominating source of noise leading

to the qubit decoherence, however, the single charge defects are not active under the gate

because there is no free electron to tunnel into, or out of the defect [102]. Dipole charge

defects, which also grows naturally in amorphous solids, particularly in SiO2 [113, 33]
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Figure 4.5: Dephasing time in the quasi-static limit in an out-of-plane magnetic
field Bz. Both single charge defects and dipole charge defects are taken into account for
an out-of-plane magnetic field Bz=0.1 T, but the dominant contribution to the dephasing
potential comes from single charge defects. The dephasing time, which is estimated to be
around 2µs, exhibits a local maximum, suggesting the presence of an optimal operation
point.

are active in the depleted region under the gate, but their electric field is much weaker

than single charge defects. Hence for a qualitative understanding of planar hole qubit

decoherence, we model a fluctuating single defect in the qubit plane situated further from

the region under the gate.

However, the contribution to the regularization of the defect electric potential due to the

gate-induced electric field screening can not be neglected. But it will require a device-

specific modelling, which is outside the scope of this work. Furthermore, the potential of

dipole charge defects tends to be static, which inherently limits the extent of screening

[280, 523]. We note that single charge defects may in fact be active immediately under

the gates if charges are able to tunnel into and out of the defect potential from the gate

electrodes. This, however, does not change our model qualitatively, since the defect would

still be modelled by a screened Coulomb potential. In our analysis we focus primarily on

trends rather than absolute numbers (which will vary with the location of the defect) and

we expect the physics to be qualitatively the same if the defect lies under the gate.

The single charge defects we considered is a description of the charge traps due to missing
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Figure 4.6: Qubit Zeeman splitting for an in-plane magnetic field B∥. a) The qubit
Zeeman splitting ∆E is plotted as a function of the gate electric field Fz for two different
in-plane magnetic field strengths: Bx=1 T (solid line with square markers) and Bx=0.8 T
(dashed line with diamond markers). Notably, there is a flat local maximum observed
around Fz=11 MV/m. b) The qubit Zeeman splitting is shown as a function of the in-
plane magnetic field Bx=1 T for two different gate electric field strengths: Fz=20 MV/m
(solid line with square markers) and Fz=30 MV/m (dashed line with diamond markers).

bonds during the growth of SiO2 layer, the density of the single charge defects are highly

temperature dependent depending on the method of fabrications [113]. In our calculations,

we assume that the density of single charge defects are low enough that the electrical

properties will not be altered. This local charge fluctuations due to charge traps is known

as tunneling two-level system [381, 175, 330], which can be described by

V (t, r) = (−1)N(t) × V (r) (4.35)

whereN(t) is a Poisson distribution taking value 0 or 1, with switching time τ . The random

telegraph noise arises from isolated tunneling two-level system, leading to a dephasing

[496, 317]. The Eq. 4.31 describes the potential that a hole will experienced in a trap.

However, the real space expression does not have a closed analytical from [118], so an

approximation form is used, which is Eq. 4.32 in our main text.

We note that this analysis is applicable only to a single defect giving rise to random

telegraph noise. The realistic but more complicated case of 1/f noise for multiple defects

will be considered in a forthcoming study.
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Figure 4.7: EDSR Rabi frequency for an in-plane magnetic field B∥. a) The
EDSR Rabi frequency fRabi is plotted as a function of the gate electric field Fz for two
different in-plane magnetic field strengths: Bx=1 T (solid line with square markers) and
Bx=0.8 T (dashed line with diamond markers). b) The EDSR Rabi frequency fRabi is
shown as a function of the in-plane magnetic field Bx=1 T for two different gate electric
field strengths: Fz=10 MV/m (solid line with square markers) and Fz=20 MV/m (dashed
line with diamond markers). c) The EDSR Rabi frequency fRabi is plotted as a function
of the in-plane magnetic field orientation when Bx=1 T, Fz=10 MV/m, and the in-plane
AC electric field remains at 1 kV/m along the x̂-direction. The magnetic field is rotated
through 2π in the xy-plane. Notably, the maximum EDSR Rabi frequency occurs when
the magnetic field is aligned along the x̂-direction, which coincides with the direction of
the in-plane AC driving electric field.
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4.3 Results and Discussion

In this section, we present the main findings of our numerical diagonalization. The section

is divided into three parts, which focus on qubit dynamics in an out-of-plane magnetic

field, dynamics in an in-plane magnetic field, and g-factor anisotropy respectively.

Our numerical model has identified extreme values of the qubit Zeeman splitting as a func-

tion of the top gate field for various parameters in different magnetic field orientations.

This is because the vertical electric field creates two opposing Stark effects: it simultane-

ously increases the HH-LH gap and enhances the HH-LH coupling. The sweet spot is the

point where these two sources of Stark shift cancel each other. At this point the variation

of the qubit Zeeman splitting vanishes in the first order as a function of the gate electric

field, as shown in Fig. 4.2 and Fig. 4.6. This non-linear behavior of the qubit Zeeman

splitting leads to similar non-linearities in other important properties of the silicon hole

spin qubits.

4.3.1 Out-of-plane magnetic field

The qubit Zeeman splitting ∆Ez as a function of the gate electric field Fz and the out-

of-plane magnetic field Bz is plotted in Fig. 4.2. When Bz=0.1 T, the electric field can

change the qubit Zeeman splitting by about 30%, and there is a local minimum in the

qubit Zeeman splitting as a function of top gate field.

Next we discuss the EDSR Rabi frequency, shown in Fig. 4.3. We found that with an

in-plane AC electric field of ∼ 1 kV/m applied along the x̂-direction, the EDSR Rabi

frequency is about 15 MHz at Bz=0.1 T. There also exists a local maximum of EDSR

frequency as a function of the gate electric field, and the EDSR Rabi frequency is linear

in Bz. With an out-of-plane field, the Zeeman splitting term is typically of the order of

µeV, which can be treated perturbatively. Therefore, when Bz is small, the EDSR Rabi

rate can be expanded as a function of Bz, with the leading order ∝Bz, which is similar

to the finding of Ref. [484] for Ge. Interestingly, as shown in Fig. 4.3c, the EDSR Rabi
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Figure 4.8: Relaxation time and Rabi ratio for an in-plane magnetic field B∥. a)
The single phonon relaxation time T1 as a function of the gate electric field Fz is calculated
for an in-plane magnetic field Bx=1 T. b) The Rabi ratio is plotted as a function of the
gate electric field Fz when Bx=1 T. The Rabi ratio is around 105.

frequency exhibits a slight anisotropy as the electric field is rotated in the plane, varying in

magnitude by ∼ 20%. This is traced to the presence of the cubic-symmetry γ3 terms in the

Luttinger Hamiltonian. It is worth mentioning that the applied AC in-plane electric field

EAC will enhance the in-plane confinement. This enhancement distorts the parabolic shape

of the confinement potential, thereby affecting the in-plane wave-functions. However, the

EAC value considered in this study are relatively small. Therefore, the distortion of the

confinement potential and the subsequent impact on the in-plane wave-functions have

been assumed to be negligible for our analysis. To study the number of operations allowed

in one relaxation time, we plot the phonon-induced relaxation time and the Rabi ratio

in Fig. 4.4. At Bz=0.1 T the relaxation time is several milliseconds, which allows ∼ 106

operations. The long relaxation time reflects the weak hole-phonon interactions for silicon

as a lighter material with a fast phonon propagation speed compared with germanium.

Our results Fig. 4.2 and Fig. 4.6 show that extrema in the qubit Zeeman splitting as a

function of the top gate field Fz exist for all magnetic field orientations. Nevertheless,

proper coherence sweet spots only exist for an out-of-plane magnetic field, as shown in

Fig. 4.5. To understand this we must highlight the difference between extrema in the

qubit Zeeman splitting and T ∗
2 sweet spots. The qubit states are Kramers conjugates.
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Figure 4.9: Dephasing time in quasi-static limit for an in-plane magnetic field
B∥. Both single charge defects and dipole charge defects are taken into account for an
in-plane magnetic field Bx=1 T, but the dominant contribution to the dephasing potential
still comes from single charge defects. The dephasing time exhibits a local minimum,
suggesting the absence of an optimal operation point.

Time-reversal symmetry implies that the matrix elements giving rise to pure dephasing,

which represent an energy difference between the up and down spin states, must involve

the magnetic field – they cannot come from charge noise and spin-orbit coupling alone.

Because the magnetic field enters the qubit states both through the Zeeman and the orbital

terms, the composition of the qubit states is different depending on the magnetic field

orientation. For an out-of-plane magnetic field, the in-plane and out-of-plane dynamics

can be approximately decoupled. The main effect of the gate electric field is to give

rise to Rashba-like terms acting on the heavy hole spins. Unlike Ge, the Schrieffer-Wolff

approximation is not applicable to Si as studied by [328] so this decomposition is not

as easily visualized, although one can still envisage an effective spin-orbit Hamiltonian

characterized by a Rashba constant. The Rashba term affects the qubit Zeeman splitting,

and is directly susceptible to charge noise perpendicular to the interface, which is the main

way a defect affects qubit spin dynamics. An in-plane electric field does not couple to the

diagonal qubit matrix elements to leading order and can thus be disregarded in a first

approximation.
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4.3.2 In-plane magnetic field

When magnetic field is applied in the plane, our result (Fig. 4.6) shows a large qubit

Zeeman splitting variations as a function of the top gate field, which is also observed in a

recent experiments (Ref. [295]). A local minimum as a function of the gate electric field

continues to exist, however, in an in-plane magnetic field the local minimum in the qubit

Zeeman splitting does not protect the qubit from the single charge defect noise, as was

emphasized above in the out-of-plane magnetic field case.

The EDSR Rabi frequency in an in-plane field contains a dominant term ∝ Bx as well

as a small distortion ∝ B2
x due to the orbital magnetic field terms. For an in-plane

field, the orbital term in Luttinger-Kohn Hamiltonian can change the dispersion of holes

significantly, away from the center of the Brillouin zone, the orbital term will distort the

parabolicity of the dispersion. Therefore, an in-plane magnetic field will eventually result

in stronger heavy-hole-light-hole mixing and significant modulation of the g-factor even

when the amplitude of the field is small. Considering the transition matrix element in

Eq. 4.25, this amplitude is determined by the in-plane AC electric field as well as the

shapes of the ground state wave function |0⟩ and of the excited state wave function |1⟩.

As a result, the EDSR Rabi frequency exhibits a non-linear behavior as a function of Bx

due to the heavy-hole-light-hole admixture and due to the orbital magnetic field terms.

We also observe a strong anisotropy in the EDSR Rabi frequency: applying the magnetic

field parallel to the AC in-plane electric field results in an enhanced EDSR Rabi frequency,

as shown in Fig. 4.7 c).

For an in-plane magnetic field, the orbital vector potential terms couple the in-plane and

out-of-plane dynamics and no separation of the dynamics is possible. The net effect of

this is that the qubit is sensitive to all components of the defect electric field, and an

extremum in the qubit Zeeman splitting as a function of the perpendicular electric field

does not translate into a coherence sweet spot for charge noise, as Fig. 4.9 shows. Notably,

the existence of a sweet spot is feasible when the applied magnetic field is tilted, a concept

that is supported by recent experimental and theoretical advancements [99, 295, 395, 524].
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Figure 4.10: g-factor anisotropy. The variation of the g-factor is plotted as a function of
the in-plane magnetic field orientation ϕ, representing the angle of the magnetic field with
respect to the x̂-direction. The magnitude of the applied magnetic field is 1 T. The semi-
major axis of the dot is ax=24 nm; the semi-minor axis of the dot is ay=20 nm, giving the
aspect ratio to be 1.2. When the magnetic field is parallel to the semi-major axis (ϕ=0◦),
the g-factor has a maximum value, which is also observed in Ref. [295].

A primary aspect of our investigations is to discern the distinctive dephasing responses

when subjected to either out-of-plane or in-plane magnetic fields. The exploration of more

complex magnetic field orientations and their associated dephasing characteristics will be

considered in a future effort.

4.3.3 Ellipticity and in-plane g-factor anisotropy

In experimental studies, dots are often formed without explicitly attempting to remain

circular, leading to a notable anisotropy in the effective g-factors, as depicted in Fig. 4.10.

Despite the presence of an anisotropy term, denoted as κ2 in the Zeeman Hamiltonian, it

is important to note that κ2 is typically smaller than κ1 in both group IV and group III-V

hole systems. Therefore, it has limited impact on the energy spectrum of the qubit. In

contrast, the orbital term in HLK and the effective mass will contribute more strongly to the

anisotropy of the Rashba spin-orbit coupling and of the effective g-factors. Furthermore,

we assume that hole qubit operation is governed by the k3-Rashba spin-orbit coupling
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[356], which consist of a ‘linear’ term that winds the Fermi surface once and a ‘cubic’

term which winds the Fermi surface three times. In the context of a circular dot, qubit

operation is driven by the ‘linear’ Rashba term and the stronger ‘cubic’ Rashba term

becomes activated in elliptical dots [328]. We discuss the origin and relevance of the

different spin-orbit interactions in the language of quasi-degenerate perturbation theory

in the Appendix B.

For possible experimental settings, the lateral confinement in the x̂ and ŷ directions can

be independently adjusted using the electrostatic gates. This corresponds to in-situ con-

trol over ωx,y, which are defined in Eqs. 4.22-4.23. Previous work by Qvist and Danon

(Ref. [406]) investigated lateral confinement potentials, providing an analytical study of

effective mass anisotropy and the size of the confinement potential by taking the linear

Rashba term as an example in a perturbative approach on the four-band Luttinger-Kohn

Hamiltonian. In contrast, our numerical calculations include all Rashba terms, involving

tracing all non-commutable canonical momentum operators in higher excited states, and

accounting for the non-parabolic behaviors of the band structure based on a six-band

Luttinger-Kohn Hamiltonian.

Our results indicate that the g-factor exhibits an oscillating pattern when we rotate a

constant in-plane magnetic field in the xy-plane. For example, when the aspect ratio is

1.2, we observe a g-factor variation up to 50% as a function of the in-plane magnetic

field angle. This substantial anisotropy in the in-plane g-factor is consistent with recent

experimental observations (Ref. [295]).

4.4 Comparison between Germanium and Silicon

A promising competitor for silicon, in semiconductor quantum dot hole spin qubit area,

is germanium. However, due to the fabrication details of silicon hole quantum dot and

germanium hole quantum dot, the location of the sweet spot as a function of the top

gate field, the strain in the sample, and the modulation of the in-plane and out-of-plane
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Figure 4.11: A prototype double quantum dot in strained germanium hole sys-
tem. The substrate includes a fully strain-relaxed SiGe layer on the bottom. The middle
of the heterostructure comprises an epitaxially grown layer of strained germanium, hosting
the hole qubit, and another layer of relaxed SiGe atop the Ge layer. The concentration
of Si atoms in SixGe1−x, represented by the component fraction factor x, also determines
the strain in the pure Ge layer via Vegard’s law. The portion of the silicon in SiGe can
be tuned experimentally, therefore, homogeneous axial strains can be controlled. Gate
B1, P1, B2, P2, B3 are used to confine two quantum dots, while gate B2 and T1 can
control the inter-dot tunneling. In this picture, we set the growth direction to be along
the ẑ-direction.
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Table 4.1: Comparison of silicon and germanium material parameters. The rele-
vant parameters defining the silicon hole spin qubit and germanium hole spin qubits are col-
lected from Ref. [552, 124, 213, 198, 417, 294, 206]. In the table, the out-of-plane heavy-hole
band and light-hole band mass is defined as mHH = m0/(γ1 − 2γ2), mLH = m0/(γ1 + 2γ2);
the in-plane heavy-hole band effective mass and the light-hole band effective mass is de-
fined as mHP = m0/(γ1 + γ2), mLP = m0/(γ1 − γ2). m0 is the bare electron mass, γ1,
γ2, γ3 are Luttinger parameters. The density ρ is the bulk density of isotropic silicon or
germanium. vℓ, vt1 , vt2 are phonon propagation speeds along three different polarizations.
av, bv, dv are the hydro-static deformation potential constant, uni-axial deformation po-
tential constant, and shear deformation potential constant respectively. The split-off band
gap is denoted by ∆0. Throughout this chapter, unless specifically mentioned, the radius
of the quantum dot is ax = ay =20 nm, and the width of the quantum well is L=13 nm.

Parameters Silicon Germanium
γ1 4.29 13.38
γ2 0.34 4.24
γ3 1.45 5.69
κ1 -0.42 3.41
κ2 0.01 0.06
mHH 0.277 m0 0.204 m0
mLH 0.201 m0 0.046 m0
mHP 0.216 m0 0.057 m0
mHP 0.253 m0 0.109 m0
ρ 2329 kg/m3 5330 kg/m3

vℓ 9000 m/s 3570 m/s
vt1 5400 m/s 4850 m/s
vt2 5400 m/s 4850 m/s
av 2.38 eV 2.00 eV
bv -2.10 eV -2.16 eV
dv -4.85 eV -6.06 eV
∆0 44 meV 296 meV

Hole density 10−2 nm−2 3×10−3 nm−2
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g-factors are expected to be different. As a comparison of the material characters, we list

important parameters, which is relevant in fabricating the hole spin qubit, of silicon and

germanium in Table. 4.1.

The in-plane effective mass of a hole in silicon (0.216m0) is much heavier than that in

germanium (0.057m0). As a consequence, the heavy-hole-light-hole energy splitting in

silicon (around 5 meV) will be much smaller than that in germanium (around 50 meV).

A direct outcome of a small heavy-hole-light-hole energy splitting is that, the presence of

strains will efficiently lead to mixing between the light-hole and heavy-hole band, which

will amplifies the Stark shift effect. Experimental evidence indicates that the in-plane

g-factor for silicon varies from 1.5 to 2.5 [295]. Concurrently, germanium hole quantum

dots have been observed to exhibit a g-factor range of 0.16 to 0.3 [205, 207]. Notably, both

silicon and germanium demonstrate the potential for significant g-factor modulation, with

variations reaching up to 50 %. Furthermore, the smaller effective mass in silicon imposes

limitations on the splitting of quantum dot orbital levels, thereby restricting the size of

silicon hole quantum dots, imposing a difficulty towards salable quantum computations.

The strain present in silicon and germanium hole quantum dots is another important fea-

ture. Engineering strains in semiconductor quantum dot hole spin qubits are receiving

increased attention due to their potential in realizing significant g-factor modulations and

accelerating EDSR Rabi oscillations. The axial strain terms commonly studied—namely,

Pε ,Qε, Pε + Qε, and Pε − Qε in the HLKBP Hamiltonian are directly responsible for

adjusting the heavy-hole-light-hole energy splitting. Meanwhile, the role of shear strain

terms, such as Rε and Sε in HLKBP, which facilitate the intermixing of heavy-hole and

light-hole states, is increasingly recognized for its importance. Recent theoretical studies

have highlighted that in-homogeneous strain fields can activate linear Rashba spin-orbit

interactions, leading to substantial g-factor modulations and potentially enhancing EDSR

Rabi oscillations by an order of magnitude [2, 466, 421]. In MOS based silicon hole

quantum dots, strains naturally arise due to the thermal contraction differences between

the metal electrodes and the silicon substrate. Recent experimental findings, such as those

documented in Ref. [295], have underscored the significance of in-homogeneous strains in
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Table 4.2: Possible configurations for optimal operation points. We consider both
in-plane and out-of-plane magnetic fields for silicon and germanium. The strains εxx,
εyy and εzz have the relation εxx = εyy=εzz = −εxx(2C12/C11), the shear strain εxz is
estimated from Ref. [295]. We use ∆EZ to denote the qubit Zeeman splitting. Note that
there exist many possible combinations of parameters to get an optimal operation point
as a function of the gate electric field.

Confinements Silicon Germanium
Orbital energy splitting 0.3 meV 0.3 meV
HH-LH energy splitting 7 meV 100 meV

Typical εxx 0.001 0.01
Typical εyy 0.001 0.01
Typical εzz -0.00077 -0.0077
Typical εxz 0.0008 0

∆EZ (Bx = 1T) 100µeV 15µeV
Sweet spot (Bx = 1T) 8 MV/m 18 MV/m

∆EZ (Bz = 0.1T) 10µeV 90µeV
Sweet spot (Bz = 0.1T) 13 MV/m 20 MV/m

explaining the non-monotonic behavior observed in qubit Zeeman splitting and other re-

lated properties. The existence of the shear strain can change the location of the sweet

spot, the magnitude of the g-factor, and the magnitude of EDSR frequency. Using the

parameter we used, the change of the magnitude of the in-plane g-factor is enhanced by

around 5 %. In the germanium hole spin qubits, particularly those based on a uniformly

strained germanium quantum well within a SiGe/Ge/SiGe heterostructure, the homoge-

neous axial strains are well defined Fig. 4.11. However, a mapping of the shear strain has

been performed experimentally in Ref. [94] for Ge and Ref. [421] theoretically demonstrates

the role of inhomogeneous strain for Ge planar hole qubit operations. To quantitatively

compare the strain in the silicon and the germanium hole spin qubit devices, we use typical

parameters as listed in Ref. [484, 439]. For instance, if the relaxed SiGe layer is Si0.25Ge0.75,

(x=0.25) the axial compressive strain will be ϵxx =- 0.001, which is ∼ 5 times larger than

the strain present in the silicon metal-oxide-semiconductor quantum dot. In Table. 4.2,

we summarize various typical configurations, including strains, top gate fields, magnetic

fields, and geometries to reach the optimal operation points in different materials. We

notice that the parameters used to fit experimental data, such as the dot geometry, shear

strain, and axial strain, are estimates. It is crucial to include the non-uniform strain from
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Table 4.3: Comparison of the EDSR Rabi time, relaxation time and Rabi ra-
tio between silicon and germanium with same orbital energy and qubit Zee-
man splittings in an in-plane magnetic field. The strain used in germanium is
εyy=εxx=0.001, εzz =−(2C12/C11)εxx. The strain used in silicon is εxx=εyy=0.1%, εzz=-
0.077%, εxz=0.08%, εxy=εyz=0. One can always adjust the gate electric field and the
magnetic field to ensure the qubit Zeeman splittings are the same in a silicon and a ger-
manium hole qubit. For EDSR Rabi frequency, the in-plane AC electric field used is
1 kV/m. To have the same orbital confinement energy to be 0.3 meV, the silicon dot size is
ay=ax=25 nm, L =13 nm, while the germanium dot size is ay=ax =50 nm, L =11 nm. The
gate electric field is fixed to be 10 MV/m.

Confinements Silicon Germanium
Orbital energy splitting 0.3 meV 0.3 meV

∆EZ = 25µeV Bx = 0.3 T Bx = 2 T
EDSR Rabi time 80 ns 200 ns
Relaxation time 200 ms 4 ms

Rabi Ratio 2×106 2×104

Dephasing time 0.7µs 10µs

the gate electrodes, as shown in Ref. [295]. For more precise results, direct strain profilling

as in Ref. [466], or device-specific modelling can be employed. Strain will be thoroughly

investigated in future works. In this context, we note that we do not anticipate strain

to change the existence of the optimal operation points of the qubits for fast EDSR Rabi

ratio and minimized dephasing time as a function of the top gate field. Another important

difference between Ge and Si concerns the applicability of the Schrieffer-Wolff transfor-

mation in analyzing qubit Hamiltonians. For Ge, a perturbative approach based on the

Schrieffer-Wolff transformation is demonstrated to be effective for an out-of-plane mag-

netic field [532], which relies on the large heavy-hole-light-hole splitting in a low density

Ge system. In Si the heavy-hole-light-hole splitting is much smaller than in Ge, while

the cubic-symmetry term in the Luttinger Hamiltonian is very strong. As a result of

this, the Schrieffer-Wolff transformation cannot account for full density-dependence (i.e.,

quantum dot radius dependence) of the hole states and split-off band correctly, and a full

diagonalization of the Hamiltonian is needed to yield accurate results.

While Si and Ge are excellent hosts of planar hole spin qubits, both platforms have ad-

vantages and disadvantages. Silicon exhibits smaller sized quantum dots, which is highly

compatible with the already existing advanced Si fabrication technologies. The intrinsic
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spin-orbit coupling is weak in Si, evident from the fact that the split-off gap ∆0 is 44

meV in Si compared to 325 meV in Ge. Yet the cubic-symmetry Rashba parameter α3 is

sizeable, resulting in a similar spin flip EDSR rate to Ge. On the other hand, the quantum

dot size is large in Ge, providing great scope for potential scaling up of the technology.

Although the spin-orbit coupling is larger in Ge than Si, the cubic term is not so strong.

Lastly in terms of qubit coherence, experimentally noise is somewhat stronger in Si hole

qubits, although if the qubit is operated at a sweet spot this may not matter.

4.5 Conclusions and Outlook

In this chapter, starting from the diagonalization of the Luttinger-Kohn-Bir-Pikus Hamil-

tonian, we have developed a numerical method to study the silicon hole spin qubits in

different experimental configurations. We have shown that the gate electric field signifi-

cantly modulates the qubit Zeeman splitting, EDSR Rabi frequency and relaxation time.

We have shown that the dephasing time due to random telegraph noise stemming from

single and dipole charge defects exhibits very different behaviors in in-plane and out-of-

plane magnetic fields. We find that in an out-of-plane magnetic field coherence sweet spots

can be identified as a function of the top gate field, at which random telegraph noise does

not couple to the spin. However, in the case of in-plane fields the role of random telegraph

noise can be reduced but not entirely removed, because the vector potential terms expose

the qubit to all components of a defect’s electric field. The numerical method we have

developed in this work can be extended to many-hole spin qubits in other materials as

well as to studies of several qubits required for entanglement.
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Chapter 5

Helical Edge State

The main content of this independent chapter is an adaption of a publication

Ref. [531] by the candidate. I would like to express acknowledgement to all the

co-authors: Pankaj Bhalla, Mark Edmonds, Michael S. Fuhrer, and Dimitrie

Culcer.

Quantum spin-Hall edges are envisaged as next-generation transistors, yet they exhibit

dissipationless transport only over short distances. Here we show that in a diffusive sam-

ple, where charge puddles with odd spin cause back-scattering, a magnetic field drasti-

cally increases the mean free path and drives the system into the ballistic regime with

a Landauer-Buttiker conductance. A strong non-linear non-reciprocal current emerges in

the diffusive regime with opposite signs on each edge, and vanishes in the ballistic limit.

We discuss its detection in state-of-the-art experiments.

5.1 Introduction

Quantum spin-Hall insulators are a novel class of materials hosting gapless, topologically

protected, counter-propagating edge states. These have opposite spin polarizations and

exhibit strong spin-momentum locking due to the dominant role of the spin-orbit interac-
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tion [529, 284, 300, 201, 405, 404, 237, 327, 570]. Time-reversal symmetry ensures edge

states come in Kramers doublets, which cannot be back-scattered by time-reversal invari-

ant perturbations [269, 109, 384, 267, 553, 82, 491, 296]. Materials possessing topological

edge states include topological insulators such as HgTe and Bi2Se3, Weyl semimetals such

as WTe2, and Dirac semimetals such as Na3Bi [318, 452, 154, 482, 300, 573, 298, 35].

A ballistic edge has a longitudinal conductance of e2/h at low temperature, a fact that has

led to proposals for using topological edge states as building blocks for next-generation

transistors, exploiting electrically tunable topological phase transitions [383]. Neverthe-

less, following the experimental discovery of topological edge states, it has emerged that

puddles with odd numbers of charges, which exist inherently in the host materials due to

doping disorder in fabrication, can act as effective magnetic impurities that back-scatter

the edge states and significantly reduce their mobility [515, 384, 503, 267, 255, 506]. This

may explain why ballistic conductance has only been observed over spatial scales of the

order of 50 nm [154, 482, 515, 452, 262, 298, 299, 371]. Whereas initial studies focused

on the Kondo effect, the Kondo temperature in current samples is expected to be neg-

ligibly small [528, 303, 527], while other aspects of transport remain poorly understood

[300, 505, 468, 449, 311, 378, 284, 571, 296, 562]. The unexpectedly large resistance of

topological edge states has emerged as a fundamental question and an obstacle in the de-

velopment of topological transistors [543, 481]. Bearing in mind the role of magnetic impu-

rities, the first step in overcoming this problem is understanding edge magneto-transport

in the presence of puddles. This includes the identification of non-reciprocal currents, since

non-linear response probes interactions that are difficult to access in linear response, due

to constraints imposed by mirror symmetry and Onsager relations [257, 359, 281, 431, 452].

The rich physics underlying non-linear phenomena [486, 573, 238, 557, 36, 459] has been

manifest in recent discoveries such as Hall effects in time-reversal invariant systems, as well

as in unexpected features of topological edges, such as a large uni-directional magneto-

resistance at zero magnetic field [154, 573, 431, 452].

In this article we demonstrate that a magnetic field has a drastic effect on both the

linear and non-linear response of topological edge states: (i) It enhances the mean free
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Figure 5.1: Experimental setup in a perpendicular magnetic field B. The current is
measured across the sample, while the voltage can be measured at two different terminals
along one side. On the opposite side one terminal is grounded. Spin-up electrons are
shown in orange, spin-down electrons in green.

path l by orders of magnitude without opening a gap, eventually driving the system

into the ballistic regime; (ii) By breaking mirror symmetry the magnetic field enables a

strong unidirectional non-linear electrical response in the diffusive regime. The direction

of the current is determined by the magnetic field and the spin quantization axis, and

it has a different sign on each edge. Interestingly, the non-reciprocal current vanishes

in the ballistic regime. This reflects the fact that, once magnetic impurity scattering is

surmounted, the only remaining magnetic interaction is the Zeeman interaction with the

out of plane field, which can be gauged away. Whereas a complete description of charge

puddles is beyond the scope of this work, modelling the puddles as magnetic impurities

is a simple way of capturing the physics that governs their magnetoresistance, which is in

excellent agreement with experiment [299].

5.2 Model and Methodology

5.2.1 Material selections

We focus on Na3Bi as a prototype material, motivated by the observations that ultra-

thin films of Na3Bi have a band-gap of ≥300 meV [127], much greater than kBT at room

temperature, are robust to layer-number fluctuations caused by imperfect growth [128],
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exhibit an electrically driven topological phase transition[91], and show clear evidence of

edge transport over millimetre distances, as well as a giant negative magneto-resistance

[299]. Our model also applies to topological insulators with inversion symmetry such as

Bi2Se3. Materials without inversion symmetry, such as WTe2, exhibit a positive magneto-

resistance and a position-dependent spin quantization axis, so they fall outside our scope.

5.2.2 Quantum kinetic equations

Considering a sample of finite size d a magnetic field B ∥ ẑ is applied out of the plane.

The full Hamiltonian H can be written as H = H0 + HZ + V + U + UZ , where the

band Hamiltonian H0 = ℏvFkxσz represents the edge state dispersion of Na3Bi; HZ =

g0µBBσz is the Zeeman interaction with the magnetic field. Since in the absence of

warping terms the magnetic field does not open a gap in the dispersion the topological

character of the states is preserved (the role of warping is discussed briefly below). V (x)

is the electrostatic potential, with the associated electric field E = −∂V/∂x, and −e the

electron charge. The random magnetic impurity potential U = Js ·
∑

i Siδ(x − x′
i) is

the contact-like interaction term allowing spin-dependent scattering between an electron

and effective magnetic impurities. s indicates the spin operators of the electron and

Si indicates the spin operators of impurities with spin-1/2 sited at position xi. At the

end we average over uncorrelated impurities which are all assumed to experience the

same exchange interaction J with the mobile carriers. We choose the impurity density

and exchange coupling to reproduce the mean free path observed experimentally in the

diffusive regime. The local moments are in thermal equilibrium, relaxing their energy and

angular momentum rapidly to an external bath [313], which corresponds to what is seen

experimentally. If the local moments coupled only to the edges the moments on each edge

would polarize quickly and the edges would become ballistic in a short amount of time:

this is not observed in experiment. The Zeeman interaction between the impurities and the

out-of-plane magnetic field UZ = g1µB
∑

i Si ·B. The notation σz in the full Hamiltonian

represents the z-component of the Pauli spin matrix for a spin-1/2 particle. We focus on

the DC limit, where ωτ ≪ 1.
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We derive a quantum kinetic equation following the procedure of Refs. [504, 528], which en-

sures the Pauli blocking terms are correctly accounted for [504]. The system is described by

the density matrix ρ, which satisfies the quantum Liouville equation ∂ρ/∂t+(i/ℏ)[H, ρ] =

0. The explicit position dependence must be taken into account due to the finite size of

the sample. Following a Wigner transformation [108, 105]

∂ρ

∂t
+ 1

2ℏ

{
∂H0
∂kx

,
∂ρ

∂x

}
+ J(ρ) = − e

ℏ
∂V

∂x

∂ρ

∂kx
(5.1)

In Eq. (5.1), the single particle density matrix ρ takes the form diag{f↑, f↓}. We write
f↑ = f

(0)
↑ + g↑ is the non-equilibrium distribution for the spin-up electrons composed of

the equilibrium part f (0)
↑ and out-of-equilibrium part g↑; similarly, f↓ = f

(0)
↓ + g↓ is the

non-equilibrium distribution for the spin-down electrons, the equilibrium distribution have
the form f (0)(ε) = [1 + exp(β(ε− µ))]−1 where β = (kBT )−1. The last term in Eq. (5.1)
is the scattering term in the Born approximation, which take the form

J(g↑) =
∫ [

Pk↓,k′↑f
′
↓(1 − f↑) − Pk↑,k′↓f↑(1 − f ′

↓)
]dk′

2π (5.2)

J(g↓) =
∫ [

Pk↑,k′↓f
′
↑(1 − f↓) − Pk↓,k′↑f↓(1 − f ′

↑)
]dk′

2π (5.3)

Here P i(k′, ↓→ k, ↑) indicates the probability of spin-flip scattering between a spin-up
electron at k and an impurity, ending with a spin-down electron at k′. Primed quantities
indicate the final state following a scattering event. We obtain two coupled Boltzmann
equations for the spin-up and spin-down electrons:

∂g↑(ε)
∂x

+ Γ1(ε)g↑(ε) − Γ2(ε)g↓(ε−) = −e∂V
∂x

∂f
(0)
↑ (ε)
∂ε

(5.4)

∂g↓(ε)
∂x

− Γ1(ε)g↑(ε+) + Γ2(ε+)g↓(ε) = −e∂V
∂x

∂f
(0)
↓ (ε)
∂ε

(5.5)

where ε− = ε− εZ and ε+ = ε+ εZ The two scattering rates are defined as follows:

Γ1(ε) =NiJ
2

ℏ2vF

[
1

1 + e−α

[
1 − f

(0)
↓ (ε)

]
+ 1

1 + eα
f

(0)
↓ (ε)

]
(5.6)

Γ2(ε) =NiJ
2

ℏ2vF

[
1

1 + e−α
f

(0)
↑ (ε) + 1

1 + eα

[
1 − f

(0)
↑ (ε)

]]
, (5.7)

where Ni is the number of impurities, the dimensionless factor α = g1µBB/(kBT )−1,
and the change of the Zeeman energy during the spin-flipping interactions εZ = g1µBB.
We solve the coupled Eq. (5.4) and Eq. (5.5) by integrating separately over left and right
movers, which also ensures the correct solution in the ballistic regime:

g
(1)
↑ = − e

∫ x

0

[Γ2

κ
+

Γ1

κ
exp
[
κ(x − x′)

]]∂V

∂x

∂f
(0)
↑

∂ε
dx′ + e

∫ x

d

[Γ2

κ

(
exp
[
κ(x − x′)

]
− 1
)]∂V

∂x

∂f
(0)
↓

∂ε
dx′ (5.8)
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g
(1)
↓ = − e

∫ x

d

[Γ1

κ
+

Γ2

κ
exp
[
κ(x − x′)

]]∂V

∂x

∂f
(0)
↓

∂ε
dx′ + e

∫ x

0

[Γ1

κ

(
exp
[
κ(x − x′)

]
− 1
)]∂V

∂x

∂f
(0)
↑

∂ε
dx′ (5.9)

where κ = Γ1 + Γ2, and the mean free path l = κ−1 = (Γ1 + Γ2)−1. The current

density j = −eTr(vρ), where v = (1/ℏ)(∂H0/∂k). For spin-up electrons the momentum

integration is performed over k > 0, and for spin-down electrons over k < 0. For the

second-order response the sign of the magnetic field in the scattering terms Eq. (5.6), (5.7)

will change, yet Γ1 and Γ2 are symmetric in α; the sign of the driving term will change

similarly to the band dispersion. The mean free path is unchanged and the formal solution

to the differential equation is analogous to Eqs. 5.8-5.9, with the replacements

∂f (0)

∂ε
→ ∂g(1)

∂ε
(5.10)

These equations cannot be reduced to a simple closed form and are solved iteratively.

5.3 Result and Discussion

Referring to the set-up shown in Fig. 5.1, our main results are summarised in Fig. 5.2. The

current in the channel will be denoted by I and the potentials of the left and right electrodes

by VL, VR respectively. We define the conductance G and the non-linear electrical response

function χ by I = G(VL−VR)+χ(VL−VR)2. In Fig. 5.2-(a) and Fig. 5.2-(b) we have plotted

the conductance G as a function of the applied out-of-plane magnetic field B at small and

large values of B, where small and large are quantified below. It is seen that G increases

with B and eventually reaches the quantized Landauer-Buttiker value of e2/h, indicating

that the system reaches the ballistic limit. This opens up the exciting possibility of using a

ferromagnet with an out-of-plane magnetization as a practical method to increase the mean

free path and to study transport in the ballistic regime. The ferromagnet could couple

to the impurities either via a magnetic field or through the exchange interaction. Next,

Fig. 5.2-(c) and Fig. 5.2-(d) show the non-linear electrical response function χ at small

and large magnetic fields respectively. At small B, χ increases with B, but in contrast

to the Ohmic term the non-linear signal reaches a maximum beyond which it decreases,

tending to zero as the system reaches the ballistic regime. This vanishing response is a

161



CHAPTER 5. HELICAL EDGE STATE

Figure 5.2: Linear and non-linear response for a sample with d = 1000nm; v0 =
103V is a scaling factor. (a) The conductance in the diffusive regime. When the
magnetic field is small, the conductance increases as back-scattering is suppressed and the
mean free path increases. (b) The conductance in the ballistic limit, when the mean free
path is larger than the size of the sample, the conductance will not change, converging to
to e2/h. (c) The nonlinear response function χ in the diffusive regime. When the magnetic
field is small, the mean free path is much shorter than the size of the sample, and the
non-linear response increases as a function of B. (d) The nonlinear response function χ in
the ballistic regime. At large magnetic fields the mean free path exceeds the size of the
sample, causing χ to decrease in the ballistic regime and eventually vanish.

characteristic of the Dirac cone, indicating that the non-linear response is a probe of the

edge state dispersion, and is a unique experimental signature reflecting chiral conduction

in the TI. To generate and detect the second-order response at low-frequency it is sufficient

to use an oscillator with angular frequency ω and read off the signal at 2ω.

The negative magneto-resistance in Fig. 5.2 is explained by the relationship between the

magnetic field and the mean free path. Although conventional 1D systems are either

ballistic or localised, the notion of a mean free path, defined explicitly below, can be

applied meaningfully to 1D topological edge states, a diffusive system in which localisation

is nevertheless not expected due to topological protection. We note that up and down

spins have the same mean free path l. Figure 5.3 gives a diagrammatic example of spin-

flip scattering, showing a spin-down electron being flipped to the spin-up channel due to

scattering off an impurity. The energy required for this transition is set by the Zeeman

splitting of the impurity spin states. As the magnetic field increases the energy cost likewise
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Figure 5.3: Spin-flip scattering. An electron with spin down is scattered into a spin-up
state, which, due to spin-momentum locking, travels in the opposite direction; the energy
change is given by the impurity Zeeman splitting E1,Z = g1µBB.

increases and the transition is suppressed. Figure 5.4 shows the mean free path l increasing

as a function of B until it exceeds the size d of the sample. Based on this we define the

diffusive regime as l ≪ d, and the ballistic regime as l > d. We focus on these two limiting

cases, in which simplifying approximations can be made. Specifically, in the diffusive

regime one may assume a constant electric field across the channel, and the conductance

takes the simple general form G = e2

h
l
d , where the entire magnetic field dependence is

contained in the mean free path l(B). In the ballistic regime it is straightforward to

express the current as a function of the potential difference between the source and drain

electrodes, and the potential drop occurs overwhelmingly in the vicinity of the electrodes

due to contact resistance, although the exact potential profile is immaterial [117, 116].

The conductance is obtained straightforwardly as G = e2

h . The intermediate region is

complicated by potential fluctuations, and is not a focus of current experimental efforts.

A full treatment requires accounting for screening thoroughly [4, 115].

A perpendicular magnetic field breaks mirror symmetry and enables a second-order re-

sponse, which increases as a function of the magnetic field in the diffusive regime due to

the reduced efficiency of impurity scattering. Nevertheless, the non-linear response van-

ishes in the ballistic regime. Once transport becomes ballistic there is no more scattering

and the impurities become irrelevant. The effective Hamiltonian becomes simply that of a

Dirac cone, H0+HZ , whence B can be removed by redefining the origin. The second-order

response therefore probes the edge state dispersion: if a non-linear response is detected in
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Figure 5.4: The mean free path as a function of magnetic field. The red dashed lines
mark the size of the sample d = 1000nm compared with the mean free path the system.
When the magnetic field is small, the system is diffusive, however a larger magnetic field
will enhance the mean free path, driving the system into the ballistic regime, leading to
a vanishing non-linear response. In all the plots, we have set the mean free path at zero
magnetic field to be 10nm.

the ballistic regime it must come from band structure terms of higher order in the wave

vector, which are challenging to calculate computationally for 1D systems. Although they

can be determined by symmetry their magnitude is generally unknown [262] (the details

are reserved for a future publication).

The response of the other edge can be found by reflecting the Hamiltonian in the xz-plane.

The Hamiltonian describing the dispersion for the other edge reads H0 = −ℏvFkxσz.

When the magnetic field is flipped the conductance G does not change, consistent with

Onsager symmetry. But the direction of the non-linear response on each edge is set by the

spin orientation with respect to the magnetic field and the solution to the second order

quantum kinetic equation changes sign for the other edge. Hence χ changes sign, ensuring

time reversal breaking in the non-linear response function [486].
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5.4 Conclusion and Outlook

In this work we have not discussed dispersions beyond the linear case. In Bi2Se3 warping

complicates the dispersion, and in the spin eigenstate basis H0 = Akxσy + Cσzk
3
x. A

magnetic field ∥ ŷ yields a term of the form σzBy due to warping, which opens a small gap

in the edge spectrum. However, warping only accounts for up to 10% of the Fermi energy,

thus the gap is expected to be small, and will not influence the dynamics in the vicinity of

the Fermi energy discussed here. Since the addition of warping complicates significantly

the description of the interaction with the impurities, a further derivation is beyond the

scope of this work.

In summary, we have shown that a magnetic field drastically enhances the conductivity

of topological edge states and gives rise to an edge-dependent non-linear response which

vanishes in the ballistic limit. The magnetic field, as well as proximity to a ferromagnet,

can be used to drive the system into the ballistic regime, while the non-linear response

probes the edge state dispersion. In the future the transport theory can be extended to

the Kondo regime along the lines of Ref. [528].
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Chapter 6

Conclusion and Outlook

This thesis aims to presented a comprehensive study on improving coherence in Group

IV semiconductor quantum dot hole spin qubits. Starting from theoretical modelling of

Group IV semiconductor quantum dots in k·p approach, we firstly examined the properties

of the two-dimensional-hole-gas, and the effective Hamiltonians. Based on this effective

model, we discussed the optimisation of the coherence in a fully electrically controlled

hole spin qubits in germanium, where the higher order perturbative approach of the four-

band Luttinger-Kohn Hamiltonian is adequte to capture the optimal operation points,

verfied by simple numerical schemes. The electric dipole spin resonance Rabi time, and

phonon induced relaxation time is discussed, resulting in a large Rabi ratios. In this

project, the qubit dephasing time is over estimated due to the lack of experiment-relevant

parameters to described defect potential models. However, the physics is expolored: the

dephasing time will have a local maximum, which means at the optimal operational point,

the charge defects induced dephasing time will vanish in the first order of the gate electric

field, favoring the fast qubit manipulations, given the magnetic field is parallel to the gate

electric field.

The second project on silicon hole spin qubits is a further extension of the germanium

project. Silicon, as the main character in modern electronics, comes with various ad-

vantages along the developments of electronis. The state-of-art industry-level MOSFET
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devices provides a natural platform for studying the p-type devices. However, the un-

derstanding of germanium hole spin qubits can not be translated into silicon directly due

to the different band structure. Firstly, the smaller split-off band constant in silicon re-

quires a six-band Luttinger-Kohn Hamiltonian, which will give further renormalization to

the heavy-hole bands. This will impose a direct challenge using perturbative approach.

Secondly, the planar quantum dot schemes are more attractive due to its potential of

scalabity. These two resasons urged us to give the perturbative anslysis, and established

a full numerical scheme for silicon hole qubits. In this project, we find that firstly the

large modulation of g-factors can favours the electrical manipulations, agrees with some

experiments. Secondly, we notice a difference between the different application of mag-

neitc fields; when the magnetic field is applied perpendiculally to the quantum dot, there

will still be a dephasing maximum, however it will vanish when we applied magnetic field

parallely. This suggested further investigation will be required to fully understand the

charge dephasing in semiconductor quantum dot systems.

Except the mysterious dephasing mechanisms in semiconductor quantum dot hole spin

qubits, there are many aspects need to be further examined. One important issue is strain,

which is a commonly used technique in semiconductor engineering. As we introduced in the

thesis, there are already studies pointed out that strain can improve the Rabi oscillations

by a order of magnitude. Therefore, how to incorperate the advanced strain engineering

in modern electronics would be a challege in the near future.

In closing, the journey through Optimising Coherence in Group IV Semiconductor Quan-

tum Dot Hole Spin Qubits not only aim to light on the intricate quantum computations,

but also charts a path forward for the burgeoning field of semiconductor physics. As

we stand on the brink of a new era, where quantum computing promises to redefine the

boundaries of computation, communication, and encryption, this thesis is only a tentative

step toward the achievements thus far and the vast possibilities that lie ahead. In this

spirit of exploration and innovation, we look forward to the advancements that will emerge

from this foundation, propelling us into a future quantum world.
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A.1 Bastard variational wavefunction

Consider a particle with effective mass m∗ in a triangular well:

− ℏ2

2m∗
d2ψz(z)

dz2 + eFzψz(z) = Eψz(z) (A.1)

We can introduce the Bastard wavefunction:

ψH(z) =
√

4β (π2 + β2)
(1 − e−2β)Lπ2 cos

(
πz

L

)
exp

[
−β

(
z

L
+ 1

2

)]
(A.2)

and its energy:

E =
〈
ψz

∣∣∣∣∣− ℏ2

2m∗
d2

dz2 + eFz

∣∣∣∣∣ψz

〉
= E

(0)
1

[
1 + β2

4π2 + ϕ

( 1
β

+ 2β
4π2 + β2 − 1

2 coth β2

)]
,

(A.3)

where

ϕ = eFL

E0
1

E0
1 = ℏ2π2

2m∗L2 . (A.4)
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The variational parameters is determined by:

dE
dβ = ϕ

[
− 4β2

(β2 + 4π2)2 − 1
β2 + 2

β2 + 4π2 + 1
4 csch2

(
β

2

)]
+ β

2π2 = 0 . (A.5)

Solving this equation, we will obtain a variational parameter β which is a function of F ,

therefore, the electric field dependency is implicit. Higher order Bastard wavefunctions

are obtained by consider the basis:

un(z) = sin
[
nπ

d

(
z + L

2

)]
× exp

[
−βn

(
z

d
+ 1

2

)]
. (A.6)

With this basis, we can construct the excited states via Gram-Schmidt process.

A.2 Distortion of the potential

In experiments, it is hard to establish a perfect parabolic confinement. To describe the

distortions of the parabolic confinements, we study the following three models as new

perturbation:

V ′
1 = λ|x|3, V ′

2 = 1
2(δω)2x2, V ′

3 = ξ|x| (A.7)

For each of the distortion model, we set the perturbation parameters λ, δ, ξ to satisfy

2V ′/
(
mpω

2
0a

2
0
)

= 0.1. If we consider regions close to the quantum dot, the energy correc-

tion due to the distortion ⟨ϕ |V ′|ϕ⟩ will be small and we can treat it as off-diagonal terms

and use the Schrieffer-Wolff transformation to evaluate the correction to the quantum dot

energy levels. In this regime, the corrections to the first two effective quantum dot levels

are the same, therefore will be no change in the qubit Zeeman splitting.

However, if we consider a larger region, the energy correction due to the distortion ⟨ϕ |V ′|ϕ⟩

will be comparable to the confinement energy ℏω0, i.e, the new quantum dot energy levels

will readE = E0 + Ez + ⟨ϕi |V ′|ϕi⟩. For example, when the quantum well width is

d = 11 nm, F = 4.6 × 107 V/m. The first model (cubic term) will change the qubit

Zeeman splitting by 1.7%, and the second model (quadratic term) will change the qubit

Zeeman splitting by 0.76% and the third model (linear term) will change the qubit Zeeman

splitting by 0.83%.

169



APPENDIX B. APPENDIX: A

Appendix B

Supplementary materials for

chapter 5

B.1 Numerical diagonalization

In this section, we will discuss the details of the numerical diagonalization of the qubit

Hamiltonian. In general, we can just project our qubit Hamiltonian onto the wave func-

tions we are using up to as many levels as we want. However, performing integrals ana-

lytically over all the wave functions is time-consuming. However, due to the parity of the

wave functions and the symmetry of our confinement potential, we can use the following

relations to further simplify the integrals.

If ϕ is the simple Harmonic oscillator wave functions, we will have:

∫ ∞

−∞
ϕn(x)dϕm

dx
dx =



a
√

n+1
2 m = n+ 1

−a
√

n
2 m = n− 1

0 otherwise

(B.1)
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∫ ∞

−∞
ϕm(x)xϕn(x)dx =



1
a

√
n+1

2 m = n+ 1

1
a

√
n
2 m = n− 1

0 otherwise

(B.2)

∫ ∞

−∞
ϕm(x)x2ϕn(x)dx =



√
n(n−1)
2a2 m = n− 2

2n+1
2a2 m = n

√
(n+1)(n+2)

2a2 m = n+ 2

0 m ̸= n ̸= n± 2

(B.3)

When we evaluating the integrals, we need to replace a by appropriate dot radius (ax

or ay). The out-of-plane wave functions are derived from infinite square well, which are

sinusoidal functions and easier to deal with in software. In general, this approach can be

extended to as many levels as we want.

The number of levels used in ẑ-direction as described in the main text Eq. (3) - Eq. (4)

are important to understand the convergence when electric field is large. The ground

state wave-function can be written as ⟨x, y, z|0⟩. In Fig. B.1, we plot several probabil-

ity density curves of our ẑ-direction wave-functions using different number of sinusoidal

wave-functions. We can see when we use more than seven sinusoidal wave-functions, the

probability will not vary much along the ẑ-axis.

B.2 Rashba terms

In this section, we elaborate on the Rashba terms discussed in the main text, presenting

their full expressions within the framework of a perturbative approach. The Rashba spin-

orbit coupling Hamiltonian under our consideration comprises two distinct components:

the α2 terms, representing the ‘cubic’ k3
+-type Rashba terms, and the ‘linear’ α3 terms,

corresponding to the k+k−k+-type Rashba effect (where k+ = kx + iky, k− = kx − iky)
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Figure B.1: Probability density distribution evaluated by evaluated by the norm
square of the wave-function in ẑ-direction. The probability density is plotted as a
function of the ẑ-coordinate, in the main text, the quantum well width is 13 nm placed
symmetrically. The shape of the probability density are very close if the number of sinu-
soidal wave-function used exceed seven.

[328]. While the α3 Rashba term winds the Fermi surface three times, enabling a ∆n= 3

orbital transition; the α3 Rashba term wind the Fermi surface once, inducing a ∆n= 1

Rashba term. The possible k-linear term like k+σ− − k−σ+ are allowed by method of

invariant, however, this term only have marginal contributions due to weak conduction

band-valence band coupling [548, 328]. The form of our spin-orbital coupling Hamiltonian

can be written as:

HSO = α2(k3
+σ− − k3

−σ+) + α3({k2
+, k−}σ+ − {k+, k

2
−}σ−) (B.4)

As a example, consider the ground state and the two first excited states (one in x and one

in y) we used in the main text

ϕ0 = 1√
π

1
√
axay

exp
(

− x2

2a2
x

− y2

2a2
y

)
(B.5)

ϕ1,x =
√

2√
πa3

xay

x exp
(

− x2

2a2
x

− y2

2a2
y

)
(B.6)

ϕ1,y =
√

2√
πaxa3

y

y exp
(

− x2

2a2
x

− y2

2a2
y

)
(B.7)
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We can realize that in a circular quantum dot case, there is no element between the ground

states and the first excited for α2 Rashba term:∫ +∞

−∞
ϕ0α2(k3

+σ−)ϕ1,y = −i 3α2

2
√

2a3
y

(
1 −

a2
y

a2
x

)
= 0 (B.8)

while the α3 Rashba term will be present:∫ +∞

−∞
ϕ0α3(k+k−k+σ+)ϕ1,y = i

α3

2
√

2a3
y

(
1 + 3

a2
y

a2
x

)
(B.9)

As our calculation shows, the α3 ‘linear’ terms can induce a transition between to adjacent

levels, accompanied by spin flips in a circular dot case, while the α2 ‘cubic’ terms do not

contribute to the EDSR unless in an elliptical dot.
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