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Blowup Effect in Linear Accelerators

As has been mentioned occasionally, the stimulated emission could be treated
as a radiative beam instability. As a matter of fact, the problem of electromag-
netic waves generation and amplification can be reduced to the provocation
of the controlled instability in a desirable frequency region.

The previous sections were devoted to numerous difficulties of the task.
However, as it usually happens, instabilities are easily self-excited when and
where they are not desirable or even harmful. According to well-known Mur-
phy low, damping of these parasitic instabilities requires sometimes even more
efforts than exciting the desirable ones.

The theory of collective instabilities in such complicated systems as high
current particle accelerators deserves a special book and, in any case, is outside
of our scope. Nevertheless, one example is worth to be mentioned here briefly.

We mean a so-called blowup effect experimentally found out in large linear
accelerators at currents exceeding a rather low threshold value of order of sev-
eral tens of milliamperes. The accelerated current pulse with typical duration
of 2–3 ms was found out to shorten sharply. Increase in the injection current
shortened the pulse even more so that the total accelerated charge remained
the same or decreased. At the same time, hard x-ray radiation appeared in-
dicating high-energy electrons bombarding the chamber walls. These effects
were accompanied by electromagnetic radiation with frequency exceeding 1.5–
2 times the frequency of the main accelerating mode.

The last obviously indicated a parasitic mode self-excitation, that is, the
coherent radiation emission in a higher propagation band.1 The electron bom-
bardment proved that the excited mode had transverse components at the axis
and was axially nonsymmetric.

Transverse focusing taken into account, one can consider each electron as
an oscillator moving with a relativistic velocity in a system permitting prop-
1 Remind that the dispersion characteristic of a linear accelerator’s waveguide con-

sists of bands of transparency. Certain spatial Fourier harmonics of propagating
modes have phase velocity lesser than that of light.
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agation of slow waves. Hence, in our conception we can talk about radiation
under conditions of anomalous Doppler effect when growing of oscillations can
be expected. In this short chapter, we pay attention to this effect because the
negative energy waves had been considered above only as longitudinal space
charge ones. In the present case, self-excitation and phasing of transverse dis-
placement waves are of interest.

In a linear accelerator, the beam looks like a train of short bunches sepa-
rated by the accelerating wave length which is not an integer number of the
excited wave one. For this reason the microwave equilibrium structure of the
beam is not of importance for self-excitation but gives a possibility to consider
each bunch as an individual point-like particle.

A structure of a nonsymmetric wave in a periodic waveguide is rather
complicated even if the waveguide itself is symmetric. Opposite to uniform
systems, only axially symmetric modes belong to definite E or M types. In
general, the proper waves have all six components and for this reason are called
HEM-waves (Hybrid ElectroMagnetic). However, only quasi-synchronous har-
monics with wavenumbers k ≈ ω/βc and phase velocities βp ≈ β are of im-
portance for interaction with a particle moving along z with a practically
constant velocity β. To avoid misunderstanding, note that the phase velocity
βp = ω/kc should be considered in our case as a fixed parameter. Boundary
conditions in a waveguide of period l can be provided only by cooperation of
harmonics shifted in wavenumbers by multiples of 2π/l and not taking part
in the synchronous interaction.

The field of the lowest synchronous harmonic with one variation over az-
imuth can be expressed in cylindrical coordinates via three components of the
vector-potential. For a wave linearly polarized in a x = r cos θ plane
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where In is a Bessel function of an imaginary argument. Standard calculations
yield for the field components:
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In particular, considering the polarization plane, the components
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do not vanish at the axis. A schematic structure of the force lines in the
paraxial region is presented in Fig. 11.1

Fig. 11.1. Force lines of a HEM wave in the paraxial region

Two main deductions should be made. First of all, a particle travelling
along the z-axis cannot radiate a HEM wave but experiences a deflecting
Lorentz force. As a result, it is shifted in x-direction to the domain of possible
emission and/or absorption. One can easily see that waves slightly faster than
the particle accomplish negative work and, hence, are amplified. Correspond-
ingly, slow waves are absorbed. This mechanism of the stimulated emission
is in somewhat more complicated than the longitudinal phasing above. The
latter effect also exists in our case but plays a secondary role.

In reality, the length of a single section is too small for developing of
an absolute instability due to induced radiation.2 But in a chain of many
sections the instability occurs in spite of their electrodynamic independency.
The necessary coupling takes place because information about a transverse
displacement in a certain section is transported by the beam to all following
ones.

To simplify the description, we neglect all transient effect at the ends
of the sections constituting a waveguide of a large linear accelerator. Their
independency can be imitated by putting zero the group velocity of the HEM
wave. Radiative processes inside a single section cannot be considered in this
model. We also suppose for simplicity the rigid structure of the beam bunched
in the accelerating field. By the way this makes impossible the longitudinal
bunching in the comparatively weak HEM wave.

Consider a sequence of particles (bunches) deflected by the synchronous
HEM wave proportional to exp (ikz − iωt). When passing a point z the s-th
particle is under action of the same force as the (s − 1)-th one but shifted
in phase by −ωT where T is a time interval between the particles. Besides,
2 However, in industrial high-current accelerator, it can happen.
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an additional force acts because of the (s − 1)-th particle radiation. This is
proportional to the particle deviation from the axis with a certain complex
coefficient Z. For our purposes, an obvious fact is sufficient that Z value is
proportional to the particle charge, that is, to the beam average current I.
(Of course, calculations of the instability threshold would require the exact
value of Z as well as the group velocity and damping constant of the HEM
mode.) Now the equation for the transverse deviation of the s-th particle can
be written in the form:

[
d2xs

dz2
+ ν2xs

]
exp (iωT ) =

d2xs−1

dz2
+ ν2xs−1 + Zxs−1 . (11.4)

Here ν2 describes a possible external focusing and the phasor exp (iωT ) reflects
the phase shift of the radiation field during the interval between particles.

The transverse deflections of two successive particles also have a phase
shift of ωT . In any case, a formal substitution

xs = Xs exp (−iωTs)

excludes the exponential factor from (11.4) and gives the following equation
for slowly varying amplitudes:

[
d2

dz2
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]
(Xs − Xs−1) = ZXs−1 . (11.5)

Let us suppose now that particle-to-particle variations of the amplitude
are small so that the index s can be considered as a continuous variable.
As was mentioned above, it does not mean necessarily that the beam itself
is continuous (the accepted model might fail only if the phase shift ωT is a
multiple integer of 2π, i.e., if the HEM wave and the accelerating wave are
coherent). In this approximation, Eq. (11.5) looks like

∂
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where the constant Z differs in somewhat from that of (11.4) and s can be
treated now as time accounted from the moment when the head of the train
passed the point z.

A solution of (11.6) depends on initial and boundary conditions, in par-
ticular on initial amplitude of the wave and on initial beam displacement.
However, if time and distance are large enough, the amplitude asymptotic
behavior is independent of initial conditions.

As far as the field vanishes ahead of the train Laplace transformation of
(11.6) gives the second-order homogenous equation
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)
X(z, p) = 0 (11.7)
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with a general solution

X(z, p) = L+(p) exp (Γz) + L−(p) exp (−Γz) , (11.8)

where
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The asymptotic behavior of (11.8) for z → ∞ is obviously determined by the
first term in the right-hand side. The inverse Laplace transformation then
yields
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For large z and s, the integral value is determined by saddle points p0 in
the complex plane of p, which are the roots of the equation:
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The root of interest corresponds to the maximal real part3 of the exponent
argument in (11.10). Passing the integration contour through the point and
expanding the argument over powers of p − p0:
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we obtain

X(z, s) � (11.13)
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The substitution

u = (p − p0)
(

4ν2 − 3
Z

p0

)1/2 (sp0)
3/2

Zz

gives for the integral (11.13):
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3 There can be two such roots but it does not make an essential difference.


