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1. Introduction

Dimensional Regularization (DReg) [2, 3, 4, 5] is one of the most employed schemes for
regularizing, while explicitly preserving Lorentz covariance, the divergences arising from loop
calculations in quantum field theories (QFTs) into poles in a dimension-shift parameter ν . Taking
the case of 4-dimensional QFTs extended to a formal “d”-dimensional space, ν is usually equal to
4− d. The d-dimensional space is separated into a direct sum of 4 and d− 4 ≡ −2ε dimensional
subspaces. All Lorentz-covariant objects present are extended from 4 to d dimensions, and acquire
4-dimensional (denoted by bars: · ) and (−2ε)-dimensional “evanescent” (denoted by hats: ·̂ )
components. On these subspaces, the metric tensors (also understood as projectors) are defined by

d-dim. :gµν , 4-dim. : ḡµν , (−2ε)-dim. : ĝµν = gµν − ḡµν , (1.1)

and similar for their inverse (with upper indices, see Ref. [6]); using a mostly minus signature
(+1,−1,−1,−1) for the 4-dimensional metric, their contractions are

gµνgνµ = d , ḡµν ḡνµ = 4 , ĝµν ĝνµ = d−4≡−2ε , (1.2a)

and

gµνgνρ = g ρ

µ ≡ δ
ρ

µ , ḡµν ḡνρ = ḡ ρ

µ = ḡµνgνρ = gµν ḡνρ , (1.2b)

ĝµν ĝνρ = ĝ ρ

µ = ĝµνgνρ = gµν ĝνρ , ḡµν ĝνρ = 0 = ĝµν ḡνρ . (1.2c)

γµ Dirac matrices can be extended as well to d dimensions (see e.g. Chapter 4 of [6]), with
4-dimensional γ̄µ and (−2ε)-dimensional γ̂µ components. (Anti-)commutation and contraction
properties for these objects can be obtained as well (see e.g. in [1]).

The description of chiral fermions in 4-dimensional QFTs, leads to the appearance of the γ5

matrix, or related, of the Levi-Civita symbol εµνρσ . Thus arises the question of how to define these
intrinsically 4-dimensional quantities in DReg. Naively manipulating these objects would lead
to inconsistencies, so one should instead find a way to ensure that the Ward or the Slavnov-Taylor
identities are satisfied, either by restoring them or by ensuring their validity without any restoration.

In these proceedings we summarize our study of this problem [1], made in the context of the
renormalization of a d-dimensional massless chiral gauge theory (Section 2). We adopt the so-
called BMHV scheme for handling γ5 and εµνρσ , formalized by ’t Hooft and Veltman [5, 7, 8, 9],
proven to be axiomatically consistent perturbatively at all loop orders by Breitenlohner and Maison
[10, 11, 12, 13], and being able to reproduce the ABJ anomaly [14]. In this scheme, the ε symbol
is defined by its product with the metric tensor, and with itself, (using the ε0123 =+1 convention)

g µ1
µ εµ1µ2µ3µ4 = εµµ2µ3µ4 , εµ1µ2µ3µ4εν1ν2ν3ν4 =− ∑

π∈S4

sgn(π)
4

∏
i=1

ḡµiνπ(i) , (1.3)

while γ5 possesses both anticommuting and commuting properties:

{γ5, γ̄
µ}= 0 , [γ5, γ̂

µ ] = 0 , {γ5,γ
µ}= {γ5, γ̂

µ}= 2γ5γ̂
µ , [γ5,γ

µ ] = [γ5, γ̄
µ ] = 2γ5γ̄

µ . (1.4)

γ5 otherwise keeps its usual 4-dimensional behaviour, from its explicit definition [10]:

γ5 =
−i
4!

εµνρσ γ
µ

γ
ν
γ

ρ
γ

σ , γ
2
5 = 1 . (1.5)

1
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We analyse (Section 4) the counterterm structure arising in this scheme and the induced breaking
of the BRST invariance (Section 3). For the consistence of the theory, this symmetry is restored via
suitable finite BRST-restoring counterterms (Section 5), obtained via the framework of algebraic
renormalization.

Besides, the chiral fermions generate chiral anomalies [15, 16] manifested e.g. in pion decays
in the Standard Model (SM), formally arising from the presence of γ5 in a fermion trace (the Adler-
Bell-Jackiw (ABJ) anomaly),

Tr({γα ,γ5}γαγµγνγργσ ) = 8i(d−4)εµνρσ . (1.6)

Gauge theories are well-defined and renormalizable only if chiral gauge anomalies are absent (the
one-loop anomaly cancellation conditions from the Adler-Bardeen theorem [17]). Placing our-
selves in this case, we then evaluate renormalization group equations at one-loop level (Section 6)
using the algebraic method. They are compared with the more customary approach from renor-
malization transformations, and we see why no differences arise between the two approaches at
one-loop. However, possible changes can be anticipated in two- or higher loops calculations.

2. Chiral Right-Handed Model in d Dimensions

We employ a massless chiral gauge theory, similar to the one from Refs. [18, 19, 20], based
on a simple gauge Lie group G with gauge fields Ga

µ (structure constants f abc). The matter fields,
charged under G and having irreducible representations for simplicity, are massless right-handed
fermions (rep. ‘R’, generators TR

a
i j), and real massless scalars Φm (rep. ‘S’, generators θ a

mn).
The massless right-handed fermion fields are described with projections of Dirac spinors:

PRψ ≡ ψR, since these can be generalized to d dimensions. The left-handed part of ψ is fictitious,
decoupled from the theory. We use the standard right/left chirality projectors PR,L = (1± γ5)/2.
Thus, the fermionic Lagrangian density in 4 dimensions can be written as (using ψR = ψPL):

Lfermions = iψRi /D
i j

ψR j = iψRi /∂ψRi +gTR
a
i jψRi /G

a
ψR j . (2.1)

The left-handed part PLψ entirely decouples and does not appear at all in this Lagrangian. The
other usual Lagrangian densities (gauge, scalar and Yukawa terms) are

Lgauge =
−1
4

Fa
µνFa µν , Lscalars =

1
2
(DµΦ

m)2− λ mnop

4!
ΦmΦnΦoΦp ,

LYukawa =−
(YR)

m
i j

2
ΦmψR

C
i ψR j−

(YR)
m ∗
i j

2
ΦmψRiψR

C
j .

(2.2)

The covariant derivative (with the generator Xa
i j ≡ TR

a
i j for fermions, and Xa

i j ≡ θ a
mn for scalars), and

the field-strength tensor for G, are defined as:

Di j µ = ∂µδi j− igGa
µXa

i j , (2.3a)

Fa
µν = ∂µGa

ν −∂νGa
µ +g f abcGb

µGc
ν . (2.3b)

The Yukawa matrix (YR)
m
i j is symmetric in its fermion-group indices i, j.

2
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Note that the Yukawa interactions contains charge-conjugated Dirac fermions. It is indeed
possible to define the charge-conjugation operation Ĉ in continuous d ≈ 4 dimensions in the di-
mensional regularization scheme. A corresponding matrix representation C can explicitly be con-
structed, see e.g. Appendix A of [21]. Alternatively, Ĉ can be defined only from its action on the
set of Dirac matrices and on the d-dimensional spinors. Since we work in dimension d = 4− 2ε

around 4, we postulate that the charge conjugation properties that hold in 4 dimensions, viz.

C−1 =C† =CT , CT =−C , (2.4a)

using the matrix representation, also hold in d ≈ 4 (motivated e.g. in Appendix A of [22]), together
with the following properties and action on anticommuting fermions (Appendix G.1 of [23]):

C−1
ΓC = ηΓΓ

T ⇒CΓ
TC−1 = ηΓΓ , with: ηΓ =

{
+1 for Γ = 1 , γ5 ,

−1 for Γ = γµ , σ µν ,
(2.4b)

Ĉ ΨĈ−1 ≡Ψ
C =CΨ

T
, (ΨC)C = Ψ , Ĉ ΨĈ−1 ≡Ψ

C
=−Ψ

TC−1 = ΨC , (2.4c)

Ψ
C
i ΓΨ

C
j =−Ψ

T
i C−1

ΓCΨ
T
j = Ψ jCΓ

TC−1
Ψi = ηΓΨ jΓΨi . (2.4d)

This ensures that the Yukawa term, and any other quantity involving these charge-conjugated
fermions, will be meaningful in d dimensions.

All these Lagrangian densities are straightforwardly extended to d dimensions, excepted for
Lfermions. The first difficulty concerns the fermion-gauge interaction term in Eq. (2.1), which in-
volves the 4-dimensional right-handed current ψ iγ

µψR j. Because PLγµ 6= γµ
PR in d dimensions,

see Eq. (1.4), three inequivalent choices for the d-dimensional versions of this term are possible:

ψ iγ
µ
PRψ j , ψ iPLγ

µ
ψ j , ψ iPLγ

µ
PRψ j . (2.5)

Each of these generate different, but perfectly valid renormalizable d-dimensional extensions of the
model in dimensional regularization and the BMHV scheme. Here we choose the third option,

ψPLγ
µ
PRψ = ψPLγ

µ
PRψ = ψRγ

µ
ψR , (2.6)

as it leads to the simplest expressions, and carries the information that right-handed fermions were
originally present on both sides of the interaction term. The second problem, is that the fermionic
kinetic term iψRi /∂ψRi = iψ iPL /∂PRψi generates only a purely 4-dimensional propagator and leads
to unregularized loop diagrams. The solution is to use instead the entire Dirac fermion ψ and
the fully d dimensional covariant kinetic term iψ i /∂ψi. The fictitious left-chiral field ψL is thus
introduced, but appears only within the kinetic term, has no couplings, and is a gauge singlet.

Hence, our dimensionally regularized fermionic kinetic and gauge interaction terms are:

Lfermions = iψ i /∂ψi +gTR
a
i jψRi /G

a
ψR j = Lfermions,inv +Lfermions,evan , (2.7a)

Lfermions,inv = iψ i /∂ψi +gTR
a
i jψRi /G

a
ψR j , (2.7b)

Lfermions,evan = iψ i /̂∂ψi = iψLi /̂∂ψRi + iψRi /̂∂ψLi , (2.7c)

Lfermions,inv contains purely 4-dimensional derivatives and gauge fields. It is gauge and BRST-
invariant since ψL is a gauge singlet. Lfermions,evan is purely evanescent; however, it mixes left-
and right-chiral fields that have different gauge transformations, causing the breaking of gauge and
BRST invariance, see Section 3.

3
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Gauge-fixing and quantization in the BRST framework

The gauge symmetry is promoted to the BRST symmetry and a Slavnov-Taylor identity [24,
25], and the d-dimensional BRST transformations of the ordinary fields are formally defined ex-
actly as they would be in 4 dimensions [1]:

sdGa
µ = Dab

µ cb = ∂µca +g f abcGb
µcc , (2.8a)

sdψi = sdψRi = icagTR
a
i jψR j , (2.8b)

sdψ i = sdψRi =+iψR jc
agTR

a
ji , (2.8c)

sdψLi = 0 , sdψLi = 0 , (2.8d)

sdΦm = icagθ
a
mnΦn . (2.8e)

ca is the Faddeev-Popov ghost field (in the adjoint representation), and sd is the generator of the
BRST transformation, acting as a nilpotent fermionic differential operator. The transformations of
the ghost ca, the antighost c̄a and the auxiliary Nakanishi-Lautrup Ba fields are:

sdca =−1
2

g f abccbcc ≡ igc2 , sd c̄a = Ba , sdBa = 0 . (2.8f)

The Lagrangian of the theory is then extended with the ghost and the gauge-fixing terms,

Lghost = ∂
µ c̄a ·Dab

µ cb ≡−c̄a∂
µDab

µ cb , (2.9a)

Lg-fix =
ξ

2
BaBa +Ba

∂
µGa

µ . (2.9b)

Lg-fix is equivalent to the more common form: Lg-fix = −1
2ξ
(∂ µGa

µ)
2, obtained after integrating

out Ba. Finally, the non-linear BRST transformations are coupled to external sources and the
corresponding terms are added to the Lagrangian (see e.g. references in [26]),

Lext = ρ
µ
a sdGa

µ +ζasdca + R̄isdψRi +RisdψRi +Y msdΦm , (2.10)

where the external sources ρ
µ
a ,ζa,R, R̄,Y m do not transform under BRST transformations.

The complete d-dimensional tree-level action

The full d-dimensional tree-level action S0 of the model can be naturally decomposed into a
BRST-invariant and a purely evanescent part:

S0 = S0,inv +S0,evan , with: (2.11a)

S0,inv =
∫

dd x
(
Lgauge +Lfermions,inv +Lscalars +LYukawa +Lghost +Lg-fix +Lext

)
, (2.11b)

S0,evan =
∫

dd x Lfermions,evan . (2.11c)

All terms except Lfermions are the d-dimensional extensions of their corresponding 4-dimensional
versions (i.e. all Lorentz indices interpreted in d dimensions). Here, S0,inv contains everything
except the evanescent part of the d-dimensional fermion kinetic term Eq. (2.7a). It is clearly BRST-
invariant since the 4-dimensional part of the fermion covariant derivative term is gauge and BRST-
invariant and all other sectors of the theory are insensitive to the transition from 4 to d dimensions.

4
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The d-dimensional tree-level action can also be decomposed as a sum of integrated field mono-
mials S∏ϕ (∏ϕ represents the products of fields), using the definitions from Section 3.2 of [1]:

S0 = (SGG +SGGG +SGGGG)+(Sψψ +SψGψR)+(SΦΦ +SΦGΦ +SΦGGΦ)

+((YR)
m
i jSψR

C
i ΦmψR j

+h.c.)+λmnopSΦ4
mnop

+Sg-fix +(Sc̄c +Sc̄Gc)+(Sρc +SρGc)+Sζ cc +SR̄cψR
+SRcψR +SY cΦ .

(2.12)

As already announced, this action will break the BRST invariance already at tree-level, see Sec-
tion 3. However, the projected 4-dimensional tree-level action, given by

S(4D)
0 =

∫
d4 x (Lgauge +Lfermions,inv +Lscalars +LYukawa +Lghost +Lg-fix +Lext) , (2.13)

does not have any evanescent component and is BRST-invariant.

3. Tree-level BRST breaking

As mentioned above, S(4D)
0 is BRST-invariant, and satisfies the Slavnov-Taylor identity

S (S(4D)
0 ) = 0 , (3.1)

where the Slavnov-Taylor operation is given for a general functional F as

S (F ) =
∫

d4 x

(
δF

δρ
µ
a

δF

δGa
µ

+
δF

δζa

δF

δca +
δF

δY m
δF

δΦm
+

δF

δ R̄i
δF

δψi
+

δF

δRi
δF

δψ i
+Ba δF

δ c̄a

)
.

(3.2)

The Slavnov-Taylor identity is the basic, defining symmetry property of the theory. We will require
that the Slavnov-Taylor identity S (Γ) = 0 is satisfied for the fully renormalized, finite effective
action Γ (which incorporates the tree-level action, loop corrections and counterterm contributions).

The breaking of the BRST symmetry by the d-dimensional model is given only by the contri-
bution from the evanescent part S0,evan of the action S0,

sdS0 = sdS0,evan ≡ ∆̂ , (3.3a)

which translates, from the Quantum Action Principle, to a non-zero contribution to the correspond-
ing d-dimensional Slavnov-Taylor identity

Sd(S0) = ∆̂ , (3.3b)

where the Slavnov-Taylor operator Sd is defined in the same way as its 4-dimensional version
in Eq. (3.2) except for replacing all 4-dimensional objects by d-dimensional ones. The breaking
vertex operator evaluates to

∆̂ =
∫

dd x (gTR
a
i j)c

a

{
ψ i

(←
/̂∂PR +

→
/̂∂PL

)
ψ j

}
≡
∫

dd x ∆̂(x) . (3.4a)

It is also useful to provide the breaking vertex expressed in terms of charge-conjugated fermions:

∆̂ =
∫

dd x (gTR
a
i j)c

a

{
ψC

i

(←
/̂∂PL +

→
/̂∂PR

)
ψ

C
j

}
, (3.4b)

where the generator TR
a
i j is the one for the fermionic conjugate representation of R.

5
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4. Generic Counterterm Structure; One-loop Singular Counterterms

When employing a regularization scheme that assumes the preservation of gauge and BRST
invariance, the corresponding counterterm structure of the theory acquires the simple form of addi-
tive renormalization transformation for the physical parameters, and multiplicative renormalization
for the fields, as shown in Table 1. The fictitious left-chiral fermion field does not renormalize.

Couplings

g→ g+δg

(YR)
m
i j→ (YR)

m
i j +δ (YR)

m
i j

λ mnop→ λ mnop +δλ mnop

Dynamical fields BRST Sources

Ga
µ →
√

ZGGa
µ ρ

µ
a →

√
ZG
−1

ρ
µ
a

ca→
√

Zcca ζa→
√

Zc
−1

ζa

(ψRi,ψRi)→
√

ZψR(ψRi,ψRi) (Ri, R̄i)→
√

ZψR

−1
(Ri, R̄i)

(ψLi,ψLi)→ (ψLi,ψLi)

Φm→
√

ZΦΦm Y m→
√

ZΦ

−1
Y m

BRST gauge-fixing fields and parameter

{Ba, c̄a,ξ}→
{√

ZG
−1Ba,

√
ZG
−1c̄a,ZGξ

}
Table 1: The renormalization transformations for coupling constants, dynamical fields, BRST sources, and
gauge-fixing fields and parameter. In our model with irreducible representations, and at one-loop level, the
renormalization constants Zϕ remain diagonal in group space.

This renormalization transformation must be applied on the BRST-invariant part of the tree-
level action, S0,inv, but not to its part that contains the evanescent component of the fermion kinetic
term. Once this transformation is applied, we obtain an invariant counterterm action Sct,inv,

S0,inv
Table 1−→ S0,inv +Sct,inv , (4.1)

invariant in the sense that the Slavnov-Taylor identity holds:

Sd(S0,inv +Sct,inv) = 0 . (4.2)

However in the BMHV scheme a more general counterterm structure is expected:

Ssct +Sfct = (Ssct,inv +Ssct,evan)+(Sfct,inv +Sfct,restore +Sfct,evan) . (4.3)

Here, both the invariant singular Ssct,inv (i.e. involving 1/ε poles) and finite Sfct,inv counterterms
are generated by a renormalization transformation as in Eq. (4.1). There can exist additional, but

6
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purely evanescent singular counterterms Ssct,evan needed to cancel additional 1/ε poles from loop
diagrams, as we will see below. Most importantly are the finite counterterms Sfct,restore necessary to
restore the BRST symmetry, and their determination is one of our central goals. Finally there can
be additional counterterms Sfct,evan which are both finite and evanescent. Adding or changing such
counterterms can swap between different options as in Eq. (2.5); these counterterms vanish in the
4-dimensional limit, but they can affect calculations at higher orders.

One-loop Singular Counterterms

The UV-divergences Γ|(1)div of 1PI Green’s functions are evaluated at the one-loop (h̄1) order,
using the diagrammatic method. We performed the calculations in d = 4−2ε dimensions, with the
Mathematica packages FeynArts [27] and FeynCalc [28, 29]; the ε-expansion has been
cross-checked using the FeynCalc’s interface FeynHelpers [30] to Package-X [31].

Based on dimensionality arguments, it is sufficient to evaluate the one-loop corrections to the
self-energies of the fields and to the vertices of the theory. Loop corrections to the vertex terms
Kφ sdφ with BRST sources Kφ have to be computed as well. Their complete list can be found in
Section 5 of [1]. From there the one-loop (order h̄1) singular counterterm action S(1)sct is defined
such as to cancel the divergent parts of the one-loop vertices, and can be expressed as

S(1)sct =−Γ|(1)div = S(1)sct,inv +S(1)sct,evan , (4.4)

where the first term arises from renormalization transformation as in Eq. (4.1) and is given by:

Sct,inv =
δZG

2
LG +

δZψR

2
LψR +

δZΦ

2
LΦ +

δZc

2
Lc

+
δg
g

Lg +
(
δ (YR)

m
i jLYR

m
i j +h.c.

)
+δλ

mnopLλ mnop ,

(4.5)

using “Lϕ functionals” (Nϕ denoting the field-counting operator for ϕ: Nϕ =
∫

dd x ϕi(x) δ

δϕi(x)
)

LG = bd

∫
dd x (ρµ

a +∂
µ c̄a)Ga

µ = (NG−Nc̄−NB−Nρ +2ξ
∂

∂ξ
)S0 ≡NGS0 ,

Lc =−bd

∫
dd x ζaca =

(
Nc−Nζ

)
S0 ≡NcS0 ,

LΦ = bd

∫
dd x Y m

Φm = (NΦ−NY )S0 ≡NΦS0 ,

LψR =−bd

∫
dd x (R̄i

PRψi +ψ iPLRi)−S0,evan =−(NR
ψ +NL

ψ −NR̄−NR)S0,inv ≡N R
ψ S0,inv ,

(4.6a)
and

Lg ≡ g
∂S0

∂g
, LYR

m
i j ≡

∂S0

∂ (YR)
m
i j
, Lλmnop ≡

∂S0

∂λmnop
, (4.6b)

while the second term contains purely evanescent quantities. The renormalization constants δZϕ

agree with the usual ones (see e.g. [18, 19, 20]) and read (using the group invariants from [1])

δZ(1)
G =

h̄
16π2ε

g2 (13−3ξ )C2(G)−4S2(R)−S2(S)
6

, (4.7)

7
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δZ(1)
ψR =

−h̄
16π2ε

(
g2

ξC2(R)+
Y2(R)

2

)
, (4.8)

δZ(1)
Φ

=
h̄

16π2ε

(
g2(3−ξ )C2(S)−Y2(S)

)
, (4.9)

δZ(1)
c =

h̄
16π2ε

g2 (22−6ξ )C2(G)−4S2(R)−S2(S)
6

, (4.10)

δg(1)/g =
−h̄

16π2ε
g2 22C2(G)−4S2(R)−S2(S)

12
, (4.11)

δ (YR)
m,(1)
i j =

h̄
16π2ε

(
(Y n

R (Y
m
R )∗Y n

R )−g2 2C2(R)(3+ξ )−C2(S)(3−ξ )

2
Y m

R

)
i j

− (δZ(1)
ψR +δZ(1)

Φ
/2)(YR)

m
i j ,

(4.12)

δλ
(1)
mnop =

h̄
16π2ε

1
2
(3g4A−g2

ξ Λ
S−4H +Λ

2)mnop−2δZ(1)
Φ

λmnop . (4.13)

The renormalization transformation applied to S0,inv, provides most of the counterterms. As a
result the counterterms S(1)sct,inv contain, from the term δZψRLψR , only corrections to the purely 4-
dimensional right-handed fermion kinetic term: only the right-handed fermion component renor-
malizes, while the fictitious left-handed component does not.

The evanescent counterterms, specific to the BMHV scheme and appearing in Eq. (4.4), are:

S(1)sct,evan =
−h̄

16π2ε

{
g2 S2(R)

3

(
2(S̃GG + S̃GGG + S̃GGGG)+

∫
dd x

1
2

Ḡa µ
∂̂

2Ḡa
µ

)
+Y2(S)

(
(S̃ΦΦ + S̃ΦGΦ + S̃ΦGGΦ)+

2
3

ŜΦΦ

)}
,

(4.14a)

using the monomials introduced in Eq. (2.12), with

S̃O = SO −SO for O = GG, GGG, GGGG, ΦΦ, ΦGΦ, ΦGGΦ . (4.14b)

A bar (resp. a hat) over them signify that they are completely projected onto the 4 (resp. the d−4)
dimensional space. The evanescent terms S̃O are still gauge invariant, while the two additional
terms present in Eq. (4.14), contributions to the gauge boson and scalar self-energies, are not gauge
invariant. This result is also specific to our choice of the regularized, d-dimensional theory, based
on Eq. (2.7a). For example, replacing the object PLγµPR by γµPR in the fermion-gauge boson
interaction, Eq. (2.5), would have generated a new evanescent counterterm to the fermion self-
energy: h̄/(16π2ε)g2C2(R)

∫
x iψ i /̂∂PRψi, as well as many more evanescent contributions to the

gauge boson self-energy [1].

5. BRST Restoration and the Finite BRST-restoring Counterterms

The d-dimensional theory breaks the BRST invariance, both at tree-level and at loop-level, via
the singular counterterms S(1)sct that render the theory finite, see Section 4. We thus seek at restoring
this invariance, central to the consistency of the theory, by determining suitable BRST restoring
counterterms S(1)fct that will ensure the finite renormalized effective action ΓRen satisfies again the
Slavnov-Taylor identity,

S (ΓRen) = 0 . (5.1)

8
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Including all these counterterms, the one-loop d-dimensional effective action can be written as

Γ
(1)
DReg = Γ

(1)+S(1)sct +S(1)fct , (5.2)

where Γ(1) denotes the effective action from tree-level and genuine 1-loop diagrams without coun-
terterms. The renormalized one-loop effective action Γ

(1)
Ren is then obtained in the physical 4-

dimensional space from Γ
(1)
DReg, by first taking the d→ 4 limit and then, setting all remaining evanes-

cent objects to zero. This operation is denoted by LIMd→4, and we have: LIMd→4 Γ
(1)
DReg = Γ

(1)
Ren.

In d dimensions at the one-loop level the Slavnov-Taylor identity is expressed by

Sd(Γ
(1)
DReg) = Sd(Γ

(1))+bdS(1)sct +bdS(1)fct ; (5.3)

here the d-dimensional linearized BRST operator bd [1, 32] is defined by:

bd = sd +
∫

dd x

(
δS0

δGa
µ

δ

δρ
µ
a
+

δS0

δca
δ

δζa
+

δS0

δΦm

δ

δY m +
δS0

δψi

δ

δ R̄i +
δS0

δψ i

δ

δRi

)
, (5.4)

and terms of higher loop order have been neglected. The finite symmetry-restoring counterterms
S(1)fct are defined such that their bd-variation cancels the symmetry breaking. They are also not
unique, since they can always be expanded as (see also Eq. (4.3))

S(1)fct = S(1)fct,inv +S(1)fct,restore +S(1)fct,evan . (5.5)

Here, S(1)fct,inv originates from the renormalization transformation (4.1) and is symmetry invariant

in the sense of (4.2); the evanescent counterterms S(1)fct,evan vanish in the LIMd→4 by definition
and are therefore irrelevant for symmetry restoration at the one-loop level1. Therefore, the actual
symmetry-restoring one-loop counterterms are given by S(1)fct,restore.

The regularized quantum action principle for dimensional regularization [11] implies

Sd(Γ
(1)) = ∆̂ ·Γ(1) , (5.6)

where ∆̂ = sdS0 is the original tree-level BRST symmetry breaking vertex operator Eqs. (3.3)
and (3.4), that is inserted in the generating functional of one-loop regularized Green’s functions.
Thus, the condition that the Slavnov-Taylor identity is satisfied at the one-loop level in the 4-
dimensional limit Eq. (5.1), can be reformulated as

0 = LIM
d→4

(
[∆̂ ·Γ(1)]div +bdS(1)sct +[∆̂ ·Γ(1)]fin +bdS(1)fct,restore

)
, (5.7)

where the subscripts “div”/“fin” denote the 1/ε and finite parts, respectively. This is the defining
condition for the one-loop symmetry-restoring counterterms.

The two divergent quantities [∆̂ ·Γ(1)]div and bdS(1)sct must add up to a finite quantity by con-
struction. However, it turns out that they actually cancel each other:

bdS(1)sct =
−h̄

16π2ε

{
g2 ξC2(G)

2
∆̂+g2 S2(R)

3
bd

∫
dd x

1
2

Ḡa µ
∂̂

2Ḡa
µ +

2Y2(S)
3

bd ŜΦΦ

}
=−[∆̂ ·Γ](1)div .

(5.8)

1The choice of one-loop evanescent counterterms will have an impact on two- and higher-loop calculations.
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We can now proceed to evaluating the finite quantity LIMd→4[∆̂ ·Γ(1)]fin appearing in Eq. (5.7).
This is the central quantity that describes the one-loop symmetry breaking caused by the BMHV
scheme, and that will allow us to find the finite BRST-restoring counterterms S(1)fct,restore. At first
order in h̄, the finite quantity may be expressed as

LIM
d→4

[∆̂ ·Γ(1)]fin = [N[∆̂] ·ΓRen]
(1) , (5.9)

N[O] denotes a renormalized local operator (also called “normal product”), defined as an inser-
tion of O followed, in the context of Dimensional Regularization and Renormalization (subscript
“Ren”), by a minimal subtraction prescription [33] and taking the LIMd→4.

The renormalized insertion of the evanescent breaking ∆̂ in the effective action: [N[∆̂] ·ΓRen]
(1),

can be evaluated using an identity due to Bonneau [34, 35, 36]. A particular simple form of this
identity arises at one-loop [1]:

[N[∆̂] ·ΓRen]
(1) = LIM

d→4

(
−r.s.p.

[
q∆ ·Γ

](1)
ǧ=0

)
. (5.10)

On the right-hand side, “r.s.p.” means the residue of the simple pole in ν = 4−d = 2ε of the 1PI
Green’s function under consideration, and the operator q∆ is obtained from ∆̂ by formally replacing
all its evanescent Lorentz structures by their corresponding d-dimensional versions contracted2

with the symmetric “metric”-tensor ǧµν , possessing the following properties:

ǧµνgνρ = ǧµν ĝνρ = ǧ ρ

µ , ǧµν ḡνρ = 0 , ǧ µ

µ = 1 . (5.11)

We see the significant advantage of the Bonneau identity: [N[∆̂] ·ΓRen]
(1) can be evaluated at fixed

loop order by determining a limited finite number of specific UV-divergent 1PI 1-loop diagrams.
We now evaluate the different non-zero contributions, listed in Table 2, entering in [N[∆̂] ·

ΓRen]
(1), using Eq. (5.10). They can be expressed as a 4-dimensional linear BRST transformation b

of field monomials (b is the restriction to 4 dimensions of bd Eq. (5.4), based on the 4-dimensional
action S(4D)

0 instead), therefore allowing us to determine the BRST-restoring finite 1-loop coun-
terterms S(1)fct,restore, defined, from Eq. (5.7), such that bS(1)fct,restore cancels [N[∆̂] ·ΓRen]

(1). We also
obtain the expression for the gauge anomalies. These finite counterterms are sufficient to restore
the BRST invariance when the anomaly cancellation condition is met [26].

Amplitude in Sect. 6.2 of Ref. [1] Contribution to [N[∆̂] ·ΓRen]
(1)×

( h̄
16π2

)−1

q∆caGb
µ g2 S2(R)

3
∫

d4 x (∂ µca)(∂
2Ga

µ)

q∆caGb
µGc

ν

g2 S2(R)
3

∫
d4 x g f abccaGb

µ(∂
2gµν −2∂

µ
∂

ν)Gc
ν

−g2 dabc
R
3

∫
d4 x gε

µνρσ ca(∂ρGb
µ)(∂σ Gc

ν)

Table 2: The non-zero contributions to the evaluation of [N[∆̂] ·ΓRen]
(1) at 1-loop. These contributions can

be reorganized as b-transformations of field monomials.

2For example: p̂2 = pµ pν ĝµν → pµ pν ǧµν ≡ qp2, and so on...
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Amplitude in Sect. 6.2 of Ref. [1] Contribution to [N[∆̂] ·ΓRen]
(1)×

( h̄
16π2

)−1

q∆caGb
µGc

νGd
ρ

g4 A abcd
R
6

∫
d4 x ca∂

ν

(
Gb

µGc µGd
ν

)
−g4 Dabcd

R
3×3!

∫
d4 x caε

µνρσ
∂σ

(
Gb

µGc
νGd

ρ

)
Total contribution:

−g2
{

S2(R)
6

b
(

5SGG +SGGG−
∫

d4 x Ga µ
∂

2Ga
µ

)
+

g2

12
(TR)

abcdb
∫

d4 x Ga
µGb µGc

νGd ν

}
Relevant anomalies:

−g2
{

dabc
R
3

∫
d4 x gε

µνρσ ca(∂ρGb
µ)(∂σ Gc

ν)+
Dabcd

R
3×3!

∫
d4 x g2caε

µνρσ
∂σ

(
Gb

µGc
νGd

ρ

)}
q∆caΦmΦn Contrib.: −Y2(S)

3
bSΦΦ

q∆caGb
µΦmΦn Contrib.: (CR)

ab
mn

3
b
∫

d4 x
g2

2
Ga

µGb µ
Φ

m
Φ

n

q∆caψ̄i,αψ j,β

−g3
[
C2(R)−

C2(G)

4
+(ξ −1)

(
C2(R)

6
−C2(G)

4

)]
TR

a
i j

−g
2
((Y m

R )∗TR
aY m

R )i j

∫
d4 x ca∂µ(ψ iγ

µ
PRψ j)

q∆caGb
µ ψ̄i,αψ j,β −ig2 ξC2(G)

4
∫

d4 x ig2 f abcTR
c
i jcaψ i /G

b
PRψ j

q∆caΦmψC
i,αψ j,β ig2 ξC2(G)

4
∫

d4 x g
2(YR)

n
i jθ

a
nmcaΦmψC

iPRψ j

q∆caΦmψ i,αψC
j,β ig2 ξC2(G)

4
∫

d4 x g
2(YR)

n ∗
i j θ a

nmcaΦmψ iPLψC
j

q∆cacbR̄i,αψ j,β g2 ξC2(G)
4

∫
d4 x i g2

2 f abcTR
c
i jc

acbR̄iPRψ j

q∆cacbψ̄i,αR j,β −g2 ξC2(G)
4

∫
d4 x i g2

2 f abcTR
c
i jc

acbψ̄iPLR j

Total contribution:

−g2
(

1+
ξ −1

6

)
C2(R)bSψψ +

((Y m
R )∗TR

aY m
R )i j

2
b
∫

d4 x gψ i /G
a
PRψ j +g2 ξC2(G)

4
b(SR̄cψR

+SRcψR)

Table 2: (continued)

In these results the following group factors have been employed:

• the fully symmetric symbol dabc
R =Tr[TR

a{TR
b,TR

c}], and the fully antisymmetric symbol3 Dabcd
R =

(−i)3!Tr[TR
aTR

[bTR
cTR

d]] = 1
2(d

abe
R f ecd + dace

R f edb + dade
R f ebc) for the R-representation, follow-

ing the notations of Ref. [36];

• the notation (TR)
a1···an = Tr[TR

a1 · · ·TR
an ] for the trace of a product of same group generators TR

a;

3We employ the standard indicial notation for the (anti-)symmetrization of tensor indices (or subset thereof):
T [a1···an] = 1

n! ∑π σ(π)T aπ(1) · · ·T aπ(n) , and T {a1···an} = 1
n! ∑π T aπ(1) · · ·T aπ(n) .

11
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• the group factors

A abcd
R =

1
2
((TR)

abcd +(TR)
adcb +(TR)

acbd +(TR)
adbc)− S2(R)

2
( f abe f cde + f ace f bde) ,

(CR)
ab
mn ≡ Tr

[
2{TR

a,TR
b}(Y m

R )∗Y n
R −TR

a(Y m
R )∗TR

bY n
R
]
, and (SR)

ab
mn ≡ ((CR)

ab
mn +(CR)

ba
mn +m↔

n)/2, completely symmetric by exchanges a↔ b and m↔ n.

All in all, we obtain the following BRST-restoring finite counterterms:

S(1)fct,restore =
h̄

16π2

{
g2 S2(R)

6

(
5SGG +SGGG−

∫
d4 x Ga µ

∂
2Ga

µ

)
+

Y2(S)
3

SΦΦ

+g2 (TR)
abcd

3

∫
d4 x

g2

4
Ga

µGb µGc
νGd ν − (CR)

ab
mn

3

∫
d4 x

g2

2
Ga

µGb µ
Φ

m
Φ

n

+g2
(

1+
ξ −1

6

)
C2(R)Sψψ −

((Y m
R )∗TR

aY m
R )i j

2

∫
d4 x gψ i /G

a
PRψ j

−g2 ξC2(G)

4
(SR̄cψR

+SRcψR)

}
,

(5.12)

and the following relevant (non-spurious) anomalies:

− h̄g2

16π2

(
dabc

R
3

∫
d4 x gε

µνρσ ca(∂ρGb
µ)(∂σ Gc

ν)+
Dabcd

R
3×3!

∫
d4 x g2caε

µνρσ
∂σ

(
Gb

µGc
νGd

ρ

))
.

(5.13)
These counterterms Eq. (5.12) constitute our main result, and are necessary and sufficient to re-
store the BRST symmetry at 1-loop level in the BMHV scheme when the anomalies Eq. (5.13) are
cancelled. While they are purely 4-dimensional and non-evanescent, they are not gauge-invariant!
Any other finite BRST-invariant counterterms, or even evanescent ones (that will nonetheless van-
ish after taking the LIMd→4), added to S(1)fct,restore, will not contribute to BRST restoration. They will
instead only correspond to a change of renormalization prescription for higher-order calculations.

In order to obtain a consistent renormalizable theory, the gauge anomalies Eq. (5.13) must be
cancelled (the “anomaly cancellation condition”). This is done by choosing the fermionic content
and the associated group representations in a suitable way so as to cancel separately both ∑R dabc

R
(the usual triangle anomaly) and ∑R Dabcd

R . Left-handed fermions could help [1], since their gener-
ated anomalies have an opposite sign than Eq. (5.13).

6. Renormalization Group Equations

There exists two approaches for establishing the renormalization group equations. The first is
the familiar one based on the usage of renormalization constants, much like in symmetry-invariant
renormalizations. The second one is based on the framework of algebraic renormalization theory.
Due to the presence of evanescent operators and finite non-evanescent counterterms needed to re-
store the BRST symmetry, the formalism with renormalization constants will not straightforwardly
lead to the true renormalization group equation, that involves only fields and parameters of the
original 4-dimensional tree-level action (see also discussion in Ref. [36]).

12



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
9
0

γ5 treatment in Dim-Reg Chiral YM Theory with Scalar Fields Hermès Bélusca-Maïto

6.1 Method using Algebraic Renormalization

It can be shown, in the context of the algebraic renormalization framework [26], that the
renormalization group equation corresponds to the expansion of the operator insertion

µ
∂ΓRen

∂ µ
= O ·ΓRen (6.1)

in a suitable basis of operators of UV dimension 4, ghost number 0, with contracted Lorentz indices
but free gauge indices (later contracted with group factors from the associated coefficients). These
operators must respect the same symmetries as the functional µ∂ΓRen/∂ µ , namely they should
respect the BRST equation, the gauge-fixing condition and the ghost equation [26]. The basis of
quantum operators respecting these equations can actually be built from its classical approximation
[26] by employing the Lϕ functionals, see Eq. (4.6), that become b-invariant in 4 dimensions.

As a result, the following renormalization group equation holds at h̄ (∼ one-loop) order:

µ
∂ΓRen

∂ µ

O(h̄)
=
[
−β

(1)g
∂

∂g
−(βY

m
i j)

(1) ∂

∂Y m
i j
−βλ

(1)
abcd

∂

∂λabcd
+γGNG+γcNc+γΦNΦ+γψN R

ψ

]
S(4D)

0 ,

(6.2)
where S(4D)

0 is the 4-dimensional restriction of the tree-level action of our model, Eq. (2.13). The
RHS of equation (6.2) is an expansion in operators and constitutes a system of renormalization
group equations for the β functions and the γ anomalous dimensions. Therefore, we need to eval-
uate the left-hand side of this equation, in the form of an operator insertion.

Since the dimensional renormalization scale µ is not a parameter of the original action, the
problem of evaluating µ∂ΓRen/∂ µ is not trivial, and was solved by Bonneau [34] and generalized
by Martin [36]. At one-loop the generic but complicated expression can be reduced [1] to

µ
∂ΓRen

∂ µ
= N

[
r.s.p.Γ(1)

DReg

]
·ΓRen , (6.3)

where “r.s.p.Γ(1)
DReg” is the residue of the simple pole in 4−d = 2ε of all the 1PI Green’s functions

described by ΓDReg at h̄ order: it picks up only the divergent contributions from Γ
(1)
DReg, i.e. only the

singular counterterms. The latter are then projected onto 4 dimensions due to the renormalization.
Therefore, at h̄ order, the renormalization group equation acquires the simple form

µ
∂ΓRen

∂ µ
≡−2εS(1),4D

sct , (6.4)

where S(1),4D
sct is just equal to Eq. (4.4) but projected onto 4 dimensions only, and no evanescent

operators appear: at one-loop level only, evanescent contributions do not affect RGEs!
By direct comparison of (6.2) with (6.4) and reading the coefficients associated to each inde-

pendent field products monomials (i.e. SGG, SψGψR , SΦGΦ, etc. that are present in the tree-level
action S(4D)

0 ), we obtain an overdetermined system of equations that relates linear combinations of
β functions and γ anomalous dimensions, at one-loop level. It results in the following solutions:

β =
h̄

16π2 g2
(
−22C2(G)+4S2(R)+S2(S)

6

)
, (6.5)

13
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βY
m
i j =

h̄
16π2

(
2(Y n

R (Y
m
R )∗Y n

R )i j−3g2{C2(R),Y m
R }i j +(YR)

m
i jY2(S)

+
1
2
((YR)

m
i jY2(R)+Y2(R̄)(YR)

m
i j)

)
,

(6.6)

βλ abcd =
h̄

16π2 (3g4Aabcd−4Habcd +Λ
2
abcd +Λ

Y
abcd−3g2

Λ
S
abcd) , (6.7)

γG =
h̄

16π2 g2 (3ξ −13)C2(G)+4S2(R)+S2(S)
6

, (6.8)

γψ =
h̄

16π2
2g2ξC2(R)+Y2(R)

2
, (6.9)

γΦ =
h̄

16π2

(
g2(ξ −3)C2(S)+Y2(S)

)
, (6.10)

γc =
h̄

16π2 g2 (6ξ −22)C2(G)+4S2(R)+S2(S)
6

. (6.11)

6.2 Comparison with the Method of Renormalization Constants

In the “standard textbook” approach to deriving RGEs in the context of DReg, developed in
Ref. [37], the βi function corresponding to a non-evanescent renormalized parameter gi (with coun-
terterm δgi that depends on the renormalization scale µ), is defined as βi(ε) ≡ ∂gi/∂ ln µ , and is
function of the 1/ε pole of δgi only. Similarly, the anomalous dimension γφ for a non-evanescent
field φ is obtained from the renormalization constant Zφ associated with an irreducible self-energy
Green’s function, assuming equal renormalization of the fields, via γφ (ε) =

1
2 µd lnZφ/dµ . Pro-

ceeding similarly for all fields of the theory, one obtains the generic RGE

µ
∂ΓDReg

∂ µ
=
(
−∑

i
βi(ε)

∂

∂gi
+∑

φ

Nφ γφ (ε)
)

ΓDReg . (6.12)

This equation holds even for ε 6= 0. An important detail is that at this level the β and γ functions
are ε-dependent and have the structure

βi(ε),γφ (ε) = O(ε)× (tree-level)+O(ε0)× (≥ 1-loop level) . (6.13)

In principle, all of these remarks apply to the BMHV scheme. However, in this scheme,
the action contains evanescent divergent counterterms, see Eq. (4.14), which have no tree-level
counterpart. In order to apply the method in the BMHV context, we can amend the tree-level
action with additional tree-level “evanescent” parameters ĝk for each term in S(1)sct,evan, possessing
the renormalization transformation ĝk→ ĝk +δ ĝk. This leads to an RGE with the generic structure

µ
∂ΓDReg

∂ µ
=
(
−∑

k
βi(ε)

∂

∂gi
−∑

k
β̂k(ε)

∂

∂ ĝk
+∑

φ

Nφ γφ (ε)
)

ΓDReg , (6.14)

where the second sum on the right-hand side is over all the new parameters ĝk of the additional
evanescent action. These additional parameters have been also considered e.g. in the context of a
non-gauge theory, in Ref. [38], and their influence on the RGE discussed. We thus see that our
original formulation of the theory in Section 2 corresponds to setting the evanescent parameters
ĝk = 0 at tree-level, for one particular renormalization scale µ only. Hence, applying the LIMd→4
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operation at the 1-loop level in the generic RGE (6.14), leads to: (i) all the βi(ε), γφ (ε), and β̂k(ε)

being quantities of 1-loop order, denoted by βi(0) ≡ βi , γφ (0) ≡ γφ in the ε → 0 limit; (ii) the
independence in ĝk of βi and γφ .

From these comments, applying the LIMd→4 to Eq. (6.14) at the 1-loop level leads to the RGE

µ
∂ΓRen

∂ µ
=
(
−∑

i
βi

∂

∂gi
+∑

φ

Nφ γφ

)
ΓRen , (6.15)

where both sides are understood to be evaluated up to 1-loop level. The dependence on ĝk has
dropped out, and the non-evanescent coefficients βi, γφ may be evaluated by setting ĝk = 0. This
shows that the correct one-loop RGEs in the BMHV scheme may be obtained by just applying the
usual procedure of Refs. [37, 19] from the divergences of the standard non-evanescent renormaliza-
tion constants, and ignoring the additional evanescent objects contained in the amended tree-level
action. We obtain this way [1] the β , βY

m
i j and βλ abcd functions from the couplings counterterms,

respectively δg(1)/g, δ (YR)
m,(1)
i j and δλ

(1)
mnop, and we obtain as well the anomalous dimensions γG,

γψ , γΦ and γc, respectively from the field-strength renormalizations δZ(1)
G , δZ(1)

ψL , δZ(1)
Φ

and δZ(1)
c ,

and they are exactly the same as those obtained in Section 6.1. However this situation will change
at two-loop and higher orders, where e.g. the term ∝ β̂k is expected to provide finite contributions,
and the βi, γφ coefficients might depend on the evanescent parameters ĝk.

7. Conclusion

In our work [1] we started a systematic study of the BMHV scheme for γ5 and its application to
chiral gauge theories, exemplified at the one-loop level on a theory containing massless right-chiral
fermions and scalars, for simplicity restricted to a simple gauge group and irreducible representa-
tions. We have focused on the BMHV-specific aspects of renormalization and counterterms.

Extending this model to d dimensions inevitably introduces a freedom of choice for the fermion-
gauge interaction term. Also, the BRST invariance of the model is broken at tree-level, due to the
evanescent part of the fermion kinetic term. Compared to the case of symmetry-invariant renor-
malizations, the counterterm structure is enlarged, due to this BRST breaking, with new BMHV-
specific structures. New counterterms, evanescent yet singular, appear and are necessary at higher
orders to ensure unitarity and finiteness, but most of these are still BRST invariant.

Furthermore, since the BRST symmetry is broken at tree-level, Slavnov-Taylor identities are
violated at one-(and higher) loop level, and suitable finite symmetry-restoring counterterms need
to be found. Our calculation is based on the regularized quantum action principle and the Bonneau
identities (this combination of tools has also been used in Ref. [36]).

Finally, the renormalization group equations for the right-handed chiral model have been de-
rived in the context of the BMHV scheme using the algebraic method, and have been compared
with those obtained with renormalization factors (inspired by symmetry-invariant regularizations).
In case the second method is used, the β -functions for evanescent couplings should be considered
as well, but their effects are inexistent at one-loop level only, and both methods agree. However
these evanescent couplings would be of utmost importance for higher loop order calculations.
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