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Abstract

Multifield inflation in random potentials and the rapid-turn limit
Theodor Bjorkmo

Cosmological inflation is a simple, and observationally well-supported, mechanism
for generating a flat, spatially homogeneous universe with the statistical correlations
in the cosmic microwave background we see today. Determining precisely how inflation
happened, and how many fields were involved, are some of the main challenges of
modern cosmology.

The first part of the thesis, consisting of Chapters 2 and 3, addresses this question
by looking at what future measurements of local non-Gaussianity will tell us. Local
non-Gaussianity has been proposed as a key observable for distinguishing between
single- and multifield inflation, as a large value of this parameter would rule out the
former. However, a small value would not necessarily rule out the latter. Using a
new technique for generating random functions with Gaussian random fields, which
we also prove the validity of, we generate random potentials for as many as 100 fields
for inflation. We look at the observables of these models and in particular compute
the local non-Gaussianity. An overwhelming majority of these models give local
non-Gaussianity compatible with single-field inflation, despite significant multifield
effects on superhorizon scales, indicating that this observable may not be sufficient to
distinguish between these types of models.

The second part of the thesis, consisting of Chapters 4 and 5, addresses another
aspect of this question by looking at other types of inflationary solutions than slow-roll,
slow-turn. Slow-roll, slow-turn is an easily realised solution, but requires a very flat
potential over large distances in field-space. The fine-tuning needed for this remains
an Achilles heel of the inflationary paradigm. However, there are inflationary solutions
which can be realised in steep potentials. ‘Hyperinflation’ is a particularly interesting
one of these, and we investigate this solution in detail. Using the techniques developed
to study hyperinflation, we then show that there exists a new, completely general two-
field attractor solution that is characterised by rapidly turning fields. This ‘rapid-turn
attractor’ does not require any particular background geometry, and explains how

several recently studied two-field inflation models are related to each other.
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Chapter 1

Introduction

The last few decades have seen significant advances in the field of cosmology. Mea-
surements of the expansion of the universe indicate that the universe is almost exactly
spatially flat, that it is dominated by dark energy, and that the majority of its matter
content is dark matter, which seemingly does not interact with Standard Model parti-
cles. This is the so called ACDM model. Although there is very strong observational
evidence for this model, and the parameters have been measured to a high precision
[12], there are several aspects of it that are not well understood, such as the nature of
dark matter and dark energy, and why the universe is so flat.

More recently, experimental attention has been focused on the cosmic microwave
background (CMB), with the aim of learning as much as possible about the initial
conditions of our universe. The CMB consists of photons released 380 000 years after
the Big Bang [12], when the temperature dropped low enough for electrons to be
bound to protons, letting the photons propagate freely. This is as far back in time
as we see directly with any telescope-based experiments. The CMB has a black body
spectrum, so by measuring the wavelengths of the light coming in, one can deduce the
temperature, and hence energy density, of the universe when and where the photons
were released. A striking feature of the CMB is just how uniform it is. Across all
directions, the fractional variation is just 1 part in 100 000, even though it extends far
beyond scales which would be in causal contact in a naive Big Bang cosmology. What
is even more remarkable is that there are in fact correlations in the fluctuations on
these scales, suggesting that they must have been in causal contact at some point in
the early universe.

To explain the origin of these correlations, and why the universe is so flat, homoge-
neous, and isotropic, one can add a new phase of exponential expansion in the early

universe, which is called inflation. During inflation, scalar fields give the universe a



2 Introduction

slowly varying vacuum energy, causing an exponential expansion which flattens and
homogenises the universe. However, quantum fluctuations of the scalar fields during this
expansion also give rise to small, correlated fluctuations in energy density, explaining
the variations we see in the CMB. The power spectrum of the CMB fluctuations is near
scale-invariant, with a slight red tilt, which is the natural prediction of most inflation
models, and the non-Gaussian three-point correlations functions have been constrained
to be small, which is again what most inflation models predict [15].

Beyond these ‘scalar’ density fluctuations, during inflation quantum fluctuations
also generate gravitational waves, known as ‘tensor’ fluctuations. If these were to be
detected, they would provide direct evidence for inflation, and their amplitude would
tell us the exact energy scale of inflation. As of yet, these have not been discovered, but
the gravitational wave amplitudes that have been ruled out thus far only correspond
to inflation models that would require significant fine-tuning.

The inflationary paradigm is well supported by experimental observations, but with
the information currently available it is not possible to determine exactly how inflation
happened, i.e. the form and scale of the potential or the number of fields involved.
This is one of the main challenges of modern cosmology. Determining precisely how
inflation happened is not likely to be easy, but if it were to be done successfully, it
would reveal information about physics we could never dream of testing in a particle
accelerator. The energy scale of inflation can be as large as 10'® GeV [14], far beyond
the 10 TeV scale currently probed in the LHC. Since scalar fields are ubiquitous in
low energy effective field theories of string theory and in supersymmetric extensions of
the Standard Model, and there is no indication that terrestial experiments will ever
probe these theories, inflation may be our chance to get insight into these high-energy
phenomena.

While CMB has given us very accurate measurements of the primordial power
spectrum, primordial non-Gaussianity remains insufficiently constrained for us to be
able to start ruling out inflation models in earnest [15], and future CMB experiments
are unlikely to change this. To make progress, therefore, experimental attention is
shifting to the large-scale strucutre (LSS) of the universe, where one uses the galaxy
distribution to infer the statistics of the initial, primordial perturbations. This has
the advantage of giving a much larger, three-dimensional data set, compared to the
two-dimensional data set from the CMB, but involves the highly non-trivial task
of taking into account the non-linear gravitational evolution. LSS experiments are
expected to come in with results over the coming decades, and in the next ten or twenty

years we should have sufficiently accurate measurements of ‘local’ non-Gaussianity for



1.1 Inflation 3

us to ask preliminary questions about how inflation happened. Accurate measurements
of other types of non-Gaussianity are however likely to be further away in time, but if
measured, they could distinguish between different types of multifield inflation models.

In the near future, until we start getting very accurate measurements from LSS
surveys, we will not be able to determine the exact inflationary mechanism of the early
universe, but there are more modest goals that may be achievable with measurements of
local non-Gaussianity. An initial question we may want to answer is whether inflation
was driven by one field or more. As single- and multifield theories of inflation behave
very differently, and can produce distinct observational signatures, this is a question we
may be able to make progress with. Similarly, in the multifield case we may also hope
to distinguish between models with straight and curved trajectories. There are also
various theoretical issues with inflation that deserve attention. A common criticism
against inflation is that it requires a very flat potential, but this is not the case for all
inflationary solutions, and there are attractor solutions beyond the standard ‘slow-roll’
solution which can avoid this issue. More generally, there is also the question of
how inflation may be embedded into quantum gravity or other UV theories, which
is far from completely understood. The former is also connected to the cosmological
constant problem, which is the issue of how the vacuum energy of our universe came
to be so small and positive. The smallness is problematic from a generic naturalness
point of view, but the positivity is surprising because string theory, our only currently
workable theory of quantum gravity, significantly favours negative energy vacua, and
the construction of positive energy vacua is challenging.

It was within this experimental and theoretical context that the research presented
in this thesis was conducted, and the rest of this introduction will give the theoretical

background that underpins the later chapters.

1.1 Inflation

In this thesis we are primarily concerned with inflationary theories involving two or
more fields, and this introductory section will review how these theories work on both
the background and perturbation levels. To start, we give a brief review of FRW
cosmology, and present some of the main theoretical motivation for inflation. After
that, we will introduce the basic ingredients needed for inflation, and also give a brief
overview of inflationary perturbation theory, as it is crucial for both the computation
of observables and the study of the stability of various solutions. Part of the thesis

will also be concerned with Gaussian random fields (GRF), but as they are only a
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means to an end here, their discussion will be contained to the first part of the thesis,
in Chapters 2 and 3.

1.1.1 FRW cosmology

As far as we can tell, gravity in our universe is described by Einstein’s theory of General

Relativity, which is governed by the Einstein equation
G = 87GT),. (1.1.1)

Observations tell us that the universe is homogeneous and isotropic, so one can make

the ansatz that the metric should be given by

2

1 —kr?

ds® = —dt* + a(t)? ( + r2d92> : (1.1.2)
where we allow for a non-flat background; k£ > 0 corresponds to positive curvature
and k£ < 0 corresponds to negative curvature, i.e. hyperbolic curvature, and k = 0
corresponds to a flat universe. a(t) is the scale factor which relates coordinate distances
to physical distances, and it describes the expansion of the universe in time. With this

ansatz, the Einstein equation reduces to

a> 8rGp k

— = - — 1.1.3
a? 3 a? ( )
a 4G
-—=—— 3P 1.14
© =T (p+3p), (11.4)
where p = —T7 is the energy density and P = T?/3 is the pressure. From now on we

will also use the definition H = a/a, where H is referred to as the Hubble rate. The
ratio of the pressure to density is also defined to be w = P/p. The energy density for

each component evolves as
p=-3H(p+ P)=—-3(14+w)Hp, (1.1.5)

which is derived from the continuity equation V,7*° = 0.

Our universe is well described by the ACDM-model, where we have matter (w = 0,
p o< a~3), radiation (w = 1/3, p < a™), and dark energy (w = —1, p = const), but no
spatial curvature (k = 0). In the early universe, when a is small, matter and radiation
dominate since they scale as a=2 and a~* respectively, so one can deduce from equation

1.1.3 and the fact that @ > 0 that at some point in the past there must have been a
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singularity where a = 0. This singularity is the so called ‘Big Bang’, which by current
estimates occured approximately 13.8 billion years ago [12].
The particle horizon, which is the maximum comoving distance between points at

time ¢ that could have been in causal contact, is generally given by

todt’ 2H;*
— — (14+3w)/2 (1+3w)/2 116
Xph /ti a(t’) 1+ 3w (a a; ), ( 1. )

where we write a(t) = a, a(t;) = a;. The CMB was released at a point up to which
radiation was dominant, so we can take w = 1/3. Letting a; — 0, we find a finite
answer, which is about 30,000 times smaller than the comoving radius of the CMB.
However, despite this, the CMB is not only almost exactly homogeneous and isotropic,
but there are in fact correlations in the temperature fluctuations on scales much larger
than the particle horizon. We therefore need to explain how these fluctuations came to
be in causal contact. This is called the horizon problem.

To solve this we note that if w < —1/3, xpn actually diverges as a; — 0. If
we therefore add a phase with w < —1/3 in the early universe, we can make Xpn
sufficiently large for the CMB to be within the particle horizon, and thus in causal
contact. However, it is not enough that the points should be in causal contact - the
intial conditions need to homogenise before the rest of the evolution begins, which is
a stronger condition than having a particle horizon larger than the comoving CMB
radius.

This can be formulated in terms of the so called ‘Hubble horizon’, (aH)~!, which is
the comoving distance which can be traversed in one Hubble time, H~!. The particle
horizon defines which points in space-time may have been in causal contact, but the
Hubble horizon defines which points can be in causal contact over one Hubble time.
The horizon problem is solved if at some point in the past the Hubble horizon contained
all of the visible universe. This requires a prolonged phase with a decreasing Hubble
horizon, which like w < —1/3 corresponds to a phase of accelerating expansion, d/a > 0,

as can be deduced from equation 1.1.4. This condition can equivalently be written as

H
€= ~I <1 (1.1.7)

The condition that the observable universe today must have been contained inside

the Hubble horizon during inflation requires about 60 e-folds of expansion. For this to
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happen, € must not only be small, but also slowly varying. This demands that

€

= — 1.1.8
77 HE ) ( )
which charactarises the rate of increase of €, satisfies

In| < 1. (1.1.9)

1.1.2 Scalar fields in FRW space-times

To realise this phase of accelerated, near-exponential, expansion we need to introduce
some form of energy density which approximately mimics dark energy, but then
eventually decays into the matter fields we observe around us today, at which point
standard ACDM cosmology resumes. This turns out to be remarkably easy to do.
All we need is some number of scalar fields displaced from the vacuum, rolling down
their potential, but as we shall see there is also a remarkable amount of depth in this
framework.

The dynamics of some number of scalar fields minimally coupled to gravity is

governed by the action

1 1
S:/#mﬁEhMGR—fMWW“&—Vw), (1.1.10)

where G is the field-space metric, which we allow to be non-trivial. By varying the
scalar field part of the action with respect to the metric one can deduce that the stress

tensor is given by

1
Rfﬁmmw@w—%(f%%wmﬁ+vwﬁ. (11.11)

For cosmology we make the ansatz that the field is spatially homogeneous, meaning

that 0,0 = 0. Consequently, we find that the energy density and pressure are given by

p=-TY = ;Gabgz's“g'bb +V(9), P=_T = ;Gabg'b“g&bb — V(o). (1.1.12)

W

based on this we see that for w = P/p < —1/3 to be satisfied, we need to be in a

regime where the potential energy dominates.
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Rather than working with the two Friedmann equations, for scalar fields we will

substitute the second one with the scalar field equations of motion, and thus work with

D;p? = —3H¢* — Vi@ (1.1.13)
L
7¢a¢a + v
H*=2""" 1.1.14

where D, X = X + I'¢. $*X¢ and Mp = 1/v/87G is the reduced Planck mass. The
second Friedmann equation can be recovered from these two.
Using the equations of motion, one finds that e is given by
1.2 1.2
39 39

= =3 i 1.1.15
€ HQMI% %¢2+V ( )

To have a small value for € we therefore require %(bz <V, just as deduced earlier.

Differentiating the above expression, we also straightforwardly find that 7 is given by

(éapt (ba
H¢?

n=2 + 2, (1.1.16)
which in turn requires |¢,Dy%| = %]DtgbZ\ < H¢?. Inflation therefore requires the
energy density of the universe to be dominated by the potential energy of the scalar
fields, and for it to last the kinetic energy of the fields must also vary slowly.

The latter condition has a unique interpretation in single-field inflation: it must
necessarily be the case that ¢ < Hé. For multifield inflation, there are now however
two options. Either we have ]Dtéa\ < Ho, leading to the standard slow-roll, slow-turn
scenario, or D;¢ is nearly orthogonal to ¢®. Slow-roll models have been very thoroughly
studied, but the latter much less so. Models where the acceleration of the fields is

orthogonal to the velocity are so called rapid-turn models, which will be the topic of
Chapters 4 and 5.

1.1.3 Slow-roll inflation

In slow-roll (slow-turn) inflation we assume that D" < H¢*. We then drop this

term from equations of motion, and moreover assume that $2 <V, to find that the
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equations simplify to

¢* = —V/3H (1.1.17)
1%
H? = : 1.1.1
300 (1.1.18)

The evolution of the system thus turns into a gradient flow. This does not always
admit analytic solutions, but it is generally straightforward to solve numerically.
To see when this is a good approximation, we need to see when e and 7 are small

when the equations of motion take the above form. We find that they can be written
€= €y, n = 4dey — 2 (1.1.19)

where the parameters ey and 7 are given by

_ Mgv,ve MZn*V,yn®

€y = o2 s n = v s (1.1.20)

and n% = ¢° / \/M is the unit vector in the direction of motion. In single-field inflation
one often writes 7 as 7y, but in multifield inflation the latter is often taken to be
nv = Mpmin(eig(V,e))/V. For slow-roll inflation to happen, the potential must be
flat and the second derivative of it in the direction of motion must also be small with
respect Mp.

These conditions are not expected to be satisfied at generic points in a potential.
In an EFT with a cut-off A smaller than the Planck-scale, one would expect to have
ev ~ ME/A? and ny ~ M3/A? which for A < Mp are both greater than 1. If, on the
other hand A were much greater than Mp this problem would be trivial, but how an
EFT with a cut-off beyond Mp, the scale of quantum gravity, could exist is unclear.
However, a caveat to the above is that these are ‘naturalness’ arguments, similar to
the kind which incorrectly argued that new physics had to appear at CERN at the 10
TeV scale, and so should perhaps be taken with a grain of salt. Moreover, the fact that
we only expect inflation to happen at particular points in a potential is not necessarily
a problem in itself, as we do not know anything at all about the initial conditions for
the field position and velocity, or more precisely their joint probability density, and
even less about the probability density for subsequent phase space positions.

Notwithstanding the above, the theories we shall look at next are interesting because

they can avoid some of these problems.



1.1 Inflation 9

1.1.4 Rapid-turn inflation

As mentioned before, D;¢* does not need to be much smaller than H¢® as long as the
two are more or less orthogonal. In this thesis we shall primarily be intersted in these
models when there are exactly two fields.

To analyse these models, we first define two very useful vectors:

n® = q'b“/\/gz.ﬁbgz.ﬁb, s* = Dyn® /1) DinbDyny, (1.1.21)

Not only will we use them to understand the background solution, but they will come
up again (and be generalised) in the perturbation theory, where n® corresponds to the
adiabatic direction and s® corresponds to the isocurvature direction. Moreover, the

crucial turn rate w is now defined through
w = s,Dyn”. (1.1.22)

The (dimensionless) turn rate tells us how strongly the inflationary motion deviates
from being a geodesic — for values w 2 O(1) the motion would be considered to be
highly non-geodesic.

To see how inflation with a large turn rate works, we begin by projecting the

equations of motion onto the n®, s* basis:

¢=-3Hp—V, (1.1.23)
wH) = -V, (1.1.24)

where we defined V,, = n*V,,, V; = 5V, and b= \/M . So far everything remains
rather abstract, and we will only solve the equations properly later in the thesis. To
do so we are going to have to reformulate the equations of motion in another vielbein
basis, but we are already in a position to show one of the reasons why these theories

are interesting. From equation 1.1.23 and the definition of 1 one can show
V, = —Ho(3 —e+n/2). (1.1.25)

Together with 1.1.24 and using the fact that V;24 V2 = [VV|?, one can then show that

when € and 7 are small, e;, can be written [112]

MEV?+ V2 w?
=" 5 ~ 14+ —1. 1.1.2
€y 9 V2 € + 9 ( 6)
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When the turn-rate is large, € gets suppressed relative to €y, and if w is sufficently
large it is possible to have inflation even where €y is too big for slow-roll, slow-turn
inflation. Since one of the main criticisms against inflation is that it requires a very
flat potential to work, this is a very interesting avenue to explore.

These solutions are however not quite as straightforward to construct as slow-roll,
but this is something we will investigate in this thesis. These solutions, which have
mainly been studied in the context of two-field inflation, are very interesting in and of
themselves, and what if anything links the known solutions together was very much an
open question at the start of this PhD. As we shall see, they can in fact be described

by a general attractor solution, which will be derived in Chapter 5.

1.2 Inflationary perturbation theory

Our universe is of course not completely homogeneous, so we also need to consider
perturbations around the inflationary background solutions. Here we will give a brief
review of the linear inflationary perturbation theory. Some second-order perturation
theory will be used in one of the chapters in the context of the slow-roll approximation,
however the results from the 0V formalism will only be stated.

In slow-roll, the perturbation theory is rather straightforward, as one can generally
assume that the field perturbations are canonically normalised and that they are only
weakly coupled. In rapid-turn inflation this is not at all the case. To understand the
perturbation theory of these models, which is crucial, we need a more sophisticated
mathematical machinery, which we will give an introduction to here.

The perturbation theory is not just necessary for understanding what primordial
perturbations these models generate, but also for understanding the stability of various
solutions. In hyperbolic field spaces, for example, slow-roll can in fact be destablised,
with the fields ending up in rapid-turn solutions [37, 41, 45, 165].

To perturb around the flat FRW metric ds* = —dt? + a*0;;dz’dz? one can make
the general ADM ansatz

ds® = —N2dt* + hy;(da’ + N'dt)(da? + N7dt). (1.2.1)

However, this has some redundant degrees of freedom, and we need to choose a gauge
for the perturbations. A very useful gauge, that we shall use almost exclusively, is the
spatially flat gauge, where in the absence of tensor perturbations we have h;; = a*4;;,

N =1+, and N* = 3°. By expanding the action to second order, and solving for «
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and (3, one finds (after tedious algebra that we will not cover) that the spatially-flat
gauge quadratic action for the inflationary perturbations is given by [107, 110, 172]:

1
Sar=3/

where My, is the effective mass matrix given by

2

Bk k
(27r)3dta3 [Gabuégbﬁptaasb_ L - <&2Gab + Mab> SLag” k] . (1.2.2)

éaéb éav:b + ‘/,aéb

May, = Viay — Rac e 3— >
b ab " + (3 —€) M2 + HM?

(1.2.3)

and where V., is the second covariant derivative of the potential on the target space,
given by Vi, = Vg — V. I'g,. Varying this action one straightforwardly finds that the
equations of motion for the perturbations are

2

D,D;6¢" + 3HD,5¢" + ];25@5“ + M%5¢° = 0. (1.2.4)

To compute non-Gaussianity, one also needs to keep the cubic-order terms in the action.
This expression is however large, messy and largely uninformative, and as such we omit
it here, but it can for example be found in [79]. In this thesis we will only be computing
local non-Gaussianity in the slow-roll approximation. This can be computed in a much
more straightforward way using the 6N formalism [132, 135, 172, 185].

The field perturbations here are gauge-dependent quantities. To relate these
perturbations to late-time observables, we need to introduce the gauge-invariant

curvature perturbation (, which in the spatially flat gauge is given by

__op
¢= T + O(6p%). (1.2.5)

This can be expressed in the particularly convenient form [75, 82]

B N0 P”
V2eMp

On superhorizon scales, k < aH, one can show that its superhorizon evolution is

¢= + O(6¢%). (1.2.6)

completely generally given by

2wS,00%

VT O(8¢%). (1.2.7)

DNC:—
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This expression vanishes identically for single-field inflation, where ( is consequently
conserved, or more generally when w = 0. In these theories the value of ( freezes out
when it leaves the Hubble-horizon at k = aH, and it suffices to compute its subhorizon
evolution. For multifield theories, however, this expression is in general non-zero, and
so this evolution must be computed explicitly.

What we actually observe are the statistical two- and three-point correlation

functions, the power spectrum P (k),

() e)) = (27700 + 1) 2T Pe(h) (128)
and bispectrum Be(ky, k2, k3),
(C(k1)C (ks )¢ (k) = (2m)°6%) (kg + ko + kg) Be (ki ka, ks), (1.2.9)

which are both evaluated at the end of inflation. However, observational limits are
usually given in terms of the spectral index ng, its running «y, and the non-linearity

parameter fyr,, which are given by [139]

dln P, dn., 6 Lk B
S == 1 — = (d .
M= L S A P2

~ T dmkr T dmk 5 (1.2.10)
In addition to these, an important observable is the power spectrum of primordial
gravitational waves, but these have not yet been observed.

Inflation generically produces a near scale invariant power spectrum, and nearly all
inflation models so far constructed can produce a power spectrum compatible with
current observations. To distinguish between models of inflation we therefore will need
information from the bispectrum.

In the next section we will explore how these observables, and in particular the
power spectrum, arise from the quantum fluctuations of the inflaton fields during
inflation. A comprehensive introduction is beyond the scope of this thesis, especially
since the two different parts of the thesis take this material in two very different

directions, but the aim will be to provide the base on which later chapters will be built.

1.2.1 Field perturbations and vielbeins

The form of the quadratic action above in equation 1.2.2 is not ideal for quantisation.
The appearance of the field-space metric makes the interpretation, and comparison

of, the various field fluctuations harder. To get around this problem, it is useful
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to introduce a vielbein basis d¢! = el§p?, where the el are constructed such that

eled = §7 and eleh = 6¢. The idea is to work with field fluctuations projected onto

this basis, d¢! = eldp®.
As a starting point, we define a covariant derivative on the vielbein basis
DX =X+ v X7, (1.2.11)
where Y/, = el D,e?. With this definition, the covariant derivative satisfies

DX = e¥D, X, DD, X" = 4D, D, X", (1.2.12)

and the action for the d¢! becomes

1
So=3/

This action is going to be very useful for us in Chapters 4 and 5 when we are interested

]{32

a?

d*k
<2W)3dta3 [&JDt(SgbﬁDt&bf K= ( 5y + M1J> Sndo’ k] . (1.2.13)

in the stability of various background solutions.

1.2.2 Quantisation and primordial perturbations

To quantise these perturbations, we change time variable to dr = dt/a, and define the

new fields v! = ad¢!. This gives the action

3
Sy = ;/ (gﬂlj?» dr {(5]JD7—UII(D7—U£k — ((k2 — (H*+ H'))o1s + aQMU) vﬁv{k} :

(1.2.14)

This action gives the form of the equations of motion that are most easily integrated,

but to find the correct initial conditions for quantisation one has to match the deep

sub-horizon behaviour with the canonically normalised variables. These are related to

the original matrices through a rotation, giving [7, §]
vl =T exp [—/ Y(T)§:| uw' = Dl =0 (1.2.15)

The ! fields have a completely canonical kinetic term, at the cost of a rotating mass

matrix. However, deep inside the horizon it will be negligible compared to the k2 term.
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In the simple case of single-field slow-roll, where we for simplicity also neglect the

effective mass, which is O(e), the mode function satisfies
vy + (k2 — ) v = 0. (1.2.16)
Deep inside the horizon it must also match with the Bunch-Davies initial condition

6—ikT

lim v, = , (1.2.17)

kT——00

9

and so one finds the general solution to be

_GMT(l_i) (1.2.18)

This tells us that the power spectrum of the field fluctuations on superhorizon scales is

given by
ki‘vk|2 —kr<1 ﬁ
212 a? 472

k?;
Pig(k) = 55|06 = (1.2.19)

k=aH
From the definition of the curvature perturbation, ¢ = d¢/v/2e Mp, it then follows that

the power spectrum for single-field slow-roll is given by

H2

B0 = gman

. (1.2.20)
k=aH
From Ink = N + In H one can straightforwardly show that up to O(e€) corrections,
dInk ~ dN, and one then finds that the spectral index and its running are given by

ns—1=—2—n, a, = —2en — né, (1.2.21)

where in this context £ = dInn/dN. As such, single-field inflation naturally predicts a
small negative value for the spectral index and an even smaller, O((ns — 1)?), value for
its running. This is very much in agreement with measurements of the CMB power
spectrum from Planck, which give ng, = 0.9649 + 0.0042 and a, = —0.0045 + 0.0067
(68 % CL) [14].

Similarly, one can show that the tensor power spectrum turns out to be

2H?
w2 M2

Plk=aH

P(k) = (1.2.22)
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Its amplitude relative to the scalar power spectrum, and its spectral index are then

found to be iln P
_ 1< _anry

=—=1 = = —2¢. 1.2.2
r 2 Ge, = € ( 3)

If primordial tensor modes were to be observed, we would get a direct measurement

of the energy scale of inflation, and by checking if r/n; = —8, we could immediately
test single-field inflation. Any deviation from this relation would rule out single-field
inflation. Tensor modes have not yet been discovered, however, and the current bound
on the tensor-scalar ratio from Planck is given by r < 0.064 (95 % CL) [14].

It is perhaps not surprising that the tensor power spectrum has not been observed.

For a monotonically increasing €, one can show that the field excursion satisfies
dp = V2eMpdN, = A¢ > /2e,NMp, (1.2.24)

where the subscript x here, as elsewhere in the thesis, denotes that the quantity is
evaluated as CMB scales exist the horizon, ~ 60 e-folds before the end of inflation.

This expression immediately implies [133]

16 (A¢\’

With N = 60, required to explain the homogeneity of the CMB, one sees that r >
0(0.01) requires a super-Planckian field excursion, which in EFT contexts would be
problematic.

The last observable that needs to be mentioned in this context is local non-
Gaussianity, that is non-Gaussianity in the configuration, k; < ko, k3. By expanding
the action to cubic order and performing a very tedious calculation, one can show that
in single-field inflation one has [139]

5

loc
= " (n,—1). 1.2.2
NL 12(” ) ( 6)

Any deviation from this relation would also rule out single-field inflation.

1.2.3 Observables in multifield inflation

When more than one field is involved, however, the situation is not quite so simple. In
slow-roll with multiple fields this is due to the evolution of the curvature perturbation

on superhorizon scales. In rapid-turn inflation, where the perturbations are strongly
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coupled, there is generally interesting behaviour in the power spectrum as it crosses
the horizon. In this subsection we will briefly review these two phenomena.

In multifield slow-roll inflation, the power spectrum is no longer conserved on
superhorizon scales. Since the background evolution is a first order gradient flow, we
can use the separate-universe picture to evolve the field perturbations as perturbations
of the background flow [155],

Dy = —MEG™ (10 V)00" + (In V).aped6"56° + ... ) (1.2.27)

Assuming that all the fields are light, with m < 3H/2, their correlation functions at

horizon crossing are given by

272 H2(N*) ab
k3 42 *

(004 (k1)36 (kz)) = (2m)*0") (ks + ko) (1.2.28)

The curvature perturbation can also be written as an expansion in the field per-
turbations 0¢® (the momentum perturbations can be ignored), which can be evolved
forward from horizon crossing to the end of inflation. Since isocurvature perturbations
source the curvature perturbation, but are not themselves sourced by it, the power

spectrum at the end of inflation can be written [162]
Po= (1+|Tws|?) P, (1.2.29)

where T¢s is the transfer vector from the light isocurvature modes at horizon crossing to
the curvature perturbation at the end of inflation, and we used the fact that the power
spectrum in each field direction is equal at horizon crossing. This tells us that the scalar
power spectrum can only increase after the end of inflation, so the tensor-scalar ratio
can be suppressed below 16¢ in multifield inflation. Moreover, to compute the spectral
index and its running one now also needs to take into account the N,-dependence of
Tes.

To discuss non-Gaussianity we need to go beyond linear order. In slow-roll, the
curvature perturbation at the end of inflation can be written as an expansion of

horizon-crossing field perturbations

() = Nabgi(x) + 5 Nad ()50 (x) + . (1.2:30)

where the N, and N, coefficients can be calculated with the 6N formalism [132, 135,
172, 185]. In terms of these, ||T¢s|| = [|(6¢ — n®ny) N®/Nen¢||. When the second-order
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term is large, which can happen if the power spectrum grows significantly during
inflation, local non-Gaussianity gets an enhancement from the term [136]
0 D w (1.2.31)
5 (N¢N,)?
Exactly what conditions are required for this term to be large, and how generic that is,
are two questions which we set out to answer in the first part of the thesis. Future
large-scale structure (LSS) experiments hope to measure whether fi&¢ is smaller than
1, and an important question to answer is what models could be ruled out if this turns
out to be the case. Single-field inflation has non-Gaussianity given by equation 1.2.26,
which is O(e), so a large value of fi& would rule out single-field inflation. However,
a small value of fi& would not necessarily rule out multifield inflation, and to see
what we can hope to learn from future observations we want to know how generically
multifield inflation gives large non-Gaussianity.
In rapid-turn two-field inflation, the kinetic coupling between the two fields in
the term changes the dynamics significantly on subhorizon scales. Working with the

kinematic basis, e§ = (n“, s*), one finds that the kinetic term in the action now becomes
1 r_ L. 2, Loy 2
i'DTv]'DTU = 5(1)” — Hwuvg)” + 5(1}5 + Hwuy, ). (1.2.32)

These theories can often be approximated by single-field models with a modified speed
of sound, which have the action [4, 53, 98]

eff d3k 2 2 4/2 22
St = / MR | R (1.2.33)
where Lo
k) =1+ - (1.2.34)

(k/aH)?+ M,,/H? — w?
If M,,/H? > w? these theories have a positive, but reduced, speed of sound, and are
among other things characterised by large equilateral non-Gaussianity, fxi o c; 2. If
however M,,/H? < w?, the speed of sound becomes imaginary. These rather unusual
theories can see an exponential amplification of the power spectrum during horizon

crossing, and we will be investigating these in the second part of the thesis.
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1.3 Inflation and high-energy physics

Inflation provides a simple explanation for the universe we see around us, but it cannot
be viewed as a single model; countless different potentials can give us enough e-folds of
expansion with a more or less correct power spectrum. This is in one way a strength of
the inflationary paradigm, but it also makes it very hard to determine how exactly it
happened. However, we do know that inflation would have happened at energy scales
beyond those currently probed in the LHC, and it could therefore give us a view into
physics at energy scales we could never hope to test in any other way. It therefore
makes sense to look to string theory, supergravity, and other models for quantum
gravity and GUT-scale physics for inspiration in understanding how inflation could
have happened.

One generic feature of compactifications of string theory is the presence of a large
number of light (Kéhler) moduli fields. A natural question to ask therefore is if there
are any observational signatures characteristic to inflation models with large numbers
of fields. This is the question that the first part of the thesis is concerned with. There
are however two particularly important obstacles to answering this question. The
first is that we do not have a prior for what the potential should look like; we have
poor theoretical control over the string landscape and no accurate idea of what the
potentials look like near saddle-points. The second is that even if we did know this,
we could not compute the cosmological observables with this information only. This
is because when you have more than one light field, the curvature perturbation is no
longer conserved, so the observables need to be explicitly evolved forward until inflation
ends or the isocurvature modes are sufficiently suppressed.

To answer this question we first need to make some assumption about what
the potentials may look like. A reasonably minimal assumption, which also has
computational advantages, is to let the potentials follow the distribution of a Gaussian
random field (GRF). We will do so with a Gaussian covariance function, and prove
some algebraic results that let us vastly simplify the generation of these potentials.
This will let us study inflation in random potentials, and in particular we will be able
to compute the local non-Gaussianity in models with as many as 100 fields, which had
never been done before.

Previously, the ‘manyfield’ limit of inflation was studied most effectively with Dyson
Brownian motion (DBM) potentials [77, 78, 142]. In this construction, the Hessian of
the potential undergoes a random walk in field space along the trajectory. This allows

for a computationally efficient modelling of random potentials with large numbers of
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fields, and interestingly it was found that in the limit of many fields the observables
become remarkably simple and compatible with observations. An interesting question
to ask is therefore if this is a generic feature of manyfield potentials, and we will
investigate this with the GRF construction. A problem with the DBM models is that
the Hessian is almost surely not differentiable as a function of field space position, and
the third derivatives are therefore not well definied. This prohibits the study of local
non-Gaussianity, which we will be able to study with GRF inflation.

Another common feature of string compactifications is negatively curved field spaces.
Inflation models in hyperbolic field spaces can exhibit really interesting behaviours,
and the second part of the thesis will begin by trying to understand hyperinflation, one
of these models that was proposed recently. Hyperinflation is interesting because it
can take place in potentials that are far too steep for slow-roll, and unlike many other
models in hyperbolic field spaces, the solution is described well algebraically. This made
it an ideal context for developing a better mathematical and physical understanding of
rapid-turn inflation models.

Using the mathematical framework developed for studying hyperinflation we then
find that there is a unique, general two-field rapid-turn attractor solution. Chapter 5
will show how this solution can be found and discuss its properties. Using this solution
hyperinflation can easily be recovered, and we will show how side-tracked inflation and
other models also arise in this context.

There has been a lot of interest recently in this type of models because they can be
compatible with the (controversial) ‘swampland conjectures’. Irrespective of whether
one takes these conjectures seriously, these models are very interesting because they
can arise in potentials with large values of the derivatives. A common criticism against
slow-roll inflation is that the gradient and eigenvalues of Hessian need to take (from and
EFT perspective) unnaturally small values over large regions in field-space, but this is
not necessary for rapid-turn inflation models. However, what they gain in robustness
against the background potential they lose in mathematical simplicity, and in particular
the perturbation theory of these models is rather non-trivial. We also discuss this
aspect of rapid-turn attractors, and in particular investigate the exponential growth

that the perturbations undergo at horizon crossing if the sound speed is imaginary.






Chapter 2

Inflation in Gaussian random field

potentials

2.1 Introduction

Inflation provides a rather simple explanation of the origin of the primordial density
perturbations and successfully resolves the flatness and homogeneity problems of the
standard hot big bang cosmology. However, little is known about the microscopic origin
of inflation and, in particular, what degrees of freedom it involved. Inflation may have
probed energies far above those accessible by terrestrial experiments, and is sensitive to
physics beyond the Standard Model of particle physics. Models of inflation with only a
single additional scalar field can be compatible with all current observations, but so
may models with multiple fields. Additional scalar fields are common in extensions
of the Standard Model that address the gauge hierarchy problem, and ubiquitous in
ultraviolet completions realised in string theory. Determining the field content relevant
in the early universe is a fundamental challenge of modern cosmology.

Primordial non-Gaussianity of the local type has been proposed as a key observable
to observationally distinguish between multifield and single-field models of inflation. In
single-field inflation, the levels of local non-Gaussianity can be related to the deviation
from scale invariance of the primordial power spectrum [64, 139],' which is very small
[10]. Multiple-field effects can significantly enhance the levels of non-Gaussianity, and
amplitudes of the order of fyi, ~ 1 are realised in some models.? Current constraints

from Planck observations of the Cosmic Microwave Background give fxy, = 0.9 £5.1

IThis rule applies under some assumptions, which can be violated in special models [55, 150].
2In this chapter, we focus on non-Gaussianities of the local type, and denote fi&¢ = fni, without

superscript.
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(68% c.l.) [15], and future surveys of the Large-Scale Structure of the universe are
expected to reach a sensitivity of o(fxr,) ~ O(1) [17, 26, 66, 74, 92, 146, 176], probing
some subset of models of multiple-field inflation. It is now pressing to assess what we
realistically can hope to learn about fundamental physics from these experiments.

The conditions under which large non-Gaussianity is generated during and after
inflation have been studied before by many authors (for a review, see [47]). However,
direct investigations tend to be hampered by the computational complexity of multi-
field systems, and most studies have been restricted to models with two or a few fields,
or models with greatly restricting symmetry structures [31, 87, 160, 162, 164, 175, 183].
For a more complete understanding of multifield inflation, it is necessary to go beyond
these simplifying assumptions, and allow both for more fields and for non-trivial
interactions. This is crucial for understanding what models of inflation can be ruled
out if fyr, is constrained to be less than one, or what types of inflationary models are
favoured if fy, of order one is measured. Addressing this question is one of the main
aims of this chapter.

Multifield inflation models with generic interactions between the fields have large
numbers of free parameters. In a low-energy effective theory for N; fields valid below
the cut-off scale A, these are the Wilson coefficients, c,, ., , of all operators that may

be important during inflation, e.g.

Vi, b)) = A S cd’A . ¢Z" | (2.1.1)

n=0

Unfortunately, the relevant values (or distribution of values) of these parameters are
not known from fundamental physics. One approach, pursued here, is then to search
for properties that are rather insensitive to the details of the parameter distribution,
and that depend only on a few effective parameters. The widespread appearance of
emergent universality in complex physical and mathematical systems suggests that such
robustness may be found as the number of fields, V¢, becomes large [72, 90, 124, 189].
Motivated by this, we pursue a statistical approach: we generate ensembles of multifield
scalar potentials V' (¢, . . ., ¢n,) randomly, and determine the distribution of observables
as Ny > 1.

To access the interesting regime of multiple light fields with non-trivial interactions,
the potentials need to be mathematically simple enough to be computationally tractable.
One such class of potentials, recently studied in [32, 77, 78, 97, 142, 159, 186], can be
constructed using non-equilibrium random matrix theory techniques. According to

the prescription of [142], the computational difficulties of multifield inflation can be



2.1 Introduction 23

substantially mitigated by realising V (¢, ..., ¢n,) only locally along the field trajectory
(while being undetermined elsewhere in field space), and by postulating that the Hessian
matrix evolves according to Dyson Brownian motion (DBM) along the inflationary path.
The local Taylor coefficients to quadratic order, defined patch-wise along the path,
evolve non-trivially during inflation and implicitly capture the effects of higher-order
interaction terms. This method remains computationally efficient up to very large N,
making it possible to determine the observational predictions® in models of inflation
with up to a hundred interacting fields [77, 78]. In reference [77], it was shown that the
predictions of these ‘DBM models’ become simpler and sharper as the number of fields
is increased, and very complicated models with many fields are commonly compatible
with Planck constraints on the primordial power spectrum [78].

However, the random matrix theory method of [142] is not suitable to investigate
the generation of primordial non-Gaussianities during inflation: the Brownian motion
of the eigenvalues of the Hessian matrix is continuous but not differentiable, and the
third derivatives of the potential, required for the computation of the three-point

correlation function, are not well-defined in the continuum limit.*

Manyfield inflation from Gaussian random fields

An alternative approach is to generate random multifield potentials using Gaussian
random fields (GRFs). This was first done in [94, 95] by expanding V (¢1, ..., ¢n,) in a
set of Fourier modes for potentials with Ny < 6 and A > Mp (see also [179] for Ny = 1).
However, the interesting regime of multiple-field inflation in potentials with structure
on sub-Planckian distances in field space remained intractable.

To access the regime with A < Mpy, reference [23] proposed to generate the potential
only locally in field space, e.g. by gluing together multiple patches along a path in
field space, or by generating the Taylor coefficients of the potential to a sufficiently
high order at a single point. These models have well-defined higher derivatives and
are arguably simpler than the DBM potentials, but a significant limitation arises from
the need to explicitly specify a very large number of Taylor coefficients, which are not
statistically independent. For example, a model with Ny = 100 fields and the potential
expanded up to fifth order around a single point involves 96,560,546 independent

3This method is limited to observables that can be inferred from information about the potential
up to second order in derivatives as expanded around any point along the field trajectory. As we will
review in section 2.2.6, this includes quantities computed from the two-field correlators such as the
primordial power spectrum, including its spectral index and its running.

4This obstacle may be overcome by regularisation, or by modifying the rules governing the stochastic
evolution (cf. [32] for one suggestion).
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Taylor coefficients. The probability distribution of these coefficients involves the inverse
covariance matrix which has 4.7 x 10 independent, and in general non-vanishing,
elements. Naively generating such a matrix numerically is computationally prohibitive,
making explicit studies impractical or impossible.

In this chapter, we explain how one can overcome these obstacles and generate
multifield GRFs to explicitly study the manyfield limit of inflation in general potentials.
We construct models with up to 100 fields by generating the potential locally around
an ‘approximate saddle-point’ up to fifth order in the fields, and we use an adaptation
of the ‘transport method’ [79, 81, 153, 174] to compute cosmological observables from
the two-field and three-field correlation functions. To make this possible, we identify
drastic algebraic simplifications for GRFs with a Gaussian covariance function, and we
use these to obviate the need for extremely heavy numerics. This key advance allows
us to study the generation of local non-Gaussianities in random manyfield models of
inflation, and assess what levels of fyi, are generated.

There are three particularly important results in this chapter:

1. Planck compatible power spectra are not rare for these models: even for highly
complicated manyfield models with millions of non-vanishing interaction terms,
the spectral index commonly falls within the observationally allowed range.
Interestingly, these models make a sharp statistical prediction for the running of

the spectral index, oy = dng/dIn k, which can be ruled out by future experiments.

2. At large Ny, the observational predictions of our GRF models agree well with,
but are sharper than, recent predictions derived from DBM potentials. As these
two constructions are fundamentally different and independent, this suggests the
existence of a ‘universality class’ of large- Nt models for which the observables

are largely insensitive to the details of the underlying potential.

3. The amplitude of local non-Gaussianities is typically very small, | fyi| < 1. Even
when the power spectrum undergoes significant superhorizon evolution, indicative
of multifield effects being important, fyr, is typically highly suppressed, and even
approximately follows the single-field consistency relation: fyi, = 3(ns — 1).
Moreover, in the rare cases where fxy, ~ O(1), isocurvature modes remain
unsuppressed at the end of inflation, and a detailed modelling of the reheating
dynamics is required to extract reliable predictions. We conclude that constraining
fnL to be smaller than order unity would not rule out manyfield inflation, but a
measurement of a large value for fyr, would point to rather special inflationary

dynamics.
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We expect that the predictions of this class of models may extend also to other
constructions of small-field, slow-roll models of approximate saddle-point inflation.
However, distinct classes of multifield models (such as large-field models, or models
with sharp features in the potential) may well lead to different predictions for some
observables.

This chapter is organised as follows: in section 2.2, we review how GRFs can be used
as models for multifield inflationary potentials, and we illustrate the key simplifications
that allow us to access the manyfield regime. We furthermore discuss the natural energy
scales intrinsic to GRF potentials, their possible interpretation as physical effective field
theory potentials, and we critically discuss the tuning required to use these potentials
to study multifield inflation. We finally present the ensembles of potentials that we
study explicitly, and our method for computing cosmological observables. In sections
2.3-2.5 we discuss the three main results of this chapter. We conclude and discuss
further directions in section 2.6. A number of additional details, including illustrative
case studies, can be found in the Appendix A.

Throughout this chapter we set the reduced Planck mass to one, Mp, = 2.4 X

10'® GeV = 1, but we occasionally reinstate factors of Mp; for clarity.

2.2 Gaussian random fields for inflation

In this section we explain how we use Gaussian random fields (GRFs) to study random
multifield inflation.® The basic idea is to construct the potential locally in field-space as
a truncated Taylor series with randomly generated coefficients. By going to sufficiently
high order in the Taylor expansion, one can obtain a well-approximated potential in
a domain containing the inflaton trajectory. This makes GRFs a powerful tool for
studying the observational signatures of generic large- Ny inflation models.

We begin by briefly reviewing the statistical properties of Gaussian random fields
and how the probability distribution function (PDF) for the Taylor coefficients is
obtained. This PDF involves the inverse of the covariance matrix and is unfortunately
of very limited practical use when Ny is large. However, we find that for a Gaussian
covariance function for the random field, there is a drastic simplification which allows

us to generate explicit potentials even when N; > 1.

Previous work on inflation in random potentials include [1, 29, 30, 34, 89, 94, 111, 126, 130, 131,
140, 144, 145, 158, 1797 —181]. References [19, 20, 108] studied the impact of randomness on particle
production during inflation, and references [11, 76, 147] investigated random compactification effects
in brane inflation in string theory.
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We go on to present the class of random inflation models discussed in this chapter.
Specifically, we discuss the relevant mass-scales of the potentials, and how the GRFs
under certain conditions admit an interpretation as proxies for physical effective field
theories (EFTs). However, we also point out a challenge for using GRFs to study
multifield inflation: the typical mass-splitting of the fields tend to exceed the Hubble
parameter, leading to single-field dynamics. We then describe how we choose the
initial conditions to generate large ensembles of potentials with multifield dynamics
during inflation. We close this section by briefly explaining the methods used to calcu-

late the background trajectory and the superhorizon evolution of the field perturbations.

2.2.1 High-dimensional GRFs as random multifield scalar po-

tentials

A Gaussian random field has a mean value V' and a covariance function,

(V1) = V)(V(g2) = V)) = Clér, ¢2) (2.2.1)

where the ¢; are position vectors in field space (with components ¢¢), which we take to
be flat RY. Furthermore, we take the GRF to be stationary and isotropic with mean

zero® so that

C(¢1,02) = C(d1 — ¢2) = C(|p1 — d2]) - (2.2.2)

The covariances for the derivatives are given by the derivatives of the covariance

function:

< OV (d1) 0"V (¢) >: otm2C ¢y, o)
i ... 00" 93 .06,/ 0. 081" 0% ... 00,

(2.2.3)

All non-vanishing elements have either n; and ny both odd, or both even. To simplify

notation, we will from now on write derivatives as

"V ()
D™ .. Dpe

In this chapter, we create random multifield potentials by generating Taylor coeffi-

= Va1...an (¢) : (224)

cients at a single point in field space. The joint probability distribution of the Taylor

6In the bulk of this chapter, we focus exclusively on this simplest class of GRFs. However, in
Appendix A.5 we briefly discuss a modified GRF that includes a large field-independent cosmological
constant, cf. V > 1.
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Fig. 2.1 An example of a GRF potential with Ny = 2 and ny.. = 175. Here ¢ €
[—4Ay, 4A4)? and inflation is supported near ¢ = 0. The red circle delineates the
region in which a potential truncated at fifth order approximates the full potential to
per cent level accuracy.

coefficients is a multivariate normal distribution with a covariance matrix given by the
derivatives of the covariance function at ¢; = ¢5. Of course, not all the derivatives
are independent, so we only generate the derivatives V... with indices ordered such
that a > b > c et cetera. This ensures that all the unique, independent derivatives are
included exactly once. If we collectively denote the independent Taylor coefficients
of the potential (which includes V', V,, Vg, et cetera) by V,, where o runs over all
the ordered sets of indices for the derivatives we include, the multivariate probability

density function is given by

exp (—2(Vy, — ) (2D os (Vs —
Py = =P (3 Zezzmi Vo = m3). 225

where u, = (V,) is the expectation value vector and X, = (V,V3) is the covariance
matrix.
Throughout this chapter (and just as in [23]), we will be working with a Gaussian
covariance function,
Cl61, 62) = NS (@r—sP /2 (2.26)

Here A, sets the ‘vertical energy scale’ of the potential and the ‘horizontal scale’, Ay,
sets the correlation length of the potential. We are interested in studying models in

which the potentials have structure on sub-Planckian scales, so we take A, < Mp.
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In section 2.2.3, we will discuss the physical interpretation of A, and Aj, and how
potentials with the covariance function (3.1.2) may be regarded as proxies for Wilsonian
effective field theories.

Schematically, our procedure for studying manyfield inflation in GRF potentials is

as follows: we generate the potential locally in a domain of size Ay, around ¢ = 0,

Mmax 1 Nmax - 1 ¢a1 ¢an
Vi(g) = Viriay—0" .0 =S AWV, T T 2.2.7
(¢) nZ:,; 1...nn!¢ ¢ nX:jo VVaran 1 p= (2.2.7)

up to some order np,.. Throughout this chapter we take n,., = 5, unless otherwise
specified. This ensures that the third derivatives of the potential, which are required to
compute non-Gaussianities, are well-approximated and non-trivial within the domain.”

If all Taylor coefficients are chosen randomly according to the PDF of equation
(3.2.3), the potential is typically much too steep to support inflation. However, by
choosing a subset of the Taylor coefficients, V,V,, and V,,,,, by hand and generating
the remaining coefficients through the corresponding conditional PDF, we can construct
multifield scalar potentials that are suitable for slow-roll inflation around ¢ = 0, but
have the random structure of a Gaussian random field away from this point. For
example, with Ny = 100 and nn.. = 5, we specify the 1 + 100 4+ 5,050 = 5,151
first Taylor coefficients by hand, and generate the remaining 96,555,395 coefficients
randomly by using the constrained PDF obtained from equation (3.2.3). We will refer
to scalar potentials generated by this method as ‘GRF potentials’®

As we will discuss in detail in section 2.2.4, we choose the parameters V, V,, and
Vaiay SO that ¢ = 0 is an approximately saddle-point of the potential with multiple
fields with m? < H?2. The ‘horizontal scale’, Ay, and the number of fields, N, both
have important effects on the generated model. Finally, A, can be fixed from the
normalisation of the primordial perturbations for each model. We will refer collectively
to the set (V) Vi, Vayas, Ni, An) as the ‘hyperparameters’ of the GRF potentials.

For each of the potentials that we construct, we study how the fields evolve from

the approximate saddle-point, assuming that the field initially ‘rolls’ slowly. Due

"With the covariance function given in (3.1.2), the dimensionless coefficients V,, at order n have
rms-values ranging between 1 (all indices different) and 1/(2n — 1)!! (all indices the same). Since
these increase slower than n!, the Taylor series converges as ny.x — 0. By going to high orders in
the series, one can therefore construct a large potential landscape, cf. Figure 3.1. In this chapter,
we focus on the inflationary phase in models with small field excursions (see below), for which an
expansion to nyax = 5 suffices.

8By the use of this phrase, we do not suggest that our class of models is unique: other covariance
functions or field space geometries can lead to distinct ensembles of models. For the ease of presentation
however, we will in this chapter refer to our models as ‘the’ GRF models.
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to the randomness of the potentials, models with the same hyperparameters but
different higher-order Taylor coefficients give rise to different inflationary trajectories,
and consequently different numbers of e-folds of inflation. For models supporting at
least 60 e-folds of inflation, we compute the evolution of the two-field and three-field
correlation functions for the perturbations during inflation using the ‘transport method’
[79, 81, 153, 174], and we evaluate the predictions for observables of the models at the
end of inflation (for the two-point statistics, our approach is exactly that of [77]).

By generating large numbers of inflationary models for each fixed set of hyperpa-
rameters that we are interested in, we can study the statistical predictions for the
generation of cosmological observables in manyfield models of inflation. In particu-
lar, we compute the power spectrum of the primordial curvature perturbation, and,
upon finding that it is typically well-fitted by a power-law over the scales that are
constrained by observations of the Cosmic Microwave Background (CMB), we compute
the values of the spectral index n, and its running ay = dn,/dInk, and in addition,
the tensor-to-scalar ratio, . Furthermore, from the two-field correlators, we study the
co-evolution of the isocurvature and curvature perturbations during inflation. Finally,
using the standard 0 N formula [31, 135, 172, 177, 183] and the three-point function of
the fields, we compute the local non-Gaussianity parameter fyr = fir.

We emphasise that we only study the generation of observables during the infla-
tionary period, and we defer the study of the post-inflationary approach to the final

vacuum and the reheating process to future studies.

2.2.2 A new, efficient, local construction of GRFs

Given the probability density function of equation (3.2.3), it might seem straightforward
to just start generating the Taylor coefficients. However, the appearance of the inverse
covariance matrix presents a significant complication which has curtailed previous
attempts to the single-field or effectively single-field regimes [23, 144, 145]. Even with a
sparse covariance matrix, as it is in our case, the inverse covariance matrix is in general
hard to diagonalise, and grows rapidly in size as the number of fields is increased.
We here identify an algebraic property of the covariance matrix which allows us
to circumvent this computational hurdle: Gaussian random fields with a Gaussian
covariance function have the elegant property that if we know all the derivatives of the
same type (even or odd) to some order, then the conditional covariance matrix for the
Taylor coefficients at the next order of the same type is diagonal. This result holds
to all orders and for any number of fields. This means that all the Taylor coefficients

can be generated in a step-by-step fashion as a set of independent Gaussian random
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variables, without inverting or diagonalising any matrices at all. In practice, the
only large matrices that need to be constructed explicitly are those that are used to
calculate shifts in the expectation values of higher-order derivatives, caused by fixing
the lower-order derivatives. These matrices are sparse and require little memory to be
used. All together, this makes it rather easy to construct the GRF potentials even for a
very large number of fields, e.g. Ny = 100. In fact, this method shifts the computational
bottle-neck for studying manyfield inflation in GRF potentials from generating the
potential to solving the equations of motions during inflation.

To provide some practical intuition for this method, we here illustrate it by looking
at the covariance matrices in the case of Ny = 2. It is straightforward to check that
the covariances vanish between odd and even derivatives for any stationary, isotropic
covariance function. The covariance matrix then becomes block diagonal, and we can
treat the odd and even derivatives separately. We will therefore look at the potential,
Hessian, and fourth derivatives in this case, which is the simplest non-trivial example.

Suppose we have a collection of non-independently distributed Gaussian random

variables, Z. If we split them into two parts, they follow the distribution

~ N ([‘“ ) , (2.2.8)
2

where (f11, f12) is the mean vector and ¥;; are block components of the covariance

Zy
Zy

Y i
Yo Yoo

i

matrix. In our construction, Z; will correspond to lower-order Taylor coefficients, and
Zs to higher-order coefficients in an iterative way which we will make clear below. We
may fix the lower-order coefficients by hand (as we will do for the hyperparameters Vv,
V,, and Vam in our construction of inflationary potentials), or by randomly generating
them from their marginal probability distribution (as we will do for Taylor coefficients
of order three or more). The latter case is greatly simplified by the Gaussianity of
the distribution: the marginal probability distribution of a subsystem of Gaussian
variables (cf. the lower-order coefficients) is simply obtained by truncating the full
covariance matrix and mean vector to the variables of the subsystem. For example,
the marginal probability distribution of Z; obtained from equation (2.2.8) is simply
Zy ~ N(p1,%11). If we then fix Z; = z;, the conditional probability distribution for

the remaining variables Z5 is another multivariate Gaussian distribution given by

Zy ~ N (Mz + E2121711(21 — 1), Yoo — 22121’11212) . (2.2.9)
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We now want to write down the covariance matrices for the potential and its
second and fourth derivatives at ¢ = 0. For convenience, we here work with the
dimensionless fields, ¢/Ay, and the dimensionless potential, V//AZ. By taking the
appropriate derivatives of the covariance function, we find that the covariance matrix

for the potential, second and fourth derivatives is given by

' —15 0 -3.105 0 15 0 9 |, (2.2.10)

where the first row/column is for the potential, the following three are for the (1,1),
(2,1) and (2,2) components of the Hessian, and the final five are for the components
of the fourth derivatives in the order (1,1,1,1), (2,1,1,1), et cetera.

Fixing the zeroth order Taylor coefficient V and using equation (2.2.9), the covari-

ance matrix for the remaining variables becomes

0 i-12 0 -2 0 0
0:0 -3 0 -3 0
5 |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Z/

(2.2.11)

where we note that the 3-by-3 block matrix in the upper-left corner, corresponding
to the three independent components of Valaz, has become diagonal. This is the
conditional covariance matrix for the second derivatives. Fixing Vy, (either by hand or

randomly, by generating three independent Gaussian variables) in addition to V, we
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find that the covariance matrix for the fourth derivatives is given by

24

» = (2.2.12)

o O O O
o O O o O
o O = O O
o OO O O O
o O O O

24

which again is diagonal. Generating the fourth derivatives randomly now simply
involves generating five independent Gaussian random numbers. Note in particular
that to construct the Taylor coefficients up to fourth order, we are never required to
invert or diagonalise the full covariance matrix. This is the key realisation that allows
us to commence the study of manyfield inflation in GRF potentials.

The method illustrated here extends to arbitrary Ny and to all orders in the Taylor
expansion. The general formulae for these covariance matrices and the matrices that
shift the expectation values can be found in Chapter 3, where the details and a general

proof of this method will be presented separately.

2.2.3 Physical properties of GRF potentials

It is important to note that physical effective field theories supporting manyfield
inflation may differ substantially in many details from the mathematically simple GRF
models that we study. For example, EFTs with many light fields may reflect the
imprints of broken symmetries, such as supersymmetry or axionic shift symmetries
for some of the fields. It then appears reasonable to expect that some of the GRF
estimates (e.g. of the fine-tuning of manyfield inflationary models) may differ from
that of a physically motivated manyfield theory. However, it is still possible for GRF
models of manyfield inflation to be sufficiently complex to capture non-trivial multifield
dynamics, and can provide access to ‘universal’ or robust aspects of manyfield models,
if they exist. Motivated by this, our approach here is to engineer manyfield models
of slow-roll saddle-point inflation using GRFs, and to search for mechanisms that
determine the distribution of observables.

To understand the properties of the class of potentials that we study, it is important
to characterise the various energy scales that are associated with them. In this
subsection, we discuss the distribution of the slow-roll parameters and the typical scale
of higher-order terms in the potential. We furthermore discuss the conditions under

which GRF potentials may be interpreted as proxies for physical effective field theories.
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Finally, we point out that the mass distribution of GRF potentials is broad compared
to the Hubble scale. This raises an additional challenge for using these potentials to

study multifield inflation.

Distributions of the parameters of the potential
The value of the potential:

The GRF potentials have mean zero and typically take values in the 1o range between
—A{ and A{. For the models of inflation that we consider in the bulk of this chapter,
we take the dimensionless parameter V = 1, so that V = A*(1+ O(¢/An)). The
hyperparameter A, then sets the energy scale of inflation. During slow-roll inflation
close to the approximate saddle-point at ¢ = 0, the square of the Hubble parameter is

then given by
1Al

H? = - .
3 M3

(2.2.13)

The gradient:

The typical magnitude of the gradient vector is most easily characterised in terms of

the inflationary slow-roll parameter,

B %ﬁ@“V@aV B 1%1%

v =y Ve (2.2.14)

€y
For the theory defined by equation (3.1.2), the covariance of the dimensionless Taylor

coefficients V,, is given by
(VoVi) = 6ap (2.2.15)

so the typical value of the slow-roll parameter €y is given by

2

() = 2NN (Af:) > 1. (2.2.16)

At a typical point in field space, the potential is then too steep to support slow-roll,

slow-turn inflation. Since the Taylor coefficients V, are N; independent Gaussian

variables, the probability of €, being no larger than some value ¢, is given by [23],

Ay

N
2
dNVip e 2~ 2 (@MP> . (2.2.17)

1
Pley <e,) =
r=e AYED

- (V 27T>Nf /X<\/zAh/MP
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Obtaining a small €, parameter requires tuning of the slope of the potential, and this
tuning becomes more severe as Ay, is decreased from Mp. Note however that equation
(2.2.17) gives the probability of a randomly chosen point having a small €}, parameter,
not the probability that a point with a small €, parameter exists in the field space.
The latter probability depends on the volume of field space, which we do not model in

this chapter.

The Hessian matrix:

The Hessian matrix, Vy;, determines the curvature of the potential and its eigenvalues
are the squared masses of the fields. From the covariance function (3.1.2) it is easy to

see that the dimensionless Hessian has zero mean and a covariance given by
(VasVea) = (5ab5cd + 0acOpa + 5ad5bc> : (2.2.18)

The probability distribution for the Hessian (with all other Taylor coefficients marginalised
over), can then be obtained by inverting the covariance matrix X .p)(cq) = <Vab‘7cd> to

find
( _1) ¥5ab5cd SR 1Csad5bc- (2.2.19)
(ab)(cd) 2(Nt 4 2) 2

The marginal probability distribution is then given by [44]

. 1/~ - 1 -
P(Vy) =Cy (— (va Via — Vaa 2)) : 2.2.20
(Vab) exp 4 bVb N; + 2( ) ( )
Here C, is a normalisation factor.
To elucidate the consequences of this probability distribution, it is useful to consider
the large- V¢ limit in which an eigenvalue density can easily be derived. We will denote
the physical squared masses by m? and work with the dimensionless eigenvalues \, of

Vap:

2 A4
m2 =Y\, (2.2.21)
Af

To derive the eigenvalue density, we change variables from V,; to its eigenvalues and
eigenvectors, and integrate out the latter. Importantly, the probability distribution
of the eigenvalues involves the Vandermonde determinant arising from the change of
measure,

Ny
IT Vi ~ TT 1Aa = ol T] dXa - (2.2.22)
a=1

a<b a<b
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The Vandermonde determinant encodes the ‘eigenvalue repulsion’ which is the key
driver behind the large-N; universality encountered in random matrix theory (see
e.g. [72, 90, 124]). The appearance of the Vandermonde determinant in the probability
distribution for the Hessian matrix of GRF potentials is indicative of the close connection
between random function theory and random matrix theory. We will return to this
connection towards the end of this section, and then again in section 2.4.

By using the eigenvalue density function,

() = ;f S 6(A - M) (2.2.23)

the probability distribution for the eigenvalues can be expressed as
N¢ 9 2
Plp) = Cyexp | = Z5( [ anp(n) - (/ dAAp(A))
Nf2 / / /
+ 5 /d)\d)\ PN (A = N | . (2.2.24)

The typical distribution of the eigenvalues of the dimensionless Hessian matrix can be

found from saddle-point evaluation of equation (2.2.24). This gives [44]

1
27TNf

pee(N) = VAN — (A= )2, (2.2.25)

For A = 0, this spectrum is precisely a Wigner semi-circle, i.e. the spectrum of the
Gaussian Orthogonal Ensemble (GOE) of random symmetric matrices with independent,
Gaussianly distributed entries. For A # 0, the semi-circle is rigidly shifted to be centred
at A [44].

To properly understand the significance of the shift A, it is instructive to calculate
the conditional probability distribution of the Hessian, given that the potential has
a certain value, say V = V,. The Hessian matrix and the value of the potential are
correlated, and upon using equation (2.2.9) for the conditional probability distribution,
we find the moments [23, 44]

: V.
<Vab> ’V:V* = _F 5ab 5 (2226)
VsVl = (Ve Vo)) _y, = (Bucbia + Buaic). (2:2.27)
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According to equation (2.2.27), every unique element of the Hessian is now statistically

independent of the others, and we can write the Hessian as [23]

154 L*
Vi, =Y ([_* + 2.2.2
ab ~121 < «é 5ab Rab) ) ( 8)

where R, is a random matrix in the Gaussian Orthogonal Ensemble (GOE). The

spectrum of the dimensionless Hessian is then given by,

1
;@Q):2MW¢MW—(X+KA%V. (2.2.29)

Clearly, for points with vanishing vacuum energy, V, = 0, the spectrum of the Hessian is
precisely that captured by the Wigner semi-circle. For V, > 0, which is the case relevant
for inflation, the typical spectrum is a semi-circle rigidly shifted downwards, making
comparatively more eigenvalues tachyonic. However, for V, = A? and N; > 1, this
shift is small: the endpoints of the semi-circle spectrum of R, are located at £2/Ng,
and the spectrum of V,, is a shifted semi-circle with endpoints at (+£2v/N; — 1)A%/A2.

We define the slow-roll 7y, parameter as

mZ

v = Mp—2 (2.2.30)
with m2,  denoting the smallest eigenvalue of the Hessian matrix. An immediate

consequence of equation (2.2.28) is that 7y tends to be very large and negative for the

typical, slightly shifted semi-circle spectrum [23]:

Mp\?
W:—@zw+n(>. (2.2.31)
Ay
Smaller magnitudes of 7y, can be obtained if the spectrum of the Hessian is in a rare
configuration in which no eigenvalue is very tachyonic. Given equation (2.2.28) for

V =V, the probability of |ny| being no larger than |n,| is given by

v

AQ
P |m12nin| < |77*| - ) = PGOE (Amin > 1+ 77*h> ) (2232)
< M3 M2

where A\, denotes the smallest eigenvalue of the GOE matrix R, and Pgog denotes its

probability distribution. For N; > 1, the radius of the typical semi-circle configuration
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is 24/N; > 1, so that

2

A
PGOE <>\min >14 7’]*]\4}12> = PGOE ()\min > 1) = exp (—C Nf2) R (2233)
P

where ¢ = & (35 +164/7 +271n(18) — 541n (\/7 — 1)) ~ 1.19. In the last step we
have used the fluctuation probability computed for the subset of ‘fluctuated spectra’ of
the GOE with no negative eigenvalue [71]. Hence, small slow-roll parameters are very
infrequent in GRF potentials with many fields.

We close this section by noting that the tight connection between our GRF models
and random matrix ensembles also has strong implications for the distribution of vacua
23, 44]. Metastability of Minkowski and de Sitter critical points requires m?2, > 0.
According to the RMT analysis, such points are exceedingly rare:

P(mpy, > 0]V > 0) < Poor(Amin > 0). (2.2.34)
The rarity of metastable de Sitter vacua is a common feature also of other classes of
random potentials, such as random supergravity theories [23, 25, 141].

Equation (2.2.34) implies that the fraction of metastable de Sitter vacua in our
GRF potentials is bounded from above by the probability of large fluctuations of
one of the simplest random matrix ensembles. As a consequence, the frequency of
metastable de Sitter vacua scales with Nt like In(Pgog) ~ —N¢?. Recently however, the
authors of [88] (see also [23]) found that vacua in GRF potentials comprise a fraction
of ~ exp (—aNt) of all critical points of GRFs (for some constant «), which far exceeds
the metastability estimate of (2.2.34). This apparent discrepancy is resolved by noting
that the vast majority of the metastable vacua found in [88] are located deep down in
the potential, at V' < —24/N;Al, in our mean-zero GRF models.? For such large and
negative values of the potential, the semi-circle spectrum is rigidly shifted upwards so
that metastability is common. Due to the simple relation of equation (2.2.28) (and its
generalisation for other covariance functions), any carefully phrased question about
the vacuum statistics in GRF models map into precise questions about the eigenvalue

statistics of random matrices.

9The analogous result in random supergravities is that most metastable de Sitter vacua realised in
the ‘approximately supersymmetric’ regime [23, 141]. Note however, that known constructions of de
Sitter string compactifications tend to rely on non-random ‘structures’ to enhance the probability of
metastability (see e.g. [6, 42, 63, 84, 91, 100, 113, 143, 171, 188]). Thus it is certainly possible that
the simple GRF models may capture some rather robust aspects of manyfield inflation in fundamental
theory, but fail to accurately describe their vacuum structure.
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Cubic and higher-order terms:

GRF potentials have non-trivial, randomly generated interaction terms at cubic and

higher orders. At order n, these are of the order of

A4
Vaia, ™~ —. 2.2.35
In particular, each of the cubic order terms are then of the order of
A OHME (AN Mp
~ Y ~ =¥ — |\ H. 2.2.
Vate AT OA (Ah> ( Ay ) (2.2.36)

The vertical scale A, factors out of the evolution equations for both the background and
the perturbations and only serves as a normalisation factor for the scale of the scalar
perturbations. We find in all cases that (A,/Ay)? < Ay/Mp, and the cubic terms of
equation (2.2.36) tend to be smaller than H in the models that we consider. However,
since A, does not affect the field equations, it also does not affect our predictions for the
spectral index, its running, or the local non-Gaussianity parameter, fyr. Consequently,
the predictions of our models also apply to models in which V. ~ H, but for which
the amplitude of the scalar perturbations is larger than the observationally inferred

value. 19

GRF potentials and physical effective field theories

Gaussian random fields provide a mathematically convenient construct, but are not
directly derived as effective field theories (EFTs) from particle physics or string theory.!?
In this section, we discuss how the GRF potentials exhibit some ‘EFT-like’ properties
with important consequences for the cosmology. Relatedly, we note that these potential
naturally have spread-out mass spectra, and additional tuning is required to construct
models with non-trivial multifield dynamics.

In quantum field theory, unprotected dimensionful operators are naturally large.
For the UV cutoff A, the potential is typically of the order of V ~ H2M32 ~ A%, and
the scalar masses are of order m? ~ A* ~ HMp > H? (cf. equation (2.1.1)). In the
GRF potentials considered in this chapter, cf equation (2.2.7), the scale A is replaced

10 Another way to achieve a relative enhancement of the cubic terms with respect to the Hubble
parameter is to set the zeroth order Taylor coefficient much below its rms value: V < 1. This however
makes the fine-tuning required to achieve small slow-roll parameters more severe.

Simple GRFs can under certain assumptions be related to the potentials of multi-axion theories
[24].
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Fig. 2.2 Schematic illustration of the relevant energy scales of the GRF potentials. The
light blue shaded region indicates the equilibrium spectrum of the Hessian; the darker
region corresponds to our chosen ‘flat spectrum’ initial condition.

by the two parameters A, and Ay. The horizontal scale Ay, sets the coherence length
of the potentials, and can be interpreted as the UV-cutoff of the theory. Since all
operators are suppressed by the same cut-off scale, sharp features over distances < Ay
are very rare. We expect this to be a general feature of models with generic interactions
suppressed by a single, common cut-off scale.

The parameter A, sets the natural energy scale of the GRF models. During inflation,
a consistent EFT interpretation requires H? < A%. If reheating proceeds rapidly after
the end of inflation, the stronger condition of V ~ A% ~ T4 < A{ applies. By taking
A, < Ay, even the latter condition is generically satisfied. A Wilsonian EFT is obtained
by integrating out states more massive than the UV cutoff, leaving only states with
m? < A% Consequently, in the context of GRF potentials, we expect the eigenvalues of
the Hessian matrix to be no larger than ~ A?. For A, < Ay, this condition is satisfied

unless NV is very large:
2 4

mmaX AV
i (2,/Nf _ 1) = (2.2.37)
h h

Figure 2.2 illustrates the relevant energy scales of GRF potentials discussed in this

Q

chapter.

We now note a serious obstacle for using GRF potentials to study multifield
inflation: the mass spectrum is generically spread out over energy scales > H. This is
immediately evident from the width of the (shifted) Wigner semi-circle distribution,

which predicts a typical eigenvalue spacing for the Hessian of

N; m12nax - milin 1 M 2
e ) ( P) (2.2.38)

H? VN A,
For A, < Mp, this then implies that only systems with a very large number of fields,
Nt 2 (Mp/Ay)*, can be expected to exhibit non-trivial multiple field effects. This

large spread in the masses explains why recent attempts at using GRFs to study

multiple-field inflation [144] have only captured single-field dynamics. To use these
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models to study non-trivial multifield dynamics, one has to further tune the initial
conditions.

The particular Ny dependence of equation (2.2.38) follows from the form of the co-
variance function, cf. equation (3.1.2). The width of the eigenvalue distribution may be
changed by modifying the covariance function, e.g. to C/(¢1— o) = NpASe(61-02)%/2NeA7
which gives an Ny independent eigenvalue distribution of the Hessian, and an additional
suppression by 1/+/N; in equation (2.2.38). However, such a modified covariance
function enhances the effective coherence length of the potential to /N;Ay, which
becomes super-Planckian for large N;.!2

The broad spread in the distribution of masses of GRF potentials is not surprising
as these models do not incorporate protective approximate symmetries (e.g. broken
supersymmetry, or approximate shift-symmetries), which can lower the natural scale of
dimensionful operators, and make inflation less fine-tuned. It would be interesting to
extend our method to construct manyfield models of inflation in random supergravity

models with spontaneously broken supersymmetry, following the ideas proposed in
[23, 25, 141].

2.2.4 The statistical ensembles of models

As discussed in section 2.2.1, the hyperparameters of our GRF potentials are:
(V' Vi, Vapy Nty An, A) (2.2.39)

An understanding of pre-inflationary physics in fundamental theory could potentially
provide us with prior probability distributions on these parameters. Lacking such priors,
we compute the observational predictions for certain ranges of the hyperparameters,
and investigate how these predictions change as hyperparameters are varied.
Specifically, we construct ensembles of manyfield models of inflation as follows:
First, we set V to its rms value, V = 1, so that A, sets the scale of the potential
at ¢ = 0. In slow-roll inflation, the parameter A, has no effect on the equations of
motion for either the background field or the perturbations around it. We exploit

this by evolving each model with a fiducial value of A, and, for each model yielding

12This lesson applies somewhat more generally: the width of the mass spectrum relative H? is
controlled by C®(0)/C(0). Compressing the spectrum requires decreasing this ratio, but for many
covariance functions C'?)(0)/C(0) ~ (C*(0)/C(0))P/4, and an overall suppression of these ratios
translates directly into an increased coherence length. Compressing the mass scale while keeping the
coherence scale associated with the interaction terms fixed then requires covariance functions with
multiple scales. We will not consider such modifications further in this chapter.
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a sufficiently long period of inflation, rescale A, at the end of inflation so that the
amplitude of the primordial curvature perturbation at the ‘pivot scale’ is consistent
with the value determined by the Planck experiment [10].'3 This fixes A, separately
for each model.

To obtain sufficiently flat potentials that support inflation, the gradient and Hessian
have to be tuned. We set V, so that e is sufficiently small that models with at least
60 e-folds of inflation are not too infrequent. This leads us explore values of €y in the
range of 2 x 1078 to 10711, We henceforth take

G=evi, (2.2.40)
to parameterise the magnitude of the gradient vector. The vector V, obviously also
has a direction, and we explore the effect of its alignment relative to the eigenvectors
of Vp, as we now discuss.

We have seen in section 2.2.3 that the curvature of the potential needs to be tuned
to give rise to sustained inflation and multifield dynamics. In particular, the smallest
eigenvalue of the Hessian, which we parametrise by
(2.2.41)

="y ¢:07

must be close to zero. We numerically investigate values of 7; in the range —107! to
—107%. To explore the non-generic spectra relevant for multifield inflation, we consider

two (non-random) initial conditions for the spectrum of Vi:

Uniformly distributed in (3771H 2 %H 2) ,

Uniformly distributed in (3n;H?, — 3,H?) .

Flat spectrum : m

Compressed spectrum : m;

Field perturbations with an effective squared mass greater than 9H? /4 are exponentially
suppressed already at horizon exit.!* This motivates the upper bound of the ‘flat
spectrum’. The (extremely) compressed, nearly degenerate spectrum is specifically

chosen to maximise the chances of non-trivial multifield effects, and is included for

13To identify the precise e-fold at which the pivot scale crossed the horizon during inflation requires
a detailed modelling of the reheating phase (cf. [134] for a review). For the baseline parameters,
we find that the pivot scale exited the horizon 58 — N,y e-folds before the end of inflation, where
N, parametrises the expansion between the end of inflation and the onset of the hot big bang. For
concreteness, we will assume throughout this chapter that the pivot scale crossed the horizon 55
e-folds before the end of inflation.

14More precisely, the effective squared masses of the perturbations are the eigenvalues of the matrix

May = Vay = 500 (0958 ) [58, 152] .

(2.2.42

)
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reasons that will become apparent in section 2.5. We note that these initial spectra
will ‘relax’ to the generic spectrum for a GRF over distances of ~ O(Ay,). During most
of inflation, the field is slowly rolling and this relaxation is very slow in e-fold ‘time’,
but we will see that towards the end of inflation, multiple fields develop tachyonic
masses, m2 < 0.

We now return to the question of the relative alignment of V, with the eigenvectors of
Vap. In a Gaussian random field the gradient and Hessian are uncorrelated, (V,Vg,) = 0,
and generically, V, has support along all eigenvectors of V,;,. However, slow-roll inflation
makes the field follow the gradient descent along the potential, which tends to quickly
align V, with the smallest eigenvalue direction of the Hessian matrix, which we will
denote by ‘1’ (for a more detailed discussion on this, see e.g. [78]). Motivated by this,

we consider two classes of orientations of V:

Random : Val o~ V26 ]\% Uniform ( SNf—l) 7
) 2.2.43
Aligned : V., o~ Qei]\% S0l - ( )

With the initial conditions (V, V., f/ab) fixed, we generate the higher-order Taylor
coefficients randomly using the conditional PDFs derived as discussed in section 2.2.2.

Finally, we explore the numerically accessible a range of values for the remaining
hyperparameters Ny and Ay: for N; very large or Ay small, inflation is only supported
if the slow-roll parameters are highly tuned, which can cause numerical accuracy
problems.'® A summary of the hyperparameter choices that we explore in this chapter
can be found in Appendix A.2. Some of our results are best illustrated for a fixed

choice of parameter. We take as our baseline model
Baseline: Ny =10, A, =04Mp, =2x10"7, 5 =-10""*, (2.2.44)

with the flat spectrum of the Hessian, cf. equation (2.2.42), and a randomly directed
gradient vector. For this choice of hyperparameters, obtaining at least 60 e-folds of
inflation is not uncommon, and N is sufficiently large for multifield effects to be clearly

manifest.

5The computations reported in this chapter did not require supercomputer capabilities, but
potentials with N > 1 places some restrictions on memory access. Our largest simulations ran on a
computing system with 144 CPUs and 516 GB RAM.
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2.2.5 Method: background

Given a randomly generated multifield potential, we evolve the fields numerically using

the coupled Klein-Gordon and Friedmann-Robertson-Walker equations,

Lo
e y 7¢a¢a +V
“+3H¢" =0V, H*=2_"~ — 2.2.45
¢" +3Ho , 3L ( )
In the slow-roll approximation that we use throughout this chapter, these equations
become v
3H¢* = —9°V , H?= : 2.2.46
) , i (2:2.46)

Expressed with respect to the number of e-folds, IV, the slow-roll Klein-Gordon equation
is simply given by
do®
dN
Equation (2.2.47) makes it clear that the vertical scale, A,, has no impact on the

= —9"InV. (2.2.47)

background field evolution in slow-roll.

2.2.6 Method: perturbations

To calculate the observational predictions of the manyfield models of inflation, we
use the ‘transport method’ [79, 81, 153, 174] (see also [21, 83, 154, 170, 173]). This
formalism allows us to evolve the two-field and three-field correlators on superhorizon
scales from horizon crossing to the end of inflation.'® Analytic solutions for this method
exist for certain potentials, just like in the ) N formalism, but the main advantage of it
is that it allows for accurate and efficient numerical solutions, regardless of the form of
the potential. In this subsection, we briefly review the key elements of the transport
method. We furthermore recall how multifield dynamics can cause the curvature
perturbation to evolve on superhorizon scales, and we define the isocurvature and
curvature correlators. We close this section by briefly reviewing the 6 /N formula for

the non-Gaussianity amplitude fyr.

16The transport method can be applied to both slow-roll and non-slow-roll systems, and also on
sub-horizon scales [153]. For our purposes, it suffices to consider the superhorizon evolution of the
field perturbations during slow-roll inflation.
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The transport method

In the spatially flat gauge, we can write the perturbations at the end of inflation as an

expansion in the perturbations at horizon exit:
1
60" = T70¢0 + iFabcéqﬁiéqﬁi + ... (2.2.48)

where the horizon exit perturbations have been marked with a *. Using the separate-
universe approach [132, 185], we expand the slow-roll, slow-turn equations of motion,
equation (2.2.47), around the background trajectory to obtain evolution equations for

0¢®. It is then easy to see that the ‘propagators’ I', and I'?,. must obey the differential

equations
dare @ e
dNb = T°, (2.2.49)
dFa C a a e
T]\;) = U drdbc + u derdbr ¢ (2250)
where
uly = —0"0,InV, (2.2.51)
uy, = —0"0,0.InV (2.2.52)

with the derivatives evaluated on the background trajectory. These differential equations

have the following formal solutions:

N
% (N) = [%(N, N*) = P exp ( / dN’u“b(N’)> , (2.2.53)
N*
N
[ (N) = D (N, N°) = [ an'me (N1 (2.2.54)

where P is a path ordering operator. In equation (2.2.54), we have used Greek indices
as a short-hand for propagators evolving to or from N, e.g. I'V, = TV, (N', N*).
Once the field perturbations at the end of inflation, d¢2 ,, are known, the curvature

perturbation is given by a gauge transformation:

1
¢ = Cabna + 5Cab00ladPena + -+ (2.2.55)
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where the coefficients N, and N, are given by [153]

1V

Co = NN (2.2.56)
VVa  ViVi V Vv
b= N1+ 2o VIV V) — s (Vo Vi VE+ V3V V)
Cab VC‘/C+VC‘/C< e ) (veve VetV " Vibae)
(2.2.57)
The curvature perturbation
We write the field two-point correlator as
a b 3¢(3) 2r° ab
(562 (k1)50% (kz)) = (276 (I, + ko) -5 (2.2.58)

k3

In slow-roll and with a slowly turning field trajectory at horizon crossing, we can take

the initial condition of the field correlators to be given by

= 2§, (2.2.59)

In [78], it was shown that this approximation works well for manyfield models of
approximate saddle-point inflation. The curvature power spectrum at some later time,
N, is then given by

Pe(N, k) = Ca(N)Ce(N) T%(N, N ) Ty (N, N.) 23 (2.2.60)

Isocurvature perturbations

To linear order in the field perturbations, the curvature perturbation of equation

(2.2.55) is given by field fluctuations along the instantaneous background trajectory,

1
-4 2.2.61
¢ N 5 ( )
where d¢| = v,0¢° for v, = V,/|V,|. Field perturbations along the Ny — 1 perpendicular
directions give rise to ‘entropic’ or ‘isocurvature’ perturbations. We can decompose
the field fluctuations as

50" = Oy v" + 6wl (2.2.62)

where w$(N) denotes a generic orthonormal frame of basis vectors in directions per-

pendicular to V. Here a is a vector index a and with j = 1,..., Ny — 1. In analogy to
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¢ (and just as in [78]), we define the isocurvature S* as

SZ_

\/_ (2.2.63)

In slow-roll and on superhorizon scales, the curvature and isocurvature evolve as

78, 110]

¢ =2 (v“VV“bwf) S, (2.2.64)
(S = (vav‘ibvb — 2ev)S" — wf VV” wh S*. (2.2.65)

Equations (2.2.64) and (2.2.65) reflect the well-known fact that isocurvature can source
superhorizon evolution of the curvature perturbation (, but the curvature perturbation
does not source isocurvature [102, 107].

The isocurvature correlations are then given by

k3

(8'(k1)S (ko)) = (271)*0") (k1 + k2)5 s PG(N), (2.2.66)

with '
PY(N) = —w! %% w]. (2.2.67)

2€V

We refer to the total isocurvature power spectrum (without indices) as

150_5 PZJ

1S0°*

(2.2.68)

Non-Gaussianity

Equation (2.2.55) is related to the commonly used ‘0N’ formulas, which involve the

field perturbation at horizon crossing, by

= GIY,, (2.2.69)
Nab = Ccrcab + gcdrcardb . (2270)

To compute the parameter fyr,, we use the d N-formalism expression, which is given by
[183]17
NeN°N,,

SRGIR (2.2.71)

—*fNL 16< +f)+

1"We adopt the sign convention of [183] for fyr..
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where 0 < f < 5/6 is momentum dependent, and r is the tensor-scalar ratio. In the
small-field inflation models studied in this chapter, 7 < 1073, and the first term is
negligible.

While the calculation of the power spectrum typically is insensitive to small numer-
ical errors, fyr, is not. The dominant, second term of equation (2.2.71) can itself be

expressed as the sum of two terms,
6 NN*Nap _ CLCl™ (G DTy + CT%)

_5fNL: (N.NeY2 (C,T%CaT )2 : (22.72)

Quite commonly, both these terms can be large (say O(10)), but cancel each other to
a very high degree (say down to O(1072)). This delicate cancellation calls for high
precision of the numerical evaluation of the background and the I' coefficients. We
briefly discuss our numerical implementation of the evolution of the perturbations in
Appendix A.1.

2.3 Result I: Planck compatibility is not rare, but
future experiments may rule out this class of

models

We are now ready to discuss the results of our simulations of manyfield models of
inflation in random potentials. In this section we focus on observables related to
the two-point correlation function, such as the primordial power spectra of curvature
and isocurvature perturbations. Our first key result is that despite multifield effects
typically being non-negligible, power spectra tend to be very smooth, and observational
compatibility is not rare in these models.

This section is organised as follows: we first discuss the evolution of the classical
background, and we highlight and explain the particularly strong ‘eigenvalue repulsion’
effect on the smallest eigenvalue of the Hessian in GRF models. We then discuss
the primordial perturbations of these models: we validate that the power spectra are
well-approximated by approximately scale-invariant power laws over the scales relevant
for the CMB. We then note that essentially all models predict small deviations from
the strict power-law form, and we compute the predictions for the spectral tilt, ng
and its running, «,, as functions of the hyperparameters. This leads us to establish a

surprisingly robust prediction of these models, which makes it possible to rule them
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Fig. 2.3 The value of the potential as a function of the field displacement (left), and
the evolution of multiple components of the fields (right) in a random 100-field GRF
model.

out with future experiments. We furthermore find that multifield effects are typically

important, but that, importantly, isocurvature tends to decay during inflation.
Several of the results found in this section are directly analogous to results recently

observed in models of manyfield inflation in DBM potentials [78], while others differ

substantially. In section 2.4 we compare these setups in detail.

2.3.1 Background evolution in GRF inflation

We first briefly discuss some key elements of the evolution of the inflationary background
in the GRF potentials. To get an intuition for these models, it is instructive to first
consider an example. We here take a randomly generated 100-field model as our case-
study. This model was generated from the hyperparameters A, = 0.4, e = 5 x 10719,
n; = —107%, a flat spectrum, cf. equation (2.2.42), and a randomly directed gradient
vector at ¢ = 0. This particular model gives a total number of e-folds N = 80.6 over
a total field displacement of A¢p = 0.187Ay,.

The left plot of Figure 2.3 shows the normalised value of the potential energy as
a function of A¢. The potential along the descending inflationary trajectory is very
smooth and featureless. Since €y is initially very small and ]gb| = /2¢y, the field rolls
very slowly initially, but accelerates super-exponentially towards the end of inflation.
Figure 2.3 shows how multiple components of the field evolve during inflation, and
indicates that the inflationary trajectory turns as the field descends the potential.

The eigenvalues of the Hessian matrix are not constant in a general inflationary
model, and we expect the eigenvalues of the GRF models to relax from the fine-tuned

initial configuration to the (slightly off-centred) semi-circle spectrum. Figure 2.4 shows
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Fig. 2.4 Eigenvalue evolution of the Hessian in a 100-field example, starting from a flat
spectrum.

the evolution of the squared masses as a function of the field displacement during
inflation (left plot), and as a function of the number of e-folds (right plot) for our
100-field example. Indeed, as the fields evolve from ¢ = 0, the spectrum spreads out.
Half of the fields, initially heavier than the others, tend to become even more massive
during inflation, and are not very important for either the background evolution or the
spectrum of the perturbations. By contrast, the lighter half of the fields become even
lighter, and many even go tachyonic: with small variations over all the models we have
considered, almost precisely half the fields have m? < 0 at the end of inflation.'® When
plotted as a function of A¢, the bundle of eigenvalues is conical, which is indicative of

the dominance of the cubic terms in the potential.

The ‘straying’ smallest mass-squared

Figure 2.4 also illustrates a curious and important feature of these models: the smallest
eigenvalue decreases more rapidly than the others, and ‘strays’ from the conical bundle
towards more tachyonic values. This ‘straying’ behaviour of the smallest eigenvalue
has to our knowledge not been discussed previously in the literature, but appears for
large N; in essentially all inflationary models that we have studied. In sections 2.3.4
and 2.5, we will see that it contributes to some of the most interesting predictions of
the inflationary GRF models.

While the rapid evolution of the smallest eigenvalue of the Hessian may appear
surprising, it has a simple explanation in terms of the properties of the GRF potentials,

and the dynamics of multifield slow-roll inflation. In our inflationary models, the initial

180n approach to the final vacuum configuration after inflation, these eigenvalues will again become
positive.
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values of both the gradient and the Hessian matrix are very small. This means that
after a short field excursion, which typically involves some turn, the gradient and
Hessian become dominated by the third-order terms. Without loss of generality, we
may take the ‘1’-axis to be aligned with the field excursion at this point, with ¢* > 0.
We then have

Vald) = 5Ven(9')?, Vo) = Vo' (23.1)

With the initial gradient set to be small, the third derivatives are drawn from a

distribution with a mean that is very close to zero and variances given by

6 if all indices are equal
Var(Vape) = { 2 if only two are equal (2.3.2)
1 if none are equal.

We then see that the magnitude of Vi(¢) is expected to be larger than the other
components of the gradient. Furthermore, since ¢, > 0, we expect that by ox —Vi(¢) >
0, in which case Vj;; must be be negative. We can therefore expect Vi1(¢) = Vi11¢1
to be larger than the other elements of the Hessian matrix, and negative. Moreover,
since Var(V,11) > Var(V,) for b # 1 (and a # b) the off-diagonal row-vector Vj, is
expected to be larger in magnitude than the other row vectors. This will typically lead
to a large negative mass-squared eigenvalue with an eigenvector approximately aligned
with the gradient direction. This is precisely what we observe through the ‘straying’
smallest eigenvalue of the Hessian.

This evolution of the squared masses importantly affect the inflationary evolution
of the field perturbations (as we will discuss in section 2.3.4), and also the background

dynamics. In slow-roll inflation, the acceleration of the field is given by

(¢")" = V2ev <Vzb/vb - 26vv“> : (2.3.3)

We see that if v, ~ —d!, the acceleration tends to be large and positive in the ‘1’
direction. This will make the trajectory ‘straighten’ during this phase, and v, will
become closer and closer aligned with the direction of the smallest eigenvalue of the

Hessian matrix.
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Fig. 2.5 Histogram of the e-fold distribution of the baseline model (cf. equation (2.2.44)),

and the dependence of the mean and standard deviation on the hyperparameters in
ensemble of 2000 inflationary models.

one-parameter variations from the baseline. Each data point is generated from an
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The e-fold distribution of GRF models

An important factor influencing the observables is the distribution of the number of
e-folds of inflation. Figure 2.5 shows the mean values and standard deviations of this
distribution for various one-parameter variations from the baseline parameter choice of
equation (2.2.44).

Unsurprisingly, flatter spectra lead to more e-folds of inflation. As the number
of fields is increased, the e-fold distribution slowly shift to lower values, but the
dependence is not very strong. For a given choice of hyperparameters, the distribution
of the number of e-folds typically exhibits a broad peak and a ‘heavy’, polynomially

decreasing tail corresponding to models with a large number of e-folds.

2.3.2 Smooth and simple power spectra from complex infla-

tionary models

We now turn to observables generated by these models, focussing in this section on
the power spectrum of the curvature perturbation, P, (k). While many of the simplest
models of single-field or few-field inflation naturally generate very simple, almost scale-
invariant power spectra, there is no guarantee that highly complicated and random
manyfield models should also do so. Turns of the field trajectory or bumps in the
potential could generate strong deviations from scale-invariance, and highly featured
power spectra. Quite remarkably however, we here find that even random models
involving several dozens of fields and millions of interaction terms typically produce
extremely smooth and simple power spectra.

A sense of the typical properties of the generated power spectra can be inferred
from Figure 2.6, which shows the power spectra for 15 randomly generated models
with 10 (left) and 50 (right) fields. The top row shows the power spectra evaluated
over the full range of scales exiting the horizon within the last sixty e-folds of inflation,
while the plots of the bottom row zooms in on the 10 e-fold range centred at the ‘pivot
scale’ corresponding to modes exiting the horizon 55 e-folds before the end of inflation.
All plotted power spectra are evaluated at the end of inflation, Pr(Nena, k) = Pr(k),
and normalised at the pivot scale k,.

Over the full range of scales spanning 60 e-folds, the power spectra show strong
deviations from scale-invariance, with rapidly decreasing power spectra for very small-
scale modes. This drop in power is related to the rapid growth of the slow-roll parameter
ey towards the end of inflation, which causes a speed-up of the field and a suppression of

the power of the curvature perturbation. On zooming in on the scales most relevant for
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Fig. 2.6 Examples of power spectra from 15 randomly generated models of GRF

inflation for Ny = 10 (left) and Ny = 50 (right). Hyperparameters other than N¢ are as
in the baseline case, cf. equation (2.2.44).
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CMB observations, the generated power-spectra are very simple, and of an approximate
power-law form. This simple form of the power spectra is common to all GRF models
we have studied, independent of the precise choice of hyperparameters. We will now
discuss the dependence of the detailed predictions of the models on the hyperparameter

choices.

2.3.3 Distributions of n, and a

The simple form of the power spectra around the pivot scales justifies fitting them by

an approximate power-law,

Pe(k) = A, (:)nl : (2.3.4)

where we allow for a non-vanishing running of the spectral index, as = dng/d In k|, -
Figure 2.7 shows the aggregated values of (ng,a,) for 25,000 models of GRF
inflation with N¢ ranging between 5 and 50, and for varying values of the other

9 The distribution for n, indicates that the power spectra are

hyperparameters.!
approximately scale-invariant, and that the spectra are more commonly red than blue
(around 85% were red). For these values of the hyperparameters, the distribution for
ng is broader than current Planck constraints, but Planck-compatible values are not
rare.

The statistical prediction for the running of the spectral index, «ay, is remarkably
sharp. A small and negative running is vastly favoured (especially among the models
with Planck-compatible spectral indices), and these models could be ruled out should
future experiments infer a positive or substantially negative running of the spectral index.
Indeed, over 99% of these models, and all of those in the Planck 68% c.l. for n,, fall in
the range —0.004 < a; < 0. For the baseline hyperparameters, cf. equation (2.2.44),
we find ny = 0.970+0.018 and a, = —0.00143 +0.00034. Normalising the amplitude of
scalar perturbations fixes A, for the baseline models we find A, = 9.6 (£1.7) x 107°.

The tensor-to-scalar ratio is very small in all models we have constructed. For the
baseline parameters, we find r = 3.07 (£0.28) x 1078. Since the total field displacement
during inflation is A¢ = 0.36 (£0.04) A}, for these parameters, we see that the ‘Lyth

bound’ [133] is far from saturated: in single-field models of inflation,

r = 16ey <8 < ! )2 <A¢>2 ; (2.3.5)

Nexit MPI

9This aggregate consists of all models in the tables ‘varying N;’ and ‘N; = 50’ in Appendix A.2.
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Fig. 2.7 The distribution of n, and a, for 25,000 inflation models spanning values
of N; between 5 and 50, with the 68% and 95% confidence contours from Planck
(TT4+TE+lowP+lensing) [10].

if €y is constant or monotonically increasing, Ney; denotes the e-fold when the pivot
scale crossed the horizon (in our case N = 55), and A¢ denotes the total field
displacement during inflation. Thus, for the mean-value base-line parameters, we find
the bound r < 5.5 x 1075, There are two reasons for the non-saturation of the Lyth
bound. First, the field initially evolves very slowly, but speeds up super-exponentially
towards the end of inflation. Second, we will see in section 2.3.4 that isocurvature
modes tend to enhance the amplitude of the scalar perturbation, but leave the tensor
perturbations untouched. This further suppresses the tensor-to-scale ratio r.

Figure 2.7 shows that manyfield GRF models can be compatible with current
observational constraints on the power spectrum, but provide a sharp prediction for its
running, and can be ruled out by future experiments. We now investigate how these
predictions depend on the hyperparameters.

Figure 2.8 shows the dependence of ng and ay of ¢ and Ay. All data points are
based on at least 1000 models except those with A, < 0.3 or ¢; > 1078 where fewer
models gave sufficient number of e-folds, and the data points are determined from
several hundred realisations. We first note that taking A, large or ¢ small both have
the effect of ‘flattening’ the potential, either globally or locally around ¢ = 0. Figure
2.8 indicates that such a flattening makes the spectrum more red, and the statistical
predictions for n, and ag become sharper. For large Ay, this reddening of the spectra
make the models significantly discrepant with current observational bounds on ng,
making it possible to rule out this particular region of hyperparameter space with
current observations (however, by increasing ¢;, the spectral indices at large A}, can be
made compatible with Planck again). The distribution of the running of the spectral

index is, by comparison, remarkably robust under changes to the hyperparameters. All
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Fig. 2.8 The spectral index and its running as functions of the smoothness of the
potential in one-parameter variations from the baseline hyperparameters. The blue
regions indicate the 68% c.l. from Planck (TT-+lowP-+lensing) [10].

sampled models are compatible with current constraints on «,, and the prediction of a
small negative running remains sharp as either ¢; is decreased or Ay is increased.

The observed relation between a flatter potential and a redder spectral index may
appear surprising at first, as flatter potentials commonly give rise to more scale-invariant
spectra. There is however a rather simple explanation of this empirical relation. The
spectral index of the perturbations depends not only on the flatness of the potential,
but also on its curvature. In a general multifield model,?° the spectral index at the

end of inflation is given by [83],

ay/* b ay/x\/* b
ne— 1= =2 (e 4 etupye) = 205 2 <€* + evje> , (2.3.6)

where the x subscript denotes quantities evaluated at horizon crossing, the symmetric

tensor wug, is defined as in equation (2.2.51), and the unit vector e,, which encodes the

20 Assuming that at horizon crossing ¥4, = 6, H2/2, as we do throughout this chapter.
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possible superhorizon evolution of the spectral index, is defined as,

G,
€y = -
|CCF dl

(2.3.7)

Physically, it relates the adiabatic perturbation at the end of inflation to field pertur-
bations at horizon crossing. If there is no superhorizon evolution, ¢ is aligned with
the tangent vector of the field trajectory at N* (i.e. e, o 0,V (¢4)). However, if the
spectral index evolves on superhorizon scales, e* becomes misaligned, typically towards
the most tachyonic directions.

In the approximate saddle-point models that we consider, the potentials need to
be very flat around ¢ = 0 in order to support sufficiently long periods of inflation,
cf. Figure (2.5). The spectral index will therefore be dominated by the term involving
the Hessian.

In inflationary realisations giving not much more than 60 e-folds of inflation, the
pivot scale exits the horizon relatively early during inflation. At this point, the masses
will not have had time to spread out much, and the gradient will in general not
be aligned with the most tachyonic direction. The curvature perturbation will then
typically undergo some evolution on superhorizon scales, and the vector e, will develop
components in both the adiabatic direction (at N*) and the more tachyonic directions.?!
A wide distribution of the spectral index is therefore expected in this case.

By contrast, in models supporting > 60 e-folds of inflation, the pivot scale typically
exits the horizon when the gradient is dominated by the third-order coefficient in the
Taylor series. In this case, the masses will have spread out more and both the gradient
vector at N* and e, will, to good approximations, be aligned with the direction of the
smallest eigenvalue of the Hessian. This results in a redder power spectrum, since the
smallest mass eigenvalue has had time to decrease further. Moreover, the variance
of the spectral index is smaller in these models, since the direction of e, is much less
random. These effects are visible in Figure 2.9.

The relation between flatter potentials and redder power spectra is now easy to
understand. With all else the same, a flatter potential generates more e-folds of inflation
so that the horizon crossing of the pivot scale, 55 e-folds before the end of inflation,
happens correspondingly later (in e-fold time) after the field has left ¢ = 0. As per the
discussion above, we then expect to see redder power spectra with smaller variances,

which is precisely what we see when ¢; is decreased or A}, is increased.

21This also explains why the spectral index becomes redder due to superhorizon evolution, cf. Figure
2.9.



58 Inflation in Gaussian random field potentials

Ang

100 200 300 400 500 300 400 500
N, end N, end

Fig. 2.9 The distribution of (N°* n,) at the end of inflation (left) and the change of
the spectral index on superhorizon scales, An, = n®4 — n*, (right), for about 19,000

S s?

inflation models with uniform mass spectra, again spread over values of N; varying
between 5 and 50 (the same models as in Figure 2.7, but without the compressed spectra
models). The black curve in the left graph shows the prediction of the single-field
model discussed in Appendix A.3.

We now turn to the effects of the number of fields, V¢, on the power spectrum.
Figure 2.10 shows the how the mean values and standard deviations of n, and ay are
weakly dependent on N;. First, we note that as Ny is increased, the spectra become
less red and the variance of the spectral index also increases, albeit slowly. This may
again be explained by the correlation between ng, and the total number of e-folds of
inflation: as the number of fields is increased, the models tend to give fewer e-folds of
inflation, cf. Figure 2.5, which leads to e, developing non-vanishing components along
multiple directions in field space.

In sum, we have found that the distribution for the spectral index in our GRF
models tends to favour red, approximately scale-invariant spectra. Some regions of
the parameter space lead to sharp predictions of excessively red spectra, and can be
ruled out already with current observations. However, large regions of hyperparameter
space are compatible with current constraints from the Planck experiment. More
importantly, we have found that these models predict, sharply and robustly, a small
negative running of the spectral index. The Planck experiment has constrained the
running of the spectral index to a, = —0.005 & 0.013 [14], but future experiments
may reach a sensitivity of o(a,) = 1072 [163]. A future observation of a; = 0 or

~Y

a, < —0.004 would rule out all Planck-compatible models that we have constructed.
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Fig. 2.10 The spectral index and its running as a function of N; in one-parameter
variations from the baseline together with the 68% c.l. from Planck [10].

2.3.4 Swubstantial superhorizon evolution, but also decaying

isocurvature

We have seen in section 2.3.3 that the predictions from the random GRF models are
remarkably simple, despite the underlying potentials being highly non-trivial functions
of many fields. Indeed, the prediction of an approximate scale-invariant power spectrum
with a small running of the spectral index agree with two of the ‘generic’ predictions of
single-field models of slow-roll inflation. In this section, we investigate to what extend
multifield dynamics is important for the predictions of the manyfield GRF models.
We begin by considering the superhorizon evolution of the pivot-scale modes exiting
the horizon 55 e-folds before the end of inflation. We first recall that to linear order
in the field perturbations (and upon suppressing the k dependence), the modes at

the end of inflation are related to the modes at horizon exit by the transfer equation

[18, 50, 184],
¢ (b e ¢ (2.3.8)
s) N0 Tss J\ &) -

For ¥, o< 04 (as we assume in this chapter, cf. equation (2.2.59)), the superhorizon
evolution of the curvature perturbation is given by,
PC(Nend)k> gy 2
— =1+ T i, 2.3.9
ARAEP PR (2:3:9)
so that, under these assumptions, superhorizon evolution can only lead to a net increase
in the power of the curvature perturbation. If Pr(Nena, k)/Pr(Ne k) —1 < 1073 for a

range of k modes, the observational predictions of the model can be regarded as safely



60 Inflation in Gaussian random field potentials

1.5 1.5
ad >
S Lo 1 T3 Lo
= =1
& & T
£ 05 i l l l l 1 o5 T
0.0 0.0
5 100 15 20 25 30 35 40 45 50 5 10 15 20 25
Nf Nf

Fig. 2.11 Superhorizon evolution of the mode exiting the horizon 55 e-folds before the
end of inflation for the flat initial spectrum (left) and the compressed spectrum (right),
cf. equation (2.2.42). Boxes indicate first and third quartile, together with the median;
‘whiskers’ indicate 1st and 99th percentile. The left graph shows a one-parameter
variation from the baseline; the right shows models with Ay, = 0.4, ¢ = 107! and
= —1074.

independent of multifield effects, and the horizon crossing power spectrum determines
the observational predictions for e.g. ny and a,. This rarely happens in manyfield
models of inflation in GRF potentials.

The box plots in Figure 2.11 show the effects of varying N¢ on the distributions of
log(Pe(Nend, ks )/ Pe(Ny, ky)) for both the flat (left) and compressed (right) spectra.
Each box is generated from over 1000 inflationary models, except for Ny = 20 and 25 for
the compressed spectrum, which were generated from 600 and 200 models, respectively.
Unsurprisingly, models with more fields and more compressed initial spectra exhibit
larger superhorizon evolution. However, even for the flat spectrum, models with more
than 5 fields tend to evolve substantially on superhorizon scales, so that the predictions
at horizon crossing do not automatically give the predictions for observables at the
end of inflation. Evidently, multi-field effects are important in manyfield inflation in
GRF potentials.

In multifield models of inflation, the curvature perturbation may evolve well past
the end of inflation, through the reheating phase. In many models of multifield
inflation in the literature, this problem is dealt with by ensuring that the fields enter
an approximately single-field ‘adiabatic limit’ in which all but a single mode are very
massive (i.e. m? > H?) and the isocurvature modes decay exponentially. Once the
isocurvature perturbations have decayed, the curvature perturbation ceases to evolve
and the predictions are expected to become insensitive to the details of the reheating
phase. As illustrated by Figure 2.4, the spectrum of the Hessian matrix of the GRF
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models we consider typically contains multiple tachyonic eigenvalues at the end of
inflation so that, clearly, no standard adiabatic limit is reached. However, we will now
see that isocurvature still becomes exponentially suppressed during inflation.

At horizon crossing, g, o dap and Pio/Pr = (Nf — 1), cf. equation (2.2.68). Figure
2.12 shows the mean values and standard deviations of the ratio P,/ P, evaluated at
the end of inflation in our ensembles of models. Strikingly, the power in the isocurvature
mode evolves during inflation from dominating over the curvature perturbation to
becoming exponentially suppressed. For the flat initial spectrum and Ny = 5, the ratio
P/ P, falls below the numerical accuracy of our simulations. For larger N, this ratio
typically remains exponentially suppressed. Models with the highly compressed initial
spectrum feature larger levels of isocurvature at the end of inflation, but even in this
extreme case, the superhorizon evolution suppresses the isocurvature perturbations by
several orders of magnitude.

The suppression of the isocurvature despite multiple tachyonic directions can be
understood as a consequence of the inflationary slow-roll dynamics, as discussed in [78].
To see this, we may re-express the components of the transfer matrix (2.3.8) in terms
of the transport coefficients I'y, (N, N, ), using the decomposition of the fluctuations

into instantaneous adiabatic and entropic fluctuations, cf. equation (2.2.62):

€, \1/2
| = () va(N) T% 0(N,) | (2.3.10)

EN
€, \1/2

Tesi = () va(N) T wl(N,) , (2.3.11)
EN
N2

Tog — () wi(N) T wh(N,) (2.3.12)
EN

Here ey = €(N) and equation (2.3.10) follows from the conservation of ¢ in the absence
of entropic perturbations. The appearance of multiple negative eigenvalues of the
Hessian matrix leads to multiple growing field perturbations (and multiple eigenvalues
of I''T" that are greater than 1). In slow-roll inflation, the field velocity tends to
align with the smallest eigenvalue of the Hessian matrix, cf. equation (2.3.3). This
makes the adiabatic field perturbation grow faster than the each of the less tachyonic
entropic perturbations. However, from equation (2.3.10) we see that the growth of
the adiabatic field perturbation (in the absence of additional sourcing from entropic
modes) is directly related to the growth of ¢(N).

For entropic modes that grow slower than the adiabatic perturbation, the decaying

prefactor /€, /€ex cause a net suppression of isocurvature during inflation. This explains
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Fig. 2.12 Isocurvature-to-curvature ratio at the end of inflation for flat (left) and
compressed (right) initial spectra. Other hyperparameters as in Figure 2.11.

why the isocurvature & can decay during inflation, despite the presence of multiple
tachyonic fields.

This discussion also makes it clear that the ‘straying’ behaviour of the smallest
eigenvalue of the Hessian, discussed in section 2.3.1, leads to a further suppression of
isocurvature modes during inflation. Furthermore, the associated ‘straightening’ of the
field trajectory leads to fewer opportunities for the isocurvature to source the curvature
perturbation through turns in field space, cf. equation (2.2.64).

In sum, in this subsection we have seen that multifield effects are typically important
in manyfield inflation, but that entropic perturbations tend to decay. While no single-
field ‘adiabatic limit’ is reached during inflation in theses models, the large suppression of
isocurvature may shield observables from subsequent superhorizon evolution during the
post-inflationary reheating phase. It would be interesting to apply our construction of
GRF potentials to investigate the evolution of the adiabatic and entropic perturbations

in reheating models with many interacting fields in more detail.

2.4 Result II: At large Ny, GRF and RMT models
largely agree

A key motivation behind this work is to use mathematically simple constructions of
manyfield systems to search for mechanisms that may drive observables to simple and
robust predictions. Identifying such mechanisms could prove very helpful in analysing
more complicated manyfield models motivated by fundamental theory. However, even
for a given class of mathematically simple models, it can be hard to separate its

particularities from the properties that may be more broadly applicable. It is therefore
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important to test the predictions of any class of models by comparing to the predictions
of independent constructions. To make such comparisons useful, the different classes
of models should share some rough similarities, but be fundamentally different in
their details. For our purposes, we are interested in models of small-field, slow-roll,
saddle-point inflation with many interacting fields. Fortunately, our construction of
GRF models in this chapter and the construction of random DBM potentials of [78, 142]
now provide two such classes of theories, thus allowing the first critical tests of possible
‘universal” predictions of random manyfield models of inflation.

In this section, we first briefly review the differences and similarities between the
DBM models and our GRF models in section 2.4.1. Our discussion highlights the
differences in the evolution of the Hessian matrix, but also clarifies the context of
recent discussions on the equilibrium spectra of single-field and effectively single-field
GRF models [144, 145]. In section 2.4.2, we then provide a first detailed comparison
between the observational predictions of the DBM and GRF models. A brief review of
the DBM construction can be found in Appendix A.4. We refer the reader to references

[78, 142] for a more detailed discussion on the properties of DBM potentials.

2.4.1 Comparison of DBM and GRF potentials

The DBM construction of [142] led to the first explicit studies of models of inflation
with many interacting fields in random potentials. As we mentioned in section 2.1
however, this prescription differs from GRF models in that the cubic and higher-order
terms of the potential are regulator-dependent. In this section, we will discuss how
some properties the Hessian matrices differ between the GRF and DBM potentials.
For the purpose of clarity, we first compare the ‘equilibrium spectra’ of the models,
i.e. the eigenvalue distribution of the Hessian matrix at some randomly chosen point
in field space, and we then turn to the evolution of the Hessian, e.g. from a fine-tuned

initial configuration to the equilibrium.

The equilibrium spectra of GRF and DBM models

In equation (2.2.28), we saw that the Hessian matrix in the GRF models consists of a
GOE matrix and shift, proportional to the unit matrix times the negative of the value
of the potential. We also noted that for Ny > 1 and typical values of the potential, this
shift had a very small effect on the spectrum of the GRF. This way, the spectrum of the
simplest GRF models is very similar to that of the simplest DBM model, which omits
the shift entirely. In the light of this, it may appear surprising that a recent study
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claimed that the equilibrium spectrum constitutes a fundamental difference between
the GRF and DBM models [144]. We here provide the context for these claims.

First, the variance of the GOE matrix in the simplest GRF model is fixed by the
choice of covariance function. For equation (3.1.2), this leads to a width of the Wigner
semi-circle spectrum of 41/Ng, cf. equation (2.2.25). In the DBM model, the variance is
a free parameter which is typically chosen so that the spectrum has an N;-independent
width. This choice makes it convenient to compare systems with different number
of fields within a fixed mass-range, but other choices are possible, and clearly, the
width of the equilibrium eigenvalue spectrum can hardly be described as a fundamental
difference between the DBM and GRF constructions.

Second, one can try to make the shift of the spectrum more important even during
inflation. To do so, one may attempt to inflate near the bottom of the potential, where
the semi-circle spectrum is significantly ‘up-shifted’ from the centred Wigner semi-circle
law. However, for the mean zero GRF models, any upward shift of spectrum only
occurs for negative values of the potential, making inflation impossible. To construct
models in which the shift is important, one may add to the mean-zero GRF a large,
field-independent cosmological constant of size O(2v/N;A?).22 The uplifted potential
will then have a typical, 1o range of (2¢/N;+1)A%, as opposed to +A? for the mean-zero
GRF. By construction, the equilibrium spectrum for small values of the potential is now
a Wigner semi-circle with the left edge shifted to zero, and no tachyonic eigenvalues.
We briefly discuss manyfield inflation in this class of potentials in Appendix A.5.

The substantially shifted spectrum of the Hessian of the modified GRF potential
is (by construction) discrepant with the centred Wigner semi-circle, and thereby the
equilibrium spectrum of the standard DBM model. This was key to the argument of
reference [144], which proposed this discrepancy as a fundamental difference between
DBM and GRF models. However, due to the simplicity of equation (2.2.28), it is
straightforward to modify the DBM model to capture the spectrum of any such modified
GRF model.?® Thus, it appears challenging to use simplistic arguments based on the
equilibrium spectra of the DBM and GRF models to identify fundamental differences

between these constructions.

22The addition of a large field-independent cosmological constant may appear ad-hoc, and to
our knowledge, lacks a clear physical motivation. For example, sources of energy density in string
compactifications tend to be moduli-dependent in the Einstein frame.

ZFor example, in direct analogy with equation (2.2.28), one may take v't = vDBM + 5.4 £ (v0),
where only vaBM undergoes Dyson Brownian Motion, and the new term encodes the desired shift of

the spectrum.
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The evolution of the Hessian matrix

The evolution of the Hessian matrix as the field traverses some path in field space
constitutes a fundamental difference between the DBM and GRF constructions, even
if the equilibrium spectra coincide. This difference is evident in the relaxation of the
eigenvalues of the Hessian from an atypical initial configuration to the equilibrium
configuration, as can bee seen by comparing the 100-field DBM model of Figure 4 of
reference [78] to our 100-field GRF model of Figure 2.4. The spectra of the GRF models
relax in a much more linear, regular fashion. Moreover, in section 2.3.1 we showed
that the statistical properties of the cubic terms in GRF potentials lead to ‘straying’
smallest eigenvalues in slow-roll inflation. This phenomenon has no counterpart in
DBM models.

In sum, while DBM and GRF models for multifield inflation potentials share several
mathematical features, the two constructions are independent and the differences lead
to noticeably different behaviour in the solutions. Thus, by comparing the predictions
of these two classes of models, we may search for robust and model-independent

signatures of many-field dynamics during inflation.

2.4.2 Comparison of DBM and GRF predictions

In this section, we assess the robustness of the predictions from manyfield models of
inflation by comparing our results derived in this chapter to those derived from DBM

models in [78]. The three key common features that both constructutions have are

1. Manyfield inflation is not single-field inflation. One immediate aspect of
multifield models of inflation is that they typically contain several fields with
masses not much larger than the Hubble parameter. Such ‘light’ fields cannot
be integrated out, and commonly contribute to multifield effects that impact
observables. In this sense, manyfield models of inflation are clearly not identical

to single-field models.

In [142] however, it was shown that some aspects of the DBM models at large
Nt (such as the distribution of e-folds), could be modelled by a single-field
model. Reference [97] elaborated on this single-field model to estimate the
spectral index of the large- Ny DBM models, however this single-field estimate
was discrepant with the actual distribution computed from the DBM multifield
models [77, 78]. Thus, single-field models have had a limited success in describing
the properties of manyfield DBM models. Moreover, intrinsically multifield effects
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such as superhorizon evolution of the curvature perturbation are common in
DBM models, which indicates that manyfield inflation differ from single-field
inflation.

We have seen that in manyfield GRF models, multifield effects are also common:
the field explores multiple directions in field space, isocurvature modes can be
important, and the curvature perturbation typically evolves on superhorizon
scales. These effects cannot be captured by a single-field model so that, evidently,
manyfield inflation is different from single-field inflation.?* It can still be interest-
ing to explore how well a simple single-field model can capture the results of the
GRF manyfield models. In Appendix A.3, we construct such a single-field model
and show that its predictions qualitatively (but not quantitatively) agree with
the more complicated GRF models.

2. Despite tachyons, isocurvature modes generally decay. In section 2.3.4,
we found that despite the presence of multiple tachyons, isocurvature tends to
decay during inflation in GRF models. This suppression of isocurvature was
previously observed in DBM models in [78], and was there similarly explained as
a dynamical consequence of multi-field slow-roll inflation. Comparing our Figure
2.12 to Figure 17 of [78], we see that dependence of the end-of-inflation values of
Pyo(ky)/ Pc (k) on Ny qualitatively agree between DBM and GRF models: for

small N¢, the suppression is most severe, but it remains exponential for large Ny.

Our work provides suggestive evidence for a rather model-independent suppression
of isocurvature perturbations in small-field slow-roll inflation. This is non-trivial,
as no single-field ‘adiabatic limit’ is reached in these models, which typically

contain many tachyons.

3. Eigenvalue repulsion drives the predictions.

A key finding of reference [142] was that ‘eigenvalue repulsion’ sharply reduces
the duration of inflation near a critical point of the DBM potentials: even if the
curvature of the potential is fine-tuned to be small at the critical point, small
cross-couplings in the Hessian cause the curvature to grow in the neighbourhood
of the critical point. As the field evolves from ¢ = 0 in DBM models, the

24Recently, reference [144] studied a GRF-motivated ‘multifield’ system with one light and many
heavy fields, finding that this model gives rise to single-field dynamics. As we are interested in inflation
with many dynamically important fields, our assumptions for the initial configuration differ from
that of [144], and the question that we explore here — whether manyfield systems can be effectively
described as single-field models — also differ significantly from whether an effectively single-field system
is well-described by a single-field system.
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Fig. 2.13 The total number of e-folds and ng as functions of 7;, with other parameters
as in the baseline and together with the 68% c.1. from Planck [10].

eigenvalues of the Hessian matrix relax towards the equilibrium configuration,
and quickly spoil any initial fine-tuning of the 7, parameter. As a consequence,
it was shown in [142] that the number of e-folds becomes independent of #; for
Ini| < 0.01. Reference [78] furthermore showed that also the spectral index and
its running are independent of |r|, if similarly small.

As discussed in section 2.4.1, the evolution of the Hessian matrix in the DBM
and GRF models differ significantly, and the n;-dependence of the predictions of
the GRF models provides a non-trivial test of the robustness of the DBM results.
This is particularly interesting as reference [144] recently used an effectively
single-field system motivated by uplifted GRF potentials to propose that the

‘steepening’ responsible for the 7; independence is absent in GRF models.?

For the GRF models studied in this chapter, Figure 2.13 settles this question.
For —n; 2 0.01, the predictions depend strongly on 7, as the initial curvature
of the potential curbs the duration of inflation. By contrast, for —n; < 0.01 the
predictions become independent of the precise value of 7;, as the initial fine-tuning
of the Hessian matrix is quickly spoiled when the field moves away from the
saddle-point. The distribution of the number of e-folds and the predictions for n
then stabilise, and become independent of 7;. The running, «,, while not plotted,
is independent of 7; whenever n, is. Thus, while the evolution of the Hessian
matrix differ between GRF and DBM models, the prediction of 7; independence
(for sufficiently small 7;) holds for both constructions. This strongly suggests that

in models in which the eigenvalue spectrum relaxes from an initial, fine-tuned

25The authors of references [144, 145] also state that this ‘steepening’ leads to strong deviations
from scale-invariance in DBM models of inflation, but the power spectra of these models are commonly
consistent with small deviations from scale invariance [77, 78].
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spectrum to a more generic spectrum that includes some tachyonic eigenvalues,
the predictions become independent of the initial curvature of the potential for

small |n].

In DBM models, several of the predictions at large N; can be explained by
eigenvalue repulsion [77, 78, 142]. In particular, the non-generic spectrum in
the initial patch quickly relaxes towards the Wigner semi-circle distribution as a
consequence of eigenvalue repulsion. This relaxation explains the independence
on 1;, the tendency towards red spectral indices, the negative running, and the

observed regularity of the power spectra for large Ny.

In GRF models, the eigenvalues of the Hessian repel in a linear fashion over small
field-space distances, leading to the cone of eigenvalue trajectories observed in
Figure 2.4. In section 2.3.1, we showed that the statistical properties of the cubic
terms of GRF potentials lead to a ‘straying’ behaviour of the smallest eigenvalue
in slow-roll inflation, which is then repelled to tachyonic values at a faster rate
than other eigenvalues. Also for the GRF models, we have been able to relate
the predictions of the model to properties of the relaxation of the spectrum from
a fine-tuned initial configuration to the (slightly shifted) semi-circle. Thus, also

for the GRF models, eigenvalue repulsion drives the predictions.

Overall, we find that the only situation for which the predictions differ involves the
properties of the models for small N, in which the details of the constructions evidently
are very important. For Ny > 1, the predictions of these very different constructions
agree, which may be indicative of an emergent limit of inflation in which disparate

classes of potentials make the same ‘universal’ predictions.

2.5 Result III: fy; ~ O(1) is very rare in manyfield

inflation

We are now ready to discuss the main result of this chapter: the levels of primordial
non-Gaussianities (NGs) generated in models of manyfield inflation with random
potentials. Upcoming cosmological experiments are set to target fyr, = fisf®, and
are expected to reach a sensitivity of o(fxr,) ~ O(1) over the next decade or two
[17, 26, 66, 74, 92, 146, 176]. The results presented in this section provide important
insights into what we can realistically hope to learn from these experiments.

In inflationary models with multiple canonically normalised fields, the level of non-

Gaussianity at horizon exit is commonly very small [31, 183]. Substantial amplitudes
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Fig. 2.14 Values for fyr, and ng for 25,000 random inflation models, spanning values
of N; between 5 and 50 (the same as in Figure 2.7). The black line in the right plot
indicates the single-field consistency condition: fyi, = 5(ns, — 1). NB: the graph on
the right excludes six points with | fxr| > 1.

of local NG, i.e. fxr, ~ O(1), can be generated through superhorizon evolution of the
curvature perturbation, either during inflation or after the end of inflation (cf. e.g. [28,
31, 35, 36, 167, 168, 183, 187] and [47] for a review). In this section, we use the
transport method and éN formalism to compute fyr, in our ensembles of randomly
generated models of manyfield inflation.

The main result of this section is illustrated by Figure 2.14: here n, and fyr, are
plotted for an aggregate of 25,000 random inflation models, spanning values of N
between 5 and 50, with both flat and compressed initial mass spectra, cf. equation
(2.2.42). The levels of non-Gaussianity is generally very small for these models, with the
vast majority having fxr, ~ @(0.01). Out of the 25,000 models, only six had values of
| fxp| > 1 (these fall outside the boundaries of the right plot of Figure 2.14). Moreover,
most realisations even approximately follow the single-field consistency condition
between fyi, and n,. For the baseline ensemble of 1000 models (with parameters as in
equation (2.2.44)), we find fx, = —0.012 £ 0.008 (at 68% confidence level).

Single-field inflation generates only small levels of NG, and multifield effects are
necessary for large fxr. However, multifield effects do not suffice to ensure | fnr,| ~ O(1).
The left plot of Figure 2.15 shows the relation between fy;, and the superhorizon
evolution, as given by log,q (P¢(Nena)/FPe(Ny)), for these 25,000 models of inflation.
Large values of fyi, are only observed in models with some level of superhorizon
evolution, but many models with a large ratio of Pr(Nena)/P:(N,) produce low levels
of non-Gaussianity.

There is however a stronger relation between large fyr, and the amount of surviving

power in the isocurvature modes at the end of inflation, as the right plot of Figure 2.15
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Fig. 2.15 Superhorizon evolution and surviving isocurvature for the same models as in
Figure 2.14.

shows. All the cases with large fyr, have a ratio of isocurvature modes to adiabatic
modes (at k = k,) of at least O(0.01). In these models, the curvature perturbation
may continue to evolve after the end of inflation, and it is necessary to model the
reheating phase to determine the final value of fyi, relevant for CMB and Large Scale
Structure (LSS) experiments. Only in a handful instances with the highly compressed
initial mass spectrum did fyr, increase to O(1) during inflation, but decrease again by
the end of it. In Appendix A.5, we provide case studies of a typical 100-field model
(with small fy1,) and one of the rare cases of a 25-field model yielding fx1, ~ O(1).

The statistical prediction of small fyy, is robust under changes to the hyperpa-
rameters. The number of fields, N;, has no noticeable effect on fyr,: large NGs are
rare for all values we have considered. We find a weak dependence on the flatness of
the potential: when the potential becomes very flat and the superhorizon evolution
decreases (cf. our discussion in section 2.3.3), the values of fyi, follow the single-field
consistency relation very closely, and large values of fn;, become more rare. We find
that fxr, is independent of |n;|, except the largest values of || we investigate, for which
large values of fyr, become slightly more common.

The initial mass spectrum at ¢ = 0 does however have a clear impact on the
levels of fni, generated. For the flat spectrum with the eigenvalues of the Hessian
uniformly distributed between 3nH? and 9H?/4, large values of fy, are exceedingly
rare: in 19,000 examples with values of Ny varying between 5 and 50 we found only
one model with large fxr, (see Appendix A.5). By contrast, with the (rather extremely)
compressed initial spectrum where the masses are spread between 3nH? and —3nH?,
we saw 5 in a sample of around 6,000. Thus, while large values of fxp, are still rare,

near-degenerate initial spectra appear to make large NGs more frequent.
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2.5.1 Why so small?

We have found that in randomly generated models of inflation involving many coupled
fields, large values of fyi, are very rare. In this section, we discuss the main reasons for
this suppression of non-Gaussianities.

The smallness of fyr, in our class of models resonates with previous results on the
generation of non-Gaussianity through non-derivative interactions during multifield
inflation. Reference [31] derived an analytic formula for fyxi in multifield models
of inflation with sum-separable potentials (thereby generalising the two-field result
of [183]), and found that large non-Gaussianities are very rare in slow-roll models
with N free fields. In particular, fy;, was found not to be enhanced as N; was
increased, consistent with our findings. Moreover, two-field models generating large
non-Gaussianities during inflation tend to require substantial levels of fine-tuning,
cf. [47-49, 160, 178].

To understand the smallness of fyi, in these random manyfield models, it is illumi-
nating to consider the re-expression of the J NV formula for fyy, derived in [160, 162]. In
our notation, generating large fyr, in slow-roll, slow-turn models of multifield inflation

requires a large contribution from the term

/nn D \/26* s WO s . (2.5.1)

(+T)

Here T;s = (Zi ngsi>1/2v and h' = e’ wi(N*)/|e¢wl(N*)|, cf. equations (2.2.62), (2.3.7)
and (2.3.11). Here also, 0 denotes a derivative with respect to the field-space position
of the trajectory at horizon crossing in an entropic direction. Equation (2.5.1) has two
important consequences: first, to generate large NG, some superhorizon evolution of
the curvature perturbation is necessary (T¢s # 0). However, too much superhorizon
evolution suppresses fnr. Second, large fxi, is only possible if the level of superhorizon
evolution of P is a very sensitive function of the initial conditions, so that [h?9; T¢s| 2
0(1/ye).

In our GRF models, T¢s is commonly O(1), and the factor TZs/(1 + TZs)* does
not strongly suppress fyr.. However, the amount of superhorizon evolution is rarely a
highly sensitive function of the initial conditions: trajectories separated by some small,
initial perturbations |0¢% | < Ay tend to follow very similar paths in field space, and
do not generate drastically different T¢s. Consequently, |h/05T¢s| is typically not large

enough to generate appreciable levels of NGs.
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The decay of isocurvature in multifield, saddle-point models of inflation (cf. our
discussion in section 2.3.4) contributes to the typical smallness of fxr,. When the
entropic perturbations 8¢ have decayed sufficiently, Trs ceases to be sourced, and no
additional initial condition dependence is induced. This way, the decay of S’ limits the
period during which large NGs could be generated. We also note that T;s tends to be
sensitive to the initial conditions precisely when entropic, off-trajectory perturbations
are important. This provides a heuristic explanation for why the isocurvature tends to
be large in the few examples we found with fyr, ~ O(1).

We close this section by noting how large fxr, may be more frequent in modifications
of our construction. Models with very sharp turns or in which nearby classical
background trajectories rapidly diverge can lead to substantial non-Gaussianities (see
e.g. [8, 54]). In our construction of the potentials, cf. equation (2.2.7), all terms in the
potential are suppressed by the same ‘UV cut-off scale’ Ay, which makes features or
sharp turns on scales < Ay, very rare, even if the interaction terms are random. Large
fnL may be more common in multi-scale potentials with features on small scales, at
least if these appear along the trajectory before the isocurvature has decayed.

Finally, our results do not preclude large values of fyr, being generated after inflation,
during the reheating phase, as is the case in many ‘spectator’ models, cf. [69, 129, 137,
138, 151]. However, in models with general interactions and exponentially suppressed
isocurvature at the end of inflation, generating large fni, through reheating dynamics

may remain challenging.

2.6 Conclusions

In this chapter, we have studied inflation in models with multiple fields subject to
randomly generated interaction terms. We have used Gaussian random fields (GRFs)
with a Gaussian covariance function to model the scalar potentials locally around an
approximate saddle-point in field space. These potentials admit an interpretation as
proxies for physical effective field theories, and exhibit structure over field space dis-
tances of A, < Mp. By identifying and systematically applying algebraic simplifications
to the covariance matrix of the Taylor coefficients, we have for the first time been able
to use this method to construct explicit scalar potentials with many interacting fields.
Our examples include 100-field models involving 97 million independent, randomly
generated couplings.

We used these potentials to construct models of slow-roll inflation with many

dynamically important fields, i.e. models of manyfield inflation. By using the transport
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method and the 6 N formalism, we computed the primordial perturbations generated
during inflation, including the curvature and isocurvature modes, and the amplitude of

local non-Gaussianity, fyr,. These studies led to several novel results.

Summary of findings

As the fields evolve from the approximate saddle-point where the mass spectrum is fine-
tuned, the eigenvalues of the Hessian ‘relax’ towards a shifted semi-circle distribution.
This relaxation is, over short distances, driven by the cubic terms in the potential. We
have shown that a combination of the statistical properties of Gaussian random fields
and the dynamics of multifield slow-roll inflation lead to a particularly fast relaxation
of the smallest eigenvalue of the Hessian, making it ‘stray’ from the other eigenvalues.
This ‘straying’ has important consequences for the observational predictions of the
models.

The generated power spectra of the GRF models are very simple, close to scale-
invariant and well-described by an approximate power law. We have shown that large
regions of the (hyper-)parameter space are compatible with current observational
constraints on the spectral index. However, some regions, in particular those describing
very flat potentials, are already ruled out by the Planck experiment.

These models make a robust prediction for the running of the spectral index. A
small negative running is vastly preferred, and a future observation of «, outside the
range —0.004 < a, < 0 would, together with existing Planck constraints, rule out
all models that we have constructed. For our baseline 10-field model (cf. equation
(2.2.44)), we find ay = —0.00143 £ 0.00034 (the latter being the standard deviation).

A striking aspect of these models is that while several fields go tachyonic during
inflation and the curvature perturbation commonly evolves significantly on superhorizon
scales, the power in the isocurvature modes decays during inflation. We have explained
this phenomenon, also observed in [78], as a consequence of multifield slow-roll dynamics,
in which the adiabatic mode tends to align with the most rapidly growing field
perturbation. The suppression is further enhanced by the ‘straying’ of the smallest
eigenvalue of the Hessian matrix. The exponential suppression of isocurvature during
multifield slow-roll inflation makes the predictions less sensitive to the details of the
reheating phase, and could make models involving large numbers of dynamically
important fields comfortably compatible with CMB constraints on isocurvature.

We have furthermore critically assessed the similarities and differences between
our models and those recently constructed using the random matrix theory ‘DBM’

technique [77, 78, 142]. We have argued that these constructions provide fundamentally
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different descriptions for the evolution of the eigenvalues of the Hessian matrix,?® yet
strikingly, despite the differences in the constructions the predictions of these models
agree very well, with the only difference being related to properties of the models at
small N¢. This suggests that, at large Ng, these very different constructions may fall in
the same ‘universality class’ of inflationary models.

Finally, we computed the level of local non-Gaussianity (NG) generated by multifield
effects on superhorizon scales and found that, typically, it is very small, with | fxi,| < 1.
For the baseline parameters we found fy;, = —0.012 £ 0.008. The smallness of fxr,
is largely independent of the choice of hyperparameters, and constitutes a robust
statistical prediction of these models. We found that fyr, is typically small even in
models in which multifield effects are important and in which the superhorizon evolution
of the perturbations is substantial. In a handful of models, we found fxi, ~ O(1).
However, all models with large fxi, that we found also have comparatively large levels
of isocurvature remaining at the end of inflation, which may affect the predictions of
the models through the reheating phase. We have argued that the suppression of fyr,
is a consequence of the robustness of the multifield evolution to small modifications of
the initial conditions, and the decay of isocurvature during inflation.

Our results indicate that multifield models of inflation do not generically predict
fan ~ O(1), and that large classes of models including the slow-roll, saddle-point GRF
models we have constructed, typically yield |fy1| < 1. This suggests that a future
detection of fyr, of order unity would point to rather special, non-random inflationary
dynamics.

The method developed in this chapter opens a new window towards general models
of inflation with many fields subject to non-trivial interactions. Our findings speak for
the robustness of the inflationary paradigm: adiabatic, approximate scale-invariant
and nearly Gaussian perturbations are commonly regarded as the ‘generic predictions’
of single-field slow-roll inflation. In this chapter, we have shown that even highly
complex models of manyfield inflation produce very similar predictions. We anticipate
that these results can be useful in interpreting the outcomes of future cosmological

observations.

26By contrast, the equilibrium spectra of these models only differ superficially, and are easily
rendered compatible. Our discussion in sections 2.2.3 and 2.4 may be useful for readers interested in
the context of some recent results comparing GRF and RMT models [88, 144, 145].



Chapter 3

(Gaussian random fields

3.1 Introduction

In Chapter 2 we saw how Gaussian random fields (GRFs) can be used to generate
random potentials for inflation, but this simple class of random functions also has
many other important applications in mathematics, computer science, and the natural
sciences.

In this chapter we provide the proof of the result used in Chapter 2, that if a GRF
with a Gaussian covariance function is generated order by order as a Taylor series,
the covariance matrices of the conditional distributions will always be diagonal. This
results holds in any number of dimensions and up to any order. We will also discuss
some potential applications of this result beyond random potentials for inflation.

A real-valued and stationary GRF, f(x): R? — R, is a random function that is
completely described statistically by its mean value f and the covariance function
C(x1,%x3) = C(x1 — Xa):

(F(x1) = P(f(x2) = ) = Clxi — ). (3.1.1)

If we sample the values of f(x) at a set of points x;, ..., %, in R%, the values follow a
multivariate Gaussian distribution with covariances between the points given by the
covariance functions, ¥;; = C(x;,%;), and mean f.

One can use this property to generate values of the GRF at a discrete set of points,
but for our purposes, where we need continuous and well defined derivatives, this is not
enough. A common, alternative approach is instead to generate f through its Fourier
coefficients, which are statistically independent. This method can be efficient even for

a wide range of scales, but it is not well-suited for all problems. In particular, it does
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Fig. 3.1 An example of a GRF with d = 2 and ny,.x = 175. Here x € [—4l, 4[]°.

not easily generalise to the conditional problem of generating f given that f(x,) has
some special properties (e.g. is a maximum, minimum or a saddle-point).

In this chapter, we present a novel method for addressing these problems for the
special but frequently considered case in which the GRF is stationary, isotropic and

with a Gaussian (or squared exponential) covariance function:

C(x1 — Xg) = h*exp (—%) . (3.1.2)

The hyperparameters of this covariance function are h and ¢; we take f = 0 but our
results generalise straightforwardly to f # 0. Our method is local, and we construct
the explicit realisation of f through its Taylor expansion up to the order ny., around
a single point x, € R?. By specifying some of the coefficients by hand, this method
can be used to conditionally generate f given that it has e.g. a maximum, minimum or
saddle point at x,, but is otherwise random (there is a slight caveat here that will be
covered in Section 3.3.1).

The key simplification of our method is that the covariance matrix becomes exactly
diagonal through a sequential, order-by-order use of the marginal and conditional
probability distributions for the Taylor coefficients. This dispenses with the need to
numerically invert the covariance matrix, which makes our method efficient even for
large d or nax.

We expect this method to be particularly useful when one is interested in generating
explicit GRFs within a moderately small region in R? (say, extending at most a few

units of ¢ from x,). In Chapter 2 we showed that this method enables explicit studies
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of cosmic inflation in models with a large number of fields interacting through a
potential energy modelled by a GRF (for related work, see [23, 43, 94, 95, 144, 179]).
For ny.« = 5 a model with d = 100 fields involves 96,560,546 interaction terms, and
explicitly generating the potential naively involves diagonalising a covariance matrix
with O(10%) independent entries. Our method trivialises the inversion of the covariance
matrix, and it furthermore makes it very straightforward to condition the GRF on
being locally suitable for inflation. Our method is also efficient for moderate d but
Nmax > 1, as illustrated by an example in Figure 3.1.

Finally, we also note that this result is also useful in the (niche) inverse problem,
where we have a GRF in terms of the Taylor coefficients and want to infer the
hyperparameters h and /.

This chapter is rather different from the other in this thesis, as we are not directly
concerned with cosmology. Moreover, the proof is rather involved and will require
specialised notation that will only be used here. To make the proof easier to understand,
we first demonstrate the logic in a few simple examples before tackling the proof in

general.

3.2 A new method for generating realisations of a
GRF

In this section, we first review some relevant properties of GRFs and establish our
notation. We then exemplify our method by considering d = 2 and n,., = 4, before
turning to the general, inductive proof of the method.

A standard result, which will be our starting point, is that the covariances for the

derivatives of f are given by the derivatives of the covariance function,

< o™ f(x1) " f(xz) > _ ot (x; — xy) (3.2.1)
— oo 2.

al any b a bny °
Oxyt ... 0xy™ 9l . Oy L 0xyoxh L Oxy™

The indices a and b take values between 1 and d. The expectation values of the
derivatives are given by the derivatives of the expectation value, which we take to be

zero. To simplify notation, we will from now on write the derivatives of f as:

" f(x)

Tper pgan = Jaran(X). (3.2.2)

In this chapter we create the random functions by generating Taylor coefficients,

fay..a,, at a single point, x,. Their joint probability distribution is just a multivariate
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normal distribution with a covariance matrix given by the derivatives of the covari-
ance function at x; = x93 = x,. Of course, not all the derivatives are algebraically
independent, so we only consider the coefficients f,, ., with indices ordered such that
ay > ... > a,. This ensures that all the unique coefficients are included exactly once.
We will consider Taylor expansions that are truncated at a finite order, n < nyax.
To simplify our notation, we denote the unique, ordered Taylor coefficients for any
0 < n < Nyax indices by f,. The multivariate probability density function for the

algebraically independent Taylor coefficients is then given by:

exp (—%(fa — 1) (X )ap(fs — Hﬁ))
plfa) = det(27Y) ’ 329

where i, = (fa) is the expectation value vector and X5 = ((fa — 1ta)(fs — pp)) is the
covariance matrix. Here repeated indices are a short-hand for the double-sum over n
and the ordered indices for each n.

The key obstacle for generating realisation of the GRF from the multivariate proba-
bility distribution of equation (3.2.3) is the need to invert the covariance matrix. When
the number of independent coefficients becomes very large, numerical inversion becomes
prohibitively costly. The purpose of this chapter is to show how such an inversion can
be circumvented for GRFs with the covariance function (3.1.2) by sequential application
of the marginal and conditional probability distributions for the Taylor coefficients.

In general, if the vectors Z; and Z,, are randomly distributed according to the
multivariate normal distribution,

~ N ([‘“ ) , (3.2.4)
2

where (p1, p12) is the mean vector and ¥;; are block components of the covariance

Zy

Zy

Z:11 E12
221 222

Y

matrix, then the probability distribution for Z; obtained when marginalising over Z, is
Zy ~ N(p1, E11) - (3.2.5)

The conditional probability distribution for the vector Z5 obtained after fixing Z; = z;

is the multivariate normal distribution with expectation values and covariance given
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by:

E[Za|21] = po + Ton 217 (21 — ) (3.2.6)
COV[Z2|21] = 222 - 22121_11212 . (327)

By using these expressions, and the fact that we can factorise a general multivariate

probability density function for a collection of random variables Z; as

P(21, 29, -« 2n) = P(21]22, - -+, 20)D(22] 23, -+ - 20) - .. D(20), (3.2.8)

we will be able to vastly simplify the joint probability density function by writing it in
terms of much simpler conditional densities (which themselves are also Gaussian).

We now give a simple example showing how these expressions simplify the generation
of the Taylor coefficients.

3.2.1 Motivational example

To illustrate the main point of our method, it is convenient to initially absorb the
hyperparameters h and ¢ of equation (3.1.2) into f and x. The covariance function is

then given by
() fxa)) = 0172 (3.2.9)

and the covariances of the first few derivatives of f at x, are:

(fH=1, (fla)=0, {ffw)=—bu, (3.2.10)
<fafb> - 5ab y <fafbc> - O’ <fabfcd> - 5ab6cd + 5ac6bd + 6ad5bc . (3.2.11)

Note that we may obtain the covariances between derivatives of different orders by
changing which field the derivatives act on; each time this is done, we pick up a minus
sign. All covariances between even and odd derivatives vanish since the covariance
function is even.

The above covariances are symmetric in all the indices, and for any given set of
indices it is easy to write down the value of the covariance according to the following
combinatoric rules: If any index appears an odd number of times, the covariance is zero.
For an index appearing n (even) times we get a factor of (n — 1)!!, which is the number
of unique ways they can be put together in Kroenecker deltas. The total covariance

for a given set of indices is then given by the product of such factors for each index
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appearing in the indices. The overall sign is set by half the difference of number of
indices of the two sets. For example, (fsss001 fooso1) = (—1)676/2(4112(2!1)2 = 256.
We now specialise to the case of d = 2. Since the covariances between Taylor
coefficients with an even and an odd number of indices vanishes, the full covariance
matrix is block diagonal. We here consider the covariance matrix for the Taylor

coefficients with an even number of indices, which for the variables f, fq,4,, and fa,. o,

is given by

1i-1 0 —-1:3 0 1 0 3

—1; 3 0 1 :-15 0 -3 0 -3

0:0 1 0.0 -3 0 -3 0

1.1 0 3 i-3 0 -3 0 -15

»=| 3:-15 0 -3:106 0 15 0 9 |, (3.2.12)

0:{0 -3 0.0 15 0 9 0
1i-3 0 -3:15 0 0 15

0.0 -3 00 9 15 0

30-3 0 —15. 9 0 15 0 105

where the first row/column is for f, the following three are for the (1,1), (2,1) and (2, 2)
components of f,,4,, and the final five are for the (1,1,1,1), (2,1,1, 1), etc. components

of fa;..as-
The marginal distribution for f is simply given by f ~ N(0,1). Fixing f, the

conditional covariance matrix for fu 4, and fu 4450, i Obtained from equation (3.2.7):

—12. 0 -2 0 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(3.2.13)
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We note that the 3 x 3 block matrix in the upper left corner is now diagonal, and the

probability distribution for f, ., given f is now given by

—f1 2 00
(farasl /) ~N|]0O],]0 1 0]]. (3.2.14)
—f] 10 0 2

Clearly, the second order derivatives are now independent Gaussian random numbers.
Finally, fixing f,,., in addition to f, we find that the conditional probability

distribution for f,, 4,444, 1 given by

[ =3(f+2fu)] (24 0 0 0 0
—3fo 0 600 0
(farazasas| farazs £) ~ N | |=f = fiu— fa2| | O 0 4 0 0O (3.2.15)
—3fn 0 006 0
| —3(f+2f2) | \O 00 0 24

Since the covariance matrix again is diagonal, the fourth order Taylor coefficients can
also be generated as independent Gaussian random numbers, without the need to

diagonalise the original covariance matrix (3.2.12).

3.2.2 All orders proof

In this section, we show that the method of section 3.2.1 applies for arbitrary d and
Nmax. Lhat is, we will show that the conditional covariance matrix for the k:th order
Taylor coefficients is diagonal, given all lower-order Taylor coefficients of the same type

(even or odd).

Additional notation

It is convenient to introduce some additional notation that will allow us to prove
our main result simultaneously for the cases of even and odd number of indices.
The covariance matrix is again block-diagonal, and each block further consists of
the covariances of Taylor coefficients of increasingly high order, up to order ny.x or
Nmax — 1. We collectively refer to the orders in the even and odd case as ‘levels’, 1,
where i = n/2 + 1 in the even case and ¢ = (n + 1)/2 in the odd case. For each level,

the index «; runs over the ordered set of indices (we may replace o with any lower case
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Greek index). The n; indices within a set «; will be labelled by the corresponding lower
case Latin letters and a number, e.g. aj, as,.... An unordered set will be denoted o}'.

For example, for even derivatives i = 1 corresponds to f (so that ny =0),i =2 to
faras (n2 = 2), ete. and for odd derivatives ¢ = 1 corresponds to f,, (n; =1), i =2 to

Jarazas (712 = 3)-
It is also convenient to write the covariances as:

<f04if,3j> = Caiﬁj . (3216)

Each C,, s, will consist of a sum over Kronecker deltas that ‘connect’ indices in a;
with indices in f;, or with other indices in ;. We will find it convenient to consider
modified covariances, C% 3,» which are obtained from Cl,g, by removing all terms with
Kronecker deltas connecting either ny, ns, ..., or n; indices from «a; with the same
number of indices from J; (remaining indices are connected internally). We will also

write

Cl = Days, (3.2.17)

for which all indices in «; are connected with indices in 3;, so that D,,g, is only
non-vanishing if o; = f;, and hence, D, 3, is a diagonal matrix. For example, in the
even case we have:

C. 5, = Dasgs = Gart1Oasbs + OartyOasy - (3.2.18)

azf2

The diagonal matrix can further be written as,
Dy, = 0a;5,Comb(a;), (3.2.19)

where Comb(«;) is a combinatorial factor determined by the values of the indices in
a;, and it is the number of ways the numbers in the set can be paired up with the
same numbers in an identical set. If we denote the number of times an index value a

appears in «; by k,, we then have:

Comb(«;) = ﬁ kq!. (3.2.20)

a=1
As an example, the set {3,3,1,1,1} can be paired up with an identical ordered set
in 2! x 3! = 12 ways. We also note that the total number of permutations of a set of
indices «; is given by:

Perms(a;) = Comb(ar) (3.2.21)
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Using the same example as before, one can easily see that the set has 10 permutations,
which agrees exactly with 5!/2!13! = 10.
Finally, we will write the conditional covariance matrix for the Taylor coefficients

with levels from £ through n, given values for the lower levels 1 through k£ — 1 as Eﬁ;ll.

From the first to the second level

We now want to prove that if we specify levels 1 through k, then the covariance matrix
of conditional probability distributions for level k£ + 1 will be diagonal. As a starting

point, we write down the covariance matrix for levels 1 through n for some n > k:

Coc151 Oalﬁz C’041,33 s Coélﬁn—1 Coqﬁn
Ca2ﬁ1 0042/32 Cazﬁs s Coézb’n—1 Ca25n
C C C ... C C
Zl,n _ 04‘3,31 04'352 a.3ﬁ3 aS.ﬁnfl C‘C‘SBn ' (3'2'22)
Can—lﬁl Can—lﬁz Can—LBS s Can—lﬁn—l Coznﬂn
Canpi  Conss  Canps -+ Congy Canpn

This can be for either the odd or the even case. For the even case Cy,5, = Da,p, =
(ff) = 1, which can be thought of as a diagonal matrix in the set a; (which only
takes the value (). For the odd case Ca,5, = Doy, = (far Jor) = Oayny, Which again is
diagonal. Thus, the lowest order Taylor coefficients can always be fixed as independent
Gaussian random variables.

Now suppose we fix f,,. From equation (3.2.7), we then obtain the following

distribution for the remaining levels:

Cosss  Cosss oo Cuassry  Cosp,
Cosss Cosps oo Cosgrs Coss,
Sy, =] : : Lo -
Corits Coarsss oo Corrsny Cans,
Casy Cavss - Cag  Cag
C4042’)/1
C(0‘3'}’1
- D D e (Cape Casy - Capey Casl) - (3.2.23)
Can—l'h

Can’}’l
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Again, repeated indices are summed over. In more compact notation, this can be
written as:

(2;,n>azﬂj = Cazﬂj - Can’)/l (Dil)’vlél CElBj ) (3224)

where (21

2.n)ap; 18 the conditional covariance between fo, and fp,, given f,,.

In both the odd and even cases, D.,, is diagonal and in fact just given by d,,, as

1€1

described above, so we find:
(Eé,n)aiﬂj - Cazﬂj - Can’h C’Ylﬁj . (3225)

This is really just the original covariance, with all the terms mixing n; indices from
a; with indices from §; dropped. To make this obvious, we write out these terms

explicitly:

<fa1---a2i—2fb1---b2j—2> - <fal---a2i—2f> <ffb1---b2j—2> even case,

<fa1~~~(12i—1fb1-~~b2j—1> - <f(11-~~a2i—1fcl><f01fbl~..b2j_1> odd case.
(3.2.26)

In the even case, the second term subtracts from the first all terms where the a; and

(Eé,n)aiﬁj =

b; indices do not mix, i.e. those terms with n; = 0 indices from each set in mixed
Kronecker deltas. In the odd case, the second term subtracts from the first all terms
where only one of the a; indices and one of the b; indices are in a Kronecker delta
together, i.e. those terms with ny = 1 indices from each set in mixed Kronecker deltas.
It then follows that we have

(Eé,n)@ﬁz = Cclv262 = Doézﬁz = 5a25200mb(a2) . (3'2'27)

Equation (3.2.27) implies that the second order coefficients of the conditional probability
distribution are statistically independent, and can be generated without explicitly
inverting a non-trivial covariance matrix (when marginalising over higher levels).

To further illustrate equation (3.2.27), we see that in the even case it explicitly

corresponds to:

(Zé,n)OCQﬂQ = <fa1a2fb1b2> - <fa1a2f><ffb1b2> - a1b15a2b2 + 5a1b25a2b1 ) (3'2'28)
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which follows from (fu,a,f) = —0a,a,- In the odd case, we have

(Z%,n)azﬁz - <fa1a2a3fb1b2b3> - <fa1a2a3fc1><fc1 fb1b2b3>
- 5a1b16a2b25a3b3 + 5a1b1 6a2b35a3b2 + 5a1b25a2b1 5a3b3 + 5a1b25a3b26a3b1
+ 5011735&2526&31)1 + 5a1b35a3b25a2b3 . (3.2.29)

Here we have used

<fa1a2a3f01> = _6a1a26a361 - 6a1a35a201 - 6a2a35a101 5 (3230)

and a similar expression for {f., fy,p,05). The second term of the top line of equation
(3.2.29) will cancel out the terms where only one delta contains an index each from
both sets, and since every term must have either one or three such deltas (there are
three indices in each set), it follows that the only terms that remain are those in which

all the indices are mixed.

For pedagogical reasons: from the second to the third level

To illustrate the structure of our general inductive proof, we here consider the less
trivial step of the conditional covariance after fixing both f,, and f,,. The covariance
matrix for the higher levels is then given by
2 1 1 -1 1
(X3.)ai8; = Cazﬂj —C,,,(D )7262062@_, (3.2.31)

with 3 <i,7 < n. Now, using the expression for the diagonal matrix given in equation
(3.2.19), we can write this as

(Zg,n)aiﬁj = Colzzﬁ] - Z Cii720$25j/COmb(’yg) ? (3232)
72

where the sum is over ordered sets of indices.
To generalise the argument of the previous section, we first rewrite this in terms a
sum over unordered indices. This will overcount the index sets by a factor of how many

permutations there are of them, so in every term we need to divide by the number of
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permutations:
(Z30)ait; = Cayg, = D CaynpCous, / (Comb () Perms ()
,yu

72

where in the last step we used equation (3.2.21). We recall that O(iw; includes no terms
with n; indices connecting «; and ~4. Since these cannot be connected by fewer than
ny indices (recall that n$*® = 0 and n$d = 1), they must be connected by more than
ny indices. More generally, Ofmﬁj only contains terms in which n € {ngy1,nk42, ...}
indices from two sets «; and [3; are paired up in Kronecker deltas. This is because
there must be even numbers of indices left in the sets o; and (;, and all the n; differ by
multiples of two. E.g. for the odd case a3 has n3 = 5 indices and only ny =1, no =3
or n3 = 5 indices from a3 can be paired up with indices from another set in Cy,p; .
This then tells us that in C’Clm;, all ny of the indices from the set 74 are together in
deltas with some indices from ;.

Note also that the terms in the C’C{iﬁj may be negative, but the relative sign
between the two terms in equation (3.2.33) is always the same: the sign in front of the
Kronecker deltas in C’Clwﬁj is (—1)*7 and in Cémc%ﬂj it is (1) (=1 = (=1)".
This obviously also holds if we replace 1 with any other index k.

Now consider a subset of a; containing ns indices. In Cémg the indices in this
subset will be paired together with the indices in v§ into deltas in ny! different ways.
The same applies for any given subset of 3; containing ny indices in C’%ﬂﬁj. When
these two terms are multiplied together, each combination of the «; subset and ~3
indices will multiply the 3; subset in all combinations with the +3 indices, giving all
n! combinations of the o; and [, subsets paired into deltas. Every combination will
therefore appear no! times when all the terms are added together, cancelling out the
factor of 1/ns! in equation (3.2.33). The second term of equation (3.2.33) will then
subtract off all the terms with n, indices from each set «; and 3; mixed in deltas.
What remains is then the initial covariance matrix minus the terms connecting n; or
n9 indices from the different sets. We thus have

(230)aig; = Ca

;B35

(3.2.34)
from which it immediately follows that:

(Zg,n)a363 - 00243183 - Dagﬁg . (3235)
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The third level coefficients therefore become statistically independent random variables

if all the lower level coefficients are known.

Proof by induction
We may now inductively show that the above procedure and the diagonalisation of the
conditional covariance matrix hold to any level. We first assume that

(Z5)ais; = Chig, (3.2.36)

67

where, again, the superscript £ — 1 on the C’k .3, neans that terms connecting nq, no, ...
or ny indices between «; and [; are not present in the covariances. Equation (3.2.36)
holds for k£ = 2 (cf. equation (3.2.27)) and k = 3 (cf. equation (3.2.34)). We would
now like to show that equation (3.2.36) holds for k — &k + 1.

Upon fixing f,, 5, (as well as the lower levels), the conditional covariance matrix

for the higher levels is given by

(Zk—l—l n)azﬁg Ci—ﬁl- - Cfx 7}6( ) Vk€k Cek,b’
= Chg — > Carn Cog /Comb ()
Tk
=Cks — Z CouClig /1, (3.2.37)
’Y

042'7

where we have taken precisely the same steps that led us to equation (3.2.33).

The superscript £ — 1 on the C u indicates that it contains no terms with ny,
ng, ... ni_1 deltas with one index each from o; and one from ~;'. No term can have
fewer than n, indices connecting «; and ~}', and since there are ny indices in 7} it then
follows that they all must be connected with an index in «;.

We now consider a subset of o; containing n, indices. In ij;}z the indices in this
subset will be paired together with the indices in «} into deltas in ny! different ways.
The same applies for any given subset of 3; containing n; indices in C’%’éj When
these two terms are multiplied together, each combination of the «; subset and ~;
indices will multiply the 3; subset in all combinations with the v} indices, giving all
ng! combinations of the o; and 3; subsets paired into deltas. Every combination will
therefore appear ny! times when all the terms are added together, cancelling out the
factor of 1/ny! in equation (3.2.37). The second term in equation (3.2.37) will then
subtract off all the terms with n, indices from each set a; and 3; mixed in deltas.

What remains is then the initial covariance matrix connecting at least ni,; indices
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from the sets a; and ;. That is, we have:

(EIZ-Fl,n)aiﬁj = szﬂj . (3238)

We conclude that this expression holds for any level. In particular, this implies that

(2]1§+1,n)ak+16k+1 = O§k+1ﬁk+1 = Dak+1/3k+1 = 6ak+1/3k+1 Comb(ak-H) ) (3239)

from which it follows that the (k + 1):st level Taylor coefficients can be generated as
statistically independent Gaussian variables if all the the lower level coefficients are

known.

The expectation values

The only thing that remains to do now is calculate how the expectation values shift
as we fix the Taylor coefficients level by level. This just involves evaluating equation
(3.2.6) in the general case. If we fix f,,, then the expectation values for the higher
levels (i > k) are changed by

Ho; = Haoy + szjﬁlk (D71>6k7k (f’)/k - MWk) ’ (3240)

where g, will have been determined by earlier measurements. The elements of the
‘shift matrix’ matrix,

Eo.p, = ch (D_1>7k5k - Osl_ﬁtcomb<6k)_l ) (3'2'41)

&Yk

can be deduced with combinatorics.

We start by considering C’z_ﬁlk Again, every index in 3, must be connected with
an index in «a;, and as before, we are dealing with ordered sets of indices. For a given
a; and [, Cz’ﬁlk will be given by the product of two numbers: the number of ways we
can pair up indices in «; with those (i, and the number of ways the remaning indices
can be paired up with each other, with an overall sign given by (—1)""*. To get E,,g,
one then just divides by Comb().

3.2.3 Summary

In sum, we have shown that realisations of the Taylor coefficients of the Gaussian
random field with the covariance function (3.2.9) can be generated sequentially, in an

order-by-order fashion, as independent Gaussian random numbers with the diagonal
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covariance matrix:

k k
(Zk+1,n)ak+15k+1 = Cak+1,3k+1 = Doék+15k+1 (3'2'42)

This obviates the need to numerically invert large covariance matrices.
The effect of the non-vanishing covariances the different orders is here encoded in

the mean values, which shift at each step by

Moy = Pa; T Eaiﬂk(fﬂk - :U’Bk) ) (3243)

for ¢ > k, where k corresponds to the order of the generated Taylor coefficients, and
with E,,s, defined in equation (3.2.41). The elements of the matrices D,,3, and E,,3,

are simple combinatorial factors that depend on the set of indices.

3.3 Applications

In this section, we briefly present two applications of our construction. An accompanying
Mathematica notebook with examples is available at https://doi.org/10.17863/CAM.22859.

3.3.1 Random, high-dimensional potential energy landscapes

The first application of our method is the efficient generation of random functions
locally around a point x, € R%. The statistical independence of the Taylor coefficients
when generated order-by-order allows for the study of d > 1 or ny. > 1. This way our
method can be competitive with other ways of generating explicit GRFs (e.g. through
the generation of independent Fourier coefficients) when the explicit function is only
needed in a moderately small neighbourhood around x,, and the covariance function is
Gaussian. Moreover, a key benefit of our method is that it permits the generation of
the function around special points: for example, one may fix the Taylor coefficients
up to second order, i.e. f, f., fap, to permit the generation of random potentials
around minima, maxima, and saddle-points with specific properties (the generation
of completely random critical points is different, and will be discussed shortly). Our
method can also be used to study potentials over distances of a few Ay by taking
Nmax > 1 (as illustrated in Figure 3.1). This provides novel opportunities to address
a rich class of problems involving multifield dynamics in random potential energy

landscapes.
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Generating random critical points

There is a subtlety that must be taken into account when generating random critical
points with appropriate weights. If we want to generate a potential conditional on
X, being a critical point, rather than conditional on some Taylor coefficients taking
particular values, there is in fact a dependence of the Hessian on the gradient of the
potential which changes the conditional distribution of the former (after the latter has
been fixed) away from its Gaussian form.

As is explained in [27], the condition —6/2 < f, < 0/2 taking § — 0 gives
a conditional probability density for the higher-order Taylor coefficients with the
property that critical points with small or zero-valued second derivatives have larger
weight than those with large second derivatives. This is because the condition will be
satisfied in larger regions around these points. To account for this effect, one should
use the condition that there is a critical point in a region of size §, and then let 6 — 0.

In doing so, the probability density of the higher-order coefficients becomes

p(f, fap, - |critical point) o< |det fou|p(f, fo =0, fap, ---)- (3.3.1)

The marginal distributions for all the variables other than f,;, are unaffected by this,
but to generate f,, one must resort to other methods (e.g. MCMC). Once the Hessian
is fixed, one may proceed to generate the other coefficients as described earlier in this

chapter.!

3.3.2 Model selection for Gaussian process regression

The results derived in this chapter can also be useful when training Gaussian random
processes with square exponential covariance functions. More specifically, it can be
applied to simplify the regression problem mentioned in the introduction: given training
data in the form of Taylor coefficients of f at x, to order n,.,, we may determine the
hyperparameters h, £ and f by maximising the log likelihood. In this section, we show
in detail how the log likelihood can be written as a sum over levels, thereby making it

possible to constrain the hyperparameters without inverting the covariance matrix.

!The generation of third derivatives and higher as described earlier is not affected by this. The
reason for this is that while each critical point must be assigned equal probability when the rest of
the potential is generated on the condition that x, is a critical point, in the earlier example we were
just interested in generating potentials satisfying certain properties. That is, we are conditioning on
the event that each f, is in some range (f¥ —d/2, f* 4+ §/2), and then take § — 0 when computing
the conditional density. This is done irrespective of whether the f, was generated randomly or fixed
by hand.
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The log marginal likelihood is given by:
= 1 1 1
Inp(falh, l, f) = _ifazaﬂfﬂ -3 In |27 . (3.3.2)

In general, this is a very complicated function of h, ¢ and f, but we can simplify it
substantially by using the algebraic properties proven in this chapter. First, we can

use the definition of conditional probabilities to write:

s Jotg)] x| (Tt

even

f)) p(fm] . (33.3)

odd

plfa) = [(gp(f

where we for simplicity of notation have suppressed the dependence on the hyperpa-
rameters. From equation (3.2.39), the conditional probability densities can be further

simplified to

_ 1 _1 —2p2n; o —1 .

(3.3.4)
where i, is a function of f, for j < i as discussed towards the end of §3.2.2. Denoting

the number of independent derivatives at level ¢ by d;, we find

I )
1np(f04i|fai—l7 ) = _ih 2 Z(fai - NO&i>Dailﬂi(fﬂi - :U’Bi)

; 1
—di(Inh —n;Inf) — C;Zln(%r) ~3 Trin(Day,s,) - (3.3.5)

The log marginal likelihood is then given by the simple sum

tmax

p(fulb b )= S5 | = GHH (S o) Dl (fs — )

i=1
even, odd

d; 1
—d;(Inh —n;Inl) — E) In(27) — 3 Trin(Dgy,p) |, (3.3.6)

which runs over both even and odd derivatives. The remaining complication of (3.3.6)

is the mean values p,,, which are determined iteratively as:

i—1

Moy = ZgnjimEaiaj (fOlj - ,Uaj) ) (3.3.7)

Jj=1
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with jia, = f in the even case and p,, = 0 in the odd case. The shift matrix Eoa;
was defined in equation (3.2.41). Using this expression, the expectation values p,, can
be determined without inverting any matrix, which makes numerical evaluations fast.

Derivatives of the mean values are given recursively by

0 Q; = n;—n;— M —"; alu’aj
gg = (nj - nl)ﬁ J T lEaiOzj(faj —_— /,Laj) —_— £ J ZEaiajW 5 (338)
j=1
i—1 8 o
Ot Z (5 By (3.3.9)
of 4 of

The mean values p,, do not depend on h. The only non-zero starting value at first
order is Opiq, /0f = 1 in the even case.
To find the Bayesian best-fit parameters, we optimise the log marginal likelihood

with respect to all the hyperparameters:

P _
@lnp<fa|h>€7 f) :Z [_n% h=2 02 (faz :uai)D(;jBi(fﬁi _:uﬁi)

%

+ W72 (fan = p10g) D agfi + dmiw] (3.3.10)

g ol ) = 3 (18 = o) D2l U )~ | 33

(3

aafln p(fullr, b, f) = Z W2 (far — o) D3 a@“}f% (3.3.12)
Evidently, the only matrices that appear in this problem are the diagonal D,,s, and
the shift matrix E,,g,, but these are easy to compute from combinatorics, cf. equations
(3.2.19) and (3.2.41). Moreover, once computed for a given d and np,y, they can be
re-used for any training data set. This model selection problem is controlled by the
mean values ji,, and their derivatives, and requires no inversion of large matrices.

We illustrate the application of this method for randomly generated data in Figure
3.2. The hyperparameters h and ¢ can be determined rather accurately given Taylor
coefficients to sufficiently high order. Heuristically, the oblongated shape of the
confidence contours can be understood to follow from the appearance of the pre-factors
h=2¢?" in the exponent of equation (3.3.4). While the degeneracy h — Ah, £ — \/™if
certainly is broken in several ways (by the ¢ dependence of p,,, the differentiation in
equations (3.3.10)—(3.3.12), and by factors with different n;), the hyperparameters are
most strongly constrained when ¢ and h are not both increased or decreased from the
best-fit value.
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Fig. 3.2 Likelihood contours for the hyperparameters at the 68% and 95% confidence
levels obtained from random realisations of the GRF. The true hyperparameter values
are (h,?¢) = (1.22,0.33) as indicated by the black dot, and we have fixed f = 0.

3.4 Conclusions

In this chapter, we have presented a new method for simplifying the PDF of the Taylor
coefficients of GRFs with a Gaussian covariance function. By computing the PDF
sequentially, we have shown that the covariance matrices for the Taylor coefficients at
every step become diagonal. This result holds for any dimension and to any order in
the Taylor coefficients. This simplification essentially trivialises the evaluation of the
probability distribution of the Taylor coefficients, which depends on the inverse of the
covariance matrix.

We have shown that this method can have several interesting applications. GRFs
constructed this way can be used as models of complicated potential energy functions,
and we have showed in Chapter 2 how this can be used to explicitly study cosmic
inflation in theories with many interacting fields. Moreover, GRFs with Gaussian
covariance functions appear very frequently in machine learning applications. We
have demonstrated that our method can be used to simplify the regression problem of
determining the hyperparameters, given a training data set that consists of the local
Taylor coefficients of the GRF, although we expect this to be a rather niche application.

Accompanying this chapter, there is a Mathematica notebook containing the explicit

examples of these applications.
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Our method has several limitations. The algebraic simplifications that we have iden-
tified are only applicable to isotropic Gaussian covariance functions, which constitute
a special, albeit commonly considered, class of GRFs. We know of no generalisations
to more general classes of covariance functions, including those constructed as sums
of independent Gaussian functions. Moreover, since our method is based on the local
Taylor coefficients, it becomes cumbersome to use for describing the potential over field
displacements of many ¢. Finally, training data sets in machine learning applications
are often noisy, which can make it challenging to determine the Taylor coefficients to a
sufficiently high order.

Nevertheless, we expect this method to offer useful simplifications to a wide variety

of practical applications of Gaussian random fields and Gaussian processes.



Chapter 4

Hyperinflation

4.1 Introduction

In the standard slow-roll paradigm involving a single canonically normalised scalar
field ¢, accelerated expansion is supported when ¢ evolves slowly in a scalar potential,
V(¢), that is sufficiently flat, satisfying
Wl < Q (4.1.1)
Vv Mp
However, this is not the only way inflation can be realised. Models of inflation
involving multiple fields and non-trivial kinetic terms can also be consistent with
observations, and recently, much effort has been devoted to elucidating the rich
possibilities offered by inflationary theories with geometrically non-trivial field spaces
(cf. e.g. [2, 3, 5, 33, 45, 46, 51, 52, 56, 57, 59, 65, 80, 82, 99, 104, 105, 114-122, 125—
127, 149, 165, 166, 169]). The most well-studied class of such models, ‘a-attractors’,
builds on the observation that if the coefficients of the kinetic terms become large, even
highly featured potentials can support standard slow-roll inflation [2, 46, 51, 52, 99, 115
119, 121, 126, 169]. However, non-trivial field space geometries can also support
conceptually new realisations of inflation, that do not rely on equation (4.1.1). In this
chapter we will be investigating one of these models, ‘hyperinflation’ [45], in detail
to understand how it works. The original proposal of this model left many questions
unanswered about its dynamics - in particular, the solution relied on global symmetries
of the field space, even though the equations of motions are local.
Hyperinflation is a particularly interesting mechanism for realising inflation when

the field space is a hyperbolic plane with a constant curvature of L < Mp. Reference
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[45] showed that if the field initially has some (field space) angular momentum and the

scalar potential is rotationally symmetric, the radial motion is slowed by an additional

centrifugal force, which helps sustain inflation even in steep potentials.! In this scenario,

equation (4.1.1) is replaced by the much more relaxed condition
3L Vel 1

— < <

— 4.1.2
T < (4.1.2)

for the canonically normalised radial field ¢.
Reference [149] further developed the perturbation theory of these models, but the
framework of hyperinflation is not yet fully developed. In this chapter we address the

following important questions:

« The proposal of [45], which was further studied in [149], applies strictly to a
restrictive set of two-field models in which the field space is the hyperbolic plane,
the scalar potential is rotationally symmetric, and the field is initially displaced
far from the origin (so that the initial angular momentum is large). Are these
assumptions required to realise hyperinflation? If not, how can they be relazed,

and hyperinflation generalised?

e Models of inflation in steep potentials are potentially interesting because they
may not require the same level of fine tuning as slow-roll models, and may be
more easily compatible with ultraviolet completions of inflation, e.g. into string
theory. Recently, much activity has been devoted to identifying ‘swampland’
criteria that supposedly delineate the low-energy effective field theories that
can be consistently embedded in quantum gravity. In particular, the ‘de Sitter’
and ‘distance’ conjectures respectively state that |V, > O(V/Mp) and the total
field excursion is bounded from above, A¢ < O(Mp). These conditions, if true,
strongly constrain standard slow-roll inflation. Can hyperinflation be realised in
steep potentials with sub-Planckian field excursions? Is the theory compatible with

the proposed ‘swampland conjectures’?

To address these questions, we identify a set of conditions on the scalar potential
and its derivatives that must be satisfied by (generalised) models of hyperinflation. We
express these conditions covariantly and show that they can be satisfied in a variety
of models, including those without rotational symmetry, with random interactions,
and with any number of fields (N; > 2). Moreover, we demonstrate how (generalised)

hyperinflation can be realised without any special conditions on the initial value

!This mechanism generalises the idea of ‘spinflation’ [86].
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of the angular momentum (which is not a conserved quantity in the general case).
For example, hyperinflation can follow a period of slow-roll inflation with small or
vanishing angular momentum which then becomes ‘geometrically destabilised’ [165] by
the negative curvature (cf. also [45]). This links hyperinflation to so-called ‘side-tracked
inflation’ recently discussed in [105, 165]: we point out that while these setups share
some similarities, the side-tracked model of [105] does not realise hyperinflation in
either its original or here generalised forms.

We furthermore consider perturbations around the homogeneous solution and
provide the first detailed proof of the attractor nature of hyperinflation, and its
generalised versions. For models with Ny > 2 fields, we show that the dynamics of the
perturbations decouples the adiabatic and first ‘entropic’ mode from the remaining
N¢—2modes. We note that this makes the observational predictions rather independent
of the number of fields.

Finally, we discuss the status of hyperinflation in relation to various conjectures
regarding the general properties of effective field theories arising in low-energy limits
of consistent theories of quantum gravity, a.k.a. the ‘swampland program’ [156, 157].
We show that hyperinflation can be consistent with either the ‘de Sitter conjecture’
or the ‘distance conjecture’, but struggles to satisfy both conditions simultaneously
while also reheating the universe after inflation. Moreover, the simplest models of
hyperinflation considered in [45] are in strong tension with the weak gravity conjecture

[22], but generalisations can be unaffected by this condition.

4.2 Hyperbolic geometry and hyperinflation

In this section, we review the mechanism for hyperinflation proposed in [45]. To set
our notation conventions, we begin with a brief reiew of inflation in curved field spaces.

The action governing inflation in curved field spaces is given by

S = ; / d'zy/=g R~ Gug" 9,0"0,0" — 2V, (4.2.1)

where G, is the field space metric. In a Friedmann-Robertson-Walker background,

the equations of motion for a homogeneous background field become
D" + 3H* + GV, = 0, (4.2.2)

where the derivative D, is defined by D, X* = X* + FgcébX ¢ for any field space vector
X,
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The dynamics of the perturbations around a homogeneous solution in spatially flat

gauge is governed by the second-order action [107, 110, 172]:

1 dk k2
82 = 5/ (27T)3dta3 lGab'Dt(S(ba(k)Dtdﬁbb(_k) - (CLQGab + Mab) 5¢a(k)5¢b<_k)] )

(4.2.3)
where M., is the effective mass matrix given by
e ¢a¢b éavb + Vagbb
Ma = Va - Rac ¢’ : : 4.2.4
b ;ab db¢¢ +( )M2+ HMI% ( )
where Vi = Vi — V. I'¢,. The equations of motion for the perturbations are
k'2
DDid¢" + 3HD6¢" + —8¢" + M, 6¢" = 0. (4.2.5)
a

One of the novel aspects of inflation in negatively curved spaces is that the second
term can induce a negative mass-squared, leading to geometric destabilisation of
inflation attractors [165]%. In two dimensions, the Riemann tensor always takes the
form R%,., = R(0°.Gpa — 0%,Gye)/2, and hyperbolic geometry corresponds to constant
R = —2/L*3 More generally, for an Ni-dimensional hyperbolic geometry, one can
show that in an orthonormal basis (normal coordinates), the Riemann tensors takes
the form R%, ; = — (0% 0pq — 6%0p.) /L.

Commonly used representations of the metric of the hyperbolic plane include the

Poincare disk model,

dr? + r2d6*
ds® = AL ——— 4.2.6
s (1—r2)2 7’ ( )
for r < 1, and the non-compact representation,
ds® = d¢* + L*sinh®(¢/L)d6> . (4.2.7)

These are related by the change of radial coordinate ¢ = Lsinh™'(2r/(1 — r?)).

4.2.1 Hyperinflation

The action of a homogeneous background field in the hyperbolic plane can be written

as

s = [d'aa? ( P + L2s1nh2(¢/L) V(¢,9)). (4.2.8)

2This destablisation, although very different in origin, is akin to hybrid inflation [101, 128]
3The curvature scale L is related to the eponymous parameter of a-attractors by a = 2L?/3.
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If the scalar potential only depends on the radial coordinate, V = V(¢), the equations

of motion are given by

¢+ 3H¢ — Lsinh(¢/L) cosh(¢/L)6* = -V, (4.2.9)
y .2 .
6+ 3HO + ~ coth(6/L)06 = 0. (4.2.10)
Following [45], we assume that V' (¢) has a minimum at ¢ = 0. For this rotationally

symmetric system, equation (4.2.10) may also be derived as the conservation equation

for field-space angular momentum, d.J/dt = 0, where
J = a’L?sinh?(¢/L)0 . (4.2.11)

The conservation of J simplifies the radial equation to

. . JPcosh(¢/L)
b+3H) = S s e (4.2.12)

where the first term on the right-hand side may be regarded as a centrifugal force. One
may search for solutions in which ¢ is negligible, and the two terms on the right-hand
side balance to keep 3H ¢ slowly varying. For ¢ >> L, sinh(¢/L) ~ cosh(¢/L) ~ e?/* /2,

and such solutions must realise the scaling relation
abe?*/LV = const . (4.2.13)

Differentiating this condition with respect to time leads to a simple equation for the

radial velocity:

SHL

h=——""" ~ _3HL, 4.2.14
¢ T,/ ( )

where in the last step we have assumed that |n;| < 1 for

LV

4.2.15
v, (4.2.15)

nL

The speed in the angular direction may now be found from equation (4.2.9) and is

given by

Lsinh(¢/L)f =~ /LV,, — (3HL)?. (4.2.16)

A consistent solution requires LV s > (3HL)?.
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Accelerated expansion is realised if the inflationary epsilon parameter is small:

o CH _ 3¢°+ 5L sink’(¢/L)8? 3 1LV,

<
H? H? IV, +V

1. (4.2.17)

Combining the consistency condition from (4.2.16) with the inequality (4.2.17) leads

to equation (4.1.2). A sustained period of inflation then requires ¢, < 1 for

LV

> (4.2.18)

€L
The number of e-folds of expansion is straightforwardly related to the radial field
excursion by

N= /Hdt - —;L/dqﬁ - ?f. (4.2.19)

Obtaining at least 60 e-folds of inflation requires A¢ 2 180L. The total field excursion

including both the radial and angular motion is given by
dpror = \/LV s dt = /3er, dN . (4.2.20)

For future reference we define the dimensionless parameter [45]

- Lsinh(¢/L)0 €rL B 1 dior )
h=m—3m—J<L dN) -9 (4.2.21)

which closely approximates the turn-rate of the fields. We note that the above

results come out easily because of the metric choice. In the Poincare disk model, the
hyperinflation solution appears more complicated. The large radius condition ¢ > L

clearly corresponds to 7 ~ 1, but the condition ¢ ~ 0 translates into the less clear

2L 272
e <7~ + TT) ~ 0. (4.2.22)

condition

1—1r2 1—1r2
To obtain a more general understanding of when and how hyperinflation arises, we will

now reformulate the relevant conditions in a coordinate-independent way.

4.3 Generalising hyperinflation

In this section we generalise the notion of hyperinflation. As we have reviewed,

hyperinflation can be supported in potentials that would be too steep to sustain slow-
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roll inflation, but the construction of [45] required a number of assumptions. It applied
only to two-field models for which the field space was given by the hyperbolic plane
and the potential was rotationally symmetric, and it furthermore relied on the initial
field being far from the origin with non-vanishing angular momentum, J # 0. There
are good reasons to expect that these assumptions can be relaxed: the hyperinflation
solution only probes a small region of the field space, and should not be sensitive to
global properties of the potential. Moreover, with a general potential there is nothing
special about the chosen origin of the hyperbolic plane, and the metric could equally
well be expressed locally around a point on the inflationary trajectory.

We begin in section 4.3.1 by reviewing how the Klein-Gordon equation can be
expressed covariantly using a local orthonormal basis, and we then show in section 4.3.2
how the conditions for hyperinflation can be expressed using only local and covariant
properties of the potential. This setup then allows us to generalise hyperinflation to
more general potentials in section 4.3.3, and to models with more than two fields in
section 4.3.4.

4.3.1 Two-field covariant formulation

The starting assumptions of the hyperinflation solution of [45] — setting é to zero and
taking H¢ to be slowly varying — are not covariant. To generalise hyperinflation we
here rephrase the mechanism using vielbeins. A convenient local orthonormal basis of
the two-dimensional field space is defined by the unit vector in the potential gradient

direction,
vt =V VAV, =V Y, (4.3.1)

and a second unit vector orthogonal to it, w®. The reason for working with this basis,
rather than say the commonly used ‘kinematic basis’ that takes ¢* and ¢* to span the
field space [161, 162], is that we know the directions of v* and w® without solving the
equations of motions. This simplifies the analysis.

In terms of this basis for the tangent space, we expand the field-space velocity as
" = 1Dy + Wy . (4.3.2)

Here gz'SU = vaqﬁa and q'bw = waéa are covariant scalars. As the field evolves, the basis

vectors rotate. To take this into account, we note that

Vipd?  0PVipe® WV
— Uq =We——, >
Vi Vi Vi

) ) )

'Dtva = (433)
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where in the last step we used the identity v®v, +w®w;, = 0%,. From the orthonormality

condition, v,w® = 0, it also follows that

bV ic
Diw, = —v“’v“b (4.3.4)
In this vielbein basis, the Klein-Gordon equations are then given by
. . . . . ana h
Bo = vaDUE) + D) = —3Hb, Vi + 5,
. . . . . wava hb
B = wD(0) + Dy(wn)d" = —3H, — §, L Yeh? (4.3.5)

)

These expressions hold in general for two-dimensional field spaces. To identify the local
manifestation of the hyperinflation solution, we furthermore need information about

the second covariant derivatives of the potential.

4.3.2 Generalised hyperinflation

We now reconsider the hyperinflation solution reviewed in section 4.2.1 and re-express
it using our local orthonormal-basis. In the original polar coordinate system, the basis
vectors are v* = (1, 0) and w* = (0, 1/Lsinh(¢/L)). Using these, it is straightforward

to check that the potential in the original solution satisfies
Vo = Vi, Viow = Vigg, Viow = 0, Viww = = (436)

Here we have introduced the notation v‘lV;abwb = Viyuw, etc. and used the non-vanishing
Christoffel symbols T, = —I'% = —fcosh(¢/L)/sinh(¢/L). The hyperinflation
parameters €7, and 7y, clearly translate into

LV LV,

— U d —
€1, = , al nL =
Vo

(4.3.7)

To generalise hyperinflation, we look for solutions of the equation of motion with

Vi
InL| <1, 3L<e, <1, V=0, and Vi, = L (4.3.8)

These conditions are all covariant statements, and can be easily evaluated for any

potential and representation of the metric.
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Using the conditions (4.3.8), the basis vector rotations simplify to

D, = wagbiv, Dyw, = —UQQZU ) (4.3.9)
The equations of motion (4.3.5) are now simplified to
. : P2

G = —3H¢y = Voo + (4.3.10)

G = —3H oy, — ¢”£5“’. (4.3.11)

Setting ¢, = ¢y, = 0 at some time t, gives two possible solutions:

¢y = =V, /3H ¢, = —3HL
. slow roll, .
b = 0 G = 1/ LV, — 9H2L?

We here focus on the hyperinflation solution, which again requires LV,, > 9H*L? (or

hyperinflation (4.3.12)

equivalently, €;, > 3L when ¢y, is small). It remains to be shown is that these solutions
can be consistently extended along the inflationary trajectory. Noting that the RHS
can be expressed entirely as a function of ¢ (to a good approximation) during inflation,
we look for a solution of the form ¢ = ¢(¢(t)), and expand the velocity variables as
br = (];1 + 8¢, where we need to show that d¢;(t) ~ (’)(6551) along the inflationary
solution.

When the equations (4.3.12) hold, the inflationary slow-roll parameters ¢ and 7

straightforwardly generalise to

172
*¢ €L
_ 27 _ 4.3.1
€ J7E 3€L+2, ( 3 3)
dlne 1 d-
— = _ 2¢ = —3 €. 4.3.14
"= Hat Hqudt¢ +e T+ 2 ( )

The assumptions (4.3.8) imply that both € and || are small. Note that in equation
(4.3.14), we take the time derivative of (E using the explicit expressions for the (Z; of
equation (4.3.12), rather than the equations of motion (which remain to be solved for
66ér). Explicitly,

d déw  SH(6H?L% — LV,
% _3Le and 20w SHOHLTe = LVimw)

4.3.1
dt dt 2buw (4.3.15)
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where we emphasise that the right-hand sides can all be written as functions of ¢* only.
The accelerations are both small, de;/dt ~ O(eH¢;), which justifies the expansion of

the velocities. We may now use the full Klein-Gordon equation to solve for d¢;,

9, 26,000 doy Gudbs + .00y

Defining, as in equation (4.2.21),
7 ggw
h=— 4.3.1
1737 (4.3.17)
we find
. HL(2h% — h? : HL(h?(4e — ) —
54, = HL@R e O+ M) g 54, = SHL(A (e —n) = 9n) (4.3.18)
2h? 4h3

We note that 5&1/51 = O(e), so that neglecting ddg;/dt ~ (’)(6251) is consistent. This
explicitly demonstrates that equation (4.3.12) provides a self-consistent solution of the
equations of motion to leading order in the slow-roll parameters.

As an aside, the equations of motion in hyperinflation resemble those of side-tracked
inflation far away from the original axis. In side-tracked inflation [105], the field-space
has negative curvature and much like in hyperinflation, slow-roll is destabilised and
one ends up in a new attractor solution. However, the equations of motion are not
exactly the same: in side-tracked inflation, when the fields have reached the second
attractor solution, the Hessian of the potential is characterised by V,,/Vi = O(1)
rather than O(e), and V,,, is no longer non-negligible, in contrast with hyperinflation.
Consequently, ¢, and ¢, no longer satisfy equation 4.3.12, although there is some
rough qualitative agreement. Moreover, in the second phase of side-tracked inflation,
the fields must follow one of two specific trajectories in field space (which are mirrors of
each other), whereas hyperinflation can happen anywhere in the hyperbolic plane where
LV, > 9H?L?. In Chapter 5 we will see exactly how the differences in the structure
of the Hessian cause these differences in the dynamics. Nevertheless, as pointed out
by [60], these two models behave very similarly in the vicinity of the initial slow-roll

solution, in particular when they destabilise.
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4.3.3 Hyperinflation in random potentials

The conditions on the derivatives of the potential in equation (4.3.8) are unusual, and
may seem highly restrictive. In this section, we show that they are satisfied by broad
classes of potentials, and do not rely on rotational symmetry.

For concreteness, we consider a random potential over R? with derivatives 9,V ~

0,V . In a polar coordinate system, this corresponds to

Vgl ~ Val/ o, Vol ~ [Vigol /¢ ~ |Vigal /& (4.3.19)

When considered as a potential over the hyperbolic plane with a metric of the form of
equation (4.2.7), any angular gradients flatten exponentially when ¢ > L. Despite the
assumed randomness, V;, =~ Vy at large radius. The condition on the steepness of the
potential from equation (4.3.8) (and the earlier equation (4.1.2)) forces the potential

to be asymptotically intermediate between the two exponential functions,
exp(3¢L/Mp) and exp(¢/L), (4.3.20)

where we for clarity have re-inserted factors of the reduced Planck mass. We note
that over a field displacement of A¢ = 180L, the potential may change by as little as
exp((23L)?) or as much as exp(180). We will return to this point in section 4.6.

At large radius, the Hessian of the random potentials also takes a simple form, with

coefficients that satisfy equation (4.3.8):

Vi
Viw = Vg, Vi =0,  and Vi, f (4.3.21)
Thus, hyperinflation draws heavily on the negative curvature of the hyperbolic plane,

but is largely insensitive to the precise form of the potential.

4.3.4 Multifield generalisation

Our formalism also allows us to straightforwardly consider the case of hyperinflation
in negatively curved field spaces with Ny > 2 dimensions. With N; fields, we solve the
w?,, ...} We

will be more specific on the definition of w!, below. Following our discussion in section

equations of motion in the vielbein orthonormal basis e/, = {v,, w!

a’
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4.3.2, we consider scalar potentials for which the Hessian in this local basis takes the
diagonal form V,,;, = diag(Vi,,, Vi/L, Viu/L,...).4
Here we study the evolution of ¢ by looking at its component in the gradient-

direction, gz5v, and its complement, gz'S‘i. To proceed we first note that

‘/;bc(lgc _ b ‘/;bcqgc

Dﬂ]a — (gab o ,Uavb) v T

(4.3.22)

where 1% is a projection tensor that removes the component in the gradient direction.

The Klein-Gordon equation for the homogenous background field then implies that

. . . h Vb
by = Dy(vad®) = —3Hd, — Viy + W (4.3.23)
. . . \V4 . ic . b % . ic
¢ =Dy(LY ) = —3H@ — L% 2 ¢ by — po 2LV ed" (4.3.24)
Vi Vi
The rate of change of the magnitude of (ﬁ‘i is then given by
5= Lo p A
oL =01 Do = -3Hp, — ————. (4.3.25)
ox} L o1V

Now, in the case of hyperinflation, we have V., = v,0sV.pp+ Lap Vi /L, and hence

) . 2
¢y = —3H¢, — Vi + f (4.3.26)
¢1 = —3HJ| — ¢“fi — vaqf# (4.3.27)

The acceleration (jﬁ‘i is therefore in the plane spanned by v® and ng‘i, and the motion is
planar. It therefore suffices to look at the evolution of the norm ¢, which is governed
by the equation: o

¢ =—3H¢, — d)’fL. (4.3.28)
We note that equations (4.3.26) and (4.3.28) are identical to the two-field equations
(4.3.10) and (4.3.11) (with ¢, — ¢,,). Importantly, this means that the most important

dynamics of the N¢-dimensional system reduces to the standard two-field hyperinflation

equations, with Ny — 2 perpendicular directions decoupled.® We will now turn to

4This, for example, happens for if one takes a radial potential in H3, or at large ¢ for metrics of
the form ds3;, = d¢? + L?sinh*(¢/L)dQ%, _;.

5In view of section 4.3.3, we expect that multifield hyperinflation can be realised in sufficiently steep
random potentials. This could be tested explicitly by adapting the methods of e.g. [39, 40, 77, 78, 142].



4.4 Linear stability 107

the dynamics of long-wavelength perturbations around this system, where we will in

particular show that this decoupling of modes persists.

4.4 Linear stability

In this short section, we provide the first detailed proof of the attractor nature of
(generalised) hyperinflation by showing that small perturbations away from the solution
decay. We begin by considering the two-field case, which then straightforwardly

generalises to the general case with N; > 2 fields.

4.4.1 The two-field case

To prove the linear stability of this solution, we look at the equations for the £k = 0

mode of linearised perturbations around the background solution:
D, D;0¢" + 3HD;6¢" + [(k*/a* H?)§%, + M?%]0¢" = 0. (4.4.1)

During hyperinflation, the parameters € and 7 are small, and we here work to first
order in these parameters. We will prove that £k = 0 perturbations around the
background solution decay unless they are in a phase-space direction that still satisfies
the hyperinflation equation of motion.

To study the perturbations, it is convenient to use a kinematic basis with n* = ¢/|d|
and s* = Dyn®/|Din® [7, 8, 110, 161, 162] (cf. Appendix B.1 for more details). The
turn-rate of the field is given by

a® = Dyn® = Msa = (h — 37]) “=ws", (4.4.2)

where h = ¢y, /HL. In this basis, the equations of motion for the £ = 0 mode are given
by

d*o¢" dog" dog®  3n ., O+w)n] .
FRE +(3—e)dN —2de—?§¢ — w(6—2e+n)+T §¢* =0
(4.4.3)
d*6¢° doo® doo™ I 390+w)n| .y
dN2+(3—e)dN —i—2de — wndp" — 3¢ (6—26—1—?7)—1—7_5@25 =0.

(4.4.4)
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Defining 7! = dé¢! /dN, we can rewrite this system as

s 0 0 1 0 56,

d || | 0 0 0 1 56

AN | 6m, | [30/2, w6 —2e4+m)+ & 3¢ 2 57

o win,  sw?(6—2e+1n) + 3(9:#, —2w  —(3—¢)) \oms
(4.4.5)

We assume that € and n vary slowly during inflation so that they can consistently be
treated as constant to linear order. Local stability of the system can now be determined
by computing the local Lyapunov exponents, i.e. the eigenvalues A\ of the evolution
matrix of equation (4.4.5). To leading order, they are given by

M =1/2+ O(%), (4.4.6)
Ay = =3+ Ole), (4.4.7)
A = ; (-3+v0—8w2) +0(e). (4.4.8)

The latter three all have negative real parts and thus correspond to decaying modes.
The first one is a near-constant mode corresponding to the direction (1,0,7/2,0)%. In

the (n®, s*)-basis, this mode is given by,

5" o (Ve 0), (4.4.9)

and is the regular superhorizon-scale adiabatic mode corresponding to shifts along
the hyperinflation solution.® Since all other modes decay, we confirm that the general
two-field hyperinflation solutions are stable.

We note in closing that, due to the high turning rate of the background-solution,
the adiabatic mode is a little bit different from the standard slow-roll case. For a
perturbation d¢.q = A(1, 0) with dA/dN = nA/2, the momentum perturbation is
hyperinflation given by Dyd¢a.q = A(n/2, h), and is therefore of comparable size to the
field perturbation, and in some limits much larger. By contrast, in standard slow-roll

inflation, Dndpaq = n0¢aq/2, which is suppressed relative the field perturbation.

6Tt follows from equation (4.4.9) that the curvature perturbation in constant density gauge freezes
out on superhorizon scales.
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4.4.2 Perturbations in the general multifield case

We now show that the decoupling we identified in the background equations of gen-
eralised hyperinflation with N¢ fields (cf. section 4.3.4) applies to the perturbations
as well. This enables us to reduce the general problem of the perturbations to the
two-field case discussed above.

We can without loss of generality set w;* oc L% #”. It then follows that

Dy = %wla, Dyw,* = —%va. (4.4.10)
L L
These two vectors rotate in their own plane, meaning that the other basis vectors must
rotate in the perpendicular subspace that they span. If we have only one more vector
it follows automatically that its time derivative must vanish, but if we have more, it
will be basis-dependent.

To proceed we now need to define a kinematic basis. We write it as el = {n,, s',,...},
where we take n® = (¢,v® 4 ¢u,w,%) /¢ and $,% = (— Py, v 4+ Gpw,*)/é. The evolution
equations for the perturbations in the n® and s,* directions are again given by equation
(4.3.10) and (4.3.11), and the solution in this plane remains an attractor solution. We
do not have explicit expressions for the remaining basis vectors, but since the mass
matrix for these perturbations is proportional to the identity matrix, one can show (see
Appendix B.1) that it is always possible to pick a basis for the perturbations where

the equations of motion take the form

25
dN?

Yo k? 3(9+wn] ..
+(B- 9t | — T | 097 = 0. (4.4.11)

These are all uncoupled near-massless modes that do not source the adiabatic pertur-
bations. In section 4.6.2 we will argue that even if these entropic modes are numerous,

the level of isocurvature is naturally suppressed.

4.5 Examples

In this section we provide several explicit examples of models of hyperinflation that
in various ways generalise the simple models discussed in [45, 149]. In particular, our
examples demonstrate that hyperinflation can proceed in highly asymmetric scalar
potentials, and may follow a period of slow-roll inflation that becomes geometrically

destabilised by the negative curvature. We furthermore present the first explicit models
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with a sub-Planckian field excursion, and models with more than two fields. Throughout
this section, we concentrate on the problem of realising inflation; we will turn to the

observational predictions in section 4.6.

4.5.1 Example 1: hyperinflation in the Poincare patch

In section 4.2.1 we noted that the conditions under which hyperinflation is realised
are non-trivial in the Poincare patch, cf. equation (4.2.22). The formalism we have
developed in section 4.3 makes this issue much more clear. Assuming a radial potential,
the vielbein are given by v* = ((1 —r?)/2L,0) and w® = (0, (1 — r?)/2Lr), and the

velocities in the hyperinflation solution are given by

B 2L . ¢ B 2Lr
120 Y2

by 0. (4.5.1)
Differentiating the first equation of (4.5.1) and setting the acceleration to zero gives
the condition (4.2.22).

The class of potentials that support hyperinflation in the Poincare patch need to be
sufficiently steep close the boundary of the Poincare disk. In the original coordinates,

the velocities are given by

3 .o 1=r2 1 =92
= ——H(1—1? 0= . — 9H2L2. 4.5.2

Near the boundary it is convenient to express r = 1 — 9, and the condition 3L < €, < 1

translates into: a2 v .

— < " < —. 4.5.3
) Vo9 ( )

Thus, hyperinflation is supported by a class of potentials that grow sufficiently rapidly

towards the edge of the Poincare disk.”

4.5.2 Examples 2 & 3: the non-symmetric hyperinflation at-

tractor and ‘geometric destabilisation’

The original model of hyperinflation considered rotationally symmetric potentials so
that the field space angular momentum (cf. equation (4.2.11)) is conserved. We now
give two examples of hyperinflation realised in non-symmetric potentials, to show

explicitly that this assumptions can be relaxed. These examples also demonstrate how

"For less rapidly growing potentials, a-attractor slow-roll inflation becomes possible.
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Fig. 4.1 The analytical predictions from hyperinflation (green) and slow-roll inflation
(purple) together with a numerical realisation of Example 2 (blue). The momenta
are quickly attracted to the slow-roll solution, but then destabilise and approach the
hyperinflation attractor.

hyperinflation can follow ‘geometric destabilisation’ [165] of slow-roll inflation.

Example 2: As a first example of a non-symmetric hyperinflation, we consider the

model
2605?22(%) Coshzgf)) _ (SinthéZ? smh(?;) )) .
. cosh ~+cosh( 2X 2( cosh( =2 )+cosh( =X . 2,9
Gab o _ sinhﬁ%) sinh(% 2cosh2(%) cosh2(%L) ) V= Em ¢ (4 5 4)
2(C08h<%)+608h 27)) Cosh(%)Jrcosh(Qfx)

This metric is constructed such that on the ¢ and y axes, the metric becomes the
identity matrix. The curvature is again negative and constant: R = —2/L?. The
quadratic Lagrangian for homogeneous perturbations around an assumed background

solution on the ¢-axis takes the form

a’ [&;'52 +0x° - (v + zj(b +(3— )<;'52> 5¢° — (LWLQ ¢2> ox ] .
(4.5.5)

The negative term in the effective y-mass, —¢? /L2, is identical to the term appearing

L

x=0

in [165], where it was identified as the trigger of geometric destabilisation. The slow-roll
solution, ¢ = —V,/3H is stable as long as V, < 9H?L = 3V L. Once the gradient
exceeds this value, slow-roll undergoes geometric destabilisation, and the solution
transitions into the hyperinflation attractor.

In our example, with V' = $m?¢?, the instability kicks in at ¢ = 2/(3L). Further
out than this, slow-roll remains the attractor. In the case shown in Figure 4.1, which
has L = 0.05, we start at ¢ = 31 with initial momenta (m, = ¢, and m, = (;Sw)
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perturbed away from the slow-roll solution. The figure shows how the momenta quickly
converge back to the slow-roll solution, but eventually as the fields pass the instability
point, they transition into the hyperinflation attractor.

A Planck-compatible model with this metric can easily be constructed with an
exponential potential, V; = Vpe®?, and fields starting on the ¢ axis. Models with
exponetial potentials can be shown to have n ~ 0, giving ny — 1 = —2¢ [149]. A Planck
compatible spectral index is therefore obtained by setting A = 3L/(1 — ny).
Example 3: We now consider the model defined by the metric and the non-rotationally

symmetric potential,
1
Gap = diag (1, L*sinh*(¢/L)), V= M ¢ cos’ 0. (4.5.6)

At ¢ > L, V,, = m*¢cos® 6 = 2V/ @, so slow-roll undergoes geometric destabilisation
at ¢ = 2/(3L) for all angles (except § = 7,37 /2). Hyperinflation is only possible inside
of this radius, and until ¢ = O(L). This metric is easy to work with everywhere in the
hyperbolic plane, and here we explore more general initial conditions.

Figure 4.2 (which again have L = 0.05 and m = 0.01) displays several aspects of
the hyperinflation attractor. The phase space plot (top), shows that for all sampled
initial conditions (for ¢;, 0;, ngi, and éi), the momenta m, and 7, consistently converge
to the values predicted by the hyperinflation solution. The left plot shows how m,
(blue) and m,, (green) converge to the predicted values for one set of initial conditions.
The final, right plot shows how trajectories that start in near slow roll (straight blue
line) converge to hyperinflation (straight green line). The example shown are inflation
models where the initial value for 7, is =V, /3H and m,, = k7, where k runs from 1072

through 1071, As the figure illustrates, the slow-roll solution is exponentially unstable.

4.5.3 Example 4: small-field hyperinflation

So far we have only given examples of large-field models with A¢i > 1. Small-field
models of hyperinflation are more intricate to realise, in particular for steep potentials.
This example foreshadows some of the issues discussed in the next section.

We consider the metric (4.2.7) and the scalar potential

2% /-
V=V, |1+ = (o=l _q 1 , 45.7
l 7 ( ) (4.5.7)

with positive parameters € and 7. This is a simple way of realising a small-field inflation

model with a small € and negative 1. These are fixed by choosing the values for ¢ and
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Fig. 4.2 Three graphs for the antisymmetric hyperinflation model of Example 3. The
top figure shows five trajectories in field space converging to the hyperinflation attractor.
The left figure shows how the momenta m, and 7, converge to the correct values in one

example. The right figure shows how slow-roll with a small velocity in the w-direction
quickly becomes unstable for m,,;/7,; = 1072 ...,1071%,
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Fig. 4.3 The convergence of 72, (orange), 72, (purple) and their sum (blue) to the
analytic hyperinflation solution (green) of Example 5 with Ny = 3.

n at ¢,, giving, € = ¢, and 1 = 2¢, — 1,, and we will take ¢, to correspond to the value
of ¢ when the CMB modes exited the horizon.

We would now like to construct a model with A¢ < 1 and V,,/V as large as possible,
that is, a small-field model with a steep gradient. To do this, we set ¢, = 5.80 x 1076 and
N, = —4.28 x 1074, corresponding to the parameters € = 5.80x 1075 and 7 = 4.40 x 1074,
and fix L = 3.87 x 10~°. The model generates 60 e-folds of inflation over a distance
A¢ = 0.2. Tt also generates a correctly normalised power spectrum and spectral index
(ns = 0.965) [12, 14]. We note however that the maximal reheating temperature of
this model is at the lower edge of what can possibly be compatible with Big Bang

Nucleosynthesis: Ty, < 4 MeV. We will return to this serious issue in section 4.6.

4.5.4 Example 5: multifield hyperinflation

Finally, we give an example of a hyperinflation model with more than two fields. This

particular model has Ny = 3, with a metric and a potential given by,

Gap = diag (1, L7 sinh*(¢/L), L?sinh®(¢/L) sin®0) , V= ;mZ(;ﬁQ. (4.5.8)

with the parameter values L = 0.05, m = 0.01. This is a straightforward generalisation
of the original hyperinflation solution with a quadratic potential, and the numerical
solution again agrees very well with the analytic predictions. Figure 4.3 shows how the

square of the orthogonal momenta converge to the predicted values.
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4.6 Hyperinflation and the swampland

Various conjectures have recently been proposed to delineate the effective theories that
can arise from consistent theories of quantum gravity (the landscape), from those that
cannot (the swampland) (see e.g. [13, 22, 67, 156] and references therein). Some of these
conjectured conditions have strong implications for early universe cosmology, including
models of inflation. For example, a simple form of the ‘weak gravity conjecture’ (WGC)
applied to ‘O-form’ gauge potentials [22] limits axion decay constants to f, < 1 in
natural units. If true, this would rule out ‘natural inflation’ in which the inflaton is
an axion with a super-Planckian axion decay constant [96]. The ‘swampland distance
conjecture’ (cf. e.g. [156, 157]) states that the maximal field space displacement over
which an effective field theory is valid is bounded from above. In some version of this
conjecture, the bound is taken to be close to the Planck scale, A¢ < 1 [13]. If true,
this conjecture would rule out all EFT descriptions of large-field inflation. Moreover,
the ‘swampland de Sitter conjecture’ (in its second incarnation [106, 157]) states that
the norm of the gradient of the potential is bounded from below: |VV| > O(V), unless
the Hessian matrix has a sufficiently tachyonic eigenvalue. If true, this conjecture
would rule out standard single-field slow-roll inflation. The status of these conjectures
remain highly uncertain and controversial (cf. e.g. [16, 62, 68, 73]), and in this section
we simply explore their consequences for hyperinflation without suggesting their broad
validity.

Multifield models with rapidly turning trajectories have been proposed to provide
a possible way to circumvent the swampland criteria [3]. Hyperinflation provides a
concrete and specific class of models of this type, and in this section we critically
discuss hyperinflation in the light of the swampland conjectures. We show that while
hyperinflation is less constrained by the swampland conditions than standard slow-roll
inflation, it cannot simultaneously (1) satisfy the de Sitter conjecture, (2) satisfy the
distance conjecture, and (3) manage to reheat the universe to 7' 2 5GeV at the end
of inflation. We furthermore note that the simplest version of hyperinflation is in
strong tension with the WGC, but generalised versions of hyperinflation may avoid

this conjecture.

4.6.1 Hyperinflation and the weak gravity conjecture

The two-field system with a rotationally symmetric potential that we reviewed in
section 4.2.1 admits an interpretation as a dilaton/modulus field (¢) coupled to an

axion. An immediate consequence of this interpretation is that the axion decay constant
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is exponentially large during inflation:
. L 150
fa ~ Lsinh(¢/L) ~ e (4.6.1)

On can show (e.g. by a slight adaptation of the arguments that we will give in section
4.6.3) that it is not possible to construct a simple hyperinflation model with only
an axion and a modulus that is both observationally consistent and has f, < 1.
Consequently, the arguably most promising realisations of hyperinflation are of the
generalised kind that we have presented in this chapter, which do not feature axions
and for which the WGC does not apply.

4.6.2 Observational predictions for generalised hyperinflation

In this section, we briefly discuss the observational consistency of certain sub-classes of
realisations of hyperinflation. The characteristic properties of the predictions follow
directly from the exponential amplification of the adiabatic perturbations around
horizon crossing [45]. According to [149], the power-spectrum of the (constant-density

gauge) curvature perturbation, ¢ = —@,0¢%/2eH [82], is well approximated by

H2

Fe= 8m2e

v(h)? (4.6.2)

where the function vy(h)? parametrises the enhancement and is (for h > 5) given by

79 B
7 _9+h62p+2qh’

V() = == (4.6.3)

with p = 0.395 and ¢ = 0.924.

We begin by showing that models of hyperinflation with a small inflationary field
excursion, A¢ < 1, a monotonically increasing e parameter, and with A > 5 are ruled
out by observations. From equation (4.6.2), it follows that the spectral index is to

leading order in the slow-roll parameters given by
ng — 1~ —2¢+ qhn. (4.6.4)

We first consider the case when e grows monotonically during inflation ( > 0), and

A¢ < 1. In this case the field excursion is bounded by

1 > A¢ > \/362Nt0t s (465)
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where € is evaluated at the horizon crossing of the pivot scale. Clearly €5 < 1/(3N2,)
and the negative 2¢ contribution to the spectral index is too small to explain the
observed deviation from scale invariance. To be compatible with the observed red
spectral tilt, the second term (ghn) needs to be negative. However, this requires n < 0,
so that € is not monotonously increasing, contrary to our assumption. Thus, rapidly
turning small-field models of hyperinflation cannot explain the spectral tilt if the first
slow-roll parameter is monotonically increasing during inflation, and any viable models
with large h must therefore have 1 < 0.

Finally, we briefly comment on the perturbations in the general hyperinflation case
with Ny > 2 fields. From equation (4.4.11), we see that on superhorizon scales for
h =~ w > 1, the (spatially flat-gauge) amplitudes of these fields grow as /€, just as the
adiabatic mode. The superhorizon evolution therefore does not suppress the entropic
modes relative the adiabatic perturbations, and one might expect these models to
produce large amounts of power in the isocurvature modes. This is not the case. The
exponential amplification of the adiabatic perturbations reflected in equation (4.6.2)
has no counterpart for the entropic perturbations, which emerge relatively suppressed
on superhorizon scales. The isocurvature to curvature ratio is given by

Ps h? —2p—2qh

S (N —2 46.
P (Nt = 2)g— ¢ ’ (4.6.6)

where we made use of results in [149].

4.6.3 Small-field hyperinflation in steep potentials and reheat-
ing

Small-field models of hyperinflation satisfy A¢ < 1 and are compatible with the

‘swampland distance conjecture’. In this section, we consider the implications of

small-field models of hyperinflation in steep potentials satisfying V.,,/V > ¢ where ¢ is

assumed to be an O(1) number.

Given €7, > cL, the limit on the total field excursion during inflation implies that,
1> Aduy = / V3e2dN > V3cL Nygs . (4.6.7)

We may cast this as an upper limit on the curvature scale: L < 1/(3cNZ,). The

turning rate parameter h is related to e, and L by

R=3(2L—3)=3(5-3)>9(AN2, —1) ~93N2, > 1. 16.8
L2 L
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From equation (4.6.8) we see that the exponent of the enhancement factor is bounded
from below by a rather large number, and the amplification of the perturbations is
enormous. Still, the amplitude of the primordial curvature perturbation at the ‘pivot
scale’ of k, = 0.05 Mpc™! is fixed by observations of the cosmic microwave background
to Pr(ky) = P, = 2.2 x 107°. As we will now argue, it is challenging to match the
amplitude of the primordial power spectrum in models of hyperinflation with A¢ < 1
and V,,/V > 1.

Obtaining the right amplitude of the power spectrum requires,

p24m°P, 5, 247°P,
Vi Vi

2 = ¢ e

(4.6.9)

which may be combined with equation (4.6.8) to give,

1 [24n°P, 1 1 4
New < ——1n (27 ) Zog6 5 L (15 0.00741m (BOSVNY 4610
6gc V. c V.

Thus, these models cannot generate an arbitrarily large number of e-folds of expansion
and a consistently normalised power spectrum. Indeed, as we will now show, for ¢ =1
and inflationary energy scales Al 2 4.6 GeV, these models cannot solve the horizon
and flatness problems.

The inequality (4.6.10) rules out most of the possible parameter space for small-field
hyperinflation in steep potentials. We here note that a small remaining window in
principle exists, albeit at the expense of fine-tuning.

The inflationary epoch must be followed by a hot big bang cosmology that, in
particular, can explain big bang nucleosynthesis and the thermalisation of the neutrinos.
This puts a lower limit on the reheating temperature of the universe to T' > Ty, ~ 4
MeV [70]. Additional requirements, such as the generation of the baryon asymmetry,
may require a much higher reheating temperature, but are model dependent. Assuming
(conservatively) instant reheating at the end of inflation, and that all the energy of the
inflaton is transferred into the thermal plasma, we express the limit on 7" as a limit on
the inflationary potential: V, > Ving > Vinin = g—z Gu(Tnin) TE. where g, (Tyin) = 10.75.
This gives 3H? ~ V, > Viun = (6 MeV)%. We note that achieving rapid reheating
requires a strong coupling of the inflaton to the Standard Model, which makes such
models highly sensitive to loop corrections. We will not discuss this issue further here,

but simply note that models with inflationary energies close to V;ﬂ/f

are subject to

multiple additional challenges.
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Solving the flatness and horizon problems requires Nio; = 62 — In(10'6 GeV/ V;l/;)
e-folds of expansion if the reheating is instantaneous. Small-field hyperinflation in
steep potentials (¢ = 1) provides a solution to these classical problems of big bang

cosmology only if
(6MeV)* < V, & Vopg < (4.6 GeV)*. (4.6.11)

In other words, the enormous enhancement of the adiabatic perturbations during
inflation forces the energy scale of inflation to be very low, pushing it into tension
with reheating. The inequality (4.6.11) is a severe, general constraint on these models,
and we expect that constructing explicit, realistic realisations will be very challenging,
though not necessarily impossible.®

To avoid these constraints altogether in hyperinflation, one must relax either of
the conditions A¢ < 1 or V.,/V > ¢. Our example in section 4.3.4 demonstrates that

observationally consistent small-field models are possible, for example with V,,/V = 0.1.

4.7 Conclusions

We have generalised the mechanism of hyperinflation to incorporate broad classes
of theories in N; > 2 dimensional field spaces with constant negative curvature. In
particular, we have shown that hyperinflation does not rely on rotationally symmetric
scalar potentials, and can even be realised in theories with randomly interacting fields
and without special initial conditions. In some models, hyperinflation can follow a
period of slow-roll inflation that becomes ‘geometrically destabilised’ by the negative
curvature; however, hyperinflation differs from the realisations of ‘side-tracked inflation’
studied in [105].

We have provided the first explicit proof of the attractor nature of hyperinflation and
its generalisation, and provided a set of non-trivial explicit examples of the mechanism.
These include the first explicit examples without rotational symmetry, with more than
two fields, and a small-field model with an observationally consistent power spectrum.

We have furthermore shown that hyperinflation is in some tension with various
‘swampland conjectures’. The simplest models are in stark conflict with the weak gravity
conjecture, but more general realisations need not be. Moreover, hyperinflation can be
realised in steep potentials but is hard pressed to satisfy both A¢ < 1 and |[VV|/V > 1:
these models give an enormous exponential enhancement of the primordial density

perturbations, and can only be realised in models with an extremely low energy-scale of

8For example, baryogenesis may be achieved through the Affleck-Dine mechanism and dark matter
may be non-thermally produced, e.g. as axions.
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inflation (6 MeV < V4 < 5GeV). However, we have also shown that slightly relaxing
these conditions, e.g. by allowing |[VV|/V = 0.1, may permit for the construction of
observationally viable models.

The mathematical techniques developed here will be of great use to us when we study
rapid-turn two-field models in the next chapter. There we will find that hyperinflation
is in fact just one particular example of a much more general solution, which also

includes side-tracked inflation, among others.



Chapter 5

The rapid-turn attractor

5.1 Introduction

There has been much interest recently in multifield models of inflation with strongly
non-geodesic motion [4, 7-9, 41, 45, 53, 56, 57, 59, 61, 65, 86, 98, 104, 105, 109, 112,
149, 165, 166]. Such models can be realised in potentials that are far too steep for
slow-roll, and have furthermore been shown to arise as natural attractor solutions in
hyperbolic field-spaces [41, 45, 59, 98, 104, 105, 109, 149, 165, 166], although they are
by no means restricted to such geometries. In this chapter we show that two-field
models of inflation with a high turn rate can collectively be described by a single
attractor solution, and that several notable examples of strongly turning inflation
models are in fact examples of this attractor.

To find this attractor solution, we look for a general solution to the background
equations of motion with €, |n| < 1 and a large, slowly varying turn rate w, meaning
w? > O(e) and v = Dy Inw < 1, since we want a stable, sustained phase of inflation.
We can do this without specifying any metric or potential by projecting the equations
of motion onto a suitable vielbein basis, and the results are consequently completely
general. Examples of rapid-turn attractors include hyperinflation, side-tracked inflation,
angular inflation, and the flat field-space turning inflation model of [4], a diverse
collection of models which demonstrates the universality of the solution. These
solutions can straightforwardly be recovered from the general solution, illustrating the
power of this approach.

With the background solution determined, one immediately finds that two of the
three independent components of the effective mass matrix of the perturbations are
completely fixed (up to O(e) corrections). The equations of motion for the perturbations

then only depend on two parameters, vastly simplifying the analysis. We will use this
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result to discuss the stability of the solution and the observables of these theories, in
particular the non-Gaussianities and growth of the power spectrum in theories with
an imaginary speed of sound. We find that even though the power spectrum grows
exponentially, non-Gaussianities in higher-order correlation functions remain moderate
and compatible with current observational bounds.

We will also be interested in the behaviour of the solution in the limit w 2 180, when
it is compatible with the recently proposed (and controversial) swampland conjectures
[3, 13, 22, 67, 106, 123, 156, 157]. The solution simplifies in this limit, and the result

may facilitate future studies of swampland-compatible inflation models.

5.2 Rapid-turn inflation

To solve the background evolution we want to find the (geometric scalar) field velocities
by = 1,0 and b, = w,d® where like in Chapter 4 v, = Vi, /||Vi|| and w, is a (co)vector
field orthonormal to v®. The equations of motion for these velocities, given earlier in

equation 4.3.5, are

b = —3Hby — Qb (5.2.2)

where we now define V,, = v*V,,, Vi, = v“wa;ab etc and Q, = w,Dw®* = (vaq'ﬁy +
Viw®w)/Vy. Q, is the (dimensionful) turn rate of the gradient basis vectors, which will
play an important role shortly.

The reason for using the gradient basis e} = (v*, w®) above is that unlike in the
kinematic basis e¢ = (n®, s*), where n® = ¢*/¢ and 5% = (—p,v* + d,w®) /¢, we already
know the directions of v* and w® before we have the full solution, making them much
easier to work with. In this chapter we are looking at inflation models with a significant
turn rate, meaning w? > O(e). The turn rate w = s,Dyn® will be a crucial quantity

to our analysis, and using the gradient basis it may be expressed as
w = ¢V, H?, (5.2.3)

which is obtained using the Klein-Gordon equation [41].

However, while the gradient basis is very useful for solving the background equa-
tions of motion, when dealing with perturbations the kinematic basis has significant
advantages. This is because we can automatically see which perturbations are adiabatic

and which correspond to isocurvature modes. For compactness denoting d/dN by 's,



5.2 Rapid-turn inflation 123

the equations of motion for the perturbations can be written [7, 110, 172]

5"+ [(3 — €)6h — 2wel)d¢ + C(k) o =0 (5.2.4)
where €} = —€2 = 1 and C(k)} is given by
n— W px —w(B-
Oy = [ #n = Fam e mwBoedv)) (5.2.5)
:u><+w(3_6+y) :us_w"‘asz

where we further defined i, = n®n®M,,/H?, p1c = n®s®My,/H?, and pug = s%s* M,/ H?

as projections of the dimensionless mass matrix. These are given by

Vw2 + 2V by by + Vi 92,

"= 2 —2¢e(3—€+n)
B . 5 i
,LLX — (wa Vvv)¢v¢w + %w(gbv ¢w) _ 2&)6 (526)
H2¢?
 Vaw®? — 2Viudubu + Viud?, + RH/2
Hs = qup !

where in the middle line we used the definition of the turning rate to tidy up the

expression.

5.2.1 Finding the attractor solution

During inflation we need our field velocities ¢, and ¢,, to satisfy ¢; ~ O(e)Hoy,
which is necessary for € and n to be small. The same goes for the total field velocity,
D,¢? = O(e)H¢?, and so the equations of motion for ¢, and ¢,, together give (c.f.
equation 1.1.23)

bV, /HP = =3+ Oe). (5.2.7)

With our expression for w in equation 5.2.3 this immediately implies

@:_73 @:L (5.2.8)
b VI+w? o VI+w? o

which is accurate when w? > O(¢). Furthermore, using the above expression for by / o,
equation 5.2.7 immediately tells us
Vi

o= Ivorso (5.2.9)
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The individual field velocities are therefore

b= o g = (52.10)
H(w?+9) H(w?+9)
As we can see, in this vielbein basis, the field velocities are automatically fixed by the
turn rate w. The turn rate is still unknown, but ensuring that the field equations of
motion are statisfied individually and that w varies slowly will allow us to fix it, and
thus find a complete solution. As a brief aside, we also note that the above equation
implies ey = €(1 + w?/9) [3, 112], which is why rapid turn inflation can be realised in
potentials that are too steep for slow-roll.

Looking at the equation of motion for ¢, in 5.2.1 alone, demanding ¢, = H éUO(e),

and using the results in equations 5.2.8 and 5.2.9, we find that the solution requires
Q/H =w+ O(e/w), (5.2.11)

i.e. the gradient basis vectors must turn at the same rate as the fields along the solution

trajectory. From this one can show

0o w? 4+ 9+ O(e). (5.2.12)

The equation of motion for ¢,, requires Q,/H = w + O(e), which is compatible with
the former (but less stringent). Intuitively, requiring €,/ H ~ w makes sense: equation
5.2.8 fixes what fractions of the field velocity are parallel and orthogonal to the gradient
direction, and if this is to be maintained as the fields turn, the basis vectors need to
turn at the same rate.
Finally, we want this solution to have a slowly varying turn rate. The next step
is therefore to compute v = Dy Inw, and to do so we will use the expression for w
in equation 5.2.3. From this we see that v = O(¢) requires Dy InV, = O(¢), which
implies
Viw 3 Vi
H?  w H?
where we used equations 5.2.8 and 5.2.9. These two equations can also be combined

= O(we), (5.2.13)

into the convenient form

wa 9 VUU

H?  w? H?

=w?+ 9+ O(e). (5.2.14)

When V,,/H? < O(w?) and V,,,/H? < O(we), one straightforwardly finds that the

turn rate is given by w? ~ V,,,/H? — 9. However, when V,,, and V,,, are non-negligible,
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the situation is a little bit more complicated. The direction of motion must now be
chosen so that Vv = qulﬁv + V;,wcﬁw ~ 0, imposing a second constraint on the turn rate
beyond ensuring that the equations of motion are satisfied. In this scenario one can

find two particularly convenient expressions for w,

_ 3‘/7”] 2 wa o ‘/;;211; ‘/;w

Vuw 3 W = ? ‘/;JQU H2 — 97 (5215)

w
which must be matched if rapid-turn inflation is to take place. This is generally not
possible everywhere in the target space, and will restrict where rapid-turn inflation
may happen. Examples of this will be given later.

A technical detail that should be mentioned is that what we have really done, much
like in Chapter 4, is to find the leading order parts of the solutions gbv = ¢?v + 5@, and
b = <Zw + 8¢, that we take to be functions of field-space position only. This gives us
an approximate solution, which is valid as long as the necessary corrections are small,
i.c. 6y ~ O(H(E]e). For this to be the case, the explicit time derivatives of the field
velocities must satisfy deo;/dt ~ O(Here), which requires the terms V,, Vi, etc to
vary slowly along the trajectory. This is a very much consistent with our assumption

of v = Ofe).

5.2.2 Perturbations and stability

Now we would like to look at the behaviour of perturbations in these models. We first
need to verify that the background solution is stable, a necessary condition for it to be
an attractor. To begin, we note that (after some tedious algebra) the Klein-Gordon
equation gives

Dyw = $eDNDyn® = — iy +w(—=3+ € — 1) (5.2.16)

Demanding v = Dy Inw ~ O(e) therefore requires
px = —3w + O(we), (5.2.17)

and we have fixed one element of the effective mass matrix. One can also show that

equations 5.2.13 and 5.2.14 imply

fn = w? + O(e). (5.2.18)



126 The rapid-turn attractor

We now define d7; = 0¢/, and find that the equations of motion for the perturbations

can be written

56 0 0 10 /66,
Yol 0 0 0 1 o
O | ¢ (5.2.19)
o, —K? 6w -3 2w || om,
o, 0 w?—p,—rK?> —2w —3)\om,

where £ = k/aH and we have ignored O(e) corrections.
To see whether the background solution is stable, we look at the eigenvalues of the

evolution matrix (the local Lyapunov exponents) when k& = 0. They are given by

1
A=-3. 0. 3 (—3 +1/9 — dp, — 12w2) . (5.2.20)

As long as the dimensionless entropic mass satisfies p, > —3w?, the system has one
(near) constant mode (the adiabatic one) and three decaying ones, and is thus stable.
Using equations 5.2.6 and 5.2.12 one can show that the entropic mass can be written
in the convenient form

Wow | Voo  RP?

= 2 Lo 5.2.21
= e o) Tz o T O (52.21)

which must satisfy the above condition.

5.2.3 Rapid-turn inflation and the swampland

For inflation to be compatible with the swampland conjectures [13, 22, 67, 106, 156, 157],
the field excursion must be bounded, A¢ < Mp = (87G)~'/2, which implies € < 1/2N?
(where N is the number of e-folds of inflation), and either the gradient satisfies
MpV,/V > c or the minimum eigenvalue of the Hessian satisfies MZmin(V,,;)/V < —¢,
where ¢ and ¢ are O(1) coefficients.

If we want to satisfy the swampland conjectures by having a large gradient, the turn
rate will satisfy w = 180 [3]. In this limit, the rapid-turn attractor solution drastically
simplifies, assuming that V,, is not parametrically larger than V,,,,, and we find

2 Vow . _ 3HY,
—ﬁ7 gbv—_

32 ~ Vi

~ v 5.2.22
V’LU’LU ’ wa ( )

w
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The two conditions can then be reformulated as
MpV,/V > ¢, MpViyu/Vy > 3¢N?, (5.2.23)

which are straightforward to check.

If instead we want to satisfy the condition on the Hessian, there are fewer simplifi-
cations that can be made, since the turn rate is no longer necessarily very large.

For a given model, we do not have full freedom in choosing which of these conditions
we want to satisfy, and there are pitfalls that need to be avoided. The spectral index
of the power spectrum needs to be matched with obserervations, which constrains the
background solution, potentially ruling out one or both of these options (c.f. [41]).
Moreover, in very rapidly turning models (w > O(100)), entropic masses y, < w? can
cause such large growth of the power spectrum that it becomes hard to reheat the
universe after inflation (c.f. Chapter 4). This is especially problematic for models
realised in hyperbolic field-spaces, where R < 0. From equations 5.2.21 and 5.2.22 one
can deduce that these models need at least V,, = V., to avoid this problem, which
in turn implies that these models will be of the type where both the constraints in

equations 5.2.13 and 5.2.14 are important.

5.3 Examples of rapid-turn attractors

In this section we show that several non-standard two-field inflation models are examples
of rapid-turn attractors, and use the relations derived above to straightforwardly find
the form of the solutions. Hyperinflation and the turning inflation model of [4] present
two algebraically simple models where we can easily derive the form of the full solution,
and for the latter we also give some numerical examples of the agreement between
the attractor model predictions and numerical simulation. Side-tracked inflation and
angular inflation, however, are algebraically messy. In the former case we present more
numerical examples of the agreement between the attractor predictions and simulations,
and in the latter case we show how we can straightforwardly recover the parametric
equation for the field trajectory.

The point of this section is not to delve into the details of these models; it is instead
to show what a broad class of models can be described by this attractor solution, and to
demonstrate how powerful these techniques can be for finding explicit solutions given a
metric and potential. In models where V,,, and V,,, are negligible (e.g. hyperinflation),

rapid-turn inflation can occur anywhere in the target space, and equations 5.2.9 and
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5.2.14 immediately give the full solution (i.e. b, and qbw) which is valid everywhere.
In models where V,, and V,,, are non-negligible, however, the expressions for w in
equations 5.2.13 and 5.2.14 must be matched, and solving these two equations will tell

us where in field-space this phase may occur.

5.3.1 Hyperinflation

This model, which was first introduced by [45], and then further studied in [41, 149],
provides a very clean example of a rapid-turn attractor. The usual metric and potential

used for this model are
ds* = d¢* + L*sinh(¢/L)*d0*, V =V(¢), (5.3.1)

although more generally it just requires Vi, = V,/L, Vyw =~ 0 and V,, < V.
Hyperinflation refers to a new phase of inflation that occurs when the potential
becomes sufficiently steep for slow-roll to be geometrically destabilised [45, 165]. Using
the results derived earlier in this chapter and the above covariant derivatives of the

potential, one immediately finds

b, = —3HL, ¢*=1LV,, (5.3.2)

which is only a consistent solution if LV, > 9H?L?, which is precisely the condition for
slow-roll to become unstable [45, 165]. Its entropic mass, given by p, = —w? + O(e), is

very tachyonic in the w > 1 limit, but the background evolution is nevertheless stable.

5.3.2 A flat field-space model

This example, first introduced in [4], is very different from hyperinflation, especially

since the field space is not hyperbolic. Here we have the metric and potential
1
ds® = dp® + p*d0*, V =V, — af + §m2(p — po)?. (5.3.3)

In this model, the rapid-turn regime appears at p > py, where the gradient of the
potential is dominated by the p-direction, but where the #-term nevertheless plays an
important role. Here we have V, ~ m?p, Vi, =~ Vi, ~ m?, and V,,, ~ a/p?. Equations

5.2.13 and 5.2.14 thus give us two expressions for w:

w~3p’m?/a, w \/gMpm/\/?o. (5.3.4)
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Fig. 5.1 RMS fractional differences over a few oscillation cycles between the predicted 7,
(left), 7, (right) and numerically calculated field momenta 7,, m, in the flat field-space
model as the solutions converge.

These must match (up to a sign), telling us that this type of inflation can only happen
at

p? = Mpa/\[3Vom, = 60=¢y/p~m, (5.3.5)

in agreement with [4]. Moreover, to illustrate the accuracy of the rapid-turn attractor
predictions, Figure 5.1 shows the agreement between predictions and simulations for a
swampland compatible model with ov = 5.0x 10716, m = 2.5x 1073 and V; = 3.4x 1071°,
giving w ~ 230.

5.3.3 Side-tracked inflation

Side-tracked inflation is another example of a rapid-turn attractor in hyperbolic
geometry, which like hyperinflation can arise after geometric destabilisation of slow-roll
[105, 165]. Looking at the side-tracked inflation model with the so called ‘minimal

geometry’, we have

2

92 2
ds? = (1 + ];;2) A6 +dx*, V = U(9) + i (5.3.6)

In this model, m;, is the mass of a heavy field with m; > H, but despite the size
of this mass, slow-roll is destabilised by the negative curvature, and we end up in a
‘side-tracked’ phase of inflation, which is another example of a rapid-turn attractor.
V. and V,,, are non-negligible in this model, so we can use equations 5.2.13 and 5.2.14

to find where in field-space side-tracked inflation may happen. Assuming MU 4, < U 4
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Fig. 5.2 The turn rate w in the side-tracked example (green), and the fractional
difference between the numerical and predicted values (blue).

[105] and that U dominates the potential energy, we find that this happens at

2X2 - g MP|U7¢| o

o _ 2 REel 5.3.7
2 N\ 3 v (5:3.7)

recovering the expression found in [105]. Figure 5.2 also illustrates the agreement
between the rapid-turn attractor predictions and numerical simulations for a model
with a natural inflation potential U(¢) with M = 0.001Mp and m;/H = 10.

5.3.4 Angular inflation

An additional attractor model was found recently by [59], in the context of a-attractor
models [2, 51, 52, 116, 118, 118-120, 125|, where the geometry again is hyperbolic.
Here we work with a metric and potential of the form

_ 6a(de* + dx?)

2 _ o 2 42 2. 2
ds® = 1= =2 V—g(mq@ +mxx). (5.3.8)

Reparametrising this as ¢ = rcos#, y = rsinf, and defining R = mi / mi, they found

a new angular attractor solution at 1 —r < 1 when the parameters o and R satisfied

a < 1and R 2 10. Defining § = 1 — r2, one can then solve equations 5.2.13 and 5.2.14

(eliminating w) to leading order in J, to find its parametrisation by 6 as written in

[59]":

,»  9a(cot § + Rtan6)?
~ 2(R-1)2

!The current arXiv version (v1) has a typo in equation (2.14), where cot and tan appear with
squares. If (2.13) is expanded in «, however, these squares do not appear.

0(0) =1—r(0)

(5.3.9)
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5.4 Primordial perturbations

The first-order equations of motion satisfied by the perturbations, given in equation
5.2.19, notably only depend on two free paramters, w and pu,, which have a significant
impact on the primordial perturbations generated by these models. If &€ = u,/w? > 1,
the perturbations can be analysed using a single-field EFT with a reduced speed of
sound, which has been studied extensively in the literature (see e.g. [4, 7-9, 53]).
Observationally, these models are generally characterised by large equilateral non-
Gaussianity (o< ¢;?), and a suppressed tensor-scalar ratio (o< ¢ ). If € < 1, the situation
is rather different. The speed of sound of the single-field EFT is now imaginary, and
one can see very large growth of the power spectrum at horizon crossing. These are
the theories we shall focus on in the remainder of this chapter.

It will be convenient for us to work with the curvature perturbation ¢ = d¢, /v/2¢
and with the entropic perturbation o = d¢,, with which the action takes the following

form:

— H*W* (€ —1)0? - 4\/2_6ng¢'] : (5.4.1)

The aim here is to compute the mode function of ¢ analytically (neglecting Hubble
friction, similarly to references [4, 53]) using a WKB approach, and thus compute the
growth of the power spectrum in general. The equations of motion resulting from

equation (5.4.1) are

. . k2 2wH
3HC+ —(=—=(6+3H 5.4.2
C+3HC+ 5C @(H o) (5.4.2)
2 .
G +3Ho + ]%0 + H%A2(€ — 1)0® = —2wHV2€(, (5.4.3)
a

and the goal of this section is to find and understand their solutions. To make progress
we assume that we are in a phase where Hubble friction can be neglected (which given

the exponential growth and w > 1 is a fair assumption), and make the ansatz

(= (™ + e o=oceM + o et (5.4.4)
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Both of these frequencies should of course appear twice, with different signs, but for
notational convenience we ignore this at the moment. We then find that the frequencies

A4 are given by

NJ/H* =) =K%+ 26 24 \/16/<;2w2 + (3 +&)2wt, (5.4.5)

where we have introduced the notation x = k/aH. Tt will shortly be useful for us to
work with e-folds as a time coordinate, and when ignoring O(¢€) corrections we are free
to shift it (for each k-mode) such that x = e, meaning that horizon exit happens at
N =0.

The first thing we note is that for £ < 1, A\_ becomes imaginary for sufficiently
small k. This happens at

3+¢ 2

P w —\/16/<02w2 FB+OW = h=4/1-¢w, (5.4.6)

and therefore from N = —1In(y/1 — w) e-folds before horizon crossing and onwards,
A_ is imaginary. This means that during this phase the mode functions will grow
exponentially, which is exactly what one finds numerically. In hyperinflation, ¢ = —1,
and we recover Brown’s result that the growth starts at In(v/2w) e-folds before horizon
crossing [45].

We are now in a position to compute an analytic approximation for the mode
functions for ¢ without an EFT. This can be done by integrating [A_| from N =
—In(y/T — &w) to up to some arbitrary N (in effect, we are using the WKB method),
and it is more accurate than one might initially expect, since the contributions from
Hubble friction are negligible on superhorizon scales. Here we let (. refer to the
positive and negative frequency solutions of the low frequency modes, and they can be

written as

(+ x exp [£Z(N)], (5.4.7)

where the integral Z(N) is given by

N 3+¢ . 1
I(N)= —Kk2 — ——w? + —/16K2w? 204dN. 4.
(N) _ln(w__gwM R +2¢6W + (34 6)2wid (5.4.8)

One can show after tedious algebra (see Appendix B.4) that this integral can be

evaluated to

I(N) = F(b— 1) — F(\/1+ 1652/(3 + €)%w?), (5.4.9)
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where the function F' is given by,

ﬂm=2”<y—nw—1—w-wmﬁw[ b—2y ]

b 2\/(y—1)(b—1—-y)

\f [\/5(2—3b+2y+by)
— wi/— arctan
b /by —1)(b—1-y)

, (5.4.10)

and we have defined b = 8/(3 + &). While this is not an easy expression to work with,
it is accurate. Of particular interest to us is the behaviour of the mode functions in the
regime of validity of the EFT, when x?/w? is small. Here we find that they simplify to
(see appendix B.4)

(4 ox exp {i(Q —/3+ 5)% F |CS|I£} , (5.4.11)
where [c,| = /(1 —€)/(3+€).

With the above expressions, we can also give an analytic expression for the growth of

the power spectrum before horizon crossing, denoted by v* = 72(w, £) = Pr(w, &)/ P:(0).
We assume that once we are on superhorizon scales, (. is dominant, and that {, and (_
had roughly equal power at N = —In(y/1 — £w). Then, for consistency also neglecting
the Hubble friction for the single-field (, we find that the relative growth of the power

spectrum is given by
In(7?) = (2 — /3 + &) 7w, (5.4.12)

which is obtained by letting £ — 0 in equation (5.4.11). In hyperinflation, we then
find that In(y) o« 0.920w, similar to the numerical result of Mizuno et al. that
In(7) x 0.924 w [149].

The expression for the ¢ mode function we derived here is an approximation, but
it is remarkably accurate. As shown in Figure 5.3, the formula for the growth of the
power spectrum given in equation (5.4.12) agrees very well with numerics.

Equation (5.4.12) also allows us to determine the maximal turn rate that can be
realised in an observationally compatible inflationary model. Sometime after inflation
has ended, the universe is reheated to create the conditions for the hot Big Bang
cosmology. To ensure the success of Big Bang Nucleosynthesis (and the thermalisation
of the neutrinos), reheating must happen at Treneat > Tmin =~ 4 MeV. Enforcing (very

conservatively) that the Hubble parameter at horizon crossing, H,, is larger than the
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Fig. 5.3 Comparison between predicted growth and numerically calculated values,
computed using the methods of appendix B.3. The graph on the left has £ = 0 fixed
and the one on the right has w = 90.

minimal value H.,, that €, <1, and that P has the correct amplitude then gives

2 2 Mpp\*
In~2 < In ( 872 Py <T> ~ 176. (5.4.13)
This bound then constrains w and ¢ through equation (5.4.12). For example, in

hyperinflation with £ = —1 the turn rate is bounded by w < 96.

5.5 Non-Gaussianity and perturbativity

In the single-field EFT with an imaginary speed of sound, the mode function of the

curvature perturbation can be written as [98, 104]

212

1/2
Ck(T) _ (M,) o (ek|cs\7—+ax(k|cs|7_ o 1) . pei¢e—(k\cs|7+w)(klcs|7— + 1)) . (551)

The coefficients «, p and ¢ are all assumed to have a mild k-dependence, although
quantisation fixes a? ~ H?/eME. This EFT is expected to be valid for —x/|cs| < k.
Most important here is z, which parametrises the magnitude of the power spectrum at
horizon crossing (i.e at the end of the transient growth), and which is expected to be
large when the turning rate is large: x ~ w [98]. The resulting power spectrum can be

written

P, ~ a?e™, (5.5.2)

assuming that p < O(1).
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Encouragingly, the form of the above mode function agrees well with with the
two-field result in equation 5.4.11 (the additional factors k|cs|7 £ 1 arise from Hubble
friction, which we ignored in the two-field calculation). We can therefore match the
EFT-result with its ‘UV completion’ to find

2(w, &) = (2 - \/ﬁ> % (5.5.3)

What makes the EFT treatment of [98] particularly interesting is that it allowed for
the first discussion and calculations of non-Gaussianities in these models. Specifically,
the bispectrum was found to peak for flattened configurations (for which ky = k3 = k1 /2)
with an amplitude of fl#* = O(50) for one example of hyperinflation. Most importantly
however, some contributions to the (non-Gaussian) connected n-point correlation
functions for n > 4 were analytically found to be exponentially large, leading to an
apparent loss of perturbative control.

Key to this discussion is the expansion of the curvature perturbation ( in terms of

a Gaussian field (g:

C=C 1+ AG+ ARG+ ), (5.5.4)
where the coeflicients fNL are given by
oY = <é§n>2> (5.5.5)

and the subscript ¢ denotes a connected correlation function. For the expansion to be

well-defined, we require (heuristically)
S e (S AR § (5.5.6)

Thus, as argued in Reference [98], we retain perturbative control as long as

(C"gil < (222 (5.5.7)

Some contributions to (™). were shown to be harmless in [98]: contact interactions
lead to no exponential enhancement in the non-Gaussian parameters. This explains
why, in particular, the connected three-point function is not very large. However, other
contributions that involve the tree-level exchange of (a scalar) ¢, were found to be

dangerous. The starting point for this argument is the expansion of the correlators in
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Jo10) Jo10)

~ int int

Fig. 5.4 The four-point correlation function gets a contribution from a scalar exchange
diagram, corresponding to two insertions of the cubic interaction Hamiltonian.

the in-in formalism

A A~

() =3 i /_ dﬁ.../”‘l dre ([ Fine (70), - [ (), E(D)] ..., (5.5.8)
k=0 & e

where the operators on the right-hand side are in the interaction picture. To evaluate
these correlators, one uses the mode functions of the (free) quadratic theory, and
incorporates cubic and higher-order interaction terms through ﬁint.

The simplest example of an arguably dangerous contribution to the four-point
function is shown in Figure 5.4. The corresponding contribution to the connected

4-point function is in the in-in formalism given by

A A~

e = [ dn [ dn(fu(m), Hu(m), OO, (659

with cubic interactions I:Iint ~ ééﬁ The actual interactions involve derivatives of (,
but these do not affect the exponential scaling or the general argument. Moreover, the
important factor of a2 comes from the factor of eM3/H? in the cubic vertex. We will
explain both these points in more detail later on in this section.

The integrand of this contribution to (5.5.9) then involves 10 powers of ¢ (three
respectively at 7, and 75, and four at 7), which should all be appropriately contracted

using Wick’s theorem. The naive scaling of this diagram is therefore:

~

(CH(7))e ~ el (naive) (5.5.10)

It then follows from equation 5.5.2 that gy, scales like

INL = (e ~ el (naive) (5.5.11)

(¢?)?
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which is exponentially large and will even be larger than P 'for z > 5.

Thus, it would seem that hyperinflation and other rapidly turning models are severely
constrained by limits on non-Gaussianity, currently at the level gny, < O(10% — 109)
[15, 148], and even the requirement of perturbativity. However, as we will now show,
such a conclusion would be too quick and, in fact, inaccurate. The estimates (5.5.10)
and (5.5.11) do not account for subtle yet exact cancellations within the relevant
correlation functions, and the actual non-Gaussian parameters of these models are
merely ~ O(1) — far from observational constraints or tensions with perturbativity.
The terms which one naively would expect to be dominant instead cancel out, and
the dominant terms will be products of exponentially growing and decaying modes,
limiting the overall growth. These results are analagous to those for gauge fields axially
coupled to the inflaton during inflation [93]. Reference [98] noted that this was the
case for the the bispectra of rapid-turn models, and here we will show that this is in

fact also the case for the trispectra and higher-order correlation functions.

5.5.1 The 4-point correlator

Before we consider the general n-point correlator, we will for simplicitly consider the
specific case of the 4-point correlation function, and show that gnp, is not outside of
observational bounds. We will in particular show why the term in the correlator arising
from two insertions of cubic Hamiltonians must be proportional to €5 (instead of

elt® 4 as in equation

as in equation (5.5.10)), and gives g, ~ 1 (instead of gni, ~ e
(5.5.11)).

The correlator inside the integral in equation (5.5.9) can be expanded as

A A ~

([ Hine(12), [t (72), CHON) = (Hina (70) Hina (72)CH(7)) — (B (1) (7) Hia (72)
C {
7))

+(((n)H 1nt(T2) mt(ﬁ)>
= 2Re ((Hin(71) Hins ()"

—2Re<<ﬁ ( DCH(T) Hing (7 >) (5.5.12)

A

Hin(72)(7) i (7))
™)

where in the second line we used the fact that the Hamiltonians and observable n-
point correlators are Hermitian. Within each of these correlators, we now have Wick
contractions turning them into all products of five pairs of (;(;. Writing the generic

mode functions from the single-field EFT as(cf. equation (5.5.1))

G(7) = filr)e® +igi(T)e™ ", (5.5.13)
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we see that the terms proportional to e!%® in both terms will be
e 1] fi, (5.5.14)

and they will hence cancel out after we contract all combinations. Any term proportional
to €% must be imaginary, and hence does not contribute either. Only at €® do we
expect the terms not to cancel out. Another way to see this is to note that a Wick
contraction between real mode functions is a symmetric operator. Since the e!%® term
comes from only the real part of the mode functions, the order of the operators inside
the correlator does not matter and the two terms will cancel out.

To make the discussion a bit more precise, the interaction Hamiltonian contains
terms of the form [98, 103, 104]

2 _ 2 R
e o5 (3 )~ 4 ()

The conservation of ¢ on superhorizon scales then implies that the time integrals in
equation (5.5.9) peak around the horizon crossing time of the modes. The presence of
derivatives does affect the argument so we can neglect them. Therefore, the contribution

to (¢1) from two insertions of this operator then scales as

1 2
( _ 1) e (5.5.15)

and it follows that gnp, will satisfy

2 X
g~ L <1 —1) o’ 1 (5.5.16)

<C2>3 32 667

At n = 4, we retain perturbative control as long as

gvu S P, (5.5.17)

which is satisfied with a very good margin for theories with P, ~ 107°.
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5.5.2 The general n-point correlator

To show that the same holds for all higher n-point correlation functions, we need to
take a different approach, as the previous one does not generalise easily to higher
orders.

As a starting point, we consider the commutator of some (at least cubic) interaction

Hamiltonian ﬁim with some product of operators A:

A A

<[Hint7A]> = <ﬁintA> - <Aﬁint>' (5518)

If ﬁim contains an odd number of operators, at least one of them must be contracted
with some operator(s) in A. Tf H,, contains an even number of operators, the terms
with all operators contracted internally will cancel out (see RHS), and hence at least
two must be contracted with operators in A. Therefore, any surviving terms will have
contractions between some of the operators in ﬁint and some of those in A.

This has important consequences. As we shall see below, this always gives the
imaginary part of the products of the mode functions, and we will show that the
only non-zero terms from the expectation of nested commutators involve contractions
between terms on the LHS and RHS of each commutator. Every time we do this, we
will pick up a factor of the imaginary part of the product of some number of mode
functions. Since the imaginary parts of the mode functions scale as ae™, this limits
the size of the connected n-point correlators arising from the cubic scalar exchange
vertex.

To see why we get the imaginary part of the product of the mode functions, consider
the terms containing contractions of some operators éla, Ctu;--. on the left hand side of
the commutator with §2a7 CA%... on the right hand side. These operators are either the
curvature perturbation or various derivatives of it, but have the same annihilation and

creation operators. We thus have

X G1a3aC166as - - - — C2aC1aC26C1y - - - = 20 Im (C1aCaaC1vCap - - - ) 5

which will give us terms where we pick up an odd number of imaginary parts of the
mode functions. It is important to note that these contractions do not depend on
the relative positions of the operators éga, be... on the RHS. It does not matter if
commutators inside the RHS shuffle these around or if some other operators inside

the commutator are contracted with operators outside of it — it always gives the same



140 The rapid-turn attractor

factor. Therefore, terms with Wick contractions across n commutators, whether they
are nested or not, are proportional to the product of n factors of imaginary parts of
products of mode functions.

The mode functions in the EFT we consider can be written as in equation (5.5.13).
Hence, the dominant term in Im((; ... () does not scale as €™, as one might naively
expect, but instead as

Im(¢ ... ¢) o e Ve = =2z, (5.5.19)

n

In fact, every time we have a commutator we will see this relative suppression of the

expectation value by e~2%

compared to the naively expected one, drastically limiting the
size of certain diagrams. The reason for this is that when we have nested commutators
all non-zero terms will have contractions across each commutator, giving us factors
of imaginary parts of products of mode functions. We will argue why this is the case
below.

To proceed, we want to consider a nested commutator with operators H =
]flint(ﬁ), H, = I:.,int<7'2> and so forth. We begin by looking at the case with two nested
commutators:

([Hy, [H, Al)). (5.5.20)

As we saw above, non-zero terms must have contractions of operators in H; with

operators in [lflg, fl] Expanding the above, we have

AL A

([, [H, Al) = (H1[Hs, A]) — ([Ha, AJH). (5.5.21)

The crucial point is that terms in (H,[H,, A]) or ([Hy, A|H;) with no operators in H,
contracted with any in A must necessarily vanish. To see this, we note that for these
terms, operators in A are contracted either internally or with those in I:Ih and the
same goes for H,. Terms with all operators contracted internally within A vanish due
to the commutator, hence at least some operators must be contracted with those in

A

H,. But these terms vanish too, because (schematically)

1

(H[Hy, A]) = (HyHyA) — (H,AH,) = 0, (5.5.22)

as a consequence of no operators in A being contracted with any in H,. None of the
terms above depend on the relative position of H, and A, and so they cancel out
exactly. It is therefore only if some operators in H, are contracted with operators in A

that these expressions can be non-zero.
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([Hy, [Hy, [Hs, B)|]) = (HyHs|Hs, B]) — (H:[Hs, B H,)
— (Hy|Hs, BH) + ([H3, Bl H,H,), (5.5.23)

and again, each term will vanish unless some operators in H; are contracted with some
in B. We can repeat this argument indefinitely, and the result can be summarised as:
In evaluating the expectation of n nested commutators, all non-zero terms will include
at least one operator on the LHS of each commutator contracted with operators on the
RHS.

Putting it all together, we therefore see that with n — 2 insertions of a cubic
interaction Hamiltonian flint, the dominant contribution to the n-point correlator

therefore scales as

A A

<[ - (7_1>7 o [Hint(Tan)a én} N ]> x 0672(1172)a4n76e(4n76)x672(n72)m

2n—2

x 6(2n—2)a:

instead of the naive a2 2e4"=6)z e then find

<€n> a2n726(2n72)z B
((2yn—1 ~an—2p(n—2)z

1, (5.5.24)

causing no issues with perturbative control.

Do we expect these result hold even when we include loop corrections? Yes, because
for every insertion of the cubic interaction Hamiltonian we pick an overall factor of
ae® = PC1 /> <« 1. The more of these we insert (and we need two for every loop
correction), the greater the suppression is (prior to integration). There is therefore a

priori no reason to expect that loop corrections will change these results.

5.6 Conclusions

In this chapter, we have shown that there exists a completely general rapidly turning
attractor solution in two-field inflation. The attractor is not restricted to any particular
background geometry or form of the potential, and we have shown how several recently
studied non-standard inflationary attractors are in fact examples of this rapid-turn
attractor.
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Having a large, slowly varying turn rate was sufficient to allow the equations of
motion to be solved in generality. Moreover, we showed that these solutions have two
out of three elements in the effective mass matrix constrained up to O(e) corrections.
Only the turn rate and entropic mass remain unconstrained degrees of freedom, which
will control the primordial perturbations generated by these theories. The primordial
perturbations of these models fall into two classes, one with a reduced speed of sound
and one with an imagniary speed of sound. The former has already been studied
extensively in the literature, but here we contribute to the understanding of the latter
by computing the growth of the power spectrum and showing that the higher-order
non-Gaussian correlation functions are well-behaved.

The analysis has been restricted to two fields, but we expect it to generalise to
models with more than two fields. Such solutions have been explicitly shown to exist
in the context of hyperinflation [41], but a general analysis is rather non-trivial and

has yet to be completed.



Chapter 6
Conclusions

In this thesis we have looked at multifield inflation, trying to understand both the
observables that these theories generate and the background behaviour of non-slow-roll,
slow-turn solutions. In Chapter 2 we looked at multifield inflation with as many as 100
fields in random potentials generated using Gaussian random field techniques, which
emulate generic effective field theory potentials. Since the potentials generated this way
have well-defined third derivatives, unlike those generated using DBM techniques, we
were able to look at non-Gaussianity in random many-field theories, which had never
been done before. We found that even though we introduced millions of interaction
terms, the behaviour of the resulting inflation models was remarkably simple. The field
momenta almost immediately aligned themselves with the (locally) most tachyonic
direction of the field space, giving very smooth trajectories that did not change in
character as the number of fields was increased. As a result, the power spectra produced
were as smooth and simple as in single-inflation, and the local non-Gaussianity was
small, even though the superhorizon growth of the power spectrum often was substantial.
The rare exceptions to this were however also characterised by surviving isocurvature
modes, meaning that the observables may change through reheating.

These results have a clear implication: very complicated many-field slow-roll
solutions can produce observables that are almost completely indistinguishable from
single-field inflation. While the GRF potentials do not capture all possible types of
inflation models (e.g. potentials with sharp features), it is a rather minimalistic prior.
The potentials were constructed so as to allow interesting multifield effects to happen
on superhorizon scales, as they did, but even though the power spectra evolved on
superhorizon scales, they remained very simple, and in all but a very small number of
cases, no large local non-Gaussianity was produced. Future LSS experiments hope to

be able to determine whether fioc® is smaller or greater than 1. As we have shown



144 Conclusions

here, if fi¢8 were constrained to be smaller than 1, an enormous class of multifield
models would still be observationally viable, but if it were found to be larger than 1,
not only would single-field inflation can be ruled out, but it would also point towards
some unusual properties of either the potential or field-space metric. If we find that
fiocal < 1, attempts at distinguishing between single- and multifield inflation will on the
other hand require a study of the complete bispectrum. Computationally, this is more
challenging but very much doable. Several codes capable of computing the bispectra of
any given inflation model already exist (c.f. [154, 170, 173]), but a more specialised
approach may be necessary for potentials as complicated as the GRF potentials.

In Chapter 3 we developed the mathematical machinery necessary for generating the
random potentials used in Chapter 2. We proved that for a Gaussian random field with
a Gaussian covariance function, if the Taylor coefficients are generated order by order
(separately for even and odd derivatives), the covariance matrices in the conditional
(marginal) distributions are always diagonal. This almost completely removes the
barrier to generating many-dimensional GRFs with this covariance function, which
was previously limited by inverting the covariance matrices, the size of which grows
super-exponentially with dimension and order in the Taylor series. With this new
approach, the covariance matrices can be treated with much more numerically effective
methods than before, since they are diagonal. The computational bottleneck now lies
in the matrices that are needed to shift the expectation values, but these are generally
sparse, and never need to be inverted or decomposed, so this bottleneck is much less
restrictive than the previous one.

Beyond generating potentials for large numbers of fields, this method can be used
to generate analytic potentials for large landscapes with small numbers of fields, and it
can even be applied to Gaussian process regression. These random potentials could
also have applications beyond inflation; an obvious use for them would be to study
reheating in random vacua, and it is also possible that they would have applications in
condensed matter physics. However, as powerful as the technique is, it is also rather
niche, and it is unlikely that it will ever see any use in statistical or machine learning
applications, although one can never know what the future holds.

The second part of the thesis was concerned with rapid-turn inflation models. In
Chapter 4 we studied hyperinflation, trying to obtain a better understanding of this
non-slow roll, slow-turn solution. By introducing a new vielbein basis on the target
space, based on the gradient of the potential, we were able to understand the solution
in a field-space local way, and found that the solution was more general than originially

thought. The original solution was derived in a rotationally symmetric potential on the
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hyperbolic plane, but this global symmetry is not necessary, and using insights from
the vielbein approach we were able to realise hyperinflation in new set-ups. We also
studied the primordial perturbations of this theory, and found that even though it can
give inflation in very steep potentials, there are complications with the perturbations if
the potential is too steep and the field trajectory too short. The steeper the potential
is, and the shorter the field trajectory is, the greater the turn rate becomes, and since
the power spectrum grows exponentially in the turn rate, this gives an enormous
amplification of the power spectrum when the turn rate is large. To give the correct
amplitude for the power spectrum when the turn rate is very large (w 2 O(100)),
the value of the potential energy becomes too small for the universe to be reheated
afterwards.

Following on from the work on hyperinflation, in Chapter 5 we showed that
there exists a general rapidly turning two-field inflation attractor solution, of which
hyperinflation is only a specific example. In the gradient vielbein basis, we were able
to show that by looking for a rapidly turning solution with a slowly varying turn rate,
the equations of motion can be solved completely without even specifying a target
space geometry. The resulting solution gives the field velocity as a function of position
in field space, much like slow-roll, slow-turn, and from the general solution we were
able to recover several previously known turning solutions in various target space
geometries, such as sidetracked inflation, angular inflation, and a flat field space model,
highlighting how general the solution is. Up to O(e) corrections, the evolution equations
for perturbations in rapid-turn inflation only depend on two parameters, and using
this we proved the (linear) stability of the general solution. Moreover, we were able to
compute an analytic expression for the growth of the power spectrum in imaginary
speed of sound theories, which had previously only been computed numerically.

Rapidly turning inflation models are one of the more exciting developments in
modern inflationary cosmology. Over the last ten years or so, we have come to realise
that slow-roll, slow-turn is not the only type of inflationary cosmology with scalar fields
minimally coupled to gravity, and that other solutions can be realised in potentials
that one naively thought were too steep for inflation. These rapid-turn solutions
have also been shown to arise as global attractors in hyperbolic field spaces, and
given that the latter occur frequently in string compactifications and other models for
high energy physics, they are very interesting from a phenomenological point of view.
The primordial power spectra and non-Gaussianities of these models are becoming
increasingly better understood, and they exhibit some very interesting behaviours

compared to slow-roll, slow-turn. The transient instability of the mode functions before
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horizon crossing gives an exponential amplification of the power spectrum yet still only
leads to moderate amounts of non-Gaussianity. Finally, it would also be interesting to
see how this solution generalises to the case of more than two fields, when the solution
might no longer be planar. This is of particular interest as string compactifications

and extensions of the Standard Model frequently feature large numbers of scalar fields.
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Appendix A

Extra material for Chapter 2

A.1 Numerical method

Background evolution

Equation (2.2.47) comprises a set of N; coupled, non-linear first-order ordinary dif-
ferential equations, and its general solution is not known. For large Ng, solving it
numerically can also be challenging: the right hand side may involve many of millions
of terms encoding the various interactions between the fields. We now discuss our
method for evolving the fields.

To solve equation (2.2.47), we approximate the full potential in very small regions
around the trajectory to quadratic order, and solve the evolution of the background in
a step-by-step manner with a multiderivative method. More precisely, for some small

e-fold step AN, we write the solution as
1
Apo(AN) = AVAN + §A¢§>AN2 + O(AN?). (A1.1)

Substituting this Ansatz into the slow-roll equations and matching order-by-order in

AN, we find

AplV) = —VV;‘, (A.1.2)
VaVe VWiV
Ap? = V’iQ"— V’; v, (A.1.3)

When implementing this solution, it is important to make sure that the second order
term in the solution is much smaller than the first-order term; otherwise the series

is not a good approximation to the solution. The number of small patches needed



160 Extra material for Chapter 2

depends on the individual realisation, and on hyperparameters such as the initial
spectrum, and the number of fields. For 50 fields, we typically find that breaking up
the inflationary trajectory to around 2000 small patches suffices to keep the step-size
small enough for this method to be numerically accurate.

When working with potentials with many millions of interaction terms, finding
the local values of the Taylor coefficients in each patch can be come computationally
intensive. To ameliorate this problem, we approximate the fifth order Taylor expanded
potential in moderately small regions by lower order Taylor series involving fewer terms.
For 50 fields, we may approximate the potential to fourth order in around 60 such
moderately small regions for each inflationary realisation. We then use this lower order
potential to compute the second order Taylor coefficients in the very small local patches
used in the solution of equation (2.2.47). We note however that the calculations of
non-Gaussianity are very sensitive to numerical errors, so care is needed to ensure that

the computation is sufficiently accurate.

Perturbations

As first pointed out in [77, 78|, the transport method is easily implemented in a patch-
by-patch manner. The propagator I'*, transports the perturbation between spatially

flat hypersurfaces and satisfies the chain rule
' (N3, Ny) = T (N3, No)T',(Na, Ny) . (A.1.4)

In a sufficiently small patch, say Ny — N; = AN < 1 the propagator (2.2.53) simplifies
to
' (N2, N1) = exp (AN u%) , (A.1.5)

where u%, = u%(N; + AN/2) ~ u® (Ny) ~ u®,(Ny). The full propagator from horizon
crossing to the end of inflation is then obtained by left-multiplication of all subsequent

propagators [77, 78], i.e.

% (Nends N*) = T (Newa, Np) D%, (Np, Npi) ... T2, (Ng, Np) T (N1, N*).

(A.1.6)

Cp
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Similarly, 'y can be simplified by splitting up the integral (2.2.54) into many
parts,

Ni+1
T (Niyy, N;) = / AN'T? (Nysy, N')ut, (N/)T7 (N, N)T? (N, N;), (A.1.7)

Nt
p
Fabc(N’ N*) = Z Fad(N’ Ni-‘rl)rdef(Ni-i-l’ Ni)reb(Ni’ N*)ch(Nia N*) ) (A18)
i=0
where Ny = N* and N,;; = N. Assuming the step size is sufficiently small, we can
with good accuracy evaluate I'ger (N1, V;) as

Ni+1

T (Niyr, N;) = / AN [ =Nl (N7 [N ] (NN ] g )

Ni P

which is easily evaluated numerically. Once the I'%(N41, N;) and I'Y, ;(Njy1, N;) have
been calculated for all steps, they can be used to calculate power spectrum and fyr,
modes crossing the horizon at any point during inflation. Moreover, by doing the gauge
transformation to a constant energy density surface (cf. equations (2.2.56), and (2.2.57))
at any point during inflation, we can follow the evolution of the power spectrum and

fx1, on superhorizon scales.

A.2 Ensembles of models

For each of the initial conditions below we ran 2,000 simulations, giving us more than
1,000 successful inflation models (N > 60) for all ICs except near certain fringes of the
parameter space (e.g. very small Ay, or large ¢;). The analysis of the perturbations was

only done for the models which gave at least 60 e-folds of inflation.

Varying N;
Ayn | Mass spectrum Gradient direction | ¢; i Nt
0.4 | Uniform Random 2.1072 | =107 | 5, 10, 15, 20, 25, 30,
35, 40, 45, 50
0.4 | Compressed Random 1-10710 | —10* | 5, 10, 15, 20, 25
0.4 | Uniform Aligned 5-10710 | —10=* | 5, 10, 15, 20, 25, 30
0.4 | Uniform, uplifted Random 2.1072 | —107* | 5, 10, 15, 20, 25
0.4 | Compressed, uplifted | Random 1-10710 | —107% | 5, 10, 15, 20
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Varying A,

Nt | Mass spectrum | Gradient direction | ¢ i Ay

10 | Uniform Random 2.107° | —=107* | 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0

10 | Compressed Random 1-1071% | —107* | 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0

10 | Uniform Aligned 5-1071° | —107* | 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0

50-field runs

N | Ay | Mass spectrum | Gradient direction | i
50 | 0.4 | Uniform Random 2.1077 —10*
50 | 0.4 | Compressed Random 2.1071 | —107*
50 | 0.4 | Uniform Aligned 1-10710 | —1074
Varying ¢;
Nr | Ay | Mass spectrum | Gradient direction | 7 €i
10 | 0.4 | Uniform Random —107*12.10719, 5.10710, 1.107°,
2.107°,5-107°, 1-107%,
2.1078
10 | 0.4 | Compressed Random —107* | 1-1071,2.10711, 5.107 1,
1-10719,2.10719, 5.10710,
1-107°
Varying n;
N | Ap | Mass spectrum | Gradient direction | 7
10 | 0.4 | Uniform Random 2.1072 | —=107%, —1073, —1072,—5 -
1072, —10!
10 | 0.4 | Compressed Random 2.1071 | —107%, —1073, —1072,—5-
1072, —107!

A.3 A single-field toy model

We have seen in section 2.3.3 that the observational predictions of manyfield models of

inflation coincide with some of the ‘generic predictions’ of single-field slow-roll inflation:
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an approximately scale-invariant power spectrum over observable scales, with a small
running of the spectral index. While we have also seen in section 2.3.4 that multifield
are typically important in the full manyfield models, it is interesting to investigate the
extent to which our results can be understood through simpler single-field models. Such
models may capture the most important aspects of the more complicated manyfield
models, but are simple enough to admit an analytic treatment. In this section, we
construct such simple class of single-field models, and discuss how its predictions
compare against our numerical simulations of the full manyfield models.
We expand the single-field potential to cubic order around the approximate critical
point at ¢ = 0,
Vi) =Vo(1-as- o). (A3.1)

where the ¢; all are positive. We have here set the second order term at ¢ = 0 to
zero, since, as we will justify below, this term is overwhelmed by the third order
term already for small field displacements. We furthermore assume that the potential
remain approximately constant during inflation, V' ~ V), which simplifies the analytic

expressions for the slow-roll parameters in this model:

We will now use this model to compute the expected total number of e-folds
generated during inflation and the predictions for the spectral index and its running.
We first note that inflation ends when e, ~ —H /H? = 1, which happens when the

value of the field is
23/4

¢end =_-
\/ (esMp)

The number of e-folds generated as the field travel from ¢ = 0 to some value ¢ is given
by,

(A.3.3)

N(&) = o dy tan=1(y/c3/2¢10) (A34)
0 MP\/E M}%\/clcg/Q ' o

Upon evaluating equation (A.3.4) for ¢ = ¢4, we see that the argument of the inverse
tangent function becomes very large so that tan=!(y/c3/2c;¢¢) ~ 7/2, and the total
number of e-folds is approximately given by

Nend o NMax — T

= . A3.
M%\/2C163 ( 3 5)
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Inflation ends before N becomes exactly N™**, but for the initial conditions we are
interested in, it is a good approximation.

We can of course also invert equation (A.3.4) to give ¢ as a function of N:

261

O(N) = ., o (2%\;) : (A.3.6)

which is valid for N < N°nd < Nmax_ Using equation (A.3.6), it is straightforward to
compute the spectral index and its running analytically for this toy model. For the

models we are interested in, |ny| > €y, and the spectral index is given by

2 TAN
— — — ~ 2 [
ns — 1 =2ny — 6ey ~ —2Mpesdy e cot (2Nmax> : (A.3.7)

where we defined AN = N™* — N, (in our multifield simulations, we take AN = 55).
For N™* > AN, the spectrum is red and n, has the limit 1 —4/AN as N™* — oo,
and it is easy to see that this is a lower bound. Using dIn k£ ~ dN,, we find that the

running is given by

_dn,

T \?> o mTAN
dN, __(Nmax> o <2NmaX>’ (4.3.8)

which is manifestly negative and has the limit —4/AN? as N™** — oo, which is an

A

upper limit.

We are now interested in comparing this class of single-field models to the full
multifield models with potential (2.2.7). To do so, we identify Vo = A and ¢; =
V26 Mp*t. A non-vanshing second-order term could be identified with c, = || Mp 2.
The coefficient c3 then corresponds to a randomly generated third-order derivative,
which, as we will detail below, we take to be of O(A;?). Already for small field
displacements, A¢ /Ay, = |ni|(An/Mp)?, the third derivative comes to dominate over the
second order term. This justifies dropping the second order term from the potential.

To see roughly how N scales with the various parameters, we fix c3 to

vV 2a(Va 1
c3 = ZA<4H> ~ /2N — (A.3.9)
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where we have denoted the initial gradient direction by ‘1’.! Since we are using the
RMS value of the third order coefficients in the multifield model to fix c3, we expect
that predictions made from the single-field model may capture the mean values of N
(up to some O(1) coefficient), which in turn tells us how the mean values of ns and aj
will scale.?

Plugging our expressions for ¢; and c3 into equation (A.3.4), we see that the total

number of e-folds of the single field model is is given by

3/2
end m 1 Ah

By comparing equation (A.3.10) to the results of the numerical simulations plotted
in Figure 2.5, we see that the scaling of N°"¢ with Ay, N; and ¢ are not followed very
closely. However, in the more special cases when we start with the gradient aligned
with the smallest eigenvalue or when we use the compressed spectrum, these scalings
are reasonably accurate (but the O(1) coefficient is incorrect).

Figure 2.9 shows the single-field prediction of equation (A.3.7) together with the
numerical simulations from the full GRF models. Qualitatively, the single-field model
is in good agreement, and captures both the decrease of ng for N°* not too large,
and its asymptotical constancy for N°"d > 60. However, the precise predictions for n
are inaccurate. The single-field limit for a4 is quite close to value we observe for the
multi-field models. For AN = 55, the value is a, = —0.00132, which agrees with the
baseline model prediction, a, = —0.00143 + 0.00034.

Altogether, we see that the single-field toy model captures several of the qualitative
features of the multifield models, but does not produce quantitatively accurate predic-
tions. This is not surprising, since the single-field model neither takes into account
turns of the trajectory nor the superhorizon evolution of the power spectra. To make

accurate predictions, the full multifield treatment is needed.

!The approximation comes from taking the contribution from a = 1, ((V{4;)?) = 6ASA;°, to be
the same as for a # 1, ((V};)?) = 2A3A; 6. Note that since V, is already fixed to be very small, the
(conditional) mean of Vg, is zero to a very good approximation.

20f course, to find the mean values of all these quantities, one should write them as funtions of the
V,11 and integrate over the PDF. Since our single-field model makes several approximations, however,

there is no need to work with such precision (but we did check that for N°*? the answer is very close).
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A.4 The DBM construction of random manyfield

potentials

In this subsection, we briefly review the construction of random scalar field poten-
tials using non-equilibrium random matrix theory, and we discuss the most relevant
properties and predictions of these models.

A key motivation for the construction of [142] is that inflation is only sensitive to
the scalar potential in the vicinity of the field trajectory, while being independent of its
properties elsewhere in field space. One may take advantage of this fact by generating
the scalar potential only along the dynamically determined field trajectory by gluing
together nearby patches in which the potential is locally defined up to some fixed, low
order. This method avoids the steep computational cost that limited early studies of
multifield inflation in GRF potentials to only involving a few fields, with structure only
over super-Planckian field-space distances [95].

The starting point of the ‘DBM construction’ is the scalar potential defined up to

quadratic order around the point py,
a 1 a b
Vo= (AYPM/N; (w0 + va% + fvab%% : (A.4.1)

Here, APBM sets the vertical scale of the potential, the convention for the prefactor
VNt is explained in [78, 142], and APBM sets the horizontal scale of the potential (we
will shortly return to the interpretation of this parameter). At a nearby point in field
space, say p; separated from py by d¢®, the potential admits a local Taylor expansion

in which the coefficients vy, v,, and vy, only differ from those at py by a small amount:

+ o + o

Vo = Vo U —=a VU, = Vab| —Tornr

p1 Po “lpo ADBM “Ipy “Ipo “lpo ADBM 7

Vab Vab + (5vab . <A42)
p1 Po Po—P1

Here dv,;, captures the effects of cubic (and higher-order) terms on the second derivatives
of the potential. Clearly, by stipulating the rules for how dv,,, is generated, any potential
may be locally generated in this fashion. In a given small patch, the slow-roll equations
for the background and the evolution equations for the perturbations are easily solved,
making it possible to follow the evolution of the system along a string of points,
Do, P1, P2, etcetera, on the dynamically determined inflationary trajectory. By repeating
the procedure of (A.4.2), the potential is ‘charted’ as the field evolves.
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The prescription for constructing dv,, determines the generated potential. To
study multifield inflation with randomly interacting fields, reference [142] considered a
stochastic evolution law for dv,,, leading to an ensemble of random scalar potentials
for each initial choice of parameters. In [142], the law governing the generation of Juvg,
was then chosen so that, over large distances, v,, samples the Gaussian Orthogonal
Ensemble of random symmetric matrices. A simple example of such a law is to take the
independent matrix elements of v, evolve with the Brownian motion of independent
harmonic oscillators. More precisely, the independent elements of dv,, are generated

as Gaussian random numbers with the first two moments given by

_ |09°]
Elova popa Py, APBM
Var[6v? = 0°(1+du) 10071 (A.4.3)
bl —pi1 ab AEBM ' o

This is ‘Dyson Brownian motion’ (DBM), originally proposed as an out-of-equilibrium
extension of the ‘Coulomb gas’ statistical picture of random matrix theory. Given
any initial configuration of v,,(0) at py, the DBM evolution continuously relaxes the
Hessian matrix to a random sample of the GOE. The probability distribution of v,
then becomes a function of the path length, s, in units of APBM [85, 182],

tr (van(s) — qvabm))?)]
20°(1 = )

> exp [—W] . (A4

P(vg(s)) ~exp [—

where ¢ = exp(—s). Thus, APPM has the interpretation of the coherence length over
which the Hessian randomises, the corresponding eigenvectors ‘delocalise’, and the
potential exhibit significant random structure.

In [142], the DBM construction was used to gain access to inflation in scalar
potentials with multiple interacting fields, and in [77, 78], these were used to, for the
first time, study the observational predictions of manyfield models of inflation. Some
modifications and extensions of this prescription were discussed in [32, 159, 186], and
in [97] the predictions of a single-field approximation to the large-Ny DBM models was
elaborated on. (Note however that the observational predictions of this single-field

model were already falsified in [77], as subsequently discussed in [78].)
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Fig. A.1 Multifield aspects of the 100-field example.

A.5 Case studies and a modified GRF potential

In the main body of this chapter, we focussed on the statistical predictions of ensembles
of manyfield models. In this appendix, we discuss two particular examples of randomly
generated inflation models that highlight the general results discussed in this chapter.
We furthermore discuss the case of ‘uplifted’ potentials mentioned in section 2.4.1.
The first inflation model we look at is a 100-field model which, despite significant
superhorizon evolution of the power spectrum, gives little non-Gaussianity. The
second case is a 25-field model which is one of the rare examples with significant
non-Gaussianity at the end of inflation. It is in fact the only model with the uniform
mass spectrum that we found to produce large non-Gaussianity, and we will highlight

what distinguishes this model from the others.

A.5.1 A 100-field model

The spectrum of the random 100-field models that we discuss in this section is shown

in Figure 2.4, and its background evolution if further illustrated by Figure 2.3. Recall
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that the initial conditions for this model are Ay, = 0.4, ¢ = 5 x 10719 mass-squareds
evenly distributed between 7;VoMp? and (3H/2)? with n; = —107%.

The spectral index of this model is ny = 0.978, and its running is given by
as = —0.0018. The amplitude of local non-Gaussianity at the end of inflation is given
by fni, = —0.004.

While the observables produced by this model are simple, the superhorizon dynamics
of the perturbations is not. Figure A.1 shows that the scalar power at the pivot scale
doubles after horizon crossing, and that for several e-folds, the isocurvature-to-curvature
ratio is greater than one (recall that almost all the field-space movement happens
towards the end of inflation). Nevertheless, by the end of inflation the isocurvature
becomes heavily suppressed, the power spectrum freezes out, and fyr, remains small.

To further understand the multifield aspects of this model, we define the vector

ne abwb

Nii = Tia (A-5-1)

so that, according to equation (2.2.64), ¢’ = 25, ;S". Thus, the norm 1, = |n]
determines the strength of the isocurvature-to-curvature sourcing. Figure A.1 shows
that 7, increases during inflation in the 100 field model, and becomes O(1) towards
the end of inflation. However, at this point the isocurvature has decayed exponentially,

so that ¢ remains essentially constant.

A.5.2 A 25-field model giving large non-Gaussianity

In rare cases, we found randomly generated manyfield models with substantially non-
Gaussian perturbations. A particular example of this is a 25-field model with the
uniform initial mass spectrum, A, = 0.4, ¢ = 2 x 107 and 7, = —10~*. The final
spectral index is ng = 0.978 with running oy, = —0.0014. The fractional increase of the
power spectrum is 2.15, and the final ratio of the isocurvature and curvature power
spectra is 0.015. The amplitude of local non-Gaussianities is given by fny = 1.42, far
above the typical values encountered.

What sets this model apart from other models is that the two smallest eigenvalues
of the Hessian remain close to each other throughout most of the trajectory, and
even ‘bounce off” each other relatively early on during inflation. The evolution of
the spectrum of the Hessian is given by the top panel of Figure A.2. When the two
eigenvalues are near each other there is significant power in the isocurvature modes and
we see a drastic increase in fyi,. The generation of fyp, in this model is consistent with

equation (2.5.1): as the two eigenvalues of the Hessian come very close to each other,
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Fig. A.2 Multifield effects in the 25-field model with large non-Gaussianity.
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Fig. A.3 Eigenvalue evolution for a 20-field model with uplifted potential (left) and
comparison of predictions for spectral index computed from ensembles of 1000 models
(right).

slightly perturbed classical trajectories can become widely separated and experience
drastically different levels of superhorizon evolution. We note that n, grows during
inflation and the isocurvature decays rather slowly. The predictions of this model are

likely to be sensitive to the physics of the post-inflationary era.

A.5.3 Manyfield inflation in uplifted potentials

For Gaussian random fields with zero mean, the minima of the potential typically
appear at lower and lower values as the number of fields is increased, and the radius of
the Wigner semi-circle grows. As we live in a vacuum with a small, positive cosmological
constant, it may therefore be interesting to consider GRF potentials which have been
uplifted so that minima typically occur around V = 0, cf. our discussion in section
2.4.1. From equation (2.2.29), we see that the lower edge of the semi-circle will be at
zero at V = 0 if we lift the potential by v/2N;A2.

The typical spectrum of these models is still too broad to make them useful tools
to study multifield inflation, and we again consider the uniform initial spectrum of
equation (2.2.42). The evolution of the eigenvalues of the Hessian of these models
behave somewhat differently from those of the simplest, mean-zero GRFs. An example
of this is shown in Figure A.3: while the dominant effect for small field values is still
the eigenvalue repulsion and roughly conical spread of the eigenvalues, for larger values
of the field, the smallest eigenvalue tends upwards, towards the lower edge of the
equilibrium spectrum.

The upturning behaviour is most clearly visible for small V¢, which is as expected, as

for large N, eigenvalue repulsion dominates. The predictions of these models for n, do
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not differ appreciably from the mean-zero GRF models with similar initial spectra, as
shown in Figure A.3. The uplifted models were generated with the same random seeds
as the zero-mean ones, and have identical odd-order Taylor coefficients (the even-order
Taylor coefficients differ however). The striking similarities in the predictions of these
models can be understood as a consequence of the dominance of the cubic terms in the
potential during a large fraction of the inflationary evolution.

Clearly, there are many ways to use GRFs to construct inflationary models. We
expect that the findings of this chapter will extend also to other constructions of
small-field, saddle-point inflation in which the spectrum relaxes during inflation (with
some eigenvalues taking tachyonic values). However, other, substantially different
constructions (e.g. large-field models or other variants of uplifted models) can certainly

lead to different predictions.



Appendix B

Perturbations in rapid-turn

inflation models

B.1 Linear perturbations

In this Appendix we look at linear perturbations around two-field rapid-turn inflaton
models, first generally and then more specifically at the case of hyperinflation. We do
this using the mathematical framework of vielbeins, in the manner of Achucarro et al.
(7], and begin by looking at the two-field case. For our purposes it is convenient to

write the equations of motion using e-folds as the time-variable, giving
DnDnOd® + (3 — €) Dy + [K26%, + M ]6¢° = 0, (B.1.1)

where M% = M¢% /H? and k = k/aH.
It is convenient to work with perturbations in a vielbein basis, definied by

§¢f =eldg® < 66" = efoe. (B.1.2)

Our basis vectors satisfy e}, e‘] G® = §'7 and e egj] 077 = Gg. The I, J indices are raised

with deltas. From these identities it also follows that
e!Dye’ = —e%Dyel, e!Dyel = —etDyel. (B.1.3)

One can introduce a covariant derivative for these perturbations, given by

dx’
DyX! = - v X7, (B.1.4)
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where the antisymmetric matrix Y/, is defined by
YI — eID a
J = a NeJ. (B. 1 .5)

With this definition this covariant derivative satisfies e!Dy X* = Dy X!, from which it

follows that we can write the equations of motions as
DnDnod! + (3 — €)Dydd! + [k%67, + M, )66" = 0, (B.1.6)

where we further defined M’;, = e/ M¢ Y.
The perturbations are best analysed in the kinematic basis, consisting of the

adiabatic and entropic unit vectors,

€£ = (na’ Sa>Ta 6? = (na7 Sa), (Bl?)

where
n" = (pv" + guw*)/ o, 5% = (=" + Pyw™) /. (B.1.8)
One could also work in the gradient basis defined earlier in this thesis, which was very

useful in solving the background equations of motion, but for the perturbations the

kinematic basis makes the results much more clear. The matrix Y., is by definition

0 —1
Yyl = , B.1.9
J =W (1 O) ( )

given by

and as explained in Chapter 5, in this basis the mass matrix can be written

~ 2 _3
M, = ( “ ”) , (B.1.10)
—3Jw s

up to O(e) corrections (recall from Chapter 5 that M = pin, Mps = i, and My, = Ls)-
To go further than this, we can use the fact that

Dyw=wrv =—pux +w(=3+€e—n), (B.1.11)

and demand that there should exist a conserved adiabatic mode on superhorizon scales,
which implies
s = w? —3n/2 + O(?), (B.1.12)
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to find that generally, the equations of motion may be written

54, 0 0 1 0 S
I 1 S
% 0 0 0 ¢ (B.1.13)
om! k2 +3n/2, w(6—2e+2v—mn), —(3—c¢) 2w 0Tp
on, wn, K2 — s + W2, —2w  —(3—¢€)) \Img
with 67! = dé¢! /AN and ' = d/dN.
B.2 Hyperinflation
In hyperinflation we have R = —2/L* so we can straightforwardly find that the

effective mass matrix is given by

MIJ _ w2 — %77 —w(3 —€e+ %7]) — gn/w ' (B.2.1)
—wB—e+3n) —in/w —w (- Fe+gn) = 30— Tn/w?

The rate of change of the turn rate can be found to be given by dw/dN = (9+w?)n/2w+
O(e?), and using this we find the complete equations of motion

5, 0 0 10\ /s,

56! 0 0 0o 1 ||ss.

S .2, 3 (94+w?)y . (B.2.2)
o K* 4 5, w(6 —2¢ 4 n) + =1, e—3 2w |[|dm,

ol wn, K+ 3w(6—2e+1n) + 3(92%, —2w €—3) \om,

In this formulation, we can infer whether the system is locally stable by computing the
local Lyapunov exponents, i.e. the eigenvalues X of the evolution matrix, for £ = 0. To
first order, they are given by

A= /24 0(2), —3+0(), ; (=34 Vo—82) + 0(0). (B.2.3)

The latter three all have negative real parts, and thus correspond to decaying modes.
The first one is a slowly growing mode corresponding to the direction (1,0,7/2,0)7. This
of course is just our regular superhorizon scale adiabatic perturbation, d¢! o (y/€, 0),
and corresponds to a shift along the trajectory. All other solutions decaying, we see

that the system indeed is stable.
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B.2.1 Multifield extension to hyperinflation

The extension to more than two fields is reasonably straightforward. From equation
4.4.10, we see that the matrix Y7, is block diagonal,

Y, 0
vl =("® , (B.2.4)
0 }/(Nf*Q)

where Y(o) is our previous Y matrix. We cannot know the form of Y{y,_s) without
specifying the other basis vectors, however as we shall see, we will not need to
make an explicit choice for this. Recalling that in an orthonormal basis R!,;; =

— (645071 — 6%105K)/L?, we see that the mass matrix is also block diagonal,

M, 0
ML =("® : (B.2.5)
0 M2

where M) is our old mass matrix. My,_9) is a diagonal matrix given by

(2

Mn;—2) = (‘2} - ?2) I(n;—2). (B.2.6)

Since both the Y and M matrices are block-diagonal, the additional Ny—2 perturbations

decouple from the first two at quadratic order. We can therefore solve for their evolution
independently of the first two.

We now define a new set of fields 6¢'/ (for I > 2) through d¢! = R!;5¢'/, where

the rotation matrix R'; satisfies dR';/dt = —HY |y, 4 % R" ;. These fields satisfy [7]

d5¢/'] d25¢1J
1 I I I
Diop" = R T D/Dio¢p" = R pToa (B.2.7)
giving the equations of motion
d*5¢" dog"” 251 T I J
TR C DR (526", + (R" My, R)' ] 6 = 0, (B.2.8)
but since the mass matrix is diagonal this just reduces to
d*5¢" dog" 21 I J
o BT (K267, + Myy,_p)'s ] 60" = 0. (B.2.9)
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These are just Ny — 2 uncoupled modes (with indices s;), each satisfying

250"
dN?

+(3—¢) oo | [52 _ 30 +whn

vi o ] 5 = 0. (B.2.10)

These modes do not decay, but also do not see the growth that the adiabatic one does
before horizon crossing, and hence are relatively suppressed. Moreover, since their
mass is O(e), they do not affect the stability of the solution.

B.3 Primordial perturbations

To study the observables of rapid-turn inflation models, we need to calculate the
mode functions. Excluding e corrections, but keeping the k-dependence and defining

vl = adp’, the action for the perturbations can be written

1 &k /N9 jo 2w , ;o bw
S = 5/ (271)3d7_ [(vn) + (vy)” + 7(%% — vpvl) + 5 Uns

2 2+ (1—&)w?

+ (2 - k2> v+ (W — /<:2> Ugl. (B.3.1)
T T
The equations of motion can then be written

2 2 4
v+ (k2 — 2> Uy + —wv; — —C;vs =0 (B.3.2)

T T T

2+ (1 —¢&)w? 2 2
vl + <k2 — +(2£)w> vy — —wv; — —C;vn = 0. (B.3.3)

T T T

We will not be able to integrate these equations exactly analytically, but they are
straightforward to solve numerically and we will still be able to say a lot about them
with analytic methods.

To start, we need to understand their initial conditions. Deep inside the horizon,

r = k7 < —1, and here the equations become

d?v,, 2w du,
2
2
470, wdv (B.3.5)

Vg — — =
dx? z dx
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which for large x have the solutions

vy = Oy (—2)“e"™ 4+ Co(—2) e 4 Cy(—x)“e™™ + Cy(—x) “e ™ (B.3.6)
v, = —iCy(—2)™e™ +iCy(—x) e — iCy(—x)“e ™ +iCy(—x) “e ™. (B.3.7)

We would now like fix these with Bunch-Davies initial conditions, but to do so we
need to proceed carefully. The perturbations in the action B.3.1 do not have canonical
kinetic terms, since our frame is rotating. We now define a new set of fields u! through
vl = R ;u’, where the matrix R’ satisfies dR;/dr = —HY . R¥ ;, then the fields
satisfy [7]

du’ d*u’
Tdr Tdr2

The u! fields have canonical kinetic terms, and on subhorizon scales their equations

D' = R! D,Dv’ = R! (B.3.8)

simplify to simple harmonic oscillators. These are the fields which must satisfy our

normal Bunch-Davies initial conditions:

1 .
li I — ik, B.3.9
T (B.3.9)

The good news here is that we now only need to find the matrix R’;:

~1\ 7 In=7) — sin(wln =~
R, =exp |- X / droH| = C?Sw " :Ti) sin(w n__”) . (B.3.10)
1 0/ /n sin(wln =7)  cos(wln =)

We are free to set our initial time here to whatever we want. This is just the time

when we have R’ = §/;,. We therefore set it to 7; = —1/k for our own convenience.

This gives us

Y Un, cos(wln —k7) —sin(wln —k7) 1 L,
im = | —=e
oo | vy sin(wln —k7)  cos(wln —kT) e | 2k

ek ( (1 — i€ ) (—kT) ™™ + (1 + ie")(—kT)™ ) |

= ‘ . ‘ . B.3.11
2v/2k \i(1 —ie")(—=k7)™™ — (1 4 ie")(—kT)™ ( )
This precisely matches the solution we derived earlier, and we have now fixed the
constants C3 and (. Note that these depend on the phase difference between the two
independent oscillators. This is because the v, and v, modes are in fact correlated,

due to the rotation.
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Following [149], we make the equations dimensionless by introducing a scale ko and
defining @ = Vkou, k = k/ko, 7 = ko7, and 7 = dii/d7. The equations then take the

form

Un 0 0 1 0 T,
d | 0 0 0 0 0 I
7o 2; 2+(1:2£)w2 2 270.) 0 74
This has the solution
XU(7) = Ty(7,7) X7 (7), (B.3.13)
where )
ry(rm) = Texp | [ UY (7)a7] (B.3.14)

where 7 is the time-ordering operator. The late time mode-function is then given by
On(7) = TP (7, 7) X (7), (B.3.15)
and its modulus squared by

[0, ()P = T (7, 7)07 (7, 7) X1 (7) (X ) (73) = D7y (7, 7)™ 5 (7, 7) B (7).
(B.3.16)
The I" matrices are real, since it is just a product of matrix exponents of real matrices,
but since the initial values of the mode functions are complex, the mode functions will
stay complex.

The curvature perturbation is given by

1 0¢, 1 vy,

S = — , B.3.17
¢ v2e Mp V2 a ( )
and the power spectrum is thus
1 P, 1 P, k3|, |2
pPo— — %~ v ) B.3.18
7 2 a2 2¢ a? driea? |, _ o ( )

If w =0, we are dealing with two uncoupled harmonic oscillators, and we know that
[149]

H2

m2e

1
8n2e(ar)?

(B.3.19)

|Un|2 =

= opar2 = PC(OJ = 0) =

k=aH k=aH
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To compute the power spectrum for w # 0 we then use [149]

Pe(w,§)

P (0)

o o @ OF _ Pl oF
_’Y( 75) |Un(0>|2 7~.2|@n(0)|2 )

(B.3.20)

evaluated at some point after horizon crossing when the adiabatic mode has frozen
out. We followed [149] and reintroduced a factor of 7 both in the numerator and
denominator to get rid of the time-dependence of the latter.

We now need to find the ¥ matrix. To begin, we define (1) = wln —k7, cleaning

up the algebra, and note

, 1 —2cosasinfcost 5, 14+ 2cosasinfcosf
|| = |vs|* =
2k 2k
vavt = S QSZSO‘SiHQ a4 (B.3.21)

It is moreover easy to show that initially,

(W”) = ik (Z”) +§ (_v”) , (B.3.22)

from which it follows that

_ E7? 4+ w? + 2wk sina — 2(k*7? — w?) cos asin 6 cos 0

2
[l = 2kT2
a2 k212 4+ w? + 2wkt sin a + 2(k*7% — w?) cos asin 6 cos 0
ms|* =
‘ - 2kr?
. e Ok r? — 2ikTw — ew‘a;;—22(k27'2 — w?) cos asin? § (B.3.23)
T

and

. thT(1—2cosacosfsinf) —w(e™ — 2cos asin®f)

Unfln = 2kt
. w(l —2cosacosfsinb) +ikr(e " — 2 cosasin® 0)
nfls = 2kt
. —w(l+2cosacosfsinb) + ikt (e’ — 2 cosasin® 0)
VsTin = 2kt )
o’ = ikT(1+ 2cosacosfsing) + w(e'* — 2 cos asin® ) | (B.3.24)

2kt

Now, deep inside the horizon, where these equations are valid, || > |w|. If this limit

is applied, most expressions above simplify considerably. If we moreover average over
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the phase, the expressions become

1 k272 4 o2
ol =l =55 i =0 maf? = I = S
T Ta = _iZ VpTT = VgTTs = % s = vt = 0. (B.3.25)
T

With these initial conditions, it is then straightforward to numerically compute the

power spectra.

B.4 Power spectra and mode functions in ¢ < (

theories

The integral that computes the ( mode function, and consequently the approximate

growth of the power spectrum, in rapid-turn inflation with £ < 1, is given by

N 3+¢€ . 1
I(N) = —k2 — —2w? 4 —/16K2wW2 204dN. B.4.1
M=/, 1£w)\/ K oW +2\/6W + (34 &)2wid (B.4.1)

where kK = e V. We now define

1652
2 4 2.2 _ 2 2 2 _
(34 &)w! +16W*k? = w3+ 6)%P2 & g _1+(3+£)2w2’ (B.4.2)
giving (after changing integration limits)
/2 ydy
—1 B.4.3
e W -0)" T (BA)

2(3+5)2

with b = 8/(3 + &). One can show that the primitive function of the above is given by

2w

F(y)zj

b—2y
—1)(b—1—1vy) — warctan
Ty e [2¢<y—1><b—1—y>]

\/5 [\/5(2—3b+2y+by)
— w4/ — arctan
b 4/by — 1)(b— 1 —y)

: (B.4.4)

and hence the integral is given by

I(N) = F(b— 1) — F(;/1+ 1682/(3 + £)22). (B.4.5)
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To compute the overall growth, we need to evaluate F(1) and F(b — 1). The
first term contributes nothing in this limit, but the other two terms are somewhat
non-trivial. Both the arguments of the arctan functions diverge in these limits, but
noting that since £ < 1 implies b > 2, one finds (withy =14+dandy=b6—-1—-¢

respectively)
F(1) = lim | —warctan [ b 21 — w\/garctan [_17_2]
§—0+ 2\/5 b v 2bd
o 2w o,
_ 2T (9 - — B.4.
S CICRTSL: (B.46)
—/b—29 2 20(b — 2
F(b—1)= lim [ —warctan —vb=2) w\/7 arctan #
§—0+ 2\/3 b 4\/3
W 2w o,
e lchaduuiny () S = B.4.
N N T (B.47)
We therefore find that the total growth is given by
2y _ 1 ~ (9 _
In(~*) = ]\}EHOOQI(N) ~(2— /34 &mw. (B.4.8)

To get mode functions in the regime of validity of the EFT, we want to evaluate

¢  exp [i(2 - \/@)% FF <\/1 + bﬂ(;i@?#)] , (B.4.9)

in the limit x%/w? < 1. To do so, we need to compute F(1+¢) with § = 8x%/(3+¢)%w?

to the first non-trivial order in x. Upon doing this, one finds

+2w\/:—2\/3+w 20 20

F(149)~F(1 —
(1+96) =~ F(1) =3 =3
= F(1) + |cs|w
where in the first line we used arctan(l/z) = 7/2 — arctan(z) for x > 0 and
arctan(l/z) = —m/2 — arctan(x) for x < 0, and in the second line we used |cs| =

\/ (1 —=¢)/(3+€) and the definition of b. We therefore find the mode functions

¢ x exp {j:(Q —/3 —|—£)% F|es|k] -

(B.4.10)
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