International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

The DAQ Debugger for iIFDAQ of the COMPASS
Experiment

Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract—In general, state-of-the-art Data Acquisition Systems
(DAQ) in high energy physics experiments must satisfy high
requirements in terms of reliability, efficiency and data rate capability.
This paper presents the development and deployment of a debugging
tool named DAQ Debugger for the intelligent, FPGA-based Data
Acquisition System (iFDAQ) of the COMPASS experiment at CERN.
Utilizing a hardware event builder, the iIFDAQ is designed to be
able to readout data at the average maximum rate of 1.5 GB/s of
the experiment. In complex softwares, such as the iIFDAQ, having
thousands of lines of code, the debugging process is absolutely
essential to reveal all software issues. Unfortunately, conventional
debugging of the iFDAQ is not possible during the real data taking.
The DAQ Debugger is a tool for identifying a problem, isolating
the source of the problem, and then either correcting the problem
or determining a way to work around it. It provides the layer
for an easy integration to any process and has no impact on the
process performance. Based on handling of system signals, the
DAQ Debugger represents an alternative to conventional debuggers
provided by most integrated development environments. Whenever
problem occurs, it generates reports containing all necessary
information important for a deeper investigation and analysis. The
DAQ Debugger was fully incorporated to all processes in the iFDAQ
during the run 2016. It helped to reveal remaining software issues
and improved significantly the stability of the system in comparison
with the previous run. In the paper, we present the DAQ Debugger
from several insights and discuss it in a detailed way.

Keywords—DAQ debugger, data acquisition system, FPGA,
system signals, Qt framework.

I. INTRODUCTION

HE DAQ Debugger is a tool to detect, investigate

and fix software problems in the iFDAQ. It has
become an essential component of the iFDAQ during the
run 2016 and 2017 and helped to improve the stability
of the iFDAQ significantly. In general, it is considered
as an useful tool for bugs identification and backward
debugging. The paper describes the route of events trough
development and deployment of the DAQ Debugger for the
intelligent, FPGA-based Data Acquisition System (iFDAQ) of
the COMPASS experiment at CERN.

O. Subrt is with the Czech Technical University, Department of Software
Engineering, Prague, Czech Republic and the European Organization for
Nuclear Research — CERN, Switzerland (corresponding author, e-mail:
ondrej.subrt@cern.ch).

M. Bodlak, V. Jary, J. Novy and M. Virius are with the Czech Technical
University, Department of Software Engineering, Prague, Czech Republic.

D. Steffen is with the Technische Universitidt Miinchen, Physik-Department,
Munich, Germany and the European Organization for Nuclear Research —
CERN, Switzerland.

Y. Bai, S. Huber, I. Konorov and D. Levit are with the Technische
Universitdt Miinchen, Physik-Department, Munich, Germany.

V. Frolov is with the Joint Institute for Nuclear Research, Dubna, Moscow
region, Russia.

International Scholarly and Scientific Research & Innovation 11(12) 2017

The purpose of the COMPASS (Common Muon and Proton
Apparatus for Structure and Spectroscopy) experiment [1] is
the study of nucleon spin structure and hadron spectroscopy.
The experiment, which utilizes a polarized target and is
situated at the Super Proton Synchrotron (SPS) at CERN
in Geneva, Switzerland, was approved conditionally in 1997
and commissioned in 2001. In 2002, the experiment started
operating and has since been making use of the various particle
beams available at the CERN M2 beam line, primarily the
muon and hadron beams. Typical data rate of this experiment
is approximately 1.5 GB/s during 10 seconds on-spill, the
off-spill time varies between 30 and 50 seconds depending
on SPS super cycle.

In 2010, an extension of the experiment, COMPASS-II [2],
has been approved. Based on the approval, the COMPASS-II
program consists of two physics programs — the polarized
Drell-Yan (DY) process in 2014, 2015 and 2018 and Deeply
Virtual Compton Scattering (DVCS) in 2016 and 2017.

The paper is organized as follows. In Section II, an overview
of the essential hardware technologies used in the iFDAQ is
provided, followed by a description of the hardware structure
of the iFDAQ and the role of the technologies in it. Moreover,
the section gives an overview of the software technologies and
the software structure.

Section III deals with the exact definition of debugging. It
describes steps from finding to resolving of defects that prevent
correct operation of computer software or a system.

Section IV is concerned with the implementation of the
DAQ Debugger. It starts with the library description and
discusses the integration procedure to any process in a
detailed way. The implementation part and scenarios give more
information about inner mechanisms of the library.

II. IFDAQ ARCHITECTURE

COMPASS is in operation since 2002. Since then the
amount of collected data is steadily increasing. The major
growth was caused by improvement of the beam intensity
and increase of trigger rates and it is supposed to continue
to rise in future. Over the years, the electronics of the DAQ
was upgraded several times in order to be able to handle
such amount of data. Furthermore, the hardware upgrades
were getting more and more complicated due to obsolete
technology. Consequently, the COMPASS collaboration has
decided for the considerable iFDAQ improvement during the
shutdown in 2013/2014. Nowadays, the final part of hardware
and software replacement finishes.

458 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

Vol:11, No:

12, 2017

| Frontend cards (~300k channels) |

LI 1]]

1 ~1000 links l
~250 Modules
Gandalf
mm ‘ modules 28 VME crates

|
HGeSiCA HGeSiCA
modules modules

CATCH
modules

Slink Slink
multiplexers multiplexers
2-4 SLinks 2-4 SLinks

CATCH

Gandalf
modules dul

64-120x Slinks

(8-15 Slinks
------ * per card x 8 cards

DHCmx

8x SLink

COMPASS Trigger Control System

8x SLink

Y
]

r— g

IPBus

[T

ﬂ/

[| e 1PBUS
- ol >, 8readout

i
il J ~60 TB disk

pool

I 10Gb/s router I

Gateway

CASTOR

Fig. 1 The COMPASS iFDAQ topology

A. Hardware Part

The iFDAQ of the COMPASS experiment can be divided
into five basic layers [9], [11], [12], the first one being
frontend cards which process analog data from 300 000
detector channels and convert them to digital form. A custom
timing and trigger distribution system TCS [3] (Trigger
Control System) uses optical links to provide a unique
event identification and time synchronization to the detectors
frontends, which append these information to the digitized
signal. The frontend cards are connected to data concentrator
modules modules (HGeSiCA, CATCH and Gandalf) which
make up the second layer. The second layer handles the first
level of multiplexing (consolidating multiple data streams into
a single stream). More information about HGeSiCA, CATCH
and Gandalf modules can be found at [15]-[17], respectively.
The data from some of the HGeSiCA and CATCH modules
go through S-Link multiplexers and the data from Gandalf
modules through TIGER VXS data concentrators, creating a
sublayer.

Using S-Links [19], this sublayer is connected to the third
layer, which comprises eight FPGA cards (DHCmx) which
are called Data Handling Cards (DHC). The third layer
handles another level of multiplexing. S-Links are also used
to connect the third layer to the fourth layer, which is made
up of a single DHC with switch firmware (DHCsw) - this
layer handles event building. The fifth layer, again utilizing
S-Links for connection to the previous layer, consists of eight

The connection of an S-Link and the memory of a readout
computer is handled by a Spillbuffer — a PCI Express card with
an FPGA chip and 2GB RAM, which is also partially used for
buffering. The acquired data which are to be stored are then
sent directly to the CERN CASTOR facility [14]. All DHC
cards are configured and controlled over separate network by
processes using the IPBus [13] based on configuration in XML
connection files and address files.

Online data verification and consistency check is performed
by the proposed hardware builder itself. In sum, the hardware
builder forms more comprehensive control system.

In Fig. 1, the current state — used in the run 2016 and 2017
— is given. It consists of only six FPGA cards (DHCmx) on
the level of multiplexing and four readout engine computers.

B. Software Part

Major parts of the iFDAQ software has been implemented
in C++ language. It is supported by MySQL for database
access and Python with bash scripts for minor tasks. PHP,
HMTL, javascript and AJAX technologies have been used
for development of web-based configuration interface. The Qt
framework, a cross-platform application framework, has been
used for all main graphical user interfaces (GUIs) and to speed
up development of core applications. The iFDAQ software [12]
is deployed on the readout engine, the individual computers
of which run the Scientific Linux CERN 6 (SLC6) operating
system [18].

readout computers which run the iFDAQ software. These The DIALOG library [4] (distributed, inter-process,
computers are collectively referred to as the readout engine. asynchronous, library, open, general) 1is used for
International Scholarly and Scientific Research & Innovation 11(12) 2017 459 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

communication between processes of the iFDAQ. The
DIALOG library is a multi-platform library that serves for
an asynchronous one to many communication through the
Ethernet.

In complex softwares, such as the iFDAQ, all features
must be divided into several processes. Then each process is
responsible for its intended purpose and its proper behaviour
is absolutely essential for the overall system stability.

There are six types of processes fulfilling main functions in
the iFDAQ [10]:

o Master process — The Master is a vital process for
the iFDAQ - using DIALOG, it mediates communication
between the Runcontrol GUI and the slave processes as
well as the communication between the slave processes
and the configuration database. It also plays a major role
in the iFDAQ’s error handling.

« Slave-control — The purpose of the Slave-control process
is to configure and monitor the FPGA cards - it is
the only process which communicates with the FPGA
cards directly. All communication with the FPGA cards
is carried out using IPbus.

o Slave-readout — The Slave-readout is a very
resource-demanding process responsible for readout
of data from connected devices, as well as its processing
and subsequent storage. It comprises a large number of
threads.

« Runcontrol GUI — The Runcontrol GUI, which can run
in two different modes, is the means of user interaction
with the iFDAQ. The first mode, Runcontrol, provides
the user with complete control over the iFDAQ as well
as information concerning the current run and status of
the hardware. Only one instance of this mode can run
at a time. The second mode, Monitoring, retains the
information and status providing capabilities, but does not
provide the user with any direct control over the iFDAQ.
There is no practical limit to how many instances of this
mode can run at a time.

o MessageLogger — A process that receives informative
and error messages and stores them into the MySQL
database. It is directly connected to the Master and to
the slave processes via the DIALOG library.

o MessageBrowser — A GUI application that provides an
intuitive access to messages from system (stored in the
database) with an addition of online mode (displaying
new messages in realtime). Equipped with filtering and
sorting capabilities, it is able to run independently from
the whole system in case of emergency.

In the original DAQ, the DATE (Data Acquisition and Test
Environment) package [5] was responsible for all related data
acquisitions tasks such as configuration, run control, load
balancing, readout, event building, etc. Now, part of it is
implemented directly in the firmware of FPGA cards. Since
tools for data quality monitoring or for data analysis are based
on DATE format, the system must support the same data
format as defined by DATE. Transformation of read out data
to DATE format is needed in order to ensure full compatibility
of the iFDAQ with older COMPASS tools.

International Scholarly and Scientific Research & Innovation 11(12) 2017

C. The Motivation for the DAQ Debugger Implementation

The iFDAQ faced several crashes of Master process and
Slave-readout process per day in the runs 2014 and 2015.
Processes crashed without any obvious reason or additional
information.

The possibility of conventional debugging during the real
data-taking is quite limited.

o It would waste the beam time during crash investigation.

o The performance of debugged processes would be lower.

« The conventional debugging process would increase load

on readout engine computers.

o The iFDAQ expert would have to be present 24x7 on site.

In sum, the conventional debugging is possible only during
so called machine development, i.e., time without beam.
Unfortunately, the errors do not occur without the real
data-taking and all processes are running smoothly. Under the
above mentioned circumstances, it gets caught in a vicious
circle. Conventional debugging is not usable and effective for
the error detection.

The iFDAQ group made a decision to implement their own
DAQ Debugger. It should help to detect remaining software
issues and improved significantly the stability of the system.

III. CONVENTIONAL DEBUGGING

In computer programming and engineering, debugging
[6]-[8] is a multistep process that involves attempt to reproduce
the problem and isolating the source of the problem. Then the
second phase of fixing the problem follows. It can be either
fully corrected or determined a way to work around it. The
final step of debugging is a verification that the fix works and
nothing else is broken.

Once an error has been identified, it is essential to detect the
error in the source code. Integrated development environment
(IDE) is wusually very useful in error detection. The
state-of-the-art IDEs provide developers with a stand-alone
debugger tool or the debugging component helping developers
to find the error in the source code.

The standard debugging tool provides the programmer with
the capability to examine program states (values of variables,
call stack, etc.) and track down the origin of the problem.
The control of program execution is assured by setting up a
“breakpoint” and run the program until that breakpoint. Once
the program meets any breakpoint, the program execution
stops and waits. The control of program execution also offers
to execute just the next line of code, step into the body of
function/method or even change the value of variables.

In software development, debugging is part of the software
testing process and is an essential part of the entire software
development life cycle. The debugging process starts as soon
as a release candidate is implemented and continues step by
step to form a final version of software.

IV. DAQ DEBUGGER

The DAQ Debugger is a library helping with the iFDAQ
error detection. The DAQ Debugger was fully incorporated to
all processes in the iFDAQ during the run 2016 and 2017.
In general, the integration is very simple to any process. The

460 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

main goal is to produce a report concerning the process crash.
The report must contain as much information as possible.
Afterwards, the reports are investigated by iFDAQ experts
trying to detect the source of problem. After understanding of
a problem, the fix is released and tested. The DAQ Debugger
is designed in order to meet the following requirements:
o The integration to running system requires interface for
an easy use.
« It does not affect the process performance.
« It does not increase load on readout engine computers.
o It provides with reports in /tmp folder containing stack
trace of all threads and memory dump.

A. Description

The DAQ Debugger is a library easily integrated to a process
and standing in the background of a running process. If the
process is running without any crashes, basically, the DAQ
Debugger is only part of the process without any action taken
and behaves during the whole process life cycle in this way.

At the operating system level, the fault is caught and a signal
is passed on to the offending process, activating the process’s
handler for that signal. Different operating systems have
different signal names to indicate that a fault has occurred. For
instance, in case of a segmentation violation, a signal called
SIGSEGV (abbreviated from segmentation violation) is sent
to the offending process on Unix-based operating systems.

The main idea of action taken in the right instant is based
on catching of system signals (SIGSEGV, SIGABRT, etc.). In
case of a process crash, the following procedure is started:

o The system signal is caught and forwarded to a signal

handler in the DAQ Debugger.

o The memory dump is produced and stored.

o The whole stack trace for each thread is generated with

file names and code line numbers.

o The report containing the caught signal and stack trace

for each thread is created in /tmp folder.

o The process is exiting with the caught signal.

B. Integration

The DAQ Debugger is designed bearing in mind that it has
to be integrated in a running system, so it has to be made as
easy to use as possible. To incorporate it to any process, the
static initialization method is called in a single line, as you
can see in the following example showing the integration of
the DAQ Debugger into a Qt-CoreApplication.

#include <QCoreApplication>
#include "dagdebugger.h"

int main(int argc, char **argv)

{
QCoreApplicationx app = new QApplication(argc, argv);
DAQDebugger: :init (argv[0]);
return app->exec();

The first argument of DAQDebugger: :init (argv[0])
is the name of a process. Then the name of a process is
included in the report file name.

Since the DAQ Debugger is a library, it must be located on
the system path. Generally, LD_LIBRARY_PATH is used to

International Scholarly and Scientific Research & Innovation 11(12) 2017

specify directories of libraries. It is also necessary to add the
following lines to the Qt-project file (*.pro) in order to create
the makefile correctly.

INCLUDEPATH += PATH_TO_DAQ_ DEBUGGER/
DEPENDPATH += PATH_TO_DAQ_DEBUGGER/
LIBS += -L PATH_TO_DAQ_DEBUGGER -1DAQDebugger

QMAKE_CXXFLAGS += -rdynamic -g
QOMAKE_LFLAGS += -rdynamic -g

QOMAKE_CXXFLAGS +=

-include PATH_TO_DAQ_DEBUGGER/gthreaddagdebugger.h
QMAKE_CXXFLAGS +=

—include PATH_TO_DAQ DEBUGGER/gthreaddagdebugger_macro.h

GCC flags -rdynamic and -g enable use of extra
debugging information. The -rdynamic option instructs
the linker to add symbols to the symbol tables that are
not normally needed at run time. The —-g option produce
debugging information in the operating system’s native format.

The —-include option processes file as if #include
"file" appeared as the first line of the primary source file. If
multiple —include options are given, the files are included
in the order they appear on the command line. Demand on
—include statements is discussed in the implementation
subsection in a deeper way.

The process should be compiled without any optimizations,
e.g, -0, -01, -02, —03 or —-Os, if possible. The default value
usually is =00 that means do not optimize. It is important for
addr2line command that is used for detection of an exact
file name and a line number crash.

Using optimizations, the compiled source code could be
inline and detection of an exact file name and a line
number crash is then much harder. Hence using addr2line
command on processes compiled with optimizations could
lead to shifted or mistaken line numbers.

On the other hand, optimizations are very useful for
compilation of libraries due to libraries’ shared and linking
purpose.

To sum up, turning on optimization flags makes the compiler
attempt to improve the performance and/or code size at the
expense of compilation time and possibly the ability to debug
the program.

C. Implementation

The system signals to catch are specified in the
DAQDebugger: :init (argv[0]) static method. By
default, signals SIGABRT, SIGSEGYV, SIGILL and SIGFPE
are registered. The signals to catch can be added or removed
there.

Whenever the registered signal is caught, it is caught in
the thread causing the crash and the stack trace of thread
can be easily produced. It could be enough in single-threaded
processes. Unfortunately, the solution must be more general
and considered even multi-threaded processes. The solution
must provide the following crash procedure:

o The system signal is caught in the crashed thread.

o All remaining threads are immediately suspended.

« Store memory dump.

o Get stack trace of the crashed thread.

o Get stack traces of suspended threads.

461 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

List of QThread attributes
List of QThread methods

QThreadDAQDebugger

- gThreadDAQDebuggerHelper : QThreadDAQDebuggerHelper*
+ currentThread() : QThreadDAQDebugger*
+ removeThreadSlot()

+ addThreadSignal(thread : QThreadDAQDebugger*)
+ removeThreadSignal(thread : QThreadDAQDebugger*)

QThreadDAQDebuggerHelper

+ addThreadSlot()
+ addThreadSignal(thread : QThreadDAQDebugger*)

DAQDebugger

process : QString
QrocesName : QString
- mutex : QMutex
- threads : QMap<Qt::HANDLE, QThreadDAQDebugger*>
- crashedThread : Qt::HANDLE
- DFILE : FILE*
- threadCounter : quint32
- sigActionThreadControlSignalMask : sigset_t
= - igActionThreadControlSignal : struct sigaction
- sigActionThreadControlSuspend : struct sigaction
- abortHandler(signum : int)
- abortHandler2(signum : int)
- suspendHandler(signum : int)
- readSystemCommand(command : QString) : QString
- printStackTrace(out : FILE*, max_frames : unsigned int)
- getThreadStackTrace(signum : int)
+ init(processlnit : QString, processNamelnit : QString)
+ addThreadSlot(thread : QThreadDAQDebugger*)
+ removeThreadSlot(thread : QThreadDAQDebugger*)

Fig. 2 Class diagram of the DAQ Debugger

o The crashed thread (whole process) is exiting with the
caught signal.

To register a system signal, the following statement is
executed.

// to register a system signal
signal (signal, signalHandler);

POSIX [20] defines a standard threading library API in
order to control and send suspend/resume signals to threads.
All important statements are given in the following source
code with the explanations in comments.

// to send a signal to thread ID
pthread_kill ((pthread_t)threadID, signal)

// to catch the sent signal in a thread

struct sigaction sigActionThreadControlSignal;

sigfillset (&sigActionThreadControlSignal.sa_mask);
sigdelset (&§sigActionThreadControlSignal.sa_mask, signal);

sigActionThreadControlSignal.sa_flags = 0;
sigActionThreadControlSignal.sa_handler = signalHandler;
sigaction(signal, &sigActionThreadControlSignal, NULL);

// to suspend a thread

sigset_t sigActionThreadControlSignalMask;

sigfillset (&sigActionThreadControlSignalMask) ;
sigdelset (&sigActionThreadControlSignalMask, signal2);

sigsuspend (&sigActionThreadControlSignalMask) ;

The signalHandler is registered in sigaction and
it is triggered if the signal is sent to the thread. Moreover,
the thread is suspended by sigsuspend with given signal
mask and it resumes if the signal2 is sent to the thread.

At this point, the control of threads is prepared, the
DAQ Debugger can obtain the stack trace with file names
and line numbers for each thread. Using backtrace
and backtrace_symbols, the stack trace is generated.

International Scholarly and Scientific Research & Innovation 11(12) 2017

The backtrace command returns the series of currently
active function calls for the process. Moreover using
backtrace_symbols, the symbolic description of function
calls is translated from information obtained by backtrace
to function names and hexadecimal addresses. Unfortunately,
it returns each line of stack trace in a hexadecimal address
format and thus it is not easily readable for a human being.
However, to overcome this drawback, the DAQ Debugger
is using addr2line. It is capable to convert hexadecimal
addresses into file names and line numbers. In the following
code, you can see a short example.

// storage array for stack trace address data
unsigned int max_frames = 63;
void* addrlist[max_frames + 1];

// retrieve current stack addresses
unsigned int addrlen = backtrace (addrlist, sizeof
(addrlist) /sizeof (voidx));

// resolve addresses into strings containing
"filename (function + address)"
charx* symbollist = backtrace_symbols (addrlist, addrlen);

for (unsigned int i = 1; i < addrlen; i++)
std::cout << readSystemCommand
("addr2line -e " + processName + " " + getHexAddress
(symbollist[i])) << std::endl;

The stack trace is one thing, on the other hand, it is
still not sufficient for the error detection. To satisfy the
comprehensive understanding of crash, the memory dump is
absolutely essential. The DAQ Debugger is using gcore
command for memory dump storage.

Another challenge in the design of the DAQ Debugger is
the registration of all threads without violating the concept of
easy integration. In order to be able to send signals and to
control threads in case of a crash, it is necessary to obtain all

462 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

thread IDs at the beginning of a process.

Unfortunately, it is not an easy task to obtain IDs
of all threads in a process. Moreover, it is even more
complex if the integration of DAQ Debugger should be
as simple as possible. The only way how to get thread
ID is executing the part of code in this thread asking
for thread ID. So, it must be ensured the execution
of DAQDebugger::addThreadSlot (thread) static
method in each thread. Each thread must register itself in
the DAQ Debugger immediately when it starts its execution.
It uses started() signal in QThread object being
emitted when the thread starts executing. The functionality
of QThread object must be extended in order to cover
the registration in the DAQ Debugger and its integration
would be still simple to any process. This extension is
hidden and added by -include statements to Qt-project
file (*.pro). File gthreaddagdebugger.h contains the
definition of thread satisfying the required functionality
and inheriting from QThread object. Moreover, file
gthreaddagdebugger_macro.h replace all QThread
objects for QThreadDAQDebugger objects by preprocessor
definition in the whole process as follows.

‘#define QThread QThreadDAQDebugger

In Fig. 2, you can see the DAQ Debugger class diagram
being obtained by the described integration process.

QThreadDAQDebugger

Create and start
QThreadDAQDebugger

]

-y qThreadDAQDebuggerHelper

addThreadSlot()

Signal !
-QThreadDAQDebugger ad dThreadSEgna\(thread)

started |

v

DAQDebugger
addThreadSlot(thread)

Event Loop Process events

Is QT hread DAQDe bugger
running

QThreadDAQDebugger
removeThreadSlot()

! removeThreadISigna\(thread)

A4

| Signal
- —-QThreadDAQDebugger
finished

DAQDebugger

removeThreadSlot(thread)

Fig. 3 Flow diagram of the thread life cycle in the DAQ Debugger

The way how to introduce the DAQ Debugger to each
thread has been described. It remains to discuss all most

International Scholarly and Scientific Research & Innovation 11(12) 2017

common scenarios, including the thread registration procedure,
in the DAQ Debugger in a deeper way. It is given in a next
subsection.

D. Scenarios

Basic scenarios are emphasized in this subsection dealing
with how one or more components interact inside the DAQ
Debugger or with the DAQ Debugger itself.

The description of thread life cycle gives a comprehensive
insight from a global point of view. The diagram is shown in
Fig. 3. The QThreadDAQDebugger object inheriting from
QThread object is created and the thread is started. The
signal started () is emitted and it is connected to the slot
addThreadSlot () of gThreadDAQDebuggerHelper
object. This object has been already moved to the
thread of QThreadDAQDebugger object in the
QThreadDAQDebugger object constructor since it must
live in this thread. This is the way how to force the execution
of DAQDebugger::addThreadSlot (thread) static
method in this thread and thus the DAQ Debugger gets
thread ID. Finally, the slot addThreadSlot () of
gThreadDAQDebuggerHelper object is emitting the
signal addThreadSignal (thread) being connected
to the DAQDebugger::addThreadSlot (thread)
static method. This concept ensures the execution of
DAQDebugger: :addThreadSlot (thread) in our
thread.

Moreover, Fig. 3 covers the concept when a thread is
finishing its execution. The thread must unregister in the
DAQ Debugger. When the QThreadDAQDebugger object
finishes its execution the signal finished () is emitted
and it is connected to the slot removeThreadSlot ()
of QThreadDAQDebugger object. There the signal
removeThreadSignal (thread) is emitted and it goes
directly to the removeThreadSlot (thread) of DAQ
Debugger. In comparison with the registration procedure,
the unregistration procedure is much simpler since the
DAQ Debugger already knows the finished thread. Since,
the QThreadDAQDebugger object lives in the main
thread no one has to worry about handling of emitted
QThreadDAQDebugger signals after the thread has finished
its execution. These emitted signals are handled by the main
thread.

To finish the discussion concerning the thread registration
procedure properly, the description of registration of n € N
threads when a process starts is given. In Fig. 4, the diagram
begins with the main thread. First of all, the main thread starts
its execution. It registers system signals and registers the main
thread in the DAQ Debugger. Whole mentioned functionality
is encapsulated in the DAQDebugger: :init (argv[0])
static method. Then the main thread continues its execution
and processes events. All remaining of n € N threads are
registered in the DAQ Debugger afterwards. The detail of
registration procedure for each thread was already mentioned
and it triggered with the emitting of signal started (). Of
course, whenever some of n € N threads finish their execution,
they are unregistred from the DAQ Debugger. For simplicity

463 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

Main Thread

Create and start Main Thread

Register system
signals handling

Thread #1

Thread #n

Register Main
Thread in DAQ
Debugger

Create and start Thread #1

Create and start Thread #n

Register Thread in
DAQ Debugger

Event Loop
Process events

¢ —-Signal Thread

! started
1
_

I

Register Thread in
DAQDebugger

_ Signal Thread
started

Event Loop

Process events Process events

IsThread #1
running

IsThread #n
running

Fig. 4 Flow diagram of the thread registration procedure in the DAQ Debugger

reasons, the unregistration procedure is not depicted in the
diagram.

Probably the most important scenario is the crash of a
process. This situation is described in Fig. 5. From a process
start, the DAQ Debugger is a part of a process and standing in
the background of a running process. If the process is running
smoothly without any single crash, the DAQ Debugger does
not take any action. For this reason, the DAQ Debugger does
not affect the process performance and does not increase load
on readout engine computers at all.

The system signals are registered, the process continues
its execution. Once the crash of process occurs, the DAQ
Debugger handles it. The system signal is emitted and it is
caught by the signal handler of crashed thread in the DAQ
Debugger. At this point, it is important to realize the crashed

International Scholarly and Scientific Research & Innovation 11(12) 2017

thread where crash has occurred is responsible for the control
of all remaining threads, memory dump storage and creation
of crash report.

Firstly, the crashed thread sends the suspend signal to all
remaining threads. It is necessary to suspend them otherwise
they would continue their execution and thus the exact point of
crash would be lost. Then the memory dump is produced and
stored. The memory dump can be easily loaded to Qt Creator
(Debug — Start Debugging — Load Core File) and memory
can be investigated as much as by conventional debugging.

Secondly, the report file is created and open for writing. The
crashed thread writes its stack trace to the file.

Afterwards, the control of all suspended threads is started.
The crashed thread sends the resume signal to first suspended
thread and the crashed thread itself is suspended. The resumed

464 scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

Start of process

Register system
signals handling

handler

Execution continues

Suspend all

remaining

registered
threads

Process crashed

Get memory
dump
Signal is
raised ____ Get stack trace

of the crashed
thread

Get stack
traces of
suspended
threads

Signal handler
returns

. Signal handler
Process terminates g
returns

Register signal

v

Signal handler of the crashed thread

~====Suspend thread signal====------
1

A4

Thread #1 Thread #n

Get next
suspended SO0
Thread

¥ v

_Resume thread
signal

Suspend the

crashed thread Jiead #i

Resume the

crashed thread of Thread #i

Is next
suspended
Thread

Fig. 5 Flow diagram of the thread crash caught and handled by the DAQ Debugger

thread writes its stack trace to the file, then sends the resume
signal to the crashed thread and is suspended again. The
resumed crashed thread sends the resume signal to second
thread and it is again suspended. The second resumed thread
writes its stack trace to the file, then sends the resume signal
to the crashed thread and is suspended again. It continues in

International Scholarly and Scientific Research & Innovation 11(12) 2017

465

this way to the last suspended thread. The resumed crashed
thread (resumed by the resume signal sent from (n — 1)-th
thread) sends the resume signal to n-th thread and it is again
suspended. The n-th resumed thread writes its stack trace to the
file, then sends the resume signal to the crashed thread and
is suspended again. This suspend/resume procedure ensures

scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

International Science Index, Physical and Mathematical Sciences Vol:11, No:12, 2017 waset.org/Publication/10008261

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences
Vol:11, No:12, 2017

the serial writing to file and proper thread control. Finally,
the report file is closed and process is exiting with the caught
signal in the crashed thread. The whole control of threads,
memory dump storage, opening and closing of report file is
controlled by the crashed thread.

V. CONCLUSION

The DAQ Debugger has been incorporated to all processes
of the iIFDAQ in August 2016 and since then it helps with the
error detection. It does not affect the process performance and
does not increase load on readout engine computers.

Before the DAQ Debugger integration, the iFDAQ was
facing four crashes of Mater process per day at average
and several crashes of Slave-readout as well without any
explanation. For this reason, to detect and resolve system
crashes, the DAQ Debugger has been implemented.

Firstly, it focused on the understanding of Master process
crashes. The DAQ Debugger helped significantly to detect
all remaining software issues in Master process so it became
stable since the end of September 2016. Since then no crash
of Master process has been observed.

It improved the stability of Slave-readout as well. At the end
of run 2016, the iFDAQ reached the crash rate of Slave-readout
at level of one crash per four days. In July 2017, all remaining
software issues in Slave-readout have been fixed. Since then
the iFDAQ is stable and without any single crash.

The DAQ Debugger fulfilled initial demands and purpose
and the process crash investigations based on provided crash
reports continue.

REFERENCES

[1] P. Abbon, et al.the COMPASS collaboration): The COMPASS
experiment at CERN. In: Nucl. Instrum. Methods Phys. Res., A 577,
3 (2007) pp. 455518.

[2] V. Y. Alexakhin, et al. (the COMPASS Collaboration): COMPASS-II
Proposal. CERN-SPSC-2010-014, SPSC-P-340. May 2010.

[3] B. Grube: A Trigger Control System for COMPASS and a Measurement
of the Transverse Polarization of Lambda and Xi Hyperons from
Quasi-Real Photo-Production.. Munich. Technical University Munich.
2006. Doctoral thesis.

[4] Y. Bai, et al.: The Communication Library DIALOG for iFDAQ of the
COMPASS experiment. 19th International Conference on High Energy
Physics — ICHEP 2017, Paris, France, September 2017. International
Journal of Mathematical, Computational, Physical, Electrical and
Computer Engineering, vol. 11, issue 9, pp. 353-362, World Academy
of Science, Engineering and Technology.

[5] T. Anticic, et al. (ALICE DAQ Project): ALICE DAQ and ECS User’s
Guide CERN, EDMS 616039, January 2006.

[6] Debugging definition. (online). Available at: http://searchsoftwarequality.
techtarget.com/definition/debugging. (Accessed: 2017-09-01).

[7]1 T. Grotker, et al.: The Developer’s Guide to Debugging. Second Edition,
Createspace, 2012. ISBN 1-4701-8552-0.

[8]1 G.J. Myers: The Art of Software Testing. John Wiley & Sons inc, 2004.
ISBN 0-471-04328-1.

[91 M. Bodlak, et al.: Developing Control and Monitoring Software for the

Data Acquisition System of the COMPASS Experiment at CERN. Acta

polytechnica: Scientific Journal of the Czech Technical University in

Prague. Prague, CTU, 2013, issue 4. Available at: http://ctn.cvut.cz/ap/.

M. Bodlak, et al.: Development of new data acquisition system for

COMPASS experiment. Nuclear and Particle Physics Proceedings, 37th

International Conference on High Energy Physics (ICHEP). AprilJune

2016, vol. 273275, pp. 976981. Available at: http://dx.doi.org/10.1016/

j-nuclphysbps.2015.09.153.

[10]

International Scholarly and Scientific Research & Innovation 11(12) 2017

[11]

[12]

[13]

[14]

[15]

[16]

[17

[18]
[19]

[20]

466

M. Bodlak, et al.: FPGA based data acquisition system for COMPASS
experiment. Journal of Physics: Conference Series. 2014-06-11, vol.
513, issue 1, s. 012029-. DOI: 10.1088/1742-6596/513/1/012029.
Available at: http://stacks.iop.org/1742-6596/513/i=1/a=0120297key=
crossref.78788d23de2b4a6a34d127c¢361123b8c.

M. Bodlak, et al.: New data acquisition system for the COMPASS
experiment. Journal of Instrumentation. 2013-02-01, vol. 8, issue 02,
C02009-C02009. DOI: 10.1088/1748-0221/8/02/C02009. Available
at: http://stacks.iop.org/1748-0221/8/i=02/a=C02009 ?key=crossref.
a76044facdf29d0fb2 1f9eefe3305aa5.

C. Ghabrous Larrea, et al.: [Pbus:
control system for xTCA hardware,
doi:10.1088/1748-0221/10/02/C02019.
CASTOR - CERN Advanced Storage manager. Available at: http:
//castor.web.cern.ch. [Accessed: 2017-05-01]

Electronic developments for COMPASS at Freiburg. Available at: http:
//hpfr02.physik.uni-freiburg.de/projects/compass/electronics/catch.html.
(Accessed: 2017-05-01).

The GANDALF Module. (online). Available at: http://hpfrO3.physik.
uni-freiburg.de/gandalf/pages/information/about- gandalf.php?lang=EN.
(Accessed: 2017-05-01).

iMUX/HGESICA module. (online). Available at: https://twiki.cern.ch/
twiki/pub/Compass/Detectors/FrontEndElectronics/imux_manual.pdf.
(Accessed: 2017-05-01).

Linux at CERN. (online). Available at: http://linux.web.cern.ch/linux/
scientific6/. (Accessed: 2017-05-01).

S-Link — High Speed Interconnect. (online). Available at: http://hsi.web.
cern.ch/HSI/s-link/. (Accessed: 2017-05-01).

POSIX - Standards. IEEE. (online). Available at: http://standards.ieee.
org/develop/wg/POSIX.html. (Accessed: 2017-09-20).

a flexible
2015 JINST

Ethernet-based
10 C02019.

scholar.waset.org/1307-6892/10008261

http://waset.org/publication/The-DAQ-Debugger-for-iFDAQ-of-the-COMPASS-Experiment/10008261
http://scholar.waset.org/1307-6892/10008261

