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Abstract
This work focuses on quantum machine learning and analyzes the power of one single qubit to solve classical machine
learning problems. We explore possible strategies to address traditional supervised, unsupervised, and reinforcement learning
tasks. In particular, we study binary and multinomial classification, regression problems, time series forecasting, clustering,
and quantum reinforcement learning. Our results suggest that the same methodology could be used to address all three types
of learning with different measurement strategies and, despite the strong limitation of reduced data dimensionality of the
candidate problems, a single qubit can achieve similar or even improved performance with respect to state-of-the-art classic
machine learning methods in many cases. As simulating the evolution of one qubit state is computationally efficient, our
study enables the possibility to use the qubit model as a candidate solution to implement simple decision-making machine
learning models in hardware with extremely lowmemory resources such as embedded systems or edge devices. The outcomes
provided could be also of interest in academia and for the construction of demonstrators using low-scale contemporary quantum
hardware.

Keywords Quantum machine learning · Quantum computing · Quantum supervised learning ·
Quantum unsupervised learning · Quantum reinforcement learning

1 Introduction

Research in quantum machine learning (QML) (Ganguly
2021) has increased substantially in the last decade thanks to
advances in the construction of quantum computer hardware.
The goal of QML is to adapt classical machine learningmod-
els and to create pure or hybrid QML ones that help solving
supervised, unsupervised, and reinforcement learning tasks
with an improvement in either efficiency or performance. The
literature offers a wide variety of QML models in the three
types of learning, ranging from classification (Schuld et al.
2014; Maheshwari et al. 2022) quantum neural networks,
linear regression (Wang 2017), or support vector machines
(Gentinetta et al. 2024) to more complex approaches includ-
ing quantum generative adversarial networks (Zoufal et al.
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2019) or convolutional networks (Rajesh and Naik 2021)
in supervised learning, clustering with quantum K -means
and K -medians (Aïmeur et al. 2007; Yarkoni et al. 2021) or
autoencoders (Wu et al. 2024) in unsupervised learning, and
parameterized quantum circuits (Chen et al. 2019) and pol-
icy optimization algorithms (Cherrat et al. 2023) in quantum
reinforcement learning (Andres et al. 2022). There are also
approaches in the field of knowledge representation, as for
instance quantum decision trees (Heese et al. 2022) or quan-
tum rule-based systems (Moret-Bonillo 2018; Cuellar et al.
2024).

The development progress of quantum computers is rising
at an astonishing speed, and so it is the advances in QML.
Current hardware and simulators enable the possibility to
create more complex QML models with better efficiency
than classical ones according to the aforementioned ref-
erences, and the scalability is becoming a more pressing
matter in the field as it is highlighted in Gentinetta et al.
(2024). In this context, our work is motivated by the fol-
lowing question: Does a single qubit have a practical use in
quantum machine learning? If so, the proposal would have
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obvious limitations regarding to the low dimensionality of
the possible candidate problems to be addressed, as well as
its scalability. Previous approaches have addressed classical
low-dimensional machine learning problems with success,
such as the Iris flower dataset (Piatrenka and Rusek 2022)
in supervised learning, Variational quantum circuits in rein-
forcement learning benchmark environments (Skolik et al.
2022; Andres et al. 2023), or quantum clustering in synthetic
benchmark data (Poggiali et al. 2024). However, all these
approaches use more than one qubit to solve their problems.

There are not much works in the literature that have
explored previously the power and limitations of using a
single qubit in QML. One of them is the work (Yu et al.
2022), which studies the limitations of a quantum neural net-
work with a single qubit for regression. The work (Tapia
et al. 2023) proposes a didactic approach of a quantum neu-
ral network encoded into a single qubit to solve a real-world
fraud detection dataset as a binary classification problem. On
the other hand, the reference (Karimi et al. 2023) explores
quantum coherence in a binary classification task with one
qubit. Another work that addresses one qubit QML classi-
fication tasks is Pérez-Salinas et al. (2020), which explores
how data re-uploading can help in the classification of three
two-dimensional circles in an image containing up to four
classes. Theworkwas extended inPérez-Salinas et al. (2021),
where a proof that a qubit can hold universal approximation
capabilities is discussed. From our point of view, this is a
remarkable finding since a single qubit can fit a bounded con-
tinuous function as accurately as one can expect. However,
this achievement could have limitations in practice, since the
improvement in accuracy comes at the cost of increasing the
model size in terms of parameters to be optimized and there-
fore the circuit depth. If this number is too high, then the
optimization algorithms could get trapped into local optima
solutions as it happens with the single-layer neural network
universal approximators. The work also proposes a template
circuit scheme as a baseline to solve 1-D and 2-D continuous
functions experimentally as a proof of concept.

Other recent advances in the study of the capabilities of
one single qubit to solve computer science and ML prob-
lems are Easom-McCaldin et al. (2024); Goswami et al.
(2024): the work Easom-McCaldin et al. (2024) explored the
encoding of images into a single qubit and solved three state-
of-the-art classification machine learning problems: the digit
and Fashion MNIST and the ORL face dataset. Performance
results are below the classical machine learning standards,
although the approach uses a number of resourcesmuchmore
lower than traditional methods. On the other hand, the arti-
cle (Goswami et al. 2024) explores how a graph describing
an instance of the traveling salesman problem can be solved
with one qubit. Experimental results show the success of the
approach to solve instances of symmetric and asymmetric
graphs ranging from 5 to 8 nodes.

In this piece of research, we provide an empirical study
about the benefits and limitations of using a single qubit
to solve classical machine learning problems beyond clas-
sification and regression as they have previously addressed
in the literature. Of course, they are relevant tasks within
machine learning and we include datasets of these types,
but we also extend our experiments to further problems
such as time series forecasting, clustering, or reinforce-
ment learning, covering the three main types of machine
learning categories regarding supervised, unsupervised, and
reinforcement learning. Besides the experimental study, we
also provide methodological guidelines for the design of
quantum encoding and measurement, which have been key
aspects in our work. Our results suggest that a single qubit
can be used to solve different types of problemswith a perfor-
mance similar to classical machine learning methods. Thus,
the proposal stands as a possible way to save computational
resources in quantum hardware and simulation, but also as a
mechanism to substitute classical models in hardware with
low resources such as microcontrollers, embedded systems,
or edge devices. The remaining of the manuscript is struc-
tured as follows: Sect. 2 describe the tools from quantum
computing that are relevant for our work, as well as the
proposed qubit computation model and methodology. After
that, Sect. 3 describes ten classical machine learning prob-
lems covering all three types of learning and discusses the
results. Finally, Sect. 4 concludes.

2 Methods

2.1 Quantum computing tools

The fundamental tool used in this manuscript from quan-
tum computing is the qubit. Usually, the mathematical model
of a qubit is described as an element of a complex vector
subspace in C

2 as |ψ〉 = α0|0〉 + α1|1〉 subject to the con-
straint |α0|2 + |α1|2 = 1. As α0, α1 are complex numbers,
other usual representations of a qubit express these coeffi-
cients in magnitude and phase as |ψ〉 = r0eiθ0 |0〉+ r1eiθ1 |1〉
or more commonly as |ψ〉 = eiθ0

(
r0|0〉 + r1eiθ |1〉

)
where

θ = θ1 − θ0 is the relative phase and eiθ0 a global phase.
The global phase term is usually omitted if a quantum
state is described over a single qubit because it does not
affect measurement, so that the magnitudes and phase of
the qubit can be also expressed in trigonometric form as
|ψ〉 = cos(φ/2)|0〉 + sin(φ/2)eiθ |1〉. In the remaining of
the manuscript, we refer mostly to the magnitudes and rel-
ative phase representation, although the trigonometric form
is also of interest as a link to the geometric representation of
the qubit in the Bloch sphere.

The Bloch sphere is another resource from the quantum
computing area that is widely referenced in this manuscript,
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since all one qubit gates can be explained geometrically in
terms of rotations of a qubit in the Bloch sphere up to a global
phase effect. A single qubit can be mapped to a point in the
surface of the Bloch sphere, and its coordinates are easily
calculated from the trigonometric representation as shown in
Eq.1. Figure1 shows a qubit |ψ〉 in the Bloch sphere, where
the angle φ controls the value of the magnitudes and θ the
value of the phase.

x = sin(φ) · cos(θ)

y = sin(φ) · sin(θ) (1)

z = cos(φ)

In our approach, we evolve the qubit quantum state using
the gate model, and we make an extensive use of param-
eterized quantum gates to do so. More specifically, our
model structure includes Rx (φ), Ry(φ), and Rz(λ) rotation
gates in the three axes of the Bloch sphere. The unitary
matrices of these gates are included in Eqs. 2–4 for article
self-completeness.

Rx (φ) =
[

cos(φ
2 ) −i · sin(φ

2 )

−i · sin(φ
2 ) cos(φ

2 )

]

(2)

Ry(φ) =
[
cos(φ

2 ) − sin(φ
2 )

sin(φ
2 ) cos(φ

2 )

]

(3)

Rz(λ) =
[
e−i λ

2 0

0 ei
λ
2

]

(4)

Finally, we advance that measurement plays a critical role
in our approach since a suitable measurement strategy in one
or more axes of the Bloch sphere can be used to exploit the
information encoded in the quantum state of a qubit. For
this reason, we use observables to calculate the outcomes of
the approach in each problem studied and, more specifically,
the σx , σy, σz observables whose matrices are described in

Fig. 1 An arbitrary qubit |ψ〉 and its geometric representation in the
Bloch sphere

Eqs. 5–7.

σx =
[
0 1
1 0

]
(5)

σy =
[
0 −i
i 0

]
(6)

σz =
[
1 0
0 −1

]
(7)

2.2 Template of the qubit QMLmodel structure

The solutions proposed in the experimental subsections use
the same model structure to solve different machine learning
tasks, except for the sequence processing and forecasting
problems. The proposal contains a single qubit and makes an
extensive use of parameterized quantum circuits to evolve a
quantum state containing the representation of the input data
to a target quantum state with the answer to the problem. The
model can be subdivided into three stages:

• Aparameterized state preparation layer where a quantum
state |ψ〉 is constructed from the initial state |0〉. The goal
of this layer is to move the initial quantum state of the
qubit from |0〉 to another state |ψ〉 that can facilitate the
encoding of the input data for further processing. This
layer allows the qubit to rotate in the three axes of the
Bloch sphere using three parameters to be optimized θ0 =
(θ10 , θ20 , θ30 ). We name the unitary matrix of this module
as Us(θ0) in our experiments, and it is constructed as
Us(θ0) = Rx (θ

1
0 )Rz(θ

2
0 )Ry(θ

3
0 ). Although the use of this

state preparation layer is not usual in the literature, we
have found experimental evidences that it can help to
improve classical data encoding into a quantum state.

• The data embedding layer. Since a qubit can encode
information in magnitude or phase only, both values are
considered in the general case. In our experiments, an
input pattern xi with two features xi = (x1i , x

2
i ) encodes

x1i in magnitude using a Y -axis rotation of the Bloch
sphere and x2i in phase using a rotation in the Z axis. We
name the unitary matrix of the data embedding module
asUe(xi ), and it is designed asUe(xi ) = Rz(x2i )Ry(x1i ).
It is expected that the output of this layer is a quantum
state |xi 〉 containing the information of the inputs given
by the classical data xi .

• The processing layer (ansatz). This layer implements
a parameterized rotation by θ1 = (θ11 , θ21 , θ31 ) in the
three axes of the Bloch sphere to move the qubit con-
taining the encoded data |xi 〉 to a point of the Bloch
sphere whose quantum state |ŷi (θ)〉 contains the required
response for the input data xi , where θ stands for the set
of all parameters in the model structure θ = (θ0, θ1). The
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design of the ansatz has the same structure as the state
preparation layer and its unitary matrix is calculated as
Ua(θ1) = Rx (θ

1
1 )Rz(θ

2
1 )Ry(θ

3
1 ).

Figure2 shows the circuit model that implements the
proposed structure to output the quantum state |ŷi (θ)〉 calcu-
lated as |ŷi (θ)〉 = Ua(θ1)Ue(xi )Us(θ0)|0〉. However, solving
sequence processing problems such as time series forecast-
ing might require to input different patterns in sequence
as xt−1, xt−2, ..., xt−h to the proposed model. We address
this situation in our experiments with the repetition of the
data embedding and ansatz layer structures in a sequence
of length h, so that the output state |ŷi (θ)〉 is calculated
as |ŷi (θ)〉 = ∏h

k=1

[
Ua(θk)Ue(xt−k)

]
Us(θ0)|0〉. The circuit

diagram that implements this approach is depicted in Fig. 3.
In the remaining of themanuscript, we call this generalmodel
structure as the qubit QML approach for short.

The output ŷi (θ) provided in both model structures of
Figs. 2 and 3 is obtained using measurement operators over
the final quantum state |ŷi (θ)〉 and a quantum-classical out-
put mapping criterion. In our approach, measurement plays a
key role in the whole process and is calculated using projec-
tive measurement and observables. To be more precise, we
consider the observablesσx , σy, σz and calculate the expecta-
tion values E(σk) = 〈ŷi (θ)|σk |ŷi (θ)〉 according to the needs
of a specific problem solution. The calculation of the final
output of the model for an input pattern xi takes into account
the values of these expectations and a problem-dependent
interpretation tomap {E(σx ), E(σy), E(σz)} to a validmodel
response ŷi (θ).

2.3 Methodological details

As it was mentioned before, a single qubit can encode infor-
mation inmagnitude or phase. This is a very strong limitation
to encode classical data with multidimensional features, and
for this reason, a preliminary exploratory data analysis (EDA)
and data preprocessing are key to success in our proposal.
Moreover, the nature of problems addressed in Sect. 3 is var-
ied and ranges from classification, regression, and time series
forecasting in supervised learning, to unsupervised cluster-
ing and reinforcement learning. Having an adaptable yet
effective methodology is crucial in our experiments. In this
section, we decompose the steps required to solve a machine

learning problem with one qubit in the necessary steps that
must be taken into account.

We start with the hypothesis that the data of the problem at
hand can be reduced to up to two dimensions used as input.
If this condition is met after a suitable EDA is performed,
then the proposed methodology follows the next steps:

1. Data preprocessing: This stage targets at preparing the
classical data before they are fed to the quantum embed-
ding module described in Sect. 2.2. In our work, we have
considered different types of data preprocessing:

• Feature transformation: This type of preprocessing is
performed when a data transformation could be ben-
eficial to encode the input data into a quantum state.
It includes linear, quadratic, or logarithmic transfor-
mations of the data of a single feature in the problem
addressed. As an example, the problem studied in
Sect. 3.5 transforms a time series data with log-scale
to reduce the negative effect of variance increase over
time.

• Feature normalization: The goal of this type of pre-
processing is to change the domain of each input
feature to reduce the negative effects of different
ranges of scale. Moreover, it is a necessary step prior
to quantum embedding to scale the data to the range
[0, π ] for the Ry(θ) and Rz(λ) encoding gates of the
module.

• Feature selection:This type of preprocessing involves
selecting one or more features to be used as model
inputs, while the remaining initial features of the
problem are discarded. An example of this type of
preprocessing is performed in Sect. 3.3 where the
petal width and petal length features in the Iris flower
dataset are selected as predictor variables. Thus, the
remaining features sepal width and sepal length are
discarded and not used to calculate the output of the
proposed model.

• Feature extraction: This step involves the combina-
tion of two or more initial features to create further
facets that combine the information of the selected
features into a single value. An example of this type
of preprocessing is performed in Sect. 3.2 to solve the
Bank Note Authentication dataset where the features

Fig. 2 General model structure: a state preparation layer builds an initial state |ψ〉 from |0〉 before data encoding. After that, the data embedding
step encodes classical data xi into a state |xi 〉. Finally, the ansatz provides the output state |ŷ(θ)〉
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Fig. 3 Model structure for sequence processing. Layer 0 remains as the state preparation layer. The scheme of the data embedding and ansatz
modules are replicated a number of times equals to the length of the sequence h

variance and skewness are combined to create a new
feature that aggregates the information of both.

2. Design of the measurement strategy and quantum-
classical output mapping: Whilst the previous step
is aimed at preparing the input data, the design of
the measurement strategy targets at selecting a suitable
measurement method and the development of an inter-
pretation that maps the model outcomes to a suitable
response that solves the problem addressed. In our work,
we use the expectation of an observable as model output,
so that the design of the measurement strategy must take
into account if themodel output is continuous or discrete.
In the first case, either the target output values or model
predictions must be scaled according to the observable
it is used for measurement. In the second case, it must
be decided the number of observables that are needed to
gather information from the output quantum state |ŷi (θ)〉
and how these valuesmust be interpreted to provide a cor-
rect output. As an illustrative example, Sect. 3.2 solves
a binary classification problem and uses the observable
σz for measurement. If the expectation of this observable
E(σz) ≥ 0, then themodel output ismapped to ŷi (θ) = 1
and ŷi (θ) = 0 otherwise.

3. Selection of a metric for model evaluation: This selec-
tion is problem-dependent, and it will have a relevant
impact in the evaluation of model performance. Example
metrics we use in this work are the prediction accuracy
for classification (8), the mean squared error for regres-
sion and time series forecasting (9), the Silhouette score
for clustering (10), or the average return in reinforcement
learning (11). In Eq.8, the terms T P, T N , FP, and FN
stand for the number of true positives and true negatives
(success in the model prediction), and false positives and
false negatives (failure in the model prediction) respec-
tively, so that the metric represents the success rate of
the model prediction and must be maximized. On the
other hand, the terms N , yi in Eq.9 represent the num-
ber of data patterns in the dataset and the desired model
output, respectively. The MSE must be minimized. The
values b(i), a(i) in Eq.10 encode the minimum distance
of a cluster member i to a member of other clusters, and
the average distance of the member i to the remaining
elements of the same cluster, respectively. Thus, the Sil-
houette score evaluates a set of clusters considering both

the intra-cluster and inter-cluster distances. The range of
the S-score is [−1, 1], and the clusters identified by an
algorithm must maximize this metric. Finally, the values
sit , a

i
t , r in Eq.11 stand for the environment state at time

t in the i-th experiment in a reinforcement learning prob-
lem, the action selected at time t in the i-th experiment,
and the reward obtained in the transition from state sit to
state sit+1 using action a

i
t . The metric in Eq.11 should be

maximized.

accuracy = T P + T N

T P + T N + FP + FN
(8)

MSE = 1

N

N∑

i=1

(yi − ŷi (θ))2 (9)

S-score = 1

N

N∑

i=1

b(i) − a(i)

max{a(i), b(i)} (10)

R = 1

N

N∑

i=1

∑

t=0

r(sit , a
i
t , s

i
t+1) (11)

4. Selection of the parameter optimization algorithm:
This step is usually dependent of the choice of evaluation
metric in the previous step. If the metric is derivable,
then both gradient-based or gradient-free methods can be
used to optimize the qubit QML model. Otherwise, the
only choice is within the different families of gradient-
free algorithms. In this work, we have selected evolution
strategies (ES) as the optimization algorithm. To be more
precise, the ES(μ + λ) (Hansen et al. 2015) algorithm
was implemented due to its good performance to find
suitable solutions in all the problems addressed, but also
because some of the metrics we use for model evaluation
are not derivable.

5. Preliminary experimentation: The goal of this stage is
to find suitable hyperparameters of the training algorithm
and the qubit QML model. In particular, the preliminary
experimentation of this work followed a trial-and-error
procedure to find the correct qubit QML structure to
activate or not the state preparation layer, the number
of layers in the time series forecasting problems, the
parameters μ, λ, and the learning rate of the ES(μ + λ)

algorithm.
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6. Training and test: This final step generates the complete
experimentation with the parameters found in the previ-
ous stage. In our work, it provided the results we describe
in Sect. 3.

In our experience, after addressing all the problems
described in the experimentation, wemay conclude that steps
1 and 2 have special relevance to train a single qubit QML
model to solve a problem. These two stages may affect the
outcomes considerably, and specially the design of the mea-
surement strategy and quantum-classical output mapping.
The remaining steps 3–6 are also relevant although they
might be considered as in the traditional pipeline of machine
learning.

2.4 The effect of the state preparation layer

In this section, we discuss the benefits of the state preparation
layer introduced in Sect. 2.2 and Fig. 2, since we are aware
that this is an unusual setting in a traditional QML pipeline.
As it was mentioned, the goal of the state preparation layer is
tomove the quantum state of the system to an initial value |ψ〉
different from |0〉 before classical-quantum data embedding.
We recall that the value of |ψ〉 is problem-dependent and it is
previously unknown, so that a parameterized unitary matrix
Us(θ0) = Rx (θ

1
0 )Rz(θ

2
0 )Ry(θ

3
0 ) is used to find |ψ〉 where

the parameters (θ10 , θ20 , θ30 ) need to be optimized. Aswe build
|ψ〉 usingUs(θ0), then the effect of the state preparation layer
might be considered an initial change of basis in the quantum
data space.

As it is widely known, many problems in engineer-
ing, including data science and machine learning, require a
preprocessing step implementing linear or non-linear trans-
formations to make data linearly separable. This is the case,
for instance, of linear classifiers where data linear separabil-
ity is a requirement to provide a correct output. And it is also
a requirement in the data quantum space of our experiments
due to the design of the measurement strategies we develop
to solve most of the problems.

Let us illustrate the effect of the state preparation layer
with an example considering a binary classification problem.
In particular, we use the classical XOR problem with two
input variables (x1, x2) ∈ R

2 and one output y ∈ {0, 1}. The
problem data map the points (x1i , x

2
i ) �→ yi as (0, 0) �→ 0,

(0, 1) �→ 1, (1, 0) �→ 1, and (1, 1) �→ 0. These data points
are clearly not linearly separable as we cannot find a straight
line that divides the data space with a correct classification
criterion (see Fig. 4).

Something similar would happen if we use the raw data
embedding layer described in Sect. 2.2 to encode the data
of the XOR problem when we attempt to solve it using a
quantum classifier. After a data normalization preprocessing
to map (x1i , x

2
i ) �→ (x1i π, x2i π), the data embedding uni-

Fig. 4 Data of the XOR problem in R2. Triangles stand for class 0 and
squares for class 1

tary matrix would be calculated as Ue(xi ) = Rz(x2i )Ry(x1i )
according to the guidelines described in Sect. 2.2. The effect
is that the points (0, 0) and (0, 1) are encoded as |0〉 (sub-
ject to a global phase), and the points (1, 0) and (1, 1) are
mapped to |1〉 (Fig. 5). Independently of the ansatz, the initial
points (0, 0)/(0, 1) and (1, 0)/(1, 1)would be indistinguish-
able in their quantum state representation and no quantum
classifier would be able to provide a good classification per-
formance since data encoding is not suitable. Of course, there
are ways to address this inconvenience such as changing the
feature normalization function, or making a classical data
preprocessing before quantum embedding. These possibili-
ties involve an increase in the workload of the human analyst
to set a proper experimental setting as the size of the dataset
increases.

If wemove again to a classical machine learning approach
that solves the XOR problem, a simple quadratic transfor-
mation such as the mapping (x1i , x

2
i ) �→ (x1i , (x

1
i − x2i )

2)

transforms the data space so that the resulting space is lin-
early separable, and a simple linear classifier successes in its
task (Fig. 6). Another possible solution, which avoids non-
linear transformations, could be to find an application that
injects the data points into a higher dimensional space where
they could be linearly separable. This is a well-known strat-
egy in the classical machine learning community and the
fundamental hypothesis of well-established models such as
support vector machines. Also, we believe it is a key proce-
dure that helped our experiments to success. In the case of
the XOR problem, it should inject the 2-D XOR data into 3-D
points in the surface of the Bloch sphere. However, an initial
change of basis is required so that the data embedding layer
is applied properly.

As an example, let us consider a state preparation layer that
learns the parameters (θ10 , θ20 , θ30 ) in some way that moves
the initial state |0〉 of the quantum circuit to |+〉. Consid-
ering the same data embedding mechanism used in Fig. 5,
now the problem data points are encoded as (0, 0) �→ |+〉,
(0, 1) �→ |−〉, (1, 0) �→ |−〉, and (1, 1) �→ |+〉 subject to a
global phase difference (see Fig. 7). The quantum states rep-
resenting the problem data are now linearly separable in the
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Fig. 5 Raw embedding of XOR problem data into quantum states using the proposed data embedding module

quantum state space, and a simplemeasurement in the X axis
using the σx observable could lead to a correct classification
without the need of an ansatz module. Thus, the state prepa-
ration layer has helped encoding the data into quantum states
properly by means of applying an initial change of basis, and
this effect helps to improve the encoding performance sub-
stantially as we discuss in the experiments.

3 Experiments

This section describes possible solutions to a wide range of
machine learning problems that can be reduced to two input
features. First, Section 3.1 highlights the most relevant parts
of the experimental settings used to solve each problem.After
that, Sections 3.2–3.11 address binary and multinomial clas-
sification, regression, time series forecasting, clustering, and
reinforcement learning problems so that the full range of
types of machine learning are covered. Finally, Section 3.12
discusses the results.

3.1 General experimental settings

This section describes the experimental settings used that
are not problem-dependent according to the methodological

Fig. 6 Quadratic transformation of the XOR problem data for classical
machine learning processing using linear classifiers

guidelines introduced in Sect. 2.3. Table 1 prints the problem
enumeration (column 1), the μ, λ parameters of the evolu-
tion strategy training algorithm and the algorithm’s learning
rate α (column 2), and the maximum number of iterations
allowed for training (column 3). An additional stopping cri-
terion was set for each problem if it is solved with maximum
accuracy according to the metric used for learning (column
4). We remark that problems 2 and 10 contain two versions
in increasing order of complexity. Their corresponding rows
separate with symbol − their experimental settings as the
simpler (left hand) and the complete (right hand).

The qubit QMLproposal was implemented in TensorFlow
Quantum v0.7.1. Two different approaches including and not
including the state preparation layer were considered (named
as QML (SP) and QML (no SP) in the experiments, respec-
tively). These models were compared in performance with
state-of-the-art classical machine learning methods that vary
depending of the problem nature:

• In the case of classification tasks, we use a multilayer
perceptron feedforward neural network (MLP) for clas-
sification and logistic regression as baseline methods.
Both models were trained with common settings to min-
imize the cross-entropy loss function using the Adam
optimizer forMLPwith a default learning rateα = 0.001
and LBFGS for the logistic regression procedure up to
convergence. The activation function of hidden neurons
was set to ReLU in MLP, as the most widely used con-
temporary activation function. In problem 1, the internal
structure was set to 2 layers with 50 neurons each, 100
for Setosa flower determination and 200 for the full Iris
flower in problem 2.

• We selected aMLP for regression as baseline in problems
3, 4, and 5. In these cases, the network topology contains
2 layers with 50 neurons each (problem 3), 100 neurons
(problem 4), and 10 neurons (problem 5). In the case
of problems 4 and 5, related to time series forecasting,
other state-of-the-art methods such as recurrent neural
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Fig. 7 Quantum embedding of XOR problem data after a state preparation layer that moves |0〉 to |+〉

networks were not included to make comparisons as fair
as possible since quantum circuits are not able to contain
loops that simulate recurrences.

• Problems 6 and 7 are clustering tasks. In these cases,
the selected baseline algorithm is the classic K -means
considering the sum of the squared differences between
patterns as distance metric (the square of the Euclidean
distance).

• The last problems 8, 9, and 10 come from the field of
reinforcement learning. The selected baseline method is
the double deep Q-network (DDQN) algorithm (Hasselt
et al. 2016) with MLP as policy encoder containing 2
layers with 100 neurons in all experiments.

The experimentationwith the baseline algorithms used for
comparison was carried out with the Python library Scikit-
learn v1.5.0 except for the DDQN which was implemented
by scratch. All datasets were divided in two train (80%)
and test (20%) sets as a standard procedure. Also, the same
preprocessed data were fed to all qubit QML approach and
corresponding baseline proposals of each problem for learn-

Table 1 Experimental settings of the qubit QML proposal for each
problem

Problem μ/λ/α (ES) Iterations Metric

1 5/30/0.1 100 Accuracy

2 1/5/0.1–5/30/0.2 50 Accuracy

3 5/20/0.1 30 MSE

4 10/50/0.1 100 MSE

5 10/50/0.3 100 MSE

6 5/10/0.5 20 S-score

7 10/50/0.3 30 S-score

8 2/10/0.1 50 R

9 3/15/0.1 50 R

10 10/30/0.1–10/50/0.3 500–200 R

ing, so that all methods share the same initial conditions
for training and test. The source code used in our experi-
ments is available for free at the repository https://github.
com/manupc/OneQubit hosted in GitHub.

3.2 Problem 1: the bank note authentication dataset

The Bank Note Authentication (BNA) dataset describes a
binary classification problem that contains data extracted
from 1372 images of genuine and forged bank notes. A
sample (xi , yi ) in the dataset contains four continuous input
features xi = (x1i , x

2
i , x

3
i , x

4
i ) that correspond to the vari-

ance (x1i ), skewness (x2i ) and curtosis (x3i ) of the wavelet
transformed image, and the image entropy (x4i ). The output
yi is a discrete 0/1 binary value to distinguish if the sample
banknote xi is legitimate or not.

The preprocessing step involved scaling the features to the
range [0, π ] as a first step, so that they could be used as inputs
in the data encoding layer of the proposed model structure.
After that, a preliminary exploratory data analysis concluded
that a useful feature extraction is to combine the variance and
skewness into a single aggregated feature as x5i =

√
x1i + x2i .

Then, it is possible to divide the decision space using a feature
selection of values (x5i , x

3
i ) as it is shown in Fig. 8.

A qubit model without state preparation with three param-
eters was used to solve this problem with the structure
Us(θ0) = I , Ue(xi ) = Rz(x3i )Ry(x5i ) and Ua(θ1) =
Rx (θ

1
1 )Rz(θ

2
1 )Ry(θ

3
1 ). Also, the same qubit model including

the state preparation layer was included in the experiments
withUs(θ0) = Rx (θ

1
0 )Rz(θ

2
0 )Ry(θ

3
0 ).Measurementwas per-

formed using the σz observable, and the model output ŷi (θ1)
was calculated as a problem-dependent mapping described
in Eq.12.

ŷi (θ1) =
{
1 , 〈ŷi (θ1)|σz |ŷi (θ1)〉 ≥ 0
0 , 〈ŷi (θ1)|σz |ŷi (θ1)〉 < 0

(12)
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Fig. 8 Decision space of the BNA dataset after feature extraction and
selection

The results were compared with a multi-layer perceptron
for classification (MLP) and a logistic regression (LR)model
as twoof themostwell-knownclassifiers in classicalmachine
learning in 30 different experiments. Table 2 describes the
results obtained for the qubit model (columns 2 and 3), the
MLP (column 4), and the LR (column 5). Rows 2 and 3 print
the average accuracy in the training and test sets together
with the standard deviation in the 30 experiments performed.
The subscripts in row 3 rank the algorithms from the best
average results (value 1) to the worst (value 3) according
to a Wilcoxon statistical test with 95% of confidence level.
Row 4 describes the accuracy in train and test sets of the best
solution found. Finally, row 5 remark the number of trainable
parameters that were used by the three models.

According to Table 2, the method that provides the aver-
age best accuracy in the prediction of legitimate and forge
banknotes is the qubit QML model, and specially when no
state preparation layer is included in the structure. The statis-
tical tests concluded that there are significant differenceswith
respect to the second best methods (QML (SP) andMLP). As
it could be expected, the worst model is LR since the decision
space shown in Fig. 8 is not linearly separable. We remark
that both QML and MLP predictors are able to provide solu-

tions that solve the problemwith 100% accuracy in both train
and test sets, although the number of parameters required by
the qubit model is substantially lower. Figure9 provides a
deeper insight about the behaviour of each model, and plots
the decision boundaries of QML, MLP and LR in Fig. 9a,
b, and c, respectively. Red triangles are asociated with the
expected output yi = 0 and blue circles to yi = 1.

If we analyze the QML results from a geometric point
of view considering the prediction model structure, we may
realize that the ansatz operations Rx (θ

1
1 ), Rz(θ

2
1 ), Ry(θ

3
1 )

perform a rotation of the input state |xi 〉 around the three
axes in the Bloch sphere to generate the output state |ŷi (θ1)〉.
These operations influx a change of basis to the input state
|xi 〉 for each pattern, so that the encoded output |ŷi (θ1)〉
makes the problem to be linearly separable in the quantum
state space of the problem. Measurement provides non-
linearity to map the quantum state |ŷi (θ1)〉 to the final output
ŷi (θ1). This non-linear mapping is clearly observed in the
decision boundaries of Fig. 9a. A keen eye could also observe
a non-linear decision boundary for MLP in Fig. 9b, which
makes it possible to obtain 100% of accuracy both in train
and test.

3.3 Problem 2: the Iris flower dataset

The Iris flower dataset is probably one of the most used clas-
sification problems in machine learning. It contains patterns
(xi , yi ) with four input features xi = (x1i , x

2
i , x

3
i , x

4
i ) with

the sepal length (x1i ), sepal width (x
2
i ), petal length (x

3
i ), and

petal width (x4i ) of 150 samples of three types of Iris flower:
Setosa, Versicolor, Virginica. The goal is to predict which
type of flower yi is a given specimen xi considering the four
input features. In a preliminary EDA, we may verify that the
samples of type Setosa can be visually distinguished with
100% accuracy from the others using a feature selection of
thepetal length andpetalwidth, as it can be verified inFig. 10.
Thus, the problem of the Iris flower is usually studied both
as a binary or one-class classification task to determine if a
specimen is Setosa or not, or as a multi-class classification
with three possible classes.

Different quantum machine learning classifiers have also
used this data set as a proof of concept as in Piatrenka and

Table 2 Accuracy results in the BNA dataset. Row 1 contains the name
of the models. Rows 2 and 3 print the average percentage of accuracy of
themodels and the standard deviation in all executions. Row 4 describes

the percentage of models accuracy in both train and test sets, respec-
tively. Row 5 includes the number of parameters to be optimized for the
models

QML (SP) QML (no SP) MLP Logistic regression

Avg. training Acc 99.94 ± 0.15 100.00 ± 0.00 99.55 ± 0.42 98.81 ± 0.00

Avg. test Acc 99.93 ± 0.15(2) 99.95 ± 0.12(1) 99.83 ± 0.29(2) 99.27 ± 0.00(3)

Best 100.00/100.00 100.00/100.00 100.00/100.00 98.82/99.27

Parameters 6 3 2751 3
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Fig. 9 Decision boundaries of each trained model in the BNA dataset

Rusek (2022), although using a larger number of qubits, typi-
cally two. The very same structure of the qubit model used in
Sect. 3.2 can be used to build a binary classifier for the Setosa
flower using a single qubit. In this case, the preprocessing
step only involves scaling the petal length x3i and width x4i
to the range [0, π ]. The unitary matrix for data encoding is
given by Ue(xi ) = Rz(x4i )Ry(x3i ) so that the petal length is
encoded into the magnitudes of the qubit and the petal width
in the phase. After that, a parameterized ansatz Ua(θ1) with
three parameters is used as computation layer. Measurement
is performed using the σz observable as in the BNA problem,
and we also use the mapping of Eq.12 to distinguish if a
flower specimen is Setosa (ŷi (θ1) = 0) or not (ŷi (θ1) = 1).
The summary of results are shown in Table 3 with the same
format as Table 2 for 30 different experiments and compari-
son with a MLP classifier and a LR model.

Determining if a flower specimen is Setosa or not is clearly
linearly separable, so that the four models are equivalent
in terms of performance and achieve 100% of accuracy in
train and test sets. Moreover, LR and qubit QML (no SP) are

Fig. 10 Decision space of the Iris dataset after feature selection. Blue
circles, Setosa; red triangles, Versicolor; green circles, Virginica

also equivalent in the number of parameters to be optimized,
and both have the minimum possible set of parameters.
Figure11 gives support to these results and plots the deci-
sion boundaries of the three QML, MLP, and LR predictors.
It is worth noting the non-linear decision bounds introduced
by measurement in the QML model, which could provide a
behaviour near overtraining if more samples would be avail-
able in the dataset.

Besides binary classification, we can also perform multi-
class prediction tasks with one qubit if we extend measure-
ment to a larger number of observables rather than σz . As the
Iris flower dataset contains three classes, one possible strat-
egy could match each axis of the Bloch sphere to a flower
type, then calculate the expectation of observables σx , σy, σz
and design a suitable mapping strategy to provide the QML
model output ŷi (θ1). The designed solution in thismanuscript
is described in Eq.13 where ŷi (θ) = 0 is for Setosa classifi-
cation, ŷi (θ) = 1 if the specimen isVersicolor and ŷi (θ) = 2
if the flower sample is Virginica.

ŷi (θ) =
⎧
⎨

⎩

0 , z = argmaxk∈{x,y,z}〈ŷi (θ)|σk |ŷi (θ)〉
1 , x = argmaxk∈{x,y,z}〈ŷi (θ)|σk |ŷi (θ)〉
2 , y = argmaxk∈{x,y,z}〈ŷi (θ)|σk |ŷi (θ)〉

(13)

In our experiments, we needed no further preprocessing
than the one used for the binary Setosa flower determination,
although setting a state preparation stage Us(θ0) with three
parameters was required to achieve a maximum performance
of the qubit QML model. Table 4 describes the results of the
experimentation in 30 different runs against theMLP and LR
classical machine learning models with the same format as
Tables 2 and 3. In this case, the Wilcoxon statistical test con-
cluded that there are no significant differences between the
classical MLP and LR with the qubit QML (SP) proposal in
terms of average accuracy among runs, although the number
of parameters used by QML (SP) is lower than in the other
two techniques. However, the qubit QML methods were the
only models that were able to provide a solution with 100%
of accuracy in the test set, and QML (SP) achieved a state-
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Table 3 Accuracy results in the Iris Setosa classification problem with the same format as Table 2

QML (SP) QML (no SP) MLP Logistic regression

Avg. training Acc 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Avg. test Acc 100.00 ± 0.00(1) 100.00 ± 0.00(1) 100.00 ± 0.00(1) 100.00 ± 0.00(1)

Best 100.00/100.00 100.00/100.00 100.00/100.00 100.00/100.00

Parameters 6 3 10, 504 3

of-the-art global accuracy of 98% in the whole dataset using
just two input features. The classical MLP can also achieve
this 98% of accuracy but using the information provided by
more input features. If the input information is reduced to
features (x3i , x

4
i ) as in out experiments, the global accuracy

drops to 5 missclassified samples while theQML (SP) stands
at 3 sample misclassifications.

On the other hand, if we compare the results of the full
QML (SP) model using the state preparation layer and QML
(no SP) in columns 2 and 3, we may verify a significant
increase in performance in the former with respect to the lat-
ter. As it was discussed in Sect. 2.4, the state preparation layer
moves the initial state of the quantum circuit |0〉 to another
state |ψ〉 using a change of basis, and this step might influ-
ence the quality of the data encoding in the data embedding
module. If no state preparation is present, under the same
experimental settings the QML (no SP) proposal drops per-
formance in average to a 71.58% of training classification
accuracy, which is significantly worse than all the remaining
models. The statistical test concluded that there are signif-
icant differences between this model and the other three,
which leads to the conclusion that it is a not so desirable
solution with respect to the fullQML (SP) in this problem. In
spite of this decrease of performance, theQML (no SP)model
is still able to achieve near-optimal results with a 96.67% of
classification success in training and 100% in test, according
to the best solution found in 30 executions. It also holds the
advantage of using 3 trainable parameters only.

As we did for the BNA problem and the Iris Setosa
determination, Fig. 12 plots the decision boundaries of each
model to fully classify all three types of Iris flowers with the

qubit QML (SP), MLP, and LR models. In the case of the
qubit QML proposal, Fig. 12a shows clearly the non-linear
behaviour in the decision bounds of the model, introduced
by themeasurement operator and the quantum-classical deci-
sion mapping of Eq.13, which leads to the missclassification
of three Versicolor flower samples as Virginica. In the case
of the MLP, three Versicolor samples were classified as Vir-
ginica and two Virginica as Versicolor. Finally, LR missed
in the classification of 4 samples of Virginica as Versicolor
and 2 specimens of Versicolor as Virginica using linear dis-
crimination.

3.4 Problem 3: the combined cycle power plant
dataset

The combined cycle power plant dataset (CCP) is a regression
problem over real (Fig. 13) data collected from a combined
cycle power plant from 2006 to 2011. It contains 9568
patterns (xi , yi ) with four features xi = (x1i , x

2
i , x

3
i , x

4
i )

containing the average ambient temperature (x1i ), average
ambient pressure (x2i ), relative humidity (x3i ), and exhaust
vacuum (x4i ). These four variables are used to predict yi , the
hourly electrical energy output provided by the plant.

The preprocessing of this dataset starts with a change
of scale of all features to the range [0, π ] and yi to the
range of the σz observable in [−1, 1]. After that, a prelimi-
nary EDA concluded that a feature extraction step could be
benefitial to create two additional features x5i , x

6
i as linear

combinations of the original ones as x5i = 0.5(x1i + x2i ) and
x6i = 0.5(x3i + x4i ). These two features x5i , x

6
i were used

as inputs to the regression models used in our experimen-

Fig. 11 Decision boundaries of each model in the Iris Setosa classification problem. Blue circles, Setosa; red triangles, Setosa; blue circles,
Versicolor or Virginica
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Table 4 Accuracy results in the Iris flower classification problem with the same format as Table 2

QML (SP) QML (no SP) MLP Logistic regression

Avg. training Acc 93.00 ± 10.39 71.58 ± 11.00 96.22 ± 0.42 95.00 ± 0.00

Avg. test Acc 93.22 ± 10.49(1) 71.67 ± 12.13(2) 96.67 ± 0.00(1) 96.67 ± 0.00(1)

Best 97.50/100.00 96.67/100.0 96.67/96.67 95.00/96.67

Parameters 6 3 41, 403 9

tation. We used the standard qubit QML model with 3 (no
state preparation layer) and 6 parameters (full QML (SP))
to address the problem as |ŷ(θ)〉 = Ua(θ1)Ue(xi )Us(θ0)|0〉,
where Ue(xi ) = Rz(x6i )Ry(x5i ), and trained the model 30
times with different random initial solutions to perform sta-
tistical analysis. The classicalmachine learning baseline used
for comparison is a multi-layer perceptron for regression, as
this is one of the most widely known classical models to
solve this type of problems. The target goal is to minimize
the mean square error measure (MSE) in both cases.

Table 5 displays the summary of results for the qubit QML
models and MLP, both in training and test sets. According
to a Wilcoxon statistical test with 95% of confidence level,
there are significant differences in the performance of QML
andMLP, and the latter provides better accuracy with respect
to QML. On the other hand, if we focus on the comparison
of QML (SP) and QML (no SP), in this problem, it is also
shown a big difference of one order of magnitude in theMSE
metric. The statistical Wilcoxon test concluded that there
are significant differences between both prediction error data
distributions in test. Thus, this problem is another example
of the benefits that the state preparation layer could provide
before data embedding.

We plot the prediction results of the best QML and MLP
solutions in the last 100 test data in Fig. 14, together with
the true target values. In Fig. 14, we may verify that MLP
provides a higher precision in the predictions. Moreover, we
can observe that the qubit QML (SP) was also able to learn
the underlying dependecy of the outputs yi with respect the
inputs xi , although with a lower accuracy. If we compare
both models in terms of complexity, the qubit QML (SP)

method still needs 6 parameters to be optimized while the
MLP requires 151 in this problem.

3.5 Problem 4: the air passengers time series

The air passenger dataset is a classic time series dataset
widely used in academia and in testing of time series fore-
castingmodels. It contains the number of international airline
passengers in thousands from 1949 to 1960 with monthly
granularity (144 data points). A typical initial preprocessing
step in this time series aims to reduce the increase of time
series variance over time by means of a logarithmic transfor-
mation of the whole dataset. After that, a linear trend is also
fitted and removed to center the time series data in zero. This
preprocessed time series x(t)was used in our experiments to
forecast the last 20%of the time series datawith a forecasting
horizon of 1 as x(t + 1) = f (x(t), x(t − 1), ..., x(t − h), θ)

where f is the prediction model hypothesis, θ the model
parameters, and h the historical data time horizon allowed to
predict the next time series value. Figure15 plots the original
time series data and distinguishes between the training and
test sets.

After the usual logarithmic transformation and trend
preprocessing of this time series, we removed the time com-
ponent and created a set of patterns (xi , yi ) where xi =
(x(i −1), x(i −2), ..., x(i −h)) and yi = x(i). The selected
baseline classical method to compare the performance of the
qubit QML structure is aMLP for regression as it is one of the
most widely known classical machine learning feedforward
models used in time series forecasting. An initial experimen-
tal setup tested different values of h so that both MLP and

Fig. 12 Decision boundaries of each model in the full Iris flower classification problem. Blue circles, Setosa; red triangles, Versicolor; green circles,
Virginica
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Fig. 13 Last 100 test data of the combined cycle power plant dataset
after classical preprocessing

qubit QML methods could fit the time series data accurately.
We found that a value h = 4was theminimumhistorical time
horizon able to provide a precise time series forecasting, and
trained 30 different qubit QML and MLP models to be able
to analyze results statistically. In both models, the target is
to minimize the mean squared error between the expected
output yi and the model output ŷi (θ).

The structure of the qubit QML approach differs from the
ones shown in the previous problems, and it contains a num-
ber of h processing layers according to the diagram of Fig. 3.
The full structure of the model used in the experimentation
is |ŷi (θ)〉 = ∏1

k=h [Ua(θk)Ue(x(i − k))]Us(θ0)|0〉 for the
QML (SP) model, where Ue(x(i − k)) = Ry(x(i − k)),
and Us(θ0) = I for the QML (no SP) approach. Mea-
surement was carried out using the σz observable, and the
quantum-classical output mapping is calculated as ŷi (θ) =
〈ŷi (θ)|σz |ŷi (θ)〉. Thus, as a preliminary preprocessing step
before training, the values of the input patterns xi were scaled
to the range [0, π ] so that they could be used as Ry(φ) angle
rotations and their corresponding outputs yi to the range of
the observable [−1, 1].

Table 6 summarizes the results obtained in training and test
sets for both approaches. It can be verified thatMLP is able to
provide a better prediction accuracy than the QML approach

in both training and test sets, and a Wilcoxon statistical test
with 95% of confidence level helped to verify this result.
Moreover, the best solution found by MLP performed better
than the best solution provided by the qubit QML. However,
the number of parameters of qubit QML (SP) is 15 (3 for
each processing layer and state preparation), while the MLP
contains more than 10,000 parameters. If we compare the
results of MLP and QML (no SP), we may observe a similar
behaviour to the one found in Sect. 3.4 as the QML (no SP)
model was unable to learn the data properly and provided an
errormetric of one order ofmagnitudeworse. In this problem,
we also verify that the use of the state preparation layer is an
useful strategy to ease data encoding and latermodel training.

Figure16 plots the predictions of models QML (SP) and
MLP in the preprocessed test set with the logarithmic trans-
formation and removed trend. Here, we also included further
results using a historical time horizon of h=2 and h=3 in
Fig. 16a and b to show the deficiency of both MLP and qubit
QML to approximate the true target value yi . In these cases,
it seems that both QML (SP) and MLP attempt to approx-
imate the output yi by means of the replication of the past
historical data. On the other hand, Fig. 16c contains the pre-
dictions using h=4. It complements the data of Table 6 and
shows graphically how the qubit QML was able to learn the
dependencies of the outputs yi with respect to the inputs xi ,
although the prediction accuracy was worse than using the
classical MLP.

3.6 Problem 5: the OikoLab weather dataset

The OikoLab weather dataset is composed of eight time
series including hourly data of ambient temperature, dew-
point temperature, wind speed, mean sea level pressure,
relative humidity, surface solar radiation, surface thermal
radiation, and total cloud cover. It was collected from Jan-
uary of 2010 toDecember of 2021 nearbyMonashUniversity
in Victoria, Australia. In our manuscript, we focus on the
average ambient temperature time series with monthly gran-
ularity, therefore reducing the time series length from100058
multidimensional data points to 138 values of one dimension.
We used the first 80% of time series data for training and the
remaining 20% for test.

Table 5 Prediction results in the CCP regression problem: Row 1 prints
the model names. Rows 2 and 3 contain the average training and test
mean square error (MSE) obtained by the models in 30 experiments,

and their corresponding standard deviation. Row 4 describes the MSE
in train and test of the best solution found, and row 5 shows the number
of free parameters of the models

QML (SP) QML (no SP) MLP

Avg. training MSE 0.048 ± 0.0001 0.108 ± 0.121 0.019 ± 0.0011

Avg. test MSE 0.051 ± 0.0003(2) 0.112 ± 0.125(3) 0.018 ± 0.0011(1)

Best 0.048/0.050 0.053/0.056 0.017/0.017

Parameters 6 3 151
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Fig. 14 Estimation of hourly electrical energy output by QML (SP) and multilayer perceptron in the combined cycle power plant test dataset

Themethodology used to solve this problem is the same as
the one used to solve the air passengers time series forecast-
ing dataset, so that the qubitQMLmodel structure follows the
diagram in Fig. 3, and it calculates the output quantum state
as |ŷi (θ)〉 = ∏1

k=h [Ua(θk)Ue(x(i − k))]Us(θ0)|0〉, where
Ue(x(i − k)) = Ry(x(i − k)) for the model QML (SP),
and Us(θ0) = I for QML (no SP). We also used the same
measurement and quantum-classical output mapping strat-
egy as it was introduced in Sect. 3.5: the σz observable was
used, and the final model output was calculated as ŷi (θ) =
〈ŷi (θ)|σz |ŷi (θ)〉. Once the initial data were aggregated with
monthly granularity, we selected x(t) as the average monthly

Fig. 15 Air passengers time series data. The X axis is associated to
the time evolution (measured in months), and the Y axis contains the
number of passengers (in thousands)

ambient temperature time series and created a set of pat-
terns (xi , yi ) as xi = (x(i − 1), x(i − 2), ...x(i − h)), and
yi = x(i). The input values of patterns xi were scaled to the
range [0, π ] and the output values yi to the range [−1, 1].
Figure17 describes the time series values in both training
and test sets once the output data were scaled to [−1, 1].

Table 7 describes the results of training the qubit QML
models in 30 separate experiments and also a baseline MLP
algorithm for regression. In this case, we see that the MSE
accuracy in both training and test sets is similar in the three
models, and a Wilcoxon test with 95% of confidence level
concluded that there are no significant differences in their
performance. Also, the best solution found by qubit QML
approaches and MLP provides very similar performance
in this problem. The major difference can be found in the
number of parameters of each algorithm: The qubit QML
approaches need 12 and 9 parameters (QML (SP) and QML
(no SP), respectively) for the three processing layers and the
initial state preparation, while the MLP requires 161 param-
eters. Figure18 plots the predictions provided by the best
solution found of the QML (SP) and MLP models with dif-
ferent historical time horizons h=2 and h=3. In Fig. 18a, it can
be verified that a timehorizonof h=2does not provide enough
information to either the qubit QML or the MLP to provide
suitable results. In fact, we observe a similar behaviour to the
one we displayed previously in Fig. 16a and b to solve the
air passengers dataset, and the models attempt to provide a
prediction using the most recent historical data that are fed
as inputs. On the other hand, Fig. 18b shows the predictions
of the best qubit QML and MLP models with h=3 as a com-
plementary information to Table 7. Here, we verify visually
than the predictions provided by both approaches are very
similar, according to the similarities found in Table 7.
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Table 6 Accuracy results in the air passengers time series forecasting problem with h=4, with the same format as Table 5

QML (SP) QML (no SP) MLP

Avg. training MSE 0.069 ± 0.011 0.106 ± 0.006 0.031 ± 0.003

Avg. test MSE 0.083 ± 0.024(2) 0.141 ± 0.032(3) 0.064 ± 0.005(1)

Best 0.066/0.043 0.106/0.080 0.028/0.054

Parameters 15 12 10, 701

3.7 Problem 6: Old Faithful geyser eruptions
clustering

Old Faithful is a geyser located in the Yellowstone National
Park in USA. The Old Faithful Geyser dataset comprises 272
samples xi = (x1i , x

2
i ) containing the waiting time between

eruptions (x1i ) and the duration of each eruption (x
2
i ), respec-

tively, and it is a classical dataset used for clustering in
unsupervised learning. A preliminary EDA in Fig. 19 shows
that both the waiting time and the duration are suitable can-
didates to distinguish between two possible categories of
eruptions (number of clusters).

A qubit model |ŷi (θ)〉 = Ua(θ1)Ue(xi )Us(θ0)|0〉 with
three parameters for state preparation in Us(θ0) QML (SP)
model, or no state preparation layer (QML (no SP)), and three
parameters for data processing inUa(θ1) can be used to per-
form the clustering task. If we assume a number of clusters
K = 2, then the observable σz can be used for measure-
ment, and the model output ŷi (θ) can be calculated as in
a binary classification problem using the quantum-classical
output mapping of Eq.12. If ŷi (θ) = 0, then the input xi
is assigned to a cluster and to the other cluster in case of
ŷi (θ) = 1. The parameter learning of the qubit model is car-
ried out through the maximization of the Silhouette score as
targetmetric to be optimized. Thisway of processing helps us
to avoid the calculation of distances between different data
patterns xi , x j that would require further qubits to achieve

a quantum clustering solution such as quantum K -means or
K -medians (Yarkoni et al. 2021).We compared the results of
our approach with the classical K -means algorithm as base-
line. As in the previous problems, we performed 30 runs of
each algorithm, and Table 8 summarizes the results.

According to Table 8, the S-score used as learning metric
in QML helps the qubit QML structure to achieve the same
best performance as the classical K -means both in training
and test sets. Also, the exact same results were obtained with
QML (SP) andQML (no SP), meaning that the use of the state
preparation layer is not required in this problem. AWilcoxon
test with 95% of confidence level confirms this statement
and suggests that there are no significant differences in the
resulting performance distributions. Also, we remark that all
executions of K -means returned a solution with the same S-
score both in training and test, and also the 30 executions of
QML returned the same S-score in training with very few
differences in the test set. However, the K -means algorithm
requires 4 parameters only (two parameters for each cen-
troid) while the QML method needs 6 and 3 parameters for
QML (SP) and QML (no SP), respectively. Figure20 shows
the decision boundaries of both QML and K -means algo-
rithms. In the case of Fig. 20a, the non-linearity introduced
by measurement can be observed visually with respect to the
linear boundary of K -means in Fig. 20b. In fact, we may ver-
ify that the only difference between Fig. 20b and a is a single
point located approximately at the center that was assigned

Fig. 16 Estimation of air passengers in the test set by QML (SP) and multilayer perceptron in the air passengers time series
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Fig. 17 OikoLab dataset. Test monthly average temperature time series data

to the cluster in the right in Fig. 20a and the cluster in the left
in Fig. 20b.

3.8 Problem 7: Blobs clustering

The Blobs cluster is a synthetic dataset generated with the
Python Scikit-Learn Machine Learning library, and it is use-
ful to test different types of clustering methods. In contrast to
the previous sections, where the datasets are related to prob-
lemswith real data, here, we use a synthetic dataset to test the
limits in the number of outputs that a single qubit can provide.
To do so, in our experiments, we assume a synthetic Blobs
dataset with 180 samples with two features xi = (x1i , x

2
i )

and six target clusters (Fig. 21).

The qubit QML (SP) and QML (no SP) models were
used in this problem to provide the output |ŷi (θ)〉 =
Ua(θ1)Ue(xi )Us(θ0)|0〉, where Us(θ0) = I in the case of
QML (no SP). The main difference that makes the solution to
this problem unique is themeasurement and quantum-classic
output mapping procedures. We consider three observables
σz, σx , σy for measurement. We remark that σz is strongly
related to the probability of obtaining |0〉 or |1〉 in the
computational basis after measurement, while σx is to the
probability of obtaining |+〉 or |−〉 in the Hadamard basis

and σy to the probability of obtaining |i〉 or |−i〉 in the cir-
cular basis. There are six possible named quantum states in
total, the same number as the count of possible clusters in our
dataset. Our strategy for measurement and output mapping
from |ŷi (θ)〉 to ŷi (θ) considers the matching of each one of
these quantum states to a cluster and to decide which is the
correct output cluster as the most likely one considering all
possibilities. As the three selected observables have eigenval-
ues +1 and −1 for their respective eigenvectors, we already
know that 〈ŷi (θ)|σz |ŷi (θ)〉 < 0means that it is more likely to
obtain |1〉 than |0〉 after measurement, and the same happens
to the other observables with their eigenvectors respectively.
If we enumerate the six possible clusters from 1 to 6, then
this idea can be formalized in Eq.14.

ŷi (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 , z = argmaxk∈{x,y,z}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σz |ŷi (θ)〉 ≥ 0

2 , z = argmaxk∈{x,y,z}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σz |ŷi (θ)〉 < 0

3 , x = argmaxk∈{x,y,z}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σx |ŷi (θ)〉 ≥ 0

4 , x = argmaxk∈{x,y,z}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σx |ŷi (θ)〉 < 0

5 , y = argmaxk∈{x,y,z}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σy |ŷi (θ)〉 ≥ 0

6 , y = argmaxk∈{x,y,z}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σy |ŷi (θ)〉 < 0

(14)

As we did in Sect. 3.7, the classical K -means algorithm
was used as a baseline method against the qubit QML pro-
posal with a number of clusters K = 6. In the case of QML,
the target goal was also to maximize the Silhouette score.
Table 9 prints a summary of results in train and test sets.
The qubit QML (SP) method was able to achieve the same
best performance as the classical K -means in terms of the
S-score metric both in training and test sets. While the K -
means converged to the same solution in all experiments, the
qubitQML (SP) procedure provided worse results in average
with a low standard deviation in training. A Wilcoxon test
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Table 7 Accuracy results in the OikoLab time series forecasting problem with h=3, with the same format as Table 5

QML (SP) QML (no SP) MLP

Avg. training MSE 0.038 ± 0.002 0.044 ± 0.001 0.043 ± 0.010

Avg. test MSE 0.033 ± 0.006(1) 0.042 ± 0.002(1) 0.035 ± 0.010(1)

Best 0.034/0.025 0.036/0.024 0.036/0.024

Parameters 12 9 161

with 95% of confidence level concluded that there are sig-
nificant differences in performance results among different
executions between both methods. On the other hand, if we
compare the results ofQML (SP) andQML (no SP) in perfor-
mance, we may verify that there are significant differences
that make the latter method not suitable to solve this prob-
lem. As it happened previously in other problems, the State
Preparation layer applied before data embedding plays an
important role to improve classical data encoding into quan-
tum data states thanks to a change of basis that moves the
initial state |0〉 to a parameterized initial state |ψ〉.

Figure22 provides complementary information and plots
the decision boundaries among the six clusters of the best
solution found in QML (SP) and K -means algorithms. As
expected, K -means supports a wider region for each cluster
due to the algorithm’s design and the Euclidean distance it
uses to assign each element to a cluster (Fig. 22b), although
the qubit QML (SP) approach is able to generate non-linear
bounds in Fig. 22a. Also, the number of trainable parameters
in the qubit QML (SP)model is 6 while the required number
of parameters in K -means is 12 (two for each cluster).

We remark that the measurement and classical output
mapping strategy used in this problem can be theoretically
generalized to provide a larger number of discrete outputs
using a single qubit, since measurement in the three axes of
the Bloch sphere can be used to approximate the amplitudes
of a qubit accurately up to a global phase. As an example, if
we have a number of clusters equal to eight, then the possible
output quantum states |ŷi (θ)〉 could be matched with a clus-
ter as the corresponding octant of its location in the Bloch

Fig. 19 Old Faithful dataset. Each point corresponds to a geyser erup-
tion. The X axis plots the normalized eruption time, and the Y axis the
normalized waiting time between two different eruptions

sphere. We tested this approach in preliminary experiments,
although the results we obtained were not able to provide
accurate solutions. Many factors can influence this failure,
ranging from the need ofmore powerful search andparameter
optimization algorithms to finer preprocessing requirements
or the design of the input and output data representation in
the quantum state space. As this experiment lies out of the
scope of this paper, we left a deeper study to a future research
work.

Fig. 18 Estimation of average monthly temperature in the OikoLab weather dataset with QML (SP) and multilayer perceptron models
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Table 8 Clustering results in the Old Faithful dataset: row 1 describes
the model names. Rows 2 and 3 print the average training and test S-
score metric obtained by the models in 30 different experiments, and

their respective standard deviation. Row 4 contains the training and test
S-score of the best solution found by themodels, and row 5 their number
of trainable parameters

QML (SP) QML (no SP) K -means

Avg. training S-score 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00

Avg. test S-score 0.89 ± 0.03(1) 0.89 ± 0.03(1) 0.91 ± 0.00(1)

Best 0.92/0.91 0.92/0.91 0.92/0.91

Parameters 6 3 4

3.9 Problem 8: the CartPole environment

The CartPole is a control problem and one of the best-known
reinforcement learning environments in the Farama Founda-
tion’s Gymnasium simulator (formerly OpenAI’s Gym). It
is composed of a moving cart with a movable pole attached
to its center (Fig. 23). The goal of the CartPole environment
is to prevent that the pole falls for as many time instants
as possible. The agent perception at a given time instant t ,
xt = (x1t , x

2
t , x

3
t , x

4
t ), contains four features: a cart position

(x1t ) and velocity (x2t ) in the computer screen and a pole
angle (x3t ) and angular velocity (x4t ), respectively. On the
other hand, the action set is discrete and contains two actions
{a1, a2}: The first pushes the cart to the left with constant
force, and the other to the right. The agent receives a reward
+1 for each time instant that the pole is on top, and the envi-
ronment ends either when the pole falls or the cart leaves the
computer screen. This environment is considered solved in
the existing literature if an agent is able to hold the pole on
top of the cart for at least 500 time steps in 100 consecutive
environment tests. According to our previous study (Cuel-
lar et al. 2024), the CartPole can be addressed with quantum
reinforcement learning and solved using the twopole features
x3t , x

4
t only.

The experiments with one qubit in this problem consider a
full qubitQMLstructure as |ŷt (θ)〉 = Ua(θ1)Ue(xt )Us(θ0)|0〉

with six parameters to be optimized for QML (SP) and three
for QML (no SP). The σz observable for measurement. The
quantum-classical output mapping is equivalent to the binary
classification strategy in Eq.12 where ŷt (θ) = 0 selects
action a1 and ŷt (θ) = 1 chooses action a2. Data encoding
is carried out as Ue(xt ) = Rz(x4t )Ry(x3t ) assuming x3t , x

4
t

are scaled to the range [0, π ]. We compared the results of
the qubit QML proposal with the standard Double Deep Q-
Network (DDQN) algorithm (Hasselt et al. 2016).

Table 10 shows the results obtained by the qubit QML
proposal and the classical DDQN algorithm in 30 different
runs. Unlike in the previous problems, the subscripts in row
2 describe the number of times that each algorithm solved
the problem in the 30 experiments performed and the stan-
dard deviation in the 30 experiments. We may see that the
three algorithms were able to achieve the optimal solution in
all executions and have equivalent performance, calculated
as the average return of the model in 100 different environ-
ment tests among 30 executions. Despite this equivalence,
we remark that the number of parameters of the qubit QML
models is significantly lower than the number of parameters
in the DDQN algorithm. According to the existing literature
in quantum reinforcement learning, this is the first approach
to solve the environment with one qubit (Skolik et al. 2022;
Cuellar et al. 2024).

Fig. 20 Decision boundaries of each model in the Old Faithful clustering problem
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Fig. 21 Blobs dataset

3.10 Problem 9: the MountainCar environment

MountainCar is another reinforcement learning environment
of the Farama Foundation’s Gymnasium simulator and it is a
control problem. It starts with a car stochastically located in
a valley between two hills (Fig. 24). An agent is in charge
of applying a constant force to the left or right to move
the car, or to not apply a force at all (three discrete actions
{a1, a2, a3}). The goal is to reach the top of the right-hand
hill using xt = (x1t , x

2
t ) as observation at every time instant

t . These perception values contain the car’s location in the
X axis (x1t ) and its velocity (x2t ) (two continuous values). A
reward value of−1 is provided to the agent at each time step.
An episode ends either if the agent succeeds or 200 time steps
passed without reaching a goal state. The current literature
considers that the environment is solved if the agent achieves
an average return of−110 or higher in 100 consecutive envi-
ronment tests.

The qubit QML structure used to solve this problem does
not differ from the one used in the CartPole environment in
Sect. 3.9 except for the encoding subcircuit that it is designed
as Ue(xt ) = Rz(x2t )Ry(x1t ) in the current problem. More-
over, themeasurement strategy and quantum-classical output
mapping need to be adapted to the three possible actions that
the qubit may provide as an outcome. In this case, we use the

same strategywe applied in Sect. 3.3 to solve themultinomial
Iris flower classification dataset using themeasurement in the
three axes with the observables σz, σx , σy and the mapping
described in Eq.13. Thus, if ŷt (θ) = 0, then the agent selects
action a1, it picks action a2 if ŷt (θ) = 1, and it chooses action
a3 if ŷt (θ) = 2. The approach is compared with the DDQN
algorithm as a baseline as it was performed in the previous
section.

Table 11 describes the results obtained by each method in
30 different executions. The values displayed in row 2 corre-
spond to the averagemean return obtained in 100 consecutive
episodes for 30 different executions and the standard devi-
ation, and row 3 prints the mean return of the best solution
found for each algorithm in 100 consecutive episodes. Sub-
scripts in row 2 describe the number of executions of each
algorithm that solved the problem. In this case, although both
QML(SP) andDDQN algorithmswere able to solve the prob-
lem, we can see a superiority in the classical DDQN since
it solved the environment in every execution while the qubit
QML (SP)method solved the problem 40% of times with the
experimental settings used. If we compare the performance
of QML (SP) and QML (no SP), we may notice a substantial
difference between both approaches. In this case, using the
State Preparation layer was useful to change the way clas-
sical data are encoded into a quantum state. This fact also
influenced the learning algorithm, which was able to avoid
local optima to achieve near-optimal solutions in QML (SP).

However, wemay see a clear superiority of the qubit QML
algorithm with respect to the number of parameters in row 4.
As it happened with the CartPole environment, this approach
is thefirst one to solveMountainCarwith a single qubit (Cuel-
lar et al. 2024).

3.11 Problem 10: the FrozenLake environment

The Frozen Lake is another simulated environment for rein-
forcement learning included in Farama’sGymnasium library.
It assumes a 4 × 4 grid world where the agent starts at the
top left corner and its goal is to reach the bottom-right corner
without falling into holes located in the floor (Fig. 25). To do
so, the agent can perceive xt , an integer value from 0 to 15
describing its cell location at any given time instant t , and
execute one of four actions {a1, a2, a3, a4}: to move up (a1),

Table 9 Clustering results in the Blobs dataset, with the same format as Table 8

QML (SP) QML (no SP) K -means

Avg. training S-score 0.93 ± 0.02 0.83 ± 0.01 0.98 ± 0.00

Avg. test S-score 0.90 ± 0.10(2) 0.82 ± 0.04(3) 0.98 ± 0.00(1)

Best 0.98/0.98 0.85/0.83 0.98/0.98

Parameters 6 3 12
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Fig. 22 Decision boundaries of each model in the Blobs clustering problem

right (a2), down (a3), or left (a4). The simulation ends either
when the agent reaches the goal cell or it falls into a hole.
At every time step t , the agent always receives a reward of
0 except when the goal state is found with reward +1. There
are two versions of this environment: slippery, where the
effect of an action is stochastic and simulates that the agent
can slip when it moves, and non-slippery, where the target
location is completely determined by the current location of
the agent and the action selected. In this work, we solve both
the non-slippery and slippery versions for completeness. The
non-slippery FrozenLake is considered solved if the agent is
able to obtain a reward of 1 in one environment simulation.As
the environment observation and action spaces are discrete
and the spaces are small, it is possible to calculate an opti-
mal policy to solve the problem with dynamic programming
in the stochastic (slippery) version using the value iteration
algorithm. The average return of an agent following this opti-
mal policy in this case converges to 0.74 as the number of
episodes goes to infinity and, for that reason, we consider that
the slippery version is solved if the agent receives an average
return of 0.74 in 100 consecutive episodes.

This environment differs substantially from the others
studied in Sects. 3.9 and 3.10 since the observation space
is discrete and it contains a larger action space. The qubit
QML structure used to solve it remains the same as |ŷt (θ)〉 =
Ua(θ1)Ue(xt )Us(θ0)with six parameters.However, a prepro-
cessing is required to transform the discrete observation value

Fig. 23 Image of the CartPole simulator

into two features x1t , x
2
t that are encoded in the quantum cir-

cuit as Ue(xt ) = Rz(x2t )Ry(x1t ). It is easy to decompose the
agent’s current cell observation xt as a pair (row, column):
the position’s row can be calculated as x1t = 	xt/4
 and the
column as x2t = xt%4, where % stands for the module oper-
ator. As a second preprocessing step, these two values x1t , x

2
t

are scaled to the range [0, π ].
On the other hand, measurement is carried out in the X

and Y axes of the Bloch sphere using the observables σx , σy .
As the number of possible agent actions is four, we follow a
strategy similar to the one presented in Sect. 3.8 to design the
quantum-classical output mapping.We remark that the agent
has no semantic interpretation modules and it is not aware of
the effect of each action in the environment. However, we can
include this expert knowledge in a naturalway in this problem
as follows:We know that actions up/down and left/right have
opposite effects so that if action up is matched with measure-
ment of ket |+〉, then action down could be matched with the
opposite ket |−〉. We apply the same design to action right
matched with ket |i〉 and action left with ket |−i〉. This is not
the usual setting of a pure classical reinforcement learning
procedure where the agent has no prior knowledge about the
environment or its actions, but we included this possibility

Table 10 Results in the CartPole environment: row 1 plots the model
names. Row 2 prints the average training return and the standard devi-
ation in 30 experiments. Row 3 contains the average return in 100
test experiments of the best solution found, and row 4 the parameters
required to train the models

QML (SP) QML (no SP) DDQN

Avg. training return 500 ± 0(30) 500 ± 0(30) 500 ± 0(30)

Avg. return (best solution) 500.0 500.0 500.0

Parameters 6 3 10, 602
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Fig. 24 Image of the MountainCar simulator

in this section for illustrative purposes. Then, the quantum-
classical output mapping is formalized as it is described in
Eq.15.

ŷi (θ) =

⎧
⎪⎪⎨

⎪⎪⎩

a1 , x = argmaxk∈{x,y}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σx |ŷi (θ)〉 ≥ 0

a3 , x = argmaxk∈{x,y}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σx |ŷi (θ)〉 < 0

a2 , y = argmaxk∈{x,y}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σy |ŷi (θ)〉 ≥ 0

a4 , y = argmaxk∈{x,y}
{|〈ŷi (θ)|σk |ŷi (θ)〉|} ∧ 〈ŷi (θ)|σy |ŷi (θ)〉 < 0

(15)

The aforementioned setting was used to train qubit QML
(SP) and QML (no SP) structures, and a DDQN baseline
method in both versions of the problem for 30 experiments.
Table 12 describes the results obtained for the non-slippery
FrozenLake, and Table 13 for the slippery version. Regard-
ing the non-slippery FrozenLake, we can verify that the best
solutions of both algorithms were able to solve the problem,
although the qubit QML (SP) model was able to achieve the
optimal behavior in 29 of 30 experiments and DDQN in 27
of them. A Wilcoxon test with 95% of confidence level sug-
gested that there are no significant differences in the results of
bothmethods and the result distributions could be considered
as equivalent. On the other hand, if we observe the results of
the slippery version in Table 13, we can see that both the
qubit QML (SP) and DDQN had the same performance in
average and were able to solve the problem. However, as it
happened in all previous problems studied, the number of
parameters in the qubit QML remains lower than the num-
ber of parameters of DDQN, which suggests that the model
could be more suitable for its implementation in hardware
with low resources.

If we compare the behavior of the state preparation layer
in QML (SP) and its absence in QML (no SP), we may see a
common pattern in both slippery and non-slippery settings of
the problem. In both cases, the QML (no SP) was unable to
provide suitable results, which suggests that the state prepa-
ration layerwas successful in the task of finding a preliminary
change of basis that improves the data encoding. As it hap-
pened in several problems studied in this manuscript, this
layer takes on special relevance to improve quantum data
embedding in our problems and it could be considered as a
good alternative to improve learning of quantum models.

To end up with this section, we would like to remark that
this work is also the first one to solve FrozenLake with one

single qubit in both the slippery andnon-slippery cases (Cuel-
lar et al. 2024).

3.12 Discussion

After the experimental study covering a full range of super-
vised, unsupervised, and reinforcement learning problems
solved with one qubit, we can conclude that the qubit QML
model proposed is an effective tool with practical applica-
tions in machine learning although limited to problems with
low dimensionality that can be reduced to two features. In
fact, the qubit model was able to achieve state-of-the-art
results in 8 of 10 problems with a substantial improvement
in model complexity with respect to classical methods. It
is especially striking that the remaining two problems that
were not solved with similar performance to classic machine
learning belong to the family of continuous function approx-
imation, while the majority of the other eight must take
decisions from a discrete set. However, the analysis of results
of these two datasets (problems 3 and 4) suggests that the

Table 11 Results in the MountainCar environment with the same format as Table 10

QML (SP) QML (no SP) DDQN

Avg. training return −122.67 ± 19.45(12) −199.16 ± 4.17(0) −106.28 ± 1.85(30)

Avg. return (best solution) −107.66 −176.72 −102.77

Parameters 6 3 10, 703
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Fig. 25 Image of the FrozenLake simulator

qubit model was able to learn the internal dependencies
between model inputs and outputs, although with less pre-
cision than a classical MLP. As a matter of fact, we believe
that our experimental study can be considered an important
step forward in the pave to achieve resource optimization in
quantummachine learning, but also as a relevant contribution
to solve problems that were addressed previously with QML
but using a larger number of qubits, such as the Iris flower
dataset (Piatrenka and Rusek 2022) and all the reinforcement
learning environments addressed (Cuellar et al. 2024; Skolik
et al. 2022; Chen et al. 2019).

Our empirical study has provided us with further lessons
learned beyond the experimental evidence: First, the design
of a suitable measurement methodology is crucial not only to
gather the system outcomes, but also to increase the number
of possiblemodel outputs. In our experience, this taskmust be
carried out considering how the evolution of a quantum state
with input data |xi 〉 provides the quantum state encoding the
output |ŷi (θ)〉. This task gets special relevance if we notice
that both the inputs and outputs might share the same rep-
resentation space in the Bloch sphere. A suitable geometric
study about the problem of linear or non-linear separability
could help in this design.

Another aspect of interest regards preprocessing. It is
widely known that preprocessing plays a very important role

in classical machine learning, and the same happens in QML.
Using a single qubit as a computationalmodel, preprocessing
involves compacting all the relevant data of the problem into
two features that must evolve to a linearly separable decision
in the quantum state space depending of the measurement
strategy. Thus, feature selection and feature extraction pro-
cedures are key tools to success.

We end this section with a discussion about possible prac-
tical applications of the approach in industry. It is widely
known that the Internet of Things (IoT) plays an important
role in our daily lives with applications ranging from home
automation to wearable devices, home or industry appli-
ances, etc. The current trend is that IoT devices increase
both in use and performance services including the integra-
tion with artificial intelligence and machine learning models.
However, the main limitation of these devices regards to
their size and energy requirements, and therefore the power
of the microcontrollers used in their manufacturing. There
are other limiting aspects that can be considered, as coun-
try regulations that require industrial certifications of how
an artificial intelligence model works and provides its out-
puts, for example. We believe that the proposed qubit QML
approach studied in this manuscript could have a place in this
context, as the simulation of the evolution of a qubit’s quan-
tum state is computationally efficient, specially considering
the small size of the proposed model. Moreover, we believe
that its behavior can be explained in terms of industry cer-
tifications specially if we compare it against other powerful
models such as neural networks, with the added benefit of
the possibility to provide non-linear behavior.

4 Conclusions

In this work, we have studied experimentally the benefits and
limitations of using a single qubit to solve classical machine
learning problems covering the full spectrum of supervised,
unsupervised, and reinforcement learning.We have proposed
a variational quantum circuit including three stages, state
preparation, data encoding, and ansatz, and analyzed the
results both in terms of the geometrical interpretation of the
qubit response and performance. We have put in a manifest
that a single qubit is a powerful tool to have into account
when solving simple problems whose dimensionality can be
reduced to two features, although there are strong limitations
concerning scalability to complex problems containing tens

Table 12 Results in the non-slippery FrozenLake environment with the same format as Table 10

QML (SP) QML (no SP) DDQN

Avg. training return 0.97 ± 0.18(29) 0.00 ± 0.00(0) 0.90 ± 0.30(27)

Avg. return (best solution) 1.0 0.0 1.0

Parameters 6 3 10, 804
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Table 13 Results in the slippery FrozenLake environment with the same format as Table 10

QML (SP) QML (no SP) DDQN

Avg. training return 0.75 ± 0.02(29) 0.33 ± 0.03(0) 0.74 ± 0.14(29)

Avg. return (best solution) 0.81 0.4 0.82

Parameters 6 3 10, 804

or hundreds of features. In spite of this disadvantage, the qubit
model was able to achieve state-of-the-art performance using
fewer parameters with respect to classical machine learning
methods in the problems studied, and this fact suggests that it
could be a good choice to be considered for implementation
in hardware with low resources such as embedded systems,
microcontrollers or edge devices that need to perform deci-
sion tasks with machine learning tools, since simulating the
evolution of a single qubit quantum state is computationally
efficient in our proposal.
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