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Abstract: The quantum approximate optimization algorithm (QAOA) is known for its capability and

universality in solving combinatorial optimization problems on near-term quantum devices. The

results yielded by QAOA depend strongly on its initial variational parameters. Hence, parameter

selection for QAOA becomes an active area of research, as bad initialization might deteriorate the

quality of the results, especially at great circuit depths. We first discuss the patterns of optimal

parameters in QAOA in two directions: the angle index and the circuit depth. Then, we discuss the

symmetries and periodicity of the expectation that is used to determine the bounds of the search space.

Based on the patterns in optimal parameters and the bounds restriction, we propose a strategy that

predicts the new initial parameters by taking the difference between the previous optimal parameters.

Unlike most other strategies, the strategy we propose does not require multiple trials to ensure

success. It only requires one prediction when progressing to the next depth. We compare this strategy

with our previously proposed strategy and the layerwise strategy for solving the Max-cut problem in

terms of the approximation ratio and the optimization cost. We also address the non-optimality in

previous parameters, which is seldom discussed in other works despite its importance in explaining

the behavior of variational quantum algorithms.

Keywords: quantum variational algorithm; combinatorial optimization; initialization strategy

MSC: 81P68

1. Introduction

The Quantum Approximate Optimization Algorithm (QAOA) was first introduced by
Farhi et al. [1] as a quantum-classical hybrid algorithm, which consists of a quantum circuit
with an outer classical optimization loop, to approximate the solution of combinatorial
optimization problems. Since then, many studies have been conducted to discuss its quan-
tum advantage and its implementability on near-term Noisy Intermediate Scale Quantum
(NISQ) devices [2–8]. QAOA is shown to guarantee the approximation ratio α > 0.6924 for
circuit depth p = 1 in the Max-cut problem on 3-regular graphs [1]. Further studies have
shown a lower bound of α > 0.7559 for p = 2 and α > 0.7924 for p = 3 [9].

Parameter selection in QAOA has been an active area of research due to the diffi-
culties that lie within the classical optimization of QAOA, especially the barren plateaus
problem [10–12]. Patterns in optimal parameters of QAOA have constantly been studied,
and various strategies are proposed to improve the quality of the solution [13–20]. Ma-
chine learning methods are also employed to improve parameter selection [18,19,21,22].
For instance, it is found that for some classes of graphs, e.g., regular graphs, the optimal
parameters of a smaller graph can be reused as they are on larger graphs to approximate
the solution without solving them [23]. This characteristic is defined as the ‘parameter
concentration’ in [24] and is found in some projectors as well. Recently, the transferability
of parameters has also been studied with the discovery of parameter concentration in
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d-regular subgraphs with the same parity (odd or even) [25]. These works focused on the
characteristics of the optimal parameters of QAOA in the direction of problem size n.

Another direction that is mostly concerned is the QAOA circuit depth p. It is discussed
that we usually need a larger p to solve problems with a larger n with a higher α. However,
as p grows larger, the increased occurrence of local minima makes the optimization difficult.
If the QAOA parameters are initialized randomly, there is a high chance that they will
converge to an undesired local optimum. This is shown in our previous work [26], and we
proposed to use the previous optimal parameters as starting points for the following
depths. We found out that this improves the convergence of the approximation ratio
towards optimality. This implies that there is some relationship between the previous
optimum and the current optimum. This motivates us to study the relationship between
the optimal parameters and circuit depths.

In this work, we study the patterns in the optimal parameters of QAOA Max-cut in
two directions: the angle index j and the circuit depth p. We name the pattern exhibited by
the optima with respect to j as the adiabatic path, and the pattern with respect to p as the
non-optimality, which we explain each of them in detail in Section 3. Also, as the expectation
function of QAOA Max-cut is highly periodic and symmetric, the landscape it produces
will have multiple optima. Therefore, for the adiabatic path and the non-optimality patterns
to be seen explicitly, it is required to restrict the bounds of the parameter search space, so
that the redundant optimal points in the full search space can be removed.

Based on the adiabatic path and the non-optimality, we propose the bilinear initialization
strategy (or simply bilinear strategy) which generates initial parameters at the new depth
given the optimal parameters from the previous depths. This strategy aims to reproduce
the optimal patterns at the new depth so that the initial parameters generated will be
close to the optimal parameters, reducing the likelihood to converge to an undesired
optimum. Since the previous parameters are used to predict the new parameters, this
strategy requires optimization at every depth up to the desired depth. However, unlike
most other strategies [27,28] which require multiple trials to ensure success, the bilinear
strategy only requires one trial at each depth.

We then demonstrate the effect of the bilinear strategy on solving the Max-cut problem
for 30 non-isomorphic instances composing different classes of graphs, including the 3-
regular, the 4-regular, and the Erdös-Rényi graphs with different edge probabilities. We
compare the strategy with our previously proposed parameters fixing strategy, and the
layerwise strategy, in terms of approximation ratio and optimization cost.

We also study the case where the strategy might fail in odd-regular graphs with
wrongly specified bounds. The result is interesting as it shows that there exists an optimum
in the expectation function of odd-regular graphs that does not follow the adiabatic path
pattern. Instead, the β parameters (parameters associated with the mixer Hamiltonian)
oscillate back and forth. We then explain this phenomenon using the symmetry in odd-
regular graphs.

2. QAOA: Background and Notation

The objective of QAOA is to maximize the expectation of some cost Hamiltonian
Hz with respect to the ansatz state |ψ(γ, β)〉 prepared by the evolution of the alternating
operators:

∣

∣ψp(γ, β)
〉

=
p

∏
j=1

e−iβ j Hx e−iγj Hz |+〉⊗n. (1)

where γ = (γ1, γ2, . . . , γp) and β = (β1, β2, . . . , βp) are the 2p variational parameters,

with γ ∈ [0, 2π)p and β ∈ [0, π)p. |+〉
⊗

n corresponds to n qubits in the ground state of
Hx = ∑

n
j=1 Xj, where Xj is the Pauli X operator acting on the j-th qubit.

In this paper, we consider the Max-cut problem, which aims to divide a graph into
two parts, with the maximum number of edges between them. The Max-cut problem is
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an NP-complete problem due to its reducibility to the MAX-2-SAT problem [29]. The cost
Hamiltonian Hz for the Max-cut problem for an unweighted graph G = (V, E) is given as

Hz =
1

2 ∑
(j,k)∈E

(✶− ZjZk), (2)

where Zj is the Pauli Z operator acting on the j-th qubit. The ZjZk operators are applied
to qubits j and k for every edge (j, k) in the graph. We define the expectation of Hz with
respect to the ansatz state in Equation (1):

Fp(γ, β) ≡ 〈ψp(γ, β)|Hz|ψp(γ, β)〉, (3)

where p is known as the circuit depth of QAOA. Solving the problem with QAOA is
equivalent to maximizing Equation (3) with respect to the variational parameters γ and β.
This can be completed with a classical optimizer that searches for the maximum F and the
parameters that maximize it:

(γ∗, β∗) ≡ arg max
γ,β

F(γ, β), (4)

where the superscript * denotes optimal parameters. We also define the approximation ratio
α as

α ≡
F(γ∗, β∗)

Cmax
, (5)

where Cmax is the maximum cut value for the graph. The approximation ratio is a typical
evaluation metric indicating how close the solution given by QAOA is to the true solution,
0 ≤ α ≤ 1, with the value of 1 nearer to the true solution.

Throughout the paper, we use the symbol φ to generally denote either γ or β in situa-
tions where the distinction of both is not required. Also, we sometimes use Φp to denote
the entire parameter vector at circuit depth p:

Φp ≡ (γ, β)p = (γ1, . . . , γp, β1, . . . , βp). (6)

For a single parameter, we use φ
p
j to denote the parameter at circuit depth p with

index j.
The maximum of Fp in the p-level search space will approach Cmax as p → ∞, thus

the approximation ratio α will approach 1 [1]. However, due to the increased occurrence
of local maxima in larger p, it gets more difficult to find the maximum Fp [3,27]. If the
parameters were initialized randomly, the optimizer is more likely to be trapped in local
maxima for larger p [26]. The choice of initial points for the optimizer determines whether
the optimizer converges to a global maximum. Hence, we would prefer to have “good”
initial points for the optimizer to converge to the desired maximum.

3. Patterns in the Optimal Parameters of QAOA

3.1. Resemblance to the Quantum Adiabatic Evolution

It has been repeatedly reported that the optimal parameters resemble the adiabatic
quantum computation (AQC) process [30], where the mixer Hamiltonian Hx is gradually
turned off (decreasing β) and the cost Hamiltonian Hz is slowly turned on (increasing
γ) [27,31]. This comes from the fact that the angles γ and β is related to the discrete
time step of the adiabatic process [1,15,30]. Consider the time-dependent Hamiltonian
H(t) = (1− t/T)Hx + (t/T)Hz going through a simple adiabatic evolution with total run
time T. Discretizing the evolution gives

e−i
∫ T

0 H(t)dt ≈
p

∏
j=1

e−iH(j∆t)∆t, (7)
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with t = j∆t. Applying the first order Lie-Suzuki-Trotter decomposition to Equation (7) gives

(7) ≈
p

∏
j=1

e−i(1−j∆t/T)Hx∆te−i(j∆t/T)Hz∆t. (8)

We can then substitute γj = (j∆t/T)∆t and β j = (1− j∆t/T)∆t into Equation (8),
and it leads to the QAOA form in Equation (1). Note that the discretization in Equation (7)
divides the total run time T into p steps, i.e., ∆t = T/p. Hence, we obtain the parameter-
index-depth relation:

γ
p
j =

j

p
∆t; β

p
j =

(

1−
j

p

)

∆t. (9)

It is obvious that γj increases linearly with j and β j decreases linearly with j. Previous
works [2,15,27,31,32] have shown that the optimal parameters of QAOA tend to follow
this linear-like adiabatic path, and the pattern becomes nearer to linearity as p increases.
Consequently, this pattern is exploited in devising various strategies. Figure 1a shows the
adiabatic path taken by the optimal parameters at different p. Note that the patterns are
not completely linear. This might be due to the discretization error and the Trotter error
in our process of approximating the continuous evolution, and it is expected to approach
linear as p→ ∞ [32].
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Figure 1. Optimal parameters variation of a 10-node Erdös-Rényi graph with edge probability of 0.7.

(a) The variation of the optimal parameters at fixed circuit depth p against the angle index j. It shows

the adiabatic path of the parameters with increasing γ and decreasing β. (b) The variation of the

optimal parameters at fixed angle index j against the circuit depth p. It shows the non-optimality of

the parameters with decreasing γ and increasing β. (c) The landscape of p = 1 normalized expectation

(i.e., α) against γ1 and β1. The symmetry is shown by the γ1 = π axis and the periodicity is shown

by the β1 = π/2 axis. It can be seen that the landscape in γ1 ∈ [π, 2π) is the landscape in γ1 ∈ [0, π)

rotated by 180◦, and the landscape just repeats itself beyond β1 = π/2.

3.2. Non-Optimality of Previous Parameters

Besides the adiabatic path, we also discovered the non-optimality of optimal parame-
ters from previous depths, i.e., the optimal parameters for p are not optimal for p + 1. The
optimal parameters are shifted a little as the depth increases, as observed in Figure 1b. This
phenomenon can also be inferred from Equation (9). As p increases, at the same index j, γj

will decrease and β j will increase. Also, we noticed that as p gets larger, the parameters at
smaller indices have fewer changes compared with those with larger indices, e.g., it can be
observed in Figure 1b that |φ10

8 − φ9
8 | (rightmost two points of the gray line) is greater than

|φ10
1 − φ9

1 | (rightmost two of the blue line). We emphasize that the non-optimality is just
the counterpart of the adiabatic path as they can be explained with the same relation, but it
is seldom discussed in previous works. The patterns in the optimal parameters seem to be
inherited from the time steps in the discrete adiabatic evolution. Note that Figure 1a,b are
essentially plotted from the same set of parameters, viewed from different perspectives (j
and p). They are both plotted for better visualization.
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The results of layerwise training of QAOA also imply this non-optimality [28]. Layer-
wise training is an optimization strategy in which only the parameters of the current layer
are optimized, the rest of the parameters are taken from the previous optimal parameters.
The layerwise training has a relatively low training cost in exchange for a lower approxima-
tion ratio, as it suffers from premature saturation (saturation before the approximation ratio
reaches 1). In [28], the authors discussed the premature saturation at p = n for the rank-1
projector Hamiltonian Hz = |0n〉〈0n|, where n is the number of qubits. Since the previous
parameters in layerwise training are held constant and not allowed to move throughout
the optimization, they will not reach the global minimum because of the non-optimality.

3.3. Bounded Optimization of QAOA

The adiabatic path and the non-optimality show that the optimal parameters exhibit
some trends related to AQC. However, in the QAOA parameter space, not only the adiabatic
path leads to the solution of the problem. There are redundant optimal points in the search
space whose patterns do not follow the adiabatic path. This leads to the optimization of
the bounded parameter space, where no redundancy exists. Therefore, the properties of
the problem and its parameter space need to be studied beforehand to ensure only one
optimum exists in the parameter space.

For instance, the bounds of the unweighted Max-cut problem were originally taken
as γ ∈ [0, 2π)p and β ∈ [0, π)p because of their periodicity [1]. However, it is further
discussed in [27] that the operator e−i(π/2)Hx = X⊗n commutes through the operators in
Equation (1), and due to the symmetry of the solutions, the period of β becomes π/2. Also,
QAOA has a time-reversal symmetry:

Fp(γ, β) = Fp(−γ,−β) = Fp

(

2π − γ,
π

2
− β

)

. (10)

The second equality is due to the fact that γ has a period of 2π and β has a period of
π/2. From Equation (10), one would expect that the landscape of Fp beyond γ = π is the
image of the rotation by 180◦ of the landscape within γ = π (corresponding to the reflection
of both γ = π and β = π/4). Therefore, in general, the optimization can be completed
in the bounds Φp ∈ [0, π)p × [0, π/2)p due to the redundancies in the landscape, i.e., one
part of the landscape being the image of another. Figure 1c shows the visualization of
the p = 1 expectation landscape for a 10-node Erdös-Rényi graph. It is observed that the
maximum point (colored in blue) is redundant beyond γ1 = π and β1 = π/2. Moreover,
in regular graphs, there are symmetries in e−iπHz = Z⊗n for odd-degree regular graphs
and e−iπHz = ✶ for even-degree regular graphs. Thus, the optimization bounds can be
further restricted to [0, π/2)p × [0, π/2)p for unweighted regular graphs. The details for
the periodicity and symmetries are mainly discussed in [27,33,34], and we include the
derivations in Appendix A.

4. Bilinear Strategy

Using the properties discussed in Section 3, we devise a strategy that is depth-
progressive, i.e., the optimization is completed depth-by-depth up to the desired depth
p. We utilize the fact that in the bounded search space, the optimal parameters undergo
smooth changes, as shown in the patterns of the adiabatic path and the non-optimality. Our
strategy tries to reproduce the adiabatic path and the non-optimality patterns so that we
can generate initial parameters that are near optimal. Therefore, we use the difference in
previous optimal parameters to predict the initial points for the new parameters, i.e., the
parameters for the next depth. Following the adiabatic path, we can predict φ

p
j+1 using

∆
p
j,j−1 ≡ φ

p
j − φ

p
j−1. For the non-optimality, we can predict φ

p+1
j using ∆

p,p−1
j ≡ φ

p
j − φ

p−1
j .

We define ∆i,j as the difference between the parameters φi and φj, and this works the same
way for the superscript. We call this the bilinear strategy as it involves the linear differences
of two directions: j and p.
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We explain the mechanism of our strategy. First, we can use any exhaustion method
to find the optima for p = 1 and p = 2 within the specified bounds Φp ∈ [γmin, γmax)p ×
[βmin, βmax)p. This is to establish the base for our strategy, where we can take the difference
between two sets of optimal parameters. The bounds are chosen such that there are no
redundant optimals in the search space, as mentioned in Section 3.3, so that we can capture
the pattern. We start applying the strategy from p = 3. The parameters with indices up to
j = p− 2 are extrapolated using the pattern of non-optimality:

∀j ≤ p− 2, φ
p
j = φ

p−1
j + ∆

p−1,p−2
j

= 2φ
p−1
j − φ

p−2
j .

(11)

The current parameter φ
p
j is extended from the previous parameter φ

p−1
j by adding

the difference between the previous two parameters ∆
p−1,p−2
j = φ

p−1
j − φ

p−2
j . Note that ∆

can be either positive or negative, which determines the direction of the extrapolation. This
agrees with the monotonous change in optimal parameters. For the parameters with index

j = p− 1, we want to use a relation similar to Equation (11). However, the parameter φ
p−2
p−1

does not exist, so we take the difference from the previous index j = p− 2 instead:

φ
p
p−1 = φ

p−1
p−1 + ∆

p−1,p−2
p−2 . (12)

For the newly added parameter j = p, it is predicted using the adiabatic path pattern:

φ
p
p = φ

p
p−1 + ∆

p
p−1,p−2

= 2φ
p
p−1 − φ

p
p−2.

(13)

If the parameters produced in Equations (11)–(13) are out of the bounds specified, we
will take the boundary value of φmin or φmax (whichever is nearer) to replace them. After the
process, the initial parameters Φp = (γ1, . . . , γp, β1, . . . , βp) for p will be obtained, and it
is optimized to find the optimal at p. This entire process is summarized in Algorithm 1.
A visualization diagram of the strategy is also shown in Figure 2.

Algorithm 1 Bilinear initialization

1: Input: Φ
∗
1 and Φ

∗
2 . Φp ∈ [γmin, γmax)p × [βmin, βmax)p.

2: for p := 3 . . . q do
3: Build the initial parameters Φp:
4: for j := 1 . . . p do
5: if j ≤ p− 2 then

6: φ
p
j ← φ

p−1
j + ∆

p−1,p−2
j

7: else if j = p− 1 then

8: φ
p
j ← φ

p−1
j + ∆

p−1,p−2
j−1

9: else if j = p then
10: φ

p
j ← φ

p
j−1 + ∆

p
j−1,j−2

11: end if
12: end for
13: Initialize QAOA with Φp and perform bounded optimization.
14: end for
15: Output: Φ

∗
p and Fp(Φ∗p) for each p up to q.
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j − 2 j − 1 j j + 1

φ

∆1

∆1

∆2

∆2

∆2

∆3

∆3

Φ∗

p−2

Φ∗

p−1

Φp

Figure 2. Visualization of the bilinear strategy. ∆1, ∆2, and ∆3 correspond to the values calculated in

Equations (11), (12), and (13) respectively. ∆1 and ∆2 represent the change due to the non-optimality.

∆3 represents the change due to the adiabatic path. Φp is the new initial parameters extrapolated

from Φ
∗
p−1 and Φ

∗
p−2.

5. Results

We use statevector simulation and apply the bilinear strategy to solving the Max-cut
problem for regular graphs and Erdös-Rényi graphs. The performance of the strategy is
evaluated on 30 non-isomorphic instances of different classes of graphs up to the number of
nodes n = 20, which include the 3-regular, 4-regular graphs, and Erdös-Rényi graphs with
different edge probabilities. For the regular graphs, we optimize the parameters within
the bound [0, π/2)p × [0, π/2)p, whereas the Erdös-Rényi graphs are optimized within
[0, π)p × [0, π/2)p. Here, we only show the results for 4 of the instances in Figure 3, but the
trends discussed also apply to all other instances unless otherwise stated.

We compare the approximation ratio α obtained from the bilinear strategy with our
previously proposed parameter fixing strategy [26]. From Figure 3a–d, it can be observed
that the α produced by the bilinear strategy traces the optimal α (found by parameters
fixing) with minimal error. The results of the layerwise strategy are also plotted. Besides
the projectors completed in the previous work [28], we found out that for the Max-cut
Hamiltonian, α also saturates at a certain p due to the non-optimality of the parameters.

In Figure 3e–h, we compare the number of function evaluations nfev before the conver-
gence of the Limited-memory BFGS Bounded (L-BFGS-B) [35] optimizer for the strategies.
It is the number of function calls to the quantum circuit to compute the expectation in
Equation (3), and less nfev usually means less quantum and classical resources used. For
parameter fixing and layerwise, which need multiple trials to ensure success, we consider
the total nfev for 20 trials. The results show that the nfev required by the bilinear initial
points is always less than that of the parameters fixed by an order of 102 to 103 for p ≥ 3.
This clearly shows the advantage of the bilinear strategy on the optimization cost, as only a
single trial is required. For p = 1 and p = 2, the nfev’s are the same, as we used parameter
fixing to search for the optima. As for layerwise, the nfev’s are relatively small, as only two
parameters are optimized for each p. It is observed that for small depths up to p = 6, even
the bilinear strategy costs less than layerwise, and the cost grows with p as the number of
optimization variables increases.

On the other hand, we also consider the case where the bilinear strategy fails, where
the initial points do not follow the monotonous trend of the adiabatic path. One of the
examples is the odd-regular graph. We mentioned in Section 3.3 that one should take the
bound [0, π/2)p × [0, π/2)p for regular graphs to avoid redundancies. However, if one
tries to take the bound [0, π)p × [0, π/2)p, which is considered the general bound for
unweighted Max-cut, one has a chance to fall into the starting point in γ1 ∈ [π/2, π)
for p = 1 (shown in Figure 4a). In this case, the optimal parameters will not follow the
adiabatic path as shown in Figure 1a. Figure 4b shows that for this non-adiabatic starting
point, the optimal β’s oscillate back and forth instead. In fact, this point is symmetric to
the adiabatic start γ1 ∈ [0, π/2). We explain this odd-regular symmetry, including the β

oscillation in Appendix B.
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Figure 3. Comparison of the results for parameters fixing, layerwise, and the newly proposed bilinear

strategy, for 4 graph instances extracted from the 30 graph instances evaluated. n is the number of

nodes/vertices of the graph, d is the degree for regular graphs, ‘prob’ is the edge probability for

Erdös-Rényi graphs. (a–d) show the changes in the approximation ratio α against p. (e–h) show

the nfev required before convergence at different p’s for the L-BFGS-B optimizer (log scale). For

parameters fixing and layerwise, the nfev is the total of 20 trials.

Figure 4c shows the result of a bilinear strategy with a non-adiabatic start for a 10-node
3-regular graph. The α produced by the bilinear strategy traces the optimal until p = 7,
where it deviates after p = 8. This shows that the bilinear strategy is still effective to some
extent, even for non-adiabatic starts.
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Figure 4. (a) p = 1 normalized expectation (i.e., α) landscape for a 10-node 3-regular graph showing

multiple maxima in γ1 ∈ [0, π). When used as a starting point in the bilinear strategy, the maximum

on the left follows the adiabatic path, whereas the maximum on the right does not follow the adiabatic

path. (b) The variation of the optimal parameters with a non-adiabatic start. Unlike the adiabatic start,

the β’s oscillate back and forth. (c) The effect of the bilinear strategy under the non-adiabatic start.

6. Conclusions

To conclude, we have studied the patterns in the optimal parameters of QAOA for
the unweighted Max-cut problem in two directions, namely the angle index j and the
circuit depth p. We call the variation against j and p the adiabatic path and the non-optimality
respectively. By leveraging these properties, we devise the depth-progressive bilinear
strategy, in which the optimization is completed for each depth until the desired depth.
The bilinear strategy utilizes the optimal parameters from the previous two depths, Φ

∗
p−2

and Φ
∗
p−1, to initialize the parameters for the current depth Φp.

We have demonstrated the effectiveness of the bilinear strategy by comparing it with
the parameter fixing strategy [26] and the layerwise [28] strategy on 30 non-isomorphic
random regular and Erdös-Rényi graphs. The results show bilinear is able to trace the
optimal approximation ratio α found by parameter fixing. While we have also observed
premature saturation occurring in the Max-cut Hamiltonian for layerwise. It is also found
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out that the number of function evaluations nfev of bilinear is less than that of parameter
fixing due to its single prediction.

The bilinear strategy is advantageous against most other strategies [27,28] that usually
require multiple trials to ensure success, including the parameter fixing strategy. It only
requires the optimization of one set of initial parameters at each circuit depth. The bilinear
strategy also requires knowledge of the bounds for the optimization to avoid redundancies
in the search space, thereby ensuring success. However, we have considered the case where
it fails when initialized from a “non-adiabatic” point. Numerically, for a particular 3-regular
graph, it is still capable of tracing the optimal until circuit depth p = 7.

We suggest some potential work that can be pursued in the future. Since the new
prediction is extrapolated from the change in optimal parameters, we can increase the
depth step of the bilinear strategy for less optimization cost. In this work, we have shown
using the depth step of 1. One can, for example, increase the depth step to 2 (p = 2, 4, 6, . . .)
while progressing to larger circuit depths. Although not tested, the bilinear strategy is
expected to perform on different kinds of problems (different Hz) in which their optimal
parameters follow the adiabatic path and non-optimality, which is believed to be true for
QAOA. This is also a good future work to explore.
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Appendix A. Properties of QAOA Max-Cut

The QAOA for the Max-cut problem is highly periodic and symmetric. This is ad-
dressed in several works [27,33,34]. In this section, we derive the properties that help us to
avoid global optima redundancies and to determine the bounds for the optimization.

Theorem A1 (Angle-reversal symmetry of QAOA). The expectation of QAOA stays the same
when its angles (parameters) are negated.

Fp(γ, β) = Fp(−γ,−β), (A1)

for any circuit depth p. This is true for any Hermitian mixer and problem Hamiltonian Hx and Hz.

Proof. We use the fact that the expectation F(γ, β) is real, so its complex conjugate is just

itself: F(γ, β) = F(γ, β). Hence, for any Hermitian matrices Hx and Hz,

Fp(γ, β) = Fp(γ, β) (A2)

〈+|⊗neiβ1 Hx eiγ1 Hz · · ·Hz · · · e
−iβ1 Hx e−iγ1 Hz |+〉⊗n

= 〈+|⊗ne−iβ1 Hx e−iγ1 Hz · · ·Hz · · · e
iβ1 Hx eiγ1 Hz |+〉⊗n (A3)

Fp(γ, β) = Fp(−γ,−β). (A4)
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Theorem A2 (General periodicity and symmetry for unweighted Max-cut). The expectation
function of the unweighted Max-cut problem for any graph has a period of 2π w.r.t. the parameter(s)
γ, and a period of π/2 w.r.t. the parameter(s) β.

Fp(γ, β) = Fp(γ + 2π, β) (A5)

= Fp

(

γ, β +
π

2

)

(A6)

= Fp

(

γ + 2π, β +
π

2

)

, (A7)

where φ + c means a shift of every element in the parameter vector φ by a scalar c, φ + c =
(φ1 + c, φ2 + c, . . . , φp + c).

Combining the angle-reversal and the periodicity creates a symmetry on the expectation
function:

Fp(γ, β) = Fp

(

2π − γ,
π

2
− β

)

. (A8)

Proof. It is known that e−i(2π)Hz = ✶. Consider the ansatz with γ shifted by 2π:

∣

∣ψp(γ + 2π, β)
〉

=
p

∏
j=1

e−iβ j Hx e−iγj Hz e−i(2π)Hz |+〉⊗n (A9)

=
p

∏
j=1

e−iβ j Hx e−iγj Hz✶|+〉⊗n (A10)

=
p

∏
j=1

e−iβ j Hx e−iγj Hz |+〉⊗n (A11)

=
∣

∣ψp(γ, β)
〉

. (A12)

Since the ansatz stays the same under the shift, so is the expectation, hence proving
Equation (A5).

It is known that ei(π/2)Hx = X⊗n commutes with the QAOA operators e−iβHx and
e−iγHz . The former commutation is due to the rotation of the same Pauli. The latter is due
to the symmetry of the eigenstates of Hz, e.g., the eigenvalue (or cut-value) of |0110〉 is
equal to the eigenvalue of |1001〉. The eigenvalues are invariant under the bit-flip operation
X⊗n. Consider the ansatz with β shifted by π/2:

∣

∣

∣ψp

(

γ, β +
π

2

)〉

=
p

∏
j=1

e−iβ j Hx e−i(π/2)Hx e−iγj Hz |+〉⊗n (A13)

=
p

∏
j=1

e−iβ j Hx X⊗ne−iγj Hz |+〉⊗n. (A14)

Since X⊗n commutes through the operators, we can move all of them to the rightmost
before the initial state |+〉⊗n. Note that since |+〉⊗n is the eigenstate of X⊗n, it will not
change the initial state. Therefore, we have

∣

∣

∣ψp

(

γ, β +
π

2

)〉

=
p

∏
j=1

e−iβ j Hx e−iγj Hz X⊗n|+〉⊗n (A15)

=
p

∏
j=1

e−iβ j Hx e−iγj Hz |+〉⊗n (A16)

=
∣

∣ψp(γ, β)
〉

. (A17)
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Hence proving Equation (A6).
Combining Equations (A1) and (A7), Equation (A8) can be derived.

Fp(γ, β) = Fp(−γ,−β) = Fp

(

2π − γ,
π

2
− β

)

, (A18)

showing the expectation function reflects over the axis γ = π, and then the axis β = π/4.
This is equivalent to a 180◦ rotation about the point (~π, ~π/4), where ~π = (π, π, . . . , π).

Remark A1. The proof of Theorem A2 shows that the periodicity is not only true for the shift for
the parameter vector φ, but also true for any arbitrary number of φj shift by its corresponding
period, as any number of the operator ✶ (or X⊗n) will still be canceled out.

Theorem A3 (Periodcity and symmetry for even-regular graphs). For the Max-cut of even-
regular graphs, the expectation has a period of π w.r.t. the parameter(s) γ, which is shorter than the
general period.

Fp(γ, β) = Fp(γ + π, β) (A19)

= Fp

(

γ + π, β +
π

2

)

. (A20)

Due to the angle-reversal, the expectation of even-regular graphs has the symmetry

Fp(γ, β) = Fp

(

π − γ,
π

2
− β

)

. (A21)

Proof. For the Hz of even-regular graphs, e−iπHz = ✶. Consider the ansatz with γ shifted
by π:

∣

∣ψp(γ + π, β)
〉

=
p

∏
j=1

e−iβ j Hx e−iγj Hz e−iπHz |+〉⊗n (A22)

=
p

∏
j=1

e−iβ j Hx e−iγj Hz |+〉⊗n (A23)

=
∣

∣ψp(γ, β)
〉

. (A24)

Also, by combining Equations (A1) and (A20), we can derive the symmetry.

Fp(γ, β) = Fp(−γ,−β) = Fp

(

π − γ,
π

2
− β

)

. (A25)

From Equation (A8), if the expectation Fp has a global optimum at the point (γ∗, β∗),
then it will also have a global optimum at (2π− γ∗, π

2 − β∗). Therefore, to avoid redundan-
cies in general graphs, it is suitable to set the optimization bounds as Φp ∈ [0, π)p × [0, π/2)p.
On the other hand, for even-regular graphs, Equation (A21) shows that an extra symme-
try exists at (π − γ∗, π

2 − β∗) due to the shortened period, so the suitable bounds are
Φp ∈ [0, π/2)p × [0, π/2)p.

Appendix B. Non-Adiabatic Path for Odd-Regular Graphs

It is known from the previous section, the QAOA for Max-cut has symmetric properties
in its expectation function. In other words, we know that, generally, if the expectation
Fp has a global optimum at the point (γ∗, β∗), then it will also have a global optimum
at (2π − γ∗, π

2 − β∗). For even-regular graphs, they have an extra symmetry at (π − γ∗,
π
2 − β∗) due to the shortened period. Understanding this allows us to predict, for example,
the other symmetric optimum will also have the adiabatic path pattern shown in Figure 1a,



Mathematics 2023, 11, 2176 12 of 14

except that γj will decrease and β j will increase, as the original optimum and the symmetric
optimum are negatively related.

However, things are a bit different in odd-regular graphs. We found out that in odd-
regular graphs, the other “symmetric” optimum follows the pattern shown in Figure 4b,
with smooth decrease in γj and oscillating β j. In this section, we will derive the symmetry
for odd-regular graphs.

Theorem A4 (Symmetry for odd-regular graphs). For odd-regular graphs, the expectation has
a symmetry that follows

Fp(γ, β) = Fp(π − γ, β̃), (A26)

where β̃ has elements β j if j is odd and (π/2− β j) if j is even:

β̃ ≡















β1
π
2 − β2

β3
π
2 − β4

...















. (A27)

Proof. For the Hz of odd-regular graphs, e−iπHz = Z⊗n. Consider the ansatz with γ shifted
by π:

∣

∣ψp(γ + π, β)
〉

=
p

∏
j=1

e−iβ j Hx e−iπHz e−iγj Hz |+〉⊗n (A28)

=
p

∏
j=1

e−iβ j Hx Z⊗ne−iγj Hz |+〉⊗n. (A29)

The expectation is thus

Fp(γ + π, β)

= 〈+|⊗n(eiγ1 Hz Z⊗neiβ1 Hx · · · eiγp Hz Z⊗neiβp Hx )Hz

(e−iβp Hx Z⊗ne−iγp Hz · · · e−iβ1 Hx Z⊗ne−iγ1 Hz)|+〉⊗n. (A30)

We know that Z⊗n commutes with e−iγHz , but does not commute with e−iβHx . How-
ever, both Z⊗n and e−iβHx are Hermitian, so

Z⊗ne−iβHx = (Z⊗ne−iβHx )† (A31)

= eiβHx Z⊗n. (A32)

As we can see from the above, as Z⊗n moves through e−iβHx , the sign of β changes.
The goal here is to use this property to move the Z’s in Equation (A30) towards the center
Hz, so that the Z’s from the left and right cancels out at the center, since they commute
with Hz. As Z⊗n moves through the equation, the sign of β’s that the operator passes
through will be toggled. It is not difficult to see that after all the Z’s have been canceled out,
the resulting vector of β will have elements with alternating signs. We define the resulting
vector β′:

β′ ≡















−β1

β2

−β3

β4
...















. (A33)
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Hence, we have
Fp(γ + π, β) = Fp(γ, β′). (A34)

Shifting γ on both sides of the equation by −π and applying the angle-reversal on the
RHS yields

Fp(γ, β) = Fp(γ− π, β′) (A35)

= Fp(π − γ,−β′). (A36)

To tidy up this, we want to get the values of −β′ in the range of [0, π/2)p. As
mentioned in Remark A1, the expectation is left unchanged if we shift any number of the
parameter(s) by its period. Thus, we shift the negative elements (even indices) in −β′

by π/2, so if β j ∈ [0, π/2), then (π/2− β j) will also be within the range. We use a new

symbol β̃ to denote this parameter vector, arriving at Equation (A27). Hence,

Fp(γ, β) = Fp(π − γ,−β′) = Fp(π − γ, β̃). (A37)

Thus, Equations (A26) and (A27) explain the oscillation of β values shown in Figure 4b.
By restricting the optimization bounds to Φp ∈ [0, π/2)p × [0, π/2)p, the non-adiabatic
path for odd-regular graphs can be avoided.
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