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Introduction

One of the main goal of theoretical high energy physics consists in force unification. The Standard
Model has provided a unified description of all non gravitational interactions as quantum field
theories with gauge symmetries, while gravity is described by the General Relativity of Einstein.
The fusion of these two theories in a unified framework is still lacking. Nowadays the most
promising candidate is string theory, which describes the fundamental particles as vibrating strings
and naturally includes gravity. However, a deep understanding of string theory is far to be
achieved. Consistency of string theory demands a new symmetry in nature, which maps bosons
into fermions and viceversa, the supersymmetry. Thus, if we consider the relative role of field
theory and string theory, we can conclude that physics at distances well below the Planck scale
is described by a local quantum field theory. Then the basic building blocks for any theory of
elementary particle physics are supersymmetric field theories, and, most probably, supersymmetric
Yang-Mills theories. Moreover ordinary quantum field theories still have many open questions such
as the hierarchy problem, confinement, ultraviolet completion. Supersymmetric quantum field
theories can then provide an important theoretical laboratory to learn about quantum properties
of field theories. Indeed, their renormalization properties and their high level of symmetries enable
a powerful non perturbative analisys. These are relevant reasons to investigate supersymmetric
quantum field theories.

However, from experimental observations, we know that at low energy supersymmetry must
be broken if we wish to build reasonable phenomenological models. This is the motivation to
study the wide subject of supersymmetry breaking in quantum field theories. Any theoretical
construction where there is supersymmetry, from string theory to supergravity and so on, should
deal with the problem of how to break it.

One of the usual phenomenological pattern is that the supersymmetry breaking occurs in
an hidden sector, which is not charged under the Standar Model gauge group, and that the
breaking is then transmitted to a supersymmetric extension of the Standard Model (MSSM). The
transmission can be mediated by another set of fields, the messengers, and can take place through
gauge interaction and/or gravitational interaction. The transmission of supersymmetry breaking
leads then to the generation of (soft) supersymmetry breaking terms in the lagrangian of the
MSSM. Specifying the right hidden sector is a very hard task, even if some general properties to
fit with the observations have to be required.



Metastable and dynamical supersymmetry breaking

In the last years there has been an effort to exploit the special simplifications of supersymmetric
field theories to discover the behavior of these theories in the region of strong coupling. These
investigations led to many wonderful realizations about these theories; in particular, it was discov-
ered that many cases have remarkable nontrivial dual descriptions. The electric-magnetic duality
of N = 1 gauge theories has been discovered by Seiberg and has provided fundamental insights
in the low energy dynamics of these theories.

A striking result was the understanding of the Affleck-Dine-Seiberg superpotential. In a specific
range between the number of colours and the number of flavours of supersymmetric QCD there is
a non perturbative generation of a superpotential. This superpotential is a pure quantum effect
that modifies drastically the classical space of vacua of the theory. Classically there is a manifold
of supersymmetric vacua, but at quantum level there is a runaway behaviour of the potential, and
hence no vacua. This non perturbative superpotential has been deeply studied and exploited in
model building, with the aim of breaking supersymmetry through a dynamical effect.

As already mentioned, Seiberg duality is one of the most relevant improvements in non per-
turbative properties of supersymmetric gauge theories. It represents the possibility of providing
an alternative description for the original theory (the electric one) in terms of another theory, the
magnetic one, which is weakly coupled when the first one is strongly coupled. The two theories
describe at low energy the same physics. We can study the weakly coupled one with standard
perturbative techniques to extract information about the strong dynamics of the other theory.
This is why Seiberg duality is referred to as an electric/magnetic duality.

The recent breakthrough of Intriligator Seiberg and Shih has given a new and fundamental
ingredient. They have shown that it is possible to find metastable vacua with supersymmetry
breaking in the low energy description of massive supersymmetric QCD. Their analysis is based
on the weakly coupled (magnetic) description and provides a mechanism of spontaneous breaking
of supersymmetry. On the other hand, in the electric theory language, the existence of such vacua
is a strong coupling phenomenon, and so the supersymmetry breaking is dynamical. Actually,
these vacua are only metastable, i.e. they are local minima of the potential. They decay into the
supersymmetric vacua of the theory but, if their lifetime is long, they can be phenomenologically
acceptable.

Metastability is a crucial property of these vacua since there is a very strong constraint on the
existence of supersymmetric vacua in supersymmetric theories: the non vanishing of the Witten
index. As soon as it is different from zero, the theory admits supersymmetric vacua and hence
supersymmetry cannot be spontaneously broken in the true vacuum of the theory. However, if
we accept the possibility of false but long lived vacuum, we can search metastable vacua with
supersymmetry breaking even in theories with Witten index different from zero.

These models can have direct phenomenological applications playing the role of an hidden sec-
tor. In this thesis we focus on schemes of gauge mediation, where the breaking transmission takes
place through gauge interactions. This allows to make some predictions about the final spectrum,
in particular about masses of the MSSM which are generated through the radiative corrections.



In this context a crucial role is played by R-symmetry. It is a U(1) global symmetry which is
usually manifest in the metastable vacua with broken supersymmetry. This is not satisfying since
an R-symmetry forbids the perturbative generation of crucial supersymmetry breaking terms.

Explicit supersymmetry breaking

The supersymmetry breaking discussed so far is a spontaneous breaking of supersymmetry. How-
ever, as a general global symmetry, the breaking of supersymmetry can also be explicit, adding non
supersymmetric terms to the Lagrangian. The explicit supersymmetry breaking should be soft, in
order not to spoil the renormalization properties of the theory. The introduction of supersymme-
try breaking terms can be achieved through the so called spurion superfields. The importance of
this method of supersymmetry breaking is due to the fact that such soft terms naturally arise in
the flat limit of supergravity theory with spontaneous breaking of supersymmetry. If we consider
a supergravity theory where the vacuum breaks local superysmmetry and we perform the limit
where we decouple gravity Mpjaner, — 00, keeping fixed the ratio between the gravitino mass and
the Planck mass, then we obtain a theory with global supersymmetry plus soft terms.

Introduction to N/ =1 gauge theories

In the first part of the thesis we review some aspects of non perturbative A" = 1 gauge theories, the
Intriligator Seiberg and Shih (ISS) model, and some elements of the gauge mediation mechanism.
We focus on the basic analysis which are necessary in order to understand N = 1 electric/magnetic
duality, the breaking of supersymmetry and its consequences. This is a very wide subject, that
connects old and recent results which are spread in the theoretical and also phenomenological
literature of the last twenty years. Hence we think it can be useful to review some main aspects
in order for the thesis to be more complete.

In particular in chapter 1 we review some elements of supersymmetry breaking, of non per-
turbative techniques and of electric/magnetic duality. We widely explain the extended elec-
tric/magnetic duality with adjoint fields, that will be necessary in the following.

In chapter 2 we review the ISS model, and we give a very brief outlook on the large amount
of papers that have followed.

The gauge mediation of supersymmetry breaking, with particular attention to the gaugino
mass generation, is reviewed in chapter 3.

Metastable vacua in N/ = 1 gauge theories

From the fourth chapter we begin with the original part of the thesis. Chapters 4,5 and 6 are
devoted to the analysis of supersymmetry breaking metastable vacua in different N = 1 gauge
theories, through a detailed study of their low energy dynamics. These chapters are based on
papers written in collaboration with A. Amariti and L. Girardello [1, 2, 3]. Two main classes of
theories have been studied.



The first one, analyzed in chapter 4 and 5, is characterized by the presence of fields in the
adjoint representation of the gauge group, which brings to richer electric/magnetic dualities. This
theory is also interesting since models with scalar fields in the adjoint representation naturally
arise in string theory. In chapter 4 we investigate the possibility of non supersymmetric meta-
stable vacua in the deep infrared of SU(N) gauge theory with both fundamental and adjoint
matter, and with non trivial superpotential for the adjoint. Such superpotential generates further
mesons in the dual magnetic theory. This produce several flat directions which cannot be stabilized
easily and which could lead to instability of the non supersymmetric vacua. We find that, adding
proper deformations to the superpotential, there are non supersymmetric meta-stable vacua with
parametrically large life-time. In our model the landscape of non supersymmetric vacua that
appears at classical level is wiped out by quantum corrections and there is no U(1)r symmetry,
differently from the most of the other models in literature.

Subsequentely, in chapter 5, we embed this model in a direct gauge mediation scenario, showing
how it can be used as an hidden sector to comunicate the supersymmetry breaking to a visible
sector (MSSM). The absence of an R-symmetry allows the generation of a non trivial gaugino
mass.

In chapter 6 we discuss the second class of theories, the A,, quiver gauge theories, which can
be derived directly from string theory. These models indeed arise in type IIB string theory as the
world volume theory of D5-branes partially wrapped on Calabi-Yau singularities. Such theories
are characterized by the presence of multiple gauge groups. We study the low energy dynamics
by Seiberg dualizing alternate nodes in the quiver, and then we prove the existence of longliving
metastable vacua. In order to rely on perturbative computations in the dual (magnetic) theory,
we perform a carefull analysis of the RG flow of the different gauge groups which leads to non
trivial constraints to be imposed on the strong coupling scales.

Also for this class of models we show how they can be embedded in a gauge mediation scenario.
The R-symmetry problem is solved here by the mass term for the messenger fields, that breaks
the U(1)g at tree level.

Dijkgraaf Vafa conjecture and explicit supersymmetry breaking

As already introduced, String Theory is the most promising candidate for force unification. In the
last years the geometrical engineering of gauge theories has provided a method to embed gauge
theories in string theory and the interplay between the two descriptions has given new important
insights to the quantum field theories understanding. In chapter 7 we explore the topic of explicit
supersymmetry breaking in this framework.

A very simple relation between the low energy effective action for a class of N' = 1 gauge
theories and the free energy of an auxiliary matrix model has been found by Dijkgraaf and Vafa.
The simplest case is U(N) gauge theory with massive adjoint chiral matter multiplets with a
polinomial tree-level superpotential. The proposal stems from a set of dualities in the framework



of geometrical engineering of gauge theories, topological strings and matrix models and it has been
tested and supported directly in field theory. In chapter 8, based on the work [4] in collaboration
with L. Girardello and G. Tartaglino-Mazzucchelli, we study explicit soft supersymmetry breaking
in the tree—level superpotential promoting the coupling constants to spurions. Holomorphy at large
is lost, but holomorphic quantities such as the low—energy superpotential can be still analyzed.
We succesfully compare the computation in the superfield formalism adapted to spurion fields
with that one via algebraic curve underlying the effective gauge theory, where the holomorphic
breaking terms are interpreted as Whitham deformations.

AdS/CFT correspondence

In the last years a lot of progresses have been made in the comprehension of field theories and
string theory by means of dualities. The effort to understand the non perturbative regime of YM
theories has brought to the search of dual descriptions of gauge theories which permit to learn
about the strong coupling dynamics. The gauge/gravity correspondence provides a closed string
description, based on classical supergravity, of the dynamics of gauge theories at large t Hooft
coupling.

Generally, a possible way to uncover stringy effects in Yang-Mills theory consists of adding
D-branes on the supergravity side and trying to find out the corresponding field theory dual.
In order to add consistently probe D-branes, we have to control the supersymmetry preserved
by the inclusion of these extra degrees of freedom. This also guarantees that the configuration
found for the brane is stable. For this reason much effort has been spent to find supersymmetric
configuration of D-branes in known supergravity solutions which are dual to gauge theories.

The AdS/CFT conjecture by Maldacena, originally formulated between the A’ =4 SYM and
type IIB string theory on AdSs x S°, has been generalized to theories with less supersymmetry.
The class of models we are interested in are N’ = 1 marginal or massive deformations of N’ = 4
SYM, which have been study from the field theory perspective by Leigh and Strassler. The gravity
dual of the exactly marginal beta deformation has been found by Lunin and Maldacena, while
the Pilch Warner flow is the gravity solution dual to the single mass deformation of N'= 4 SYM.
The mass deformation is not marginal, but the renormalization group flow leads the theory to a
conformal infrared fixed point. These theories are described in type I B supergravity as a warped
product of AdSj5 times an internal five dimensional manifold, which can support non trivial fluxes.
This can be mapped to a warped product of a Minkowsky spacetime times a non compact six
dimensional manifold with fluxes.

The description of supergravity solutions with fluxes has received a lot of attention in the
framework of string compactification. There it was found that they can be better understood in
the language of Generalized Complex Geometry (GCG). In this formalism the supergravity equa-
tions (dilatino and gravitino variations) can be recast as differential equations for pure spinors,
formal objects (sums of even and odd forms) which encode the geometrical properties of the back-
ground. The GCG can be exploited also in the analysis of non compact supergravity solutions,



and hence in the context of AdS/CFT correspondence. The description of the supergravity solu-
tions dual to the marginal and to the mass deformation of N' = 4 SYM has been recently given
in the language of GCG, as manifolds with SU(2) structure. Moreover in the GCG formalism
the supersymmetry condition for probe D-brane can be formulated as differential equation on the
pullback of the pure spinors on the world volume of the brane.

In the last chapter of the thesis, based on [5], we study, with the GCG formalism, supersym-
metric embeddings of D-branes in SU(2) structure manifolds, covering the case of the gravity
dual of massive and marginal deformation of A' = 4 SYM. We find supersymmetric configura-
tions of different dimensionality and we propose their dual gauge theory interpretations. The
topic of this last chapter is not directly related to the first part. Nevertheless, it is known that a
method to break supersymmetry in the supergravity framework can be the insertion of objects,
i.e. branes, that do not preserve supersymmetry. Thus, having as final purpose the breaking of
supersymmetry, the analysis of supersymmetric configuration is anyhow the first step.

10



Chapter 1

Prologue on N =1 gauge theories

In this chapter we review some aspects of N' = 1 gauge theories which are relevant for non
perturbative analysis. There are many textbooks [6, 7, 8, 9] and reviews of this subject [10, 11,
12, 13, 17, 18, 14, 15, 16, 19]. Some of them are introductions to supersymmetric gauge theories,
others are more focused on electric magnetic duality or on supersymmetry breaking. We refer to
these references for exhaustive introductions and explanations. As mentioned in the introduction,
our purpose is to provide the basic elements to understand the wide subject of supersymmetry
breaking in /' = 1 gauge theories, that often trace back to very old results and on the other hand
can involve some very recent developments.

In the first part we give some basic elements of supersymmetry breaking. We explain the
possible mechanisms to break supersymmetry, discussing their main properties, and we give some
clarifying example. Then we move to quantum properties of supersymmetric gauge theories, set-
ting the basis for a detailed non perturbative analysis. We analyze the supersymmetric version of
QCD, exploring the classical moduli space of vacua and then investigating the quantum properties.
This analysis brings to many unexpected and interesting results, such as dynamical supersymme-
try breaking and electric magnetic duality. Finally, we present a quite detailed study of electric
magnetic duality for theories with adjoint fields.

1.1 Order parameter for supersymmetry breaking

The order parameter for global supersymmetry breaking is the vacuum energy. This can be
obtained from the supersymmetry algebra, which contains the translation operator P,

{Qan} = 20§dPu (1.1)

where the Q)’s are the supersymmetry generators. The Hamiltonian can then be rewritten as
o_ 1.5 A
H=P = 1 (QlQl + Q202 + h.C.) (1.2)

11



This is a non negative definite operator and its expectation values on the vacuum |0) is

(O1H10) = § (QuI0)” + IQuI0)” + Q[0 + |@2[0)f?) > 0 (13)

A supersymmetric vacuum is annihilated by the supersymmetry generators, and hence has zero
energy
Egusy = (0|H|0) =0 (1.4)

On the other hand, a supersymmetry breaking vacuum is not invariant under supersymmetry
transformations, so Q,]0) # 0 and Q4|0) # 0, and hence its energy is positive

Enonsusy = <O|H|O> >0 (15)

In order to know wheter global supersymmetry is spontaneously broken we therefore need to study
the minima of the scalar potential, and see whether there is a minimum with zero energy.

1.2 N =1 global supersymmetry
Now, consider N/ = 1 supersymmetric theories described by the following Lagrangian
L= /d29d2§K(<I>ZT,<I>i)+/d20W(<I>i)+ h.c (1.6)

Here K is the Kahler potential and W is the superpotential for the chiral superfields ®;. The
scalar potential is given by

OW oW _
_ g1 2wl
Vi = Kij 9%; 99! =K F;F (1.7)
J
where o
K
(1.8)

K- =
K acbia@}

The Kahler potential, where not specified, is taken as canonical, that is sum of the squared moduli
of the fields.
If there are gauge interactions in the theory the scalar potential has an additional contributions

1 2
V=Vr+Vp Vp = B za:(Da) (1.9)
where D% = —g(@j (T“);@j), a runs on the generators of gauge group and the field involved are

the charged ones. The Kahler potential for the charged field is modified as K (CI’I, e2aV d7). We

12



assume that the gauge group is simple so there is a single coupling constant g. The kinetic term

for the gauge interaction is
1

167

/ POTW, W+ hec (1.10)
where W,, is the superfield strenght of the gauge superfield V and 7 = % +i§—§
gauge coupling.

As expected the scalar potential (1.9) is non negative. To look for zeros of the scalar potential
in field space we have to find the subspace of fields for which D® = 0. This is called the space of
D-flat directions. If for a subspace of the D-flat directions we also have F; = 0 for all Fs then the
potential is zero. The space of field where this happens is the moduli space of (supersymmetric)
vacua [21, 20].

Supersymmetry is broken by non zero F' and/or D vacuum expectation value. Here we mainly
discuss the case of F' term supersymetry breaking.

is the holomorphic

1.3 Supersymmetry breaking

We are interested in mechanism of supersymmetry breaking. The breaking of a global symmetry
can be spontaneous, if the symmetry of the action is not preserved by the vacuum. The symmetry
can be instead explicitly broken, if we add terms in the Lagrangian that are not invariant under
that symmetry. In supersymmetric gauge theories both method can be realized.

1.3.1 Explicit (soft) supersymmetry breaking

The explict supersymmetry breaking consist in adding terms in the Lagrangian that are not invari-
ant under a supersymmetry trasformation. Tipycally they could be masses for some components
in a supermultiplet, breaking the mass degeneracy. One of the main advantage of supersymmetric
theories is their renormalizability properties, which follow from cancellations in the perturbative
computation between fermionic and bosonic degrees of freedom. Hence we would like to keep this
good UV behaviour when adding the explicit supersymetry breaking terms. The explicit terms
of supersymmetry breaking with this property has been studied in [22]. They found all the pos-
sible terms which can be added to a supersymmetric Lagrangian without introducing quadratic
divergencies, the so called soft terms. The soft breaking possibilities are given by the following
recipe [22]: given any renormalizable superspace action, add to it terms which are product of
ordinary superfields (and their derivatives) and of an z-independent but #-dependent superfield
(i.e. a spurion), restricted by the condition that if the spurion is set to 1, the resulting term leads
to a renormalizable action or is a total derivative. The soft breaking possibilities are few, and

13



given by the following terms in the Lagrangian
Lprear = /d29 x ©% + h.c. X = M292
Lpreak = /d29 n ®3 + h.c. n = pb?
Liyreak = /d29 nWaW +he. 1= ub? (1.11)
Lirear = / d?0d*0 U 0" U = 126%0?
Lipreak = /d29d29‘ U D®W,) + h.c U= 1’6

The first four of them can be easily obtained promoting the coupling constants in the supersym-
metric Lagrangian to superfields which have aquired a non trivial expectation values for their
auxiliary component. Observe that the third soft term is a mass for the gaugino field, since in
component it leads to

1
Lbreak = 5M>\a)\a + h.c (112)

1.3.2 Spontaneous supersymmetry breaking

The spontaneous breaking of supersymmetry is interesting since is not introduced by hand in the
Lagrangian. However, the supertrace theorem constraint too much the mass spectrum of a theory
with spontaneous supersymmetry breaking. This theorem can be avoided via the gauge or gravita-
tional mediation mechanism. In many phenomenological models supersymmetry is spontaneously
broken in a hidden sector; the breakig is then communicated via gauge or gravitational interactions
to the visible sector (a supersymmetric extension of the Standard model) where it give raise to
soft supersymmetry breaking terms. This is the reason why spontaneous supersymmetry breaking
is strongly studied for phenomenological applications. The spontaneous supersymmetry breaking
can also be dynamical when it is not a tree level effect. Typically dynamical supersymmetry
breaking is obtained with the addition of non perturbative contributions to the superpotential
which drive the breaking.

Spontaneous supersymmetry breaking and the Goldstino

As already explained, spontaneous supersymmetry breaking occurs when the action is supersym-
metric but the vacuum is not. A vacuum is a Lorentz invariant stable configuration. Lorenz
invariance implies that all space time derivatives and all fields that are not scalars must vanish.
Hence only scalar fields ¢; can have vacuum expectation value (¢;). Thus a vacuum is where

(A%) = (X% = (¥") = Ou(¢) = 0 (1.13)

14



and the scalar potential V ((¢?), <¢I)) is in a minimum. The minimum may be the global minimum
of V, i.e. a true vacuum, or a local minimum of V. In this last case it is a false vacuum which
decay via tunneling effects into the true vacuum. If the lifetime of this false vacuum is large
enough, it could have phenomenological applications.

The minimum condition states !

oV oV

A=

9" 0g]
As already mentioned, in a supersymmetric theory the scalar potential is given by the sum of F
and D terms

=0 (1.14)

1
V=FF+ S DD (1.15)

where P
Fl=Gg  D'=—gl@i¢ +¢9 (1.16)
Here W is the superpotential and {* are the allowed Fayet Iliopoulos terms for U(1) factors.

The scalar potential is non negative and it vanishes if F* = D® = 0. This is a global minimum
of the scalar potential where supersymmetry is unbroken. There could be many of such true
vacua. There could also be a manifold of such vacua (a moduli space), parametrized by the
vacuum expectation values of the fields.

On the other hand, there can not be any solution to the equation V' = 0. Hence the mini-
mum of the scalar potential, where V' = Vi 7y > 0, is a vacuum with spontaneous breaking of
supersymmetry.

The spontaneous breaking of a global symmetry always implies a massless Goldstone mode
with the same quantum numbers as the broken symmetry generators. In the case of global su-
persymmetry, the broken generator is the fermionic charge Q). Hence the Goldstone particle is
a massless Weyl fermion, called the Goldstino. The fermionic degrees of freedom in a supersym-
metric N = 1 gauge theory are the gaugino A* and the fermionic component of the chiral fields
', The mass matrix, in the (¢;, \,) basis, is

M:( (S) —g<¢}<Ta>i->> 117)

—g(o)(T"), 0
Now, the condition for the minimum of the scalar potential leads to
oV - OPW ;
0=2—=F——_ — ¢*D%(T%) 1.18
aqsl agblaqu g ¢J( )’L ( )
and the gauge invariance of the superpotential gives
a ow a i T a1
0= 5gaugeW = W(Sgaugegb =I; (T )]gbj (1.19)

' The Kahler is taken to be canonical.
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Combining these condition we obtain the following matrix equation
~ ~ J
MG =0 G:( (F) ) (1.20)

which states that M annihilates the vector G. This means that the mass matrix M has a zero
eigenvalue. The Goldstino is the fermionic fields corresponding to the eigenvector with zero mass,
schematically

ba ~ Z(FiWi + Y (DA (1.21)

It is non trivial if and only if at least one of the auxiliary fields has a vacuum expectation value,
breaking supersymmetry. So we have prooved that if global supersymmetry is spontaneously
broken, then there must be a massless Goldstino, and that its component among the various
fermions in the theory are just proportional to the corresponding auxiliary field VEV’s.

Supertrace theorem In theories with spontaneous symmetry breaking there is a useful sum
rules that governs the tree level mass squared of particles. If supersymmetry is unbroken all
particles within a supermultiplet have the same mass. If supersymmetry is broken this is no longer
true, but the mass splitting in the multiplet can be computed as a function of the supersymmetry
breaking parameters, i.e. the VEVs of the auxiliary fields. We introduce the short notations

oOD? . oD . A A

Df=—— =—g(¢'T"); D= = —g(T"¢)" D% = —gT% 1.22
¥ g(e'T*) 061 9(T"¢) ;i 97T; (1.22)

g O2W W
Fi=— "  Fj=—— (1.23)

Too] U= g
96| 0¢} ofoltelod
The mass matrix for the vectors is

(mi)* = 2(D¢)(D") (1.24)

The vectors become massive by the standard Higgs mechanism when the charged scalars get VEVs.
The fermionic mass matrix is

_ (Fij)  V2i(D})
mF_<\@<D?> . ) (1.25)

so the squared fermion mass matrix is

; < (Fyj) (FT) —ﬁi<Fm><Di~’>> (1.26)

M=\ VRIDINFY)  2A(D3) (DY)

J K3
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while the scalar mass matrix is

o (Fa)(FM) + (D**)(DF) + (D) Dg* (FY)(Fyj) + (DINDY) 127
B (FY(FPH) 4 (DoP) (Dak) (Fj)(FPY) + (D%)(D%) + (D%) D '

We can then compute the supertrace of the tree level squared mass matrices, defined as a weighted
sum over particles with spin j

STr(m?) =) (~1)7(2j + 1)Tr(m3) (1.28)
j
The supertrace results

STr(m?) = Tr(m%) — 2Tr(m}r;mp) + 3Tr(m%) = —2¢*(DY)TxT* (1.29)

We see that if (D%) or TrT® = 0 this supertrace vanishes. In particular the supertrace vanishes
for F-term supersymmetry breaking or if all gauge group generators are traceless. In general the
supertrace vanishes if the traces of the U(1) charges over the chiral superfields are 0. This holds
for any non anomalous gauge symmetry.

The supertrace theorem then states that the sum of the squared masses of all bosonic degrees
of freedom equals the sum for all fermionic ones. In supersymmetric vacuum this is a trivial
statement. In vacuum with spontaneous breaking of supersymmetry this is a very strong condition,
which constraints the mass spectrum. This theorem have to be eluded in order to obtain sensible
phenomenology from spontaneous supersymmetry breaking.

1.3.3 R-symmetry

The description of supersymmetric Lagrangian in superspace naturally suggests that the complex
rotation of the fermionic coordinate 6, should be a symmetry

6 — €0 (1.30)

This is the R symmetry. The component of a superfield are charged under this U (1) symmetry.
For a chiral superfield ® with components ¢ the charges are as follows

b — g (1.31)
P — en Doy, (1.32)
F — 2o (1.33)

By convenction, chiral supermultiplets are always labeled by the R-charge of their scalar compo-
nent, in this case n.
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R-symmetry may be broken if the superpotential does not transform correctly. Since the term
in the Lagrangian following from the superpotential is

L= /d92W = W (1.34)

the superpotential should have charge 2 under R symmetry
W — e W . (1.35)

The Kahler potential should instead be neutral under R symmetry.

Clearly the charge assignement for the chiral fields ® has to be done coherently with the
requirement that the superpotential has R charge 2.

Finally, the kinetic term for the vector bosons should also have R charge 2 since

Lpin = / dO* T W W (1.36)

Then the R charge is usually? normalize such that the charge of the gaugino A, is 1
Ao — €%\ (1.37)

and the charge of the gauge boson is zero. This also implies that the Kahler potential for the
charged matter fields is neutral. Differently from the chiral superfields, the charge assignement
for the gaugino is quite general (it does not depend on the form of the superpotential), and it is
related to the requirement that tha kinetic term for the gauge fields has the right R charge.

It often happens that the canonical R symmetry is anomalous. In that case, it is sometimes
possible to form a non anomalous R symmetry by combining the R symmetry with other global
U(1)’s.

Gaugino mass and R symmetry It is very instructive to observe the R symmetry properties
of the soft supersymmetry breaking terms that we have introduced previously. Such terms can be
generated by quantum corrections in effective theories from interactions between an hidden sector
with spontaneous breaking of supersymmetry and the visible sector. This procedure is crucial in
order to avoid the supertrace theorem which constraints too much the tree level spectrum of a
theory with spontanoues supersymmetry breaking, as will be explained in chapter 3.

As already mentioned, the R charges for the chiral fields can be model dependent, whereas
the charge of the gauge superfields is fixed. Observing the soft supersymmetry breaking terms
(1.11,1.12), and comparing with the expression for the R charges (1.37) we conclude that the
term (1.12), i.e. the gaugino mass, is not R preserving. Hence if a supersymmetric theory have a
vacuum which breaks supersymmetry but preserves R symmetry, the radiative corrections cannot

2Unless we give strange R charges to the coupling 7
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generate a gaugino mass term. Then the low energy spectrum would have a massless fermion in
the adjoint representation, which is not phenomenologically sensible.

Even if the R symmetry is anomalous and broken by quantum effects to a discrete subgroup,
this problem is not solved unless this dicrete subgroup is reduced to Z3, and in R symmetry
preserving vacua a gaugino mass is forbidden.

1.3.4 F-term susy breaking: O’Raifeartaigh model

Models where spontaneous supersymmetry is achieved via non trivial F-term VEVs are known
as O’Raifeartaigh models. The idea is to take a set of chiral superfields ®; and a superpotential
such that the F-equations F; = 0 cannot be all satisfied. Hence the scalar potential V = 3" |F;|?
is different from zero and supersymmetry is broken.

For semplicity we consider a theory of pure chiral fields, i.e. a theory without gauge interac-
tions, and with canonical Kahler. If the superpotential has no linear term, the vacuum (¢; = 0)
will always be a supersymmetric solution.

We take a set of three chiral fields with canonical Kahler potential

K = <I>1(i)1 + (I)Q(i)g + XX (138)

and superpotential with a linear term
1
W =uX + 5hXclﬁ + m®; Py (1.39)

This is the basic O’Rafeirtaigh model. The R charges are R[X] = R[®2] = 2 and R[®1] = 0. The
F-terms are

1
Fl = X¢1+m¢y  Fi =m¢y  Fk =p+ §h¢% (1.40)

The two conditions F5 = 0 and Fx = 0 are not compatible. Hence supersymmetry is broken. If
m? > hy the absolute minimum of the potential is at ¢; = ¢o = 0 with (X) undetermined. The
X field is a flat direction in the potential

mx =0 my, =0 (1.41)

The tree level mass squared for the other fields are

1
m3 ., = 1 (nX |+ VIhX 2 + 4m|?)? (1.42)

for the fermions, and

1 1 1
md = (|mr2 + Solhal + LnX[ £ L IR T 2l [BX ¢ mPTRXT T rhxr4) (1.43)
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for the four real scalars (n = +1). The non degeneracy of the masses of the scalars and of the
fermions is a signal of supersymmetry breaking. The massless scalar field X parametrize the
pseudomoduli space of vacua. The spectrum changes along this pseudomoduli space parametrized
by X; these vacua are physically distinct. The massless fermion ¥ x is the Goldstino associated
to the spontanoues breaking of supersymmetry, indeed from (1.21) we obtain that

Yo = (Fx){x (1.44)

The flat direction (the X direction) of the scalar potential is lifted by quantum corrections. Indeed
computing the one loop Coleman Weimberg effective potential, we obtain that the scalar field X
gets positive squared masses, and it is stabilized at (X) = 0, which is the true global minimum at
quantum level, and where R-symmetry is preserved. Of course the fermion ¥ x does not receive
mass from quantum corrections, being associated to the broken supersymmetry. The parameter of
supersymmetry breaking /F'x ~ i is a tree level parameter of the superpotential. This problem is
addressed in models of dynamical supersymmetry breaking, where the breaking scale is generated
by the dynamics.

Deforming the O’Raifeartaigh model We now consider a small deformation to the prevoius
model. It consist in adding the following term to the superpotential

1 1
W =puX + §hX<I>% +md Py + Eemq)g (1.45)

This term breaks explicitly R-symmetry, and could also lead to a supersymmetric vacuum. Indeed
now the F-term equations

1
Fy=3héi+u  Fl =hXéi+més  Ff=méi+emes (1.46)

can have a solution

=2t =z [0k =T (1.47)
However if we consider the parameter € to be very small the supersymmetric vacuum is mooved
very far in the field space. Moreover the potential near the origin of the field space is not modified
a lot. This means that the supersymmetry breaking vacuum we have found in the previous model
is now a local minimum of the scalar potential, not the global one, and hence is a false vacuum.
However, if the parameter € is sufficiently small, the supersymmetry breaking false vacuum can
have a large lifetime, i.e. it can take a long time in decaying to the true (supersymmetric) vacuum.
Hence the non supersymmetric vacuum is not stable, but it is metastable.
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1-loop correction As we have seen in the previous examples, models of tree-level supersym-
metry breaking often have a moduli space of vacua. The flat directions of the scalar potential can
be associated to broken global symmetries, and hence are Goldstone bosons, and they remain flat
even at quantum level. On the other hand the pseudoGoldstone bosons are classical flat directions
non associated to any broken global symmetry, and hence not protected from quantum corrections.
For example the scalar partner of the massless Goldstino is a massless field at classical level, but
it could acquire positive or negative mass at quantum level.

In this sense the pseudomoduli space is a classical moduli space of vacua which could be lifted
by quantum corrections.

The Coleman-Weimberg effective potential for the psudomoduli is obtained computing the
1-loop corrections to the vacuum energy

yiow — L gry (tiog ) = 1.48
i = gpmaoTr|milog = (1.48)
uv
1 m? m?
= a2 [Tr (m% log AQ(j/) —2Tr (m% log A?j;)] (1.49)

where Ayy is a ultraviolet cutoff, and m2B and m% are the tree-level bosons and fermion masses
(1.26,1.27). They can be function of the pseudomoduli vevs; in this sense (1.48) is an effective
potential for the pseudomoduli, which can fix their vevs after minimization.

The logarithmic divergent term (log Ay STr m?) in (1.48) is usually absorbed in the renor-
malization of the tree level coupling constants, since STr m? is pseudomoduli independent. The
effective potential for the pseudomoduli is hence given by the STr m* logm? term in (1.48).

Finally we remind that the effective potential also include two other contributes. The first
one is quartic divergent, and is proportional to A?]V Str 1; the second one is quadratic divergent,
proportional to AQUV STr m?. They both vanish in supersymmetric theories and also in theories
with spontaneous breaking of supersymmetry due to the supertrace theorem, which guarantees
that STr m? = 0.

1.3.5 Dynamical supersymmetry breaking

In the previuos sections we have studied mechanism to spontaneous break supersymmetry. This
is achieved when the Lagrangian is manifestly supersymmetric, whereas the vacuum is not. The
superpotential and the Kahler potential give the scalar potential, whose minimization select the
vacuum.

A supersymmetric vacuum is where the scalar potential vanishes V' = 0. The non renormal-
ization theorems state that the superpotential is not renormalized perturbatively. Hence if the
theory admits a supersymmetric vacuum at tree-level, it couldn’t be spoiled by perturbative cor-
rections to the superpotential. The non renormalization theorem follows from the fact that the
superpotential must be an holomorphic function of the fields and also of the couplings.
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Then if supersymmetry is unbroken at tree level, it can only be broken by non perrturbative
effects. In supersymmetric gauge theories, the holomorphic properties and the global symmetries
of the theory can sometimes be enough to obtain the non perturbative corrections. This is why the
study of non perturbative aspects of supersymmetric gauge theories is relevant also in connection
with supersymmetry breaking.

Consider a theory with a tree-level supersymmetric vacuum. The energy of such vacuum is
vanishing by definition. Only dynamical effects can modify this energy, and break supersymme-
try. Then if the theory breaks supersymmetry spontaneously, via non perturbative effects, the
supersymmetry breaking scale, i.e. the vacuum energy, is proportional to some strong coupling

scale

82

Eyoe ~ A~ Mcutoffei 9" (Meutog f) (1.50)

where Meytorf is a cutoff scale of the theory and g(Meyiofr) is the coupling constant of the
interaction whose dynamics have driven the breaking, evaluated at the scale of the cutoff. Thus
dynamical supersymmetry breaking can naturally generates large hierarchies [23], since this factor
can be very small (~ 10717).

The analysis of models with dynamical breaking of supersymmetry can be hard since the
low energy of such models can be characterized by strongly coupled gauge theories. There are
mainly three types of dynamical supersymmetry breaking models, depending on how much we
can understand.

1. Using indirect arguments we can only conclude that supersymmetry is broken at the strong
coupling scale, but we cannot obtain the potential and the spectrum.

2. We can derive the superpotential at low energy, in variables such that tha kahler potential is
not singular, and conclude that supersymmetry is broken by non trivial F-terms. However
we cannot compute the spectrum of the theory and the supersymmetry breaking scale.

3. We can calculate the superpotential, and we can also calculate the Kahler potential, since
we find range of the parameters such that the theory is weakly coupled. For example this
can be achieved by a dual and infrared free description of the theory. Then we can compute
the supersymmetry breaking scale and the spectrum.

1.3.6 Witten Index

We have seen that the hamiltonian of a supersymmetric theory is the square of the supercharge
(1.2). The supersymmetry generators () also transform bosonic state into fermionic state and
viceversa. Together, these properties imply that bosonic and fermionic state with non zero energy
always come in pairs. On the other hand, states with vanishing energy are annihilated by @, and
so they are not necessarily paired. This property is crucial in understanding the Witten index
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[24], which is defined as

Tr(—1)" =Y " np(E) — np(E) = np(0) — np(0) (1.51)
E

where the sum is taken over the whole states and np(E) and np(F) are respectively the number
of bosonic and fermionic states with energy E. As mentioned, ng(EF) = np(F) as soon as E # 0.
Thus only the supersymmetry preserving vacua E = 0 can cotribute to the index. We conclude
that a sufficient condition for unbroken supersymmetry is Tr(—1)¥ # 0. Conversely, a necessary
condition for broken supersymmetry is that Tr(—1)% vanishes.

The important property of this index is that it is a discrete quantity, and it is not modified
by continuos deformations of the parameter of the theory. With continuos deformations we mean
those that do not modify the asymptotic behaviour of the action in the field space. For instance,
a change in the large field behaviour of the superpotential can affect the index.

Witten has shown that the index for pure supersymmetric gauge theories is different from
zero. The index does not change if we add massive vector matter, as it can be calculated in
the large mass limit, where we integrate out the matter fields and obtain pure SYM. Thus there
are supersymmetric vacua for any value of the mass, even in the massless limit. This constraint
on the existence of supersymmetric vacua in N' = 1 supersymmetric gauge theories with vector
matter has much restricted potentially phenomenological applications. However a possible way
out is to consider theories which admit supersymmetric vacua, and where supersymmetry breaking
happens in a false but long living vacuum.

1.3.7 Breaking by Rank condition

We now consider a more complicated model which share many properties with the O’Raifeartaigh
one and that will be crucial in the following chapters [25]. Consider a theory of pure chiral fields
&, & and M with the following global symmetries

SUN) SUNy) SUNy) U(s U)a U(Dr
ey Ny ! ! ! 0 (1.52)
o N 1 Ny -1 1 0
M 1 Ny Ny 0 —2 2
where we work in the regime 3
N < Ny (1.53)
Tha Kahler potential is taken to be canonical
K =Trd'® + Trd ® + tr MTM (1.54)
and the non trivial superpotential is
W = hTr®M P — hm>*tr M (1.55)
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The first term is the more general interaction compatible with the symmetries in 1.52. The second
term breaks the global symmetries to SU(N) x SU(N;)p x U(1)g x U(1)g where SU(N;)p is
the diagonal subgroup of the two flavour symmetries SU(Ny).

We compute the F term equation for the field M

—(F1 )9 = h®'®° — hm?6¥  i,j=1...Ns, c=1...N (1.56)

This is an Ny x Ny matrix relation. However, the first term of (1.56) is a matrix of rank N, since

(1.53). On the other hand, 6% has rank N ¢ and so the F )\LJ cannot all vanish and supersymmetry
is spontaneously broken.
The minimum of the scalar potential is

Vinin = (N — N)|h?m?| (1.57)

and the moduli space of vacua is parametrized by

v 0 0 ©o ) =T < ©o )
( 0 XNf—Nfo—N ) < 0 0 59

with arbitrary X, and (g, subjected to the constraint
Popo = m*1 5 (1.59)

In order to understand better the classical flat directions of this moduli space we select a point
and look at the fluctuation [25]. We choose the vacua of maximal unbroken global symmetry

X=0 gﬁozgo():ml]v (160)

and parametrize the fluctuation with fields & and ¢; and 6

(& s - 90060+€2> *T_<¢0€_6+§3>
Wo(S ) eo(rE) w_ (w6}

where in the quarks we have separeted the trace part of the fluctuation, 8, and the traceless part
£9,&5. Here the global symmetries are broken to SU(N)p x SU(Ny — N)xU(1)pg x U(1)g where
the first factor is the diagonal subgroup of the product SU(N) x SU(N)p (with SU(N)p we
denote one part of the diagonal flavour group SU(Ns)p — SU(N)r x SU(N; — N) x U(1)).
The tree level scalar potential gives mass to most of the fluctuations. The massless Goldstino
comes from the fermionic component of X. Some of the massless fluctuations are Goldstone bosons,
corresponding to broken global symmetries, and they are exactly massless also at quantum level.
The remaining massless fields, called pseudoGoldstone, are not associated to any global broken
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symmetry and they can acquire positive (stabilizing the vacuum) or negative masses (leading to
runaway directions) by quantum corrections. They are

*

X 046 bx= %'(52 — &)+ hee, (1.62)

These pseudo moduli can acquire masses, starting at 1 loop, from their couplings to the other

massive fields. The one loop contribution is the dominant one since the coupling A is marginally

irrelevant in the infrared. The field X can be set in diagonal form using the residual flavour
symmetry SU(N; — N).

The behaviour of these directions can be understood better looking at the superpotential for

the fluctuations. Inserting the expression for the fluctuations in the tree level superpotential and

keeping up to trilinear order we obtain®
Wiiuet = h <m60¢5¢2 +me a1 + g1 X g — m>X + me&i 65 + me_6§2§1> +... (1.63)

where the dots are higher order terms (typically third order in the fluctuations ¢; and ;). We
easily recognize a structure reminding the O’Raifeartaigh model, where the field X drives the
spontaneous supersymmetry breaking. We are interested in computing the 1 loop corrections
as a function of the pseudomoduli, and so we focus on the fluctuations which give non trivial
contributions to the mass matrix (1.26,1.27). In particular, the fields &; couple only with cubic
interactions to the fields ¢;, which themselves do not appear at linear order*. Hence the &; do not
contribute to the bosonic mass matrix and constitute a decoupled supersymmetric sector, at this
order. Neglecting them the fluctuation superpotential get a very simple expression

Witaer = h (me’sea +me™ 6101 + 61 X6z — m?X ) (1.64)

Here we recognize exactly Ny — N copies of O’Raifeartaigh models. A calculation then yields the
1 loop effective potential as a function of the pseudomoduli

h*m?(log4 — 1)N(N; — N)

1—loop
V
82

eff = const +

<;m2(9+9*) 4 |X|2> (1.65)
showing that the directions X and 6+ 6* are stabilized by quantum corrections. Hence the pertur-
bative corrections remove the classical degeneracy and select the vacuum (1.60). The tracelessness
part &y is still a potentially dangerous flat directions which could destabilize this minimum. We
will see that this direction can be stabilized with other mechanisms.

We have shown that this simple model exhibits spontaneous breaking of supersymmetry via
the so called rank condition. The moduli space of vacua is lifted by quantum corrections which

3The trace is implicit.
4Only X appears at linear order.
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select the vacuum (1.60) as the quantum minimum giving most of the pseudoGoldstone positive
masses. The spectrum of the theory in this vacuum has a hierarchy of mass scales, dictated by
the marginally irrelevant coupling h. Some fields have tree level masses proportional to |hm|, and
the pseudomoduli acquire masses ~ |h?m|. The Goldstone bosons remain exactly massless also at
quantum level and there is also a massless Goldstino associated to the breaking of supersymmetry.
Observe that R symmetry is preserved in the supersymmetry breaking vacuum (1.60).

1.4 Non perturbative aspects of supersymmetric gauge theories

The analysis of the vacuum structure of four dimensional supersymmetric gauge theories often
rely on the notion of an infrared effective action. There are two object which are usually called
effective action: the 1PI effective action and the Wilsonian effective action. One is the standard
generating functional of one particle irreducible Feynman diagrams. It is obtained by a Legendre
transformation, and the momenum integrations in loop diagrams is from zero to the UV cut off.
The Wilsonian effective action, instead, include momentum integration from the UV cut-off down
to a scale p. This is simply a local action describing the theory’s degrees of freedom at energies
below a given energy scale u, which is the characteristic scale of the effective theory. When
there are no interacting massless particles, these two effective actions are identical. However,
when interacting massless particles are in the spectrum, the 1PI effective action suffers from IR
ambiguities. Moreover in supersymmetric gauge theories the 1PI might suffer from holomorphic
anomalies, which spoil the holomorphic dependence of the effective action from the scale p.

The procedure to get the infrared effective action mainly consists in guessing an IR effective
field content for the microscopic UV theory under investigation, and write down all the possible
IR effective action built with these fields and which are consistent with supersymmetry and with
the other global symmetries of the UV theory. This could be a powerful method to analyze the
vacuum structure of the theory. Indeed, in supersymmetric gauge theories, the selection rules
deduced from the global symmetries of the UV theory and the holomorphy of the superpotential
sometimes constraint the IR effective action sufficiently to obtain exact results.

1.4.1 Holomorphy and symmetries

The basic approach is to consider the low effective action for the light fields, after having integrated
out all the degrees of freedom above some scale u. Assuming that at this scale supersymmetry
is unbroken, the fields can be organized in supermultiplets. The light matter fields can be com-
bined in chiral multiplets, whereas the gauge fields combine into vector multiplets. A particular
contribution to the effective Lagrangian which is very constrained by symmetries is the quantum
effective superpotential We f f(®;, g7, A). It is a function of the light chiral fields, of the tree level
coupling constants and of the scale A associated to the gauge dynamics.

The key fact is that supersymmetry requires Wes; to be holomorphic in the chiral superfields
®;. We can think of all the couplings g7 in the tree level superpotential and the scale A as back-
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ground fields®, i.e. that they are chiral superfields whose scalar component has get an expectation
values. This implies that the effective superpotential should also be an holomorphic function of the
couplings g7 and of the scale A. This is a crucial property for the non renormalization theorems
of the superpotential.

Then we can find a large global symmetry group of the theory assigning transformation laws
to chiral fields and to background fields. The effective quantum superpotential should be invariant
under this large symmetry group.

Finally W,ss can be analyzed approximately in various limits, and sometimes the singulari-
ties can be identified. Being W,;; an holomorphic function, it is determined by its asymptotic
behaviour and by its singularities, giving non trivial results ( such as the non renormalization
theorem).

1.4.2 Renormalization of the gauge coupling

We here analyze the renormalization properties of supersymmetric gauge theories. The one loop
renormalization group equations implies that the coupling runs with the beta function

bo
(4m)

Blg) = ———39" + O(g") (1.66)
where by is the beta function coefficient which depends on the charged field content of the the-
ory. For a supersymmetric Yang Mills theory with gauge group G, and chiral superfields in the
representation r; the beta coefficient is

by = gT(Adj) - % > T (1.67)

where T'(r) is the index of the representation r. For example, for SU(N), T(Adj) = 2N and
T(fund) = 1.
The solution for the running of the coupling at one loop is then

L _ b m('A') (1.68)

P 8n2 o\

where A is the intrinsic scale of the non abelian gauge theory that enters through dimensional
—8n2
transmutation® A = pigeb9*®o) . It is the energy scale at which the coupling diverges, and it is

independent of py.
The supersymmetric kinetic term for the vector superfield is

1 2 e}

5As done for the spurions
610 is a fixed scale where we fix the value of g(uo)-
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where W, is the superfield strenght and 7(x) is the complexified gauge coupling evaluated at the
scale p. Taking into account the one loop gauge coupling running we have

0 4 1 AN
2r  g*(p)  2mi I

This coupling include the # parameter which appear in the Lagrangian as the coupling of the CP
non invariant term ~ FF.

It is then natural to define a complex scale in supersymmetric gauge theories which encodes
the information about the 6 angle and the intrinsic gauge theory scale as

2miT

)
A = |Ale"% = pge bo (1.71)

Such that the running of the holomorphic coupling is simply

r= g (4) (1.72)

- 2mi u
but this renormalization effect can be further modified by non perturbative contributions.

Renormalization of the gauge coupling Let us assume that we are dealing with an asymp-
totically free theory, so if we take the scale p > A, then the theory is weakly coupled. We analyze
the effective theory for energy lower than . If the theory remains weakly coupled, we can describe
it with an effective theory with the same degrees of freedom. The effective kinetic term at a scale
W is then

Werp = 7(A, p) WaV® (1.73)

where now 7(A, ) is the effective holomorphic coupling which include the perturbative and the
non perturbative contributions. The non perturbative corrections to 7 are constrained by the
symmetry and by the fact that 7 should be itself an holomorphic function. Hence the more
general corrections have the expression

T(A p) = %m <2> + f(A, ) (1.74)

where f(A,u) is an holomorphic function of A. Since in the weak couling limit A — 0 we must
recover the perturbative result (1.72), f(A, u) must have positive series expansion in A. Moreover
the physics must be periodic in the # parameter, hence

271

A —ebo (1.75)
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is a symmetry of the theory. This implies that the series expansion of f(A, 1) should be in powers
of A% and we find that the corrections to the 7 couplings are constrained to

b A > A\ P
T(A,p) = 2—; In (M) + Zan (M) (1.76)
n=1

where the second term can be understood as the n instanton contributions, so there are no more
perturbative corrections beyond the one loop.

1.4.3 Anomalies

Anomalies refer to classical symmetries which are broken by quantum effects. This means that
in the full quantum theory there is no (gauge invariant or covariant) conserved current for an
anomalous symmetry. This is important in the case of classical global symmetries, implying that
the classical Ward identities are violated, but it does not affect the consistency of the theory. An
example of an anomalous symmetry is scale invariance. Quantum effects in a Yang Mills theory,
that classically is scale invariant, make the gauge coupling run with the energy.

The chiral anomaly is another kind of anomaly that occurs in the conservation of the currents
for chiral rotations. If anomalous chiral rotations are gauged, then the resulting theory is incon-
sistent. This gives restrictions on the allowed gauge group representations of fermions in gauge
theories. Chiral anomalies arise in four dimensional quantum field theories only when there are
fermions with chiral symmetries charged under the gauge group. The anomalies can be computed
in perturbation theory and arise at one loop. The existence of anomalies depends only on the field
content and charges of the light fermions in the theory, and not on details of the interactions.

’t Hooft anomaly matching There is one fundamental property of anomalies that has been
pointed out by 't Hooft and can give important advances in understanding strongly coupled
theories.

Consider a theory described by a Lagrangian at some scale, with a global symmetry group
G. Now weakly gauge the symmetry GG. The resulting theory may not be a consistent theory
due to non vanishing anomaly AYY for the newly gauged currents. We can however add a set of
fermionic fields (called spectator) that have only G' gauge coupling, such that their G anomaly A
exactly cancel the other anomalies, i.e. A% = —AUV. In this way we have obtained a consistent
(anomaly free) theory and we can investigate its infrared dynamics.

Since the spectator theory can be made arbitrarly weakly coupled g5 — 0, the infrared dynam-
ics of the enlarged theory are just the infrared dynamics of the original theory plus the arbitrarly
weakly coupled spectator and gauge fields G. Thus the anomalies for the spectators are just the
same as at high energy, and since the whole theory is anomaly free for the symmetry” G, we have

0= AR 4 A5 (1.77)

"We assume that the strong dynamics does not break the G' symmetry
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where A’® is the anomaly of the symmetry G for the infrared description of the original theory
(without spectators).

We then conclude that A’® = AYV | that is the anomalies for the global symmetry G must be
the same in the ultraviolet and in the infrared region. The importance if this result is that the
original theory might be strongly coupled in the infrared, so the effective action may be a priori
be described by a completely different set of fermionic fields than in the miscroscopic description.
't Hooft arguments constrain the infrared fermion content, stating that their global anomalies are
the same as those for the fermions in the ultraviolet description.

1.5 Supersymmetric SQCD

The supersymmetric QCD is the more natural generalization of QCD as a supersymmetric theory.
Is is a SU(N,) super Yang Mills gauge theory coupled to Ny flavours of quark chiral superfields in
the fundamental represantation of the gauge group. We denote with @); and Q; the quark and an-
tiquark chiral superfields respectively, with ¢ = 1,..., Ny. The Lagrangian for the supersymmetric
QCD is '
£ [d'0@ Q)+ @ Q) - 1o
167
The full global symmetry of the model is SU(Ny) x SU(Ny) x U(1)g x U(1) p where U(1)p is the
R symmetry and U(1)p is the baryon number. Indeed there is an anomalous global R symmetry
mixed with an anomalous global U(1) flavour symmetry to give an anomaly free U(1)g. There
could also be a superpotential for the chiral matter fields that we have set to zero here, typically
a mass term for the flavours

/ POTW W, + hec. (1.78)

W =m:Q’Q; (1.79)

This is the more general renormalizable action for superQCD. We want to extract information
about the IR physics of this theory, the vacuum structure, the massless particles, the effective
superpotential, The main tools are holomorphy, the global symmetries and anomaly based argu-
ments.

Symmetries and vacuum equation The RG running of the gauge coupling is governed by the
one loop beta function (1.66). The coefficient for SU(N.) supersymmetric QCD with Ny flavors
is

bp = 3N, — Ny (1.80)

The theory is then asymptotically free for Ny < 3N, and infrared free for Ny > 3N.. With
zero superpotential for the flavors, the theory has a non abelian U(Ny) global symmetry. In
addition there is some U(1) symmetries, among which the R symmetry. The global symmetries
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are summarized in the following table

SU(N) | SUWNy) SUNy) U(l)p U)a UM)r U()g
Qi . Ny 1 1 1 11— Ll
Q¢ N, 1 Ny -1 1 1 1—%; (1.81)
Wy | adj 1 1 0 0 1 1

where U(1)p is the baryonic symmetry, U(1)4 and U(1)g are the axial and R symmetry respec-
tively, which are anomalous. The last column U(1)g is an anomaly free R symmetry obtained
combining U(1)r and U(1)4. We can also assign charges to the coupling constant, regarding
them as background chiral superfields. The anomalous global symmetries can be compensated by
appropriate transformation laws of the 7 parameter. This select the charges we have to assign to
the strong coupling scale A.

SU(N.) | SU(Ny) SUNy) U)p UM)a UMr U)w
m 1 Ny Ny 0 —2 0 25 (1.82)
A3N=N; 1 1 1 0 2Ny 2N, 0

When N; > 0, and without a superpotential, the tree level scalar potential for the flavors is
given by the D term, V = tr D? where

D=Y" (QiTAQi + QTiTAQi) => Ta (QIQi - Qh@z) (1.83)
A A

We have used the fact that the generators for the fundamental and the antifundamental represen-
tation are equal except for a sign.
If there is a massive superpotential (1.79) for the flavors there are also F' term equations

miQ’ =miQ; =0 (1.84)

By sending the mass of one flavor to infinity we can decouple that flavor from the theory, leaving
SQCD with one less flavor. The scale of this theory is related to the one with all the flavor with
the matching condition

3N.—Nj+1 3N.—N
ANf*1 ™ =m ANf ! (1.85)

1.5.1 Classical Vacua

The classical moduli space of vacua for supersymmetric QCD is defined by solving the D term
equation of motion. Using appropriate flavor and gauge rotations we can put the @ fields in
diagonal form obtaining the following vacuum structure.
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]\ff<]\7C

Q=Q" = (1.86)

a,Nf
with a; arbitrary. The gauge invariant description of the classical moduli space is in term of the
invariant combination Mjl = Qin. This is a massless chiral superfields with NJ% components,
which is exactly the number of components of the flavors not eaten by the superHiggs mechanism.
Indeed the gauge group is broken to SU(N.— N¢). Of course, for non generic values of the squarks
vacuum expectation values, the unbroken gauge symmetry can be enhanced, corresponding to

point were det M = 0.
The Kahler potential for the flavors is

K = QIQi +QMQ; (1.87)

We can write it in term of the invariant monomial M

K =2tr VMM (1.88)

This is obtained squaring the D term equation which implies that QTQ = \ﬂM M). The Kahler
metric (1.88) is singular whenever M is not invertible, i.e. where there are enhanced gauge
symmetry.

Nf > Nc
ai a
a2 a2

0- O e (1.89)

an, anN,

with

@2 = Jail? + p (1.90)
where p is an arbitrary real constant. Thus, generically, the gauge symmetry is completetly
broken on the moduli space by the vacuum expectation values of the flavours. Hence there are
2N¢N, — (N2 — 1) massless chiral supermultiplets left over by the superHiggs mechanism. These
light degrees of freedom are described in terms of the gauge invariant mesons and baryons

M; =Q'Q; (1.91)
B e a1--ANe (1.92)

. . — e 1
iNe+1-INp = E'Llu.sz ay e QCLNC
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This basis is overcomplete. Indeed there are classical relations between mesons and baryons. For
example in the case Ny = N, the following contraint holds classically

det M — BB =0 (1.93)

At the origin of the moduli space, where M = B = B = 0, there is again a singularity associated
with the enhanced gauge symmetry. Among the other classical constraints, the rank of the meson
is bounded

rankM < N, (1.94)

Adding mass terms We consider now to add masses to all the flavours in the theory
Wiree = TrmQQ (1.95)

For masses larger than the strong coupling scale A we can integrate out the quarks and studying
the theory at lower energy as a theory of pure gauge, i.e. pure SYM. The scale matching condition
before and after having integrated out the quarks is

A3, = detm APN— Ny (1.96)

In the low energy theory the gaugino condensation leads to the following effective superpotential
1

Weps = NeAdypr = Ne (detm A3NeNr)Ne (1.97)

which we have rewritten in terms of the original scale A. This superpotential can be considered
as a generating functional for the operator M and S ~ TrW,W® with sources m and log A3Ne=Ny
respectively. We can then find the vacuum expectation values for these operators in the super-
symmetric vacua

11
(M) = 0, Wepp = (detm APNmNe)Ne — (1.98)
m
1
(S) = 8lOgA3chNf Wepp = (detm APNe—Nr)Ne

Indeed there are N, different vacua, in agreement with the Witten index for pure SU(N.) SYM
theories. Observe that the results (1.98) is valid for all Ny. Note in particular that for Ny > N,
the matrix (M) does no satisfy the classical constraints (1.94) of the theory with massless flavours.
However, taking m — 0 in (1.98) does bring (M) back to the classical moduli space.

Performing a Legendre transformation between m and M, we can use (1.97) to derive the

effective action
A3Nc*Nf

Weff = (Nc - Nf) <detM

We remind that this is not a Wilsonian effective action for the light field, it is not an effective
superpotential on the moduli space. It can only be used to derive vacuum expectation values and
is meaningfull only with m # 0.

Ne—Ny
+ TrmM (1.99)
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1.6 Quantum vacua

1.6.1 N; =0, Gaugino condensation
We consider the case where there are no matter, i.e. pure N’ = 1 gauge theory. Witten showed
that in this theory the index is
1

(-1 = 57 (adj) (1.100)
This implies that supersymmetry is not broken and there are at least %T(adj) discrete, degenerate
vacua. The theory content is the gauge field and the gaugino, a spinor in the adjoint representation
of the gauge group. The coefficient of the beta function is by = 3N.. The U(1)g symmetry is

anomalous. However, it is possible to build an anomaly free U(1) combinig the R symmetry with
a shift in the 6 parameter. Because of the anomaly, an R symmetry transformation on the gaugino

A — €N (1.101)
is a symmetry of the theory if it is combined by the following shift of the # parameter

N.«
s

0 — 0+ 2N .« T—T+ (1.102)
Since the physics is periodic in 8 with period 27, it is understood that when the phase is a multiple
of ;Tﬁc no compensation is needed on the 6§ angle. This means that a Zoy, discrete subgroup of
the original U(1)g symmetry survives as a symmetry at quantum level.

On the other hand, treating the holomorphic gauge coupling 7 as a background chiral superfield
we can define the following global symmetry of the theory

A — el (1.103)
N .o

T —T+ (1.104)
which is a combination of the continuos R symmetry with a shift of the background superfield .

We then assume that supersymmetric Yang Mills has no massless particles, just massive color-
singlet composites. Thus the low energy superpotential could contain only the background field
7 and the requirement that W,s; has R charge 2 specifies its form uniquely as

2miT

Wepr = ap’e Ne = al® (1.105)

where a is a constant.
Now, in the supersymmetric Yang Mills action the F' component of the background chiral
superfield 7 act as a source for the gaugino condensate. With the assumption that there are no
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massless particle at low energy, the effective action is given only by the effective superpotential
(1.105). Hence the gaugino condensate can be computed

5, 3272 o omir 3272

(AN) = 16mi /dQGWeff = 16maaTW€ff = —Tanbe N = — =’ (1.106)

This vacuum expectation value for the gaugino bilinear breaks the discrete Zoy, symmetry to Za,
since (1.106) is invariant under the R symmetry

(AIND) — 2l N3\ (1.107)
only if ais & = 0, 7. The general Zyy, transformation with o = % sweeps out NV, different values
for (A*\%), i.e. N, distinct vacua.

The effective superpotential (1.105) can be used to find the tension of domain walls interpo-
lating between these vacua. Moreover, we can consider the kinetic term for the gauge field (1.69)
as a superpotential where the term (7 ~ 3N.In A) act as a source for the operator S ~ TrWW, W<,
leading to a vacuum expectation value for S as in (1.106). We can then perform a Legendre
transformation to integrate in S and obtain the Veneziano Yankielowicz superpotential

S
Weff(S) = N.S <1—lnA3> (1.108)
The superfield S is usually called the glueball superfield. However it is important to stress that it
is not associated to any light field of the spectrum. The superpotential (1.108) can be used only
to find tensions of domain walls and vacuum expectation values.

1.6.2 N; <N,

Consider now SU(N.) SQCD with N; flavours and Ny < N.. We have already analyzed the
classical vacuum solutions. We now wonder if there could be non perturbative contributions to
the effective superpotential which are compatible with the symmetries of the theory. From the

charges in the tables 1.81 and 1.82 there is a unique superpotential which can be generated, the
Affleck Dine Seiberg [26] one

1
ASNC—Nf Ne—N
> ! (1.109)

W= (e

with C' a constant which can depend on the numbers Ny and N.. This superpotential has been
shown to be generated by direct instanton computation for the case Ny = N. — 1, where the
gauge group is completely broken and the instanton calculation is reliable (there is no infra-red
divergence), leading to C' = N.—Ny. For Ny < N.—1 it can be associated to gaugino condensation
in the unbroken SU (N, — Ny) factor of the gauge group.

The dynamically generated superpotential (1.109) leads to a squark potential which slopes to
zero for det M — oo. Therefore, the quantum theory does not have a ground state. We started
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with a moduli space of vacua in the classical theory and ended up in the quantum theory without
a vacuum.

Observe that the ADS superpotential does not make sense for Ny > N.. Indeed for Ny = N,
the exponent diverges whereas for Ny > N, the constraint (1.94) implies det M = 0.

Mass perturbation Now we add masses to the quarks and we analyze the effects on the ADS
effective superpotential. Suppose giving mass to just the Nyth flavour

ABNe—N; NciNf B
We can parametrize the meson M = QQ as
M= < Mg ?L{ ) (1.111)
Yy
The equations of motion fix y = 0 and
Ne—Ny
ABNe—N; NC%Nf Ne—Njp+1

Plugging this into the superpotential, we obtain

1
A3Nc—Nf Ne—Ng+1
) ! (1.113)

W=(N.—Nr+1)[{m =
( f )< det M

Relating the strong coupling scale with (1.85) we recognize in (1.113) the ADS superpotential for
a SQCD with Ny — 1 flavour.
If we now consider adding masses to all flavours, the exact superpotential is

A3Nc*Nf

det QQ

Of course it has the same form of the effective action we derive integrating in the meson field
M (1.99), which is valid for all Ny. However, we observe that in this interval (Ny < N.) this
expression is sensible even in the limit of zero mass and it is the true effective superpotential of
the theory.

We can solve the equations for the vacuum expectation values for the meson

W = (NC—Nf)< >N_Nf +mQQ (1.114)

(M) = (detm A3Ne—Nr)w: <1>Z (1.115)

J
mJ/
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For large m, the matter fields are very massive and decouple, leaving a low energy SU(N.) pure
Yang Mills theory. Evaluating the superpotential using (1.115) yields

W = No(A3Ne=Ns det m) ~e (1.116)

Using the scale matching condition between the scale before and after having integrated out the
massive quarks

3N, 3N.—N
Agyy = detm Ay = (1.117)
we obtain as the low energy superpotential
W = NA3y (1.118)

which is exactly the superpotential we have derived for SYM via gaugino condensation (1.105).

1.6.3 N;=N,

Where Ny = N, the moduli space is described by mesons and baryons constrined by the classical
relation (1.93). However Seiberg argued that this relation is modified at quantum level as

det M — BB = A% (1.119)

This lifting of the moduli space is indeed consistent with the ADS superpotential. To check this
we consider giving mass to the Nyth flavour. We can again parametrize the meson as in (1.111).
Now the equations of motion set y = B = B = 0 and the constraint (1.119) gives det M ¢ = A?Ne,
Pluggin into the superpotential we obtain

A2NC
w="2 (1.120)
detT
Once again using the scale matching A?V]Z:Nf o A?VJXC_N’[ , and reminding in this case Ny =

N, this superpotential can be recognized as the ADS superpotential for Ny = N, — 1.

Hence on the quantum moduli space (1.119) there are no singularities. The difference between
the classical and the quantum moduli space is negligible for large expectation values of M, B and
B, which correspond to the weak coupling region.

1.6.4 N;=N,+1

The classical moduli space is parametrized by mesons and baryons subject to the classical con-
straint

1\* .

det M (> = B'B, (1.121)
M/,

M}B'=M]B; =0 (1.122)
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Unlike the previous case, here the classical and the quantum moduli space coincide. However, the
singularities at strong coupling are not associated to massless gluons, but to additional massless
mesons and baryons. Indeed at the origin of the field space all the mesons and baryons are massless
and physical. This can be checked by using the ’t Hooft anomaly matching condition between the
description in terms of elementary fields and the one with composite fields. At weak coupling the
moduli space is as in the classical theory. The superotential which encode these results is

1

W= A2Ne—1

(BB~ det M) (1.123)
Indeed at the origin all the fields are massless, whereas at a generic point in the moduli space the
equations of motion for this superpotential reproduce the classical constraints.

Finally the superpotential (1.123) is consistent with the superpotential for the Ny = N, case
if we add the mass for one flavour and integrate it out.

1.6.5 N;> N,

For SQCD with Ny > N, the moduli space is still parametrized by the gauge singlet fields mesons
and baryons. However there is no deformation of the classical moduli space which is compatible
with holomorphy and the symmetries in Tables 1.81 1.82. So there is a quantum moduli space of
vacua which coincide with the classical one. In order to understand what happens in this window
between the number of colors and the number of flavours we distinguish among different cases.

Ny > 3N, In this range the theory is not asymptotically free. The coupling constant become
smaller in the flow towards low energy. Therefore the theory becomes more and more weakly
coupled at lower energy (it is IR free) and the elementary degrees od freedom are still the quarks
and the gluons. The theory is in a non Abelian free electric phase. It has a Landau pole at high
energy where it is strongly coupled and then it can be considered as a consistent quantum theory
only as an effective theory at low energy.

%Nc < Ny <3N, The theory is here asymptotically free. However there is a fixed point in the
renormalization group flow, and so this range between the number of color and the number of
flavors is called conformal window. This can be understood analyzing the exact beta functions

3 3N, — Ny(1—
__g° 3Ne=N;(1 =) (1.124)
1672 1 _ N, Z

872

Blg) =

where v is the anomalous dimension of the mass of the quarks

2 A2
g® N2 —1
V=i CN +0(g") (1.125)
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Since there are values for Ny and IN. where the one loop is negative whereas the two loop is positive,
there might be a non trivial fixed point. Now take the number of flavours to be infinitesimally
close to the point where asymptotic freedom is lost, i.e. Ny = 3N, — eN,, we have
5
16728(g) = —g3eN, — %(3(&2 — 1)+ 0(e)) + O(g") (1.126)
So there is an approximate solution of the condition 3 = 0 where the two terms cancel. This
corresponds to a perturbative infrared fixed point

o _ 870 Ne
Jse = T3"NZ 1

The theory is then a non trivial superconformal field theory. The elementary quarks and gluons
are not confined but appear as interacting massless particles. Given that such a fixed point exists,
we can use the superconformal algebra to extract information about this theory. It follows from
the algebra of the superconformal group that the dimension of an operator is related to its R
charge, precisely

(1.127)

3
D= J|R| (1.128)

which is saturated for chiral (D = 3 R) and antichiral operators (D = —3 R). The chiral operators
form a ring where the dimensions simply add. The R symmetry of the superconformal fixed
point is not anomalous and commutes with the flavour symmetry. Therefore, it must be the non
anomalous R charge of table 1.81. We can compute the scaling dimension of the gauge invariant
operator M = QQ

~ 3 N,
DIM] = D[QQ] = 2+ 75 = 52(1 — ) (1.129)
2 Ny
where -, is the anomalous dimension at the infrared fixed point, which then results
N,
Vs =1— BF; (1.130)

Now, the superconformal algebra gives constraint on the possible unitary representation. For
example, a scalar field ¢ should satisfy the unitary bound

Dl¢] > 1 (1.131)

Requiring D[M] > 1 we obtain the constraint
3
Ny > 5Ny (1.132)

Thus the theory flows to an infrared interacting fixed point for %Na < Ny < 3N¢. In order
to understand what happens for smaller Ny we observe that the dimension of the meson M
approaches 1 for Ny = %NC, which shows that in this limit M is a free field. This suggest that in
the correct description the field M, and perhaps the whole IR theory, is free.
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1.7 Seiberg duality

We have seen that for Ny > N.+1 we cannot generate deformation of the moduli space, i.e. a non
perturbative superpotential, compatible with the global symmetries. The natural generalization
of the superpotential for the Ny = N, + 1 case does not have R charge equal to 2.

To understand the right description we observe that the baryon superfield have N=N r—Ne
indices. Thus they can be viewed as bound states of N components. We can associate these
components with new superfields ¢ and ¢. To bind these consituents into the gauge invariant
baryon superfield, we need a Yang Mills theory with gauge group SU (]\7 ), for which ¢ and ¢
transform in the fundamental and antifundamental representation. Then the baryons would have
the dual description as B;;. , = eal_._aﬁq?1 ... qZN.

The precise duality proposed by Seiberg [27] is that the original electric theory can be described
by an equivalent magnetic theory. It is based on the gauge group SU (]\7 = Ny — N.), with Ny
flavours ¢ and ¢, a gauge invariant field (Mm); and a non trivial superpotential

T
Winagn = (Mm);4iq’ = ;M}-qz-qj (1.133)

The exact symmetries of the theories and the charges of the fields and of the strong scale intended
as a background field are summarized in the following table:

SU(Nj —Ne) SU(Ny) SUWNg) U()p  UMr  U(l)a
= N,—N.
q Ny — N, Ny 1 fo\[ch 1-
— —— N¢y—N¢
q Ny —N. 1 Ny —xiey 1- 1
N Ny—N.
M, 1 Ny Ny 0 pp —2
A3y =Ne) =Ny 1 1 1 0 0 2N

Note that the two theories have different gauge group and different numbers of interacting particles.
Nevertheless, they describe the same physics, they are quantum equivalent. In particular the global
non anomalous symmetries of the theories are the same and all the 't Hooft anomaly matching
conditions for these symmetries are satisfied.

The presence of the scale p in (1.133) can be understood analyzing the theory in the conformal
window. In the electric description M = QQ has dimension 2 at the UV fixed point and acquires
anomalous dimension (1.129) at the IR fixed point. In the magnetic description, M,, is an eleme-
natry field of dimension 1 at the UV fixed point and dimension (1.129) at the IR fixed point. In
order to relate M,, and M we must introduce a scale p such that M = uM,,. This intermediate
scale also enters the matching condition between the strong coupling scale of the electric A and
of the magnetic A theory

A3N67NfA3N7Nf _ (_1)foNCMNf (1.134)

This shows explicitly that Seiberg duality is a strong/weak duality.
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The Seiberg duality is valid in the whole region Ny > N, + 1 but remember that it is a low
energy duality, it is not a electric magnetic duality valid at all energy scales as the Olive-Montonen
duality on N = 4 supersymmetric gauge theories. We now comment on the different intervals

e For Ny > 3N, the electric theory is IR free and so it is the right description for the low
energy.

e In the conformal window the electric and magnetic theories are both UV free, and they differ
in the UV. The two different UV starting points flow under the renormalization group (RG)
to the same interacting RG fixed point in the IR.

e For N.+1 < Ny < %NC the magnetic theory is IR free, with irrelevant interactions. The UV
electric theory flows at long distance to the IR free magnetic theory. The magnetic theory
provides the right degrees of freedom which describe the low energy physics.

The Seiberg duality has passed many consistency check. We already mentioned the 't Hooft
anomaly matching conditions. The moduli space of the electric and the magnetic theory coincide,
and the gauge invariants operators are precisely matched. We can give mass to one flavour in the
electric description and integrate it out, obtaining gauge SU(N.) with Ny —1 flavours. The electric
mass corresponds in the dual superpotential as a linear term for the meson which forces the dual
quarks to have a vacuum expectation values which Higgses the theory down to a SU(Ny— N.—1)
with Ny —1 flavours. Finally, it is easy to check that performing the duality transformation twice,
we come back to the original theory.

1.8 Kutasov-Seiberg-Schwimmer duality

We have seen in the previous section how Seiberg duality provides a very elegant description
of the strong coupling dynamics of supersymmetric gauge theories, in particular of SQCD. This
electric-magnetic duality gives a description of strongly coupled gauge theories in term of a dual
theory, weakly coupled in the infrared, which have the same long distance behavior. The main
test which suppurt this duality are the following:

e The two dual theory have the same global symmetries and the 't Hooft anomaly matching
conditions are satisfied.

e The moduli space of vacua of the two theories coincide.

e The equivalence of the moduli space of vacua and of the chiral ring is preserved under
deformation of the theories by F-components of chiral operators (e.g. adding masses).

The equivalence of the two theories is valid at quantum level, where non perturbative phenomena
are taken into account.
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We consider now supersymmetric Yang-Mills theory with gauge group SU(N,) coupled to a
chiral adjoint field X5 and to N + flavours in the fundamental and antifundamental representation
of the gauge group Q¢ Qf, with (a,3 =1...N¢), (i,j = 1,...,Ny). This theory is asymptot-
ically free for Ny < 2N.. We denote with A its dynamically generated strong scale. Without a
superpotential for the adjoint field this model is still pourly understood. The theory simplifies if
we add the following superpotential

S0

V=i

Trx ! (1.135)
This superpotential is, for generic k, a dangerously irrelevant operator and thus cannot be ignored
in the IR (for a discussion about dangerously irrelevant operators see [30]). For k = 1 it is a
mass term for the adjoint that can be integrated out, obtaining the supersymmetric QCD. The
superpotential (1.135) removes many flat direction of the undeformed theory and truncates the
chiral ring of the theory, imposing the relation

1

(XF)8 — ﬁ(Ter)ag = D-term (1.136)
C

Hence the chiral operators involving X in the presence of the superpotential (1.135) are TrX!,

| = 2...k and operators involving X! with [ < k. There are two kinds of gauge invariant operators.

Meson operators

(M) =Q;X™ Q" m=1,....k (1.137)
and baryons operator that are built using the dressed quarks
Qn=X"1Q 1=1...k (1.138)
and constructed as follows
k
Bt = QUL QU Y =N, (1.139)
I=1

where the colour indices are contracted with an e tensor.
The anomaly free global symmetries of this model and the corresponding charges are summa-
rized in this table

SU(Ny) SU(Ny) Ul)p  UM)r
N 1 1 1— 2 Ne
@ f - Rl Ny (1.140)
X 1 1 0 2

This theory has been deeply studied in this references [30, 28, 29].
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1.8.1 Stability

We can further deform the theory and consider the more general superpotential, which do not
change the properties of the chiral ring described above,

k—1
Si k4+1—i
W = —TrX ATrX 1.141
; S A (1.141)

Here A is a Lagrange multiplier enforcing the tracelessness condition TrX = 0. For non zero {s;},
the R symmetry is broken. Using transformation in the complexified gauge group SU(N.)c we
can diagonalized the matrix X, where the eigenvalues are the roots of W’

k—1 k
W' (z) = Z sitF T4\ = s H(:zc —q) (1.142)
=0 =1

If all the eigenvalues ¢; are different from each other, the theory splits in the infrared into a set
of decouples SQCD theories. Ground state are labelled by the integers r; < r9 < 7 counting the
number of eigenvalues of X which are the I-th root of W’. These integers are constrained such
that

k
» =N, (1.143)
=1

and the values of A is obtained imposing that the sum of the eigenvalues vanishes

k

Zcm =0 (1.144)

=1

In each vacuum the field X is massive and can be integrated out. The expectation value of X
break the gauge group to

SU(N,) — SU(r;) x SU(r9) X --- x SU(r;) x U(1)F1 (1.145)

Some of the r; may vanish or some of the ¢; may coincide, in which case the picture is modified in
an obvious way. For generic {s;} the classical infrared behaviour of the theory, a set of decoupled
SQCD, is insensitive to the values of the {s;}. Quantum mechanically each of the SQCD has a
strong couplling scale, A;, which depends non trivially (through a scale matching condition) on
the couplings {s;} and on the strong coupling scale of the theory with the adjoint field A.

Each of the SU(r;) factors describe a supersymmetric QCD model, and it is well known that
it has no stable vacuum when the numbers of flavours is smaller than the number of colors. Then
the system has stable vacuum if and only if

n<N;y ¥V l=1..k (1.146)
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which implies that the theory has a vacuum if and only if

Ne

N> = (1.147)

1.8.2 Duality 1

We now discuss the dual description found in [29] for the theory with the superpotential (1.135)
and next we will turn to the more general case (1.141).

We have already introduce the gauge group, the field content and the global symmetries of the
theory (1.140). The dual theory proposed in [29] has dual gauge group SU(kN; — N.) and the
following matter content: N flavours of magnetic quarks ¢, (]}5, an adjoint field Yaﬁ and gauge

singlets (Mm)f ,m = 1...k representing in the dual description the generalized mesons (1.137) of

the original, electric theory. The global symmetries are the same of the electric description with
charges

SU(N;) SUNy)  U()g U()r
< N. 2 kN;—=N.
q Ny 1 EN;—N. L ) {vf
B N. kN =N,
q 1 Ny~ iws - F N; (1.148)
Y 1 1 0 ot
M, N N 0 2 — A le 4 2 (m—1)
m f f E+LN; T Bl

The mesons M,, have in the magnetic theory standard kinetic terms, rescaled by powers of sg
and p. Note again that j < k since X! is not an independent chiral operator for I > k. The
superpotential in the dual magnetic description is schematically

k
L e R DR (1.149)

kE+1 —
where the auxiliary scale i is needed for dimensional reason. This superpotential preserve the R
symmetry, and in the case k = 1 we come back to Seiberg duality. The 't Hooft anomaly matching
conditions for the electric and the magnetic theory are satisfied. The auxiliary scale p is actually
not an independent parameter. The scale of the electric theory A, that of the magnetic theory A,
and u satisfy the following scale matching relation

A2Ne= Ny R2Ne= Ny o 2Ns 2Ny (1.150)
It is easy to check that (1.150) is invariant under all global symmetries. This scale matching

condition implies that when the electric theory is weakly coupled the magnetic one is strongly
coupled and viceversa.
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1.8.3 Duality 2.

Now we present the complete duality map when the electric theory is deformed with the full
superpotential (1.141). One expects the magnetic superpotential (1.149) to be deformed as well.
We will start with a discussion of the deformation of the first term on the r.h.s. of (1.149), the
superpotential for Y, and then turn to the second term, proportional to M;. We report the main
results, the detailed derivation can be found in [30].

The electric superpotential (1.141) describes a space of theories parametrized by the couplings
s;. The general form of the dual superpotential is

Ed
—_

- Si ktl-i |
W = —TrY TrY 1.151
> nri o +A + a(s) (1.151)

(2

Il
o

where 3; = 3;(s) are the magnetic coupling constants and «(s) is a constant, that are non trivial
functions of the electric couplings {s;}.

In complete analogy with the discussion of the electric theory, the magnetic theory has, for
generic {5;}s a large number of vacua, parametrized by integers 7; corresponding to the number
of eigenvalues of the matrix Y with the value ¢, where ¢ is the I-th root of W’, analogously than
(1.142). Clearly >, 7 = N, = kN; — N.. The low energy magnetic theory is a direct product of
decoupled copies of SQCD with Ny flavors of quarks, with the gauge group broken as

SU(N.) — SU(71) x SU(F3) x - - x SU(7) x U(1)*! (1.152)

The proposal of [30] states that the duality between the deformed theories, (1.141) and (1.151)
reduces to a direct product of the Seiberg SQCD dualities for the separate factors in (1.145),
(1.152). That means that the magnetic multiplicities (71, -- ,7j) are related to the electric ones
via the SQCD duality relation:

fi:Nf—T‘Z’ (1153)

The fact that this is a one to one map of the sets of vacua of the electric and magnetic theories
follows from non perturbative effects, that can lift the moduli space and even remove some vacua.

For completeness, we remind that when two or more of the critical points of W coincide,
the same number of critical points of W should coincide. If the order of a critical point ¢; (and
therefore that of ¢; as well) is n;, the degeneracies r; and 7; of this critical point in the electric
and magnetic theories are related by

Ty =niNy — 1. (1.154)
The duality is in this case between an electric theory with gauge group SU(r;) and a superpo-

tential TrX™ "1 and a magnetic one with gauge group SU(7;) = SU(n; Ny — r;) with a similar
superpotential.
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For the above scenario to be realized, the electric and magnetic superpotentials must be closely
related. In particular, the fact that whenever any number of critical points ¢; coincide, the same
number of dual critical points ¢ must coincide as well is a very strong constraint on the dual
couplings S;(s).

Another important constraint is obtained observing that the duality map relating TrX/ to
TrY! is closely related to the mapping 5(s). Define the free energy of the model as

effd4xd29F(si)+c.c _ <effd4xd29W(X,si)+c.c.> (1155)

where s; are background chiral superfields. Then, correlation functions of the operators TrX7 are
given by derivatives of the free energy F with respect to the superfields s;:

- oF
— (Tr X7y = 22 1.156
o )= o5, (1.156)
and similarly in the magnetic theory, in terms of the dual free energy F':
, OF
— " Y ) W 1.1
it )= o5, (1.157)
where duality implies B
F(5i(s)) = F(si). (1.158)

Since TrX7, TrY/ are tangent vectors to the space of theories, we find that the electric and
magnetic operators are related by:

0s 1 Oa
T Xk+1 T __ J Tr Yk+1 J 1.1
g Z@slkﬁLlf‘y +851 (1.159)

kE+1—14

Taking the expectation values of both sides of this equation we find that the mapping §;(s) must
satisfy a constraint in addition to the previously described one on the degeneration of eigenvalues.
The expectation values of the left and right hand sides of 1.159 which depend in a highly non-trivial
way on the particular vacuum chosen (the set of r;) must satisfy a relation that is independent of
the particular vacuum chosen.

1.8.4 The precise mapping

It is convenient to think of X, Y as general U(N) matrices, with a dynamical Lagrange multiplier
A (M) imposing the tracelessness of X (Y'). Consider the electric theory. We define a shifted X,

denoted by X as:
51

X=X +01 b=—.
Sokﬁ

(1.160)
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This shift cancels the first subleading term in W, leading to the superpotential:

k—1

t; .
(X)) =) ———TrXM1=i L\ (TrX, — bN, N, 1.161
Wil Xs) Zz;kﬁtlirs s (Tx )+ 8 (1.161)

where W (X,) = W(X) and
ti= Yo () (=0 s, (1.162)
As = A+ S (bR s (1.163)
B= =Y N) el (—b)HH s (1.164)

Note that tg = so and t; = 0. The transformation (1.160) corresponds to an analytic coordinate
transformation on the space of theories. A similar transformation can be performed on the mag-
netic side, replacing Y by Y, and A with \,. The k — 1 independent couplings s;, i = 1,--- ,k—1
are replaced by the k — 2 couplings ¢;, ¢ = 2,--- ,k — 1, and b. In the X, variables the coefficient
of the first subleading term TrX¥ in the superpotential (1.161) always vanishes (i.e. t; = 0). The
information about that coefficient in the original description is in b. In a sense, the transformation
(1.160) allowed us to trade the operator TrX* for the operator .

The duality suggested in [30] for the eigenvalues of X (a;) and Ys (a@;), defined analogously
to (1.142), is simply a; = a;, i = 1, ...k which means

= —t (1.165)
As = —As.

The second equation here is an operator identity; it can be thought of as arising from the coupling
relations: )
bN. = —bN,; «as = independent of b (1.166)

using (1.159). Equations (1.165,1.166) specify the mapping s;(s) completely. The explicit expres-
sion for a5 can be found in [30].

Summarizing, the mapping of the couplings in the electric superpotential ¢;, b, defined by
(1.162), to their magnetic counterparts is given by equations (1.165, 1.166). Of course the simple
transformation laws described here become more complicated when we translate them back to the
original coordinates s; [30].

1.8.5 The M, terms in the magnetic superpotential

So far our discussion focused on the way the first term in the magnetic superpotential (1.149)
is deformed as we deform the electric superpotential as (1.141). In this subsection we will use
these results to determine the deformation of the second term in Wiy,ug,. We will work in the
parametrization of the space of theories described previously, the {¢;}.
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When one turns on non-vanishing couplings ¢; in (1.141), the magnetic superpotential (1.149)
can in principle receive contributions proportional to t;, t;;, etc, consistently with the global
symmetries. The way to fix all these terms is to require that duality act in the way described
before. Namely, for generic t; we expect the magnetic theory to split into an approximately
decoupled set of SQCD theories that are dual to the different decoupled factors in (1.145).

This requirement of decoupling is rather non-trivial since the second term on the r.h.s. of
(1.149) tends to couple the different SU(7;) theories. Indeed, denote the first r; components
(in color) of the electric quarks @ by @1, the next 7o by Q2 and so on. Similarly, the first 7;
components of ¢ are denoted by ¢;, the next 72 by g2, etc.. Then expanding around (X,) we find

My = Q1Q1a7 ™ + Q2Qaah ™ + -+ + QrQpa ™ (1.167)

where Q;Q; are the mesons of the I’th electric SQCD theory with gauge group SU (r7). Similarly
we write:

§Y{q = @1q10] + G220} + -+ + Grgrai, (1.168)
where we denote the shifted Y field appropriate for the ¢; coordinate system on theory space by
Ys. In the above formula we used the fact that in the coordinates t; the duality map is trivial,
a; = a;.

The second term in Wi,qg, (1.149) has to be corrected in such a way that the different SQCD

theories do not couple — there should not be any cross terms coupling ¢;q; Q;Q; with i # j. The
unique solution to this requirement is

i o1 i
Wm(zgn = mTI"Y;k—H ! + E Ztl ZquY;k J lq (1.169)
l

All the numerical coefficients in the second term on the r.h.s. of (1.169) are fixed by the require-
ment that when we substitute (1.167), (1.168) into it, cross terms such as Q1Q1g2q vanish.

The form (1.169) for the dual superpotential must satisfy additional consistency conditions.
The simplest of these involves getting the right behavior when some of the roots a; coincide [30].
Others consistency conditions involve also the matching of scale (1.150). This relation and the
dual magnetic superpotential are consistent with various deformation of the model, including
adding mesonic deformations, i.e. terms proportional to M,,.
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Chapter 2

Dynamical supersymmetry breaking
in metastable vacua

2.1 Introduction and overview of recent developments

At a first attemp, dynamical supersymmetry breaking can appear to be a rather non generic
phenomenon in supersymmetric gauge theories. The non zero Witten index of N' = 1 Yang
Mills theory implies that any supersymmetric gauge theory with vector like massive matter has
supersymmetric vacua. So theories with no supersymmetric vacua must be either chiral [31, 32]
or they should have massless matter [33, 34].

The way out of this constraint resides in abandoning the idea that models of dynamical su-
persymmetry breaking must have no supersymmetric vacua. Indeed it is phenomenologically
acceptable considering a false vacuum, i.e. a local minimum of the scalar potential, where su-
persymmetry is spontaneously broken, and that the supersymmetric vacua stay elsewhere in the
field space. The necessary requirement is of course that the decay rate of this false vacuum to the
true global minimum of the theory is parametrically small, or, in other words, that the lifetime of
the false vacuum is parametrically large. This brings to the idea of meta-stable supersymmetry
breaking vacua, already explored in the literature [35, 37, 36]. The novelty of the approach of
[25] is in considering dynamical supersymmetry breaking in meta-stable vacua. A crucial role
in their model is played by Seiberg duality, which allows to find a weakly coupled version of a
very simple theory, massive SQCD, in order to describe the low energy. In this description they
found metastable supersymmetry breaking vacua, which are long lived. These vacua appear at
a semiclassical level in the magnetic description, but they are purely strongly quantum mechani-
cally in the electric description, and in this sense we denote this model as dynamical breaking of
supersymmetry.

The existence of metastable vacua with dynamical breaking of supersymmetry seems by now
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a generic phenomenon in /' = 1 gauge theories. It has been proved successfully in many classes
of models [38, 39, 1, 40, 14, 41]. Much effort has been spent in order to find the right D-brane
configurations in string theory and in M theory in order to engineer these gauge theories with
metastable vacua [38, 42]. Another relevant aspect is the description in the AdS/CFT corre-
spondence language. The proposal of [43] relate these vacua to metastable state of anti D-branes
in throat geometries. Also the realization of this kind of dynamical supersymmetry breaking in
string theory has recently attracted a lot of attention, in particular in many quiver gauge theories
emerging from D-branes at singularities [53, 56, 3, 44]. Related results has been obtained study-
ing configurations of D-branes and anti D-branes [45]. On the other hand, these models with
supersymmetry breaking can also be inserted in supergravity theories [46], for instance with the
aim of F-terms uplifting. Finally, the cosmological properties of such vacua and their role in the
heating process of the universe has been studied [47]. For references about metastable vacua and
gauge mediation see chapter 3.

2.2 ISS model

We consider a very simple model, SU(N.) SQCD with N; massive quarks @ and Q. We have
already introduced this theory in section (1.5). The mass mg of the quarks are taken to be much
smaller than the strong coupling scale of the theory mg < A, and hence has to be taken in the
low energy description. The superpotential for the electric theory is, in the case of equal masses,

W = motr QQ (2.1)

We work in the window 3
Ne+1< Ny < iNC (2.2)

such that the electric theory is asymptotically free and the dual description is infrared free. Indeed,
as explained in section 1.7, the low energy of this theory can be better described in terms of a
Seiberg dual theory, which is a SU (N = Ny — N.) gauge theory with Ny magnetic flavours g,
¢ and a gauge singlet M, coupled with a non trivial superpotential. In the free magnetic range
(2.2) the metric on the moduli space is smooth around the origin of the field space. Therefore the
Kahler potential is regular and can be expanded as

1
alAf?

1
_K:Bﬂmw+¢@+ TeMT M (2.3)

where the scale A appears because the field M is identified with the microscopic combination QQ
which has dimension two. The dimensionless coefficient o and ( are positive real numbers that
do not affect our reasoning. The superpotential for the dual theory is

1
W = —tr Mqq + motr M (2.4)
p
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where the intermediate scale u is related to the strong scale of the two theories by the usual

matching condition
ABNe=N; R3(Ny=Ne) =Ny — (_1)Ny=Ne Ny (2.5)

The theory just presented is the same as the model studied in section 1.3.7 with the dictionary

M =~ - \/aA 2 -~
— M b= = h=Y"" - _ N =N;—N, 2.
N q q . m mop i (2.6)

This theory hence has supersymmetry breaking vacua, stabilized by quantum corrections, where

0 0 ml; ) - <m1~ )
M — = N T — N 2.7
( 0 Xy sun, & ) 1 ( 0 1 0 27)

and the scalar potential is .
Vinin = (N — N)|h*m?| (2.8)

The main difference between the theory presented here and the one of section 1.3.7 is that here the
symmetry group SU (N ) is gauged. This fact could have many consequences on the stability and
even on the existence of such vacua. Moreover we observe that we expect to recover, elsewhere in
the field space, the N, supersymmetric vacua of massive SU(N.) SQCD labelled by the Witten
index.

2.3 Gauge symmetry

So we consider now the effect of gauging the symmetry S U(N ) on this theory, that is the dual
description of massive SQCD. We are in the IR free window, hence the magnetic theory is weakly
coupled. There is a scale (a Landau Pole) A, above which the theory is strongly coupled. For
such high energies the right description is the electric one.

Now, having gauged the S U(N ) symmetry, the scalar potential has a new contribute coming

from the D terms ]

Vb = 56* > (Trg'Tag + TrTad') (2.9)
2
A
This potential has several important consequences. First of all it vanishes in the vacua (2.7), so
(2.7) remains a minimum of the tree level potential. The SU(N) symmetry is completely Higgsed
in this vacuum, and the Goldstone bosons associated to the breaking of this symmetry are eaten
through the superHiggs mechanism. On the other hand, the scalar potential (2.9) give tree level
masses ~ gm to the fields dx. Thus, only the fields X and 6 + 68* remain as classical pseudo
moduli. We have seen in the section 1.3.7 that these pseudomoduli are stabilized by quantum
corrections. We wonder if the gauging modify the quantum corrections. We know from section
1.3.2 that the mass matrices get non trivial contributions from the D terms. However, observe
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that the SU (]\7 ) gauge fields do not directly couple to the supersymmetry breaking and the D
terms vanish on the pseudo flat space. Moreover, the non zero expectation values for the charged
quarks g and ¢ do not couple directly to any non zero F' term and hence do not contribute to the
supertrace.

We then conclude that the leading order effective potential is the one computed in section
1.3.7 and it is unaffected by the gauging of the SU(N) gauge group. Hence the vacuum (2.7) is a
local minimum of the scalar potential with spontaneous breaking of supersymmetry.

2.4 Supersymmetric vacua

We know, from the Witten index of the electric theory, that also the magnetic theory must admit
N, supersymmetric vacua, and we search for them in another region of field space. Consider giving
large expectation values to the meson M. The superpotential (2.4) gives then the flavours a mass
(hM), and they can be integrated out. The low energy theory is then SU(N) Yang Mills with a
dynamical scale given by
¢ hVrdet M
AN — - — (2.10)
ANs—3N

where A is the Landau Pole of the magnetic theory. The low energy theory get contribution from
gaugino condensation and so the effective superpotential is

1

Wiow = NAD . — hm?tr M = N (h"f]\*(Nf*?)N) det M)ﬁ ~ hm?tr M (2.11)

low

This superpotential leads to the Ny — N = N, supersymmetric vacual

N 3N—N_f m
(hM) = Ae™ N1y, = me ™™V 1y, =3 (2.12)
where € is a parameter that we can take arbitrary small, such that
Im| < |[(hM)] < |A| (2.13)

This vacuum expectation values is then far below the Landau Pole, making reliable the analysis we
have done. On the other hand, the supersymmetric vacuum is far from the non supersymmetric
one whose scale is given by the parameter m.

Hence we recover in another region of the field space, far from the origin but below the Landau
Pole, the supersymmetric vacua. The restoration of supersymmetry is driven by non perturbative
effects (gaugino condensation) associated to the dynamics of the magnetic gauge group SU(N).
In the supersymmetric vacua R symmetry is broken by the vacuum expectation values for the

'We take the meson proportional to the identity matrix.
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meson field. We have found dynamical supersymmetry restoration in a theory which breaks
supersymmetry at tree level.

The existence of these supersymmetric vacua elsewhere in field space implies that the non
supersymmetric vacua of the previous section become only metastable upon gauging S U(N ), and
we have to check if their lifetime is large.

2.5 Effects from underlying microscopic theories

The theory we have studied (the magnetic one) is infrared free and therefore we cannot trust it as
a complete theory. Its description breaks down at the Landau Pole A where its gauge interactions
become large. We should verify that any effects from the microscopic theory does not infer our
results. We have already introduced the dimensionless parameter

le| = ’T’ <1 (2.14)

that we have assumed very small. This implies that the procedure to obtain (2.12) and the result
itself, were consistent. We will find that this parameter controls also other possible corrections
coming from the microscopic theories.

We first consider as a potentially dangerous contribution the effects of loops of modes from
the high energy theory. These can be summarized in corrections to the Kahler potential, that up
to now we have considered to be canonical, which have the form

SK = ‘/{‘2Tr(MTM)2 (2.15)
with ¢ a dimensionless constant. The right dimension is obtained using the natural scale of the
theory. Then such high dimension operator are suppressed by inverse power of the large scale A and
do not affect the low energy dynamics. More precisely, the contributions to the effective potential
coming from these corrections goes like ~ |m2e?|, whereas the one loop corrections like ~ |m|?.
Higher order corrections are even more soppressed by powers of A. Hence the contributions of
2.15 are negligeable with respect to the one loop ones.

The other main question regards the fact that in the derivation of (2.12) we have considered a
typically non perturbative effects of the superpotential, i.e. gaugino condensation, without taking
into account possible Kahler corrections like (2.15). The leading effects of the Kahler corrections
(2.15) to the effective scalar potential are schematically

~ |m2€e%|| M |? (2.16)

m2M2
-

5Kahler‘/eff ~ '

which, as already said, are negligeable with respect to the one loop contribute (). The correction
to the scalar potential coming from the gaugino condensation contribution in the superpotential
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(2.11) are of the form

) Ny-N
m°M N~
5superpot‘/eff ~ NN (217)
AR
~ 2N =
Then, for small M, precisely for [M| < [Ae™f~*| both corrections are negligeable, confirming

2N

the results about the non supersymmetric vacuum and its stability. For |M| > |Ae™f =3V | the
correction from the superpotential (2.17) is more important than the correction from the Kahler
potential (2.16).

Concluding, the possible corrections coming from the high energy theory do not invalidate our
analysis of the low energy dynamics, where we evidenciate the existence of local quantum minimum
of the scalar potential with spontaneous breaking of supersymmetry, and also the existence of
supersyminetric vacua, elsewhere in the field space, where the restoration of supersymmetry is
driven by non perturbative effects. Moreover observe that the global picture we have found is
very similar to the deformed O’Rafeartaigh model (section 1.3.4). Indeed the non perturbative
contribution in the superpotential due to gaugino condensation is similar to the deformation added
to the O’Rafeartaigh model, which restore supersymmetry in the large field region, whereas is
negligeable in the small field region where there are metastable supersymmetry breaking vacua.
One of the main novelty in the ISS model is that the hierarchy between the different contribution
to the superpotential is naturally generated dynamically.

2.6 Lifetime: Bounce action

We have found that the non supersymmetric vacuum is a metastable state of the theory, that have
to decay into the true vacuum, which is supersymmetric. We want to estimate the lifetime of this
false vacuum, computing the decay rate, which is proportional to the semi classical decay proba-
bility. The semi classical decay probability is given by the exponential of the bounce action [48].
The bounce action is the difference in the Euclidean action between the tunneling configuration
and the metastable vacuum. In order to estimate the bounce, we need to find a trajectory in field
space which costs the minimal amount of energy to connect the non supersymmetric vacuum to
the supersymmetric one. This means finding the direction in the field space where the potential
barrier is minimum. The classical potential is approximately V ~ |hgM|? 4 |hMG|?, hence a large
potential energy is necessary in order to have both ¢ and M different from zero. Starting from
the non supersymmetric vacuum (2.7) the most efficient path is then to climb up to a point where

M=0 q¢=4¢=0 V=Nh’m?| (2.18)

From there, we move in the M direction towards the supersymmetric vacuum (2.12). The thin
wall approximation is not appropriate in this case, since the two vacuum have not the same energy
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Figure 2.1: A triangular barrier potential for a generic field ¢

and are very far from each other in the field space. We use the triangular approximation [49],
which is reliable in cases where the gradient of the potential is approximately constant at both
sides of the peak. In this case the bounce action is

(Ap1)? + (Ag-)?P?

S AV,

(2.19)

Where we have defined
Apy = £(pr — 1) AVy = (Vp = Vy) (2.20)

and the fields ¢4, ¢_, ¢ and the values Vp, V4 and V_ are reported in the figure 3.1. We
have showed the triangular barrier for a generic field ¢. However, in the case at hand, the first
displacement A¢, is associated to the quarks field, whereas the second one A¢_ is associated to
the meson field. Now, since A¢; < A¢_, and using that AV, = Vi, (2.8), we estimate the
bounce action as

(Agy)* 1
R =T (2.21)
N

Since the exponent is positive in our window (2.2), in the limit ¢ — 0, we can make the bounce
action parametrically large and hence the lifetime of the non supersymmetric vacuum parametri-
cally long. Of course any other trajectory will cost more than this in energy, and then will take
more time to be done.

2.7 Conclusions and comments

We conclude that SQCD with light massive flavours (with masses smaller than the strong coupling
scale A) has metastable supersymmetry breaking vacua in the window N, + 1 < Ny < %Na
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We have not commented on the interesting special case Ny = N, + 1, where the magnetic
gauge group is trivial. In the superpotential there is an extra term which encodes the quantum
constraint on the moduli space (see sec. 1.6.4). For N, > 2 the determinant piece in this new term
is negligeable near the origin of the field space and hence we remain with the same theory analized
in section, which has metastable vacua. Hence metastable vacua are present in the low energy
description of massive SQCD in the window N, +1 < Ny < %Nc. In [25] it was also conjectured
that the same is true for the Ny = N, case.

In the case of equal masses, the non supersymmetric vacua have a global flavour symmetry
U(N¢) which is spontaneously broken to U(N¢ — N.) x U(N,). Thus the metastable dynamical
supersymmetry breaking vacua form a compact moduli space of vacua

U(Ny)
U(Nf - Nc) X U(Nc)

M= (2.22)

There is a bigger configuration space of vacua with broken supersymmetry versus the isolated
supersymmetric vacua. This suggest a cosmological advantage in populating the vacua with
broken supersymmetry with respect to the supersymmetric ones.
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Chapter 3

Gauge mediation

A relevant aspect of theory showing metastable vacua consists in the possibility of implementing
gauge mediation mechanism [51, 37, 52]. This topic has been studied in many recent works
[53, 54, 55, 2, 57]. An important aspect for phenomenology is naturalness of any scale appearing
in the theory, which can be achieved with the so called retrofitting [58]. We briefly explain here
some aspects of the extensive subject of gauge mediated supersymmetry breaking. For a complete
review see [19] (see also [15, 59, 6, 7, 16]).

3.1 Introduction

Supersymmetry is an elegant solution to the naturalness problem. However, in the real world
supersymmetry must be broken. Hence it must be an approximate symmetry of the theory above
the TeV scale. This is possible when supersymmetry is broken softly, i.e. without introducing
quadratic divergencies. The mass spectrum of the thoery is determinated by the mechanism
of supersymmetry breaking. A very stringent constraint on the mass spectrum is given by the
Supertrace theorem. It states that the sum of the particle tree level masses weighted by the
number of degrees of freedom, is equal in the bosonic and fermionic sector

STr(m?) = Z(J)J(zj + 1)Tr(m3) =0 (3.1)
J

This theorem applyies to models with tree level supersymmetry breaking and without gravitational
anomalies. This rules out the possibility of constructing simple models with tree level supersym-
metry breaking. However, the supertrace theorem follows from the properties of renormalizability

that constraint the kinetic terms to the canonical form.
The way out of this constraint consist in assuming that the sector of supersymmetry breaking is
coupled to the observable sector via non renormalizable tree level couplings. This can be achieved
by taking the supersymmetry breaking fields heavy, and then consider the effective theory obtained
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integrating them out. This effective theory can have non canonical, and non renormalizable, kinetic
terms for matter and guage fields which couple to the supersymmetry breaking sector. This leads
to soft supersymmetry breaking terms such as scalar and gaugino masses avoiding the supertrace
theorem. Therefore, the supersymmetry breaking mechanism have to be understood studying the
supersymmetry breaking effective action and its interaction with the observable sector.

Gravitational mediation

One possibility consists in considering a theory which is not renormalizable, where supertrace
theorem does not hold. The natural candidate is gravity. Spontaneous supersymmetry breaking in
supergravity leads to soft terms in the effective theories with rigid (non local) supersymmetry. This
is a widely considered scenario in phenomenological models, where gravity plays a fundamental
role.

Flavour changing neutral current One of the main problem in theories with gravity mediated
supersymmetry breaking is that there is no obvious reason why the supersymmetry breaking
masses for squarks and leptons should be flavour invariant. Gravity has no reason to arrange its
interactions so that they are diagonal in the same basis in which the Higgs couples to the fermions.
Even if at tree level, for some accidental reason, they are flavour symmetric, loop corrections will
distort their structure. This leads to mass non universalities and eventually to flavour changing
neutral current.

In order to respect the stringent bound given by the experiment, it would be preferable for the
mass degeneracies among the squarks and sleptons, rather than be accidental, to be guaranteed
by the nature of the mediation mechanism. If the scalar soft masses were functions only of the
gauge quantum numbers of the individual sparticles, universality would be automatic. This can
be achieved in model with gauge mediated supersymmetry breaking, where the ordinary gauge
interactions are responsible for the appareance of soft supersymmetry breaking in the MSSM.

Gauge mediation

In this case the dynamics at microscopic level is described by a renormalizable lagrangian, which
satisfy the supertrace theorem. However the low energy description is governed by an effective
lagrangian where non renormalizable terms have been induced by quantum effects, through gauge
interactions. This effective theory can communicate supersymmetry breaking to an observable
sector, and the supertrace constraint is avoided.

In gauge mediated theories, it is possible to describe the dynamics without gravity. This is not
appreciate in view of unification of forces. On the other hand it allows to study models with field
theoretical tools only, without have to deal with quantum gravity. This is particularly interesting
because lot of progress have been made in understanding non perturbative aspects of supersym-
metric gauge theories, where supersymmetry breaking mechanisms, and their comunication to the
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standard model sector, can be investigated.

3.2 Gauge mediation

As already introduced, the basic idea of gauge mediation is that the ordinary gauge interactions
give raise through loop corrections to the soft supersymmetry breaking terms in the MSSM. The
gravitational interaction is a subleading effect.

The standard construction consists in the following three sectors.

1. The wisible sector: this is a supersymmetric extension of the Standard Model, typically the
MSSM.

2. The hidden sector!: this is the sector where supersymmetry breaking occurs. It should be a
singlet under MSSM gauge transformation. Details of this sector are model dependent. We
can summarize the effect of this sector considering a set of chiral superfields .S;, which are
SM gauge singlets, that acquire non zero vacuum expectation values for both their scalar
and auxiliary components

(S;) = s; + 0*F, (3.2)
where the F; components set the supersymmetry breaking scale. In the simplest case, where
there is only one S, this coincides with the Goldstino superfield.

3. The messenger sector: this sector is formed by some new superfields ® @ that transform
under the gauge group as a real non trivial representation (such as they can have gauge
invariant masses and be very heavy) and couple at tree level with the superfields S;

[UESIPPIER ¥ (3.3)
7

This coupling generates a supersymmetric mass of order s; for the messengers and mass
squared splitting of order F;. In the minimal model of gauge mediated supersymmetry
breaking the messengers are chiral superfields transforming as a 5 + 5 of SU(5) C SU(3) x
SU(2) x U(1). This choice is sufficient to give masses to all of the MSSM scalars and
gauginos.
We have assumed in (3.3) that the interaction superpotential is diagonal in the messenger
fields ®;. This can be obtained with a rotation in field space. In this case there can be non
trivial relation between the neutral chiral fields S,,, leading to cancellation. We will see an
example in the appendix A.

Also the messenger sector is quite model dependent, and we expect it has a common origin
with the hidden sector. In model of direct gauge mediation the two sectors are unified.

1Sometimes it is called secluded sector in order to distinguish it from the hidden sector which is the usual name
in gravity mediated scenarios.
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Figure 3.1: Corrections to gauge superfield propagator

The mass splitting of the messengers fields due to the interaction superpotential (3.3) can
be found as follows. We consider the superpotential (3.3) and compute the corresponding mass
matrices. The messenger fermions have masses |A;s;|. On the other hand, the squared mass matrix

for the scalars is | ‘2
)\iSi AiFi

with squared mass eigenvalues |)\;s;|? £ |\;F;|. The requirement that the mass eigenvalues are
positive yields the constraint
B3] < [Nl (3.5)

The masses of the messenger superfield component still satisfy the supertrace sum rule. Neverthe-
less, the splitting between the masses of the scalar and fermionic components of the messengers
superfields indicates supersymmetry breaking.

The supersymmetry violation, apparent in this messenger spectrum for F; # 0, is communi-
cated to the MSSM through radiative corrections.

The interaction of the messengers superfields both with the other superfields of the hidden
sector and with the SM gauge superfields can be expected to produce a breakdown of supersym-
metry in the propagators of the component fields of the SM gauge superfields. To lowest order
in the SM gauge coupling, the leading contribution to the propagators comes from diagram as
the one shown in figure 4.1, where dashed lines are any component fields of the gauge superfields,
solid lines are component fields of the messengers, and dotted lines are component fields of the
hidden sector superfields.

The breakdown of supersymmetry in the propagators of gauge superfields is comunicated to
the scalars sleptons and squarks of the supersymmetric Standard Model through diagram like in
figure 3.2, where a component field of the gauge superfield of the standard model is emitted and
reabsorbed by the squark or by the slepton.

3.3 Dynamical supersymmetry breaking and gauge mediation

Dynamical supersymmetry breaking provides an attractive way to explain the hierarchy between
the weak scale and the Plank scale. For this reason there are many attempts to build realistic
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Figure 3.2: Corrections to the scalar propagators

models of dynamical supersymmetry breaking with gauge mediation. Many of the gauge theo-
ries that are known to break dynamically supersymmetry, with gauge group Gy, have flavour
symmetries G ¢, which can remain unbroken in the vacuum, and which can be anomaly free.

The strategy consists then in embedding the SM group in this non anomaly flavour group
Gy D SU(3) x SU(2) x U(1) and in gauging it. The resulting model still break supersymmetry
as long as the SM interaction is weak compared to the gauge interaction G4y, whose dynamics
controls the supersymmetry breaking. Now, the supersymmetry breaking is obviously comunicated
to the whole SM sector just by the SM gauge interactions.

Landau Pole problem One of the main difficulties in this context is the so called Landau pole
problem. Typically, models that break dynamically supersymmetry and have a flavour group Gy,
have a large gauge group Ggy,. The different colours Ggy, behave as distinct flavours for the
SM gauge interactions. Hence there are in general many flavours of SM matter in the messenger
sector. This can imply that the SM gauge factors lose asymptotic freedom, and that the gauge
couplings diverge above the messenger mass scale but below the GUT scale.

3.4 Direct gauge mediation

Another interesting approach is based on the attempt to remove the messenger sector. The strat-
egy is to unify the hidden and the messenger sectors. The sector with supersymmetry breaking,
the one that is hidden in the usual gauge mediation scenario, should then now play also the role
of the messenger sector to comunicate the breaking?.

Once again the requirement is that the supersymmetry breaking sector possesses an anomaly-
free global symmetry large enough to embed the SM gauge group and which is not broken in the
vacuum with supersymmetry breaking.

2Hence here the messengers are charged under the gauge group Gayn-
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Figure 3.3: Corrections to the gaugino propagator

Also in this case the large size of the dynamical group feeds back in the SM sector potentially
leading to Landau pole problems.

3.5 Gaugino mass

Because the ®; fields are charges under the SM gauge groups, the gauginos of the MSSM can
receive masses through loops of these fields. In particular, gaugino propagators get corrrections
at one loop from the diagram shown in figure 4.3. The particles in the loop are messenger fields.
Recall that the interaction vertices are of gauge coupling strength even though they do not involve
gauge bosons.

The resulting gaugino mass which is induced by the radiative corrections is

Qq A | Fi | Fi
M, ~ 2N T —1,2, .
i 2T O o(map)  @=b23 (36)
where
()—i[(l—k YIn(1+2) 4+ (1 —z)In(1 — )]—1+$—2+$—4+£6+ (3.7)
gﬂf _1‘2 X ) In X X)) In X = 6 15 28 .

and the T,(i) are the Dynkin index for the pair @, ®, associated to the representation by which
the pair @, ® transforms under the gauge group G, which is a factor of the SM gauge group .
For example n, = 1 for the N + N of SU(N).

The expansion in (3.7) is valid when = < 1. In the small z limit, all terms in z are neglected.
When F; ~ s; we cannot neglect the higher terms.

A detailed example of computation of gaugino mass in cases where the interaction superpo-
tential is not diagonal in the messengers is reported in appendix A.

3The index a runs over the SU(3) x SU(2) x U(1) factors of the SM gauge group SU(5).
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Chapter 4

Metastable vacua in SQCD with
adjoint fields

4.1 Introduction

Long living meta-stable vacua breaking supersymmetry exist in classes of N’ = 1 gauge theories
of the SQCD type with massive fundamental matter.

The novelty of the approach of Intriligator Seiberg and Shih, that we have reviewed in the
previous chapters, relies on theories for which Seiberg-like duality exists i.e. (electric) theories
which are asymptotically free in the ultraviolet and strongly coupled in the infrared, where the
physics can be described in terms of weakly coupled dual (magnetic) theories. In the region of
small fields this dual description can be studied as a model of pure chiral fields. Supersymmetry
is broken by the rank condition, i.e. not all the F-term conditions can be satisfied. Roughly
speaking the next step is to recover, in this magnetic infrared, a generalized chiral O’Raifeartaigh
model with supersymmetry breaking vacua.

These non supersymmetric vacua have typically classical flat directions which can be lifted by
quantum corrections. Intriligator Seiberg and Shih have proved that such corrections generate
positive mass terms for the pseudo-moduli leading to long lived metastable vacua. These facts
should be tested in different supersymmetric theories. Some generalization have already appeared
upholding the notion that such phenomenon is rather generic.The relative stability of the vacua
is a rather delicate issue. Remarks about the corresponding string configurations corroborating
the stability analysis have also appeared.

In this chapter we study theories with adjoint chiral fields with cubic superpotential a la KSS
[28, 29, 30]. Such superpotentials generate a further meson in the dual magnetic theory: this
might produce several pseudo-Goldstone excitations and jeopardize the 1-loop stability of the non
supersymmetric vacua. There must be enough F' and/or D equations to give tree level masses. A
viable model, of string origin, with two gauge groups has been presented in [39].
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We consider a theory with one gauge group SU(N,.) and two massive electric adjoint fields,
where the most massive one gets integrated out. This amounts to add a massive mesonic defor-
mation in the dual theory. This avoids dangerous extra flat directions which cannot be stabilized
at 1-loop. A discussion of the possible interpretation via D-brane configurations can be found in
[60, 61].

In the study of the magnetic dual theory we find a tree-level non supersymmetric vacuum
which is stabilized by quantum corrections; we show that this is a metastable state that decays
to a supersymmetric one after a parametrically long time. A landscape of non supersymmetric
metastable vacua, present at classical level, disappears at quantum level. Differently from [25, 38,
39] in our model there is no U(1)r symmetry and our minimum will not be at the origin of the
field space, making our computation much involved. We present most of our results graphically,
giving analytic expressions in some sensible limits. We follow the computational strategy of [25].

In section 5.2 we recall some basic elements of the KSS duality and introduce the model that
we consider through the chapter. In section 5.3 we solve the D and F' equations finding an energy
local minimum where supersymmetry is broken by a rank condition. In section 5.4 we compute
the 1-loop effective potential around this vacuum and find that it is stabilized by the quantum
corrections. In section 5.5 we restore supersymmetry by non perturbative gauge dynamics and
recover supersymmetric vacua. Using this result we estimate the lifetime of our metastable vacuum
in section 5.6.

4.2 N =1 SQCD with adjoint matter

Here we introduce some useful elements about electric/magnetic duality for supersymmetric gauge
theories with an adjoint field [28, 29, 30]. We consider N' = 1 supersymmetric SU(N,.) Yang
Mills theory coupled to Ny massive flavours (Q, Qjﬁ) in the fundamental and antifundamental
representations of the gauge group («, 5 = 1,... N.) and in the antifundamental and fundamental
representations of the flavour group (i,j = 1,...Ny), respectively. We also consider a charged
chiral massive adjoint superfield Xg with superpotentiall

W., = %XTrX3 n %Trx2 £ AxTrX (4.1)
where Ax is a Lagrange multiplier enforcing the tracelessness condition TrX = 0. The Kahler
potential for all the fields is taken to be canonical. This theory is asymptotically free in the range
Ny < 2N, and it admits stable vacua for Ny > &< [29).

The dual theory [28, 29, 30] is SU(2Ny— N, = N) with Ny magnetic flavours (g, ), a magnetic
adjoint field Y and two gauge singlets build from electric mesons (M; = QQ, My = QX Q), with

!(Tr) means tracing on the color indices, while (tr ) on the flavour ones.
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magnetic superpotential

q m ~ 1 m . . -
Winagn = g?YTrY?’ + 7}/T1“Y2 + Ay TrY — Etr (;/Mqu + gy Moqq + gyMquq> (4.2)

where the relations between the magnetic couplings and the electric ones are
gy = —gx,  Nmy = Nemy. (4.3)

The intermediate scale p takes into account the mass dimension of the mesons in the dual de-

scription. The matching between the microscopic scale (A) and the macroscopic scale (A) is

L 2Ny
A2Ne=Nj R2N-N; _ <g’;> . (4.4)

We look for a magnetic infrared free regime in order to rely on perturbative computations at low
energy. The b coefficient of the beta function is b = (3N — N¢) — N, negative for Ny < %NC and
so we will consider the window for the number of flavours

Ne

2 ~
5 < Ny < =N, = 0 <2N < Ny (4.5)

3

where the magnetic theory is IR free and it admits stable vacua.

4.2.1 Adding mesonic deformations

We now add to the electric potential (4.1) the gauge singlet deformations
We — Wa + AWy AWy = Ao tr QXQ + mgtr QQ + htr (QQ)? (4.6)

The first two terms are standard deformations of the electric superpotential that don’t spoil the
duality relations (e.g. the scale matching condition (4.4)) [30]. The last term of (4.6) can be
thought as originating from a second largely massive adjoint field Z in the electric theory with
superpotential

Wy =myzTrZ% + Tr ZQQ (4.7)

and which has been integrated out [60, 61, 62]. The mass myz has to be considered larger than
Ao 4, the strong scale of the electric theory with two adjoint fields. This procedure leads to the
scale matching relation

Ne—N ON.~N;  _N.
Ayy T =ALL  my (4.8)

where Asa and Aj4 are the strong coupling scales before and after having integrated out the
adjoint field Z, i.e. with two or one adjoint fields respectively.
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The other masses in this theory have to be considered much smaller than the strong scale
A2 > mg, mx. This forces, via (4.8), the scale A;4 and the masses to satisfy the relations

<1 (4.9)

We will work in this range of parameters, translating these inequalities in the dual (magnetic)
context.

We also observe that in (4.8) the coefficient b of the beta function for the starting electric
theory with two adjoint fields is b = N. — Ny and the theory is asymptotically free for Ny < N..
This range is still consistent with our magnetic IR free window (4.5). The dimensional coupling

h in our effective theory (4.6) results h = %Z so it must be thought as a small deformation. In

analogy with [62]? we can suppose that when h is small the duality relations are still valid and
obtain the full magnetic superpotential

g m < 1 m . . -
Winagn = g?YTrY?’ + TYTrY2 + Ay TrY — ? tr <2YM1qq + gy Maqq + gyMquq)
+Aq tr My +mg tr My + h tr (M;)? (4.10)

For this dual theory the scale matching relation is the same as (4.4) with A = Aj4 defined in
(4.8).

We consider the free magnetic range (4.5), where the metric on the moduli space is smooth around
the origin [25]. The Kahler potential is thus regular and has the canonical form

1
K = ——tr M{M; +

1
o2h 4tr M2M2 + 7 TrYTY —l— 5 (tr q'q+tr qTq) (4.11)

a2\

where (o, 3,7) are unknown positive numerical coefficients.

4.3 Non supersymmetric meta-stable vacua

We solve the equations of motion for the chiral fields of the macroscopic description (4.10). We
will find a non supersymmetric vacuum in the region of small fields where the SU (N ) gauge
dynamics is decoupled. The gauge dynamics becomes relevant in the large field region where it
restores supersymmetry via non perturbative effects (see sec.5).

We rescale the magnetic fields appearing in (4.10) in order to work with elementary fields
with mass dimension one. We then have a N' = 1 supersymmetric SU (]\7 ) gauge theory with N
magnetic flavours (g, ), an adjoint field Y, and two gauge singlet mesons M7, My, with canonical

Where it was done in the context of Seiberg duality.
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Kahler potential. The superpotential, with rescaled couplings, reads

Winagn = %YTrY?’ n %TrYQ FYTEY + tr (A1 Mg + haMaqd + hsMiqYq)
—hym3 tr My — ham3 tr My + m3 tr M} (4.12)

where the rescaled couplings in (4.12) are mapped to the original ones in (4.10) via

oy 9 gy 2\ 2 _ Y9y 2
hi = _T,UQ (1) hy = _? (O‘?A )7 hs = _? (014) 75
hlm% =-mgai A hzmg =-AQ A? m3 = h(alA)2 (4.13)

We can choose the magnetic quarks ¢, G~ (which are Ny x N matrices) to solve the D equations

) q=<lg> dT=<§> (4.14)

where k,k are N x N diagonal matrices.
We impose the F' equations of motion for the superpotential (4.12)
F)\Y = TrY =0
Fy = ng2 +myY + Ay + haMi1qg =0
F, = haoMsG+ hiMiGg+ h3MYq=0

F; = hoMoq+ hiMyq+ hsMiqgY =0 (4.15)
FMl = hqu—l—h3qu—h1m%5ij+2m3Ml =0 1,] = 1,...Nf
FM2 = hQ(](j — th%&j =0 i,j = 1, e Nf (4.16)

Since we are in the range (4.5) where Ny > N the equation (4.16) is the rank condition of [25]:
supersymmetry is spontaneously broken at tree-level by these non trivial F-terms.

We can solve the first N equations of (4.16) by fixing the product kk to be kk = m%lN. We
then parametrize the quarks vevs in the vacuum (4.14) with complex 6

01 . 01 .
q= < i 1y > i’ = ( " 1y > : (4.17)

The other Ny — N equations of (4.16) cannot be solved and so the corresponding F-terms don’t
vanish (Fiz, # 0). However we can find a vacuum configuration which satisfies all the other F-
equations (4.15) and the D-ones. We solve the equations (4.15) for M;, Y and Ay and we choose
Y to be diagonal, finding

heh 2 h2 4 2
Ay = 8 1mj (m2 _ m2) _my (1 UL ) in2 5 (4.18)
2ms3 9y 2mgmy ) (n1 —n2)



where the integers (n1,n2) count the eigenvalues degeneracy along the Y diagonal, with (ny+ng =
N)

1 0 m hgmé1 m hgmg
Y1ln Y ™ 9ms n2 Y ™ 9ms n1
(Y) = < ' Y= —

2 P—
0 yolyp, gy ny — ng Y gy ny — ng

We choose the vacuum in which the magnetic gauge group is not broken by the adjoint field
choosing n; = 0, so y2 vanishes and (Y) = 0. We observe that other choices for (Y) with
n1 # 0 # no wouldn’t change the tree-level potential energy of the vacua which is given only by
the non vanishing Fjy,. This classical landscape of vacua will be wiped out by 1-loop quantum
corrections®. In our case (n; = 0) we have

S (m? —m3) 15 0 A
[ ams\ma—ma) 1y _(pr O
(1) = ( . ) (") (4.19)

0 2mz TN;—N

The two non trivial blocks are respectively N and N = N diagonal squared matrices.
The (q,q) F equations fix the vev of the My meson to be

h 2 2 A
|~z (mi—m3) 1z 0 ) _ [Py O
(Mo) ( st e 0 x (4.20)

where the blocks have the same dimensions of M7, with X undetermined at the classical level.
Since supersymmetry is broken at tree level by the rank condition (4.16) the minimum of the
scalar potential is

Vi = |Fag)? = (Ny — N)|ham3|* = (N — N) a3 [A\gA?|? (4.21)

It depends on parameters that we can’t compute from the electric theory (e.g. a3); in any case we
are only interested in the qualitative behaviour of the non supersymmetric state. The potential
energy of the vacuum (4.21) doesn’t depend on 6 and X’; they are massless fields at tree level,
not protected by any symmetry and hence are pseudo-moduli. Their fate will be decided by the
quantum corrections.

Since there isn’t any U(1) g symmetry we don’t expect the value of X' in the quantum minimum
to vanish. Indeed, computing the 1-loop corrections, we will find that in the quantum minimum the
value of # is zero while X will get a nonzero vev. This makes our metastable minimum different
from the one discovered in [25, 38, 39] where the quantum corrections didn’t give the pseudo-
moduli a nonzero vev. Notice also that although we have many vevs different from zero in the non
supersymmetric vacua they are all smaller than the natural breaking mass scale |Fj, \% = |h2m%\%

3This agrees with an observation in [39].
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4.4 1-Loop effective potential

In this section we study the 1-loop quantum corrections to the effective potential for the fluc-
tuations around the non supersymmetric vacuum selected in the previous section with (Y) = 0.
The aim is to estabilish the sign of the mass corrections for the pseudo-moduli X, 8. The 1-loop
corrections to the tree level potential energy depend on the choice of the adjoint vev (Y): as a
matter of fact they are minimized by the choice (Y') = 0.

The 1-loop contributions of the vector multiplet to the effective potential vanish since the D
equations are satisfied by our non supersymmetric vacuum configuration.

The 1-loop corrections will be computed using the supertrace of the bosonic and fermionic
squared mass matrices built up from the superpotential for the fluctuations of the fields around
the vacuum. The standard expression of the 1-loop effective potential is

1 4, M2 1 4 m% 4 m%
Victoop = g5 STrMMog 15 = 5 > <mB log —F — miplog <5 (4.22)
where the F' contributions to the mass matrices are read from the superpotential W
m2 = WTaCWCb WTabCWC m2 = WTaCWCb 0 (4 23)
B Wapc W Wy Wb ! 0 W Wb '

We parametrize the fluctuations around the tree level vacuum as

q= < ke@g o ) i = < ke_;j & > Y =Y (4.24)
(i +Es 93 (P +E ¢
M= < 1 ¢1  pP+& ) Mz = < 2¢>6 X ) (4.25)

We expand the classical superpotential (4.12) up to trilinear order in the fluctuations ¢;,§;, Y.
Most of these fields acquire tree level masses, but there are also massless fields. Some of them
are Goldstone bosons of the global symmetries, considering SU (N ) global, the others are pseudo-
Goldstone bosons.
In this set up, & and & combine to give the same Goldstone and pseudo-Goldstone bosons as in
[25]. Gauging the SU (N) symmetry these Goldstone bosons are eaten by the vector fields, and
the other massless fields, except 6 + 6*, acquire positive masses from D-term potential as in [25].
Combinations of the ¢; fields give the Goldstone bosons related to the breaking of the flavour
symmetry SU(Ny) — SU(N) x SU(N; — N) x U(1). The off diagonal elements of the classically
massless field X are Goldstone bosons of the SU(Ny — N) flavour symmetry as in [38]. We then
end up with the pseudo-moduli # 4+ 0* and the diagonal X.

We now look for the fluctuations which give contributions to the mass matrices (4.23). They
are only the ¢; fields, while the & and §Y represent a decoupled supersymmetric sector. Indeed
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& and 0Y do not appear in bilinear terms coupled to the ¢; sector, so they do not contribute to
the fermionic mass matrix (4.23). Even if they appear in trilinear terms coupled to the ¢;, they
do not have the corresponding linear term*: they do not contribute to the bosonic mass matrix
(4.23). Since (&1,&2,9Y) do not couple to the breaking sector at this order, also their D-term
contributions to the mass matrices vanish and all of them can be neglected. We can then restrict
ourselves to the chiral ¢; fields for computing the 1-loop quantum corrections to the effective scalar
potential using (4.23). Without loss of generality we can set the pseudo-moduli X' proportional
to the identity matrix.

The resulting superpotential for the sector affected by the supersymmetry breaking (the ¢;
fields) is a sum of N x (N ;- N) decoupled copies of a model of chiral fields which breaks
supersymmetry at tree-level

W = hy(Xp1¢2 — m5X) + hamo (€9¢2¢>5 + 670¢1¢6> +

2
him

2
L p1¢o (4.26)

+hime (69¢2¢3 + 6_6¢1¢4> + 2m3¢3¢4 + Sts

This superpotential doesn’t have any U (1) g symmetry, differently from the ones studied in [25, 38,
39]. This may be read as an example of a non generic superpotential which breaks supersymmetry
[50], without exact R symmetry.

The expressions for the eigenvalues, and then for the 1-loop scalar potential, are too compli-
cated to be written here. We can plot our results numerically to give a pictorial rapresentation.

The computation is carried out in this way: we first compute the eigenvalues of the bosonic
and fermionic mass matrices (4.23) using the superpotential (4.26); we evaluate them where all
the fluctuations ¢; are set to zero; finally we compute the 1-loop scalar potential using (4.22) as
a function of the pseudo-moduli X, 8 + 6*. The corrections will always be powers of 6 + 6* = 6 so
from now on we will treat only the 6 dependence. We give graphical plots of the 1-loop effective
potential treating fields and couplings as real. We have checked that our qualitative conclusions
about the stability of the vacuum are not affected by using complex variables.

We redefine the couplings in order to have the mass matrices as functions of three dimensionless

parameters (p, 1, ()
o hy 2ms h%m%

_Mm _ _ 4.27
T = e ¢ ST — C<p<n (4.27)

p

and we rescale the superpotential with an overall scale homso which becomes the fundamental unit
of our plots. The inequality in (4.27) is a consequence of the range (4.9) and the redefinitions
(4.13). We notice also that p,n, ¢ have absolute values smaller than one.

In figure 4.1 we plot the 1-loop scalar potential as a function of X .0 and for fixed values
of the parameters p,n,(. We can see that there is a minimum, so the moduli space is lifted

4The possible linear terms in & and §Y factorize the F-equations (4.15) and so they all vanish.
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by the quantum corrections, the pseudo-moduli get positive masses, and there is a stable non
supersymmetric vacuum. Making a careful analysis we find that the quantum minimum in the
1-loop scalar potential is reached when (@) = 0 but (X) # 0 and its vev in the minimum depends
on the parameters (p,n, (). This agrees with what we observed in the previous section. It can be
better seen in the second picture of figure 4.1 where we take a section of the first plot for 6 = 0.

“6 /
\\\\\\\\\‘:\1““""' 5. 775,
T

\‘\““e&\" 5.75
NN 5.725
5.7
5.675
5.65
5.625

-0.2 S0 0.1 0.2 %

Figure 4.1: Scalar potential V1= for (n = 0.5,p = 0.1, = 0.05,X = —0.5...0.5,0 =

—0.8...0.8), and its section for § = 0; X is in unit of my, while V is in unit of [h3m3|2.

In figure 4.2 we plot the 1-loop scalar potential for § = 0 as a function of X and of the
parameter p, fixing 7 and (. For each value of p the curvature around the minimum gives a
qualitative estimation of the generated mass for the pseudo-moduli X. We note that for large p
the scalar potential becomes asymptotically flat, and so the 1-loop generated mass goes to zero,
but this is outside our allowed range.

As already observed, there is a minimum for (X) slightly different from zero due to quantum
corrections, and we have found that it goes to zero in the limit (( — 0,p — 0). We can give
analytic results in this limit®. We found at zero order in p and ¢, with arbitrary n, that the 1-loop
generated masses for the pseudo-moduli are

ml = W|h§mzl2(10g[4]—1)+0(P)+0(C) (4.28)
mg = N2 0g(a] 1) + ofp) + of0)

®Considering 7, p, ¢ real.
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Figure 4.2: Scalar potential V1= for (X = —1...1,p =0.05...1,n = 0.5,( = 0.05,0 = 0); X

is in unit of ms, while V is in unit of |h3m3|2.

so in the limit of small p (and small ) quantum corrections don’t depend on 1. We can then
write the 1-loop scalar potential in the limit of small ( and p obtaining

N(N; — N)

(1)
v 6472

h 2
|h%m2|2{|m2|2 (1og (P2l 4 20t og]o?] - a1+ 5?2 loglt + 7] +

+2(2 + p?)? log[2 + p2]> + (4(2 + p%)?log[2 + p?] — 4p* log[p?] + (4.29)
S )L 2IoglL 4 2] )+ macl? o (2004 47)| (2 P Toxl2 + 7] +
~ oglg"] ~ 21+ 2)(1 -+ 2loglt + 7)) + dlogld] = )6 ) 0+ 62 1+ 0(0)

In these approximations the vev for (X) in the minimum is shifted linearly with {; however, in
general, the complete behaviour for (X’) is more complicated and depends non trivially on 7. We
observe that, being ¢ a simple shift for the vev of X, it doesn’t affect its mass, while it modifies
0 mass.
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From (4.29) we can read directly the masses expanding for small p

e = SO gl (o togt — 1) + P - ) (430)
Y Y 2,2 |2
w2 = S o (1 Qo] - 1)+ | 37| Gogla] - )+
+ |h1*(21og[4] — 3)) : (4.31)

These expressions are valid up to cubic order in p, (. The first term in (4.30,4.31), being indepen-
dent of the deformations (p,n,(), agrees with [25]. The second term in (4.30) is the same as in
[39].

4.5 Supersymmetric vacuum

Supersymmetry is restored via non perturbative effects [26], away from the metastable vacuum
in the field space, when the S U(N ) symmetry is gauged [25]. The non supersymmetric vacuum
discovered in the sections 3 and 4 is a metastable state of the theory which decays to a supersym-
metric one. We are interested in evaluating the lifetime of the metastable vacuum. We need an
estimation of the vevs of the elementary magnetic fields in the supersymmetric state.

We first integrate out the massive fields in the superpotential (4.12) using their equations of
motion. In (4.12) there are two massive fields (M;,Y’). We integrate out the meson M; and the
adjoint field Y tuning Ay in such a way that the gauge group SU (N ) is not broken by the adjoint®,
as in the metastable state, so (Y) = 0. Using this last condition the equation of motion for the
meson M gives the simple relation M; = 2}23 (m% — qq~). Integrating out the charged field Y the
scale matching condition reads

ToN— T3N—N; . _N
NN = A Y (4.32)

where we have indicated with my the resulting mass for Y which is a combination of its tree-level

2
mass my and a term proportional to 7}:71 (¢§)? which will be shown to be zero in the supersymmetric
vacuum.
We obtain a superpotential for the meson M, and the flavours (g, q)

h? - - -
Wint = tr <4¢rlzg (2m7qd — (49)*) + haM2qd — h2m5M2) (4.33)

We expect that the supersymmetric vacua lie in the large field region, where the SU (]\7 ) gauge
dynamics becomes relevant [25]. We then consider large expectation value for the meson M;. We

SWe are not interested in finding all the supersymmetric vacua.
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can take as mass term for the flavours (g, ¢) only the vev (hoMas) neglecting the other contribution
in (4.33) coming from the couplings of the magnetic theory.

We then integrate out the flavours (g, q) using their equations of motion (¢ = 0,q = 0). The
corresponding scale matching condition is

AN = RN det (hoMy) = AN N7 det (hg M) miY . (4.34)

The low energy effective S U(N ) superpotential gets a non-perturbative contribution from the
gauge dynamics related to the gaugino condensation proportional to the low energy scale Ap,

W = NA3 (4.35)

that can be written in terms of the macroscopical scale A using (4.34). This contribution should
be added to the My linear term that survives in (4.33) after having integrated out the magnetic
flavours (g, ¢). Via the scale matching relation (4.34) we can then express the low energy effective
superpotential as a function of only the My meson

1

Wiow = N (/~\2N_Nf det(h2M2)> N my — m%hz tr My (4.36)

Using this dynamically generated superpotential we can obtain the vev of the meson M> in the
supersymmetric vacuum. Considering My proportional to the identity 1y, we minimize (4.36)
and obtain

~ ~ Ny—2N ~
L N _ N 1 N N _
<h2M2> = AENf*Nng*N 1Nf = my <> Ng—N ngfN 1Nf (4_37)
€
where Mo -
= — = —, 438
=7 £=2 (4:38)

€ is a dimensionless parameter which can be made parametrically small sending the Landau pole
A to infinity. ¢ is a dimensionless finite parameter which doesn’t spoil our estimation of the
supersymmetric vacuum in the sensible range ¢ < % All the exponents appearing in (4.37) are
positive in our window (4.5).

We observe that in the small e limit the vev (hoMs) is larger than the typically mass scale mso
of the magnetic theory but much smaller than the scale A

my < (haMs) < A. (4.39)

This fact justifies our approximation in integrating out the massive flavours (g, §) neglecting the
mass term in (4.33) except (hoMbs). It also shows that the evaluation of the supersymmetric
vacuum is reliable because the scale of (hoMy) is well below the Landau pole.
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4.6 Lifetime of the metastable vacuum

We make a qualitative evaluation of the decay rate of the metastable vacuum. At semi classical
level the decay probability is proportional to e B where Sp is the bounce action from the non
supersymmetric vacuum to a supersymmetric one. We have to find a trajectory in the field space
such that the potential energy barrier is minimized. We remind the non supersymmetric vacuum
configuration (4.17,4.19,4.20) and the supersymmetric one

h22
g=0 G=0 Y=0 (hqdy)=-2""1
2mg

1n,  (haM) #0 (4.40)

where (hoMs) can be read from (4.37).

By inspection of the F-term contributions (4.15) to the potential energy it turns out that the
most efficient path is to climb from the local non supersymmetric minimum to the local maximum
where all the fields are set to zero but for M; which has the value M; = @:L? 1y, as in the
supersymmetric vacuum, and My, which is as in (4.20). This local maximum has potential energy

Varax = Nylhami|® (4.41)

We can move from the local maximum to the supersymmetric minimum (4.40) along the Ms
meson direction. The two minima are not of the same order and so the thin wall approximation
of [48] can’t be used. We can approximate the potential barrier with a triangular one using the
formula of [49] ,
S~ (AD)

Vvax — Vmin
We neglect the difference in the field space between all the vevs at the non supersymmetric vacuum
and at the local maximum. We take as A® the difference between the vevs of My at the local
maximum and at the supersymmetric vacuum. Disregarding the My vev at the local maximum
we can approximate A® as (4.37). We then obtain as the decay rate

(4.42)

N¢—2N ~ 4 N¢—2N
N\ Vv 1\ ¥, %
S ~ <) NN~ <> (4.43)
€ €

This rate can be made parametrically large sending to zero the dimensionless ratio € (i.e. sending

A — 00) since the exponent <4 QJéfv__JJ\;; L ) is always positive in our window (4.5).

In conclusion we have found that the SU(N,) SQCD with two adjoint chiral fields and mesonic
deformations admits a metastable non supersymmetric vacuum with parametrically long life. It
seems that particular care is needed in building models with adjoint matter exhibiting such vacua.

The same can be said about the string geometrical construction realizing the gauge model we have
studied [60, 61].
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Chapter 5

Gauge mediation in SQCD with
adjoint fields

5.1 Introduction

As mentioned, following the strategy of the ISS model many examples of dynamical supersymmetry
breaking in metastable vacua have been studied in supersymmetric N’ = 1 gauge theories and in
string theory. The approach of ISS relies on theories for which Seiberg-like dualities exist, i.e.
the IR strong dynamics of the electric theory can be studied perturbatively in the dual magnetic
theory in the range where it is weakly coupled.

In the previous chapter we studied a SQCD-like model with SU(N) gauge group and adjoint
fields with non trivial superpotential [1]. Models with adjoint fields exhibit richer structure. In
[39, 1] it has been necessary to add gauge singlet deformations in order to stabilize the non
supersymmetric vacuum. These models show classical landscape of vacua parametrized by the
adjoint vevs that can [1] or cannot [39] be wiped out at quantum level.

In the ISS model the fundamental fields are massive with mass lower than the natural scale,
while in [38, 39] the fundamental fields are massless. In [1] we considered massive fundamental
matter but we will show that our previuos results are valid in the limit of vanishing quark masses.

The ISS model and its generalizations can have phenomenological applications in connection
with gauge mediation of dynamical supersymmetry breaking to the standard model sector. R-
symmetry plays here a relevant role since a U (1) R-symmetry, even broken to Z,, forbids a gaugino
mass generation. To obtain a gaugino mass, deformations can be added to the superpotential
making the R-symmetry trivial, and this might require a further careful analysis of its stability.
Quite recently, meta-stable models have been analysed in this direction. In most cases extra terms,
breaking R-symmetry, have been added to known models of dynamical supersymmetry breaking,
leading to gaugino mass at 1 loop at the first or at the third order in the breaking scale.

The model of the previous chapter, [1], which has meta-stable vacua, is rather non generic (in
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the sense of [50]), it has no R-symmetry and it is suitable for direct gauge mediation. We show,
indeed, that a gaugino mass gets generated at 1 loop at third order in the breaking parameter.

5.2 N =1 SQCD with adjoint matter

We consider N = 1 supersymmetric SU(N,) Yang Mills theory coupled to Ny massive flavours
(Q°, Qjﬁ) in the fundamental and antifundamental representations of the gauge group («, 3 =
1,...N.) and in the antifundamental and fundamental representations of the flavour group (i,j =
1,...Ny), respectively. We also consider a charged chiral massive adjoint superfield X5 with
superpotential®

W, = %XTrX?’ + %Tﬁ(? FAxTeX (5.1)

where Ax is a Lagrange multiplier enforcing the tracelessness condition TrX = 0. This theory
is asymptotically free in the range Ny < 2N, and it admits stable vacua for Ny > % [29]. The
matching between the microscopic scale (A) and the macroscopic scale (A) is

. 2Ny
gy — (1Y 63
g9x

where the intermediate scale p takes into account the mass dimension of the mesons in the dual
description.
We add to the electric potential (5.1) the gauge singlet deformations

AWy = Aotr QXQ +mgtr QQ + htr (QQ)? (5.3)

The first two terms are standard deformations of the electric superpotential that do not spoil the
duality relations (e.g. the scale matching condition (5.2)) [30]. The last term of (5.3) can be
thought as originating from a second largely massive adjoint field Z in the electric theory with
superpotential

Wz =mzTrZ? + Tr ZQQ (5.4)

and which has been integrated out. The mass mz has to be considered larger than As 4, the strong
scale of the electric theory with two adjoint fields. This procedure leads to the scale matching
relation N NN
c— c— —N¢

Mgy T =00, my (5.5)
where Asys and Aq4 are the strong coupling scales before and after the integration of the adjoint
field Z. The other masses in this theory have to be considered much smaller than the strong scale:
A4 > mg, mx. We can suppose that when h = n% is small the duality relations are still valid.

1(Tr) means tracing on the color indices, while (tr ) on the flavour ones.
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The dual theory [29, 30, 28] is SU(2N — N. = N) with N; magnetic flavours (g, ¢), a magnetic
adjoint field Y and two gauge singlets build from electric mesons (M; = QQ, M2 = QXQ), with
magnetic superpotential

g m ~ 1 m . . -
Winagn = g?YTrY?’ + 7yT1“Y2 + AyTrY — E tr <2YM1qq + gy Maqq + gyMquq)
+Aq tr My +mg tr My + h tr (M;)? (5.6)

For this dual theory the scale matching relation is the same as (5.2) with A = A4 defined in
(5.5).
We consider the range where the magnetic theory is IR free and it admits stable vacua

N 2 N

In this range the metric on the moduli space is smooth around the origin [27], and the Kahler
potential is regular and can be considered canonical.

5.3 Non supersymmetric meta-stable vacua

Rescaling the fields and the coupling the superpotential (5.6) is

m ~ - -
Winagn = %/TrY3 + 7yTrY2 + Ay TrY + tr (hi Myqq + haMaqq + hsM1qY G)
—him? tr My — hgm3 tr My + mg tr M? (5.8)

Solving the equations of motion we find the supersymmetry breaking tree level vacua:

0 —0
. moe 1N T moe 1N . yllm 0

Where y; are functions of ny and ny = N — ny as in [1]. We choose the vacuum in which the
magnetic gauge group is not broken by the adjoint field n; = 0, which implies yo = 0, so (Y) = 0.

In this case we have A A
N A 4 0 _(py O
(M) = ( 0 pjlg ) (M) = < 0 x ) (5.10)

where the explicit expressions can be found in [1]. The two non trivial blocks of the mesons are
respectively N and N = N diagonal squared matrices.

Supersymmetry is broken at tree level by the rank condition, i.e. the F' equations of motion
of M, field cannot be all satisfied

0# Fy, = Fy = hom (5.11)
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The minimum of the scalar potential in this tree level vacuum is then different from zero, and
results proportional to |Fy,|?. The potential energy of the vacuum does not depend on @ and X
they are massless fields at tree level, not protected by any symmetry and hence are pseudo-moduli.

In [1] the detailed study of the 1-loop quantum corrections to the effective potential has been
performed. These corrections depend on the choice of the adjoint vev (Y): they are minimized
by the choice (Y) = 0. This is a true quantum minimum of the scalar potential where the
pseudomoduli get positive mass squared from the Coleman-Weinberg potential. The field X’ gets
a non trivial vacuum expectation value from the quantum corrections, (X) # 0, moving slightly

the minimum away from the origin.
h2m?
1°7°°1
2homoms

We report the masses for the pseudomoduli in the regime of small p = Z—; and small ( =

(n = }?;22 has been neglected as in [1])

N(N;— N
mg = YA —N) o )|h2m2\2<|h2|2(log[4]—1)+|h12(log[4]—2))
N(N; — N) r2m? |? 5
2 f 212 2 17 2
2 = 4 -7 log[4] — 1 log[4] — = 2log[4] —
m; g ham)| (\hgr (logf4 >+\2 | CQogld] = 2) 1 P (2ogl4] - 3)

Other choices for (Y) with ny # 0 # ny would not change the tree level potential energy of the
vacua, so there is a landscape of vacua at classical level. This is wiped out by 1-loop corrections.
We can give more details about the computation in the case where ny # 0 and how we excluded
the possibility of a landscape at quantum level. We parametrize the fluctuations around the non
supersymmetric vacua in the case of non trivial vev for the adjoint field

_ ke? + & T ke ? + & [ y1 O
q= ( b1 > g = < b > (V) = ( 0w > +0Y (5.12)

A A
_( p1+&s ¢3 (P t& P
My = ( o P ) My = ( o ) (5.13)

The resulting superpotential for the sector affected by the supersymmetry breaking (the ¢; chiral
fields) is

W = hy(Xd1¢2 — m5X) + hamo (6%2(255 + 670¢1¢6> +

2
2m3

+(h1 + hayi)ma <€9¢2¢3 + 6_9¢1¢4) + 2m3p3da + (h1 + hayi) 192 (5.14)
where i = 1,2. Exactly we have n; copies of (5.14) with ¢ = 1 and N — n copies with i = 2. The
fields appearing in (5.14) are the only ones which contribute to the one loop potential.
Comparing with the one in [1], we observe that having n; # 0 contributes only in a shift in the
¢ and p parameters. We can then compute the 1-loop quantum corrections to the scalar potential
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V1=loopr (), which depends non trivially on n; through y;(n;). This contribution is minimized
when ny =0, i.e. (Y) =0, implying that this is the lowest energy vacuum [1].

5.4 Decay to the supersymmetric vacuum

Supersymmetry is restored when the S U(N ) symmetry is gauged via non perturbative effects
[26], away from the metastable vacuum in the field space. The non supersymmetric vacuum is
then a metastable state of the theory which decays into a supersymmetric one. In [1] we find a
supersymmetric vacuum in the large field region for the meson Ms where

- - Ny—2N ~
L N _ N 1\ np-v N m
(haMy) = Aer Ve N1y = my () Ty, =2 6= 2 (515)

€ is a dimensionless parameter which can be made parametrically small sending the Landau pole
A to infinity. € is a dimensionless finite parameter which does not spoil the estimation of the
supersymmetric vacuum in the sensible range € < % All the exponents appearing in (5.15) are
positive in the window (5.7).

We observe that in the small € limit the vev (hoMs) is larger than the mass scale mgo of the
magnetic theory but much smaller than the scale A

mo K <h2MQ> <K ]\ (5.16)

making the evaluation of the supersymmetric vacuum reliable.

We now make a qualitative evaluation of the decay rate of the metastable vacuum. At semi
classical level the decay probability is proportional to e~B where Sp is the bounce action from
the non supersymmetric vacuum to a supersymmetric one. We obtain as the decay rate [1]

Nf721\7 4 N¢—2N

()7 ) ()
S ~ — g f ~ | - (517)

€

This rate can be made parametrically large sending to zero the dimensionless ratio € (i.e. sending

A . ON—N
A — o0) since the exponent (4 Nfof

) is always positive in the window (5.7).

5.5 Massless quarks

The non supersymmetric meta-stable vacua survive the limit mg — 0. Indeed this limit corre-
sponds in the magnetic description to send to zero the linear term for Mj, i.e. m; — 0, and all
the results are smooth in this limit.
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At classical level there are only small differences in the field vacuum expectation values. At
quantum level this limit set the parameter { to zero, but the qualitative behaviour of the 1-loop
corrections is the same: the classical flat directions are still lifted.

Finally the computation of the supersymmetric vacuum for m; = 0 is even more straightfor-
ward, giving a vanishing vacuum expectation values for the meson M. The lifetime estimation of
the non-supersymmetric vacuum is not affected by this limit, and it is still parametrically large.
Setting m; = 0 the model become more similar to the one studied in [39].

5.6 R-symmetry and gauge mediation

We are interested in direct gauge mediated supersymmetry breaking. In this framework the gauge
group of the SM has to be embedded into a flavour group of the dynamical sector. The gauge
sector of the SM directly couples to the supersymmetry breaking dynamics and a natural question
for model building is whether the gauginos of the MSSM acquire masses.

We can embed the SM gauge group into the subgroups of the flavour symmetry SU(2N; — N.)
or SU(N. — Ny¢) provide (2Ny — N, > 5) or (N. — Ny > 5), respectively. As in [53] we can
compute the beta function coefficient bg(3) at different renormalization scales and we conclude
that in order to avoid Landau pole problems the embedding should be done in SU(2N; — N,).

The full model has no R-symmetry, and, unlike [27, 39], no accidental R-symmetry arises at the
non-supersymmetric meta-stable vacuum, and hence a gaugino mass generation is not forbidden
[27]. Moreover the absence of R-symmetry implies that the non supersymmetric minimum is not
at the origin of the moduli space, i.e. (X) # 0.

The R-breaking terms are the quadratic massive terms ¢1¢o and ¢3¢y in (5.14). The first one
can be eliminated shifting the field X'. The second one cannot be eliminated rearranging the fields.
If the mass mg is larger than the supersymmetry breaking scale, ¢3 and ¢4 could be integrated
out, supersymmetrically, recovering an accidental R-symmetry: this, however, is not our range of
parameters.

We analyze the dynamics at the meta-stable vacuum where the breaking of supersymmetry
generates a gaugino mass proportional to the breaking scale Fly. Contribution to this mass comes
from the superpotential® of the messengers ¢;

2.9
W D hy (X¢1¢2) + hama (¢2¢5 + ¢p106) + hima (¢2¢3 + d144) + 2m3p304 + f;ﬁ: p192  (5.18)
which, in a matrix notation, reads
b2
(d1 o3 ¢5 )M | o4 (5.19)
b6

2For simplicity we consider only one copy of the chiral superpotentials.
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where M is a mass matrix for the messenger fields

h2

2
ha(X) + 217;?31 himso  homso G|
M= hims 2ms 0 | = hama p om0 (5.20)
thg 0 0 1 0 0

This matrix does not generate a gaugino mass at one loop at first order in Fiy as in [63]. However
at the third order in Fly, the gaugino mass arises as in [55, 63]. This contribution is not negligible
when hf 25 ~ 1, which is admitted in our range of parameters.
2
Diagonalization of (5.20) and use of the general formula in [64] for the computation of the 1
loop diagrams contributing to the gaugino mass m) lead to

my ~ Fi% [1 <<X> +C) +p27)] (5.21)

(h2m2)5 4 m72

The coefficient of F& in (5.21) is evaluated at the third order in the adimensional small parameters
(p,m,C): indeed by direct inspection we find that also the term (% +¢ ) gives at least third order

contributions in (n, p, ().
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Chapter 6

Metastable A,, quivers

6.1 Introduction

The existence of long living metastable vacua seems by now a rather generic phenomenon in large
classes of supersymmetric gauge theories. It provides an attractive way for dynamical breaking of
supersymmetry and the interest in these theories has been enhanced by the possibilities of their
embedding in supergravity and string theory and of their use in gauge mediation mechanisms.

Metastability is a low energy phenomenon for UV free theories and in general the key ingredient
which makes a perturbative analysis possible is Seiberg duality to IR free theories described in
terms of macroscopic fields.

An interesting set of theories in which to study metastability a la ISS is the ADE class of
quiver gauge theories [65, 66, 67].

These theories can be derived in type IIB string theory from D5-branes partially wrapping
2-cycles of non compact Calabi-Yau threefolds. These manifolds are ADE-fold geometries fibered
over a plane, and the 2-cycles are blown up Sf in one to one correspondence with the simple roots
of ADE.

In this chapter we investigate metastability in A, A/ = 2 (non affine) quiver gauge theories
deformed to N’ = 1 by superpotential terms in the adjoint fields. In the presence of many gauge
groups we have, in principle, a large number of dualization choices.

In [39, 53, 56] Aa, A3, A4 quivers have been studied dualizing only one node in the quiver,
where dynamical supersymmetry breaking occurs.

Here we consider A,, theories with arbitrary n, where several Seiberg dualities take place. In
particular we will explore theories obtained by dualizing alternate nodes. This leads to a low
energy description in terms of only magnetic fields.

In the duality process the dualized groups are treated as genuine gauge groups whereas the
other ones have to be weakly coupled at low energy, so that they act as flavour groups i.e. global
symmetries. The procedure depends on the interplay of the RG flows of the dualized and of the
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non dualized gauge groups and is governed by the associated beta-functions. This translates into
inequalities among the ranks of the gauge groups and in hierarchies among the strong coupling
scales.

The chapter is organized as follows. In section 7.2 we describe the N/ = 2 quiver gauge theories,
explicitly broken to N' = 1 by superpotential terms. After the integration of the massive adjoint
fields, we give the general form of the superpotential. In section 7.3 we investigate Seiberg duality
on the alternate nodes of the quiver. The general theory obtained with this procedure on an A,
is expressed in terms of only magnetic fields. In section 7.4 we consider the simplest case, i.e.
As quiver, showing that it possesses long living metastable vacua a la ISS. The analysis is done
neglecting the gauge contributions of the odd nodes, which are treated as flavour symmetries. This
last approximation is justified in section 7.5, where an analysis of the running of the couplings has
been performed. The general result, metastability in an A,, quiver theory, is explained in section
7.6, giving an explicit example. In section 7.7 we comment on the possible ways of enforcing gauge
mediation of supersymmetry breaking. Appendix B.1 explains how to find the metastable vacua
upon changing the masses of the quarks in the electric description. Appendix B.2 provides details
in the analysis on the running of the gauge couplings of section 5. Appendix B.3 adds to section
6, giving all the possible choices of A5 which show metastable vacua.

6.2 A, quiver gauge theories with massive adjoint fields

We consider a N/ = 2 (non affine) A,, quiver gauge theory, deformed to N' = 1 by superpotential
terms in the adjoint fields. The theory is associated with a Dynkin diagram where each node is a
U(N;) gauge group.

Q(1,2) Q(2,3)

(n—1,n)

The arrows connecting two nodes represent fields ); ;+1, Qi+1, in the fundamental of the incoming
node and anti fundamental of the out-coming node. The adjoint fields X; refer to the i-th gauge
group.

The gauge group of the whole theory is the product [ ; U(N;). We call A; the strong coupling
scale of each gauge group.
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The N = 1 superpotential is

n

W= WilX) + 3 s (Qu)d(X) 5@ (6.1)

=1

where s; ; is an antisymmetric matrix, with |s; j| = 1. The Latin labels run on the different nodes
of the A,, quivers, the Greek labels runs on the ranks of the groups of each site. In the case of A,
theories the only non zero terms are s; ;41 and s;;—1. The superpotentials for the adjoint fields
W;(X;) break supersymmetry to N = 1.

We choose these superpotentials to be

Wi(X;) = NTrX; + %TT‘XZZ (6.2)

As a consequence the adjoint fields are all massive. We consider the limit where the adjoint fields
are so heavy that they can be integrated out, and we study the theory below the scale of their
masses.

Integrating out these fields we obtain the effective superpotential describing the A, theory
(traces on the gauge groups are always implied).

n—1
JVTRSY 1/1 1 )
W = —— = — | Qii+1Qit+1,i — = | — ii1 Qi1
E << mi)Q,HQH, 2<mi+ i+1>(Q,+1Q+1,))

oy
i=1 il

n—1
1
+ Z; EQi—LiQi,i-&-lQH—l,iQi,i—l (6.3)
1=
A final important remark is that for the A, theories the D-term equations of motion can be
decoupled and simultaneously diagonalized [68].

6.3 Seiberg duality on the even nodes

We investigate the low energy dynamics of the gauge groups of the Dynkin diagram, governed by
the ranks and by the hierarchy between the strong coupling scales of each node. We work in the
regime where the even nodes develop strong dynamics and have to be Seiberg dualized.

We set all the strong coupling scales of the even nodes to be equal Ay; = Ag and we require
the odd nodes to be less coupled at this scale. We impose the following window for the ranks of

the nodes
n—1

2

We take n odd, the even case can be included setting to zero one of the ranks of the extremal
nodes.

3 .
Noi +1 < Noj—1 + Noiy1 < §N2i i=1,..., (6.4)
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Along the flow toward the IR, we have to change the description at the scale Ag performing
Seiberg duality on the even nodes. The even nodes are treated as gauge groups, whereas the odd

nodes are treated as flavours. We will discuss the consistency of this description in section 6.5.
It is convenient to list the elementary fields of the dualized theory, i.e. the electric gauge

singlets and the new magnetic quarks.

U(Nai—1) | U(Nai) | U(Naita)

Moji1,0i—1 No;_1 1 Noit1

M2i+1,21‘+1 1 1 Bifund.
M2i—1,2i—1 Bifund. 1 1

Moi—1 2i41 Noi—1 1 Nojt1
q2i—1,2i Nai 1 No; 1
q2i,2i—1 Noi_1 Na; 1

42i,2i+1 1 Ny; Noit1

q2i+1,2i 1 Ny Nojyq

The mesons are proportional to the original electric variables: Moy 2i4; ~ Q2itk,2iQ2i2i+;-
The even magnetic groups have ranks No; = Noj11 + Noj—1 — Na;. The superpotential in the new
magnetic variables results

(2i)

0
W= hMQ(i_?_)k,zi+jQZi+j,2iQ2i,2i+k + h#§i+k,(2i)Mzz+k,zi+k + (6.5)

2 2i+2 2 2 2
+ hmM2(i—l&-)1,2i+1M2(i—l|—1,2)i+1 + hm <M2(zj-)k21+k> + hmMQ(ii)l,2i+1M2(i—l-)1,2i—1

where the index i runs from 1 to 21

5, and k and j are +1 or —1. The upper index (2i) of the
mesons indicates which site the meson refers to: it is necessary because some mesons have the
same flavor indexes, but they are summed on different gauge groups, so they have to be labeled
differently. We denote with hAm,; the meson masses, related to the quartic terms in the electric
superpotential, and with hu? the coefficients of the linear deformations, corresponding to the
masses of the quarks in the electric description. In (6.5) we wrote a single coupling hm, for all
the different mesons, considering all their masses of the same order.

The b coefficients of the beta functions before dualization are

bi = 3Nz - Ni—l - Nz’+1 1= 1, NN (66)

where Ng = N,11 = 0. After the dualization the coefficients b for the beta functions in the internal
nodes result

bop = 2Nopi1 +2Nog_1 — 3Ny (6.7)
bok+1 = Nog + Nogyo — Nogy1 — 2No 1 — 2Nog3
where k runs from 1 to ”7_1, and Np4+1 = Npy2 = 0. For the external nodes we have

by =Ni+Ny—2N3 by =N, + Ny_1 — 2Ny_o (6.9)
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To visualize the resulting magnetic theory (6.5) we exhibit below the content of the magnetic
dual theory for an As quiver, which encodes the relevant features.

The superpotential is
W = h <M11Q12Q21 + Mi3q32q21 + M31q12q23 + M3(32,)Q32®3> +
+ h (Méé)q34q43 + M35q54q43 + M53q34q45 + M55Q54Q45) +
+M%WﬁMM@+Mf+@%@+my+mmwmgy—

2 4
+ h (M%Mll +M§,(2)M§3) +M§,(4)M?E3) +H§M55) (6.10)

6.4 Metastable vacua in A3 quivers

We start studying the existence and the slow decay of non supersymmetric meta-stable vacua in
As quiver gauge theory, the simplest example of an A,, theory. The A3 gauge group is U(N7y) x
U(N2) x U(N3). As already mentioned in section 6.2 for a A,, theory, we integrate out the adjoint
fields and we perform Seiberg duality on the central node under the constraint

3
No+1<N;i+ N3 < §N2 (6.11)
The superpotential reads
W = h(Miiq12q2,1 + Mi3g32G2,1 + M31q1,2q2,3 + M33q32q2.3) +
+ hpiMig + hudMs (6.12)

where all the mass terms for the mesons have been neglected. Turning on these terms does not ruin
the metastability analysis at least for very small masses compared to the supersymmetry breaking
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scale. Such deformations slightly shift the value of the pseudomoduli in the non supersymmetric
minimum, breaking R-symmetry [54]. We neglect them in the following.

The central node yields the magnetic gauge group U (N1 + N3 — N2) whereas the groups at the
two external nodes are considered as flavour groups, much less coupled. We discuss in section 6.5
the consistency of this assumption. Since the gauge group is IR free in the low energy description,
and the flavours are less coupled, we are allowed to neglect Kahler corrections and take it as
canonical [25]. Moreover the D-term corrections to the one loop effective potential due to the
flavour nodes are negligible with respect to the F-term corrections.

Now, there are two different choices of ranks for the As theories, which can give meta-stable
vacua: the first possibility is that Ny < No < N3, the second one is N; < No > N3. We study
separately the two cases which show meta-stable vacua in a similar manner.

N, < Ny < Ny

We analyze here the case N1 < N2 < Nj; the equal ranks limit can be easily included. After the
dualization the ranks obey the following inequalities N1 < No = N7 + N3 — Ny < Nj.

We work in the regime where |u1]| > |us|, and we comment on what happens in the opposite
limit in the appendix B.1, where we shall discuss dangerous tachyonic directions in the quark
fields.

We find that the following vacuum is a non supersymmetric tree level minimum

0 1z
Gi2=q¢1 = pAn, 0) @z=g2= ( 0 M3 1\62_N1 >
0 0
Ml,l = 0 M173 = M3,1 = 0 M373 = O X (613)

where the field X is the pseudomodulus, which is a massless field not associated with any broken
global symmetries. This flat direction has to be stabilized by the one loop corrections. Westart
the one loop analysis by rearranging the fields and expanding around the vevs

+ X >2
q:<q1’2> = ”123 1 p3 + 2y q~:(£]21£]23)=<'u1+25 >6 ¢3>
43,2 > > ’ ’ X7 p3 + g Py
1 2
Y9 [T Ps
M M
M = ( Ml’l Ml’? > = Y11 | 213 Dy (6.14)

We now compute the superpotential at the second order in the fluctuations. We find that the non
supersymmetric sector is a set of decoupled O’Raifeartaigh like models with superpotential

W = hp2X + hX (D103 + Po®y) + huz(P1 D5 + Po®g) + hpy (B3D7 + Oydg) (6.15)
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In this way all the pseudomoduli can get a mass. The quantum corrections behave exactly as in
[25], which means that the pseudomoduli get positive squared mass around the origin of the field
space.

The choice (6.13) guarantees that there are no tachyonic directions and have to be made co-
herently with the hierarchy of the couplings u;; see the Appendix B.1 for details.

The lifetime of the non supersymmetric vacuum is related to the value of the scalar potential
in the minimum, and to the displacement of the vevs of the fields between the false and the true
vacuum. The scalar potential in the non supersymmetric minimum is

Vinin = (N3 + N1 = No)[lys3|* = No| 3| (6.16)

The vevs of the fields in the supersymmetric vacuum have to be studied considering the non
perturbative contributions arising from gaugino condensation. When we take into account these
non perturbative effects, we expect that the mesons get large vevs and this allows us to integrate
out the quarks using their equation of motion, g; ; = 0. In the supersymmetric vacua also M7 3 = 0

and M3 = 0. If we define
_( M 0
M= < 0" My > (6.17)

the effective superpotential is

1
W = (N1 + N3 — Ny) (det(hM)A§§Vl+2N3—3N2> MY b (WP trMy g + pdtrMsz)  (6.18)

We have now to solve the equation of motion for M; and Mj3. The equations to be solved are

1
(hMMl(ﬁfg—Ng,)MgggAgNﬁQNg—gNQ)) Ni+N3—Nz M% B
1
T Y e (6.19)
The vevs of the mesons follow solving (6.19)
Nj—Ny oN3 3Np—2N3—2N N; o N3—Ny 3Ng—2N3—2N;

(M) = py e :“3N72A27; e 1N, <hM3,3>:M1N2N3 e Ay, e 1y, (6.20)

Since |p1| > |psl, it follows that (hMz3) > (hM;1). This implies that in the evaluation of the
bounce action, with the triangular barrier [49], we can consider only the displacement of M3 in
the field space. We obtain for the bounce action

3N9—2N. 3N9—2Ng3—2N-
(ACI))4 I 2N2 3 Ao, 43N2 N23 1
S ~ (M (6.21)
AV M3 M1
Both exponents are positive in the range (6.11). This implies that Sp > 1, and the vacuum is
long living.
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N1<N2>N3

The ranks of the groups after the duality obey the relation Ny > NQ = N1+ N3 — Ny < N3. We
choose now |ui| > |us|, but we show in the appendix B.1 that also the other choice is possible,
leading to other vacua. In the meta-stable vacuum all the vevs of the fields have to be chosen to
be zero except a block of the quarks g1 2 and ¢21 and the pseudomoduli. The vevs are

1y 1y
Q12 = 1 ( 0 > G321 = I ( 0 > (6.22)

The pseudomoduli come out from the meson M3 3 and a (]\72 — Np) X (]\72 — Nyp) diagonal block of

the other meson, M 1. The one loop analysis is the same as before and lifts all the flat directions.

In order to estimate the lifetime we need the vevs of the fields in the supersymmetric vacuum,

which are again (6.20), and the value of the scalar potential in the non supersymmetric vacuum
(6.22)

Vinin = (N2 — Na3) by |[* + Ns|hps|? (6.23)

2

Since |p1| > || we approximate the scalar potential by the term ~ |1 |* and the field displacement

by (hMs), obtaining as bounce action

2N21\7N3 Ao, 43N27215172N3
S ~ (“1> ’ ( 2Z> BN (6.24)
u3 241

6.5 Renormalization group flow

The analysis of sections 6.3 and 6.4 relies on the fact that we neglect the contributions to the
dynamics due to the odd nodes. It means that these groups have to be treated as flavours groups,
i.e. global symmetries. However, in the A, quiver theory each node represents a gauge group
factor and we have to analyze how its coupling runs with the energy.

The magnetic window (6.4) constraints the even nodes to be UV free in the high energy
description, i.e. bg; > 0. The odd groups are not uniquely determined by (6.4) and can be both
UV free or IR free in the electric description. In the first case we will choose their scale Ag; 1 to
be much lower than the even one

Aojr1 < Aoy (6.25)

In the second case, when bg; 11 < 0, Ag;1 is a Landau pole and we take
Aoiy1 > Ao (6.26)

In these regimes the even nodes become strongly coupled before the odd ones in the flow toward
the infrared. This means that we need a new description provided by Seiberg dualities on the
even nodes.
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In order to trust the perturbative description at low energy, we have to impose that at the
supersymmetry breaking scale (typically ;) the odd nodes (flavour), are less coupled than the
even ones (gauge), which are always IR free. This requirement will give other constraints on the
scales.

As already said there are two possible behaviors of the flavour groups above the scale Ao;:
they can be IR free or UV free. For both cases there are three different possibilities about the
beta coefficients in the low energy description.

We start discussing the case when the flavours group are UV free in the electric description.
The following three possibilities arise for each flavour group U(Nog11) in the dual theory (Plots
1,2,3 in Figure 1).

1. The first one is characterized by
b2k+1 >0 32k+1 < ggi <0 (6.27)

In this case the flavour groups U(Nyx+1) are more IR free than the even nodes after Seiberg
duality. The couplings of the flavour groups become more and more smaller than the cou-
plings of the gauge groups along the flow toward low energy. Hence we do not need other
constraints on the scales except (6.25).

2. The second possibility is reported in Plot 2 in Figure 1
b2k+1 >0 ggi < 52k+1 <0 (6.28)

The flavour groups U(Nag41) are IR free in the dual theory, but less than the U(Na;) gauge
groups (6.28). Below a certain energy scale the flavours become more coupled than the
gauge groups. If this happens before the supersymmetry breaking scale we cannot trust
our description anymore. To solve this problem we have to choose the correct hierarchy
between the electric scales of the flavour and the gauge groups, and the supersymmetry
breaking scale. We impose that the couplings of the flavours are smaller than the couplings
of the gauge groups at the breaking scale, in the magnetic description. This condition can
be rewritten in terms of electric scales only using the matching between the magnetic and
the electric scales of the flavours. This procedure is explained in the Appendix B and gives
the following condition on Agx 1

bok+1=b2

b
A2k+1 < (AM ) 2 ANo; < Ag; (6.29)
21

This imposes a constraint stronger than (6.25) on the strong coupling scale of the flavours.
3. The third possibility (Plot 3 Figure 1) is

bok+1 >0 boj41 > 0 (6.30)
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In this case the flavour group U(Nog+1) is asymptotically free in the low energy description.
Once again we have to impose that at the breaking scale the flavours are less coupled than
the gauge groups. The procedure is the same outlined above, and the condition is the same
as (6.29). This case may become problematic in the far infrared. Indeed, since the flavour
group is UV free, it develops strong dynamics at low energy. If we take into account the non
perturbative contributions they could restore supersymmetry. Another interesting feature
is the appearance of cascading gauge theories, flowing in the IR. We do not discuss these
issues here.

If the flavour groups U(Nag1) are IR free in the electric description the same three possibilities
discussed above arise (see Plots 4, 5, and 6 of Figure 1).

4. The plot 4 of Figure 1 is characterized by
b2k+1 <0 52k+1 < ggi <0 (6.31)
Here we do not need any other constraint except (6.26).

5. The plot 5 in Figure 1 is
b2k+1 <0 };21' < 52k+1 <0 (6.32)

The requirement that the odd nodes are less coupled than the even ones at the supersymme-
try breaking scale give once again non trivial constraints, with the same procedure outlined
previously o

b2i—bak41

Ao; b
2 > 2 Aoy > Aog; (6.33)

Aopy1 > (
I

where now the strong coupling scale of the flavour groups in the electric description is a
Landau pole.

6. The last possibility (Plot 6 of Figure 1)
boki1 < 0 o1 > 0 (6.34)

lead to the same constraint (6.33). In the far infrared the strong dynamics of the flavours
node can lead to non perturbative phenomena, as in the case 3.
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Figure 1: The blue lines refer to flavour/odd groups which are UV free in the electric description,

while the red ones are IR free. The green lines refer to the gauge/even group couplings. We denote
with p the supersymmetry breaking scale, and Ag and Ap are the strong coupling scales of the
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gauge and the flavour groups, respectively.

6.6 Meta-stable A,

We work in the regime where the ratio %3 is larger than the strong scale of the even nodes A;.
This requirement is satisfied if \; > A3, in the electric theory. This allows us to ignore in the dual
superpotential (6.5) the presence of quadratic deformations in the mesonic fields.

In this approximation the superpotential of the A, quiver (6.5) reduces to ”T_l copies of As
superpotentials. Hence a generic A,, diagram results decomposable in copies of A3 quivers, where
every adjacent pair shares an odd node.

For each A3 the even nodes provide the magnetic gauge groups, and each As has long living
metastable vacua, if the perturbative window is correct. It follows that the A, quiver theory,
which is a set of metastable A3 quivers, possesses metastable vacua.

We still have to be sure of the perturbative regime. This means that we have to control the
gauge contributions from the odd nodes of the A, diagram. We have to proceed as in section
6.5, and study the beta coefficients of the groups. From (6.8) we can see that the magnetic beta
coefficients of the internal odd nodes involve the ranks of the next to next neighbor groups, i.e.
they depend on five integer numbers. This means that in order to know these beta coefficients it
is enough to study the As consistent with (6.4). In the appendix B.3 we classify all the possible
metastable As diagrams and we give the corresponding electric and magnetic beta coefficients of
the central flavour node. This classification describes the RG behaviour of all the internal odd
nodes of the A,,.

The running of the first and of the n-th node of the A, quiver is still undefined and it is
discussed in the appendix B.3.

This provides a classification of metastable A,, quiver gauge theories with alternate Seiberg
dualities.

6.6.1 Example

We show now a simple example of metastable A, diagram. We choose the even nodes in the
electric description to become strongly coupled at the same scale As;. We require that at such
scale the flavours (odd nodes) are less coupled than the gauge ones. Moreover we will show that
we can also require that in the low energy description all the nodes are IR free and also that the
flavour groups (odd nodes) are less coupled than the gauge groups (even nodes) at any scale below
the Agi.

We study an A,, theory, where n = 4k + 1, with k integer. The chain is built as follow

©o00000 0060

UN) UM) UK) UM) UN)  UM) UK) UM) UN)
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with N < M < K. This range allows for metastable vacuum in each A3 piece as showed previously.
We perform alternate Seiberg dualities, working in the in the window

M+1<N+K<;M

Thanks to the simple choice for the ranks we have four values for the b coefficients of the beta
functions in the electric description, and four values for the coefficients b. They are summarized
in the following table

node b b

n (red) 3N — M N-2K+M

2i (green) 3M — N —-K | 2K+2N —-3M
45 — 1 (blue) 3K —2M 2M —4N - K i=1,...,21
45 4+ 1 (violet) 3N —2M 2M — 4K — N jzl,...,T5

We require that in the magnetic description all the nodes are IR free. Moreover we require
the beta coefficients of the odd groups to be lower than the even group ones, i.e. bodd < bgZ This
restricts the window to

K >2N 3N < 2M < 4N + K (6.35)

In this regime all the nodes in the electric description are UV free except the 45 + 1-th ones.
Seiberg duality is allowed on the even nodes, if we impose the following hierarchy of scales

Ap, Ay Ay < Aoy < Agjn (6.36)

The running of the gauge couplings of the different nodes are depicted in Figure 2.

Qe

m

i N

Figure 2: The green line represents the running of the coupling of the even sites. The violet line
is related to the 45 + 1-th sites, the blue one to the 4i — 1-th sites and the red to the first and the
last nodes.

At high energy the 45 + 1-th nodes are strongly coupled, while the other nodes are all UV free.
At the scale Ag; the even nodes become strongly coupled and Seiberg dualities take place. All
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the runnings of the couplings are changed by these dualities, and all the coefficients of the beta
functions b; become negative. Hence at energy scale lower than As; the theory is weakly coupled.
Furthermore the beta coefficients of the odd nodes are more negative than the even node ones.
This guarantees that we can rely on perturbative computations, treating the odd nodes as flavours.

6.7 Gauge mediation

The models analyzed in this work can admit mechanisms of gauge mediation. This means that
the breaking of supersymmetry can be transmitted to the Standard Model sector via a gauge
interaction. This idea has already appeared in the literature of metastable vacua in A,, theories
[53, 56].

Different realizations are possible here. A first one, of direct gauge mediation, identifies the
SM gauge group with a subgroup of a flavour group in the quiver [53] and leads to a gaugino mass
consistently with the bound of [54].

A second possibility [56] is to connect one of the extremal nodes of the A, quiver with a
new gauge group, which represents the Standard Model gauge group. The arrows connecting
these nodes are associated with the messengers f and f, which communicate the breaking of
supersymmetry to the standard model. Neglecting all the quartic terms, except the term which
couples the messengers f, f with the last meson, it is possible to show that also in this case gaugino
masses arise at one loop.

In our models of metastable A, quivers another possibility arises for gauge mediation. It
consists in substituting an even node with the Standard Model gauge group.

My  ~ - Mg
% O h f, () Y%

@ ] l ] (SM = l l @

Uy f 1 fz O

The low energy description is constituted by two metastable A, (A3 in this case) which are
connected through the SM sector. Both communicate the supersymmetry breaking to the standard
model. The superpotential leads to two copies of messengers fields related to the two different
hidden sectors

W = (ml + 92h1FM3) flﬁ + (mz + (92h2FM5) foQ (6.37)

. . . F, Fur.
A gaugino mass arises at one loop proportional to (hl%f + ho Tf; )
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Conclusions

We have studied metastability in models of A,, quiver gauge theories. The low energy description
in terms of macroscopic fields can be achieved via Seiberg dualities at chosen nodes in the A,
diagram. This choice defines, to a certain extent, the models.

A strategy for building acceptable models unfolds from the request for a reliable perturbative
analysis. This constrains the ranks of the gauge groups associated with the nodes and their strong
coupling scales. We chose to dualize alternate nodes and we fixed two scales: a unique breaking
scale p and a common strong coupling scale Ag for each dualized node. The RG flows of the
dualized and non dualized gauge groups must be such that at energy scale higher than u the
gauge groups of the dualized nodes are more coupled than the other ones.

The RG properties of the different nodes of an A, quiver can be studied decomposing it in
As quivers and the decomposition of the A, in Az patches gives the structure of the metastable
vacuum. In this way we classify all the possible A,, quiver gauge theories which show metastable
vacua with the technique of alternating Seiberg dualities.

Finally we have discussed different patterns of gauge mediation.
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Chapter 7

Supersymmetry breaking and the
Dijkgraaf Vafa conjecture

7.1 Introduction

In this chapter we study explicit supersymmetry breaking in the Dijkgraaf Vafa conjecture. For
a review about this conjecture see [69].

Dijkgraaf and Vafa have proposed that the low-energy glueball effective superpotential of
N = 1 supersymmetric gauge theories in four dimensions can be computed via an auxiliary
matrix model [70]. The simplest case is a U(N) gauge theory coupled to a massive adjoint chiral
matter multiplet ® with a tree-level superpotential W (®). The proposal stems from a set of
string dualities in the framework of geometrically engineered gauge theories, topological strings
and matrix models [65, 71, 70]. The large-N matrix model analysis brings in an algebraic curve
which may correspond to a Calabi—Yau dual geometry [65]. We shall consider gauge theories
that can be obtained from string theories that lead to such geometries. The DV proposal has
been tested and supported directly on the field theoretical side by perturbative computation via
superfields formalism [72] and then by using arguments based on anomaly equations [73].

We study here the case where susy is broken explicitly (soft and/or non soft) by the intro-
duction of spurionic fields [22]. Holomorphy at large is lost, but holomorphic quantities such as
the glueball superpotential can be still analyzed and one can compare the computation in the
superfields formalism adapted to spurion fields with that one using the algebraic curve underlying
the effective gauge theory. In order to discuss such breaking we utilize two notions: a closed string
realization of the method of the spurions [74] and Whitham deformations [75, 76].

It is worth to recall the geometrical origin of such gauge theories for type I1B string theory
in order to insert the notion of spurion in a natural way in this language. We have in mind
D-branes partially wrapped over non trivial 2-cycles of non compact CY and the dual description
where D-branes have been replaced by fluxes [65]. In the UV, adjoint chiral multiplets ® arise
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from holomorphic deformations of the supersymmetric cycles and of open string gauge bundles
on these cycles. A four-dimensional superpotential for these fields can arise and can be written
as W = W(®, gi,) where g depend only on the complex structure. From the perspective of the
D3-brane action in the low—energy limit, where supergravity decouples, the g can be interpreted
as couplings. As already suggested in [74], the susy breaking parameters are described by auxiliary
components of the closed string fields, typically magnetic fluxes along CY directions, depending
on the complex structure moduli. Such fluxes are introduced by hand without back reaction of
the string or of the supergravity backgrounds. In the four dimensional supergravity language they
are F'-components of chiral multiplets which depend only on the complex structure moduli. Vev
of such F—terms cause spontaneous breaking of local susy and, in the appropriate flat limit with
decoupling of supergravity, they appear as explicit breaking terms which can be written in the
spurionic fashion in the rigid susy action.

A non—perturbative analysis of susy broken effective dynamics has been done in [77] for N' = 2

supersymmetric gauge theories. In that context the connection between the Seiberg—Witten so-
lution [78] and integrable systems (Whitham hierarchy) [75] was used. The authors of [77] break
susy promoting the Whitham parameters of the hierarchy to spurions and then compute the bro-
ken effective potential using the A/ = 2 integrable structure.
As in the N/ = 2 case, a relation between the Whitham systems and the N/ = 1 effective ge-
ometry was established in [76]. This suggests to break supersymmetry promoting the Whitham
parameters to spurions as in the N' = 2 case. In the N' = 1 geometry the Whitham param-
eters are precisely the tree-level coupling costants of the matter superpotential [76]. We will
break the A/ = 1 supersymmetry promoting them to spurions, and the Whitham hierarchy can
then be interpreted as a family of supersymmetry breaking deformations of the original theory.
Using this interpretation, we will compute directly from the geometrical data the holomorphic
supersymmetry breaking contributions in the low—energy effective glueball superpotential.

We have also analyzed with perturbative supergraph techniques the effective glueball super-
potential when susy is broken with spurions. Arguments for the computability of the effective
superpotential have been presented in [74]. If supersymmetry is broken, holomorphicity in the
coupling constants is no longer guaranteed, the computation is much harder than in the N’ =1
case and the simplifications of [72] do not work in general. Anyway, we can restrict ourselves to
a particular subclass of contributions for which a spurionic superfields generalization of the tech-
niques in [72] can be done. Within such strong approximation and with unbroken U(N) gauge
group, we find that to all order in the glueball superfield the effective superpotential has the same
functional form of the N’ = 1 case where the coupling constants are replaced by spurions and so
it results still holomorphic.

The chapter is organized as follows: In section 8.2 we review the geometry underlying the
Dijkgraaf-Vafa proposal. In section 8.3 we introduce supersymmetry breaking by spurions and dis-
cuss the low—energy glueball superpotential. In section 8.4 we discuss the geometry as a Whitham
system and use it in the susy broken case. In section 8.5 we treat the explicit example of a
deformed susy broken cubic tree-level superpotential. In section 8.6 we use perturbative super-
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space techniques along the line mentioned above. Section 8.7 is devoted to conclusions. In two
appendices C.1 and C.2, we describe the computational details of section 8.5 and section 8.6.

7.2 The geometrical picture

We consider the particular case of a N' =1, U(N) gauge theory with a degree n + 1 polynomial
tree—level superpotential W (®) for the chiral matter superfields in the adjoint representation of

the gauge group
n+1

we) =Y %T&" ok . (7.1)
k=1

In a generic vacuum the gauge group U(N) is broken to U(Ny) x---xU(Ny,). In the IR limit the ef-
fective low—energy degrees of freedom are described by the glueball superfields S; = 32%Tr WEW i
where W is the fermionic chiral superfield, field strength of the vector multiplet of the unbroken
gauge group U (NN;).

The expression for the non perturbative glueball superpotential reads

Werp(Si) = — Z [ngfq: + 27rm8i} , (7.2)
i=1 v

where F is the prepotential which can be computed from the geometrical data [65, 71]. In
[70] it has been proposed to reinterpret and compute this prepotential as the free energy of an
associated matrix model. In [73, 79] it was also deduced directly on the field theoretical ground
using generalized Konishi anomaly equations.

The geometry associated with the low—energy theory is described by a family of genus g = n—1
Riemann surfaces and by a meromorphic differential dS

v o= WP+ V@), (7.3)
dS = ydoe = \/[W(a)]2 + - D(z) da . (7.4)

The degree n—1 polynomial f(~1(z) = Z?;()l fiz! | is associated with the quantum contributions
and the coefficients f; (I = 0,--- ,n — 2) are the moduli of the complex curve; the derivatives of
the meromorphic differential (7.4) with respect to the moduli gives holomorphic differentials.

A basis of canonical cycles [76, 79] is {a?, B;,a°, 8o}, where i = 2,...,n, with intersection
numbers (3, N a® = §f). The cycles are all compact except By. We label the cuts starting from
the larger real root of the algebraic curve (7.3), so from right to left. The a’-cycle surrounds
counterclockwise the i—th cut while the a’—cycle encircles all the cuts and then gives the residue
at infinity. The dual B;—cycle (i = 2,...,n) passes clockwise through the i-th and the first cut,
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while §y goes from the second sheet infinity to the first passing through the first cut. The periods
s;, the parameter ¢y and the conjugated periods are defined as

:de, m:fdszzw%wa:fhl, (7.5)
at af 2gn+1

1 1
Hi:jgds, HOZ/dS. (7.6)
2 i 2 Bo

In these variables the effective superpotential computed by the geometry is

__W_Nm+ZNH_N ZN% : (7.7)
1=2 ¢

where Z;L:1 N; = N. In the previous formula we have introduced the prepotential! F such that
its derivatives w.r.t. the {s;,to} periods give the dual ones {II;, IIp}.

Upon getting the superpotential as a function of the variables s; and tg, we return to the
variables of [70, 65] using?

S; = —QSZ' y i:2,...,n,

n
to = -2> 8;, (7.8)
=1
in fact the S; are the physical variables which are interpreted as the glueball superfields.

7.3 Supersymmetry breaking

The introduction of spurionic fields provides the standard mechanism for the explicit (soft and/or
non soft) breaking of global supersymmetry. In the A/ = 1 case the tree-level superpotential Wy,
and the effective glueball prepotential F, depend on the coupling constants g, associated with
the operators Tr @ in the ultraviolet action. In order to break AN/ = 1 supersymmetry down to
N = 0 we promote the coupling constants g,, to N'= 1 chiral superfields G,, and then we freeze
the scalar and the auxiliary F—components to constant values. In this way the chiral spurions
G = gm + 0°T,, produce non supersymmetric terms in the superpotential Wieco. We want to
study their effects on the low energy glueball effective superpotential under the assumption that
the low energy degrees of freedom are still the glueballs. The breaking parameters I';, must be

!The prepotential differs from the usual one [70, 65] for a multiplicative factor due to the change of variables.
Anyway, this difference is not felt by the effective superpotential Wes; which is a function of the dual periods, the
quantities which really enter in the computation, as in (7.7).

*The variables of [70, 65] are S; = —% §,, dS and II; = %fBj dS, with {A;, B%; j =1,...,n} a different set of
cycles with all B; non compact. '
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considered the smallest scales in the theory. They are thought as small perturbations of the A' = 1
theory by keeping fixed the N’ = 1 vacuum structure and the gauge symmetry breaking patterns
U(N) — U(Ny) x - x U(Ny).

We set the scalar components of Gy, equal to the coupling constants g, for m < n + 1, zero
for m > n + 1, and the F—components I';, will be considered as small susy breaking parameters
for all Gy,. Explicitly

G, = gk—i—QQFk , k<n+1 , (7.9)
G, = 0°T . j>n+1 (7.10)

and hence we will consider tree—level superpotential (7.1) perturbed as

n+1 Gk I\ ‘

Wiree(®) = Y —~Tr oF 402 Y el (7.11)
k=1 jsnt1 J
Notice that besides having promoted to spurion the coupling constants already appearing in the
tree—level superpotential, we have also added pure auxiliary F—terms. For k£ > 3 these spurionic
terms are not soft and quadratic divergences can appear in the wave function renormalization; in
any case they have to be considered as dangerously irrelevant operators with the usual warning
[30, 74]. The T',,, for m < n + 1 can be interpreted as vacuum expectations values of fluxes [74],
whereas it is not obvious that this is the case for m > n 4+ 1. In any case, we will see that the
generalization to all the 'y, terms is of some interest in the application of the Witham approach.
Let now analize what happens in the effective theory when the I'), are turned on. We will
restrict ourselves to a discussion of some formal aspects which can be extracted from the geometry
of the N/ = 1 case. We assume that in the effective dynamics the emergence of the spurions G, are
controlled by the holomorphic dependence of the N' = 1 prepotential F(S;, g,,) on the coupling
constants. If we restrict ourselves to holomorphic terms in the low—energy glueball superpotential,
the prepotential in the susy broken phase has the same functional form as the N’ = 1 case where
now the coupling constants g, are replaced by the spurions as G,. This is essentially a naturalness
assumption on the effective superpotential [80]. In section 6 we will discuss these assumptions

using superfields perturbative techniques extending [72] to the susy broken case.
We make some comments about the interpretation of the couplings I'; (j > n+1). They must be
understood as coming from tree—level superpotential Wy, of degree greater than n+ 1 where also
the scalar coupling constants g; above the (n 4 1)-degree are turned on. The low energy glueball
prepotential will also depend on all these couplings. We then consider the effective theory of (7.11)
as obtained from that one of higher degree in the limit where g; — 0 (j > n+ 1) and in the same
vacuum of the theory of (n+ 1)-degree®. In conclusion the prepotential depends on the n glueball

superfields \S; (in our conventions ¢y and s;) and it is evaluated where g; = 0.

3We can choose N = 1 massive theories with classical vacua configuration which are nonsingular for g; — 0 such
that there is analitycity of the glueball superpotential around g; = 0.
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We expand now the prepotential F(.S;, G, ) around the supersymmetric vacuum. If we consider
the case of broken supersymmetry with G,, having the form (7.9, 7.10) the terms with more than
one power of I'y, will not give any contribution and we have

F(si, 9%, Tk, T5) = F(s6,9m)lg;=0 +
n+1

L o6 Zr OF( S“Qm)‘ + 62y rjiaf(s"’gm) . (7.12)

9;=0 j>n+1 09, 9;=0

The first term in this expression is the prepotential of the supersymmetric case for a theory with
tree—level superpotential of (n+1)-degree. As just discussed the last term is interpreted as coming
from an higher degree theory in the appropriate limit.

We now insert this expression in (7.7) and we obtain the holomorphic glueball superpotential
associated with a tree-level susy breaking superpotential as (7.11)

K 9F
2 r 2 L
eff 8t0 +0 Z ’“atoagk+9 Z jﬁtoagj
n+1 2
O2F
T}, 2 r
Z £ Ds 8gk+9 > Jaszagjl

Jj>n+1

(7.13)

n
2N
1=2

In this expression the first terms within the square bracket are supersymmetric, whereas the
others break susy explicitily: they involve second derivatives of the prepotential evaluated where
the g; = 0 (j > n+1). We will show in the next section how to obtain directly and efficiently
from the geometrical data of the N' = 1 theory the mixed second derivatives of F appearing in
(7.13) in order to extract the effective supersymmetry breaking contributions.

7.4 The N =1 geometry and Whitham systems

The geometry of the N/ = 1 low—energy effective theory is associated with the generating mero-
morphic differential dS (7.4) and it can be thought as coming from a Seiberg—Witten geometry of
a N = 2 theory [71]. The addition of a superpotential together with a geometric transition and
a desingularization leads to such geometry with parameters g and complex moduli f; [65]. The
couplings gy can be viewed as Whitham deformations of the previous SW geometry. Performing a
Whitham deformation mean extending the parameter space of the curve with extra variables [75].
As a consequence of this deformation the moduli of the curve and also the generating differential
become functions of these new parameters.

As shown in [76] the N/ = 1 geometry can be embedded into the Whitham framework. The
moduli f; of the curve (7.3) are functions f; = f;(gx,to, s;) of the Whitham parameters g; and of
(to, si), the periods of the generating differential dS along the a—cycles. We review some results
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of [76] and set up our conventions.
One of the advantages we gain using Whitham description is that it provides an efficient way to
compute the mixed second derivatives appearing in (7.13) directly in terms of geometrical data
since the coupling constants are considered as independent parameters.
Using the whole set of variables (gg, to, s;) characterizing the curve (7.3) and the generating
differential (7.4), the Whitham system can be defined by the following set of equations [76]
ods i ads odS

=dw; , — =dQ , — =dQy 7.14
0s; . Oto 0 gy k ( )

where dw; are normalized holomorphic differentials
odS

The differentials d€); are meromorphic of the second kind with poles only at the infinity points
+o0; d)y is a differential of the third kind with residue at +o0o. They have vanishing a—periods
and behave at infinity as (£ = 1)

0s; 0s;
dQy = =% = dQp = =2 =0 dQy = — (¢! 1))d¢ . 1
fan=to0 . fam=Eo0 dn =+ oW (7.16)

These normalization conditions characterize s;,typ and g as independent variables.
The generating differential dS is then a linear combination of the differentials (7.14)

n ntl n—2
dS = sidwi +todQ+ > grdQ = | [W(@)]2+ ) faah + 2gnpatortda . (7.17)
=2 k=1 k=0

Consinstency of the equality in (7.17) requires that
gk = —Resooy (x7%dS) | (7.18)

which can be verified [76]. Using (7.17) the meromorphic differentials d2; can be written as

9dS  gnp1a" 12 0f, 2!
dQy = = d — —
0 ato Yy $+2l:03t0y o
d w’ k—1 1 n—2 l
ko = 0 S: (x)x dx + = %x ) k:L n o,
Gk Y 2 4= Ogk
/ n n—1 1 n—2 l
00, = 088 W@ttt L 0w (7.19)
Ogn+1 y 24~ 0gny1 Yy
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In this framework, the prepotential F and so the special geometry can be introduced thanks to
the Riemann bilinear relations which guarantee the integrability condition of the prepotential
[76]. We must define correctly the first derivatives of F with respect to both the periods and the
coupling constants

OF 1 OF 1 [t OF ak

As we have seen in the previous section, the supersymmetry breaking contributions appearing in
the effective glueball superpotential (7.13) are mixed second derivatives of the prepotential with
respect to the Whitham parameters gi. Starting from the expressions (7.20) it results

xk > PF

O*F
= ReScot+ (kdwi oo

0s;0g,

2k
= ReSoot (de()) . (7.21)

The right hand side of these formulae express the susy breaking contributions in (7.13) as geomet-
rical quantities which can then be read directly as residues. Nevertheless we have to remind the
interpretation of the mixed second derivatives appearing in (7.13). As already mentioned, they
should be thought to come from an appropriate higher degree system taking g; — 0 (j > n + 1),
with the genus of the curve and (tg, s;) kept fixed. Using (7.21), the residues can be computed
directly with g; = 0; therefore, %\ g;=0 and %\ g;=0 can be properly obtained from the curve
of (n+1)-degree which depend only on the couplings gi, k = 1,--- ,n+1. We can then extract all
the mixed second derivatives, included those with respect to g;, using the (n+1)-degree geometry.

This simplification is one of the advantages of the embedding of the geometry in the Whitham
framework. With this approach we compute the holomorphic supersymmetry breaking terms in
the effective glueball superpotential corresponding to a non—supersymmetric perturbation of the
(n+ 1)—degree tree-level superpotential (7.11), without the explicit knowledge of the prepotential
F.

7.5 Tree—level cubic superpotential

We consider the simple case of a supersymmetric U(N) gauge theory with tree—level superpotential

m
Wiree(®) = 5 Trd? + gTﬂb?’ . (7.22)

As suggested before we break supersymmetry promoting the coupling constants of the tree-level
superpotential to spurions (7.9,7.10) deforming (7.22) as

62T 02T T, :
Weree(®) = %Tr o + HT‘?Tr 402y LTrad (7.23)
7>3
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The geometry of the N' = 1 solution is described by the following complex curve of genus one
with meromorphic differential

v = gz —a)(z—a)’+ fo+ hiw, (7.24)
dS = ydr=+/g2(x —a1)?(z — az)? + fo + 2gtoz dz . (7.25)
with a1 = 0 and as = —2 the classical roots.

We do the computation of the supersymmetry breaking parts as a series with small width of
the cuts and then small values of s; and ¢y. The approach is the same as in [65]. In particular, we
have considered the case of classical susy vacua with unbroken gauge group and also the case with
U(N) — U(Ny) xU(N3y) gauge symmetry breaking pattern. Using (7.21), we compute directly the
second mixed derivatives of the prepotential, i.e. the susy breaking contributions. The details of
the computations are in appendix A. We express our results directly in terms of the physical glue-
ball superfields S; (i = 1,...,n) using the change of variables (7.8) at the end of the computation.
We will write explicitly only the novel supersymmetry breaking contributions to the low—energy
glueball superpotential referring the reader to the literature [65, 81] for the well known N = 1 part.

In the case U(N) — U(N), using (7.13) with superpotential of the form (7.23) we find

1 e
Werr = —NWJV’I(S,m,g) +

i 82S
_02F2[<1+Z k+1)! ’E;(g ))

(s 2 T(EE) /8428\F
+92F3_g<z(k+l)!f‘(§)<m3) )

2N m —
+ 6494Z;k!

N

+

- 238 (Fverre—oee)
i 08 \lg +m&? + fo&™ —495E ) | _,

" 14y o ! (7.26)
2(j — 1)! O \lg+m&P + fo&t —495€ ) |, | |

Y and fy are functions of (S, m, g) whose expressions (C.19, C.25) are given in appendix A.
As a consistency check of our computation and focusing on the spurionic terms I's and I's,
we can compare the previous result with the mixed second derivatives of the A/ = 1 perturbative

109



prepotential
S2IxX 1 I(3)

8429 F
T 2 G in( ) ’ (7.27)

derived for the first time in [82] from the large-N matrix model. We find a complete agreement
except the linear term (~ S) in the series multiplied by I's.

The appearance of the linear term can be explained in the following way. It is known [83, 70, 73]
that the measure in the matrix model partition function and also the allowed divergent modes on
the complex curve [71] give schematically a contribution like (S — Slog(mA3/S)) where Ay is a
cut-off: this contribution together with the additive term (27i7.5) in the effective superpotential
gives the Veneziano—Yankielowicz superpotential [84]. The derivatives of this contribution w.r.t.
the coupling m give exactly the linear term appearing in (7.26) which also agrees with what we
have found using perturbative techniques (see Sec.6).

The supersymmetry breaking part coming from the quartic term (and also from the higher ones)
can be checked by comparison with the A/ = 1 superpotential computed implicitly in [85] for a
generic tree-level superpotential. By evaluating the derivative where all the coupling constants
except (m, g) are set to zero, we find agreement with their computation for all the finite order
explicitly given by them.

In the case U(N) — U(Ny) x U(N2), we consider only I's, I's, I's in (7.23) as source of susy
breaking. Then, using (7.13) we have

off = NT(S1, S2,m,g) +

S1 Sa 2

+ 6%, [(2]\72 — N1)Z3 4 (2N = Np) 22 4 30(N1 — Ng)%slsg +

+ 3(5Ny — 2N1)LS% +3(2Np — 5N1)9i45§ - 0(83)} +
n 92r3[ 2N2‘5; - 2N16; + 20(Ny — Nl)—slsg +

+ 202N — 5N2) 552 +2(5N1 — 2Ny) 952 + O(SS)}
+ 0Ty [21\72 Sy + (2N + z\fz)js2 + 8 _(2N1 — 3N2) 515 +

+ (NQ — 2N1)§ — §(N1 4N2)5i + 0(53)} . (7.28)
m2
where we show terms up to the quadratic order in S; we give in Appendix A a sketch of the
computation.
We can check also this case using the results of [71] for a quartic tree-level superpotential.
Taking the derivatives of their results with respect to the coupling constants and then making the
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appropriate limit (S3 = 0 and g4 — 0) we get exactly our supersymmetry breaking contributions.
Observe that, also in this case, linear terms appear in the supersymmetry breaking series multiplied
by I'’s. These can again be understood as coming from the Veneziano—Yankielowicz piece of the
effective superpotential. In fact, the scales A; associated with each unbroken gauge group sector
U(N;) are functions of the coupling constants as a consequence of the threshold matching [86];
by taking derivatives w.r.t. the couplings we get exactly those linear contibutions appearing in
(7.28).

Finally we note that, up to the quadratic order in S = S, we can consistently get our first result
(7.26) from the second one (7.28) simply by setting (S; = 0, Ny = 0).

7.6 Perturbative arguments

In this section we exploit the perturbative approach [72] to discuss, from a field theoretical point
of view, our use of the N' = 1 prepotential to study the low—energy glueball superpotential in
the case with broken susy. We consider only the case of unbroken U(N) gauge group and tree—
level superpotential for the adjoint chiral superfields given by W(®) = ZZLI %Tr ®F where
G} = g + 0°T}, are the spurionic coupling constants.

We recall that, because of holomorphicity, in the A/ = 1 case the effective superpotential is
a function only of the coupling constants g; and not of the g, [80, 72, 73]. In our case susy is
broken by the spurions and holomorphicity in the couplings is not any longer a property of the
superpotential.
In a perturbative framework the spurions Gy can be thought as ordinary background chiral su-
perfields. We can then think susy unbroken and the perturbative computations in a superspace

approach go using the usual D-algebra [87]. The effective action will be schematically of the form
/d20d20_K(Gk,Gk, D?*Gy,, D*Gy, -+ ,S,5) + /d29 Wert(Gy, S) +hee. (7.29)

where the superpotential Weys(Gy, S) is constrained to be a holomorphic function? of Gj.

If we choose the particular supersymmetric configuration in which all the chiral superfields
G} are equal to the constants g, without any dependence on 6,, then the N' = 1 effective
superpotential is Wy s(gx, S) and hence its holomorphicity [80].

If we choose instead the configuration G = g+ 62T}, (I'y # 0), we break susy and furthermore
we will have two kind of contributions to the glueball superpotential.

The first ones come from W,rr(gx + 0Tk, S) in (7.29) and are the holomorphic ones we have
studied in the previous sections. We call them the holomorphic contributions.

The others are D-terms contributions holomorphic in S but not necessarily in the coupling con-
stants g, gy, I'x and T'y, which come from particular contributions to X in (7.29) and which can be

4We are thinking about the case with masses in the Wilsonian approach for which the nonrenormalization
argument works without IR patologies.
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written as [ d?0 integrals contributing to the glueball superpotential®. These terms in the N' =1
case (I' — 0) are zero.

Here we adopt a pragmatic attitude and we study only those contributions to the glueball

superpotential which can be computed using the powerful perturbative techniques developed in
[72] for the V' =1 case.
In [72] the perturbative series was generated using only the propagator of the chiral matter su-
perfield sector and the antichiral superfield ® was integrated out. This was the central point for
their simplifications. In order to be able to integrate out ® as in [72] we must have interactions
only in terms of the chiral superfield ® and then we consider the following UV action

S(®,3) = /d4:v 40 Tr eV deV ® — /d4:v 20 %Tr(bz - /d4a:d29 %Triﬂ +
4 2 1 2 2 4 2 < 1 2 k
d'zd®0 S(0°T2)Tr @ + [ d'wd’ Z%gkjLH ) Tr &F | (7.30)
k=3

where all the antiholomorphic interactions [ d20 [$(6°T2)Tr @2 + >°7" 4 1 (g, + 0°Tx)Tr %] are
neglected. Furthermore, since we are interested in the glueball superpotential it is also possible
to do the usual simplifications of [72, 73] finding as the relevant action®

1
/d4a: d*e {zmcp[m — IWYDy — mm|® + W/ (D )} : (7.31)

where W™ in our susy broken case consists in the second line of (7.30). The difference with
respect to [72] is that the tree-level superpotential is now defined in terms of spurionic coupling
constants.

Now, from (7.31), it is clear that the glueball superpotential we are going to compute will be
holomorphic in S and in all the coupling constants except, at most, for the mass. In particular
we observe (we refer to Appendix B for the details) that we can have contributions only of the
following form

1
/d29 {Weff(Gk, S) + =3 ZBl(gk,Fk,H)Sl} . (7.32)
l

Wesr(gr + 62T}, S) is the holomorphic contribution we have already defined. Instead, the second
part of (7.32) is a particular subclass of the D—term contributions discussed before where B; are
holomorphic in all g, I'y, and possibly depend also on 62.

"For example, the reader could think about two terms like (with W* = iD*(e”VD%") [87])
[ d?0d*0G(g,9,T,T,6%)0°T S* = fdQQGFS” or [d®0d*0 H(g,g,T,T,0%)Tr[i(e”V D*V)W,|T'S? = [d’0 HT S
where G and H are functions of ¢,g,T,T, 8% and not 6.

We = [Wa,- -} is the spinorial gauge field strength adapted to the action, as a graded—commutator, on the
adjoint representation of the U(N) gauge group.
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A careful perturbative analysis of (7.32) shows that all the coefficients B; = 0 vanish VI and
that the contributions to the glueball superpotential we are computing have the following form

/d29 [N&%i + N%];O with  Fo = Zl:fo,l(gk +6°T)S" . (7.33)
We refer the interested reader to Appendix B for the technical details of our perturbative compu-
tations.
In (7.33) Fo, are the planar amplitudes with [ index loops of the dual matrix model [70, 72] where
the coupling constants are in this case the spurions Gy = gj + 6°T'. The first term in (7.33) is
given by a 1-loop diagram with one vertex %HQFQTI' ®2. This term is associated with the 1-loop
matter contribution to the Wilsonian beta function for the gauge kinetic term which is implicit
in the nonperturbative Veneziano—Yankielowicz superpotential. In the previous section we have
seen that this term is also given by the geometrical methods.

We conclude that, within our stringent approximations and in the case of unbroken U (), the
effective glueball superpotential in the presence of spurions (7.33) can still be deduced from the
N =1 holomorphic superpotential supporting the results of the previous sections.

Conclusions

The Dijkgraaf—Vafa conjecture with supersymmetry breaking is the subject of this work. We have
considered the simple case of U(N) gauge theory with massive adjoint chiral matter multiplet with
a polynomial tree—level superpotential. We have studied the case where supersymmetry is broken
in the tree—level superpotential by promoting the coupling constants to chiral spurions. We have
considered their F'~components as non-supersymmetric small perturbations of the N/ = 1 gauge
theory and we have discussed how holomorphy can still play a role. The non—supersymmetric
holomorphic contributions to the effective low—energy glueball superpotential have been derived
with geometrical methods embedded in the Whitham framework as well as with techniques of
superfield formalism with spurionic fields.

Non—holomorphic D-terms, soft breaking via gaugino mass, low energy vacua are open to
investigation. This goes beyond the information encoded in the holomorphic matrix model that
we have used so far.
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Chapter 8

Supersymmetric D-branes on SU(2)
structure manifolds

Besides addressing the problem of unification, string theory can give an insight in the search of
duals of different gauge theories. This fact is related to an older proposal by t’Hooft. He pointed
out that the Feynman diagrams of a U(N) gauge theory can be rearranged as a sum over the genus
of the surfaces in which the diagrams can be drawn. This is similar to the computation of string
amplitudes, where there is a sum over the genus of the possible worldsheets. Then, there is a
gauge/string duality, at least in some regime of parameters. At weak gauge coupling a convenient
description of the theory involves conventional perturbative methods; at strong coupling, where
such methods are intractable, the dual string description simplifies and gives exact information
about the theory. The objects called D-branes play here and important role. D-branes are non
perturbative solitonic objects that can be identified with hyperplanes where open strings can
end. The dynamics of the D-branes can be described by the physics of the open strings, giving
rise to a gauge theory living on the worldvolume of the brane. However, D-branes also act as
sources of closed strings. From this point of view, branes are objects that modify the gravitational
background, i.e. the geometry of space-time. Therefore, this open/closed string duality leads to
a gauge/gravity duality. This notion has opened new and amazing possibilities.

In 1997, Maldacena has proposed a specific gauge/string duality. The statement is that type
IIB string theory living on AdSs x S° is exactly dual to four dimensional A" = 4 super Yang-Mills
theory with SU(N) gauge group (which is called AdS/CFT duality since the gauge theory is
conformal). Although a strict proof has not been given, the duality has overcome a large number
of tests. The duality between two such different theories was reached by looking at the dual
open/closed string descriptions of the near horizon limit of a stack of N D3-branes. The low
energy limit of string theory yields a supergravity theory, and hence the duality can be phrased as
a gauge/gravity duality between type IIB supergravity on AdSs x S° and N'= 4 SYM in its non-
perturbative regime. The relation between the two theories that are supposed to be equivalent is
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holographic. This means that the number of dimensions in which they live is different and, that,
somehow, the physics on the boundary of a space encodes all the bulk information.

Following these ideas, a lot of work has been devoted to the research on other possible dualities
involving more realistic gauge theories. In particular, one would like to have less supersymmetry
and break conformal invariance. The final goal is to find a gravity dual of QCD, at least for the
limit with large number of colors.

Generalizations of the correspondence with additional structure added to both sides are inher-
ently quite interesting, and potentially have much more to teach us about field theory dynamics,
the nature of string theory and how holography relates them. A natural extension of the cor-
respondence would be the inclusion of matter (quark) fields in the fundamental representation.
This is equivalent to adding open string degrees of freedom to the supergravity side of the cor-
respondence and can be achieved by adding D-branes to the supergravity background. Another
possible generalization is related to the observation that spatial defects may be introduced into
conformal field theories, reducing the total symmetry but preserving conformal invariance. A po-
tential gravity dual was proposed as probe D-branes which share only a submanifold of dimension
lower than four (the defect) with the D-branes that have generated the background.

For these reason the investigation of supersymmetric configurations of probe D-branes in
supergravity backgrounds is relevant for enlarging the class of theories with gauge/gravity duality.

8.1 Introduction

Strings and supergravity backgrounds with non trivial RR and NS fluxes are intensively studied in
the AdS/CFT correspondence [89] and in string compactification (see [90] and reference therein),
in order to find string models holographically dual to more realistic gauge theories or to obtain
sensible phenomenology from compactification. Here D-branes are successfully used as probes
to explore the geometric properties of known backgrounds, and to provide further insights in
the gauge/gravity duality. We focus on type IIB supergravity solutions which preserve four
dimensional Poincaré invariance and A/ = 1 supersymmetry. They correspond to a warped product
of the four dimensional Minkowski spacetime and an internal six dimensional manifold M, which
can support fluxes. In the presence of non trivial background fluxes, the back-reacted internal
manifold M is no longer Calabi Yau. There are special classes of solutions [91] where the internal
manifold is conformal Calabi Yau, but in general [92, 93] the internal manifold with fluxes can
be far different from the Calabi Yau case. The formalism of G-structures [94] and Generalized
Complex Geometry (GCG) [95, 96, 92, 93] provide powerful tools to describe such manifolds. In
GCG the basic objects are pure spinors, formal sums of even and odd forms. Their existence
imposes topological constraints on the tangent and cotangent bundles of the internal manifold.
Supersymmetry requires that the internal manifold has a SU(3) x SU(3) structure on Ty & T,
which may be further restricted to SU(3) or SU(2) structures on Th;. The SU(3) structure has
been much studied, e.g.[97], while the SU(2) case has been explored in [98] and, using GCG, in [99].
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As a matter of fact, supergravity solutions with fluxes dual to massive and marginal deformations
of superconformal gauge theories are expected to be described by SU(2) structure manifolds. Such
manifolds are characterized by the existence of a globally defined nowhere vanishing vector field.

In the GCG language the preservation of N' = 1 supersymmetry is achieved by imposing a pair
of differential equations for the pure spinors. The authors of [99] made an ansatz for pure spinors
of SU(2) structure manifolds and performed a detailed analysis of these pair of supersymmetry
equations. Their ansatz covers a large class of solutions. In particular the Pilch Warner [100]
and the Lunin Maldacena [101] ones are included: they are the gravity duals of the single mass
deformation and of the beta marginal deformation of A = 4 SYM, respectively.

In the GCG framework the supersymmetry conditions for D-branes probing SU(3) x SU(3)
backgrounds have been established in [102, 103] (see also [104]). They are a set of constraints on
the pull back of the pure spinors on the world volume of the D-brane. In [103] the supersymmetry
conditions were given for D-branes filling Minkowski space time (space time filling), filling three
space time directions (domain walls) and two space time directions (effective strings).

The addition of D-brane probes to the class of solutions of [99] can provide other interesting
tests of the AdS/CFT correspondence. Supersymmetric configurations of D-branes can identify
the moduli space of vacua of the dual gauge theory, in both the abelian and the non abelian
branches. D5 domain wall like configurations can lead in the dual description to three dimensional
defects, interacting with the conformal four dimensional gauge theory; the defect gauge invariant
operators can then be mapped into the Kaluza Klein modes of the wrapped brane [105]. The
addition of space time filling D7-branes corresponds to adding massless or massive flavours [106]
and their fluctuations give the meson spectrum of the dual flavoured gauge theory.

In [99] the space time filling D3-brane configurations have been analyzed and it was shown
that the supersymmetry conditions for such branes reproduce the mesonic moduli space of vacua
of the dual field theory. Moreover the D5-brane configuration with world volume flux, related to
the non abelian phase of the beta deformed gauge theory [101, 107], was recovered.

In this chapter we investigate new supersymmetric D-brane configurations in the class of
SU (2) structure manifolds of [99], and we propose the dual gauge theory interpretation as well as
possible applications of the results.

We look for supersymmetric D5 domain wall like configurations finding a supersymmetric
embedding which can be used to holographically study three dimensional defects coupled to the
massive deformation of NV =4 SYM.

We study a supersymmetric embedding of space time filling D5-branes with non trivial world
volume flux in the Pilch Warner solution.

We explore different D7 supersymmetric embeddings suitable for adding flavour to the whole
class of solutions, suggesting in each case the dual flavored gauge theory. These embeddings
identify supersymmetric four cycles. Although the formalism we adopt does not apply to the non
static case, these supersymmetric four cycles should be mapped, with a strategy similar to [108],
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to non static configurations of D3 branes (giant gravitons) in this class of backgrounds® .

Finally, we find supersymmetric configurations of D3 and D7 branes which behave as effective
strings in the four dimensional gauge theory description.

The chapter is organized as follows. In section 9.2 we outline the spinor ansatz for SU(2)
structure manifolds [99] and in section 9.3 the GCG supersymmetry conditions for D-branes
[103]. In section 9.4, after a brief survey of the supersymmetric family of backgrounds which
includes the PW flow, we look for supersymmetric embeddings of D-branes. We present different
D-brane configurations and we solve their supersymmetry conditions, identifying supersymmetric
embeddings. We give some details on the computations and we interpret the supersymmetric
configurations in the dual gauge theory. The same analysis is carried out for D-brane probes in
the LM geometry in section 9.5. In the appendices D.1 D.2 we recall some useful definitions.

8.2 SU(2) structure manifolds and pure spinors

The ten dimensional metric is

ds?y = eQAnuydx“dm” + ds? (8.1)
where the warp factor A is a function of the internal coordinates. The internal six dimensional
manifold has SU(2) structure. An SU(2) structure is characterized by two nowhere vanishing
spinors which are never parallel

1
M X = 5E (8:2)

where 7_ is the complex conjugate of 1, and we denote with - the Clifford multiplication z,,~"™.
The six dimensional chiral spinors 7., which are the supersymmetry parameters, are then con-
structed

nyo=any +bxy 0L =3y +yxy (8.3)
with a, b, z,y complex functions of the internal coordinates. The ten dimensional supersymmetry
parameters can be written as

e =Cr@ny + (@l (8:4)
2=Con+en (8.5)

where (1 are four dimensional chiral spinors. Given the never vanishing spinors just introduced,
a SU(2) structure manifold admits the following globally defined forms built as bilinears in the
spinors

Jj= §X1'7mnx+dxm Adz™ — 5771'7mn77+dxm A dz" (8.6)
w= —ixlfymnmrdxm A dz" (8.7)
2= =2y ypnida™ (8.8)

'For giants in the beta deformed background see [109)].
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where z is a complex 1-form, j a real 2-form, and w a (2,0)-form satisfying
. | _ .
wANj=0 j/\]ziw/\w zLj = 2w =0 (8.9)

The 1-form z is the globally defined complex vector characterizing the SU(2) structure.

In GCG the relevant equations can be written in terms of poliforms with definite parity, the
pure spinors. They are bispinors built by tensoring the supersymmetry parameters of the internal
manifold

&y = n} @n} (8.10)
Oy =t @n* (8.11)

and are annihilated by six combinations of Clifford(6,6) gamma matrices. From (8.3) they read

1 .. .. >
o1 = glaze™ + bye — i(agw + 2bo)] A e (8.12)
2 = Slilby® - aaw) + (bae? —aye )] Az

The SU(3) structure case is for b = 0 = y.
The ansatz used in [99] for the six dimensional supersymmetry parameters is the following

nh=any +bxy  ni = —i(any —bxy) (8.13)
where the functions of (8.3) are parametrized as

A2 cos ¢ et b= —iy = —ie?/?sin ¢ ™ (8.14)

a=1T =1e
Here cos ¢, sin¢, a and 8 are functions of the internal coordinates. The two supersymmetry
parameters 1t ,n% can be brought to the form (8.13) if and only if Re(aZ + bj) = 0. This
corresponds to admit a non trivial mesonic moduli space of vacua [99].

We are interested in D-branes probing the class of backgrounds specified by the ansatz (8.13),
(8.14). This contains a family of supersymmetric backgrounds with constant dilaton (which itself
includes the PW flow), and the gravity dual of beta deformation. Since the norms of the spinors
n and 7y are equal, supersymmetric D-branes are admitted [103].

8.3 Supersymmetry conditions for probe D-branes

In GCG the main tool to analyze supersymmetric embeddings of D-branes is the generalized cal-
ibration introduced in [102, 103]. We will consider space time filling branes (STF), domain walls
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(DW) and effective strings (ES) wrapping a submanifold ¥ of the internal manifold. The super-
symmetry conditions for these extended objects in terms of the pure spinors and their projection
on the world volume read?

Ps[Im(ie?®,)|Anef = 0 (8.15)

Ps[(in + gnmdz™N) @] Ae” = 0 a,b=1,2 (8.16)

where gy, is the internal metric, 4,, and dz™ A are the usual operators mapping a p form in a p—1
and p + 1 form respectively, and finally 3 F = F' — Pg[B], where F is the world volume flux. The

pullback on the world volume of the D-brane is denoted by Ps. Space time filling branes, domain
walls and effective strings are summarized in Table 1, where fpy is an arbitrary constant [103].

0 al|b

STF 0 112

DW | 0pw | 2|1

ES -5 | 1]2
Table 1

The same dictionary of [103] is used to label the possible embeddings. However, since the
internal manifold is non compact, we should distinguish between the cases when the wrapped
submanifold ¥ is itself compact or non compact. We will comment on this point where needed.

8.4 D-branes on the family of supersymmetric backgrounds

8.4.1 The family of supersymmetric backgrounds

We now briefly review the family of supersymmetric backgrounds analyzed in [99] which includes
the PW flow [100]. The PW solution is the gravity dual of the massive deformation of N' = 4
SYM

W = hTrd3[®;, By] + mTrd3 (8.17)

which flows in the IR to a non trivial fixed point [110]. The gravity dual is asymptotically AdS in
the UV and warped AdS in the IR. It is included in the following more general ansatz [99] which
is a family of supersymmetric backgrounds

ds? = 724 (mi A1 + 22) i,7=1,2 (8.18)

where z is the globally defined vector characterizing the SU(2) structure. The matrix A;; is
hermitian, and the vielbeins are defined in terms of local complex coordinates z;

21 = p1+ o1 2o = p2 + 102 z3 = logu + i03 (8.19)
m = dz1 + ardzs Mo = dzo + aodzs 2z = yJazudzs (8.20)

2We do not consider the orientation conditions on these objects.
#We are using the conventions of [92, 93, 99] which differs for an Hys sign with [103].
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with ag real and a; complex functions of z;. The globally defined two forms are

L
J= 5141'3 URANF (8.21)
w =1iVdet Any Ang (8.22)

There are also non trivial RR and NS fluxes

«Fy = —e~*d(e* cos 2¢) (8.23)
2ie’@=0)\/det A .9
Cy = Re| M 5in 26 (dz1 N\ dzg — sin® ¢ m1 A ma)] (8.24)
2ie!@=P)\/det A . 9
By = —Im| A 5n 20 (dz1 N dzg —sin® ¢ m1 A m2)] (8.25)

The dilaton is constant, parametrising the RG line of dual conformal gauge theories.

The supersymmetry equations for this background [99] imply that a = %(01 + o2 + 303),
8= —%(01 + 09 — 03) and that the functions ag, «;, A;; can be obtained as derivatives of a single
function F'(z;,Z;). These are all real for the subclass of this family of backgrounds which have an
U(1)3 symmetry, i.e. when the function F(z;, 25) does not depend on the phases ;. We call this
the toric subclass; the PW flow belongs to it.

The detailed expressions for the family of backgrounds and how to recover the PW flow are
reported in the Appendix D.1.

The pure spinors (8.12) are constructed with the rescaled forms z — e~
(e7244, e724w) which refer to the complete six dimensional metric (8.18).

Az and (j,w) —

We look for supersymmetric embeddings of Dp-branes (with world volume coordinates &,
(a=0,...,p)) in this family of supersymmetric backgrounds, allowing in one case for non trivial
world volume gauge flux. The main tools are the conditions (8.15),(8.16).

Even if the family of backgrounds is larger, we shall take the PW solution as a paradigm for
the gauge theory dual interpretation of the brane configurations.

8.4.2 D5 domain walls

We study now a supersymmetric D-brane probe placed at x3 = 0 and which fills three space
time dimensions (&g, &1,&2) = (20,1, x2). It can be viewed as a domain wall solution separating
supersymmetric vacua. However, when the wrapped cycle is non compact, the domain wall inter-
pretation would imply an infinite potential barrier. Instead in the AdS/CFT interpretation it is
a three dimensional defect coupled to the four dimensional dual gauge theory.

In the AdS5 x S° case there are non trivial supersymmetric embeddings where a D5-brane
wraps an AdSy inside the AdSs plus a trivial 2-sphere inside the S° [111]. The D5 brane should
shrink around this 2-sphere but the correspondent tachionic mode does not lead to instability
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because its mass is above the BF bound [112]. This configuration has been studied in [105] as a
three dimensional defect in AV =4 SYM.

We look for similar configurations of D5-brane in the family of supersymmetric backgrounds
of section 8.4.1. We attempt the following three cycle embedding

2 = €T (Eya +ick)  Z=e T (Ga—ic)  k=1,...,3 (8.26)

with 7, and ¢, constants, and with no world volume flux, F = 0. This ansatz covers for example
the real slice (7 = 0, Yk) and the imaginary slice (7 = 7, Vk).

We restrict ourselves to the toric subclass. The complex functions a;, A;; characterizing the
metric are then real and the computations simplify. We compute the supersymmetry conditions
(8.15) and (8.16) in the DW case of Table 1.

The supersymmetry condition (8.15) results

Ps[Im(ie'2W ®y)]| A e = élm[e’m\/@u\/det A tOpwH2B—m=mo4Ts)| es A dgy A dEs  (8.27)
where the functions are intended evaluated on the world volume. A choice of the constant phase
Opw can make it vanish only if the phase factor 6 does not depend on the embedding coordinates
&ka2- This can be achieved taking the real slice (1, = 0, Vk), such that g = —%(01 + o — ¢3).
Then we choose Opy = —2 and the expression (8.27) vanishes.

For the real slice (1, = 0, Vk), a detailed analysis shows that the supersymmetry conditions
(8.16) are satisfied provided a = 3+ 5. This implies the following relation between the constants
Ck

C1+cCo+c3 = (8.28)

|y

Hence we conclude that for the toric subclass a D5 brane embedded as in (8.26) with 7, = 0,
with the constants c¢j satisfying (8.28) and with Opw = (c1 + c2 — ¢3) is supersymmetric. In
particular, such D5 brane is supersymmetric in the PW flow, since it belongs to the toric subclass.
In the PW geometry (see the appendix D.1) the D5 brane fills the three radial directions.

This embedding can be used to study three dimensional defects in the massive deformation of
N = 4. The ¢; give the distance between the supersymmetric D5-brane and the D-branes which
generate the background. They represent masses for the 3D hypermultiplet of the defect theory.

8.4.3 Spacetime filling D-branes

In this section we study D-brane probes filling all the Minkowski directions §,, =z, (0 =0,...,3).
The supersymmetry conditions are (8.15) and (8.16) in the STF case of Table 1. We analyze here
supersymmetric D5-brane embeddings with world volume flux, and D7 flavour branes.
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Db5-branes

We take the following two cycle embedding 3 for a D5 brane probing the background of section
8.4.1 A
2 = €78 (Epas + ick) kE=1,2 23 = c3 +icy (8.29)

with ¢ and 74 real constants. We allow for a generic world volume flux F. The only non trivial
supersymmetry conditions for this configuration are the (8.15) and the z component of (8.16),

since ®3 = --- A z and Px[z] = 0 from (8.29). The first one reads
je=A . .
Ps[lm(id))] A e” = - T (A3 77) — Ayre™"Mm72)) dey A dEs (8.30)

and does not depend on the two form flux 7 = F' — P[B] since Px,[Im(i®1)]|o = 0. This expression
cannot be made vanishing in general by a simple choice of the phases 7, 7. However, if we restrict
ourselves to the foric subclass the matrix A;; is real and symmetric, and A3 = Ay7. If we then
choose 71 = 7 the expression (8.30) vanishes.

We compute the z component of the second supersymmetry condition

—24
8

ie

Ps[(iz+ 9220\ o] Ae” = — (Fepes€®1e@tP) sin 2¢ + Vdet Ae 1M F72720)) g, A des (8.31)

where F¢,¢, is the world volume flux. The expression (8.31) vanishes if we turn on

— '(71+T2+a*ﬁ) V det A

which for consistency should be real. The choices
T1=717=0 a—fB=c+ca+c3=0 <8'33)

make the flux (8.32) real, since the phase factor in (8.32) is now independent of the embedding
coordinates {3 and moreover it vanishes. We conclude that the choices (8.32) and (8.33) make
the D5 brane configuration (8.29) supersymmetric in the toric subclass.

However particular care is needed in considering this embedding; indeed we observe that the
D5 brane wraps a non compact submanifold and then the flux F' is along non compact coordinates
(see for example the coordinates for the PW geometry in appendix D.1).

D7 flavour branes

Here we look for supersymmetric D7-brane embeddings suitable for adding flavours to the family
of backgrounds of section 8.4.1. The D7 branes should wrap a non compact four cycle in order to
make the flavour symmetry group global. Adding Ny D7 branes on this non compact four cycle
is dual to add Ny flavours with symmetry group SU(Ny) to the SU(N.) gauge theory provided
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Ny < N, so that the back-reaction of the D7-branes can be neglected. The shape of the D7
supersymmetric embedding sets the interaction terms in the superpotential between the flavours
and the chiral superfields of the dual gauge theory as well as possible masses for the flavours.

In a SU(2) structure manifold the globally defined vector z naturally identifies a four dimen-
sional submanifold ¥ where Py [z] = 0. Thus we attempt the embedding with Ps[z] = 0, i.e. we
place D7 branes as

Ty =& p=0,...,3
2k = ka3 + ks k=1,2  z3=logmyo (8.34)

with no world volume flux, F' = 0, and where mg is an arbitrary constant. The first supersymmetry
condition (8.15) can be analyzed by keeping the 4, 2,0 forms of the pulled back pure spinor ®;

oA
i®qlo = —g(cos2 ¢ — sin® ¢)
. A A A
i®q]o = Ze8 (j + cos psin p(e' @Ay — e~ g))
e84 ,
idy|y = G (cos® ¢ — sin® ¢)j A j

Taking the imaginary part of these expressions we obtain

Ps[Im(i®;)] A e P18 = —esP[j] A P[B] =0 (8.35)

This vanishes given the explicit expressions of j (8.21) and B (8.25) and reminding Px[z] = 0.
The only non trivial supersymmetry condition of (8.16) is on the z component. The projection
on the pure spinor @ is

1 . .
Ps[(iy 4 g.22N)P2] = g(—ie’(a+5) sin 2¢ + e~ 24e%% cos? pw +
+e24e%P sin? pw + %e_4Aei(°‘+ﬁ) sin2¢j A j)
The pullback of the NS two form (8.25) is

2
PolB] = —YINACR O citomi)(ag, 1 i) A (ds + idgr) + (3.36)

€24 sin 2¢
+ e OB (dey — idés) A (des — idér))
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We then compute the terms which contribute to the z component of (8.16)%

) ~ jetle+p) )
Ps[(i, + g.22N)Pal|4 = TR det A cos ¢ sin ¢ dVoly,
e (@tB) cos ¢ det A

Ps[(iy 4 g.22N)P2]|2 A (—Px[B]) = 6 Msng (cos? ¢ — sin? ¢) dVolx

1 iet(@th) cos3 ¢ det A
Ps(iy 4+ g.22N)P2)|lo A =P |B| A Pg|B] = — : dVol
sl(iz + g:227)@allo A 5 Ps[B] A Pe[B] Ty Voly,
Adding these three contributions we conclude that
Ps[(is + 92227 @] A e PIBl = (8.37)

Then the configuration (8.34) is supersymmetric for the whole family of backgrounds considered
in section 8.4.1, not only the toric subclass.

Other flavour embeddings We look also for other D7 brane embeddings which preserve su-
persymmetry in the supersymmetric family of backgrounds of sec 8.4.1. The computations of the
supersymmetry conditions (8.15) and (8.16) are less easy but can be done with the same procedure
outlined above. We list the relevant results.

We can place the D7 brane orthogonal to one of the other complex coordinates

zp=logmog 2z =&+ =& +ilr k#Fj=1,2 (8.38)

and after a long computation we find that this is a supersymmetric configuration, satisfying (8.15)
and (8.16).

Other possible embeddings are submanifolds like the one suggested in [106], with chiral sym-
metry breaking. We observe that the complex coordinates we are using (see the Appendix D.1)
are the exponential of the usual complex coordinates which are in correspondence with the chiral
adjoint fields. Hence we consider embeddings like e*ie® = m%. We have to distinguish between
two different cases. The first one involves the z3 component

efie® = m%

a=Ctils  z=&ti& m=logmg— (G +ikr)  k#j=12
This configuration turns out to be non supersymmetric.
The second case does not involve the z3 coordinate

e*e™ =m3
21 =8+ 1 2o = logm§ — (&4 + i&s) 23 = &6 + &7 (8.39)

and it results supersymmetric.

“We denote the volume on the wrapped cycle with dVols = (—4d&s A dés A dés A dé7).
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The dual flavoured gauge theory The D7 supersymmetric embeddings presented here (8.34),
(8.38), (8.39) can be used to add flavours to the PW flow.

If we add Ny D7-branes in the configuration (8.34) the dual gauge theory is N' =1 SYM with
three chiral adjoint fields and Ny massive flavours with mass mg, with superpotential

W = Wa—g + mTrd2 + tr Q®3Q + mo tr QQ (8.40)

where the first two terms are the mass deformation of N'=4 SYM (8.17). Since we are neglecting
the back-reaction of the D7 branes, the geometry filled by the D7-branes in the IR is warped
AdS5 and the theory flows to the same IR fixed point. For mgy # 0, the D7-branes end before
reaching the IR.

If we add Ny D7-branes as in (8.38) the gauge theory dual is again A’ = 1 SYM with three
chiral adjoint fields and Ny massive flavours, with superpotential

W = Wyey + mTrd2 + tr QP,Q +motr QQ  k=1,2 (8.41)

The flavours QQ now couple to the massless adjoint field @y.
Finally, if we add N D7-branes embedded as (8.39) the dual flavoured gauge theory is N’ =1
SYM with three chiral adjoint fields and two different Ny massive flavours, with superpotential

W = Wh=4 + mTr<I>§ +tr Q1P1Q1 + tr Qa®2Qs + mo tr (QlQQ + Q2Q1) (8.42)

where 1 and @2 denote the two flavours. This configuration can be interpreted as two sets of Ny
DT7-branes at e”! = mg and e*2 = my respectively, each supporting different flavours, which are
joint smoothly into one set of Ny D7 branes wrapped on e*le* = m2 [106]. On the dual gauge
theory picture there are two flavour groups SU(Nyf)1 x SU(Ny)2 broken to the diagonal subgroup
by the mass term my.

8.4.4 Effective Strings

We take D-branes that fill two coordinates in the Minkowski space time, for example at zo = x5 =
0, filling & = x0,&1 = x1. They can be viewed as propagating strings in the four dimensional
description. However, when the wrapped cycle of the internal manifold is non compact, the
effective string tension in the four dimensional picture diverges. The supersymmetry conditions
are the pair (8.15) and (8.16) in the ES case of Table 1. We find supersymmetric embeddings of
both D3 and D7 branes which involve non compact cycles in the internal manifold. The D3 brane
wraps a two cycle, whereas the D7 brane fills the whole internal manifold. Our analysis concern
the whole family of backgrounds presented in section 8.4.1.

D3 effective strings We place D3-brane probes filling two directions in the internal space. We
fix the z3 coordinate, i.e. z3 = c3¢'™ and we look for supersymmetric embeddings filling z; and
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25. The embedding along the two complex coordinates, z, = €' (€k+1 + icg) for k = 1,2 results
non supersymmetric.

On the other hand, the non compact embedding where we identify z1; and 22 except for constant
phases and shifts

21 = e'm (fg +c1 + Z(fg + CQ)) 29 = e (52 —cC1 + 2(63 — CQ)) 23 = CgeiT3 (8.43)

results supersymmetric for any choice of the phases 7, and of the real constants cy.

D7 effective strings We probe the geometry with D7-brane covering the whole internal space
2p =&kt1 +i&kra k=1,...,3 (8.44)

By a long but straightforward computation we find that this is a supersymmetric embedding,
which satisfies the supersymmetry conditions.

8.5 D-branes on the beta deformed background

8.5.1 Beta deformation of N'=4 SYM and its gravity dual

The N = 1 beta deformed gauge theory is a marginal deformation [110] of the N' = 4 SYM, with
superpotential ' '
W5 = hTr(e™ ;0903 — e ™D d30,) (8.45)

where ®; are the three chiral adjoint superfields, and § a complex constant. We consider 3 to
be real; in this case it is usually denoted as . Besides the U(1)r symmetry, this theory has two
global symmetries U(1), x U(1), with charges

O | Py | B3
U)o | 0| 1 |1
Ul)y, | 1] 1|0

These two global symmetries were crucial in the generating solutions technique of [101], where
the supergravity background dual to such gauge theory has been obtained. This background has
been analyzed using generalized complex geometry in [99]. The ten dimensional metric is

ds? = 2 ds3 ;. + ds?, ds? = e~ 24432 (8.46)

where Js% is the rescaled internal metric. The internal SU(2) structure manifold can be described
by local complex coordinates

21 = rpupe?t = rcos eV ¥2)
29 = Tp2e'? = rsin a cos Yel(VHe1tea) (8.47)

z3 = ruge’?® = rsinasin e (=)
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The almost complex structure can be expressed [99] in terms of 1-forms (for details see the Ap-
pendix D.2) which give the rescaled metric a simple expression

ds2 = 22 + 23 + G(y? +y3) + 22 (8.48)
where ) o )
2172273 2 2 2,2 2 2 2A 2
G=—— 2= = + + et =r 8.49
1+ 2 25 9 = pips + popy + ey (8.49)

The background has non trivial dilaton, RR and NS fluxes

e? =VG (8.50)
A\

By = 7,/gGL S Y2 (8.51)

F3 = 127 cos asin® asin 0 cos Odip A dae A df (8.52)

Fy = 4(V01Ad5‘5 + *VOlAng,) (8.53)

This solution differs from the family of backgrounds reviewed in section 8.4.1, for example the
dilaton is not constant here. However it is an SU(2) structure manifold which can be described
by the ansatz (8.13) and (8.14) for the spinors [99]. The 1-form z in (8.48) is a globally defined
vector. The 2-forms j and w are

i o= VG(x1 Ay + 22 Aye) (8.54)
w = i(z1 +iVGy) A (2 + iVGyp) (8.55)
and
a =iz =ie?/?cos ¢ = \%eA/Q(l + \/5)% (8.56)
b= —iy=—ieM?sing = %e“‘ﬂ(l —VG)z (8.57)

The phases a and ( in (8.14) are vanishing, & = = 0. Once again the pure spinors (8.12) are
constructed with the rescaled forms (j,w) — (e7247,e724w) and 2z — e~z which refer to the
complete six dimensional metric (8.46).

We look for supersymmetric embeddings of D-branes in this background employing the con-
ditions (8.15) and (8.16).
8.5.2 D5 domain walls

We look for D5-brane embeddings filling three directions in the internal manifold and placed in
Minkowski at x3 = 0 with (£, = z,, p = 0,1,2). We choose the following ansatz, which is
supersymmetric in the undeformed v = 0 case (AdSs x S°),

2 =€ T (o +icy)  Zp =€ (Gpyo — i)  k=1,...,3 (8.58)
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where 7k, ¢j are arbitrary real constants. Computing the supersymmetry conditions (8.15) and
(8.16)% this embedding results non supersymmetric for any choice of the constants 7y, c. For
instance in the simple case (7, = 0,¢; = 0) the z and Z components of the supersymmetry
conditions (8.16) can be computed

ie_A*y gG (8.59)

1 5 _
~Ps[(g%i. 4 2A)®a] A e PIBl = Po[(g7%is + 20)®o) A e P18l = — T

3
where the functions (A, g, G) are intended evaluated on the world volume. The result (8.59) cannot
vanish unless v = 0, i.e. the undeformed case; hence the embedding (8.58) is not supersymmetric
in the beta deformed background.

8.5.3 D7 flavour branes

We look for supersymmetric D7 configurations filling the Minkowski space time &, = z, (u =
0,...,3) and wrapped on a non compact four cycle in the internal manifold, suitable for adding
flavour to the beta deformed theory. As already observed, an SU(2) structure manifold is char-
acterized by a globally defined vector (z), and a natural four cycle ¥ is where Py[z] = 0. In the
beta deformed background the vector z is (8.49), and the condition Px[z] = 0 implies, in complex
coordinates,

212223 = m> (8.60)

with m constant.
We then take the following four cycle embedding for D7-branes

m3

2 = Eppe’ k=1,2 BT et

(8.61)
with no world volume flux, i.e. F' = 0. By direct inspection we find that this embedding satisfies
the conditions® (8.15) and (8.16), and hence is supersymmetric. It preserves the translational
invariance of 1 and 2. We then expect the U(1), and U(1), symmetries to be preserved in the
dual gauge theory description.

This embedding and the dual flavoured gauge theory can be explained as follows. We have
three sets of Ny D7 branes located at z1 = m, 22 = m, 23 = m respectively, each one supporting
a flavour group SU(Ny). We can join these branes a la Karch and Katz [106] and obtain one
single set of Ny D7 branes located as in (8.61). These D7-branes terminate before reaching the
IR region and the conformal invariance is explicitly broken by the mass m, which also breaks the
flavour groups SU(Ny¢) x SU(Ny) x SU(Ny) to the diagonal subgroup.

In order to deduce the superpotential of the dual gauge theory we observe that the same
configuration can be realized in the undeformed (y = 0, AdS5 x S ) case; here the superpotential

5In the DW case of Table 1.
In the STF case of Table 1.
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is the following”

W = Wyeg +tr Q1®1Q1 + tr Qa®2Q2 + tr Q3P3Q3 + mtr (Q1Q2 + Q2Q3 + Q3Q1)  (8.62)

Note that the massive flavours preserves the U(1), x U(1), symmetry, assigning the charges as in
Table 2.

Q| Py | P3| Q1| Q1| Q2| Q2| Q3| Q3
Ua | 0 | 1|21 1[0 110
Ul |1 |10 0110 -1]1
Table 2

Now, for Ny D7 branes embedded as (8.61) in the beta deformed background, the dual gauge the-
ory is beta deformed N/ = 1 SYM coupled to three different massive flavours. The resulting phase
factors of the terms in the superpotential (8.62) can be easily obtained following the prescription
of [101] with the charges in Table 2, having

W = Wiy +e ™ tr Q1®1Q1 + ™ tr Qa®2Qs + e ™ tr Q3P3Q3 +
+mtr (Q1Q2 + Q2Qs + Q3Q1) (8.63)

Note that the flavour mass terms are not affected by the beta deformation.

Other D7 embeddings If we do not require the U(1), and U(1); global symmetries to be

preserved we can try to embed the D7 branes in other submanifolds, with vanishing world volume

flux. The computations of the supersymmetry conditions (8.15) and (8.16) get more complicated.
We take the embeddings

§p=ou  p=0,...,3
Z; = 646356 Zj = 656157 2L = My Z#] ;é k = 17273 (864)

A long computation shows they are supersymmetric for any choice of the mass mg. Here the dual
gauge theory is beta deformed N =1 SYM plus Ny flavours® which couple with the adjoint field
Dy.

Finally, after a long computation, we find that the following D7 embeddings with chiral sym-
metry breaking are supersymmetric

=61 2 =6 2 itj#Ak=123 (8.65)

"We set the couplings to one for simplicity.
8N is the number of D7 branes.
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The dual gauge theory is beta deformed N = 1 SYM with two kinds of Ny massive flavours
@1 and Q2, which couple to ®; and @, respectively. The mass mg breaks the flavour groups
SU(Ny)1 x SU(Ny)2 to the diagonal subgroup.

For these additional D7 embeddings the superpotential terms and their phase factors can be
obtained with the same procedure followed in the derivation of (8.63), by starting from the N’ =4
case (i.e. v =0).

8.5.4 Effective Strings

Finally we take D-branes that fill just two coordinates in the Minkowski space time (&) = o, &1 =
x1). We place them at 9 = x3 = 0. We do not find supersymmetric configurations of D3 or D5
branes. We instead find that a D7-brane covering the whole internal space

2 =&kt + s k=1,....3 (8.66)

is supersymmetric.
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Riassunto

La teoria delle stringhe rappresenta il pricipale candidato per I'unificazione delle forze fondamen-
tali. La consistenza di questa teoria implica I’esistenza di una nuova simmetria, la supersimmetria,
che trasforma bosoni in fermioni e viceversa. D’altro canto, per soddisfare ai vincoli dettati dalle
osservazioni sperimentali, la supersimmetria deve essere rotta a basse energie se si vuole costruire
modelli fenomenologicamente sensati. Nella mia attivita di ricerca ho studiato aspetti della rot-
tura di supersimmetria in teorie di gauge supersimmetriche.

L’analisi non perturbativa delle teorie di gauge supersimmetriche ha raggiunto negli ultimi anni
notevoli traguardi, e.g. la dualita elettrico/magnetica. Nella prima parte della tesi si descrivono
alcuni elementi di base per lo studio non perturbativo di teorie di gauge supersimmetriche e per
I’analisi della rottura di supersimmetria. Questi argomenti sono sparsi nella letteratura pit o
meno recente e si e cercato di riassumere gli ingredienti principali per rendere la tesi piti completa.

Nel primo capitolo si descrivono gli aspetti fondamentali della rottura di supersimmetria,
spontanea o esplicita, e si spiega I'importanza della rottura dinamica. Viene in seguito largamente
trattata la dualita elettrico magnetica, concentrandosi sulla dualita in presenza di campi chirali
nella rappresentazione aggiunta.

Nel secondo capitolo viene descritto la teoria di Intriligator Seiberg e Shih per la rottura
dinamica di supersimmetria in vuoti metastabili. Questi autori hanno mostrato ’esistenza di
vuoti metastabili con rottura dinamica della supersimmetria nella descrizione a basse energie della
SQCD (teoria supersimmetrica di YM SU(N,) con Ny sapori) nell'intervallo No+1 < Ny < 3N,.

L’esistenza di vuoti metastabili in teorie di gauge supersimmetriche con maggior contenuto in
campi e con molteplici gruppi di gauge ¢ stato il soggetto principale dei miei studi. Le motivazioni
sono molteplici. Un obiettivo ¢ quello di individuare questi vuoti in teorie di gauge supersimmet-
riche che abbiano una naturale immersione in teoria di stringa cosi da fornire un meccanismo di
rottura della supersimmetria nel principale candidato teorico per 'unificazione, i.e. la teoria delle
stringhe. Un altro scopo e inserire queste teorie con rottura dinamica della supersimmetria in
scenari di mediazione di gauge, con il ruolo di settore nascosto.

Per questo motivo nel terzo capitolo vengono introdotte alcune nozioni di modelli con medi-
azione di gauge, concentrandosi sulla generazione di massa per il gaugino.
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Dal quarto capitolo inizia la parte originale di questa tesi. Nel capitolo quattro, basato su [1]
in collaborazione con A. Amariti e L. Girardello, studiamo teorie che contengono campi carichi
nella rappresentazione aggiunta. L’interesse in queste teorie risiede nel fatto che campi nella
rappresentazione aggiunta sono presenti nella maggior parte dei modelli con origine in teoria
di stringa. Inoltre il maggior contenuto rende necessario 1'utilizzo di estensioni della dualita
elettrico-magnetiche alla Seiberg, che danno origine a molteplici gradi di liberta macroscopici, e
dunque ad una dinamica a basse energie piu ricca di quella della SQCD. L’analisi dettagliata della
dinamica infrarossa ha evidenziato la presenza di vuoti metastabili con rottura di supersimmetria.
A livello classico esiste in realta un landscape di vuoti con medesima energia. Tale degenerazione
¢ modificata dalle correzioni quantistiche che selezionano un solo minimo locale. Questo vuoto ha
inoltre la proprieta di non possedere R simmetria. Questa caratteristica, estremamente rara in
teorie con rottura spontanea della supersimmetria, rende il modello particolarmente adatto come
settore nascosto in uno scenario di mediazione di gauge.

Nel capitolo cinque, infatti, basato sul lavoro [2], viene studiata la trasmissione della rottura di
supersimmetria ad un’estensione supersimmetrica del modello standard attraverso la mediazione
di gauge diretta, mostrando che viene generata massa per il gaugino.

11 capitolo sei si basa su un recente lavoro [3], in collaborazione con A. Amariti e L. Girardello,
dove analizziamo vuoti metastabili in teorie di quiver A, con n arbitrario. Queste teorie hanno
una descrizione in teoria di stringa di tipo 11 B come D5-brane parzialmente avvolte su varieta non
compatte di Calabi-Yau (ottenute come fibrazioni di un piano su singolarita di tipo A). Si studia
una dualizzazione alla Seiberg di molteplici nodi (in posizione alternata) nel quiver. Nella teoria
risultante a basse energie mostriamo la presenza di vuoti metastabili con rottura spontanea della
supersimmetria. Per garantire la consistenza di questa procedura, & necessaria un’approfondita
analisi dei flussi di rinormalizzazione delle costanti d’accoppiamente dei diversi gruppi di gauge.
Questa analisi ha portato alla determinazione di precise gerarchie da imporre tra le scale di ac-
coppiamento forte. Infine anche per questa classe di modelli viene mostrato come inserirli in uno
schema di mediazione di gauge.

Nel capitolo sette viene descritta una teoria in cui la rottura di supersimmetria ¢ invece di
tipo esplicito, introducendo quindi termini di rottura soffice nella lagrangiana. Il contesto e quello
della congettura di Dijkgraaf e Vafa; questa stabilisce che il superpotenziale efficace di glueball
per teorie di gauge supersimmetriche N/ = 1 puo essere ottenuto mediante un appropriato modello
di matrici hermitiane. In tale modello il potenziale per le matrici ha la medesima espressione del
superpotenziale per il supercampo chirale nella rappresentazione aggiunta. Nel lavoro [4] in collab-
orazione con L. Girardello e G. Tartaglino-Mazzucchelli, su cui si basa questo capitolo, si analizza
e si estende tale congettura nel caso di rottura esplicita (soffice) di supersimmetria. La rottura
esplicita e introdotta promuovendo a spurioni le costanti d’accoppiamento del superpotenziale per
il campo chirale nell’aggiunta. La rottura di supersimmetria puo essere interpretata nella curva
algebrica che racchiude le informazioni della teoria efficace come una deformazione alla Whitham,
studiata nell’ambito della teoria dei sistemi integrabili. Attraverso questa interpretazione si puo
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ricavare nella teoria di basse energie, i.e. nel superpotenziale di glueball, i nuovi termini olomorfi
derivanti dalla rottura di supersimmetria. Questo approcio viene poi verificato con un calcolo
perturbativo.

Infine la mia attivita di ricerca ha compreso anche argomenti pit direttamente legati alla teoria
delle stringhe e alla dualita tra teorie di gauge e gravita (AdS/CFT). Nella dualita AdS/CFT gio-
cano un ruolo centrale le D-brane e la loro dinamica. La ricerca di configurazioni supersimmetriche
(e dunque stabili) di D-brane in background di supergravita ¢ il contesto della mia pubblicazione
[5] e del capitolo otto. Nella compattificazione con flussi, ma anche nella AdS/CFT, il formalismo
della geometria complessa generalizzata (GCG) si ¢ rivelato estremamente utile per analisi di
soluzioni di supergravita con flussi. In particolare, & possibile descrivere con questo linguaggio
geometrie che sono duali a teorie NV = 1 ottenute come deformazioni marginali o massive della teo-
ria di SYM N = 4. In questo capitolo studio configurazioni supersimmetriche di brane in questa
classe di soluzioni di supergravita tramite il formalismo della GCG, suggerendone l'interpretazione
nella teoria di gauge duale. Ad esempio trovo diverse configurazioni supersimmetriche di D7 brane
e propongo il superpotenziale di interazione nella teoria di campo duale.

L’argomento trattato in questo ultimo capitolo non e direttamente connesso con la rottura
di supersimmetria. D’altra parte un possibile metodo per rompere la supersimmetria in teoria
di gravita consiste nell’introduzione di nuovi gradi di liberta, e.g. brane, che non preservino
la supersimmetria del background. Con questa finalita, dunque, I’analisi delle configurazioni
supersimmetriche ¢ in ogni caso il primo passo.
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Appendix A

Computation of the gaugino mass

In the derivation of (3.6) we have assumed that the interaction superpotential is diagonal (3.3).
This could be not the case, especially in models of direct gauge mediation, where the supersym-
metry breaking sector coincides with the messenger sector and hence its form is constrained by
the dynamics. The procedure is then to diagonalize the mass matrix of the messenger fields in
order to obtain a diagonal superpotential, and then follow the recipe given in the previous section.
This procedure can have some subtleties.

We show how to proceede with a simple and clarifing example, with two families of messengers
transforming in the fundamental and antifundamental of the SM gauge group. Suppose having
the following superpotential for the messenger fields

W= (& %)(?%)(%) (A1)

where, for instance, only the field X get a non trivial expectation values for its Fx component.
The diagonalization brings to the following eigenvalues for the mass matrix

o (P 0 _ X - VX2+Y?) 0 (A2)
0 B 0 X +VXZ+Y?) ‘
so now the superpotential (A.1) can be rewritten as
2 ~
W = Z 3 ®;; (A.3)
i=1

where the fields @/ are redefinitions of the original fields ®; whose precise expression is not needed
here. The superpotential is now in the diagonal form and we can compute using (3.6) tha gaugino
mass. We observe that now both the coefficient of the ®;®’ get non trivial F-term due to the non
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vanishing F'x, indeed

0k Fx X
Fp =Fxoo == (1 - v Y2> (A.4)
0B Fx X

The gaugino mass is then

_ aa [|Fs| (IFmI) | Fy | <\Fﬁz)] A
M“‘47r[|ﬁng EARERANE (8.6)

Inserting the expression (A.4,A.2) and the expansion for g(z) (3.7) at second order in z, we obtain!

20, F3X

M, ~—% X
¢ 31 X2Y4 4 2Y6

(A.7)
Observe that the gaugino mass is generated only at third order in the F'x parameter. Indeed there
is a cancellation at linear order F'x. This is due to the fact that the first element of the inverse
mass matrix for the messengers is vanishing (M ~1);; = 0 [63]. The third order contribution is
relevant only for enough large F'x. Hence particular care is needed in computing gaugino mass in
models where the interaction superpotential for the messenger fields is highly non trivial.

'For simplicity we assumed all the vacuum expectation values to be real and positive.
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Appendix B

Appendices for metastable A,, quivers

B.1 Goldstone bosons

The analysis we made in the A3 theories started from the limit 1] > |u3]. Also the opposite limit
can give meta-stable vacua. To understand the differences among the various choices, we have to
study the classical masses acquired by the fields expanding them around their vevs.

We study the case with ranks N7 < Ny < Nj. Since the flavor symmetry is U(Ny) x U(N3),
and not U(N; + N3), the linear terms of the mesons are different. We are still free to choose the
hierarchy between them. We here analyze the breaking of the global symmetries taking || > |us].
Treating the gauge symmetry as a global one, and rearranging the quarks in the form

q1,2 b, 0 q2,1 H1lm 0
W=D )= 0 i | @ =)= 0 gy | @)

we see that the global symmetry breaks as
U(Ny) x U(Ny) x U(N3) — U(Ny)p x U(Ny — N1)p x U(Ny 4+ Ny — Ny) (B.2)

This implies that the Goldstone bosons are N§+2(Kf2 —N1)(Ny —|—N3—]V2). The first ]VQQ Goldstone
bosons come from the upper N, x Ny block matrices in the quark fields, exactly the same as in ISS.
The second part is a bit different. In fact in ISS, with equal masses, the Goldstone bosons which
come from the lower (N7 + N3 — Ng) x Ny sector in the quarks matrices, are 2]\72(]\73 + Np — ]\72)
In this case, since we started with lesser flavor symmetry, there are 2N (N3 + Ny — Ng) massless
Goldstone bosons fewer than in ISS. We have to control the other directions. From the scalar
potential we have to compute the masses that the fields acquire expanding around the vacuum.
The relevant expansions for the potentially tachyonic directions are the ones around the vevs of
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the quarks

g2 = (m+oé1 ¢2) QQ1:<M11L¢1>
P2

_ 3 p13+ P4 -~ $3~ %5
= < ¢5 96 > 42 ( w3+ ¢4 d6 ) (B:3)

The relevant terms of the scalar potential come from the F-terms of the mesons

V= |FM11‘2+ ‘FM13’2+ ‘FM31’2+ ’FM53|2 (B4)

If we study the mass terms of the fields ¢5 and 55 we note that they are not zero, since py # us.

In fact their mass matrix is!
2 2 T
~t ) < Y —H3 > ?5 B.5
Coo ot ) (S ) (5 B

with eigenvalues p? + u?,}. A minimum of the scalar potential without tachyonic directions imposes
a constraint on the masses, p1 > ps, consistent with the analysis of ISS.

We can ask now what happens if ;1 < p3. The vacua we studied before are not true vacua any
longer, but they have tachyonic directions in the quark fields. The meta-stable vacua are obtained
choosing the vevs of ¢ 2 and g2,1 to be zero, and the vevs of the other quarks to be

1 ~
Q32 = q;f,s = < M?’ONZ ) (B.6)

The differences in the two cases are the value of the scalar potential and the pseudo-moduli.
In fact in the first limit V4. = (N7 + N3 — NQ)VLM%‘Q, and in the second limit the scalar potential
is Vyae = (N3 — N2)|h[£§’2 + N1|hp2|?. Since we choose the masses to be different, but of the same
order, both cases have long lived meta-stable vacua. As far as the pseudo-moduli are concerned,
in the case analyzed during chapter 7, they come out from a block of the M3 3 meson, and in this
case they come out from the whole M; meson and from a diagonal block (N3 — Ny) x (N3 — No)
of the M3 3 meson.

B.2 Hierarchy of scales

One of the main approximation we used to find metastable vacua has been to neglect the fact
that the odd nodes are gauge nodes. In order to treat them as flavours groups in the region of

'From now on we will consider all the mass terms as real.
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interest, it is necessary that their gauge couplings are lower than the couplings of the even nodes.
We can treat the odd groups as flavour groups only if this relation holds.

In order to substantiate this idea we have to relate the electric scale of the flavour group to
the other scales of the theory. The latter ones are the strong coupling scale of the gauge theories,
As;, and the supersymmetry breaking scale p, which is the value of the linear term in the dual
version of the theory.

We must impose the groups related to the flavour/odd nodes to be less coupled than the
gauge/even groups in the magnetic region. A similar analysis was performed in [40].

There are six possibilities, shown in Figure 1 in section 6.5. We have already discussed what
happens in all these different cases. We will now show how to derive the formulas (6.29) and
(6.33).

Let’s denote by f all the objects related to the flavour group, and by g all the objects related
to the gauge group. We have to distinguish four different cases, all with bf > b 2. In fact the
flavours can be IR free or UV free in the electric description (i.e. above the scale Ay;) and also
UV free or IR free in the magnetic description.

We start studying a single case, and then we will comment about the others. Let’s study the
case (2) in Figure 1, where the flavours are UV free in the electric and IR free in the magnetic
description, i.e. by > 0 and by < 0.

We require that after Seiberg duality the gauge coupling g, is larger than the flavour coupling
gr. More precisely we require that this happens at the supersymmetry breaking scale

gj%iu) > 93}#) = Ef log (ﬁf) < Eg log (%) (B.7)
from which follows o
o bty
K> (i«") VR, > A, (B.8)
The scale matching relation coming from Seiberg duality
AT 23 (T (B.9)

fixes Ag = Kg, if we choose the intermediate scale to be Ag =A,.

For the flavour scale we observe that, at the scale Ay, where we perform Seiberg duality, the
coupling in the electric description for the odd node is the same that the coupling of the magnetic
description, and this implies

~ bf
~ ARSI
_ _ B.1

2The opposite inequality do not require this analysis, since at low energy the flavours are always less coupled
than the gauge.
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We can now write (B.8) in term of the electric scales (Ay and A,) using (B.10), and we obtain

Tt ’ngﬁbf
Ap<p b7 Ay 7 (B.11)
Since the exponent of u is positive we have
- - BBy
br—b b
20 o A< (E) T A <A, (B.12)
by Ay

This imposes a stronger constraint on the scale of the flavour group Ay. In fact it is not enough
to choose it lower than the gauge strong coupling scale A,. It is also constrained by (B.12). The
next figure explains what happens

i 1
92 92

S

.

’

u N Mg E N u Ny E

In the first picture the scale Ay is lower than Ay but not enough: at the breaking scale it is not
possible to neglect the contribution coming from gy. Instead, if we constrain the scale Ay using
(B.12), we obtain the runnings depicted in the second picture: here the flavour groups are less
coupled than the gauge groups at the supersymmetry breaking scale.

As explained above there are four different possibilities. The second possibility is that the
flavours are UV free both in the electric description and in the magnetic description, with by > 0.
The analysis is the same as before, and we obtain the same inequality as (B.12). However this
situation requires a more careful analysis, since in the infrared the gauge coupling associated to
the flavour group develops a strong dynamics which has to be taken under control.

For the other two possibilities, where by < 0, one finds

bg—by

Ag by
Ap > m Ag > A, (B.13)

The general recipe we learn from this analysis can be summarized in three different cases
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e If the inequality gf < Eg holds one has simply to choose Ay < Ay or Ay > Ay if by > 0 or
by < 0 respectively as in (6.25,6.26).

o If Ef > Eg we can still distinguish two cases

— In the first case by > 0, and we have to constraint Ay with (B.12).
— In the second case by < 0, and we have to constraint Ay with (B.13).

B.3 A; classification

We study As quiver gauge theories obtained gluing all the possible combinations of Az which
present metastable vacua, i.e. the one of section (6.4)

We analyze the beta function coefficients for these A5 quiver gauge theories, with gauge group
U(N1) x U(N2) x U(N3) x U(N4) x U(N5). The even nodes are in the IR free window

3 3
No < N1+ N3 < §N2 Ny < N3+ N5 < §N4 (B.14)

We write in the table the beta coefficients of the third node of the As, specifying the range,
compatible with (B.14), when this node is UV free or IR free in the electric and in the magnetic
descriptions, respectively. The table classifies the possible A5 quiver gauge theories which present
alternate Seiberg dualities and which have metastable vacua.

As explained in section 6.6 we can obtain an A,, quiver gauge theory by gluing the A3 patches.
For the renormalization group, the internal flavour nodes of the A,, chain behave as the third node
of the Ay patches.

The table does not say anything about the external nodes of the A,. In the electric theory
one has by = 3N; — Ny and b, = 3N,, — N,_1; after duality, in the low energy description we have
31 = N7 + Ny — N3, and En = N, + Np—1 — 2N,,_o. The possible values for 31 and gn have to be
studied separately.
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Ranks of A Further Further electric magnetic
. 5 condition(T) condition (/1) b — factor b — factor
Ny + Ny < 3N3 b3 >0 b3 <0
Ny < Ny < N3 < N4y <Ns
3N3 < Ny + Ny bz <0 33<0
N; < Ny > N3 < Ny < Ns b3 <0 b3 <0
N1 > Ny > N3 < Ny < Nj b3 <0 b3 <0
No + Ny < 3N3 bs >0 bz <0
N3 < N1 + Ns ~
3N3 < Ny + Ny b3 <0 b3 <0
Ny <Nz >Ny < No> N No + Ny < Ns + 2N; + 2, by > 0 bs < 0
N3 > N1+ Ns
N3+ 2N7 +2N5 < Ny + Ny bs >0 E3>0
No + Ny < N3+ 2N7 + 2N5 bs >0 b3 <0
Ny < Ny < N3 > Ny > Nj
N3 +2N7 +2N5 < Ny + Ny bs >0 bs >0
Ny + Ny < 3N3 b3 >0 b3 <0
N3<N1+N5 ~
3N3 < No + Ny b3 <0 b3 <0
<
Ny < No < Ny < Na> N No+ Ni < Ns + 2N; + 2I; bs > 0 by < 0
N3 > N1+ Nj
N3+ 2N; +2N5 < Ny + Ny b3 >0 53>0

In the first column we report all the possible inequalities among the As; rank numbers consistent with
(B.14). Moving from left to right the further condition fix the signs of b3, bs.
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Appendix C

Details on non-perturbative and
perturbative computations

C.1 Solution of the broken superpotential

In this appendix we show the main tools and details used for the computation in the cubic tree—
level superpotential of section 7.5.

We have already written the genus one Riemann surface characterising the solution (7.24,
7.25). We observe that there is one holomorphic differential 9 defined on this surface. This
differential can be expanded around the point at infinity in powers of { = 1/x

s 1
RO \ g+ m 2+ fo &+ 2910 & £=0

where R,, are functions of gi, to, fo and can be simply computed by power expansion of y. The
normalized holomorphic differential dw is then

dr &
—=> R, Ry
Y=o

, (C.1)

1d
do=—2

= (C.2)

where we have introduced the following quantities!

}m:fxdx. (C.3)

Y
The meromorphic differentials d€);, are defined by?
adSsS xdxr 10fydx odS
dp=—=9g—+ -—=—— dQ = — k=2,3 C.4
0 8750 g y + 2 8t0 y ) k agk ) ( )

The a—cycle encircle counterclokwise the second cut accordingly to our conventions.
*We denote g» = m and g3 = g of (7.22).
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and are completely fixed by the normalization constraints

fdaozo , fcmk:o k=23 (C.5)

Then dQ)y results to be

h1 dx
dQ():(x— ), C.6
9r =97 )~ (C.6)
where we used the first normalization condition of (C.5) which implies % = —29%. Collecting
0 0

these formulas we can express the second derivatives of the prepotential characterizing the susy
breaking terms in the effective superpotential (7.13) for the case under consideration as follow

0*F f_k 1 h1
0?F £k Ri_1 1
85239k = R@SO <kd0.)) = A hio y (08)

where the Ry, are defined in (C.1).
In the case of unbroken gauge group (U(N) — U(N)) the cut associated with the sa variable
degenerate to a point with so — 0 and the only variable is tp. The curve (7.24) can be written as

y? = g%z — 1) (x — 23)(z — 24) (C.9)

where z3, x4 are the extremal points of the first cut and z; is the double zero of the curve where
the second cut degenerates. Following [65] it is useful to introduce the quantities

Ay = %(m —x3) , A=(a1—a) = % ) (C.10)
Q= g(za+as+221) = (a1 +az) = -7, (C.11)
I=%(zg+a3—2m) = VA2 —2A%, (C.12)
n=% | a=9% | 5=815. (C.13)

The above relations can be proved comparing (7.24) and (C.9). We have also directly introduced

the physically relevant variable S = 51 = —%.

Being interested in finding ag:g;o as in (C.7) we have evaluated hy/hg in this case
h1 Q-1
L= .14
By = 5 (C.14)
Then we find o
F 9 hi gRr  mRp_
== |Ry——Rp_1 ) =— 1+Y C.15
Btodar k(k h0k1) k:+ % (1+Y), ( )



where Y is defined as

I 272,
Y_Z_ 1-— A2 (C.16)
Then I = I(A};) is a function of A%;. Written in terms of z; the variable ¢( is
to = —Resso(dS) = —Ressolg(z — 21)\/(z — 23)(x — 24) dz] =
- %(le — w53 — z4) (24 — 23)2 = —gAig I. (C.17)
From (C.12, C.17) we find
c=(1-Y?Y, (C.18)

which gives Y, and then %, as a function of o = 8aS. Solving (C.18) and taking the appro-
priate branch we obtain

wl=

1
3
2 (o2 =% —0) 1
Y= Tt I =1=3 K TE(k+1)
3(“02_%—0)3 23 k=1 ’ (5( + ))

Once Ry (k=1,2,3) are found from (C.1) we have the first two softly broken terms of (7.26)

9*F S X (BaS)k T(3F)
Btedm  m [”3; (k+ 1! T(h) | (G.20)
2 +oo k(3k
PF _ 2533 (a8} DY) 1)
Dtodg g = &+ T(k)

For the third term of (7.26) the computation is a little more involved. The derivative to be
computed is

0?F g m
==R —R3(1+Y). C.22
3150894 4 it 8 3( + ) ( )
The coefficients Rg and R4 are
fo  6m m? m3 28
_ _ _mo_ 2 2
fu 29 ¢ 5 9>’ s gt g’ (C.23)

where the unknown function fy appears. To compute it we integrate in S the equation that can
be obtained from the first constraint in (C.5) and from (C.14)

dfo hi Q-1
= 99— = 22— =m+ql . .24
Oto gho ) mTy (C.24)
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We then have

OOSaSJF%Sj—))
22 ! INCY)

folS] = —2msS — 2g/ %Y[S]ds = ¢ — 4mS + (C.25)

where ¢; is a function only of the couplings m and g. Using the other constraints in (C.5) that
define the derivatives of fy with respect to the couplings (m, g) it can be proven that ¢; vanishes.
Finally, we use the formulas (C.22, C.23, C.25) with ¢; = 0 and find

RF  omt X 8a5) r(tBk—4) T(Ek-1)
0tIga 6494 Z <(k b QF(%k) - é(k—i— 1)) )

(C.26)

We observe that with these ingredients one has formally all the needed quantities to compute in a
closed form, as power series of S, all the susy breaking terms in the effective superpotential (7.13)
coming from higher order supersymmetry breaking deformation in the tree—level superpotential
(7.11). These are functions only of Y'(S) and fo(S) as shown in (C.15). In fact the coefficient Ry,
are defined as (C.1) and are functions only of ty = —25, of the couplings, and of fo(S) which is
known (C.25). At the end the result is (7.26).

The computation in the case of broken gauge group (U(N) — U(Ny1)xU(N2)) uses a procedure

s [65], making the calculation as a power series in the width of the cuts. Our aim is again to

compute the susy breaking terms appearing in (7.13) using the formulas (C.7, C.8). The main
difference with the unbroken gauge group case is that now the curve does not degenerate

y? =g}z —21)(z — 22) (2 — 23) (2 — 24) . (C.27)

We introduce quantities analogous as before?
Ay =S(xa—x3) , Aoy =2i(z2—m1) , (C.28)
Q=1i(ra+ 23+ 22+ 71) = (A1 + a2) =-7, (C.29)
I= %(x4 +a3— 29— 1) = \/A2 —2A%; —2A3%, . (C.30)

We don’t have anymore the simplification (C.14) and we have to write the integrals hg and hy as
power series in the widths of the cuts (O(A2,)). We then find the inverse expression of the widths
of the cuts A as a functions of (sg, tg) and obtain (hg, h) in terms of (s2, tp).

We have also to evaluate the parameters Rj. They have the form (C.1) but now fy has to be

understood as a function of two variables and ty = —2(S] + S2). Precisely fp is a function of ¢
and so which are the independent variables and it is determined through the relations
0 h 0 1 1 2
87{0:_9}71 , %ZaSQZidzzh*- (C.31)
0 0 $2 P 4, % 0

3Note that as concern the classical roots there are no modifications.

150



The first equation comes from the normalization condition (C.5) while the second one is a con-
sequence of the definition (7.5) of the variable sy using the explicit form (7.25) of the differential
ds.

We then compute directly the second derivatives of the prepotential, the susy breaking terms
(7.13), using (C.7, C.8). At the end of the computation we change variables (7.8) to express the
superpotential in terms of the physical glueball superfields S;. What we find is (7.28).

C.2 Details on the perturbative approach

In this appendix we explore the details which give (7.33) from (7.30). We will use and extend to
spurions the method developed in [72, 88] also reviewing, for reader convenience, their basic steps.
Starting from (7.30), the propagator is the same as in [72]
—m

PP >= . .32
< > 0O — mim — iWe0, (C32)

The gauge field strength is considered constant then the bosonic and fermionic integrations com-
pletely decouple in the computation [72]. To compute contributions to the glueball superpotential,
we will use the usual chiral-ring properties of W,, [72, 73]. For example, we will use Tr(W,)" =0
with n > 2.

Using the double line notation, a Riemann surface (oriented for U(N)) with genus g is asso-
ciated to each topologically relevant diagram with L momentum loop and [ index loop, so that
L =14 2g— 1. The D-algebra is exactly as in [72]. The only difference is that performing the
D-algebra some 0, can act on the 6 of the spurions Gj, = g;, + 6°T'), giving new terms.

It is possible to do some general considerations using the constraints given by the D-algebra
structure, the properties of W, and the geometry of the diagrams in the amplitudes.
We fix a diagram with L momentum loops and | = L —2¢g+1 index loops. From the W, properties
it follows that, for a relevant amplitude for the glueball superpotential, the maximal number of
allowed W, is 2l otherwise we would have at least one index loop with more than three Wi,.
Furthermore, in order to perform the fermionic loop integrations it is necessary to have at least
2L 0, and then at least 2L W,. The number of W, (#W,) in a non—trivially zero diagram then
satisfies the inequality

2L < #W, <20 =2L+2—4g . (C.33)

This implies that g = 0 and the only relevant diagrams to be considered are planar. Moreover the
relevant contributions to the glueball superpotential have #W, = 2L, 2L + 2.

We consider first the case #W, = 2L i.e. #0, = 2L. In this case the D—algebra has to be done
only inside the fermionic loops and then no derivative acts on the background spurions. This is
equivalent to say that these contributions are insensible to the 6 dependence of the G. Then for
these kind of terms we can reabsorb the quadratic vertex %02F2TI' ®? into the propagator (C.32)
by simply doing the redefinition m — m + 6?I's. This is clearly true exept a 1-loop amplitude
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with one vertex %HQFQTI' ®? contracted with the propagator (C.32) which gives the first term of
(7.33). The resulting contribution to the glueball superpotential with #W,, = 2L is then given by
(7.33) and, except the linear term in S, these term are computed perturbatively using the dual
matrix model of the N =1 case.

Now, we consider the other case #W, = #0, = 2L 4+ 2. All index loops are now saturated
and we have a contribution proportional to S(Z+1.
These contributions are nonholomorphic since they are proportional to 2. In fact, the corre-
sponding diagrams have a multiplicative factor m’* from the numerator of the P; propagators
(C.32). Expanding the propagators (C.32) at order (W®d,)2542) | we have Py = P +2L+2
bosonic propagators P expressed in momentum space. By redefining the bosonic loop mo-
mentum variables p? — mp?, from the bosonic Jacobian we are left with a contribution m2" while
from the denominator of the bosonic propagators we have a term m~(Pi+2L+2) - Summarizing we
have [mh][m2L)[m—(Fit2L42)] = =2, Therefore, along the calculation we will set 7 = 1 and
multiply the final result by m 2.
In performing the calculation it is convenient to express the propagator (C.32) in the Schwinger
variables

/ ds; exp[—s;(p? + W20 +m)] . (C.34)
0

As in [72], the bosonic contribution is given by

1 1
(47r)2L (det M(s))2 ) Mab(s) = ZSiLz’aLib , Di = ZLmka . (C.35)

Zboson =

We note that M (s) is an L x L matrix and then the denominator of Zy,s0n, (C.35) is a homogeneous
polynomial of degree 2L in s;. Furthermore, we have, from the fermionic integrations of these
diagrams, 2L + 2 s;)V;* terms. Then, at the numerator we have a homogeneous polynomial of
degree 2L + 2 in s;. The degree in s; of the numerator results to be greater than the denominator
degree. Thus, for the class of diagrams with #W, = 2L + 2 (certainly) there is no cancellation
between the bosonic and fermionic integrations in contrast with the case #W, = 2L [72].
Performing the D-algebra we realize that there are two distinct possibilities depending on the
way the two extra J, are distributed on the external spurionic terms. The first possibility is when
two O, act on one spurionic constant §?I';,. This contribution would have a multiplicative factor

[(Tx) H(V_l)(gkv + 6°T,)] (V is the number of vertices of the considered diagram).

v=1
The second possibility is when the two J, act on two different spurions. In this case we have a
multiplicative term [(0°T)(0aTw) [T\ (gk, + 02Tk, )]-
Summarizing the previous considerations, the general structure of the glueball superpotential,
due to the integration of the matter fields considering only the holomorphic part of the interaction

vertices as in (7.30), is

S 1
2 2 2 [—1 l
/d 0 {NH Ty~ + N §l Foulgr + °Tp)lS™" + — El Bi(gi, Tk, 0)S } . (C.36)
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The B; are holomorphic in all g, I'; and possibly depend also on #2. B; are analytic in all the
variables except m. We will show that B; = 0 VI justifying (7.33).

To compute B; we must perform the D—algebra and treat the group theoretical factor. Asin [72]
to simplify the fermionic integrations we can use the fermionic Fourier momentum representation.
The novelty in the computation is due to the fact that now there is also the §? from the spurionic
vertices to be Fourier transformed. In particular, we have

0% = -6 (9) = — / d?mei™ 0o (C.37)

We focus on a planar diagram with L = [ — 1 bosonic momentum loops with P propagators and
V vertices. In particular we consider the case with only one spurionic constant #I';, on which the
D-algebra acts nontrivially. The other case is analogue.

The fermionic contribution results to be?

\%4 P
Zfermion = / H d29v 0% H [efsin‘iaa(s(Q) (9111 — 91}{)]
v=1 =1

P 1% P i v
= - / HdzmdQT H de, H [e_s"wia“m] ety =1 71 1) 010 H (225 =1 Ty ) *Ova
i=1 P_V+U2:1 i=1 N v=2
= —/d29/ [T drad?ro® (> m+7)
a=1 3

J1=1 i

l P
= - / d*0 / [ @ka [ [e>Vme] (C.38)
a=1 =1

In the second line 7;, are the spinorial momuntum connected to the v-th 6-vertex and satisfy
7, = £m; where the sign is 4+ (—) if the spinorial momentum is going outside (inside) the vertex v.
In the last two line we exploit the relations Z§5:1 mj, =0 (v=2,---,V —1) with which we define
the remaining [ spinorial variables k, from the independent 7;. Furthermore, in the last line we
have used the fact that we are searching for a contribution to B; which has #W, = 2l = 2L + 2.

Then, in the expansion of eii(zix‘// —1 7)™ e can keep only 1, the term independent of 6,. This
is equivalent to say that only the term in which 62 of the spurion is killed by two d, contributes
to Bl.

At the end of the above manipulations we remain with [ fermionic integrations over the indipendent
variables k, and the m; are linear combinations of them

ky

P
[e—sin‘wm] ei( jy =1 ﬂ'jv)aea

1

l
iy = Z LiwKao - (C.39)
a=1
4The index j,, depending on v = {1,--+,V}, runs from 1 to k, which is the degree of the interaction vertex v

as: Tr®Fv.
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As in [72] we can implement the requirement of having two insertions of W% for each index
loop introducing 2! auxiliary grassmanian variables W), adapted to the action on the adjoint

representation with
!

Wi =Y KWV, (C.40)
m=1
The matrix K is defined so that for each oriented i—th propagator the m—th index loop can coincide
and be parallel giving K;,, = 1; or coincide and be anti—parallel giving K;,, = —1; or not coincide
giving K, = 0.
Summarazing we find from the fermionic integration

(167T2S / H d2/€ad2 m exp[ ZSZ <ZWQKT za/faa)]

a,m=1
(167r25 / H Ak d* W, exp[ ZWO‘ maﬁaa]
a,m=1
= S'(4m)?(det N(s))? , (C.41)
with B
N()ma =Y _ 8iKhLia - (C.42)

The relevant fact is that, for our class of diagrams which has an S? topology, the matrix K
has a nontrivial kernel. In fact, for example, the vector b,,, whose components are all equal
to one, belong to the kernel of K;,,°. This is simply due to the fact that in the case we are
studying all momentum propagator lines have exact two index loop passing through them with

opposite orientation; then, Vi there will be only one Ky, = 1 and one Kj,» = —1 (m' # m")
and > Kimbyn = 1 —1 = 0. It follows that also the matrix [N(s)|L, = >, siLL K;», has a

nontrivial kernel indipendently of the explicit form of L which we have not analyzed in detail.
Then det(N(s)) = 0. This imply that B; = 0 VI as claimed before.

5Our susy broken case is similar to the situation which appears in the study of the perturbative reduction to
matrix models for the case of N = 1 supersymmetry and SU/SO/Sp(N) gauge groups developed in [88] extending
[72].
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Appendix D

Details on SU(2) structure manifolds

D.1 The supersymmetric family of backgrounds and IR PW

The supersymmetry equations for the ansatz (8.13,8.14) was studied in [99]. They imply, for
complex solutions with constant dilaton, that the geometrical quantities can be expressed as
derivatives of a single function F. If the background does not depend on o3 we have

= aij;;j =1, (1)
Ao = aij;; 7 (D.2)
QA = 822523’ (D.3)
u’az cos2¢ + ;A0 = afjgzs . (D.4)
azu®sin® ¢ = —ang. (D.5)

The infrared geometry of the PW flow can be reconstructed in this family of supersymmetric
backgrounds as follows [99]. Choose coordinates

3/4

et = r°/* cos B cos pe'’t |

e*2 = 1%/ cos 0 sin e'?

e* = r%/? gin he'”? .
The generalized Kahler potential F' is

F= %2(1 —2sin?0), (D.6)
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and the warp factor

3
4 =12y 1(1 + sin? 0) (D.7)
The other quantities are determined, for example
. 2 2
sin 2¢ Sme@ (D.8)
1+ sin“ @
40 cost ¢
A 2 ( cos? 6 cos? +L D.9
o= ( 7T 3 3sin20 (D-9)
2 ol in2 2
r cos® 0 sin” ¢ cos” ¢
Ay = Ayr = D.10
e 3+ 3sin0 (D-10)
40 qind
o 2, .9 cos* fsin®
A2Q = T <COS 0 sin SO+?)—|—3511120> (Dll)
1 +sin?6
= — D.12
s 47(2 + sin? ) ( )

D.2 Beta deformed gravity dual

We have already introduced the complex coordinates z; (8.47); the one forms appearing in (8.48)
are defined as [99]

20232

. - g

x1 +iyp = e 9t (dz — ) (D.13)
13 (3 + 13) /g
2 > 3 2 _—ioy -
xo +iye =€ 92|14+ =5 (dze — )+ (dzy — ) (D.14)
13 VLR NIRRT Vg

d

. = dazz] (D.15)
r°\/9

The internal metric (8.48) gives then [101]

3
ds% = dr? +r? (Z(du? + Guido?) + 2 Gud i3 (doy + dos + d03)2> (D.16)

i=1
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