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1. Как было показано Файнбергом [1], ускорение заряженных ча-
стиц в плазме при помощи продольных волн, возбуждаемых вводимыми 
извне пучками электронов, обладает рядом существенных преимуществ 

по сравнению с классическими методами линейного ускорения. В основе 
этого метода лежит неустойчивость пучка заряженных частиц относи-
тельно черенковского возбуждения продольных колебаний плазмы [2, 
3], в результате развития которой энергия пучка преобразуется в уско-

ряющее поле. 
В настоящее время линейная теория плазменно-пучкового взаимо-

действия изучена достаточно подробно [4], поэтому основной задачей 
теории является исследование нелинейных характеристик этого взаимо-
действия, в частности, определения максимальной амплитуды ускоряю-
щего поля [5]. Наибольшего успеха в этом направлении удалось достичь 
с помощью квазилинейного приближения [6, 7]. Однако применимость 
последнего ограничена, с частности, требованием высокой плотности 
спектра возбуждаемых колебаний ε >> ω ≡ kV(ε - инкремент 
нарастания неустойчивости, ω-расстояние между собственными ча-
стотами плазмы V-скорость частиц пучка). Генерируемое при этом по-
ле представляет собой совокупность большого числа колебаний с незави-
симыми фазами. Такие поля представляют интерес для стохастического 
нагрева и ускорения плазмы [8-12]. Для ускорения регулярными вол-
нами необходимо обеспечить разрежение спектра плазменных, колеба-
ний [5], например, путем предварительной модуляции пучка [13, 14]. 

В настоящей работе рассмотрена нелинейная теория черенковского 
возбуждения регулярных колебаний в плазме инжектируемым в нее из-
вне модулированным пучком заряженных частиц в условиях, когда ста-
билизация роста амплитуды колебаний определяется обратным влияни-
ем возбуждаемого пучком поля на движении частиц пучка. 

* Доклад не зачи ывался. 



2. Рассмотрим плазменный резонатор медленной волны, образован-
ный отрезком плазменного волновода, поле в котором возбуждается мо-

дулированным пучком электронов. Спектр колебаний резонатора можно 
считать дискретным, если инкремент нарастания мал по сравнению с 
расстоянием ω = k. V между отдельными его линиями: ε << ω. При этом 
эффективность возбуждения резонатора максимальна для колебаний, 
фазовая скорость которых равна скорости пучка. V ( s )

Φ≡Ω s /k s=V. Так как 
kл/L, где L-длина резонатора, то условие ε << ω эквивалентно 

требованию малости времени пролета T≡L/V по сравнению с харак-
терным временем τf ~ε-1 нарастания поля. В этом случае существен-
ное увеличение амплитуды поля в резонаторе может быть обеспечено 
накоплением в нем энергии, теряемой последовательно входящими 
частицами пучка*. Для этого необходимо, чтобы добротность резо-
натора была достаточно большой. 

Самосогласованная система уравнений, описывающи взаимодейст-
вие пучка с плазменным резонатором в рассматриваемых условиях, им* 
ет вид: 

2E|| + 2dΩs 
Е|| + Ωs

2Е | | = - 4 π jв, (1) t2 + 2dΩs t 
+ Ωs

2Е | | = - 4 π 
t jв, (1) 

jв≡ е δ(r)∫dqI(q) • δ[z-Z(τ, q)] • (τ,q); jв≡ 
2πr 

δ(r)∫dqI(q) • δ[z-Z(τ, q)] • (τ,q); 

= eE | |[Z(τ,q): t(τ,q)]; (2) 

q=(t0P0) ; P(τ.q)≡m0 (τ,q) • [ 1 - / c 2 ] - ½ . (3) 
Здесь точкой обозначена производная по τ при фиксированном q; 

t0 - момент влета частицы с импульсом р0; I (q) - ток частиц на входе в 
резонатор. 

Эффективное возбуждение одного резонансного колебания может 
иметь место только при малом тепловом разбросе в пучке, поэтому ниже 
мы будем пренебрегать этим разбросом, считая пучок модулированным 
лишь по плотности. В этом случае I(t0) является периодической 
функцией времени, причем из условия синхронизма V s

Φ=V следует 
равенство ω M = Ω s , где ωм - частота модуляции пучка. 

Считая правую часть (2) известной, можно проинтегрировать (1) и 
найти зависимость от времени поля искомого колебания: 

F ( τ ) = - 2 Ψ 
τ 

dτ'Ψ (τ') 
θ(τ') 

d τ"cos [ τ - τ '+ (τ" τ')], (4) F ( τ ) = - 2 Ψ ∫ dτ'Ψ (τ') ∫ d τ"cos [ τ - τ '+ (τ" τ')], (4) F ( τ ) = - 2 Ψ 
0 

dτ'Ψ (τ') 
0 

d τ"cos [ τ - τ '+ (τ" τ')], (4) 

где введены обозначения 
τ≡Ωst; F≡ eEks ; E | |(r , z, t) = E(τ)coskszΦ(r); τ≡Ωst; F≡ 

m0Ω2
s 

; E | |(r , z, t) = E(τ)coskszΦ(r); 

* В квазилинейном приближении эф ект накопления рассмотрен в р а б х 
[15, 16]. 



Ф(0) =1; µ≡ 4πсе ; S≡∫Ф2(г)гdг; Ф(0) =1; µ≡ 
m0Ω2

sSL 
; S≡∫Ф2(г)гdг; 

θ(τ) = • Ψ(τ); (τ", τ)≡ksZ(τ", τ')-τ"; 
б(τ') -время пролета через резонатор частицы, вошедшей в него в мо-
мент влета τ'. 

Соотношения (3) и (4) представляют собой систему интегро-диффе-
ренциальных уравнений для поля в резонаторе. Учитывая, что при εТ>>1 
амплитуда R и фаза φ поля (F≡ - Rcos(τ φ)) мало меняются за время 
пролета Т, можно проинтегрировать уравнения движения (3). Тогда 
из (4) получим следующую систему уравнений для R и φ: 

d 
[R(n)e i φ ( n )] = µ* 

+ π Ψ(τ')dτ' d(n,τ1) dxexp{[x - τ' + φ(n,τ')]} 
, (5) 

d 
[R(n)e i φ ( n )] = µ* ∫ Ψ(τ')dτ' ∫ 

dxexp{[x - τ' + φ(n,τ')]} 
, (5) dn [R(n)e i φ ( n )] = µ* ∫ Ψ(τ')dτ' ∫ [R(n),φ(n),τ',x] , (5) dn [R(n)e i φ ( n )] = µ* 

- π 
Ψ(τ')dτ' 

0 [R(n),φ(n),τ',x] , (5) 

где µ*≡µ/2π a d(n,τ')≡ [θ(τ'),τ') -смещение на выходе из резонатора 
частицы, вошедшей в него в момент времени τ0 = 2πn+τ'. 

Ниже мы рассмотрим решения системы (5) в простейших предель-
ных случаях сильной и слабой модуляции, релятивистского и нереляти-
вистского пучка. 

3. СИЛЬНО МОДУЛИРОВАННЫЙ ПУЧОК (Ψ(τ )=δ ( τ ) ) 

а) Нерелятивистские энергии (V << c) [17]. 
Сильно модулированный пучок возбуждает резонатор спонтан-

ным черенковским излучением последовательности сгустков. При этом 
на начальной стадии поля сгустков когерентно складываются, в ре-
зультате чего амплитуда поля линейно нарастает со временем: R(τ)= 

4πµNτ (2πN≡ksL). На нелинейной стадии зависимость от времени 
амплитуды и фазы поля определяется уравнениями (5). из которых 
находим максимальную амплитуду и соответствующую фазу поля: 

E m a x = m0V2 • 8 K2(k2
m); E m a x = 

2e|L 

• 

πN 
K2(k2

m); 

2 E ( k 2
m ) - K ( k 2

m ) = 0 , k m 0 , 8 2 6 ; 
φm≡2arcsink m-π/2, 

где Е и К-полные эллиптические интегралы первого и второго рода, 
соответственно. 

Физически насыщение роста амплитуды поля объясняется смеще-
нием сгустка по фазе под действием поля резонатора. При больших ам-
плитудах это смещение настолько велико, что за время пролета сгусток 
успеет совершить половину фазового колебания (αmax = - αmin = π/2), 
побывает в тормозящей и ускоряющей фазах поля и выйдет из резонаюра 

с энергией, равной энергии инжекции. Основанная на этих сооб-
ражениях оценка дает величину Е m а х того же порядка, что и анали-
тический расчет (6). 

Согласно (5), вследствие нарушения когерентности излучения сгу-
стков из-за их фазового движения, амплитуда поля на нелинейной ста-



дни нарастает пропорционально n2/3, a не линейно со временем. Зная 
скорость роста амплитуды, оценим необходимую для достижения Е m а х 
длительность импульса n m a x а также кпд системы 

η≡Wf/W p (W f ≡ 
1 

E2
mπSL (W f ≡ 8π 

E2
mπSL -энергия поля, Wp≡2π × Ω-1

snm - энер-

гия прошедших частиц). Под ставляа сюда значения параметров сис-
темы, найдем: 

η1/N; nmaxR3/2
maxµ-1, (7) 

где численные множители порядка единицы опущены, поскольку дли-
тельность импульса n m определена лишь по порядку величины. 

б) Релятивистские энергии (γ≡(1 - β0
2) -½ >> 1) 

В этом случае из уравнений для амплитуды и фазы поля (5) име-
ем: 

Emax ={ 

m0с2γ 4γ2 

• K2(k2
m) γ2 << N; 

(8) Emax ={ |e|L πN 
• K2(k2

m) γ2 << N; 
(8) Emax ={ 4m0c2γ 

γ2 >> N . 
(8) Emax ={ 

|e|L 
γ2 >> N . 

(8) 

Таким образом, максимум высокочастотного потенциала, наводимо-
го пучком в резонаторе, равен учетверенной энергии пучка. Для дли-
тельности импульса n m и кпд η генератора в этом случае имеем: 

n m a x 
γ½ ; 

n m a x N3/2µ 
; η(γ/N)½ (9) 

в) Изложенная выше теория взаимодействия модулированного пуч-
ка с плазменным резонатором применима в условиях первого экспери-
мента по коллективному взаимодействию электронного пучка с плазмой 

[18] ( I 1 А ; nр7 • 1010 см - 3 ; β0½; λд5 см; N=4). Для этих параметров 
µ~2 • 1 0 - 5 , εΩ4πµNΩ ~ 10-3Ω, ω ~ Ω 

2N ~0,1Ω. Измеренная 
в эксперименте ширина линии оказалась сравнимой с ω. Причина 
этого, повидимому, заключается в неоднородности плазмы по длине 
резонатора, нарушающей синхронизм между пучком и волной 
[19,20]. При отсутствии неоднородности на установке с такими па-
раметрами можно было бы получить E m a x 3 k V / C M и ( ε ) m а х 15keV. 
Повидимому, именно неоднородность плазмы по длине установки и, воз-
можно, большая частота соударений, не позволили наблюдать коллек-
тивное возбуждение плазмы релятивистским модулированным пучком 
[21]. Оценка ожидаемой величины напряженности поля и потерь энер-
гии для этого эксперимента затруднена отсутствием данных о парамет-
рах пучка и плазмы. Можно лишь утверждать, что для характерных 
размеров секции и длин волн (L ~ 102

см, λ ~ 10см, 7 ~ 10, I0,1А) 



E m a x ~ 200kV/см, а соответствующая длительность импульса равна 
τ~7 • 10-6ceк(Q > n m 2 • 104). 

4. Heмодулированный пучок (Ψ(τ) = 1). 
В этом случае на начальной стадии развития неустойчивости эф-

фект усилия модуляции пучка полем резонатора приводит к экспонен-
циальному росту амплитуды поля со временем с инкрементом 

ΕL ≡ √3 ( Π N µ ) ΩS. ΕL ≡ 

24/3 
( Π N µ ) ΩS. 

На нелинейной стадии, когда смещение частиц пучка под действием 
поля растет, уравнение (5) для амплитуды поля принимает следую-
щий вид: 

d 
R 3 / 2=6√2 µ* 

π/2 dθsinθ[sinα-(θ)-shα+(θ)], (10) d 
R 3 / 2=6√2 µ* ∫ dθsinθ[sinα-(θ)-shα+(θ)], (10) 

dn R
3 / 2=6√2 µ* ∫ dθsinθ[sinα-(θ)-shα+(θ)], (10) 

dn R
3 / 2=6√2 µ* 

0 
dθsinθ[sinα-(θ)-shα+(θ)], (10) 

где зависимость фаз а вылета ускоренных (+) и замедленных ( - ) 
частиц от фазы влета определяется уравнениями: 

√2R{πN+θ - arcsin[sinθchα+(θ)]} = 
α+(θ) dx 

;(11) √2R{πN+θ - arcsin[sinθchα+(θ)]} = ∫ dx 
;(11) √2R{πN+θ - arcsin[sinθchα+(θ)]} = ∫ 

(1-sin2θch2x)½ ;(11) √2R{πN+θ - arcsin[sinθchα+(θ)]} = 
0 (1-sin2θch2x)½ ;(11) 

√2R{πN + - arcsinθ[sinθcosα_(θ)]}= 
α- (θ) dx . 

√2R{πN + - arcsinθ[sinθcosα_(θ)]}= ∫ 
dx . 

√2R{πN + - arcsinθ[sinθcosα_(θ)]}= ∫ (1 - sin2θcos2x)½ 

. 
√2R{πN + - arcsinθ[sinθcosα_(θ)]}= 

0 
(1 - sin2θcos2x)½ 

. 

Эти соотношения справедливы при условии монотонного изменения 
фазы частицы и в области значений амплитуд, определяемой неравен-
ствами (µN2)2 << R << N - 2 , дают экспоненциальный рост амплитуды 
поля со временем с показателем экспоненты 

ΕNL≡ 1 µπ2N2. ΕNL≡ 

2 

µπ2N2. 

Максимальная амплитуда поля в этом случае R m a x N-2 отлича-
ется от (6) численным множителем порядка 0,1. Физически уменьшение 
(на нелинейной стадии) скорости роста поля и его максимальной ам-
плитуды для немодулированного пучка объясняется тем, что в этом 
случае нарастание амплитуды определяется разностным эффектом тор-
можения и ускорения частиц, попадающих в соответствующие значения 
фазы поля при входе в резонатор. Сокращение характерного времени 
нарастания амплитуды поля с увеличением глубины модуляции пучка 
качественно объясняет наблюдавшуюся в [22] сильную зависимость 
спектральной плотности генерируемого пучком поля от уровня мощно-
сти модуляции. 

5. Рассмотренный выше эффект фазового скольжения частиц пучка 
од действием возбуждаемого ими поля ограничивает рост амплитуды 
оля только при малых плотностях пучка. Для плотных пучков стаби-

лизация неустойчивости может быть обусловлена нелинейным эффектом 



cависимости частоты (фазовой скорости) волны от ее амплитуды [5,23]. 
Hиже мы рассмотрим этот эффект для моноэнергетического релятивист-

ского (γ >> 1) пучка, движущегося сквозь холодную электронную плаз-
му*. 

Исходная система уравнений состоит из уравнений движения для 
ЧАСТИЦ пучка и плазмы в переменных Лагранжа и уравнения Пуассона: 

2 

Zα (t,q) = eα E[Zα (t,q); t]; (12) 
t2 Zα (t,q) = mα 

E[Zα (t,q); t]; (12) 

E(z , t )=4π 
Σeα ∫dq'f(q ' )  • [z - Zα (t,q')], (13) z 

E(z , t )=4π 
Σeα ∫dq'f(q ' )  • [z - Zα (t,q')], (13) z 

E(z , t )=4π 
α 

∫dq'f(q ' )  • [z - Zα (t,q')], (13) 

где α≡(р, b, i); f α (q) - сохраняющаяся вдоль траектории функция 
распределения частиц сорта л по координатам и импульсам 

(q≡(z0p0); mα ≡ m0α, • (1 - β2
α)-3/2). 

Эти уравнения эквивалентны системе из двух нелинейных интегро-
дифференциальных уравнений для 
α (t,q)≡Zα ( t , q ) - q - V α t, 
которая при малом тепловом разбросе (q≡z0) и отсутствии пересече-
ния траекторий (| g | << λ) сводится к следующей системе дифферен-
циальных уравнений с малой нелинейностью [24]: 

(γ3 2 
+ ω2

b) b(t ,q)=ω2
p p(t,q + Vbt;) (14) (γ3 

t2 + ω2
b) b(t ,q)=ω2

p p(t,q + Vbt;) (14) 

( 2 

+ ω2
p) p(t,q) = ω2

b b(t,q - Vbt) + 3 ω2
p p • 2

p 
; (15) 

( 
t2 + ω2

p) p(t,q) = ω2
b b(t,q - Vbt) + 

2 
ω2

p p • 

с2 ; (15) 

f i≡niδ(p0); f b≡npδ(Po); f b≡npδ[р0 - p(Vb)]; 
ω2

α ≡ 4πе2 • m0α
-1 • nα; ni=nр + nь. 

Исключая b(t, q) из (15) с помощью (14), для медленно меня-
ющих со временем амплитуды R и фазы φ колебаний электронов плаз-
мы k0 p(t,q)≡R(t)cos[ωpt-k0q + φ(t)], в первом приближении совпа-
дающих с амплитудой и фазой поля, получим следующую систему 
уравнений в полных производных: 

2i d3 
[Re iφ] - 3 d2 

[R3eiφ] - µReiφ = O, (16) 2i 
dτ3 [Re iφ] -

2 dτ 2 [R3eiφ] - µReiφ = O, (16) 

τ≡ ωpt; µγ3≡nь/nр; k0Vb≡ωp. 

Исследование этого уравнения показывает, что максимальная ам-
плитуда поля с точностью до численного коэффициента порядка едини-
цы определяется выражением R m a x = µ << 1. Нелинейным уходом резо-
нансной частоты пучка при этом можно пренебречь, если плотность 

* Излагаемые ниже результаты получгны авгсром совместно с А. П. Толстолужсчим. 



его не слишком мала: nьγ >> nр, а условие пренебрежения тепловым 
разбросом плазмы (V т pε - 1 << λRm/2π) эквивалентно неравенству Vтp << µ½c, 
которое мы также предполагаем выполненным. 

Легко видеть, что изложенное выше рассмотрение применимо к 
описанию неустойчивости электронного пучка, движущегося относитель-

но ионного фона, рассмотренной Будкером [25] (m ≡ n1
+ 

• 
m , 

(m ≡ n1
-

• M 

, 

где 

n1
+ и n1

- —плотности ионов и электронов в системе отсчета, где 
электроны покоятся). 

Автор выражает искреннюю признательность Я. Б. Файнбергу за 
постоянный интерес к работе и ценные дискуссии. 
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