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Abstract: In this work, we study the time-dependent behavior of quantum correlations of a system of

an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–

Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure

of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method

to obtain its eigenstate and continuous energy eigenvalues. Using the expression for the eigenstate,

we further derive the most general expression for the generating function as well as the out-of-time-

ordered correlators (OTOCs) for the given system using this formalism. Further, considering the

time-dependent coupling and frequency of the quantum inverted oscillator characterized by quench

parameters, we comment on the dynamical behavior, specifically the early, intermediate and late

time-dependent features of the OTOC for the quenched quantum inverted oscillator. Next, we study

a specific case, where the system of an inverted oscillator exhibits chaotic behavior by computing the

quantum Lyapunov exponent from the time-dependent behavior of OTOCs in the presence of the given

quench profile.

Keywords: quantum Mechanics, out-of-equilibrium physics, statistical mechanics, condensed Matter

physics, non-equilibrium physics, quantum chaos.

1. Introduction

In theoretical high-energy physics, the underlying concept of the Feynman path in-
tegral is applicable to quantum systems for which the vacuum state in the far future is
exactly the same as in the far past. Clearly, the Feynman path integral is not applicable for
quantum systems with a dynamical background. The Schwinger–Keldysh [1–5] formalism
appears within the framework of quantum mechanics, where the physical system is placed
on a dynamical background, i.e., quantum dynamics of the system is far from equilibrium.
Schwinger–Keldysh formalism seems to be the most formidable choice to evaluate gen-
erating functionals and correlation functions in out-of-equilibrium quantum field theory
and statistical mechanics [6]. It unravels the prodigious toolbox of equilibrium quantum
field theory to out-of-equilibrium problems. There are large numbers of applications of out-
of-equilibrium dynamics in various fields, for instance, condensed matter physics [7–11],
cosmology [12–15] (in the context of the primordial universe), black hole physics [16,17],
high-energy physics (theory and phenomenology) [18–22], and more.

The time-dependent states for dynamical quantum systems can be computed by
solving the Time-Dependent Schrödinger Equation (TDSE). One of the ways to solve a TDSE
is by constructing the Lewis–Riesenfeld invariant operator and this is often termed as an
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invariant operator representation of the wavefunction [23]. Some works following this
approach to compute the time-dependent eigenstates are reported in refs. [24–28].

The highly complex behavior of quantum systems can often be studied using a simple
model of a Standard Harmonic Oscillator (SHO). The sister to the SHO is the inverted
harmonic oscillator (IHO) that has remarkable properties which are applicable throughout
many disciplines of physics [13,20,29–48]. The quantum treatment of the IHO is exactly
solvable, similar to that of the SHO. Unlike the SHO, the IHO can be used to model
complicated types of out-of-equilibrium systems.

A key idea for quantifying the propagation of detailed quantum correlation at out-of-
equillbrium, information theoretic scrambling via exponential growth, and quantum chaos
can be easily studied via out-of-time-ordered correlators or simply “OTOCs” [49]. OTOCs
have been widely used as a tool to probe quantum chaos in quantum systems [50–57]. In
a more general sense, an OTOC is a mathematical tool whereby one can easily quantify
quantum mechanical correlations at out-of-equilibrium. Motivated by the work of [58],
Kitaev [59] emphasized arbitrarily ordered 4-point correlation functions, as “out-of-time-
ordered correlators”, in constructing analogies between effective field theories, making the
connection between superconductors [60] and black holes [61,62].

Most of the recent works in many-body physics focus on studying dynamics of
quantum systems where some time-dependent parameter is varied suddenly or very
slowly. This is commonly referred to as a quantum quench. The quench protocol is said
to drive any out-of-equilibrium system and in turn can trigger the thermalization process
of these systems, [63–65]. The effects of quenches in quantum systems have even been
explored experimentally for cold atoms in [66–75]. A few of the works focusing on OTOCs
in the context of quenched systems are [76–80].

Motivated by all these ideas, in this work, we compute an OTOC for inverted oscilla-
tors having a quenched coupling and frequency, using Schwinger–Keldysh path integral
formalism. In Section 2, the continuous energy eigenvalues and normalized wavefunc-
tion for a generic Hamiltonian of a time-dependent inverted oscillator are computed [81]
using the Lewis–Riesenfeld invariant method. In Section 3, we construct the action for
the Lagrangian of a generic time-dependent inverted oscillator. Using this action, we
derive the generating function for the inverted oscillator in Section 4. We modify this
generating function using the Schwinger–Keldysh path integral formalism in Section 5,
following the advice of [6]. Using this generating function and Green’s functions computed
in Appendix B, we finally compute the OTOC for inverted oscillators in terms of Green’s
functions in Section 6. In Section 7, we numerically study the dynamical behavior of the
OTOC by quenching coupling and frequency of the inverted oscillator. We also compute
the Lyapunov exponent and comment on the chaotic behavior of the inverted oscillator in
this section. Section 8 serves as the final section of our study before providing pertinent
future possibilities and directions.

2. Formulation of Time-Dependent Generalized Hamiltonian Dynamics

In this section, we explicitly discuss the crucial role of a system described by a time-
dependent quantum mechanical inverted oscillator in a very generic way to deal with
path integrals and different types of quantum correlation functions (anti-time-ordered,
time-ordered, and out-of-time-ordered). A generalized Hamiltonian for a time-dependent
inverted oscillator can be written as

Ĥ(t) =
1

m(t)
p̂2 − 1

2
m(t)Ω2(t)q̂2 +

1

2
f (t)( p̂q̂ + q̂ p̂). (1)

Here, q̂(t) denotes the time-dependent generalized coordinate, m(t) is the time-dependent
mass, Ω(t) is the time-dependent frequency, and f (t) is a time-dependent coupling param-
eter. In general, these time-dependent parameters can be anything. It is significant to note
that, in contrast to the SHO, the second term, which represents the potential energy of the
inverted harmonic oscillator, has a negative sign. The main reason for the negative sign
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in the potential energy is that for an inverted oscillator, the harmonic oscillator frequency,
ω(t), is replaced by iω(t). We can write the Euler–Lagrange equation for the coordinate
q̂(t) of the inverted oscillator as

(

Dt − Ω
2
e f f

)

q̂(t) = 0, (2)

where the differential operator Dt is defined as

Dt =

(

d2

dt2
+

d ln m(t)

dt

d

dt

)

. (3)

The squared effective time-dependent frequency in Equation (2) is defined by

Ω
2
e f f (t) = Ω

2(t) + f 2(t) +
ṁ(t)

m(t)
f (t) + ḟ (t). (4)

where the dot corresponds to the differentiation with respect to time “t”. Then, the Euler–
Lagrange equation in (3) gives the equation of motion in the simplified form as

¨̂q +
ṁ

m
˙̂q − Ω

2
e f f (t)q̂ = 0. (5)

Next, the TDSE for the abovementioned time-dependent system can then be written as

Ĥ(t)Ψ(q, t) = i
∂Ψ(q, t)

∂t
. (6)

Now, to derive the eigenstates and energy eigenvalues of the above TDSE, we will use the
Lewis–Riesenfeld invariant operator method in the next section, which will be an extremely
useful tool to deal with the rest of the problem.

Lewis–Riesenfeld Invariant Method

In this subsection, we apply the technique of the Lewis–Riesenfeld invariant operator
to calculate the time-dependent eigenstates and energy eigenvalues for the generalized
Hamiltonian of inverted oscillators as given in Equation (1).

The Lewis–Riesenfeld invariant method is advantageous for obtaining the complete
solution of an inverted harmonic oscillator with a time-dependent frequency having PT
symmetry. In this subsection, we will construct a dynamical invariant operator to transition
the eigenstates of the Hamiltonian from the prescribed initial to final configurations in
arbitrary time. Let us assume an invariant operator Î(t), which is a hermitian operator and
explicitly satisfies the relation

dÎ(t)

dt
=

1

i
[ Î(t), Ĥ(t)] +

∂ Î(t)

∂t
, (7)

so that its expectation values remain constant in time. Here, Ĥ(t) is the time-dependent
Hamiltonian of our system defined earlier in Equation (1). If the exact form of the invariant
operator, Î(t), does not contain any time derivative operators, it allows one to write the
solutions of the TDSE as

ψn(q, t) = eiµn(t)ϕn(q, t). (8)

Here, ϕn(q, t) is an eigenfunction of Î(t) with eigenvalue n, and µn(t) is the time-dependent
phase function. Note that for the sake of simplicity, we are writing q̂ as q and the same
for other operators. This means that we further remove all hats. Next, we consider a
time-dependent linear invariant operator for the system in the form

I(t) = α(t)q + K(t)p + γ(t), (9)
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where α(t), K(t), and γ(t) are the time-dependent real functions. Using Equation (7),
we obtain

α̇(t) + α(t) f (t) = −K(t)m(t)Ω2(t)

K̇(t)− K(t) f (t) = − α(t)

m(t)

γ̇(t) = 0.

(10)

From Equation (10), one can find the following second-order differential equation:

K̈ +
ṁ

m
K̇ − Ω

2
e f f (t)K = 0, (11)

where the squared effective time-dependent frequency was defined in Equation (4) before.
Therefore, we can write Equation (9) as

I(t) = K(t)p − m(t)
[

˙K(t)− K(t) f (t)
]

q. (12)

Now, we intend to find the eigenstate ϕn(q, t) of I(t) using the following eigenvalue
equation:

Iϕn(q, t) = nϕn(q, t) (13)

Here, the eigenstates satisfy the orthonormalization condition, which is ⟨ϕn|ϕn′⟩ = δ(n − n′).
Substituting the expression of I(t) from Equation (12) in the above Equation (13), one can find
the continuous eigenstates of the inverted oscillator:

ϕn = N exp

{

im(t)

2K(t)

[

[K̇(t)− f (t)K(t)]q2 +
2n

m(t)
q

]

}

. (14)

It is very straightforward to calculate the normalizing constant, N, which is given by the
following expression:

N =

√

1

2πK
. (15)

One can find the phase factor by inserting the eigenfunction of the invariant operator in
TDSE and solving the following equation:

µ̇n ϕn =

(

i
∂

∂t
− H

)

ϕn. (16)

Using Equation (8), we can write the wavefunction in the following normalized form:

ψn =

√

1

2πK
eiµn(t) exp

{

im(t)

2K(t)

[

[K̇(t)− f (t)K(t)]q2 +
2n

m(t)
q

]

}

. (17)

Now, to prove that the wavefunctions are always finite, we have to find the integration
over all possible continuous eigenvalues, which is given by

Ψ(q, t) =
∫

∞

−∞

g(n) ψn(q, t) dn. (18)

Here, g(n) is the weight function. It helps one to find which state the system is in. Let us
consider the weight function as a Gaussian function, which is of the following exact form:

g(n) =

√
a

(2π)
1
4

exp

(

− a2n2

4

)

. (19)
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Here, ‘a’ is a real positive constant. Substituting the above form of weight function in
Equation (18) and integrating over all possible continuous eigenvalues, one can write the
wavefunction for inverted oscillator as

Ψ(q, t) =

(

2A(t)

π

)1/4

exp

{

iB2(t) + [iB1(t)− A(t)]q2

}

. (20)

Here, we define the time-dependent functions as

A(t) =

[

K2a2

(

1 − 4y2

a4

)]−1

,

B1(t) =
m(K̇ − f K)

2K
+

2y

K2a4

(

1 + 4y2

a4

) ,

B2(t) =
1

2
tan−1 2y

a2
,

y(t) =
∫ t

0

dτ

m(τ)K2(τ)
. (21)

Now, having obtained the normalization factor, we can write the expression for the energy
of our desired quantum system as

E =

√

2A(t)

π

∫

∞

−∞

Ψ
∗ĤΨ dq. (22)

By inserting Equation (20), Ĥ and conjugate of Equation (20) into Equation (22), one can
show that the time-dependent energy for an inverted oscillator is given by the following
expression:

E =
1

2m(t)

(

B2
1(t)

A(t)
+ A(t)

)

+
1

8

m(t)Ω2(t)

A(t)
+

f (t)B1(t)

2A(t)
. (23)

It is interesting to observe that the energy eigenvalues are independent of n but energy is a
continuous function of time. Furthermore, there is no zero-point energy associated with
this system of inverted oscillator.

3. Evaluation of Action

In this section, we start with a Lagrangian of the inverted oscillator and derive the
representative action for the generalized inverted oscillator. We express the action in terms
of Green’s functions, which are derived in Appendix B. The action thus obtained will be
useful for deriving the generating function of inverted oscillator. Here, it is important to
note that the generating function in the present context physically represents the partition
function in an Euclidean signature.

As Green’s function for inverted oscillator given in Equation (A18) is hyperbolic in
nature, one can use the hyperbolic identities. Inferring from [6], one can then write the
classical field solution for the inverted oscillator as

q̄(t) =
1

G(T)

{

q f G(t − t0) + q0 G(t f − t) +
∫ t f

t0

dt′
[

G(T)Θ(t − t′)G(t − t′)− G(t − t0)G(t f − t′)
]

J(t′)
}

. (24)

The time derivative of this field can be given by

˙̄q =
1

G(T)

[

q f Ġ(t − t0)− q0Ġ(t − t f ) +
∫ t f

t0

dt′[G(T)Θ(t − t′)Ġ(t − t′)− Ġ(t − t0)G(t f − t′)]J(t′)
]

. (25)
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Here, T ≡ t f − t0, such that t0 and t f denote the initial time and final time, respectively.
Also, q̄(t0) = q0 and q̄(t f ) = q f are the initial and final field configurations, respectively.

Applying the boundary condition Ġ(0) = 1, one can find

˙̄q(t0) =
1

G(T)

[

q f − q0Ġ(T)−
∫ t f

t0

dt′ G(t f − t′)J(t′)
]

. (26)

Furthermore, using the hyperbolic identity,

Ġ(T)G(t f − t)− Ġ(T)G(t f − t) = G(t − t0), (27)

we obtain

˙̄q(t f ) =
1

G(T)

[

q f Ġ(T)− q0 +
∫ t f

t0

dt′ G(t′ − t0)J(t′)
]

(28)

In general, the action for any field is given by

S =
∫ t f

t0

[L+ J(t)q(t)]dt. (29)

Here, the term J(t) is an auxiliary time-dependent field and L is the Lagrangian of the
system. For an inverted oscillator, the representative Lagrangian can be written as

L =
1

2
m(t)q̇2 + m(t)ω(t)2q2 − f (t)m(t)q̇q (30)

Substituting Equation (30) with the Euler–Lagrange equation, the equation of motion for
the inverted oscillator then becomes,

m(t)q̈ + ˙m(t)q̇ −
[

m(t)ω(t)2 − f (t) ˙m(t)− m(t) ˙f (t)

]

q = 0 (31)

Substituting Equation (30) in (29), the action for the inverted oscillator can be expressed as

S =
∫ t f

t0

[(

1

2
m(t)q̇2 +

1

2
m(t)ω2(t)q2 − f (t)m(t)q̇q

)

+ J(t)q(t)

]

dt. (32)

Using the equation of motion, i.e., Equation (31) and the definition of classical field
solution as stated in Equation (24), we find the classical limit for the action of inverted
oscillator as

Scl(q0, q f |J) ≡ S(q̄) =
1

2
m(t)q̄ ˙̄q

∣

∣

∣

∣

t f

t0

− 1

2
f (t)m(t)q̄2

∣

∣

∣

∣

t f

t0

+
1

2

∫ t f

t0

dtJ(t)q̄(t). (33)

The final expression for the action can be obtained using Equation (26) and Equation (28),
as given below:

S(q0, q f |J) =
1

2

[

m(t f )
1

G(T)

{

q2
f Ġ(T)− q0q f +

∫ t f

t0

dt′q f G(t′ − t0)J(t′)
}

− m(t0)
1

G(T)

{

q f q0 − q2
0Ġ(T)+

∫ t f

t0

dt′q0G(t f − t′)J(t′)
}]

− 1

2

[

f (t f )m(t f )q
2
f − f (t0)m(t0)q

2
0

]

+
1

2

{

1

G(T)

∫ t f

t0

dt[G(t − t0)q f + G(t f − t)q0]J(t)

− 1

G(T)

∫ t f

t0

dt
∫ t f

t0

dt′ [Θ(t − t′)G(t f − t)G(t′ − t0) + Θ(t′ − t)G(t f − t′)G(t − t0)]J(t)J(t′)
}

.

(34)

4. Generating Function

In this section, the prime objective is to derive the expression for the generating
function for the time-dependent inverted oscillator, using the action that we computed in
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the previous section.
The generating function for a particular classical action is given by

Z(q0, t0; q f , t f |J) = C(T) exp
(

iScl(q0, t0; q f |J)
)

, (35)

where T = t f − t0, and C(T) is an overall factor that does not depend on the external source
J. Hence, we can rewrite

Z(q0, t0; q f , t f ) := Z(q0, t0; q f , t f |0) = C(T) exp
(

iScl(q0, t0; q f , t f |0)
)

. (36)

The generating function without the source, i.e., Z(q0, t0; q f , t f ) can be represented by

the transition amplitude ⟨q f | eiĤT |q0⟩ and can even be decomposed, as shown below:

Z(q0, t0; q2, t2) = ⟨q2| e−it2 Ĥeit0 Ĥ |q0⟩ = ⟨q2| e−it2 Ĥeit1 Ĥe−it1 Ĥeit0 Ĥ |q0⟩

=
∫

∞

−∞

dq1 ⟨q2| e−it2 Ĥeit1 Ĥ |q1⟩ ⟨q1| e−it1 Ĥeit0 Ĥ |q0⟩

=
∫

∞

−∞

dq1Z(q1, t1; q2t2|0)Z(q0, t0; q1, t1|0)

(37)

Applying the composition law shown in Equation (37), we can rewrite Equation (35) as
∫

∞

−∞

dq1Z(q1, t1; q2t2|0)Z(q0, t0; q1, t1|0) = C(t1 − t0)C(t2 − t1)e
i(Scl(q0,t0;q1,t1)+Scl(q1,t1;q2,t2)) (38)

From Equation (34), we can write the action as

Scl(q0, t0; q f , t f |0) =
Ġ(t f − t0)

[

(m(t f )q
2
f + m(t0)q

2
0

]

−
[

m(t f ) + m(t0)

]

q f q0

2G(t f − t0)
− 1

2

[

f (t f )m(t f )q
2
f − f (t0)m(t0)q

2
0

]

. (39)

If one considers that the system undergoes a quantum dynamical event from q0 to q1 and
q1 to q2, one can use Equation (39) to find the sum of actions obtained from the classical
solution. It can then be shown that

Scl(q0, t0; q1, t1|0) + Scl(q1, t1; q2, t2|0) =
N

2G(t1 − t0)G(t2 − t1)
− 1

2

[

f (t2)m(t2)q
2
2 − f (t0)m(t0)q

2
0

]

, (40)

where the normalization factor N is given by the following expression:

N = G(t2 − t0)q
2
1 + G(t2 − t1)Ġ(t1 − t0)m(t0)q

2
0 + G(t1 − t0)Ġ(t2 − t0)m(t2)q

2
2

− q1

{

[m(t1) + m(t0)]q0G(t2 − t1) + [m(t1) + m(t2]q2G(t1 − t0)

}

. (41)

Using algebraic manipulation, one can rewrite the expression for the normalization factor
N as

N = G(t2 − t0)m(t1)

[

q1 −
2q1[m(t1) + m(t0)]G(t2 − t1)q0 + [m(t2) + m(t1)]q2G(t1 − t0)

2m(t1)G(t2 − t0)

]2

+ G(t2 − t1)Ġ(t1 − t0)m(t0)q
2
0

+ G(t1 − t0)Ġ(t2 − t1)m(t2)q
2
2 −

[

[m(t1) + m(t0)]G(t2 − t1)q0 + [m(t2) + m(t1)G(t1 − t0)

]2

2m(t1)G(t2 − t0)
. (42)
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Note that to avoid long equations, henceforth, we denote

[

q1 −
2q1[m(t1) + m(t0)]G(t2 − t1)q0 + [m(t2) + m(t1)]q2G(t1 − t0)

2m(t1)G(t2 − t0)

]2

≡
(

q1 . . .

)2

To find the generating function using Equation (38), one needs to evaluate integration
over q1. We therefore rearrange the terms in the above equation as follows:

N − G(t2 − t1)m(t1)(q1 . . . )2 =

1
2m(t1)G(t2−t0)

(

2m(t0)m(t1)G(t2 − t0)G(t2 − t1)Ġ(t1 − t0)q
2
0 + 2m(t1)m(t2)G(t1 − t0)Ġ(t2 − t1)G(t2 − t0)q

2
2

−m2(t1)G
2(t2 − t1)q

2
0 − 2m(t1)m(t0)G

2(t2 − t1)q
2
0 − m2(t0)G(t2 − t1)q

2
0 − m2(t2)G

2(t1 − t2)q
2
2

−2m(t2)m(t1)G
2(t1 − t0)q

2
2 − m2(t1)G

2(t1 − t0)q
2
2 − 2q0q2G(t1 − t0)G(t2 − t1)[m(t1) + m(t0)][m(t2) + m(t1)]

)

.

(43)

The hyperbolic relations in terms of Green’s function and its time derivatives are given be-
low:

G(t2 − t0)Ġ(t1 − t0)− G(t2 − t1) = Ġ(t2 − t0)G(t1 − t0)

G(t2 − t0)Ġ(t2 − t1)− G(t1 − t0) = Ġ(t2 − t0)G(t2 − t1).
(44)

Using these hyperbolic relations, one can further simplify Equation (43) and write it in the
present form:

N − G(t2 − t1)m(t1)

(

q1 . . .

)2

= 1
2m(t1)G(t2−t0)

{

2m(t0)m(t1)G(t2 − t1)Ġ(t2 − t0)G(t1 − t0)q
2
0

+2m(t1)m(t2)G(t1 − t0)Ġ(t2 − t0)G(t2 − t1)q
2
2 − [m2(t1) + m2(t0)]G

2(t2 − t1)q
2
0

−[m2(t1) + m2(t2)]G
2(t1 − t0)q

2
2 − 2q0q2G(t1 − t0)G(t2 − t1)[m(t1) + m(t0)][m(t2) + m(t1)]

}

.

(45)

Using the above expression, the sum of classical actions in Equation (40) can be
simplified to the following form:

Scl(q0, t0; q1, t1|0) + Scl(q1, t1; q2, t2|0) =

Scl(q0, t0; q2, t2|0) +
G(t2 − t0)m(t1)

2G(t1 − t0)G(t2 − t1)

[

q1 − . . .

]2

+
q2q0

2G(t2 − t0)

[

m(t1)
m(t0)m(t2)

m(t1)

]

−

{[

m2(t1)+m2(t0)
m(t1)

]

G2(t2 − t1)q
2
0+

[

m2(t1)+m2(t2)
m(t1)

]

G2(t1 − t0)q
2
2

}

4G(t2 − t1)G(t1 − t0)G(t2 − t0)
.

(46)

The generating function of Equation (38) can then be evaluated as

Z(q2, t2; q0, t0|0) = C(t1 − t0)C(t2 − t1)e
iScl(q0,t0;q2,t2|0) exp (R)

∫

∞

−∞

dq1 exp

[

iG(t2 − t0)m(t1)

2G(t1 − t0)G(t2 − t1)

{

q2
1 − . . .

}]

.

(47)

Here, the factor R in the exponent is given by

R =

[

i

{ q0q2

[

m(t1)− m(t0)m(t1)
m(t1)

]

2G(t2 − t0)
−

{[

m2(t1)+m2(t0)
m(t1)

]

G2(t2 − t1)q
2
0+

[

m2(t1)+m2(t2

m(t1)

]

G2(t1 − t0)q
2
2

}

4G(t2 − t1)G(t1 − t0)G(t2 − t0)

}

]

. (48)

Solving the integral over q1 in Equation (47), we obtain
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Z(q2, t2; q0, t0|0) = C(t1 − t0)C(t2 − t1)e
iScl(q2,t2;q0,t0|0) exp (R)

√

2πiG(t2 − t1)G(t1 − t2)

G(t2 − t0)m(t1)
. (49)

Using Equation (36), one can evaluate the LHS of the above equation, and hence, we write

C(t2 − t0)e
iScl(q2,t2;q0,t0|0) = C(t1 − t0)C(t2 − t1)e

iScl(q2,t2;q0,t0|0) exp (R)

√

2πiG(t2 − t1)G(t1 − t2)

G(t2 − t0)m(t1)
.

(50)

From the above equation, we can easily find

C(T) = exp (−R)

√

m(t1)

2πiG(T)
(51)

where G(T) = G(t f − t0) is Green’s function. Finally, substituting Equation (51) in
Equation (47), the final expression for the generating function of the inverted oscillator is

Z(q2, t2; q0, t0|0) =
√

m(t1)
√

2πiG(T)
exp

[

i

{

−q1q2

{

m(t1)− m(t0)m(t2)
m(t1)

}

2G(t2 − t0)

+

{[

m2(t1)+m2(t0)
m(t1)

]

G2(t2 − t1)q
2
0 +

[

m2(t1)+m2(t2)
m(t1)

]

G2(t1 − t0)q
2
2

}

4G(t2 − t1)G(t1 − t0)G(t2 − t0)

}

]

eiScl(q2,t2;q0,t0|0).

(52)

5. Schwinger–Keldysh Path Integral

In this section, we give a brief idea of how the Feynman path integral leads to the
Schwinger–Keldysh path integral for non-equilibrium systems. Moreover, we study in detail
the generating function using the Schwinger–Keldysh path integral for inverted oscillators.
Note that we follow the advice given in ref. [6] for an easy comparison.
The propagation function or generating function of a Feynman path integral can be ex-
pressed as

Z(q0, t0; q, t|0) =
∫ q(t)=q

q(t0)=q0

Dq(·) e
∫ t

t0
L(q(t′)) dt′

. (53)

In Feynman’s path integral formalism, one can calculate the moments of distribution
by introducing an auxiliary variable (J) and taking the derivative of the generating function
with respect to J. The one-point amplitude is then given by

⟨q f | e−iĤt f q̂(t1)e
iĤt0 |q0⟩ = −i

δ

δJ(t1)
Z(q0, q f |J)

∣

∣

∣

∣

J=0

. (54)

For multiple-field configurations, Z(q0, q f |J) could generate the amplitude of time-ordered
products of fields:

⟨q f | e−iĤt f T (q̂(t1) . . . q̂(tn)e
iĤt0 |q0⟩ = (−i)n δn

δJ(t1) . . . δJ(tn)
Z(q0, q f |J)

∣

∣

∣

∣

J=0

. (55)

Here, T represents the time-ordering symbol. For out-of-equilibrium systems like the
inverted oscillator, although we need to compute such correlators, we cannot use time-
ordering and hence must use some other kind of formalism. The Schwinger–Keldysh
contour facilitates refining to a time-folded contour and hence provides a path integral
representation of the out-of-time-ordered correlators. In Figure 1, the four legs are denoted
by each time stamp t1, t2, t3, t4 and we have taken the past-turning point in the contour at



Symmetry 2024, 16, 1308 10 of 28

time t1 and future-turning point at certain time t. Now, for the action of an operator, e.g.,
θ at t0, at a later time t1 > t0, it must be related by the usual Heisenberg evolution with
unitary time evolution operator U(t, t0), i.e.,

θ(t) = U(t, t0)θ(t0)U
†(t, t0). (56)

Figure 1. A schematic representation of Schwinger–Keldysh contour for the correlator functions with

temporal ordering.

The source-free Feynman path integral is nothing but an evolution operator and it is
related to the Schrödinger picture wavefunction if ψ(q) = ⟨q|ψ⟩. Thus, we can write

Ψ(q, t) =
∫

∞

−∞

dq0⟨q|Û(t − t0)|q0⟩⟨q0|ψ⟩ =
∫

∞

−∞

dq0 ψ(q0)
∫ qt

q0

Dq(·)e
∫ t

t0
dt′ L(q(t′))

. (57)

Note that the transportation event can be written as ⟨q|U(t − t0) |q0⟩; this mathematical
expression tells us the history of propagation event from q0 to q.

When we consider a special case that the wave density matrix ρ̂ = |q0⟩ ⟨q0| (ground state)
is a pure state with definite coordinates, then the one-point correlator can be written as

T (q̂(t1) eiĤt0 ρ̂ e−iĤt0) = ⟨q0| e−iĤt0 q̂(t1) eiĤt0 |q0⟩ . (58)

On rewriting the above equation by introducing the identity operator ρ̂, we can write
the one-point correlator as

T (q̂(t1) eiĤt0 ρ̂ e−iĤt0) =
∫

∞

−∞

dq f

∫

∞

−∞

dq0

∫

∞

−∞

dq′0 ⟨q f | e−iĤt f q̂(t1) eiĤt0 |q0⟩ ⟨q0| ρ̂ |q′0⟩ ⟨q′0| e−iĤt0 eiĤt f |q f ⟩ . (59)

Using Equation (54), one can then write

T (q̂(t1) eiĤt0 ρ̂ e−iĤt0) = (−i)
δ

δJ(t1)

∫

∞

−∞

dq f

∫

∞

−∞

dq0

∫

∞

−∞

dq′0 ρ(q0, q′0) Z(q0, q f |J)Z(q′0, q f |J′)∗
∣

∣

∣

∣

J=J′=0

. (60)

Hence, we can define the generating function corresponding to the Schwinger–Keldysh
path integral by comparing the above equation with Equation (58) as

Z(J, J′) =
∫

∞

−∞

dq f

∫

∞

−∞

dq0

∫

∞

−∞

dq′0 ρ(q0, q′0) Z(q0, q f |J)Z(q′0, q f |J′)∗. (61)
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In Equation (61), if the state is pure, i.e., ρ̂ = |ψ⟩ ⟨ψ|, then we can factorize the double
integral over q0, that is, the initial field configuration, as shown below:

∫

∞

−∞

dq0

∫

∞

−∞

dq′0 ρ(q0, q′0) Z(q0, q f |J)Z(q′0, q f |J′)∗

=

(

∫

∞

−∞

dq0 ⟨q0|ψ⟩Z(q0, q f |J)
)(

∫

∞

−∞

dq′0 ⟨q′0|ψ⟩ Z(q′0, q0|J′)
)∗ (62)

One can rewrite the above equation as

∫

∞

−∞

dq0

∫

∞

−∞

dq′0 ρ(q0, q′0) Z(q0, q f |J)Z(q′0, q f |J′)∗ = Ψ(q f |J)Ψ(q f |J′)∗, (63)

where we define

Ψ(q f |J) =
∫

∞

−∞

dq0 ⟨q0|0⟩ Z(q0, q f |J). (64)

Now, by using the wavefunction (18) for the ground state of the inverted oscillator given by

⟨q|0⟩ =
√

a

(2π)
1
4

(

1

2πK(t)

)
1
2

e

−q2

2x2
0 , (65)

and the density matrix ρ̂ = |0⟩ ⟨0|, we can express the generating function in its factorized
form:

Z(J, J′) =
∫

∞

−∞

dq f Ψ(q f |J)Ψ(q f |J′)∗. (66)

Next, by using the equation for classical solution for the action given in Equation (34), we
can write

Ψ(q f |J) =
√

a

(2π)
1
4

(

1

2πK(t)

)
1
2
√

m(t1)
√

2πG(T)
exp

[

i

2G(T)

[

m(t f )Ġ(T)q2
f − G(T) f (t f )m(t f )q

2
f

+

[

m2(t1)+m2(t f )

m(t1)

]

G(t1 − t0)q
2
f

2G(t f − t1)
+ [m(t f ) + 1]

∫ t f

t0

dt′q f G(t′ − t0)J(t′)

−2
∫ t f

t0

dt
∫ t f

t0

dt′Θ(t − t′)G(t f − t′)G(t′ − t0)

]

J(t)J(t′)

]

χ(q f |J).

(67)

Here, χ(q f |J) denotes the contribution of integration over the initial field configuration,
i.e., q0. We compute this integral’s contribution in Appendix A. Inserting Equation (A6) in
Equation (67), one can show that

Ψ(q f |J) =
√

a

(2π)
1
4

(

1

2πK(t)

)
1
2
√

m(t1)
√

2πG(T)

√

2πiG(T)A−1(t) exp

[

i

2G(T)

{

m(t f )Ġ(T)q2
f − G(T) f (t f )m(t f )q

2
f

+

[

m2(t1)+m2(t f )

m(t1)

]

G(t1 − t0)q
2
f

2G(t f − t1)
+ [m(t f ) + 1]

∫ t f

t0

dt′ q f G(t1 − t0)J(t′)

−2
∫ t f

t0

dt
∫ t f

t0

dt′[Θ(t − t′)G(t f − t′)G(t′ − t0)]J(t)J(t′)
}

]

exp

[−iA−1(t)

8G(T)
×

[{

m(t f ) + m(t0) + m(t1)−
m(t0)m(t f )

m(t1)

}

q f − [m(t0) + 1]
∫ t f

t0

dt G(t f − t)J(t)

]2]

.

(68)

By performing similar steps, one can find Ψ∗(q f |J′).
Substituting Equation (68) in Equation (66), one can write the generating function as



Symmetry 2024, 16, 1308 12 of 28

Z(J, J′) = m(t1)
a√
2π

A
−1(t)

2πK(t)
exp

[

i

2G(T)
[m(t f ) + 1]

∫ t f

t0

dt′ q f G(t1 − t0)[J(t
′)− J′(t′)]

+2
∫ t f

t0

dt
∫ t f

t0

dt′[Θ(t − t′)G(t f − t′)G(t′ − t0)][J
′(t)J′(t′)− J(t)J(t′)]

}]

∫

∞

−∞

dq f exp

{

I(J, J′)
}

.

(69)

Here, I(J, J′) contains the terms having the contribution of the final field configuration,
q f , given by

I(J, J′) =
[

iA−1(t)

8G(T)

({

m(t f ) + m(t0) + [m(t1)−
m(t0)m(t f )

m(t1)

}

q f − [m(t0) + 1]
∫ t f

t0

dt G(t f − t)J(t)

)2]

+

[−iA−1(t)

8G(T)

({

m(t f ) + m(t0) + [m(t1)−
m(t0)m(t f )

m(t1)

}

q f − [m(t0) + 1]
∫ t f

t0

dt G(t f − t)J(t)

)2]

.

(70)

Since A
−1(t), as given in Equation (A2), is real, the q2

f terms in Equation (70) will be

canceled out and the only term that contains q f will be considered for the integration over
the final configuration. The expression of I(J, J′) upon simplification is then given by

I(J, J′) =
4iA−1(t)

8G(T)

[

−q f
[m(t0) + 1]

2

[

m(t f ) + m(t0) + m(t1)−
m(t0)m(t f )

m(t1)

]{

∫ t f

t0

dt′G(t f − t′)[J′(t′)− J(t)]

}

−
[

[m(t0) + 1]

2

∫ t f

t0

dt′G(t f − t′)J(t′)
]2

+

[

[m(t0) + 1]

2

∫ t f

t0

dt′G(t f − t′)J′(t′)
]2
]

(71)

We write the particular term of Equation (71) as

A
−1(t)

[

[m(t0) + 1]

2

∫ t f

t0

dt′G(t f − t′)J(t′)
]2

= A
−1(t)

[m(t0) + 1]2

4

∫ t f

t0

dt
∫ t f

t0

dt′G(t f − t′)G(t f − t)J(t)J(t′). (72)

Now, putting Equation (72) back into Equation (71), and then using the final expression of
I(J, J′) in Equation (69), we can write the generating function for the inverted oscillator as

Z(J, J′) = m(t1)
a√
2π

1
2πK(t)

1
|A(t)| exp

[

i
G(T)

∫ t f

t0
dt
∫ t f

t0
dt′[Θ(t − t′)G(t f − t)G(t′ − t0)][J

′(t)J′(t′)− J(t)J(t′)]
]

×
∫

∞

−∞
dq f exp

[

iA−1(t)
2G(T)

{

[m(t0)+1]
2

[

m(t f ) + m(t0) + m(t1)−
m(t0)m(t f )

m(t1)

]{

∫ t f

t0
dt′G(t f − t′)[J(t′)− J′(t)]

}

q f

+ [m(t0)+1]2

4

[

∫ t f

t0
dt
∫ t f

t0
dt′G(t f − t′)G(t f − t)[J′(t)J′(t′)− J(t)J(t′)]

]

+ [m(t f ) + 1]A(t)
∫ t f

t0
dt′q f G(t′ − t0)

×[J(t′)− J′(t′)]

}]

.

(73)

Next, we define

j =
[m(t0) + 1]

2

[

m(t f ) + m(t0) + m(t1)−
m(t0)m(t f )

m(t1)

]

∫ t f

t0

dt′
[

G(t f − t′)[J′(t′)− J(t)]

]

+ [m(t f + 1]A(t)
∫ t f

t0

dt′ G(t′ − t0)[J(t
′)− J′(t′)]. (74)

Then, the integral over the final field configuration in Equation (73) can be evaluated as

∫

∞

−∞

exp

(

iA−1(t)

2G(t)
jq f

)

dq f = 4πG(T)A(t)δ(j). (75)

.
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Finally, the generating function can be written as

Z(J, J′) = 2m(t1)aG(T)√
2πK(t)

δ

(

∫ t f

t0
dt′[m(t f ) + 1]A(t)G(t′ − t0) +

[m(t0)+1]
2

[

m(t f ) + m(t0) + m(t1)−
m(t0)m(t f )

m(t1)

]

×G(t f − t′)[J(t′)− J′(t)]
)

exp

[

i
2G(T)

{

[m(t0)+1]2

4A(t)

[

∫ t f

t0
dt
∫ t f

t0
dt′G(t f − t′)G(t f − t)[J′(t)J′(t′)− J(t)J(t′)]

]

+2
∫ t f

t0
dt
∫ t f )

t0
dt′[Θ(t − t′)G(t f − t)G(t′ − t0)][J

′(t)J′(t′)− J(t)J(t′)]
}

]

.

(76)

Influence Phase

In the case of a Feynman path integral, the logarithm of the path integral is usually
defined as the “effective action”. Similarly for the Schwinger–Keldysh path integral, the
logarithm of the generating function of the path integral is defined as the “influence phase”.
The influence phase is given by

Φ = −i ln [Z(J, J′)]. (77)

Using Equation (76), the influence phase for the inverted oscillator is given by the following
expression:

Φ = −i ln

[

2m(t1)aG(T)√
2πK(t)

δ

(

∫ t f

t0
dt′[m(t f ) + 1]A(t)G(t′ − t0) +

[m(t0)+1]
2

[

m(t f ) + m(t0) + m(t1)−
m(t0)m(t f )

m(t1)

]

×G(t f − t′)[J(t′)− J′(t)]
)]

+ 1
2G(T)

{

[m(t0)+1]2

4A(t)

[

∫ t f

t0
dt
∫ t f

t0
dt′G(t f − t′)G(t f − t)[J′(t)J′(t′)− J(t)J(t′)]

]

+2
∫ t f

t0
dt
∫ t f

t0
dt′[Θ(t − t′)G(t f − t)G(t′ − t0)][J

′(t)J′(t′)− J(t)J(t′)]
}

.

(78)

6. Calculation of Out-of-Time-Ordered Correlator

In this section, we compute the out-of-time-ordered correlator (OTOC) as an arbitrarily
ordered 4-point correlation function for the inverted oscillator using the invariant operator
method and Schwinger–Keldysh path integral formalism. Note that we closely follow the
calculation of OTOCs for a harmonic oscillator [6] and modify the same for an inverted
oscillator.

To do so, the invariant operator is given in Equation (12) as

I(t) = −1

2

[(

q̂

K(t)

)2

−
(

K(t)P̂ − m(t)(K̇(t)− f (t)K(t))q̂2

)2]

. (79)

The invariant operator given above has the form of the forced harmonic oscillator, which
makes it hard to find the wavefunction ψ(q, t) of the desired system. Because of this
peculiar reason, it is necessary to perform the unitary transformation over the invariant
operator. By doing so, the invariant operator method yields a straightforward calculation
of the wavefunction.
Now, the corresponding unitary operator can be represented as

Û = exp

(

− i
m(t)

K(t)
(K̇(t)− f (t)K(t))q̂2

)

. (80)

If one performs the unitary transformation on the invariant operator of Equation (79), then
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Ī(t) = UIŪ exp

(

− im(t)
K(t)

(K̇(t)− f (t)K(t))q̂2

)

×
[

− 1
2

{(

q̂
K(t)

)2

−
(

K(t)P̂ − m(t)(K̇(t)− f (t)K(t))q̂2

)2}]

× exp

(

im(t)
K(t)

(K̇(t)− f (t)K(t))q̂2

)

⇒ Ī(t) = − 1
2

[(

q̂(t)
K(t)

)2

− K2(t)P̂2

]

.

(81)

The new eigenstate of the invariant operator after the diagonalization will be in the
below given form:

ϕn → ϕ̄n(q̂, t) = Ûϕn

= exp

(

− im(t)

K(t)
(K̇(t)− f (t)K(t))q̂2

)

ϕn. (82)

Then, the eigenvalue equation for the invariant operator becomes

Ī(t)ψn(q̂, t) = nψn(q̂, t)

⇒ −K2(t)

2

∂2 ϕ(n)

∂q2
− 1

2K2(t)
q̂2 ϕn = nϕn.

(83)

The solution to Equation (83) will be in terms of the Weber function:

ϕn(q̂, t) =
1

√

K(t)
exp

(

im(t)

2K(t)
(K̇(t)− f (t)K(t))q̂2

)

Dn

(√
2

q̂2(t)

K(t)

)

(84)

where Dn(x) is the Weber function.
Then, the expression for the eigenstate of the inverted oscillator in Equation (20) is

modified in terms of the Weber function as

⟨q|n⟩ = Ψ(q̂, t) =
1

√

K(t)
exp

(

−inγn(t)

)

exp

(

im(t)

2K(t)
(K̇(t)− f (t)K(t))q̂2

)

Dn

(√
2

q̂2(t)

K(t)

)

. (85)

Here, the phase factor is γn(t) =
∫ t

0
dt′

m(t′)K2(t′) .

Using the form of Green’s function for the inverted oscillator, computed in Appendix B,
one can define the Heisenberg-picture field operator in terms of annihilation and creation
operators:

q̂(t) =
Γ0√

2

(

ζ∗(t) a− + ζ(t) a+

)

. (86)

Here, ζ(t) = eΓ0t and ζ∗(t) = e−Γ0t. Note that Γ0 is the factor used in Green’s function for
the inverted oscillator given in Equation (A18). We can obtain annihilation and creation op-
erators for inverted oscillators by putting ω(t) = iω(t) in the operators for any parametric
oscillator [82]:

a− =
√

i
2

[(

q̂
K(t)

)

+

{

K(t)P̂ − m(t)[K̇ − f (t)K(t)]q̂

}]

a+ =
√

i
2

[(

q̂
K(t)

)

−
{

K(t)P̂ − m(t)[K̇ − f (t)K(t)]q̂

}]

. (87)

From this equation, we can immediately argue that a†
− = ia−; a†

+ = ia+, and obviously,
[a−, a+] = 1 .
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We can express the time evolution of the ground state of the inverted oscillator using
the Heisenberg field operator, q̂(t1), such that t1 > t0:

|ψ(t1)⟩ = q̂(t1) eit0 Ĥ |0⟩
= eit0 Ĥe−it0 Ĥ q̂(t1) eit0 Ĥ |0⟩
= eit0 Ĥ q̂(t1 − t0) |0⟩ . (88)

Similarly, one can evolve the ground state from t1 to t2, using a Heisenberg field operator,
q̂(t2), as shown below:

|ψ(t2)⟩ = q̂(t2) eit0 Ĥ |0⟩
= eit1 Ĥe−it1 Ĥ q̂(t2) eit0 Ĥ |0⟩
= eit0 Ĥ q̂(t2 − t1) |0⟩ . (89)

Using the form of the Heisenberg field operator in Equation (86), the time evolution in
Equation (88) and Equation (89) can be expressed as

|ψ(t1)⟩ = eit0 Ĥ Γ0√
2

ζ(t1 − t0) |1⟩ , (90)

|ψ(t2)⟩ = eit0 Ĥ Γ0√
2

ζ(t2 − t1) |1⟩ . (91)

The two-point correlator for the ground state, ρ̂ = |0⟩ ⟨0|, of the inverted oscillator can be
written as

Tr

(

q̂(t2)q̂(t1)e
it0 Ĥ ρ̂ e−it0 Ĥ

)

= ⟨0| e−it0 Ĥ q̂(t2) q̂(t1)e
it0 Ĥ |0⟩

= ⟨ψ(t2)|ψ(t1)⟩. (92)

Using Equations (90) and (91), the two-point correlator for the ground state of the inverted
oscillator becomes

Tr

(

q̂(t2)q̂(t1)e
it0 Ĥ ρ̂ e−it0 Ĥ

)

=
Γ2

0

2
ζ(t1 − t0) ζ∗(t2 − t1). (93)

The two-point time evolution of the ground state of the inverted oscillator can be written as

|ψ(t1, t2)⟩ ≡ q̂(t2)q̂(t1)e
iĤt0 |0⟩ . (94)

Using the unit operator 1̂ = eiĤt0 e−iĤt0 , remembering that t1,2 > t0, one can rewrite the
above equation as

|ψ(t1, t2)⟩ = eiĤt0 e−iĤt0 q̂(t2)q̂(t1)e
iĤt0 |0⟩ (95)

= eiĤt0 q̂(t2 − t0)q̂(t1 − t0) |0⟩ .

Inserting the form of the Heisenberg field operators, from Equation (86) in Equation (95),
one can show that

|ψ(t1, t2)⟩ = eiĤt0
Γ0√

2
ζ(t1 − t0)

[

ζ∗(t2 − t0)a− + ζ(t2 − t0)a+

]

|1⟩ . (96)
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After operating the annihilation and creation operator on |1⟩, Equation (96) becomes

|ψ(t1, t2)⟩ = eiĤt0
Γ0√

2
ζ(t1 − t0)

[

ζ∗(t2 − t0) |0⟩+
√

2ζ(t2 − t0) |2⟩
]

. (97)

These two-point correlators can be used to compute four-point correlators. An out-of-time-
ordered correlator (OTOC) [54,83] is a 4-point correlating function which can be computed
without time-ordering (we can randomly take the points without considering the flow
of direction of time). Equation (94) expresses the "scattering matrix" interpretation of an
OTOC. If we use t′1, t′2, t1 and t2 instead of t1, t2, t3 and t4, then the OTOC will be

Tr

(

q̂(t′1)q̂(t
′
2)q̂(t2)q̂(t1)e

iĤt0 |0⟩ ⟨0| e−iĤt0

)

= ⟨ψ(t′1, t′2)|ψ(t1, t2)⟩. (98)

Substituting Equation (97) in Equation (98), one can show that

⟨ψ(t′1, t′2)|ψ(t1, t2)⟩ = Γ2(0)
2 ζ(t1 − t0)ζ

∗(t′1 − t0)

[

ζ(t′2 − t0) ⟨0|+
√

2ζ∗(t′2 − t0) ⟨2|
][

ζ∗(t2 − t0) |0⟩+
√

2ζ(t2 − t0) |2⟩
]

= Γ2(0)
2

[

ζ(t1 − t0)ζ
∗(t′1 − t0)ζ(t

′
2 − t0)ζ

∗(t2 − t0) + ζ(t1 − t0)ζ
∗(t′2 − t0)ζ

∗(t′1 − t0)ζ(t2 − t0)

+ζ(t1 − t0)ζ(t2 − t0)ζ
∗(t′1 − t0)ζ

∗(t′2 − t0)

]

.

(99)

The lesser Green’s function in terms of Heisenberg field operators can be expressed as

G<(t1, t2) =

√
2

Γ2
0

Tr

(

q̂(t2)q̂(t1)e
iĤt0 ρ̂e−iĤt0

)

. (100)

Using the two-point correlator for the ground state of the inverted oscillator in Equation (93),
we can express the lesser Green’s function in the below given form:

G<(t1, t2) =
1

Γ0
ζ(t1 − t0)ζ

∗(t2 − t0). (101)

Using the results of [6], the OTOC in Equation (99) can be expressed in terms of the lesser
Green’s function given in Equation (101) and which is given by

Tr

(

q̂(t′1)q̂(t
′
2)q̂(t2)q̂(t1)e

iĤt0 |0⟩ ⟨0| e−iĤt0

)

=
Γ4

0
2

[

G<(t1, t′1)G<(t2, t′2) + G<(t1, t′2)G<(t2, t′1) + G<(t1, t2)G<(t′2, t′1)
]

.

(102)

7. Numerical Results

Further explicitly writing Equation (102) by putting Green’s functions from Equa-
tion (A16), one can obtain the real part of the functional form of the out-of-time-ordered
correlator function: represented as

F (t) =

{

1 + 2e− f (t)tcos

(

m0Ω(t)q2
0t

2

)}

× 1

8

{

m2
0Ω

2(t)q4
0 + f 2(t)

}

. (103)

From the above equation (Equation (103)), it is clear that the exact value of the OTOC is
sensitive to the functional form of frequency and coupling of the oscillator.

In this section, using Equation (103), we numerically evaluate the exact results for
OTOC measures computed by varying the functional forms of coupling, f (t) and frequency,
and the Ω(t) of the inverted harmonic oscillator. Particularly, we choose the coupled
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f (t) and frequency Ω(t) as quenched parameters and parameterize plots by varying
quench protocol.

We begin by considering the mass, m(t) = m0eηt, where m0 is the initial mass and η is a
positive and real number, which measures the rate of increment of mass. The system is very
similar to the generalized Caldirola–Kanai oscillator. Since the final form of Equation (103)
is independent of η, we are not very concerned about this parameter. We further set the
other quantities in Equation (103) as m0 = 1 and q0 = 10.

• In Figure 2, we show the dynamical behavior of the OTOC, F (t) for similar quench
protocols chosen as the coupling, f (t) = f0 tanh(t) and frequency, Ω(t) = Ω0 tanh(t)
of the inverted oscillator. Here, f0 and Ω0 are free parameters. From all subplots, it
is evident that the early-time behavior of the OTOC is characterized by fluctuating
values of the OTOC such that the amplitude of these fluctuations decrease as we move
further in time. We also observe that for time values on the order of magnitude 1,
the OTOC values scale on the order of 103 or 104. Upon approximation, the growth
exhibits an exponential behavior of the form

F (t) = ae(bt) + c

with coefficients which are found, by an exponential fit of the plot, in Figure 2c to be
a = 1.73× 104, b = 0.442, and c = −1.81× 104, all of which are non-zero. The apparent
linear region near the quench can be attributed to the saturation of the exponential
rise that begins after the quench point. At some time beyond the quench point t = 1,
these oscillations are completely damped and we observe a linear rise in the value of
the OTOC characterizing the chaotic nature of the system. Finally, once the dynamics
of the chosen quench protocols drive the system from non-equilibrium to equilibrium,
we observe that the OTOC saturates to a constant value irrespective of time. Now, one
can choose different triggers to thermalize the dynamical behavior of F (t) by varying
the value of the coupling parameter f0. It is evident from the plots that once f0 starts
to increase, the quenched coupling triggers F (t) in such a way that the fluctuations
tend to dampen earlier.

• Particularly in the subplot of Figure 2a, when f0 = 5.0, we observe rapid oscillations
having higher amplitudes in values of F (t) in the region 0 < t < 0.8, marked by a
red background. As we approach the quench point at t = 1, the amplitude of these
oscillation dampens are marked by the yellow region. The chosen quench protocol
then starts to thermalize the system and we observe that the fluctuations completely
die out at t ≈ 1.6. The value of F (t) then rises and saturates for t > 2. This late-time
behavior of the OTOC is marked by a green background.

• In the subplot of Figure 2b, we observe a similar dynamical behavior in the value
of F (t). However, it is evident that at the chosen value of free parameter f0 = 10,
the fluctuations die out at t ≈ 0.8. Hence, the early-time behavior of the OTOC is
characterized by a fluctuating vale of F (t) marked by a red background. This is
followed by a rising value of F (t) for 0.8 < t < 1.2 in the region around the quench
point marked by a yellow background. Finally, beyond the quench point, the rise in the
value of F (t) is followed by thermalization. This is marked by a green background.

• In the subplot of Figure 2c, we increase the free parameter to f0 = 15. We again
observe fluctuations in values of F (t), although dying away at t ≈ 0.5. Most of the
early-time behavior of the OTOC is characterized by fluctuations which dampen for
0 < t < 0.8, marked by a red background. Near the quench point, in the region
0.8 < t < 1.2, we again observe a rising behavior in value of the OTOC, marked by a
yellow background. The late-time behavior evidently shows a trend of thermalization
in the value of F (t), for the region t > 1.2, marked by a green background. For this
parameter, we extract the quantum Lyapunov exponent by plotting the logarithm of
F (t) with respect to time.
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• The quantum Lyapunov exponent is considered as the rate of growth of the logarithmic
value of the OTOC and is often used to describe the chaotic nature of the system. Using
the value of the OTOC from Equation (103), we can define the Lyapunov exponent for
the inverted oscillator as

λL =
∂

∂t
log[F (t)]. (104)

One can focus on the rising trend in the F (t) vs. t plot, and approximate the behavior
of F (t) in the rising region as an exponential one, F (t) ≈ eλLt. λL can then be
computed as the slope of the plot of log[F (t)] vs. t.

• In Figure 3, we plot the dynamical behavior of the logarithm of the OTOC for the
same parameters chosen in Figure 2c. Then, λL can be computed as the slope of the
rising trend in this figure from 0.8 < t < 1.2. The average slope, computed for the
nearly linear region of Figure 3, was found to be λL = 1.124, while the average rate
of change in the logarithm of F (t) (using Equation (104)) is λL = 1.121. Thus, we
conclude that the extracted value of the Lyapunov exponent using the graph seems to
be in agreement with that using the theoretical value. It is evident from the value of
λL that the system of inverted oscillators is chaotic in nature.

• In Figure 4, we show the dynamical behavior of the OTOC F (t) for different quench
protocols chosen as the coupling, f (t) = f0 sech(t) and frequency, Ω(t) = Ω0 tanh(t).
For all subplots, it is clear that, at early time, the value of F (t) fluctuates with rapid
oscillations, which are dampened at some time after the quench point t = 1. As we
move further in time, it is evident that the dynamical effects of quench protocols
reduce the amplitude of F (t) to zero. Also, as we choose increasing values of the free
parameter Ω0, the frequency of fluctuations in the value of the OTOC increases.

• Particularly in the subplot of Figure 4a, when Ω0 = 1, we observe that the early-
time behavior of F (t) at 0 < t < 0.8 is dominated by fluctuations, marked by a
red background. These oscillations in the value of the OTOC tend to dampen as we
move further in time. Around the quench point, for 0.8 < t < 1.2, we observe a rise,
followed by a dip in the value of F (t), marked by a yellow background. At late time,
for t > 1.2, the oscillations tend to die out completely, such that F (t) becomes zero;
this is marked by a green background.

• In the subplot of Figure 4b, when we increase the free parameter as Ω0 = 2.5, we
observe rapid oscillations in the value of F (t) with a higher frequency than that of
the previous case, in the early-time region, i.e., 0 < t < 0.8 (red background). The
amplitude of these fluctuations dampens for later times. Around the quench point,
0.8 < t < 1.2 and at late times, t > 1.2, we again observe a similar trend to that of the
previous case, marked by a yellow and green background, respectively.

• In the subplot of Figure 4c, we further increase the free parameter, Ω0 = 5 and observe
a similar trend in the dynamical behavior of F (t) to that of previous cases. However
at early times, for 0 < t < 0.8, the fluctuations are more rapid with a higher frequency
than that of the previous case. This is marked by a red background.

• It is evident from the nature of the plots shown in Figure 2 that the similar quench
protocols for coupling and frequency of the inverted oscillator trigger thermalization
such that the OTOC saturates to a non-zero value at very late times. On the other
hand, if we choose different quench protocols, as shown in Figure 4, for coupling and
frequency of the oscillator, the OTOC, although having no fluctuation at late times,
saturates to a zero value.
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(a) (b)

(c)

Figure 2. Variation in the OTOC (F (t)) versus time (t) for a constant Ω0 but different f0, such that

frequency and coupling of the inverted oscillator have the same quench profiles.
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Figure 3. Variation in the logarithm of the OTOC (logF (t)) with respect to time (t), where we choose

same quench profiles for frequency and coupling.

(a) (b)

Figure 4. Cont.
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(c)

Figure 4. Variation in the OTOC (F (t)) versus time (t) for a constant f0 but different Ω0, such that

the frequency and coupling of the inverted oscillator have different quench profiles.

8. Conclusions

We have studied the Schwinger–Keldysh path integral formalism in the context of a
generic time-dependent inverted oscillator system that is governed by non-equilibrium
dynamics, with a generic Hamiltonian, and how the formalism can help to generate the
out-of-time-ordered correlators (OTOCs). The following list of points serves as an epilogue
for this paper:

• Starting with a time-dependent Hamiltonian of an inverted oscillator, we use the Lewis–
Riesenfeld invariant method to solve the TDSE and hence compute the eigenstates and
eigenvalues. We notice that these eigenvalues are independent of the state n, but are
continuous functions of time. Using these eigenstates, we have derived the correlation
functions in the form of a density matrix.

• Next, we calculate the time-dependent Green’s function for the considered Hamilto-
nian of an inverted oscillator. The obtained form of Green’s function is used while
computing the four-point OTOC.

• Further, we derive the expression of time-dependent eigenstates of the Hamiltonian
of generalized inverted oscillator in a Heisenberg picture. The two-point correlators
are then derived by using the form of Green’s function. It is evident that the time-
dependent OTOC can be expressed in the form of the lesser Green’s function.

• Next, we have expressed the classical action in terms of Heisenberg field operators
and Green’s functions. This action is then used to compute the generating function
of the system. The final form of the generating functional is evidently dependent on
Green’s function and Heisenberg field operators. This generating functional is then
used to evaluate the expression for the 4-point OTOC.

• Since there is no implicit time-ordering in the OTOC, one could not use Feynman
path integrals to evaluate such correlators. Instead, we have employed the use of
Schwinger–Keldysh path integral formalism to compute the OTOC for a time-dependent
inverted oscillator. By choosing a Schwinger–Keldysh contour, we have given the exact
form of OTOC for the inverted oscillator. Furthermore, we also mention the form of
influence phase.

• The analytical form of the real part of the OTOC is then used to numerically evaluate
the dynamical behavior of the OTOC. Furthermore, we choose quenched coupling
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and frequency of the inverted oscillator, so as to comment on the thermalization of the
OTOC for different parametric variations.

• From the numerical results, it is evident that there are different phases in the dynamical
behavior of the OTOC, with the first being the oscillatory phase where the value of
the OTOC fluctuates with a decreasing amplitude. The oscillatory phase is dominant
at early times. When we set both the quenched frequency as well as coupling to the
same quench protocol, then the quench seems to be thermalizing the OTOC at late
time. However, before this thermalization, we observed a clear rise in the value of the
OTOC, showcasing the chaotic nature of the system. We could extract the quantum
Lyapunov exponent by using this rise in the value of the OTOC. Clearly, the two other
phases of the OTOC are the exponential rise and saturation. Furthermore, we observe
that as we increase the coupling free parameter in the chosen quench protocol, the
fluctuations stop at earlier time. Hence, it can be inferred that increasing coupling
essentially make the oscillatory phase of the OTOC less dominant. Also, the initial
conditions when changed have drastic effects on the dynamical behavior of the OTOC,
again due to the chaotic nature of the system.

• On the other hand, if we choose two different quench protocols as the quenched
frequency and coupling, then at early time, the value of F (t) fluctuates with rapid
oscillations, which are dampened at some time after the quench point t = 1. As there
is no rise in the OTOC, one can infer that the system is no longer chaotic. As we
continue to move further in time, it is evident that the dynamical effects of quench
protocols through trying to thermalize the value of OTOC reduce the amplitude of
F (t) to zero. Also, as we choose increasing values of a frequency-free parameter, the
frequency of oscillations at early time increases rapidly.

Some future prospects of the present work are appended below point-wise:

• In this work, we have developed a means to compute the OTOC for an inverted
oscillator in the presence of quenched parameters using its time-dependent ground
state. We can develop a thermal effective field theory of this model and compute a
thermal OTOC as well [6]. Inspired by the work of [84], we can then use the thermal
OTOC to find that our quenched inverted oscillator model exactly saturates to the
Maldacena–Shenker–Stanford (MSS) bound on the quantum Lyapunov exponent λ ≤
2π/β, where β represents the inverse equilibrium temperature of the representative
quantum mechanical system after achieving thermalization at the late time scales.
This extended version of the computation will also be extremely helpful to comment
on whether maximal chaos can be achieved from the present set up or not. Studying
the thermal OTOCs and scrambling time scales in systems depending on quenched
inverted oscillators can be intriguing. For such a case, one needs to use the well-known
thermofield double state [85] instead of the temperature-independent ground state to
extend the present computation at finite temperature. One important assumption we
need to use to explicitly perform the computation of the OTOC with the thermofield
double state is that the system fully thermalizes at the late time scales. There are many
applications in black hole physics associated with shock wave geometry [58,86–91]
and in cosmology [54,92], where one can use the derived results of Schwinger–Keldysh
formalism as well as the OTOC. However, the specific effect of the time-dependent
quench in the coupling parameters of the underlying theoretical set up have not been
studied yet in both the abovementioned problems. It would be really interesting to
explicitly study these effects within the framework of black hole physics as well as in
cosmology.

• Since in this computation, the time-dependent quantum quench plays a significant
role, it is highly natural to study the thermalization phenomenon explicitly from the
present set up, as we all know, quantum quench triggers the thermalization procedure
in general. If the system under consideration fully thermalizes at the late time scales,
then the corresponding system can be described in terms of a pure thermal ensemble
and the quantum states are described by thermofield double states. But these types of
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features are very special and can only happen in very specific small classes of specific
theories. If we have a slow/fast quench in the coupling parameters of the theory, then
it is naturally expected from the set up that before quench, just after quench, and
at late time scales, the corresponding quantum mechanical states will be different.
In technical language, these are pre-quench, post-quench-Calabrese–Cardy (CC), or
generalized Calabrese–Cardy (gCC) [93–96] and Generalized Gibbs ensemble (if not
fully thermalized) [93–96] or pure thermofield double states. This particular information
is extremely important because the computation of an OTOC is fully dependent on
the underlying quantum states. It is expected that for a given theoretical set up, we
need to use three different quantum states in three different regimes to compute the
expression for the OTOC in the presence of time-dependent quench in the coupling
parameters of the theory. In the OTOC computation, which we have performed in
this paper, we have used the ground states at zero temperature, which is technically a
pre-quench state. It would be highly desirable if one could study the OTOC using the
post-quench CC/gCC as well as Generalized Gibbs ensemble/thermal states. Now,
one very crucial point is that which people usually do not use to construct these states
at different regimes, which is the invariant operator method. This method allows us
to construct all possible states at different time scales having a quench profile in the
respective parameters of the theory. This implies that the invariant operator method
automatically allows us to construct the corresponding quantum states in the pre-
quench and post-quench regions, which is necessarily needed to compute an OTOC.
Most importantly, the invariant operator method allows us to construct the quantum
mechanical states at each instant of time in the time scale, except at the very late time
scale when the full thermalization or the effective thermalization has been achieved
by the underlying physical set up.

• The OTOC has been used to understand the dynamics of cosmological scalar fields [54],
it would be interesting to explore such ideas in the presence of quench. Our work deals
with inverted oscillators in the presence of a quench which can be applied to many
models appearing in cosmology, quantum gravity, and condensed matter physics.
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Appendix A. Integration over Initial Field Configuration

In this appendix, our prime objective is to simplify the expression of the wave-
function in Equation (67) by evaluating the contribution of the integral over initial field
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configuration, q0. We begin with writing the contribution of the initial field to the wave-
function of inverted oscillator, χ(q f |J) as

χ(q f |J) =
∫

∞

−∞

dq0 exp

[

i

2G(T)

([

{

f (t0)t0) +
i

x2
0

}

G(T) + m(t0)Ġ(T) +

[

m2(t1)+m2(t0)
m(t1)

]

G(t f − t1)

2G(t1 − t0)

]

q2
0

−q0

[

[m(t f ) + m(t0)]q f − [m(t0) + 1]
∫ t f

t0

dtG(t f − t)J(t)+

[

m(t1)−
m(t0)m(t f )

m(t1)

]

q f

]

)]

.

(A1)

Further, we define

A(t) =

[

f (t0)m(t0) +
i

x2
0

]

G(T) + m(t0)Ġ(T) +

[

m2(t1)+m2(t0)
m(t1)

]

G(t f − t1)

2G(t1 − t0)
. (A2)

Here,
1

x2
0

=
im(t)

2K(t)
(K̇(t)− f (t)K(t)). (A3)

Using Equation (A2), we can rewrite the expression for Equation (A1) as

χ(q f |J) = exp

[

−iA−1(t)
8G(T)

(

{m(t f ) + m(t0)}q f − [m(t0) + 1]
∫ t f

t0
dt G(t f − t)J(t)+

[

m(t1)−
m(t0)m(t f )

m(t1)

]

q f

)2]

×
∫

∞

−∞
dq0 exp

(

iA(t)
2G(T)

[q0 − β]2
)

,

(A4)

where the factor β is

β =

{ [m(t f )+m(t0)]q f −[m(t0)+1]
∫

t0
t f dt G(t f −t)J(t)

[

m(t1)−
m(t0)m(t f )

m(t1)

]

q f

2A(t)

}

.
(A5)

Then, performing the integration over q0, one can rewrite Equation (A4) as

χ(q f |J) =
√

2πiG(T)A−1(t) exp

[−iA−1(t)

8G(T)

({

m(t f ) + m(t0)+

[

m(t1)−
m(t0)m(t f )

m(t1)

]}

q f

−
(

m(t0) + 1
)

∫ t f

t0

dt G(t f − t)J(t)

)2]

.

(A6)

Since we have integrated over the initial field configuration, the generating function for the
inverted oscillator is simplified and only depends on the final field configuration, q0, as
shown in Section 4.

Appendix B. Calculation of Green’s Function

In this work, we have obtained the generating function and OTOC for the inverted
oscillator, in terms of Green’s function. We compute this Green’s function for the inverted
oscillator in this appendix. Although there are several time-dependent Green’s functions,
for our system, the most important is the outgoing or retarded Green’s function. Let U(t, t′)
be the time operator which depends on final time t′ and initial time t. Since the Hamiltonian
is time-dependent for our system, U(t, t′) will satisfy the TDSE. We can write it as

i
∂U(t, t′)

∂t
= Ĥ(t)U(t, t′). (A7)
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When we put the Hamiltonian of the inverted oscillator of Equation (1) in the above
equation, we obtain

i
∂U(t, t′)

∂t
= − 1

2m(t)

∂2U(t, t′)
∂q2

− 1

2
m(t)Ω2(t)q2(t)U − i

2
f (t)U − i

2
f (t)q(t)

∂U

∂q
. (A8)

From the above equation,

i
∂U

∂t
= −1

2
m(t)Ω2(t)q2(t)U − i

2
f (t)U. (A9)

After multiplying the above equation by i and re-arranging, we obtain the following
differential equation:

∂U

∂t
+

{

1

2
f (t)− i

2
m(t)Ω2(t)q2(t)

}

U = 0. (A10)

The integrating factor for this differential equation will be e
∫

{ 1
2 f (t)− i

2 m(t)Ω(t)q2(t)}dt. The so-
lution of the above differential equation can be expressed using integrating factor as

U(t) = c e
1
2

∫ {im(t)Ω2(t)q2(t)− f (t)}dt. (A11)

Here, c is a real constant. In quantum mechanics, the outgoing or retarded Green’s Function
is defined by

G+(q, t; q′, t′) = Θ(t − t′) ⟨q|U(t, t′) |q′⟩ , (A12)

and the incoming or advanced Green’s function is

G−(q, t; q′, t′) = Θ(t′ − t) ⟨q|U(t, t′) |q′⟩ . (A13)

The combined form of Green’s function using Equation (A11) can be given as

Ĝ± = ±Θ

(

±(t − t′)
)

U(t, t′)

= ±Θ

(

± (t − t′)
)

c e
1
2

∫ {im(t)Ω2(t)q2(t)− f (t)}dt. (A14)

In the above equation, we can eliminate the integration from the power of the exponential
by assuming

d(Γ(t)t)

dt
=

1

2
(im(t)Ω2(t)q2(t)− f (t)). (A15)

Using Equation (A15), one can rewrite Green’s function in Equation (A14) as

G(t) = c e
∫ d(Γ(t)t)

dt dt = c eΓ(t)t. (A16)

To apply the boundary condition, we need to change Equation (A16) in terms of hyperbolic
sines and cosines, as given below:

G(t) = A sinh (Γ(t)t) + B cosh (Γ(t)t). (A17)

Applying the boundary conditions G(0) = 0 and Ġ(0) = 1, Green’s function for the
inverted oscillator is

G(t) =
1

Γ0
sinh

(

Γ(t)t

)

. (A18)
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