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Abstract

(English/Français/Deutsch)

Key words: luminosity, van der Meer, non-factorization, resonance, calibration, losses

In high-energy colliders, discoveries are made possible by improving precision and accuracy

of the measured rare events. Precision is maximized by increasing the collider integrated

luminosity, whereas accuracy is addressed by minimizing the systematic errors via ad-hoc

luminosity calibrations of the detectors.

This thesis contributes to improving the present understanding of the role and the impact of

non-factorizable beam distributions on the aforementioned precision and accuracy reach.

Starting from a theoretical approach, the concept of the non-factorizable distribution is

introduced, originally showing that even Gaussian profiles of distributions matched to linear

uncoupled lattices can be non-factorizable. Starting from this observation, the consequences

of the losses in a synchrotron and the luminosity in a collider are developed and presented.

A measurement protocol to quantify the non-factorization is devised and, furthermore, it is

demonstrated, numerically and experimentally, how non-factorization can be introduced in

factorizable distributions via x-y coupling resonances in the presence of space charge. It is

then shown experimentally that non-factorization can be transported along the full CERN

accelerator chain, confirming that this is an inherent property of the beam distribution and

not of the machine lattice.

This work directly contributes to the efforts devoted to improve the quality of the luminosity

calibration in the HL-LHC era.
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Zusammenfassung

Stichwörter: Leuchtkraft, van der Meer, Nicht-Faktorisierung, Resonanz, Kalibrierung, Verluste

Bei Hochenergiebeschleunigern werden Entdeckungen durch die Verbesserung der Präzision

und Genauigkeit der gemessenen seltenen Ereignisse ermöglicht. Die Präzision wird durch

die Erhöhung der integrierten Luminosität des Colliders maximiert, während die Genauigkeit

durch die Minimierung der systematischen Fehler mittels Ad-hoc-Luminositätskalibrierungen

der Detektoren angegangen wird.

Diese Arbeit trägt dazu bei, das derzeitige Verständnis der Rolle und des Einflusses nicht

faktorisierbarer Strahlverteilungen auf die vorgenannten Präzisions- und Genauigkeitsziele zu

verbessern. Ausgehend von einem theoretischen Ansatz wird das Konzept der nicht faktori-

sierbaren Verteilung erzeugt, wobei ursprünglich gezeigt wurde, dass sogar Gaußprofile von

Verteilungen, die an lineare ungekoppelte Strahloptiken angepasst sind, nicht faktorisierbar

sein können. Ausgehend von dieser Beobachtung werden die Konsequenzen für die Verluste

in einem Synchrotron und die Luminosität in einem Collider entwickelt und dargestellt.

Es wird ein Messprotokoll zur Quantifizierung der Nicht-Faktorisierung entwickelt und dar-

über hinaus numerisch und experimentell demonstriert, wie Nicht-Faktorisierung in fak-

torisierbaren Verteilungen über x-y-Kopplungsresonanzen in Gegenwart von Raumladung

eingeführt werden kann. Anschließend wird experimentell gezeigt, dass Nicht-Faktorisierung

entlang der gesamten CERN-Beschleunigerkette transportiert werden kann, was bestätigt,

dass dies eine inhärente Eigenschaft der Strahlverteilung und nicht des Maschinenoptik ist.

Diese Arbeit trägt direkt zu den Bemühungen bei, die Qualität der Luminositätskalibrierung

in der HL-LHC-Ära zu verbessern.
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Résumé

Mots clefs : luminosité, van der Meer, non-factorisation, résonance, étalonnage, pertes

Dans les collisionneurs de haute énergie, les découvertes sont rendues possibles par l’amé-

lioration de la précision et de l’exactitude des événements rares mesurés. La précision est

maximisée en augmentant la luminosité intégrée du collisionneur, tandis que l’exactitude est

abordée en minimisant les erreurs systématiques via des calibrations ad-hoc de la luminosité

des détecteurs.

Cette thèse contribue à améliorer la compréhension actuelle du rôle et de l’impact des distribu-

tions de faisceaux non factorisables sur la précision et l’exactitude susmentionnées. En partant

d’une approche théorique, le concept de distribution non factorisable est introduit, montrant

initialement que même les profils gaussiens de distributions apparié à des optiques linéaires

non couplés peuvent être non factorisables. À partir de cette observation, les conséquences

des pertes dans un synchrotron et de la luminosité dans un collisionneur sont développées et

présentées.

Un protocole de mesure pour quantifier la non-factorisation est conçu et, de plus, il est

démontré, numériquement et expérimentalement, comment la non-factorisation peut être

introduite dans des distributions factorisables via des résonances de couplage x-y en présence

d’une charge d’espace. Il est ensuite démontré expérimentalement que la non-factorisation

peut être transportée tout au long de la chaîne d’accélérateurs du CERN, confirmant qu’il

s’agit d’une propriété inhérente à la distribution du faisceau et non à l’optique de la machine.

Ce travail contribue directement aux efforts déployés pour améliorer la qualité de l’étalonnage

de la luminosité à l’ère du HL-LHC.
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normalised x̂ − ŷ space. The particles for which the dynamics is inspected more

closely are numbered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Longitudinal slice for short term tracking simulation and how the ∆p
p varies

with z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Line density λ indicating the slices of longitudinal phase space for different zmax. 67

6



LIST OF FIGURES Chapter 0

5.4 The z position for particles with the same initial transverse amplitude but differ-

ent zmax, yielding different synchrotron periods, τs . . . . . . . . . . . . . . . . . 68

5.5 Initial distribution for particles on momentum, zmax = 0 m, plotted with their

diffusion coefficient calculated for 2 successive synchrotron periods. . . . . . . 69

5.6 Initial distribution for particles off momentum, zmax = 10 m, plotted with their

diffusion coefficient calculated for 2 successive synchrotron periods. . . . . . . 69

5.7 FMA for particles on momentum, zmax = 0 m, plotted in the tune diagram with

their initial tune and diffusion coefficient calculated for 2 successive synchrotron

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 FMA for particles off momentum, zmax = 10 m, plotted in the tune diagram with

their initial tune and diffusion coefficient calculated for 2 successive synchrotron

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 Simulation for particles on momentum, zmax = 0 m, showing over 4000 turns the

Jx +2Jy evolution of a single particle colour-coded by its initial Jx +2Jy . . . . . 71

5.10 Simulation for particles off momentum, zmax = 10 m, showing over 4000 turns

the Jx +2Jy evolution of the single particle colour coded it’s initial Jx +2Jy . . . . 71

5.11 A non-resonant particle (110) and the evolution of the CS invariants (right) and

the linearly normalised phase space projections x̂ − p̂x (left), and ŷ − p̂y (middle). 72
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1 Introduction

This thesis explores the performance of particle colliders, focusing on luminosity and precision

measurement. It aims to provide new insights into modeling the dynamics of the machine,

specifically concerning the properties of the beam distribution that are independent of the

lattice structure. Namely, the non-factorization. Analytical models are developed alongside

experimental and simulation evidence to demonstrate how the dynamics within the x − y

plane can evolve. The structure of the thesis is described briefly as the following.

Chapter 3 derives analytical equations for 4D transverse beam distributions based on obser-

vations of the beam profile in a single plane. The chapter explores the implications of free

constraints, demonstrating how these constraints lead to a non-unique distribution. Non-

factorizable distributions are introduced. It is shown how the property of non-factorization

in beam distributions can impact the beam losses and luminosity. Additionally, a method

is proposed for measuring the transverse beam distribution using collimation and profile

measurements.

Chapter 4 illustrates how starting from a factorizable distribution, non-factorization can

be introduced into the beam by periodically crossing coupled resonances in the Proton

Synchrotron Booster in the presence of space charge.

Chapter 5 validates these findings through symplectic tracking simulations, employing single-

particle tracking to understand the underlying dynamics and multi-particle tracking to bench-

mark the experimental results.

Chapter 6 provides experimental evidence showing that the non-factorization introduced in

this manner is preserved throughout the accelerator chain. This preservation has important

implications for precision luminosity measurements, particularly in the context of van der

Meer scans, for which the largest uncertainty is the non-factorization of the transverse beam

distribution.
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2 Relevant contextual and theoretical
concepts

The following chapter gives relevant concepts to guide the reader through the contributions in

the thesis. It is a short summary, thus for more details on accelerator physics as a whole, see

the very complete and valuable texts such as [1], [2].

2.1 The CERN accelerator complex

The research presented in this thesis is conducted within the framework of the European

Organization for Nuclear Research’s (CERN) proton accelerator complex. While the focus is on

this specific facility, the findings are broadly applicable to proton synchrotrons and colliders

worldwide.

CERN, located in Geneva, Switzerland, is home to some of the most significant physics ex-

periments on the planet. This is made possible by its extensive accelerator complex, which

accelerates protons to energies as high as 6.8 TeV.

The acceleration process begins at the LINAC4, a linear accelerator, and continues through

the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), and the Super Proton

Synchrotron (SPS). Finally, the protons are injected into the Large Hadron Collider (LHC),

where counter-rotating beams collide at interaction points (IP1-8). Four of the interaction

points are the locations of high-energy physics experiments: CMS, LHCb, ATLAS, and ALICE,

Fig. 2.1.
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Figure 2.1: The CERN accelerator complex (not to scale). The path of the protons from the
LINAC4 to the LHC is shown with grey arrows. The locations of the high energy physics
experiments are shown on the LHC ring. Taken from [3].
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2.2 Beam dynamics

Particle motion in an accelerator is governed by the electric and magnetic fields of the elements

in the lattice, used to steer, accelerate and focus the beam [1]. The force on a particle is given

by the Lorentz equation,

−→
F =

d−→p
d t

= q
(−→

E +−→v ×−→
B

)
. (2.1)

−→
F is the force on a particle, −→p is the particle momentum, −→v is the particle velocity,

−→
E is

the electric field and
−→
B is the magnetic field. Multipole magnets control the ‘optics’ in a

synchrotron. The multipole expansion solving Maxwell’s equations is given by (n = 1 is a

dipolar, n = 2 is a quadrupolar),

By + i Bx =
∞∑

n=1
C n(x + i y)n−1. (2.2)

It can be expressed in polar form,

Bθ+ i Br =
∞∑

n=1
C n(r )n−1e i nθ. (2.3)

The complex constant Cn can be expressed,

|Cn |eϕn (2.4)

Note: A ‘normal’ multipole has a ϕn = 0 (phase), and a skew multipole is rotated by π/n, so a

phase of π/n.

2.2.1 Coordinates

The choice of coordinate system which describes the motion is important in order to simplify

the equations. The Frenet-Serret coordinate system is used. The transformation from the

Cartesian coordinates (and canonical momenta) are given by [4],
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X =
(
x +ρ)

cos

(
s

ρ

)
−ρ (2.5)

Y = y (2.6)

Z =
(
x +ρ)

sin

(
s

ρ

)
(2.7)

px = PX cos

(
s

ρ

)
+PZ sin

(
s

ρ

)
(2.8)

py = PY (2.9)

ps = PZ

(
1+ x

ρ

)
cos

(
s

ρ

)
−PX

(
1+ x

ρ

)
sin

(
s

ρ

)
. (2.10)

The dynamics under an approximation of transport from one position s0, to s1 in the ring

can be described by symplectic maps (matrices in the linear case). This is a result of Liouville

theorem, that closed (constant energy) systems are phase space density preserving [5]. A

necessary condition for symplecticity of a matrix W is that,

W TΩW =Ω, (2.11)

given that,

Ω =

[
0 In

−In 0

]
, (2.12)

where In is the n dimensional identity matrix.

Linear dynamics is when the Hamiltonian of the system has terms up to quadratic order in the

canonical momenta. For the linear case,

(
x

px

)
s1

= MN ◦MN−1 ◦ · · · ◦M1︸ ︷︷ ︸
M(s0,s1)

◦
(

x

px

)
s0

. (2.13)

The linear transport matrix can be written in terms of the Courant-Snyder parameters,

β(s), α(s), γ(s), (2.14)

which are shown in relation to the physical phase space ellipse, Fig. 2.2.
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Figure 2.2: The phase space ellipse and Courant-Snyder parameters, taken from [6]

The transport matrix for one turn MOT M can be given in terms of the Courant-Snyder parame-

ters,

MOT M =

(
cos(µx )+αx sin(µx ) βx sin(µx )

−γx sin(µx ) cos(µx )−αx sin(µx ),

)
(2.15)

where µx is the phase advance, 2πQx where Qx is the tune. MOT M can be composed into,

MOT M = A−1R A. (2.16)

The normalisation matrix A transforms the coordinates, and the MOT M into a pure rotation.

A can be written in terms of the Courant-Snyder parameters,

A =

( √
βx 0

− αxp
βx

1p
βx

)
. (2.17)

A direct consequence of the symplecticity is that there is a preserved constant, the emittance,

given in the x −px plane, ϵx ,

ϵx = γx (s)x(s)2 +2αx (s)x(s)px (s)+βx (s)px (s)2. (2.18)

It relates to the area of the ellipse, in Fig. 2.2 by,
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Area = 2πϵx . (2.19)

The transformation matrix transforms the physical coordinates to the normalised coordinates,

given in one plane,

(
x̂

p̂x

)
= A−1 ·

(
x

px

)
. (2.20)

The normalisation via the generalised matrix for linear coupling, A, (2n ×2n), where n is the

planes of motion, to a pure rotation R, is the equivalent to a transformation of coordinates to

action-angle variables. The following is taken from Wolski, [1] and Goldstein [7].

Relating a vector of the action
−→
J , to the physical coordinates and their normal form, and

following the derivation in [1],

−→
J =



x̂1

p̂1
...

x̂n

p̂n

 = A−1−→x .

The new action-angle variables are defined,

Jk =
1

2

(
x̂2

k + p̂2
k

)
,

tanφk = − p̂k

x̂k
.

The Hamiltonian in one dimension is,

Ĥk = Qk Jk , (2.21)

where Qk is the tune and Jk the action. The evolution of the system with respect to the new

action-angle variables is given by Hamilton’s equations,

q̇i =
∂H

∂pi
, (2.22)
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ṗi = −∂H

∂qi
, (2.23)

and so,

∂φk

∂t
=
∂Ĥk

∂Jk
= Qk , (2.24)

∂Jk

∂t
= −∂Ĥk

∂φk
= 0. (2.25)

This means that the evolution in time of φk proceeds with the tune, while Jk remains constant

[7], thus a rotation of the system results in,

Jk 7→ Jk ,

φk 7→φk +µk ,

where µk is the phase advance. The motion in any degree of freedom, k, is independent to

the other degrees of freedom, even for the case of non-zero linear coupling. An example of

the normalisation and the evolution of motion in the physical and normalised coordinates is

shown in 2.3.

We can define the action in terms of the physical coordinates and the Courant-Snyder param-

eters, which is conserved, given in the x plane,

2Jx = γx x2 +2αx xpx +βx p2
x . (2.26)

Thus, related to the single particle emittance,

2Jx = ϵx . (2.27)

The Hamiltonian for nonlinear beam dynamics can be expressed in terms of action-angle

variables via a normal form. This holds true only in certain circumstances, for example, in the

KAM (Kolmogorov-Arnold-Moser theory [8]–[10]) region [4]. Unlike the linear case, the tune

(rate of rotation of the angle) depends on the action. However, the transformation allows the

surface of Poincaré sections to be a pure rotation.
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Figure 2.3: Physical to (linearly) normalised coordinates. The motion is a pure rotation.
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2.2.2 Beam Distribution in a Linear machine

For a 6D particle ensemble, the Σ matrix of the second order moments can be defined (in the

physical coordinates).

For the beam to be ‘matched’, or stationary, the Σ matrix must be unchanged through one

periodic cell, that is [1],

MOTMΣM T
OTM =Σ. (2.28)

It can be shown the second order moments of the distribution in the normalised coordinates

is a diagonal matrix (the covariance of cross terms is 0 due to symmetry of a circle in phase

space). The A matrix in 6D transforms to uncoupled dynamics (if the coupling is linear).

The eigenvalues of ΣΩ give the statistical emittances [1],

eigenvalues(ΣΩ) = ±iϵk . (2.29)

2.2.3 Resonances

Higher order multipoles are common in modern accelerators. In general, solutions to the

equations of motion are not in closed form. Therefore, approximations to the motion are

used to describe the dynamics (e.g. perturbation theory). For a complete explanation of the

relevant theory, see [1], [2]. The given resonances (nx ,ny coefficients) that are driven by a

particular element can be calculated from the Hamiltonian [11] via Resonance Driving Terms

(RDTs). A skew and normal multipole will drive different resonances.

The resonance condition, defined for the single particle tune Qx , Qy , with the integer coeffi-

cients nx , ny , is given by

nxQx +nyQy = C , (2.30)

where C is also an integer. Due to the set tunes, the particle receives a kick that adds coherently

[1]. The source of the kick can be a magnet imperfection, or from a potential that is induced

by the beam itself (e.g. space charge, beam-beam interactions).

The order of a resonance is given by,

|nx |+ |ny |. (2.31)

The set-tune, any amplitude dependence of the tune, and the interaction with resonances
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can be visualised in terms of a resonance diagram, which can be plotted up to any resonance

order, Fig. 2.4.

Figure 2.4: Resonance diagram plotted up to 5th order. The lower order resonances are thicker
lines. An example working point (set tune) is shown.
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2.2.4 Space Charge

Charged particles act on each other with their self-fields, ‘space charge’. Space charge is most

prominent in low energy, high-brightness (small emittance and high intensity) machines [12].

This nonlinear field results in amplitude dependent detuning, (negative defocusing), from the

set tune. The maximum detuning is given by equation 2.32, [12], in the approximation of a

transverse bi-Gaussian distribution.

δQSC
x,y = − r0λ

2πeβ2
rγ

3
r

∮
βx,y

σx,y (s)
[
σx (s)+σy (s)

] , (2.32)

r0 denotes the classical proton radius, while λ represents the longitudinal charge density. The

elementary charge is symbolized by e. The relativistic parameters are indicated by βr and γr .

The optics beta function represented by βy , and the beam sizes in the horizontal and vertical

planes are given by σx,y .

The amplitude dependent detuning looks like a ‘tune spread’ in the Qx ,Qy plane, shown in

Fig. 2.5. The tune spread, larger at low energies, leads to the distribution being more suscepti-

ble to resonances. In the case of bunched beams, the position in longitudinal phase space

affects the tune-spread, as the line density changes the space charge force. This causes the

tune-spread to evolve periodically with the longitudinal motion. If the longitudinal distribu-

tion is sliced, the maximum extent of the tune spread will differ for each slice.

Figure 2.5: Tune spread from space charge is amplitude dependent in the distribution [13].

The driving terms from the space charge potential can also excite resonances. These are

difficult to compensate for, as opposed to resonances driven by machine imperfections. The

resonances driven can be calculated with perturbation theory [14], [15].

2.2.5 Resonances in Two-Dimensions

The dynamics near one dimensional (only one of nx , ny is non-zero) resonances are well

described and studied, some examples are given by [16], [17]. The dynamics can be seen

through surfaces of Poincaré section [18]. Since the motion is nonlinear, and the linear action-

angle variables no longer hold, the phase space will not be circular and may contain fixed
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points, islands, or separatrices [19]. For example, a third order resonance in one plane, under

certain conditions, will produce islands in the phase space, like those seen in part a) of Fig.2.6.

In the non-resonant plane, p2, q2, the phase space is elliptical and the linear action angle

variables are still good approximations. When looking at the cross planes, q1, q2, and p1, p2

the motion is rectangular and doesn’t have a particular structure (or correlation).

Figure 2.6: The motion under a 1D resonance is shown on the top left in the canonical variables.
The motion in the other canonical plane is circular in the phase space. In the cross planes,
there is no dependence (rectangular), a). For 2D resonances, there is a structure in the cross
planes, b), and there is no visible structure in the 1D planes. Taken from [19].

For ‘2D’ resonances, meaning that both the coefficients nx , ny , of equation 2.30 are non-

zero, the trapped particles follow 4D structures in phase space, which look linear in the 1D

planes, p1, q1 and p2, q2. The structure, a so called ‘fixed-line’ depends on the order of the 2D

resonance. There have been recent analytical, simulation and experimental investigations

to prove the existence and describe how the fixed lines affect the particle dynamics [19], [20].

An experiment to characterize the fixed lines in 2017 in the CERN Proton Synchrotron (PS)

observed the creation of asymmetric halos, due to particles becoming resonant due to a third

order resonance, Qx+2Qy = 19 and scattered to higher amplitudes by the fixed-line trajectories

[21].

The important result for this thesis is that the structures give a higher-order dependence

between the amplitudes in the cross planes. This recent experimental and analytical work

inspired the experimental campaign in the Proton Synchrotron Booster in Chapter 4, on

whether this type of dynamics can introduce non-factorization into the beam distribution.

Non-factorization is when a density function cannot be factorized into functions of the

individual variables, like,
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ρ(x, y, z) = ρx (x)ρy (y)ρz (z). (2.33)
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2.3 Luminosity

The figure of merit for a collider, is the luminosity. The luminosity of colliding beams is the

convolution of a 3D particle distribution [22], given in terms of the Frenet-Serret coordinates,

[23], [24].

L ∝ K ·
∫∫∫∫ ∞

−∞
ρ1(x, y, s,−s0)ρ2(x, y, s, s0)d x d y d s d s0. (2.34)

Where ρ are the particle densities and K is the kinematic constant defined,

K =
√

(v⃗1 − v⃗2)2 − (v⃗1 × v⃗2)2/c2. (2.35)

Figure 2.7: Two counter-rotating bunches colliding head-on.

If the particle distributions are factorizable and the collision is head-on, then the formula can

be simplified,

L = 2N1N2νr Nb

∫∫∫∫ +∞

−∞
ρ1x (x)ρ1y (y)ρ1s(s − s0)ρ2x (x)ρ2y (y)ρ2s(s + s0)d x d y d s d s0. (2.36)

A high integrated luminosity is desirable for particle physics experiments, given by equation

2.37, integrated between two time periods, (t1, t2). The quality of data depends on the statisti-

cal precision, increased by more events (more luminosity), and their ability to measure the

luminosity and cross-sections, which will be discussed further in this chapter. The integrated

luminosity is dependent not only on the beam distribution, but the machine availability.

Machine availability can be linked to the beam dynamics, as large, concentrated losses in

parts of the machine will lead to a machine ‘dump’, i.e. removal of the beam from the machine

and a re-filling of proton bunches.
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The integrated luminosity is given by,

Lint =
∫ t2

t1

L d t , (2.37)

and the number of events is proportional to the integrated luminosity and the cross-section of

an interaction,

Nevents = Lintσ. (2.38)

2.4 van der Meer scans and Non-Factorization

Whilst the integrated luminosity is a performance indicator, and a high integrated luminosity

is desired by the experiments to produce many events, it is also important to accurately

measure the luminosity in order to measure cross-sections. The calibration of the luminosity

measurement improves the precision of the cross-section measurement [25]. The systematic

uncertainty from the instantaneous luminosity measurement can be a large source of error to

cross-section measurements [26]–[28].

The following is taken from [29]. Interactions between protons are seen as observables in the

luminosity detector. The average number of observables over many measurements is given by,

〈Nobservables〉 = 〈Nobservables/interaction〉〈Ninteractions〉
≡ 〈Nobservables/interaction〉µ,

Where µ is the average number of interactions per bunch crossing. µ is proportional to the

single-bunch crossing instantaneous luminosity, Lb , via the frequency of revolution of the

bunches, νr (LHC revolution frequency), and the interaction cross-section, σ,

µ =
σLb

νr
. (2.39)

To measure the luminosity, the rate of observation is scaled to the luminosity with a calibration

constant, σvi s ,

Lb =
〈Nobservables〉

〈Nobservables/interaction〉
νr

σ
≡ 〈Nobservables〉

νr

σvis
. (2.40)

To calibrate the luminosity measurement, the van der Meer method is used [30], [31]. The

two beams are transversely separated and scanned over each other to measure the σvis, which
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relates the luminosity to the measured rate, µ.

If the luminosity can be expressed as

Lb =
νr n1n2

Aeff
, (2.41)

Aeff is the effective overlap between two bunches. As defined above in terms of the bunch

densities,

Lb = νr n1n2

Ï
ρ1(x, y)ρ2(x, y)d x d y. (2.42)

Then, if the assumption is made the beam densities are factorizable in x and y .

1

Aeff
=

∫
f1(x) f2(x)d x

∫
g1(y)g2(y)d y ≡ 1

Weff

1

Heff
. (2.43)

Weff and Heff are the effective width and height of the ‘luminous region’.

When the beams are displaced in the vertical (h) and the horizontal direction (w), then the

luminosity varies. By scanning in the x and y directions with transverse offset (van der Meer

scan, Fig.2.8), the Weff and Heff can be determined as,

Weff =

Î
f1(x) f2(x −w)d x d w∫

f1(x) f2(x)d x
=

∫
Lb(w,0)d w

Lb(0,0)
, (2.44)

Heff =

Î
g1(y)g2(y −h)d y dh∫

g1(y)g2(y)d y
=

∫
Lb(0,h)dh

Lb(0,0)
. (2.45)

For Gaussian beams, this simplifies to,

Σx = Weff =
√

2σx and Σy = Heff =
√

2σy , (2.46)

and thus,

σvis =µvis
2πΣxΣy

n1n2
. (2.47)

Where µvis is the visible rate. An example scheme of transverse beam separations can be seen

in Fig. 2.9.

30



Relevant contextual and theoretical concepts Chapter 2

X se
par

ati
on 

[m
m]

0.4
0.2

0.0
0.2

0.4
Y separation [mm]

0.4
0.2

0.0
0.2

0.4

Bu
nc

h 
in

te
ns

ity
 n

or
m

al
ize

d 
ra

te
 [a

.u
.]

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

CMS Preliminary Fill 8381 (2022, 13.6 TeV)
Scans: vdM3+offs
BCID: 2965
Detector: HFET
Model: SG

vdM data
offset data
1D SG fit to vdM
1D SG fit to off-axis

Figure 2.8: Measured rate reconstructed with offset van der Meer scans, from CMS van der
Meer run 2022 [25].
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There are various uncertainties associated with this measurement. The analysis of this mea-

surement and the calculation of the uncertainties are independent for each experiment. In

2022 for CMS, the largest bias was the uncertainty due to the non-factorization of the

transverse beam distributions, as seen in Table 2.1, from [32].

Source Uncertainty (%)
Calibration
Beam current 0.20
Ghosts & satellites 0.10
Orbit drift 0.02
Residual beam positions 0.16
Beam-beam effects 0.34
Length scale 0.20
Factorization bias 0.67
Scan-to-scan variation 0.28
Bunch-to-bunch variation 0.06
Cross-detector consistency 0.16
Integration
Cross-detector stability 0.71
Cross-detector linearity 0.59
Calibration 0.89
Integration 0.92
Total 1.28

Table 2.1: Uncertainty sources and their corresponding percentages in the 2022 p-p van der
Meer run of CMS, from [32].

The non-factorization correction to σvis is found by applying a fit to the x − y distribution

which describes the non-factorization seen. Depending on the fit function used, the size of the

correction differs. Results from the 2022 run of CMS showed there was a dependence of the

non-factorization correction to σvis on the bunch ID (bunch position in the filling scheme),

shown in Fig. 2.10. Every 4th bunch had a lower non-factorization correction. This suggested

a contribution to the difference in non-factorization bias which could have come from the

different rings in the Proton Synchrotron Booster (a four ring machine, which are stacked on

top of each other, with different magnet imperfections). The filling scheme is such that every

4th bunch comes from the same ring.

In 2023, ATLAS quoted that the preliminary uncertainty due to the non-factorization uncer-

tainty was 1.39% [34], for a total uncertainty on the measurement of 2.04%. In 2022, the

preliminary non-factorization uncertainty was 1.07%, for a total uncertainty on the measure-

ment of 2.19% [35].

In the next chapter we will introduce non-factorization in terms of the observables seen by

accelerator physicists and the beam dynamics.
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Figure 2.10: BCID (bunch ID) pattern in the LHC showing how the non-factorization correction
for CMS varied bunch to bunch in the 2022 van der Meer scans. Every 4th bunch has a
systematic lower correction [25], [33].
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3 Reconstruction of Beam Distributions

During the operation of accelerators, it is important to control the beam profile, for example to

minimize beam losses or optimise the luminosity of colliders. The beam profile is a projection

of the total distribution onto one plane. In this chapter, we demonstrate that the beam profile

alone is insufficient to characterize beam performance. We derive equations for different

beam distributions from the observation of a profile (1D), to the full transverse distribution

(4D), and show how the choice of constraints on the full distribution alter the luminosity and

losses observed. We will show that the full distribution (4D), given a profile (1D), is not unique,

even in the case of Gaussian beam profiles.

3.1 Definition of a Matched Distribution from the Hamiltonian

If the distribution is ‘matched’, then the distribution is stationary (i.e., invariant in time).

Mathematically, a distribution (of a beam inside a system) is stationary if it is a function of the

Hamiltonian of the system only [36].

We define the normalised transverse Hamiltonian in action-angle coordinates [7] in the two

planes (can be a linear action-angle or the nonlinear action-angle),

Ĥx = Qx Jx (3.1)

Ĥy = Qy Jy . (3.2)

Where Qx,y are the transverse tunes (in the nonlinear case, the tunes depend on the action),

and,
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Jx =
x̂2 + p̂x

2

2
(3.3)

Jy =
ŷ2 + p̂y

2

2
. (3.4)

Given the transverse planes are uncoupled, the full Hamiltonian is given by,

Ĥ = Ĥx + Ĥy . (3.5)

If the distribution function is a function of the Hamiltonian only,

f = f (Ĥ(Jx , Jy )). (3.6)

Then f (Ĥ) is a constant of the motion if, and only if,

d f

d t
= 0. (3.7)

Using the chain rule,
d f

d t
=

d f (Ĥ)

d Ĥ

d Ĥ

d t
, (3.8)

and given that,
d ·
d t

= {·, Ĥ }+ ∂·
∂t

. (3.9)

Then,
d Ĥ

d t
= {Ĥ , Ĥ }+ ∂Ĥ

∂t
. (3.10)

By definition [36],

{Ĥ , Ĥ } = 0. (3.11)

Then, if the Hamiltonian does not depend explicitly on time,

∂Ĥ

∂t
= 0. (3.12)

Thus,
d f (Ĥ)

d t
= 0. (3.13)
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Meaning, that the distribution is stationary, or ‘matched’, if it is a function of the Hamiltonian

only, given the condition that the Hamiltonian does not depend on time [37]. Therefore, a 4D

particle distribution in the normalised coordinates must be a function, of f (x̂2 + p̂2
x , ŷ2 + p̂2

y ).

As a direct consequence, this means that the (statistical) phase space in the canonical planes

forms concentric circles. As we will see, given a particular beam profile, this gives only

one solution for a 2D distribution, f2D (x̂2 + p̂2
x ). However, the full 4D beam distribution is

ambiguous as there is not a constraint on the way that the two planes are combined in order to

satisfy the matching. For convenience, for the rest of this chapter, we will re-label x̂ → x and

similar for the other variables. We will always assume to be in the normalised phase space.

3.2 Reconstruction of a 4D Distribution from a Beam Profile

Operationally, a wire scanner can measure the beam profile in the horizontal or the vertical

plane. Mathematically, this is equivalent to performing the integral of the beam distribution

over the other variables of the phase space.

Assuming a 4D phase space distribution f4D (x, px , y, py ), the profile in the horizontal plane is

obtained as,

f1D (x) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f4D (x, px , y, py )d px d yd py . (3.14)

If only the profile f1D (x) is known, and we want to invert the problem to find the 4D phase

space distribution (in order to accurately model the physics), the solution is not unique.

The constraints are that the projection of f4D (x, px , y, py ) must match the observed f1D (x).

In addition, the distribution f2D (x, px) and f2D (y, py) need to be circularly symmetric in

the canonical planes x − px and y − py , in order for the distribution to be matched to the

Hamiltonian of the system.

From an observed beam profile, we can get the radial distribution of the canonical phase space

variables using the Abel transform [38], [39], that is, f2D (x, px). The 4D beam distribution

yielding the given 1D profile has infinite solutions, given no further constraints. To find

two examples of the beam distribution in a higher dimension, we could impose one of the

following additional constraints,

• Case 1) circular symmetry (i.e. round distributions in x-y , and all 2D sub-planes of the

4D distribution).

• Case 2) forcing the transverse planes to be factorizable.

Some equations are given without proof in [40] for circular symmetric distributions in 4D

(case 1). We will demonstrate how to find any circular symmetric distribution from a given

beam profile by using the Abel transform.
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Interlude: The Abel Transform

3.2.1 The Abel Transform
To find the circular symmetric beam distributions in higher dimensions, as functions,

we use the Abel transform. The Abel transform, originally proposed by Niels Henrik

Abel [38], is an integral transform relationship between two functions. Interpreted

geometrically, the Abel transform allows the transformation between 2D circularly

symmetric distributions and their projections in 1D. We use the form from Bracewell,

with α = 1/2 [39], where the ‘forward’ transform is given by,

g (x) = A [ f (r )] = 2
∫ ∞

x

f (r )r drp
r 2 −x2

. (3.15)

Where g (x) is the projection of a 2D circularly symmetric function which can be ex-

pressed as a function of a radius, r , and angle, θ, except it is uniform in θ, thus can be

described by f (r ). A represents a shorthand for the forward Abel transform.

The inverse transform, A −1, verified with an ansatz [38], is given by,

f (r ) = A −1[g (x)] = − 1

π

∫ ∞

r

d g

d x

d xp
x2 − r 2

. (3.16)

It can be extended to higher dimensions, such as axial spherical symmetry (3D) [38],

where a function f (r ) with r =
√

x2 + y2 + z2 exists,

l (w) = 2
∫ ∞

w

f (r )r drp
r 2 −w2

. (3.17)

Here, the projection onto the y z plane is expressed as l (w), where w =
√

y2 + z2.

The transform can be used in higher dimensions, so 4D for our use case (4D hyper-

circular symmetry). Furthermore, the inverse Abel transform can be used as a test

of physicality of a profile, as f (r ), given an f (x) must be defined positive, detailed in

Appendix B.

3.2.2 Defining Variables

For case 1, imposing circular symmetry in the x − y planes, and thus hyper-circular symmetry

in 4D, we define the following variables, or radii, from the canonical variables,

rx =
√

x2 +p2
x , (3.18)

ry =
√

y2 +p2
y , (3.19)

s =
√

x2 +p2
x + y2, (3.20)
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and a 4D ‘super-radius’,

m =
√

r 2
x + r 2

y =
√

x2 +p2
x + y2 +p2

y . (3.21)

Given that rx =
√

x2 +p2
x , and the phase space in 2D for canonical variables is circular, to find

f2D (rx ), the inverse Abel transform is applied once on a profile f1D (x). To find f4D (m), the

inverse Abel transform is applied three times to f1D (x) in accordance with the property of

extension to higher dimensions. Thus, any 4D circular symmetric distribution can be found.

Using the previous defined variables, starting from a projection in 1D, e.g. in x, f1D (x), we

obtain,

f2D (rx ) = − 1

π

∫ ∞

r

d f1D (x)

d x

d x√
x2 − r 2

x

, (3.22)

f3D (s) = − 1

π

∫ ∞

s

d f2D (rx )

drx

drx√
r 2

x − s2
, (3.23)

f4D (m) = − 1

π

∫ ∞

m

d f3D (s)

d s

d sp
s2 −m2

, (3.24)

This is equivalent to

f4D (m) = A −1[A −1[A −1[ f1D (x)]]]. (3.25)

Conversely, we can compute the 1D distribution from a given 4D with forward Abel transforms,

equivalent to a Cartesian integration in d px ,d y,d py ,

f1D (x) = A [A [A [ f4D (m)]]]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f4D (m)d px d yd py .

(3.26)

Given f4D (m), particles can be sampled from the distribution using an inverse sampling

method, adapted from [40], detailed in Appendix A.

3.2.3 Example: Waterbag Distribution

The use of the Abel transform to find circular-symmetric distributions can be validated on

the Waterbag and Parabolic distributions (which are defined in 2D), matching the 4D density

functions given in [40].
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Defining the 2D distribution f2D (rx ) as Waterbag yields,

f2D (rx ) =
2(1− r 2

x

m2
0

)

πm2
0

, (3.27)

f3D (s) = A −1[ f2D (rx )] =
4
√

m2
0 − s2

π2m4
0

, (3.28)

f4D (m) = A −1[ f3D (s)] =
2

π2m4
0

. (3.29)

where m < m0 defines the region where the distribution is non-zero.

3.2.4 Example: Parabolic Distribution

The case of a Parabolic 2D f2D (rx ) distribution yields,

f2D (rx ) =
1

πm2
0

3(1− r 2
x

m2
0

)2, (3.30)

f3D (s) = A −1[ f2D (rx )] =
8(m2

0 − s2)3/2

π2m6
0

, (3.31)

f4D (m) = A −1[ f3D (s)] =
6(m2

0 −m2)

π2m6
0

. (3.32)

It can be shown that these results are in agreement with the distributions in [40].

3.2.5 Example: q-Gaussian Distribution

We often observe beam distributions that are well-fitted by q-Gaussian distributions, such

as those exhibiting heavy tails in the transverse planes [41], [42] in the CERN accelerator

complex. The q-Gaussian can effectively describe these distributions and offers a unique

solution, unlike the combination of two Gaussian distributions with different weights and σ.

We can find the q-Gaussian distribution function for the hyper-circularly symmetric, case 1)

distribution, starting from the 1D q-Gaussian [43],

f1D (x) =

√
βq

Cq
eq (−βq x2), (3.33)

where eq is defined as the q-exponential (defined positive),

eq (x) = [1+ (1−q)x]
1

1−q

+ . (3.34)
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The normalisation factor Cq is defined,

Cq =



2
p
πΓ

(
1

1−q

)
(3−q)

p
1−qΓ

(
3−q

2(1−q)

) , for −∞< q < 1

p
π, for q = 1

p
πΓ

(
3−q

2(q−1)

)
p

q−1Γ
(

1
q−1

) , for 1 < q < 3.

(3.35)

Γ is the Gamma function. The distribution arises from the maximisation of the Tsallis entropy

[44]. The q can be interpreted as how light or heavy tailed a distribution is compared to the

Gaussian, (q = 1), and the βq scales the distribution along x. For q = 2 it becomes the Cauchy

distribution.

The variance of the distribution is given by,

variance =


1

βq (5−3q) , for q < 5
3

∞, for 5
3 ≤ q < 2

(3.36)

The 1D profile is transformed to a 2D density via the inverse Abel transform,

f2D (rx ) = −
β3/2

q (q −3)
√

q −1rx

2π

×
(

1

βq (q −1)r 2
x
+1

) q+1
2−2q (

βq (q −1)r 2
x

) q
1−q , (3.37)

Assuming a density in the form f4D (m), the equation for the 4D density function is obtained

via two further inverse Abel transforms,

f4D (m) =−
βq (q −3)(q +1)

(
1

βq (q−1)

) 1
1−q

4π2m3Γ
(

1
q−1

)
× (βq (q −1))

q+1
2−2q Γ

(
q

q −1

)
×

(
1

βq m2(q −1)
+1

) 1
1−q − 3

2

(βq m2(q −1))
1

1−q ,

(3.38)

which simplifies to,

f4D(m, q,βq ) =

(
−
β2

q (q −3)(q2 −1)

4π2

)
×
Γ

(
q

q−1

)
Γ

(
1

q−1

) × (
1+βq (q −1)m

) 1
1−q − 3

2 . (3.39)

41



Chapter 3 Reconstruction of Beam Distributions

This is valid for the specific case of q-values of 1 < q < 3, calculated using Mathematica [45].

(In the CERN accelerator complex, typical q observed are 1-1.4).

To generate a particle distribution for factorizable distributions in x−y (case 2), the 4D density

function is a product of two 2D density functions, one in x −px and one y −py , which are in

themselves functions of only rx and ry . They can be found via one inverse Abel transform for

each plane,

f4D (rx ,ry ) = f2D (rx )× f2D (ry ). (3.40)

The x−px and y−px distributions are then sampled via two separate Box-Müller type random

sampling methods [46].

The population of the phase space with a q-Gaussian of q = 1.4 for case 1 yields the x-y

projection shown in Fig. 3.1. The projection on the x or y planes (1D) is shown with the fit of a

q-Gaussian with q = 1.4.

Figure 3.2 shows the projection of the density function made from the multiplication of two 2D

distributions (case 2). As in case 1, the projection in x and y fits the q-Gaussian distribution

with q = 1.4.

Figure 3.1: Projection in the x − y-plane (left) and the x-plane and y-plane (right) for a
distribution with circular symmetry in all planes (case 1).

3.3 Losses

Taking the two (sampled) distributions of case 1 and 2, which give the same 1D profile, we

can observe the behaviour under a loss process. Projecting on the y −py plane, and making a

collimation (or beam scraping) at 3 σ in both cases, the y −py planes are identical, Fig 3.3.

Depending on if the distribution is case 1 or case 2, the behaviour under a loss process changes
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Figure 3.2: Projection in the x − y-plane (left) and the x-plane and y-plane (right) for a
factorizable distribution (case 2).

1) 2)

Figure 3.3: Collimation at 3 σ in the y plane is the circular cut in the y −py plane, identical for
both case 1) and case 2) distributions.

on the x plane in addition to the scraping plane, y . This can be seen by the probability density

of the removed particles by the y aperture seen in Fig. 3.4. The x2+p2
x of the removed particles

by a y aperture have a different distribution to the original x2 + p2
x distribution. This is a

consequence on the non-factorization of the function.

3.4 Non-Factorization

We have shown that the 4D distribution is not unique, given the same f1D . This is a con-

sequence of the free parameters, as the distribution only requires circular symmetry in the

canonical planes, and this condition is identical to the matching condition, f (Ĥ). For the

circular symmetric case (for the non-Gaussian cases), the distribution is non-factorizable, and
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1) 2)

Figure 3.4: The x distribution x of the removed particles due to the cut in y , has a different
result for the case 1) and case 2) distribution.

as a consequence we saw the difference in loss behaviour. Non-factorizable means,

f4D (x, px , y, py ) ̸= f2D (x, px ) f2D (y, py ). (3.41)

To show that the non-factorizable distribution is matched, we can plot the Σ matrix, the

case 1) f4D derived above, with a q = 1.4, shown in Fig. 3.5. The Σ matrix is diagonal beyond

numerical noise due to the sampling, thus there is no linear coupling in the distribution, (a

matched distribution in linear normalised phase space is uncoupled, i.e. the Σ matrix is

diagonal). The non-factorization cannot be observed by second order moments, as it does not

depend on phase but on amplitude.

Figure 3.5: The Σ beam matrix for a circular symmetric q-Gaussian distribution with a q = 1.4
and 2e6 particles.

3.5 Luminosity

The luminosity of particle colliders depends, among other parameters, on the transverse

profiles of the colliding beams. At the LHC at CERN, heavy-tailed transverse beam distributions

44



Reconstruction of Beam Distributions Chapter 3

are typically observed. The luminosity is usually modeled with the assumption that the x-y

planes are factorizable (i.e. statistically uncorrelated particle distributions between the planes)

in each beam. Below, we evaluate the relative luminosity difference for q-Gaussian profiles

with different 4D distributions. We calculate the luminosity for the circularly-symmetric

distributions as,

L ∝
∫ ∞

−∞

∫ ∞

−∞
f1(x, y) f2(x, y)d x d y. (3.42)

The integral is done numerically using Eq. (3.37) for f1,2(x, y), replacing rx with
√

x2 + y2.

For factorizable beam distributions, we obtain the luminosity as,

L ∝
∫ ∞

−∞

∫ ∞

−∞
f1(x) f1(y) f2(x) f2(y)d x d y, (3.43)

where f1,2(x) and f1,2(y) are the q-Gaussian 1D distributions, and 1,2 denote the two incoming

bunches.

Figure 3.6: Luminosity variation for different q , but the same βq (red and blue markers), and
for constant variance (green and black markers), with hyper circularly-symmetric (crosses) or
factorizable (points) distributions in x-y .

Figure 3.6 shows the luminosity for case 1) and case 2), given the constraint of a q-Gaussian

profile in the x and y planes, relative to a 4D circular-symmetric Gaussian distribution (q = 1).

The graph shows, as a function of q , a set of q-Gaussian distributions with constant variance

and another set keeping βq constant. The difference in relative luminosity between non-

factorizable, circularly symmetric (case 1) and factorizable (case 2) distributions becomes

larger as the q-parameter increases. This shows that it is important to know the properties of

the full phase space distribution to accurately calculate the luminosity integrals.
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Figure 3.7: The profile for a q-Gaussian with different q-parameters for constant variance.

For completeness, Fig. 3.7 shows the q-Gaussians beam profiles (1D projections of the phase

space) corresponding to the same q-parameters as in Fig. 3.6 for the case of constant variance.

46



Reconstruction of Beam Distributions Chapter 3

Note: Non-factorizable Gaussian beam distributions

3.6 Non-Factorizable Gaussian Beam Distributions
Circularly symmetric, x − y Gaussian distributions are factorizable. However, distribu-

tions which have 1D Gaussian projections, do not have to have a factorizable f4D , as

demonstrated in a notebook by G. Sterbini, attached in the Appendix E.

Given a 4D distribution for the canonical variables x, px , y, py in normalised phase

space; if the 1D projections are Gaussian, that is,∫ +∞

−∞
ρ(x, y)d y =

1p
2π

e−
(

x
σ

)2

(Gaussian x-profile), (3.44)

and ∫ +∞

−∞
ρ(x, y)d x =

1p
2π

e−
( y
σ

)2

(Gaussian y-profile). (3.45)

Considering the action-angle variables, Jx , and θx where

Jx =
x2 +p2

x

2
(3.46)

it is shown that, given the constraints that the marginal probability density function

(PDF), PDF(Jy |Jx ) is a solution of these equations,∫ +∞

0
e−Jx PDF(Jy |Jx )d Jx = e−Jy (3.47)

∫ +∞

0
PDF(Jy |Jx )d Jy = 1, (3.48)

for all Jx .

There are two possible solutions for PDF(Jy |Jx ),

A1.PDF(Jy |Jx ) = e−Jy , (3.49)

A2.PDF(Jy |Jx ) = δ(Jy − Jx ). (3.50)

The distributions look like, in x, y , for the A1. case Fig.3.8 and for the A2. case Fig.3.9.

The corresponding Σ matrices for a sample extracted on from these functions, with 1×106

particles, in the A1. case, Fig. 3.10 and in the A2. case 3.11. Both matrices are diagonal, and are

matched to the lattice, in a normalised linear phase space. However, for the case A2., the x

and y distributions are non-factorizable.
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Figure 3.8: The A1. case for a Gaussian distribution plotted in the x − y and x and y planes.

Figure 3.9: The A2. case for a Gaussian distribution plotted in the x − y and x and y planes.
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Figure 3.10: The Σ matrix for the distribution (A1.) showing that it is un-coupled.

Figure 3.11: The Σ matrix for the distribution (A2.) showing that it is uncoupled as the matrix
is diagonal.
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3.7 Measuring Non-Factorization

We have shown that it is important to know the full transverse distribution in order to cor-

rectly model the luminosity and the losses in a collider. Below, we propose a method for the

measuring of the transverse phase space via destructive scraping or collimation, with no ma-

nipulation of the machine optics. In addition to luminosity and losses, the non-factorization

of the bunch results in an important error on the calibration of the luminosity measurement.

An undeveloped version of the following method has been used, in Chapters 4, and 6 to find

the relative non-factorization of a beam distribution in order to find optimum configurations

for the van der Meer bunches (as factorizable as possible) in terms of the injector machine

parameters. In the lower injector machines there are no instruments which measure the full

transverse phase space.

In the LHC, the transverse beam distribution can be measured with the BSRT (Synchrotron-

Light Telescope) or the Coronagraph (uses the synchrotron light but through a lens to amplify

the beam halo), [47]. The BSRT has a noise limit on the beam halo measurement [48], and the

coronagraph is not operational as of 2024.

3.7.1 Reconstruction of PDF(Jx , Jy ) with Beam Scraping

A beam scraper (also referred to as a collimator), is an aperture which is controlled during

operation to remove higher amplitude particles in the distribution. Their main purpose is

for machine protection, in order to prevent damage to equipment. Beam scraping has been

used for diagnostics in LHC experiments to find the diffusion coefficient, tail population, loss

rates, and for the detection of beam oscillations [49], [50]. We can also probe the PDF(Jx , Jy )

distribution with scraping measurements.

Going to the distribution in the Jx , Jy plane is advantageous when working with an aperture.

For example, in the vertical plane, the y and py evolve with the vertical tune, however the Jy

is constant, and thus the aperture can be modeled as a cut in the beam distribution above a

limit. In Appendix C it is detailed how to calculate the 1D beam profile from an aperture limit

with the Abel transform. To determine the 4D distribution we can do the following.

Before any scraping in the y plane, a y profile measurement plus a transformation results in a

measurement:

PDF(Jy ). (3.51)

After a vertical scraping, where the scraper is placed at an aperture, Ai , in the Jy space of

Jy = Ai , we have the new conditional PDF of the y plane, found with a measurement in the y

plane and the Abel transform.
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PDF(Jy |Jy < Ai ). (3.52)

If we make a simultaneous measurement in the x plane of the 1D profile, we have another

PDF,

PDF(Jx |Jy < Ai ). (3.53)

Successive measurements, of the beam profile in both x and y , with different y apertures

(decreasing in amplitude), provide us with a series of discrete conditional probability density

functions.

The protocol can be represented by a matrix,

0 < Jy < An 0 < Jy < An−1 · · · 0 < Jy < A1 0 < Jy < A0

Jx,0 an,0 an−1,0 · · · a1,0 a0,0

Jx,1 an,1 an−1,1 · · · a1,1 a0,1
...

...
...

. . .
...

...

Jx,m−1 an,m−1 an−1,m−1 · · · a1,m−1 a0,m−1

Jx,m an,m an−1,m · · · a1,m a0,m

(3.54)

Given that Ai are the scraping amplitudes of the scraping protocol, and Ai+1 is the next

scraping aperture in time, if the collimator starts far from the beam at Jy = A0. To find

PDF(Jx |Ai+1 < Jy < Ai ) from the PDF(Jx |0 < Jy < Ai ), we need to sum for different Ai ,

PDF(Jx | Ai < Jy < Ai+1) =
i+1∑
j =1

PDF(Jx | 0 < Jy < A j )−
i∑

j =1
PDF(Jx | 0 < Jy < A j ), (3.55)

yielding the discrete matrix PDF(Jx | Ai < Jy < Ai+1),

0 < Jy < An An < Jy < An−1 · · · A2 < Jy < A1 A1 < Jy < A0

Jx,0 a′
n,0 a′

n−1,0 · · · a′
1,0 a′

0,0

Jx,1 a′
n,1 a′

n−1,1 · · · a′
1,1 a′

0,1
...

...
...

. . .
...

...

Jx,m−1 a′
n,m−1 a′

n−1,m−1 · · · a′
1,m−1 a′

0,m−1

Jx,m a′
n,m a′

n−1,m · · · a′
1,m a′

0,m

(3.56)

Making an approximation from discrete to a continuous distribution, to find,
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PDF(Jx |Jy = Ay ), (3.57)

and given Bayes’ theorem;

PDF(Jx , Jy ) = PDF(Jx |Jy )×PDF(Jy ), (3.58)

PDF(Jx , Jy ) can be reconstructed. (PDF(Jy ) is the marginal distribution which can be found

from a profile measurement in y before scraping).

To find the distribution in x, px , y, py , a rotation is used,

x =
√

2Jx cos(θx ) (3.59)

px = −
√

2Jx sin(θx ) (3.60)

y =
√

2Jy cos(θy ) (3.61)

py = −
√

2Jy sin(θy ). (3.62)

The angle, θx,y , is uniformly distributed. A numerical example to find the PDF(Jx , Jy ) for the A1.

and A2. Gaussian distributions is given in Appendix D. This method is not well-developed for

experiment as of writing, as it depends greatly on the noise of the profile measurement, and the

rate of diffusion during the period of the measurement. Scraping and profile measurements

in both planes has however been used to determine the relative non-factorization between

distributions in Chapters 4 and 6.
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3.8 Summary

It has been shown that given a beam profile, the transverse distribution is not unique. The

losses and luminosity depend on the full transverse distribution. We have seen that non-

factorizable distributions (not coupled) can be stationary (in linear and nonlinear machines,

for integrable motion). It has also been shown that even distributions giving Gaussian profiles

can be non-factorizable.

To increase the non-factorization in a distribution it requires a mechanism that gives energy,

or takes away energy from a particle’s x and y position simultaneously. In the next few

chapters, we will show experimentally (Chapter 4), and with simulation (Chapter 5), how

non-factorization can be introduced into the distribution through coupled resonance crossing

in the presence of space charge. We will also demonstrate through experiment how the non-

factorization is preserved in a synchrotron, and can be passed to higher energy machines

(Chapter 6). This will be discussed in reference to the van der Meer measurements and the

minimisation of the uncertainty due to the non-factorization.
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4 Experiment of Periodic Resonance
Crossing in the CERN PSB

4.1 Introduction

As we demonstrated in the Chapter 3, an in depth characterisation of the beam distribution is

paramount to anticipate the luminosity performance and how the beam will behave under

loss processes, (particularly for high brightness beams, when the losses can cause machine

damage). Beam profile measurements are the projection of the 6D phase space distribu-

tion onto a single axis (one of the horizontal, vertical and longitudinal planes). Inversions

of the profile to a full distribution do not yield unique solutions, and both factorizable and

non-factorizable distributions can be matched and fit the measured projections. For non-

factorizable distributions, selecting the amplitude of a particle in one plane will condition the

amplitude distribution in another plane. This impacts in a macroscopic way the evolution

of the particle distributions; losing a particle in one plane affects the (normalised) profile

in the other. This can be observed experimentally through scraping of the beam tail, and

measurement of the beam profile in the other planes.

Crossing of coupled x − y resonances is one mechanism that could introduce the aforemen-

tioned non-factorization. Due to the synchrotron motion in bunched beams, particles change

their position within the longitudinal profile. The space charge tune spread depends on the

local line charge density, and thus it is changing as the particles move towards the centre of the

bucket. Particles which were initially not resonant become resonant as their tune approaches

the resonant condition. The motion follows structures in the 4D phase space, resembling

Lissajous figures. The particles x, y position is affected simultaneously. When the particles

no longer meet the resonant condition, the non-factorization persist as the Courant-Snyder

amplitudes in x −px , y −py of a given particle are preserved [51], as will be seen in the next

two chapters. The dynamics under coupled-resonances and the structures formed in the

4D phase space, or ‘fixed-lines’ has been the subject of recent experimental and analytical

investigations, [19]–[21], [52].

In 2017, it was shown that periodic resonance crossing of coupled resonances introduces
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an asymmetric halo in the transverse planes. The experiment was carried out in the CERN

Proton Synchrotron, the machine after the Proton Synchrotron Booster in the CERN proton

injector chain. The idea behind the experiment shown in this chapter was to induce a similar

halo in the bunch via periodic resonance crossing of a coupled resonance, and measure

the non-factorization between planes using beam scraping and profile measurements after

excitation of the resonance had been removed (almost linear machine). The results also

show how excitation of a 1D resonance does not introduce asymmetric halos and furthermore

does not change the non-factorization of the transverse planes.

4.2 Experimental Configuration

The measurement campaign was performed at the CERN Proton Synchrotron Booster (PSB),

which is a machine with four superposed rings with a common magnetic yoke, and all experi-

ments were conducted in Ring 1, the bottom ring. The driving terms of the relevant lattice

resonances for the chosen working points were corrected for, similarly to as detailed in [53].

This enabled controlled excitation of the selected resonance. Two experimental configurations

are presented: the working point (Qx ,Qy ) = (4.11,4.36) near a third order resonance (1D)

3Qy = 13, and (Qx ,Qy ) = (4.18,4.44) near a coupled third order resonance (2D) Qx +2Qy = 13.

The tune spreads due to space charge are around ∆Qx = −0.11, ∆Qy = −0.14, calculated using

[54]. The code calculates resonance driving terms by including the space charge potential of a

Gaussian beam in the Hamiltonian. The tune spreads can be seen in fig. 4.2 and fig. 4.1.

Figure 4.3 illustrates the experimental configuration of the cycle. The measurements were

performed at the 160 MeV injection plateau, during which a single bunch of ∼ 4×1011 protons

was stored. The lattice resonance compensation was maintained during the whole cycle.

Measurements were performed with either no resonance excitation, or with a resonance

excitation for a period of 220 ms using a skew or normal sextupole, depending on the selected

resonance. Following a period of ∼ 30 ms (∼3×104 turns), corresponding to ∼20 synchrotron

periods after the excitation was removed, high amplitude particles of the vertical profile were

scraped away via a controlled vertical closed orbit bump moving the beam onto a dedicated

aperture restriction. Profile measurements in the horizontal and vertical plane were taken with

the wire scanners after the scraping process, along with tomoscope measurements [55] for

the longitudinal plane. The sextupole current and vertical orbit bump were varied to test how

the non-factorization changes as function of the particle amplitude for different resonance

excitations.
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Figure 4.1: The set working point of the 3Qy = 13 experiment with the estimated space charge
tune-spread assuming a Gaussian beam profile and the measured emittances. The excited
resonance is shown in green.

Figure 4.2: The set working point of the Qx +2Qy = 13 experiment with the estimated space
charge tune-spread assuming a Gaussian beam profile and the measured emittances. The
excited resonance is shown in green.
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Figure 4.3: The experimental configuration along the 160 MeV injection plateau in the PSB.
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4.3 Experimental Results

The initial (after injection, no resonance excitation) profiles in the horizontal, vertical, and

longitudinal planes can be seen from screenshots of the PSB logbook Fig. 4.4. The initial

normalised emittances were 2.1 µm · rad in H and 1.4 µm · rad in V. The longitudinal bunch

profile is parabolic. The longitudinal parameters were optimised to have a small ∆p
p rms

in

order to minimise the effect of dispersion on the beam profile, see Fig. 4.5.

Data taking periods were done with automatic scripting; it was paramount to have the scraping

measurements for a single resonance on the same day, and to avoid effects due to hysteresis

(which could affect the correction of the RDTs). The automatic scripting helped with the

acquisition of numerous measurements for statistics.

Figure 4.6 displays the vertical, horizontal and longitudinal profiles for different scraped

intensities (done with the vertical orbit bump), with and without the resonance excitation.

When the 3Qy = 13 resonance is not excited, the profiles (normalised to intensity) remain

constant in the non-scraping planes (apart from the reproducibility of measurements). When

the 3Qy resonance is excited, large tails can be observed in the vertical plane, which are clearly

removed by the scraping. Furthermore, the vertical scraping also changes the longitudinal

profile resulting in reduced bunch length, as particles with large vertical amplitude also have

high longitudinal amplitude. The horizontal profile is not changing, as the 1D resonance

crossing moves particles to higher amplitudes in the vertical plane only for 3Qy = 13.

Figure 4.7 shows the beam profiles in all three planes when measured after the vertical scrap-

ing for the resonance Qx +2Qy = 13 for different scraped intensities, with and without the

excitation during the cycle. As the beam is scraped vertically, for the case with no excitation,

the normalised longitudinal and horizontal profile do not change beyond shot to shot vari-

ation. For the case with the resonance excited, the non-scraped profile has larger tails in

Figure 4.4: The initial vertical beam profile with corrected resonances and no excitation.

59



Chapter 4 Experiment of Periodic Resonance Crossing in the CERN PSB

both H and V. As the vertical tails are removed by the scraper, both the horizontal and the

longitudinal profile change shape. This suggests that particles which have been affected by

the resonance have moved to high amplitudes in the vertical and horizontal planes, and a

section of the distribution with large longitudinal amplitude is affected by the resonance. This

is again compatible with space charge induced resonance crossing.

To see the effect of different levels of resonance excitation, the transverse profiles are fitted

with a q-Gaussian distribution [41], [43], where the q-parameter shows how heavy (q > 1)

or light tailed (q < 1) the distribution is compared to a normal Gaussian (q = 1). The bunch

length is determined from the tomoscope data and represents the full width half maximum

(FWHM) length of the bunch. The error given is for the standard deviation of the FWHM

during the measurement of the tomoscope (100 profiles for one measurement). Figures 4.8,

4.9, 4.10 show the relative bunch lengths and the q-parameters of the transverse profiles (qH

for the horizontal fit and qV for the vertical fit) for different sextupole currents exciting the

Qx +2Qy = 13 resonance, with the error from the covariance matrix of the fitting.

Figure 4.5: Tomographic reconstruction before any resonance excitation to make sure the
longitudinal parameters were correct.
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Figure 4.6: Beam profile measurements near the 3Qy = 13 vertical resonance. The measure-
ments are after vertical scraping has removed different percentages of the bunch intensity as
per the colour scale, without (top ISX = 0 A) and with (bottom ISX = 40 A) the resonance excited
by a strongly powered skew sextupole for some period of the cycle.

Figure 4.7: Beam profile measurements near the Qx + 2Qy = 13 coupled resonance. The
measurements are after vertical scraping has removed different percentages of the bunch
intensity as per the colour scale, without (top ISX = 0 A) and with (bottom ISX = 40 A) the
resonance excited by a strongly powered normal sextupole for some period of the cycle.

In the case of ISX = 0 A, it can be seen there is almost no dependence of qH and bunch length

on qV (as the beam is scraped in the vertical plane), meaning little or no other coupling or

resonant effects are present. For ISX = 20 A, there are tails created in H and V, and they are

correlated up to a scraping of 15%, along with the longitudinal bunch length. For ISX = 40 A, the
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Figure 4.8: Bunch length, qV and qH plotted as a function of the scraped intensity for the
Qx +2Qy = 13 configuration. ISX = 0 A.

Figure 4.9: Bunch length, qV and qH plotted as a function of the scraped intensity for the
Qx +2Qy = 13 configuration. ISX = 20 A.

tails generated by the periodic resonance crossing are even thicker and the three parameters

remain correlated until a vertical scraping of 22%. Increasing the sextupole current and thus

resonance excitation increases the non-factorization in the 6D phase space distribution.
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Figure 4.10: Bunch length, qV and qH plotted as a function of the scraped intensity for the
Qx +2Qy = 13 configuration. ISX = 40 A.

4.4 Summary

The experimental results presented in this chapter show how periodic resonance crossing of a

coupled resonance can build up non-factorization in a distribution which remains after the

excitation of the resonance is removed (ISX = 0). Depending on the strength of the excitation,

the distribution becomes more or less factorizable. The non-factorization is higher for high

amplitude particles and the particles in the core seem to still have a factorizable distribution,

which is observable by the saturation of the change in the x plane at certain y apertures. In

the case of 1D resonances, a transverse non-factorization is not introduced.

Simulations with symplectic tracking codes, described in the next chapter, will benchmark

these results and offer more insight into the mechanism of the halo creation and the non-

factorization of the amplitudes in the transverse planes.
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5 Simulation of Coupled Resonance
Crossing in the CERN PSB

5.1 Introduction

The experiment described in the Chapter 4 is simulated for the case of the coupled resonance

excitation, namely Qx +2Qy = 13, on a 160 MeV constant energy magnetic cycle in the Proton

Synchrotron Booster (PSB). Two approaches are used, a shorter simulation to investigate

the single particle dynamics, using a frozen space charge model (assumes Gaussian bunch

shape). Then, for the collective behaviour, or the distribution evolution, long term tracking

simulations are used with many macroparticles to benchmark the experiment. In this second

case, a particle-in-cell space charge model (Poisson solver), is used in combination with a

symplectic tracking code, both implemented in Xsuite [56], a modular simulation package for

accelerator physics developed at CERN.

5.2 Single Particle Tracking

The first step was to simulate a few turns and particles under the so-called ‘frozen’ space

charge hypothesis. The positions of the particles for all turns of the simulation were saved. We

can inspect the phase space dynamics and tune diffusion. The short term tracking simulations

are based on code from [57]. For the single particle dynamics, the simulation was as close to

the experimental parameters as possible, the simulation parameters are given in Table 5.1.

An initial particle distribution of 1200 particles was used, with a polar grid in the x̂− ŷ plane and

a longitudinal slice, that is, all particles are initiated on a z = zmax and the initial momentum

offset ∆p
p is set to 0. Figure 5.1 shows the initial distribution in (linear) normalised x̂ − ŷ space.

Figure 5.2 shows how z and ∆p
p vary with synchrotron motion in the longitudinal phase space.

As only a longitudinal slice is used for the 1200 particles, depending on the zmax value the line

density and thus the space charge forces vary. Assuming a Gaussian (approximation) profile

in the z-direction, the space charge depends on the line density, given by,
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Table 5.1: Simulation Parameters

Initial beam parameters Value
Number of particles per bunch [1011 p] 4.06
Normalised RMS emittance [ϵx ,ϵy ] µmrad [2.1, 1.4]
RF voltage [kV] 8

RMS ∆p
p 9.56e-4

RMS bunch length (σz ) 127 ns
FWHM bunch length 285 ns
Programmed tune*[Qx ,Qy ] [4.18, 4.44]
Chromaticity ** [-3.7, -6.9]
Kinetic energy 160 MeV
Normal sextupole current ISX 40 A
* The experimental set tunes Qx and Qy are varied in sim-

ulation to account for possible coherent tune shift due
to impedance.

** The chromaticity is defined as the variation of the beta-
tron tune Q momentum deviation Q ′ = dQ

dδ [58].

Figure 5.1: Initial x̂ − ŷ position of 1200 particles for the short term simulation in the linear
normalised x̂ − ŷ space. The particles for which the dynamics is inspected more closely are
numbered.

λ(z) =
Nb√
2πσ2

s

e
− z2

2σ2
s , (5.1)

where Nb is the bunch intensity, σs the longitudinal beam size, and z the position. The peak

line density dependence on zmax can be seen in Fig. 5.3. The line density depends on the

position z, which, in the case of zmax = 0 m, does not vary with the synchrotron motion. For

large zmax, the line density and thus space charge varies with the synchrotron motion, and
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Figure 5.2: Longitudinal slice for short term tracking simulation and how the ∆p
p varies with z.

thus the detuning varies. This means that particles may periodically cross the resonance

condition.

Figure 5.3: Line density λ indicating the slices of longitudinal phase space for different zmax.

5.2.1 Tune Diffusion

To determine if the particles are affected by the Qx +2Qy = 13 resonance excited by the normal

sextupole in the lattice, a short tracking simulation and an analysis of the frequencies can be

used in a technique known as frequency map analysis (FMA). Particles are simulated using

Xsuite with the frozen space charge model for two synchrotron periods. For different slices of

the longitudinal phase space (zmax), the synchrotron period differs but can be calculated by

observing the periodicity of the z parameter as seen in Fig. 5.4.
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Figure 5.4: The z position for particles with the same initial transverse amplitude but different
zmax, yielding different synchrotron periods, τs .

The individual particle tunes for each synchrotron period are calculated using the NAFF

algorithm [59], implemented in the Python module NAFFlib [60]. A tune diffusion ‘coefficient’

can be calculated using the formula,

d = ln

√(
Q(2)

x −Q(1)
x

)2 +
(
Q(2)

y −Q(1)
y

)2
, (5.2)

where Q(1)
x,y are the horizontal and vertical tunes over the first synchrotron period, and Q(2)

x,y

are the tunes over the second synchrotron period. For the calculation of the tune diffusion

coefficient d , it is important to have a full synchrotron period when considering non-zero

chromaticity, (the chromaticity in the experiment could not be corrected for simultaneously

in both the x and y planes). This is not equivalent to defining a constant for diffusion in a

diffusion equation, and is merely an observable of how the tune is changing in time.

The diffusion coefficient indicates how much the tune has changed over the two periods. The

resonance can lead to a change in tune, due to the distortion in phase space [1]. Irregular or

chaotic motion can be predicted with a large tune change in a short period [1].

It is useful to plot the particle’s diffusion coefficient against its initial amplitude in the grid

on the transverse plane, as shown in Figs. 5.5 and 5.6, for two simulations with different zmax.

We can observe a band that seems to be affected by the resonance. By plotting the particles

tune in the resonance diagram it is possible to observe particles which are affected by the

resonance, as they can become ‘locked’ to the resonance lines, Figs. 5.7 and 5.8.

In the case of the simulation with the longitudinal slice at zmax = 0 m, there are fewer particles

with large diffusion coefficients. For zmax = 10 m, many more particles have large diffusion
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coefficients. This is due to the periodic change in longitudinal line density, which allows parti-

cles to periodically cross the resonant condition as the space charge detuning changes. This

suggests a dependence on whether a particle will reach higher amplitudes in the transverse

plane depending on its longitudinal position, as observed in the experiment (see Chapter 4).

Figure 5.5: Initial distribution for particles on momentum, zmax = 0 m, plotted with their
diffusion coefficient calculated for 2 successive synchrotron periods.

Figure 5.6: Initial distribution for particles off momentum, zmax = 10 m, plotted with their
diffusion coefficient calculated for 2 successive synchrotron periods.

5.2.2 Single Particle Dynamics

It is possible to analyse the beam dynamics of the particle in the linear normalized space via a

transformation. The Courant-Snyder (CS) invariants, Jx and Jy , can be tracked as a function of

the turn in the synchrotron. In a symplectic and linear transformation, all linear combination

of Jx and Jy are conserved. For the simulated case (non-linear), when the longitudinal slice
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Figure 5.7: FMA for particles on momentum, zmax = 0 m, plotted in the tune diagram with their
initial tune and diffusion coefficient calculated for 2 successive synchrotron periods.

Figure 5.8: FMA for particles off momentum, zmax = 10 m, plotted in the tune diagram with
their initial tune and diffusion coefficient calculated for 2 successive synchrotron periods.

is at zmax = 0 m, the evolution of Jx +2Jy (nx Jx +ny Jy ), for a sample of particles, is plotted

over 4000 turns in Fig. 5.9. nx and ny are the resonance coefficients. The non-linearities are

sufficiently small that Jx +2Jy is almost preserved.

For the case of zmax = 10 m, the evolution of Jx +2Jy is plotted over 4000 turns in Fig. 5.10.

There is a band of particles that are crossing the resonance condition, which is inferred from

the large and irregular variation in Jx +2Jy . The band of particles is seen when the linear

combination nx Jx +ny Jy is plotted, but not a coherent band for other linear combinations.

The particles do not appear to be trapped in the resonance, as their amplitude does not

increase indefinitely.

For the nominal RF bucket voltage and with the longitudinal slice at zmax = 10 m, we inspect
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Figure 5.9: Simulation for particles on momentum, zmax = 0 m, showing over 4000 turns the
Jx +2Jy evolution of a single particle colour-coded by its initial Jx +2Jy .

Figure 5.10: Simulation for particles off momentum, zmax = 10 m, showing over 4000 turns the
Jx +2Jy evolution of the single particle colour coded it’s initial Jx +2Jy .

more closely an unaffected and a particle affected by the resonance. Figure 5.11 shows the

evolution of the phase space (x̂ − p̂x , ŷ − p̂y ) and the CS invariants, Jx and Jy , over 4000 turns

for a particle that is not resonant (particle 110 in Fig. 5.1). The CS invariants oscillate (right)

due to nonlinear elements in the lattice, such as space charge and the strongly powered normal

sextupole. The x̂ − p̂x (left) and ŷ − p̂y (middle) projections remain quite constant over 4000
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turns. Figure 5.12 shows the x̂ − ŷ projection for two 100-turn periods. The motion is not

correlated in the x̂ − ŷ planes.

Figure 5.11: A non-resonant particle (110) and the evolution of the CS invariants (right) and
the linearly normalised phase space projections x̂ − p̂x (left), and ŷ − p̂y (middle).

Figure 5.13 shows the evolution of Jx , Jy , and the x̂ − p̂x and ŷ − p̂y phase space of a particle

that is repeatedly crossing the resonance condition but is not trapped (particle 802 in Fig. 5.1).

The Jx and Jy (right) evolve, and the particle either gains or loses energy when the resonance

condition is met. The quantity Jx − Jy /2 is plotted, corresponding to Jx /nx − Jy /ny , the ‘first

invariant of the perturbed motion’ from [15] with prior work in [61]. Jx − Jy /2 remains constant

(beyond oscillations due to the approximation of the linear normal form).

Figure 5.14 shows the same particle’s x̂ − ŷ projections for two different periods (top left and

bottom left) at turns 300-400 and 950-1000. The top right shows the same evolution of Jx and

Jy , but also the tunes Qx and Qy calculated with a moving window of 40 turns. The bottom

right plot shows the synchrotron motion and the tunes. The particle follows structures in the

x̂ − ŷ plane rather than regular rectangular motion, as it is scattered to higher Jx and Jy (top

right). These are 2D projections of a 6D structure. The change in Jx occurs simultaneously with

the change in Jy , at a ratio of 1:2, linking the particle’s x̂ position to its ŷ position. This is only

single-particle dynamics, and we cannot yet see how this would change the full distribution

and introduce non-factorization.
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Figure 5.12: Projections on the x̂ − ŷ plane (top left, bottom left) for the turn numbers 300-400
and 900-1000 out of 4000 for a non-resonant particle (position 110). The linear combination
of the tune nxQx +nyQy , calculated over a 40 turn window is shown with the CS invariants
and the Jx /nx − Jy /ny [15], [61] (top right) for 4000 turns. The synchrotron motion is plotted
(bottom right) for the same 4000 turns.
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Figure 5.13: A resonant particle (802) and the evolution of the CS invariants (right) and the
linearly normalised phase space projections x̂− p̂x (left), and y−py (middle), as the resonance
is repeatedly crossed.
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Figure 5.14: Projections on the x̂ − ŷ plane (top left, bottom left) for the turn numbers 300-400
and 950-1000 out of 4000 for a resonant particle (position 802 in Fig. 5.1). The tune nxQx+nyQy

calculated over 40 turn windows is shown with the CS invariants and the Jx /nx − Jy /ny [15]
(top right) for 4000 turns. The synchrotron motion is plotted (bottom right) for the same 4000
turn period.
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5.2.3 Trapping

The simulation was repeated with a lower RF bucket voltage (much lower than in the experi-

ment) to increase the synchrotron period. This slows down the process of resonance crossing.

A zmax of 40 m was used to create a larger variation in the longitudinal line density with the

synchrotron motion. Figure 5.15 shows the x̂ − p̂x and ŷ − p̂y evolution over 20000 turns,

with a synchrotron period of approximately 18000 turns. The CS invariants are plotted, and

unlike the case of particle 802 from Fig. 5.14, the particle stays on the resonance condition

for a longer period. The CS invariants gradually increase and then decrease back to the initial

amplitude. The situation is much more nonlinear, and the ‘invariant’ for the perturbative case

Jx /nx − Jy /ny is not valid.

In Fig. 5.16, the particle’s projection of x̂ − ŷ phase space is plotted for different periods: turns

3000-6200 (top left) and 13000-16000 (bottom left). On the top right, the tunes are plotted

with the CS invariants, and the bottom right shows the synchrotron motion and the tunes

over 20000 turns. The synchrotron period is much longer and is therefore almost considered

’frozen.’ This allows for a slower crossing of the resonance condition, and the tunes become

locked for a certain period (pink and blue sections). The x̂− ŷ projections now have a constant

‘phase’, but a varying amplitude in the structure as the CS invariants increase and then decrease.

The reason for the constant phase of the structure, as opposed to the case in Fig. 5.14, could

be interpreted as the quasi-freezing of the longitudinal motion. Thus, the 2D projection is a

projection of a 4D object rather than a 6D object. By even further reducing the RF voltage, the

shape of the fixed line can fully emerge due to a full trapping of the particle on the resonance,

as seen in Figs. 5.17 and 5.18.

Figure 5.15: A resonant particle for a simulation with a much longer synchrotron period, the
CS invariants (right) and the linearly normalised phase space projections x̂ − p̂x (left), and
y −py (middle).
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Figure 5.16: Projections on the x̂ − ŷ plane (top left, bottom left) for the turn numbers 2750-
6250 and 13000-16000 out of 20000 of a resonant particle which is trapped due to the longer
synchrotron period and thus slower crossing of the resonance condition. The linear combina-
tion of the tune nxQx +nyQy is shown with the CS invariants and the Jx /nx − Jy /ny [15] (top
right) for 20000 turns. The synchrotron motion is plotted (bottom right) for the same 20000
turn period.
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Figure 5.17: A resonant particle for a simulation with a much longer synchrotron period, the
CS invariants (right) and the linearly normalised phase space projections x̂ − p̂x (left), and
y −py (middle).
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Figure 5.18: Projections on the x̂ − ŷ plane (top left, bottom left) for the turn numbers 10000-
13000 and 13000-16000 out of 40000 of a resonant particle which is trapped due to the
longer synchrotron period and thus slower crossing of the resonance condition. The linear
combination of the tune nxQx +nyQy is shown with the CS invariants and the Jx /nx − Jy /ny

[15] (top right) for 40000 turns. The synchrotron motion is plotted (bottom right) for the same
40000 turn period.
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5.3 Multi-particle Tracking

By observing the single particle dynamics, we cannot observe the evolution of the whole

distribution and the non-factorization (see Chapter 3). The non-factorization is a statistical

property, thus the evolution of many particles is needed.

The PSB lattice is simulated at injection energy with parameters consistent with those in

the experiment in Chapter 4 and detailed in Table 5.1. The number of macroparticles re-

quired was determined by convergence simulations, as shown in Fig. 5.19. It was found

that 500000 macroparticles were necessary to accurately reproduce the correct behaviour

with space charge, as the profile distribution at 200000 turns converged after this number of

macroparticles.

Figure 5.19: Convergence study for different macroparticle numbers. The beam profile is
plotted after 2×105 turns in simulation, with PIC 2.5D space charge.

The initial transverse distribution used is a Gaussian distribution with the measured normal-

ized emittances of, ϵx = 2.1µmrad, ϵy = 1.4µmrad. The longitudinal distribution is parabolic.

The distribution is injected and matched to the lattice. The working point, or tune, is set to be

the same as the experiment. The excitation of the resonance is with a normal sextupole set to

a current of ISX = 40 A. The distribution is tracked using the symplectic tracking code Xtrack,

part of Xsuite, which includes a 2.5D FFT particle-in-cell solver to calculate the space charge.

The space charge forces and kicks are calculated by solving the Poisson equation. The ‘2.5D’

refers to the fact that the longitudinal distribution is sliced, and space charge is then solved

using a 2D model. The distribution is tracked for 230000 turns, consistent with the resonance

excitation period of the experiment. The simulation is based on code from [62].
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5.3.1 Tune dependence

Initial simulations found a small discrepancy between the simulated halo growth and the halo

observed in the experiment at 230000 turns. Tune scans around the machine’s set tune showed

better agreement, which could be due to a coherent tune shift caused by the impedance of the

ring [63], which is neglected in the simulation.

The long-term tracking simulations, with an offset tune compared to the experiment, repro-

duce the general behaviour of the beam distribution very well. Figure 5.20 shows the final

profile from simulations after 230000 turns, (red) compared with the profiles measured with

the wire scanner and tomograph in the longitudinal plane (blue). The simulation results

include an aperture in the y plane, consistent with the aperture caused by the scraper in

the experiment. When the simulation tunes are set at Qx = 4.18, Qy = 4.435, with a ∆Qy of

-0.005 compared to the experimental tune, the final profiles in y are closest to the observed

experimental profile, Fig. 5.20. Figure 5.21 is from a simulation with a slightly lower vertical

tune, Qy = 4.430, and it can be seen the profile in y does not agree as well.

Figure 5.20: Comparison of the simulated and measured distribution after the resonance
excitation for 230k turns. The set tune was Qx = 4.18, Qy = 4.435.

Figure 5.21: Comparison of the simulated and measured distribution after the resonance
excitation for 230k turns. The set tune was Qx = 4.18, Qy = 4.43.
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5.3.2 Non-Factorization in Simulation

To determine if non-factorization is present in the distribution, a series of simulated vertical

apertures are used to remove the tail part of the distribution, and the change in the profile in

the horizontal plane is observed, as was done in experiment. Figure 5.22 shows the profiles

in the three planes, for different y apertures, given by the colour code. The y-aperture is

introduced by a condition on y and py . As the aperture moves towards the centre of the bunch,

the y plane shows the tails removed, and in the x plane the tails are also reduced, however

less than in the experiment. The longitudinal plane is also changing, consistent with the

experimental results.

Figure 5.22: Change in profile in x, y, z for different y apertures given by the colour code. A
change in profile in the other planes apart from y demonstrates a non-factorization in the
distribution. The tune was set at Qx = 4.18, Qy = 4.435 and the emittance the nominal.

5.3.3 Dependence on Initial Emittance

Depending on the initial emittance of the x and y planes, the halo evolution differs. The results

of a simulation with a horizontal normalized emittance of 2µmrad and a vertical normalized

emittance of 3µmrad are shown in Fig.5.23. All other parameters are kept the same as in

the previous simulation, shown in Fig.5.22 which matches the experimental data. The final

profile is shown with different y apertures and how the profile changes in the other planes.

The change in the x plane is stronger than for the experiment in chapter 4. By changing

the emittances, the non-factorization can be increased with the excitation of the coupled

resonance.
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Figure 5.23: Change in profile in x, y, z for different y apertures given by the colour code. A
change in profile in the other planes apart from y demonstrates a non-factorization in the
distribution. The tune was set at Qx = 4.18, Qy = 4.435 and the emittances 2µmrad (x) and
3µmrad (y).
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5.4 Summary

Through simulation of the single particle dynamics, it has been shown that crossing of a

resonance condition periodically can lead to a change in the CS invariant in both the x and

y plane if the resonance is a coupling one. Particular longitudinal slices are likely to have

more particles which cross the resonance condition. Simulating a much longer synchrotron

period than the experiment, leads to a full trapping of the particle, with the tune constant. The

‘fixed-line’ structures emerge in the x − y plane.

Long term tracking simulations with many macroparticles and PIC space charge agree well

with the experiment in Chapter 4, taking into account a small set tune offset. The non-

factorization is introduced via the periodic crossing, as the initial distribution is a transverse

factorizable Gaussian.

Exploring the parameter space, shows that changing the emittances in the two transverse

planes changes the dynamics and affects the level of non-factorization when subject to the

same resonance and lattice. This experience was used in another experiment to maximise the

non-factorization present in a distribution in order to measure how it is transferred from one

accelerator to another in a chain, as discussed in Chapter 6.
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the CERN Accelerator Complex

6.1 Introduction

The Chapters 4 and 5 demonstrate how non-factorization (NF) can be introduced into the

x − y beam distribution through the periodic crossing of coupled resonances, and that this

non-factorization can be observed in experiments through beam scraping (collimation), and

profile measurements.

At the Large Hadron Collider (LHC), NF has been observed in the beam distribution through

van der Meer scans (vdM). Moreover, the NF of the transverse distribution was the largest

uncertainty in the luminosity calibration, as cited by CMS in the analysis of the 2023 van der

Meer run [32]. An experiment was proposed to determine if NF from periodic resonance

crossing is transferred from a lower energy accelerator in the chain up to the LHC. This

proposal was partly motivated by the observation that the NF correction exhibited a particular

pattern where every 4th bunch in the filling scheme (pattern of bunches injected to the

LHC) had a lower NF correction, which could point to a source from the Proton Synchrotron

Booster (PSB), which has 4 rings [33]. Magnet imperfections (driving coupled resonances),

which differ from ring to ring, could be a possible explanation for this observation, as the

intensity is uniform in each ring (space charge driven). This observation coincided with the

PSB experiments on NF introduced by coupled resonance crossing, leading to the idea that

this phenomenon (not artificially excited) could contribute to the NF observed during the

vdM scans.

In previous years, schemes for the van der Meer bunches did not avoid coupled resonances.

Van der Meer bunches are the bunches used in van der Meer scans, which have a special

configuration in order to produce the desired emittance and intensity at the LHC. A previous

vdM scheme made use of integer resonances to blow up the bunch emittance, and then

exchange the emittance to both transverse planes using the 4th order Montague resonance

[64], [65] until the required parameters were reached [66]. The 4th order Montague resonance

is a coupling resonance, 2Qx − 2Qy = 0, and is known to cause emittance exchange [64].

Dynamics due to this resonance could also cause non-factorizable distributions, as shown by
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Figure 6.1: Single particle invariants can be anti-correlated through the dynamics of the
Montague resonance 2Qx −2Qy = 0 [65].

the anti-correlated Jx , Jy for a single particle in [65], shown in Fig. 6.1.

An experimental campaign was proposed, to see how non-factorization from lower energy

machines (purposefully introduced into the bunch), is transported to higher energy machines.

The goals of the experimental campaign were as follows:

• Is NF or factorization of bunches preserved along the CERN injector chain?

• Is NF observable with scraping measurements in the SPS and LHC?

• Could contributions from the CERN injectors be important for the NF observed in van

der Meer scans?

6.2 Experiments in the SPS

The CERN proton accelerator chain consists of the LINAC4, Proton Synchrotron Booster (PSB),

Proton Synchrotron (PS), Super Proton Synchrotron (SPS), and the Large Hadron Collider

(LHC), with increasing momentum for the proton bunches at each stage. To determine if the

non-factorization (NF) introduced into the bunch is transferred from the PSB downstream to

the LHC, the bunch was first measured in the SPS using scraping. The SPS is the next machine

equipped with a scraping or collimation system after the PSB.

6.2.1 Beam Variants

Different bunches with varying degrees of non-factorizability were tested. There were require-

ments on the emittance and intensity of the bunches in order for their use in van der Meer

scans in subsequent experiments. The required intensity was ∼ 1×1011 ppb and the required
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emittances were 2.5-3.5 µmrad. The bunches differed in their preparation schemes within the

PSB. The two main types are detailed below:

Type A: Coupled Resonance (Non-Factorizable)

A higher-than-desired intensity is injected from LINAC4. Beam tails are removed by initial

scraping upon injection into the PSB from LINAC4. The 3rd order coupling resonance Qx +
2Qy = 13 is excited using a normal sextupole during the ramping (accelerating) part of the

cycle. The space charge tune spread is getting smaller as the energy is increased with the ramp.

Thus, the tunes of the PSB must be set sufficiently close to the resonance such that during the

tune spread evolution the distribution continues to be affected. The bunch is then transferred

to the PS and SPS, with efforts made to minimize injection oscillations.

Type B: Van der Meer missteer (Factorizable)

To avoid resonances, the set tune in the PSB and amplitude dependent tune spread due to

space charge were in a resonance free region of the working point diagram, up to 4th order,

as shown in Fig. 6.2. Upon injection to the PSB, approximately 30% of the total intensity

was removed in the to eliminate higher amplitude particles coming from the LINAC4 (linear

accelerator). On injection to the PSB, the required emittance was achieved with missteering

and blow up through a foil. Injection missteering is the process of injecting the beam with an

error in position with respect to the design orbit, resulting in a filamentation which causes

emittance growth [67], [68].

Figure 6.2: Working point diagram with the estimation of the tune spread from space charge
for the A, ‘vdM missteer’ bunch in the PSB at injection energy (160 Mev). The tune spread was
calculated with [54].
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6.2.2 Observations

The extended flat bottom period—prolonged to accommodate multiple injections from the

PS modified the beam distribution as detected by the SPS scraper. The extended flat bottom

appeared to couple the two planes, resulting in the exchange of emittances. To mitigate these

effects, the following measures were implemented:

1. Adjusting the tune away from the coupling resonance in both the horizontal and vertical

planes.

2. Reducing the flat bottom duration by using cycles designed for single injections rather

than multiple.

6.2.3 Results of Scraping in the SPS

The results of vertical scraping for two different bunch types, type A, ‘coupled resonance’ and

type B, ‘vdM missteer’, are shown in Figs. 6.3 and 6.4. The figures illustrate how the fitted q-

parameter of a q-Gaussian of the beam profile, after increasing removal of intensity by vertical

scraping, changes in both the vertical and horizontal planes. For the ‘coupled resonance’

bunch, which in the PSB was subjected to strong excitation of a resonance leading to a

distribution where high-amplitude particles in x are more likely to also have high amplitudes

in y , we observe that the non-factorization is at least partially maintained. At the point

of scraping in the SPS, the beam encounters an almost linear lattice, with the absence of

significant coupling. However, the removal of high-amplitude particles in the y plane leads to

a change in the distribution in x, specifically a decreasing q-parameter in x.

For the B type bunch, which is optimized to be as factorizable as possible, the q-parameter

remains stable in the horizontal plane as the vertical plane is scraped, while the vertical q-

parameter decreases. The only difference between the two distributions is their preparation

in the PSB, demonstrating how non-factorization from a source, such as periodic resonance

crossing, can be transferred along the machine and is a property of the beam distribution,

rather than the lattice.
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Figure 6.3: Change in vertical and horizontal beam profile, shown as a fit of the q-Gaussian
q-parameter due to a vertical scraping in the SPS for the bunch type A ‘coupled resonance’.

Figure 6.4: Change in vertical and horizontal beam profile, shown as a fit of the q-Gaussian
q-parameter due to a vertical scraping in the SPS for the bunch type B ‘van der Meer missteer’.
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6.3 Non-Factorization Experiment at LHC Injection Energy

6.3.1 Experimental Configuration

The scraping experiments in the SPS demonstrated that non-factorization can be transferred

to higher energy machines in the CERN accelerator complex. For the van der Meer calibration

scans, non-factorization is observed at the LHC flat top, when the beams are colliding. To

test whether a source of non-factorization originating from lower energy machines could

contribute to the non-factorization of the bunch distribution during collisions (at top energy),

we can first measure the NF at LHC injection, and then at top energy. Different bunch types,

with different PSB configurations, were tested at LHC injection for their NF properties via

beam scraping (collimation) and profile measurements. These bunch types included the

‘coupled resonance’, ‘van der Meer missteer’, and two additional van der Meer-style factorizable

bunches, each with slightly different preparations in the PSB.

As per the filling scheme shown in Fig. 6.5, a total of 8 bunches were in the machine, with 4 in

Beam 1 and 4 in Beam 2. Some key parameters of the different bunch types tested are listed in

Tables 6.1 and 6.2. The LHC machine parameters at injection are detailed in Table 6.3.

Figure 6.5: Filling scheme for experiment at injection energy, shown for one circulating beam.
A, B, refer to two different bunch types with different preparations in lower energy injectors.

Table 6.1: Bunch types and their parameters (Part 1)

Bunch Type Scraping PSB Missteering

A: Coupled resonance PSB injection No
B: vdM missteer PSB injection, SPS extraction Yes
C: vdM integer PSB injection, SPS extraction No
D: vdM integer + missteer PSB injection, SPS extraction Yes

Table 6.2: Bunch types and their parameters (Part 2)

Bunch Type Resonance Correction Predicted Non-Factorization

A: Coupled Resonance Corrected High, horizontal-vertical
B: vdM missteer Partially corrected Low
C: vdM integer Corrected Low
D: vdM integer + missteer Partially corrected Low
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Table 6.3: Beam and machine parameters for experiment at injection energy.

Parameter Injection MD

Beam energy [GeV] 450
Optics van der Meer
Crossing angle [µrad] 0
Emittance [µmrad] 2.5–3.5
Intensity [ppb] ∼ 1×1011
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The essential protocol for the experiment to test the NF of each bunch is detailed as follows:

1. Inject different bunch types (4) into each circulating beam (1 or 2).

2. Move the collimators into the beam in steps of 5 µm until the loss level indicates that

there has been an interception with the beam, and continue moving the collimator until

the total lost intensity is approximately 2%.

3. After each collimation step, take profile measurements in the horizontal and vertical

planes.

4. Repeat by moving the collimators further into the beam for another 2% intensity loss.

5. When the intensity is below a threshold (approximately 40%), dump the beam and refill

the machine with the new bunch variants.

6.3.2 Results at LHC Injection Energy

The bunch by bunch losses are plotted for an injection fill with the A, ‘coupled resonance’

and B, ‘vdM missteer’ type bunches in Fig. 6.6. The losses are plotted as a function of the

vertical collimator gap, and for each bunch and beam (1 or 2). The two bunch types are in

different slots. Slot 0 is an A bunch, and slot 547 is a B bunch. The losses for both bunch

types associated with collimator adjustments are significant when compared to the slower

losses caused by diffusion. The loss patterns differ between the two bunch variants, due to

differences in the tail extent and distribution. Notably, losses for the B begin when the vertical

collimator gap is smaller, and the loss gradient differs from that of the A bunch. The losses

alone cannot tell us about the non-factorization of the distribution, but can give information

on the tail content. Slow losses (between collimation steps) are higher for the type A bunches.

To examine the NF, the bunch profiles from wire scanner measurements are plotted as a

function of the vertical collimator gap (colour-coded) and are normalized to have an area

of 1. Additionally, there is further normalization such that the collimator gap is expressed

in units of collimator σ. This convention assumes that 1σ corresponds to the σ of a bunch

with an emittance of 3.5 µmrad. To apply this normalization, the optics at the position of

the collimator must be known, and these are provided in Table 6.4. The first normalization

allows us to visualize the probability density function (PDF) rather than the profile. For fully

factorizable bunches, the horizontal PDF would remain unchanged during vertical scraping.

Vertical collimator βx [m] βy [m]
Vertical collimator Beam 1 150.4 69.1
Vertical collimator Beam 2 146.1 70.3

Table 6.4: The β functions at the location of the vertical collimators.
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Figure 6.6: The vertical collimator gap for Beam 1 and Beam 2 against the intensity of an A
type (bunch slot 0) and the B type (bunch slot 547).

Figure 6.7 shows the changing PDF in the horizontal and vertical planes as a function of

vertical collimator position, for Beam 2. The data is presented on a logarithmic scale, with the

normalizations described earlier to reveal the PDF. The A, ‘coupled resonance’ bunch (top),

and the B, ‘vdM missteer’ bunch (bottom), are plotted with the same scale for the collimator

position.

For the A bunch, with the vertical collimator at a large gap, there are large tails (relative to a

Gaussian distribution) in both the horizontal and vertical planes. As the vertical collimator gap

narrows, the tails in the vertical plane are reduced, and the horizontal PDF also changes, with

the tails being reduced in the horizontal plane due to scraping in V. This behaviour indicates

NF for the transverse planes in the distribution, showing that some of the NF is preserved

from the PSB.

For the B bunch (bottom), the initial tails are smaller. As the collimator gap decreases, the

vertical PDF changes, but the horizontal PDF remains almost constant, indicating a more

factorizable bunch. Although the bunches are in the same machine, experience the same

nonlinearities, and have the same linear coupling, their NF differs due to differences in their

production schemes earlier in the accelerator chain.

Figure 6.8 shows the results for another fill with two bunches of the A and two of type B.

Compared to Fig. 6.7, a higher sextupole current was used to excite the coupled resonance

in the PSB. As a result, the tails are visibly larger when the collimator gap is large, and the NF

becomes more apparent with scraping and profile measurements (top). The result for the B

(bottom) is shown to be reproducible.

Figures 6.9, 6.10, 6.11 and show the results of collimator and profile measurements, for three
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Figure 6.7: Wire scanner measurements during LHC scraping at injection for bunch type A
‘Coupled Resonance’ and B ‘vdM Missteer’, LHC Beam 2.

slightly different vdM bunches, which all aim to be factorizable. The scale of the vertical

collimator is set to be the same for all bunches, and is finer than when comparing with the

‘coupled resonance’ type. On the finer scale, differences in the factorization can be seen for the

different vdM bunches. The B ‘vdM missteer’ bunch, Fig. 6.9 performs best at LHC injection

compared with the C ‘vdm injection’ and the D ‘vdm missteer + injection’ types. For the B,

‘vdM missteer’ the interactions with resonances are minimised in the PSB. The vdM run (yearly

luminosity calibration run) was the day after this experiment, and based on the results, the

B ‘vdM missteer’ variant was used. Measuring the NF with collimation and wire scanner

measurements is an independent way for the to determine the level of NF in a bunch and

doesn’t require the complicated analysis of the van der Meer scans.
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Figure 6.8: Wire scanner measurements during LHC scraping at injection for bunch type A,
‘Coupled Resonance’ and B, ‘vdM missteer’, LHC Beam 2. The sextupole current in the PSB for
the ‘coupled resonance’ type was increased with respect to fill 1.

Figure 6.9: B: vdM bunch made with injection missteering in the PSB. Vertical scraping at LHC
injection
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Figure 6.10: C: vdM bunch made via method of blow up on integer resonances in the PSB.
Vertical scraping at LHC injection.

Figure 6.11: D: vdM bunch made with injection missteering and blow up on the integer
resonances. Vertical scraping at LHC injection.
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6.4 Non-Factorization Experiment at LHC Top Energy

To determine whether NF created in the injectors is observable at top energy in the LHC, an

experiment was conducted in collaboration with the high energy physics experiments. The

aim was to see if the bunch non-factorization properties would be preserved up to top energy

(6.8 TeV), and if a difference could be noticed between the two (A,B) during the van der Meer

scans.

The flat top experiment was during one single fill, and there were 12 injected bunches, 6 type

A and 6 type B per circulating beam, as per the filling scheme in Fig. 6.12. The experiment had

two separate parts (one with CMS, ATLAS and LHCb, and the other with scraping and wire

scanner measurements). The protocol is described:

1. Inject different bunch types, 6 per type, into each circulating beam (12 total per beam).

2. Ramp in energy from 450 GeV to 6.8 TeV.

3. Put the beams into collision.

4. Experiments, CMS, ATLAS perform van der Meer scans, 2 hours for ATLAS followed by 2

hours for CMS.

5. After the van der Meer scans, scraping with the vertical collimators for both Beam 1

and 2. Periodic wire scanner measurements for the profiles after each movement of the

vertical collimators.

6. The beams are dumped when the intensity goes below a threshold.

Figure 6.12: Filling scheme for experiment going to top energy and collision (6.8 TeV).

As of writing, the results from the van der Meer scans of ATLAS and CMS during the flat top

experiment (not the normal calibration run) have not been published. During the vdM scans

in CMS and ATLAS, type A bunches ‘coupled resonance’ are collided with type A, and type B

bunches ‘vdM missteer’ with type B, after the energy ramp. The visible cross-section, σvi s ,

relates the observed rate to the luminosity. Ideally, σvi s should be a constant and independent

of the beam profile. However, in the presence of non-factorization, σvi s is reduced. Private
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communication with CMS told us that preliminary results reveal the σvi s was smaller for

the type A bunches compared to type B by 3 standard deviations, which is significant. This

provides evidence that some of the differences in NF due to the different PSB schemes are

preserved up to top energy.

Between the start of collisions at top energy, and the scraping measurements, approximately

6 hours elapsed. During this time, there were significant losses, especially for the ‘coupled

resonance’ bunches, resulting in changes to the bunch distributions. Figure 6.4 shows the

effective cross-section, which is the losses (from the diamond beam loss monitors, DBLMs),

divided by the luminosity for the period of collisions (sometimes referred to as ‘stable beams’)

[69]. Two families are visible, the A ‘coupled resonance’ in red, and the B ‘vdM missteer’ in

blue. The B bunches are much closer to the burn-off limit (losses due to collisions only), while

for the ‘coupled resonance’ type there are extra losses.
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Effective cross-section during period of collisions for two different bunch types

Figure 6.4: The effective cross-section (relates luminosity to the loss rate) during the

collision period, during which there were van der Meer scans in ATLAS and CMS.

Courtesy of S. Kostoglou [69]. The burn-off limit is plotted by the black line, and is

calculated from the predicted proton-proton inelastic cross-section [70]. Any losses

above the burn-off limit are not from luminosity production. After around 14:40 stable

beams has ended.

Figures 6.14 and 6.13 show the PDF as the vertical collimator gap reduces at top energy

in the LHC after 6 hours of collisions. The non-factorization for the A ‘coupled resonance’

bunch is reduced in comparison with injection energy, but there is still some evidence of

non-factorization in the tail of the distribution. For the B bunch, it looks fully factorizable

on the scale given. These results show that a non-factorization from a source in the CERN

injectors can be preserved up to top energy. Losses change the distribution and hence the

non-factorization is reduced.
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Figure 6.13: Scraping and wire scanner profiles at top energy in the LHC for the ‘coupled
resonance’ bunch.

Figure 6.14: Scraping and wire scanner profiles at top energy in the LHC for the B ‘van der
Meer missteer’ bunch.

6.4.1 Lifetime Observations for Bunches with Different Tails

Partially due to the observed difference in the bunches with respect to their tail content

and resultant loss rate from this experiment, there were efforts to create a bunch variant

for operation in the LHC with lower tails, ‘BCMS low tail’, (Beam Compression, Merging

and Splitting). The bunch has various beam-dynamics optimisations and scraping of the

beam tail. After some initial operational experience, this variant has an improved lifetime

in the LHC compared to the nominal ‘BCMS’ [71]. This variant has now been the one used

in physics (luminosity production), fills since July 2024 up to the time of submission of this

thesis, September 2024.
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6.4.2 VdM 2024 calibration run

The two LHC experiments described in this chapter took place one day before the usual vdM

calibration run of 2024. Based on the results of the injection experiment and the scraping

measurements, it was decided that the bunch type to be used in the vdM run would be

the ‘vdM missteer’. This bunch is created in the free space of the tune diagram, away from

resonances, and thus, intuitively, would have less NF based on the evidence seen that periodic

resonance crossing of coupled resonances leads to NF. However, it was also observed during

the injection MD that it had the least observable NF in scraping measurements of all the vdM

bunches tested. The high amplitude particles were also removed at the SPS via scraping, as it

is shown that the NF observed is at high amplitudes. As of writing, the results of the vdM 2024

run and the size of the NF correction have not been published.

6.5 Summary

The results presented show that to improve the non-factorization at collisions in the LHC, it is

necessary to remove any non-factorization source from the injectors. NF could be introduced

by other mechanisms and also in high energy machines, however in low energy machines,

the space charge is strongest, and thus the tune spread is largest, leaving the distribution

more susceptible to resonances. At higher energies, in addition to the space charge tune

spread being smaller, the beam is more rigid. Given the online analysis possible with scraping

and wire scanner measurements, the bunches can be tuned according to the observed non-

factorization before injection in the LHC (at the SPS energy ramp). The observation of the

relaxation over the fill of the non-factorization is consistent with the larger losses (and lower

lifetime) of the bunch with larger, non-factorizable tails. The non-factorization is nonlinear in

the sense it is present for higher-amplitude particles, consistent with prior observations in the

lower energy machines (SPS, PSB).

The results of the 2024 van der Meer calibration run will not be published for some time. We

will then see if the improvements made in the injector machines have had a direct impact on

the size of the uncertainty from the NF source.

Note: The method detailed in Chapter 3 to reconstruct the full transverse distribution could

be applied with these measurements. However, the method was realised after these mea-

surements were taken, and the scraping steps are too large to justify the assumption of a

continuous distribution. Furthermore, the time between measurements was too large, and

the diffusion rate is not negligible. This could be investigated in further detail.
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7 Conclusions

The present dissertation has focused on the transverse beam distribution, and how it is not

unique given the observation of a beam profile. Depending on the constraints on the free

parameters, it has been shown that there are consequences for loss behaviour in a synchrotron.

Furthermore, the luminosity, the figure of merit for a collider, depends on the full transverse

distribution. In the LHC, where transverse beam profiles are observed that have heavy tails

with a q-parameter up to 1.4, the difference in instantaneous luminosity can be on the order

of 5%.

It has been demonstrated how space charge and periodic crossing of coupling resonances can

lead to a change in the beam distribution in terms of its non-factorization. This has been done

in an experimental campaign in the CERN Proton Synchrotron Booster. Beam scraping and

profile measurements were used in the absence of other methods to characterize the NF. A

period of artificial excitation of a third order coupling resonance, followed by a nearly ‘linear’

machine beyond the space charge, show that NF was introduced to the bunch and it remains.

These results have been benchmarked with multi-particle tracking simulations. The behaviour

in terms of the profile evolution and the NF agrees well. Additionally, an understanding of the

dynamics is gained with simulation of the single particle. The Jx , Jy amplitudes are changed

when the particle crosses the resonance condition in a ratio that is according to the resonance

coefficients. The random scattering in both planes gives an ultimate increase in amplitude

which, after many turns, changes the overall distribution to have high amplitude particles

in one plane which are more likely to have a high amplitude in the other transverse plane.

Increasing the synchrotron period artificially in simulation, so that the longitudinal motion is

almost frozen, shows how the particle can be trapped in the resonance condition.

Motivated by the non-factorization bias in the luminosity calibration measurement at the

LHC, the experiment to show how the NF introduced via excitation of coupling resonances

demonstrated that the property was preserved (to some extent) up to LHC injection. This

is consistent with results that a non-factorizable distribution can be matched. With the

joint experimental campaign between the accelerators and high-energy physics experiment,
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preliminary results show a systematic difference in the two bunch types (non-factorizable

distributions, A, factorizable distributions, B, in terms of their measured σvi s when the beams

are in collisions for van der Meer scans. This is a preliminary indicator in the difference in

the non-factorization of the bunches with the same lattice. These results show it is important

to remove sources of non-factorization in the LHC injectors, and results of this thesis have

improved our ability to do so. Online scraping measurements allow the comparison of non-

factorization between bunches, and the avoidance and the correction of resonances has been

shown to be paramount. This was done for the first time in 2024. Results of the van der Meer

run and the correction due to NF have not been published at the time of writing.

Non-factorization could be introduced also in processes in higher energy machines, however

the distribution is particularly sensitive to coupling resonances in lower energy machines

as the beam is less rigid. Moreover, the space charge tune spread is large. It is unclear how

magnet imperfections scale with energy. Processes that destroy non-factorization could be

investigated, for example, Gaussian scattering.

For the operational beams in the CERN accelerator complex, results which were derived from

the experiments in the thesis, (namely the difference in losses for beams with low or high tail

content), partly motivated the creation of a ‘low tail’ operational beam variant. This beam

variant has been shown to reduce the losses in the LHC and improve the performance. This

variant has been the one used in operation since July 2024. Non-factorization has also been

observed in operational beams with orthogonal experiments via the scraping and profile

measurements. These beams have higher brightness (intensity/emittance), than the van der

Meer beams, and the beams used in the PSB experiment to introduce non-factorization. The

source could be from resonances driven by machine imperfections or by space charge. This

should be taken into account to accurately model the losses in the CERN accelerator complex.
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A Inverse Sampling Method

Below details a method adapted from [40], to sample from a particle distribution in 4D with

inverse sampling.

Given the definition of the super radius with the canonical variables,

m =
√

r 2
x + r 2

y =
√

x2 +p2
x + y2 +p2

y , (A.1)

we define square of the super radius:

F = m2 = r 2
x + r 2

y (A.2)

If we want a projection in the x plane fitting a certain known distribution, and we impose

hyper-circular symmetry in 4D, then knowing how F , the super radial square, is distributed

allows us to sample particles. In chapter 3 we derive 4D distribution functions as functions of

m, f4D (m). From this we can find the f4D (m2) = f4D (F ).

Given

f4D (x, px , y, py ) =
d N

d xd px d yd py
= f4D (F ), (A.3)

and that the distribution function is normalized under the condition,

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f4D

(
x, px , y, py

)
dx dpx dy dpy = 1. (A.4)

To populate the 4D phase space satisfying the distribution f4D ( f )=

f (F )
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, we define a function g (F ), the distribution of the values of F :

g (F ) =π2 f4D (F )F =
d N (F )

dF
, (A.5)

where d N (F ) is the number of particles in the interval (F +dF ),

d N (F ) = f4D (F )F dF
∫ 2π

0
dϕ

∫ 2π

0
dθ

∫ π/2

0
sin2ψdψ =π2 f4D (F )F dF. (A.6)

The distributions are generated with an inverse transverse sampling method and random

angle distributions, analogous to a Box-Muller type generation.

The integral distribution of F is generated via,

G(F ) =
∫ F

0
g (F ′)dF ′. (A.7)

The inverse function I is generated by mapping G(F ) back to F ,

F = I (G(F )) (A.8)

Then, the distributions are generated as follows,

x = Ax cos(βx )

px = −Ax sin(βx )

y = −Ay cos(βy )

py = Ay sin(βy ),

(A.9)

where for each value of I (G), Ax and Ay are two random numbers generated such that,

m2 = A2
x + A2

y , (A.10)

and βx , βy are generated uniformly on [0,2π].

Parallels can be drawn to a Box-Muller transformation, used for normalized distributions to

generate two independent random deviates [46],

Z0 = R cos(θ) =
√

−2lnU1 cos(2πU2) (A.11)
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and

Z1 = R sin(θ) =
√
−2lnU1 sin(2πU2) (A.12)

where Z0 and Z1 are independent random deviates from a normal distribution. In the case of

4D, we have 2 angles βx and βy generated uniformly (analogous to θ), and 2 random variables

Ax and Ay which come from the 4D distribution as described above (analogous to U1 and U2).
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B Physicality of a beam profile

Given that distributions in linearly normalised phase space, in a linear lattice, should be

circular in the Poincaré section x −px , the single inverse Abel transform to find f (rx ) is a test

for physicality of a profile. The f (rx ), must be defined positive. The condition for the f (rx ) to

be defined positive, depends on the integral, and it cannot be defined a condition on the f (x).

Figures B.1 and B.2 show examples of unphysical beam profiles, as f (rx ) is negative for certain

rx .
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Figure B.1: Example of ‘hollow’ rectangular beam profile, projected on x in blue. The inverse
Abel transform of f (x), A −1[ f (x)] is plotted in orange.
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Figure B.2: Example of discontinuous beam profile, projected on x in blue. The inverse Abel
transform of f (x), A −1[ f (x)] is plotted in orange.
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C The Abel Transform for the Calcula-
tion of Collimated Beam Profiles

Given a physical space distribution of a particle beam in y , we can find the percentage of

particles in the distribution which is removed by an aperture, or collimation set at a particular

amplitude. We can also find the new distribution of particles remaining after the collimation

using the Abel transform.

First, it is easier to normalise the distribution using the machine parameters at the measure-

ment point (linear normalisation of phase space). Given the normalised PDF(ŷ), to calculate

the cut of a distribution from a scraping or collimation, we need to know the PDF(Jy ).

First we can use the inverse Abel transform to go from the y(σ) to PDF(ry ), where ry is defined:

ry =
√

ŷ + p̂y
2. (C.1)

PDF(ry ) = 2πryA −1[PDF(ŷ)] (C.2)

Where A −1 is the inverse Abel transform.

Given a distribution PDF (ry ), we need to find the PDF (Jy ) where Jy = r 2
y /2. From probability

theory:

If FX (x) is a PDF of a random variable X , and

• Y = g (X )

• g (x) is differentiable

• g (x) is a strictly increasing function: x1 < x2 then g (x1) < g (x2)

then:
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FY (y) = FX (x1)/g ′(x1). (C.3)

Where

g (x1) = y. (C.4)

Therefore, we can find the PDF of Jy = r 2
y /2 from the PDF of ry ,

g (ry ) = r 2
y /2, g ′(ry ) = ry , (C.5)

therefore,

PDF(Jy ) = PDF (ry )/ry . (C.6)

Then, to find the percentage in the tails, we can remove the distribution beyond an aperture

limit, a, Jy > A. The probability beyond the aperture limit A gives us the percentage of

particles the collimator has removed. To find the new distribution with the removed particles,

PDF(Jy |Jy < A) is transformed back into a PDF(ry |Jy < A), and then PDF(ŷ |Jy < A) with a

forward Abel transform and a linear manipulation.
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D Numerical Example of the Scraping
Protocol

A numerical scraping of two distributions which have Gaussian projections, one fully fac-

torizable and one non-factorizable is demonstrated, We will aim to find back their f (Jx , Jy )

given access to information on only one transverse plane. The derivation of the two different

distributions with Gaussian projections (A1, A2) is given in Chapter 3.

Working in Jx , Jy space, the A1. distribution is plotted in Fig. D.1.

Figure D.1: True joint PDF(Jx , Jy ) (A1.) for a factorizable 4D Gaussian.

In Jx , Jy , a scraping or collimation is removing parts of the distribution which have a Jy > Ai ,

as explained above. The distributions f (Jx |0 < Jy < Ai+1..n), from subsequent y apertures, Ai ,

are plotted in Fig. D.2. Due to the fact the distribution is factorizable, the normalised PDFs

f (Jx |0 < Jy < Ai+1..n) are the same (beyond numerical errors).

Then, the PDFs for the intervals between successive Ai are calculated, PDF(Jy |Ai+1 < Jy < Ai ),

by finding the difference between non-normalised scraping measurements. These functions

are plotted in Fig. D.3.

With the approximation to a continuous distribution and multiplication of the marginal PDF,
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Figure D.2: Left: Normalized conditional PDFs PDF(Jx |0 < Jy < Ai ) Right: Histograms of
(Jx |0 < Jy < Ai ) for a particle distribution taken from the initial joint PDF(Jx , Jy ) of the factor-
izable 4D Gaussian.

Figure D.3: Left: Normalized conditional PDFs PDF(Jx |Ai+1 < Jy < Ai ) Right: Histograms of
(Jx |Ai+1 < Jy < Ai ) for a particle distribution taken from the initial joint PDF(Jx , Jy ) of the
factorizable 4D Gaussian.

PDF(Jy ), we find back the joint distribution, PDF(Jx , Jy ), plotted in Fig. D.4.

114



Numerical Example of the Scraping Protocol Chapter D

Figure D.4: Joint PDF(Jx , Jy ) reconstructed from successive PDF(Jx |Ai+1 < Jy < Ai ) for differ-
ent numerical scraping.

Repeating the same with the A2. distribution, plotted in Jx , Jy in Fig. D.5.

Figure D.5: True joint PDF(Jx , Jy ) (A2.) for a non-factorizable 4D Gaussian.

The PDFs for each successive scraping aperture, are plotted in Fig.D.6. Since the distribution

is non-factorizable the normalised conditional PDFs are not the same.

Then, the difference between the PDFs to calculate f (Jy |Ai+1 < Jy < Ai ) is found, plotted in

Fig.D.7.

Then, using the marginal PDF(Jy ) the original distribution is estimated with Bayes’ theorem,

plotted in Fig. D.8.

We have shown numerically how it is possible to reconstruct the PDF(Jx , Jy ) of an unknown

beam distribution through scraping measurements. This method is not well-developed for
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Figure D.6: Left: Normalized conditional PDFs PDF(Jx |0 < Jy < Ai ) Right: Histograms of
(Jx |0 < Jy < Ai ) for a particle distribution taken from the initial joint PDF(Jx , Jy ) of the non-
factorizable 4D Gaussian.

Figure D.7: Left: Normalized conditional PDFs PDF(Jx |Ai+1 < Jy < Ai ) Right: Histograms of
(Jx |Ai+1 < Jy < Ai ) for a particle distribution taken from the initial joint PDF(Jx , Jy ) of the
non-factorizable 4D Gaussian.

experiment as of writing. It depends greatly on the noise of the profile measurement, and the

rate of diffusion during the period of the measurement. Scraping and profile measurements

in both planes has however been used to determine the relative non-factorization between

distributions in Chapters 4 and 6.
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Figure D.8: Joint PDF(Jx , Jy ) reconstructed from successive PDF(Jx |Ai+1 < Jy < Ai ) for differ-
ent numerical scraping for the A2. distribution.
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E Non-Factorizable Gaussians

A Python Jupyter notebook about Gaussian non-factorizable distributions by Guido Sterbini

g.sterbini@cern.ch.
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Connected to base (Python 3.10.12)

Introduction
Let us consider a distribution  where x, y are horizontal and vertical positions of a 4D
normalized phase space  such that

 =  (Gaussian x-profile)

and

 =  (Gaussian y-profile).

We will show in the following that  is not uniquely determined and we propose a
possible parametrization of .

We can consider the action ( ) and angle ( ) variables in the plane -  (similar
conclusions hold on the -  plane). It is well known that if  are normal distributed
then  is distributed as

and

Case A
Assuming that the  and  are, in general, statistically dependent (we assume for the
moment that  and  are independent), the marginal density function  should be
a solution of these equations:

 for all 

There are two possible solutions for 

A1. , that will yield fully  independence,

A2. , that will yield fully  dependence.

Case B

ρ(x, y)
{x, px, y, py}

∫ +∞
−∞ ρ(x, y)dy e

−( )
2

1

√2π

x
2

∫ +∞
−∞ ρ(x, y)dx e

−( )
2

1

√2π

y

2

ρ(x, y)
ρ(x, y)

Jx θx x px

y py {x, px}
Jx = (x2 + px2)/2

pdf(Jx) = {
exp(−Jx) if Jx > 0
0 otherwise

pdf(θx) = {
if 0 < θx < 2π

0 otherwise.

1
2π

Jx Jy

θx θy pdf(Jy|Jx)

∫
+∞
0 e−Jxpdf(Jy|Jx)dJx = e−Jy

∫
+∞
0 pdf(Jy|Jx)dJy = 1 Jx

pdf(Jy|Jx)

pdf(Jy|Jx) = e−Jy xy

pdf(Jy|Jx) = δ(Jy − Jx) xy



Similar considerations hold for the phase.

 for 

 for 

There are two possible solutions for 

B1.  in the usual domain, that will yield fully  independence,

B2.  in the usual domain, that will yield fully  dependence.

We will focus on the case A1/A2/B2.

# Case A1 (for simplicity I consider the extraction in x and y, not in actio

from matplotlib import pyplot as plt

import numpy as np

from scipy.stats import shapiro 

from matplotlib.gridspec import GridSpec

N = 100000

fig = plt.figure(figsize=(4, 4))

gs = GridSpec(2, 2, width_ratios=[3, 1], height_ratios=[1, 3])  # Adjust rat

x_a1 = np.random.normal(0, 1, N)

px_a1 = np.random.normal(0, 1, N)

y_a1 = np.random.normal(0, 1, N)

# Plot the 2D distribution

ax0 = plt.subplot(gs[1, 0])

ax0.hist2d(x_a1, y_a1, bins=100, cmap='viridis')

ax0.set_xlabel('x [$\sigma_x$]')

ax0.set_ylabel('y [$\sigma_y$]')

ax0.set_xlim(-4,4)

ax0.set_ylim(-4,4)

# Plot the projection onto x-axis

ax1 = plt.subplot(gs[0, 0])

ax1.hist(x_a1, bins=300,  density=True,)

ax1.axis('off')

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1, 1])

ax2.hist(y_a1, bins=300, density=True, orientation='horizontal')

ax0.set_xlim(-4,4)

# An empty subplot to adjust the layout

ax3 = plt.subplot(gs[1, 1])

ax3.axis('off')

ax0.set_ylim(-4,4)

∫ 2π
0 pdf(θx|θy)dθx =

1
2π

1
2π

0 < θy < 2π

∫
2π
0 pdf(θy|θx)dθy = 1 0 < θx < 2π

pdf(θx|θy)

pdf(θx|θy) =
1
2π xy

pdf(θx|θy) = δ(θy − θx) xy
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plt.tight_layout()

plt.show()

# Case A2

# the pdf of Jx for a Gaussian beam

def rho_J(J):

    return (np.exp(-J))

J = np.linspace(0,10,10000)

plt.figure()

plt.title('The pdf(J$_x$) of a Gaussian beam')

plt.plot(J, rho_J(J),'r')

plt.xlabel('J$_x$ [$\sigma_x^2$]')

plt.grid(True)

sigma_x = 1

# extract a N random numbers from the normal distribution

x_a2 = np.random.normal(0, sigma_x, N)

px_a2 = np.random.normal(0, sigma_x, N)

J_a2 = (x_a2**2 + px_a2**2)/2

plt.hist(J_a2, bins=500, density=True)

plt.xlim(0,8)

theta = np.random.uniform(0,2*np.pi, N)

y_a2 = np.sqrt(J_a2*2)*np.cos(theta)

py_a2 = np.sqrt(J_a2*2)*np.sin(theta)

In [26]:



assert np.isclose(np.mean(J_a2),1, atol=0.05)

#perform Shapiro-Wilk test for normality

assert np.isclose(shapiro(x_a2).statistic, 1, atol=0.01)

assert np.isclose(shapiro(px_a2).statistic, 1, atol=0.01)

assert np.isclose(shapiro(y_a2).statistic, 1, atol=0.01)

assert np.isclose(shapiro(py_a2).statistic, 1, atol=0.01)

/Users/guidosterbini/miniforge3/lib/python3.10/site-packages/scipy/stats/_mo

restats.py:1882: UserWarning: p-value may not be accurate for N > 5000.

 warnings.warn("p-value may not be accurate for N > 5000.")

from matplotlib.gridspec import GridSpec

# Create a figure and a gridspec layout

fig = plt.figure(figsize=(4, 4))

gs = GridSpec(2, 2, width_ratios=[3, 1], height_ratios=[1, 3])  # Adjust rat

# Plot the 2D distribution

ax0 = plt.subplot(gs[1, 0])

ax0.hist2d(x_a2, y_a2, bins=100, cmap='viridis')

ax0.set_xlabel('x [$\sigma_x$]')

ax0.set_ylabel('y [$\sigma_y$]')

ax0.set_xlim(-4,4)

ax0.set_ylim(-4,4)

# Plot the projection onto x-axis

ax1 = plt.subplot(gs[0, 0])
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ax1.hist(x_a2, bins=100,  density=True,)

ax1.axis('off')

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1, 1])

ax2.hist(y_a2, bins=100, density=True, orientation='horizontal')

ax0.set_ylim(-4,4)

# An empty subplot to adjust the layout

ax3 = plt.subplot(gs[1, 1])

ax3.axis('off')

ax0.set_xlim(-4,4)

plt.tight_layout()

plt.show()

# Case B2

# from Jx and theta_y, we can get y and py

x_b2 = x_a1

px_b2 = px_a1

theta = np.arctan2(px_b2,x_b2)

# can you extract Jy from the distribution exp(-Jy) ?

Jy = np.random.exponential(1, N)

aux = np.linspace(0,10,10000)

y_b2 = np.sqrt(Jy*2)*np.cos(theta)

py_b2 = np.sqrt(Jy*2)*np.sin(theta)

fig = plt.figure(figsize=(4, 4))
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gs = GridSpec(2, 2, width_ratios=[3, 1], height_ratios=[1, 3])  # Adjust rat

# Plot the 2D distribution

ax0 = plt.subplot(gs[1, 0])

ax0.hist2d(x_b2, y_b2, bins=100, cmap='viridis')

ax0.set_xlabel('x [$\sigma_x$]')

ax0.set_ylabel('y [$\sigma_y$]')

ax0.set_xlim(-4,4)

ax0.set_ylim(-4,4)

# Plot the projection onto x-axis

ax1 = plt.subplot(gs[0, 0])

ax1.hist(x_b2, bins=100,  density=True,)

ax1.axis('off')

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1, 1])

ax2.hist(y_b2, bins=100, density=True, orientation='horizontal')

ax0.set_ylim(-4,4)

# An empty subplot to adjust the layout

ax3 = plt.subplot(gs[1, 1])

ax3.axis('off')

ax0.set_xlim(-4,4)

plt.tight_layout()

plt.show()

# combination of a1 and a2

y_b2 = np.sqrt(Jy*2)*np.cos(theta)

In [31]:



py_b2 = np.sqrt(Jy*2)*np.sin(theta)

# Create a figure and a gridspec layout

fig = plt.figure(figsize=(4, 4))

gs = GridSpec(2, 2, width_ratios=[3, 1], height_ratios=[1, 3])  # Adjust rat

#concatanate x and xx

new_x  = np.concatenate((x_a1, x_a2))

new_y = np.concatenate((y_a1, y_a2))

# Plot the 2D distribution

ax0 = plt.subplot(gs[1, 0])

ax0.hist2d(new_x, new_y, bins=100, cmap='viridis')

ax0.set_xlabel('x [$\sigma_x$]')

ax0.set_ylabel('y [$\sigma_y$]')

# Plot the projection onto x-axis

ax1 = plt.subplot(gs[0, 0])

ax1.hist(new_x, bins=100,  density=True,)

ax1.axis('off')

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1, 1])

ax2.hist(new_y, bins=100, density=True, orientation='horizontal')

# An empty subplot to adjust the layout

ax3 = plt.subplot(gs[1, 1])

ax3.axis('off')

plt.tight_layout()

plt.show()



# compute KDE of the a2 distribution

from scipy.stats import gaussian_kde

k = gaussian_kde([x_a2,y_a2])

xi, yi = np.mgrid[-3:3:100j, -3:3:100j]

zi = k(np.vstack([xi.flatten(), yi.flatten()]))

plt.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='gouraud', cmap=plt.cm.

plt.axis('equal')

plt.axis('off')

#

(-3.0, 3.0, -3.0, 3.0)

A photo of the BSRT x-y plane during 2023 (MD1 block)

https://codimd.web.cern.ch/uploads/upload_4b1c8e72127d2e2dc56a3bf34eee39d9.png

# H cut

r_cut = 2

r = np.sqrt(x_a2**2+px_a2**2)

# find r<r_cut

x_cut = x_a2[r<r_cut]

px_cut = px_a2[r<r_cut]

y_cut = y_a2[r<r_cut]

py_cut = py_a2[r<r_cut]

plt.plot(x_cut,px_cut,'.', alpha=0.01)

plt.axis('equal')

In [33]:

Out[33]:

In [34]:

In [80]:



(-2.198072941716593,

2.1959424988666814,

-2.1990696942058476,

2.199443036550486)

plt.plot(y_cut,py_cut,'.', alpha=0.01)

plt.axis('equal')

(-2.198064831420603,

2.192833002652979,

-2.1972373516190866,

2.1972431861675874)

Out[80]:

In [17]:

Out[17]:



plt.hist(x, bins=100, density=True)In [81]:
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