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Abstract

(English/Francais/Deutsch)

Key words: luminosity, van der Meer, non-factorization, resonance, calibration, losses

In high-energy colliders, discoveries are made possible by improving precision and accuracy
of the measured rare events. Precision is maximized by increasing the collider integrated
luminosity, whereas accuracy is addressed by minimizing the systematic errors via ad-hoc
luminosity calibrations of the detectors.

This thesis contributes to improving the present understanding of the role and the impact of
non-factorizable beam distributions on the aforementioned precision and accuracy reach.
Starting from a theoretical approach, the concept of the non-factorizable distribution is
introduced, originally showing that even Gaussian profiles of distributions matched to linear
uncoupled lattices can be non-factorizable. Starting from this observation, the consequences
of the losses in a synchrotron and the luminosity in a collider are developed and presented.
A measurement protocol to quantify the non-factorization is devised and, furthermore, it is
demonstrated, numerically and experimentally, how non-factorization can be introduced in
factorizable distributions via x-y coupling resonances in the presence of space charge. It is
then shown experimentally that non-factorization can be transported along the full CERN
accelerator chain, confirming that this is an inherent property of the beam distribution and
not of the machine lattice.

This work directly contributes to the efforts devoted to improve the quality of the luminosity
calibration in the HL-LHC era.
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Zusammenfassung

Stichwdorter: Leuchtkraft, van der Meer, Nicht-Faktorisierung, Resonanz, Kalibrierung, Verluste
Bei Hochenergiebeschleunigern werden Entdeckungen durch die Verbesserung der Préazision
und Genauigkeit der gemessenen seltenen Ereignisse ermoglicht. Die Prazision wird durch
die Erh6hung der integrierten Luminositit des Colliders maximiert, wihrend die Genauigkeit
durch die Minimierung der systematischen Fehler mittels Ad-hoc-Luminositdtskalibrierungen
der Detektoren angegangen wird.

Diese Arbeit tragt dazu bei, das derzeitige Verstdndnis der Rolle und des Einflusses nicht
faktorisierbarer Strahlverteilungen auf die vorgenannten Prazisions- und Genauigkeitsziele zu
verbessern. Ausgehend von einem theoretischen Ansatz wird das Konzept der nicht faktori-
sierbaren Verteilung erzeugt, wobei urspriinglich gezeigt wurde, dass sogar Gau3profile von
Verteilungen, die an lineare ungekoppelte Strahloptiken angepasst sind, nicht faktorisierbar
sein konnen. Ausgehend von dieser Beobachtung werden die Konsequenzen fiir die Verluste
in einem Synchrotron und die Luminositdt in einem Collider entwickelt und dargestellt.

Es wird ein Messprotokoll zur Quantifizierung der Nicht-Faktorisierung entwickelt und dar-
tiber hinaus numerisch und experimentell demonstriert, wie Nicht-Faktorisierung in fak-
torisierbaren Verteilungen iiber x-y-Kopplungsresonanzen in Gegenwart von Raumladung
eingefiihrt werden kann. AnschlieBend wird experimentell gezeigt, dass Nicht-Faktorisierung
entlang der gesamten CERN-Beschleunigerkette transportiert werden kann, was bestétigt,
dass dies eine inhdrente Eigenschaft der Strahlverteilung und nicht des Maschinenoptik ist.
Diese Arbeit tragt direkt zu den Bemiihungen bei, die Qualitidt der Luminositédtskalibrierung
in der HL-LHC-Ara zu verbessern.






Résumé

Mots clefs : luminosité, van der Meer, non-factorisation, résonance, étalonnage, pertes

Dans les collisionneurs de haute énergie, les découvertes sont rendues possibles par ’amé-
lioration de la précision et de I'exactitude des événements rares mesurés. La précision est
maximisée en augmentant la luminosité intégrée du collisionneur, tandis que I'exactitude est
abordée en minimisant les erreurs systématiques via des calibrations ad-hoc de la luminosité
des détecteurs.

Cette these contribue a améliorer la compréhension actuelle du role et de I'impact des distribu-
tions de faisceaux non factorisables sur la précision et I'’exactitude susmentionnées. En partant
d'une approche théorique, le concept de distribution non factorisable est introduit, montrant
initialement que méme les profils gaussiens de distributions apparié a des optiques linéaires
non couplés peuvent étre non factorisables. A partir de cette observation, les conséquences
des pertes dans un synchrotron et de la luminosité dans un collisionneur sont développées et
présentées.

Un protocole de mesure pour quantifier la non-factorisation est concu et, de plus, il est
démontré, numériquement et expérimentalement, comment la non-factorisation peut étre
introduite dans des distributions factorisables via des résonances de couplage x-y en présence
d’une charge d’espace. Il est ensuite démontré expérimentalement que la non-factorisation
peut étre transportée tout au long de la chaine d’accélérateurs du CERN, confirmant qu’il
s’agit d'une propriété inhérente a la distribution du faisceau et non a I'optique de la machine.
Ce travail contribue directement aux efforts déployés pour améliorer la qualité de I’étalonnage
de la luminosité al’ére du HL-LHC.
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|§ Introduction

This thesis explores the performance of particle colliders, focusing on luminosity and precision
measurement. It aims to provide new insights into modeling the dynamics of the machine,
specifically concerning the properties of the beam distribution that are independent of the
lattice structure. Namely, the non-factorization. Analytical models are developed alongside
experimental and simulation evidence to demonstrate how the dynamics within the x -y
plane can evolve. The structure of the thesis is described briefly as the following.

Chapter 3 derives analytical equations for 4D transverse beam distributions based on obser-
vations of the beam profile in a single plane. The chapter explores the implications of free
constraints, demonstrating how these constraints lead to a non-unique distribution. Non-
factorizable distributions are introduced. It is shown how the property of non-factorization
in beam distributions can impact the beam losses and luminosity. Additionally, a method
is proposed for measuring the transverse beam distribution using collimation and profile
measurements.

Chapter 4 illustrates how starting from a factorizable distribution, non-factorization can
be introduced into the beam by periodically crossing coupled resonances in the Proton
Synchrotron Booster in the presence of space charge.

Chapter 5 validates these findings through symplectic tracking simulations, employing single-
particle tracking to understand the underlying dynamics and multi-particle tracking to bench-
mark the experimental results.

Chapter 6 provides experimental evidence showing that the non-factorization introduced in
this manner is preserved throughout the accelerator chain. This preservation has important
implications for precision luminosity measurements, particularly in the context of van der
Meer scans, for which the largest uncertainty is the non-factorization of the transverse beam
distribution.
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Y4 Relevant contextual and theoretical
concepts

The following chapter gives relevant concepts to guide the reader through the contributions in
the thesis. It is a short summary, thus for more details on accelerator physics as a whole, see
the very complete and valuable texts such as [1], [2].

2.1 The CERN accelerator complex

The research presented in this thesis is conducted within the framework of the European
Organization for Nuclear Research’s (CERN) proton accelerator complex. While the focus is on
this specific facility, the findings are broadly applicable to proton synchrotrons and colliders
worldwide.

CERN, located in Geneva, Switzerland, is home to some of the most significant physics ex-
periments on the planet. This is made possible by its extensive accelerator complex, which
accelerates protons to energies as high as 6.8 TeV.

The acceleration process begins at the LINAC4, a linear accelerator, and continues through
the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), and the Super Proton
Synchrotron (SPS). Finally, the protons are injected into the Large Hadron Collider (LHC),
where counter-rotating beams collide at interaction points (IP1-8). Four of the interaction
points are the locations of high-energy physics experiments: CMS, LHCb, ATLAS, and ALICE,
Fig. 2.1.
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The CERN accelerator complex
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Figure 2.1: The CERN accelerator complex (not to scale). The path of the protons from the
LINACA4 to the LHC is shown with grey arrows. The locations of the high energy physics
experiments are shown on the LHC ring. Taken from [3].
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2.2 Beam dynamics

Particle motion in an accelerator is governed by the electric and magnetic fields of the elements
in the lattice, used to steer, accelerate and focus the beam [1]. The force on a particle is given
by the Lorentz equation,

F=-C @2.1)

F is the force on a particle, p is the particle momentum, v is the particle velocity, E is
the electric field and B is the magnetic field. Multipole magnets control the ‘optics’ in a
synchrotron. The multipole expansion solving Maxwell’s equations is given by (n=1is a
dipolar, n =2 is a quadrupolar),

(o]
By+iBy=) C"(x+iy" ' 2.2)
n=1
It can be expressed in polar form,
S5 .
Bp+iBy= Y C"(r)" e, (2.3)
n=1

The complex constant C;, can be expressed,

|Cple?" (2.4)

Note: A normal’ multipole has a ¢, =0 (phase), and a skew multipole is rotated by n/n, so a
phase of 7/ n.

2.2.1 Coordinates

The choice of coordinate system which describes the motion is important in order to simplify
the equations. The Frenet-Serret coordinate system is used. The transformation from the
Cartesian coordinates (and canonical momenta) are given by [4],
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X=(x+p) cos(%)—p (2.5)

Y:y (2.6)

7= (x+p)sin(%) 2.7
s (s

pszxcos(— +stm(—) (2.8)
Y p

py="Py (2.9)
X S x\ . (s

pS:PZ(1+—)cos(—)—PX(1+—)s1n(—). (2.10)
Y o p o

The dynamics under an approximation of transport from one position sy, to s; in the ring
can be described by symplectic maps (matrices in the linear case). This is a result of Liouville
theorem, that closed (constant energy) systems are phase space density preserving [5]. A
necessary condition for symplecticity of a matrix W is that,

wiow=10, (2.11)
given that,
0 I
0= ; (;l , (2.12)
—1in

where I, is the n dimensional identity matrix.

Linear dynamics is when the Hamiltonian of the system has terms up to quadratic order in the
canonical momenta. For the linear case,

X X
(p ) :MNOMN—IO"'OMLO(p ) . (2.13)
s M(s0,51) o

The linear transport matrix can be written in terms of the Courant-Snyder parameters,

Bs), a(s), y(s), (2.14)

which are shown in relation to the physical phase space ellipse, Fig. 2.2.
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X'A

Figure 2.2: The phase space ellipse and Courant-Snyder parameters, taken from [6]

The transport matrix for one turn Morps can be given in terms of the Courant-Snyder parame-
ters,

+ X i X i
Mogag = cos(y) + axsin(uy) Bsin(uy) 2.15)

—Yxsin(uy) cos(x) — axsin(uy),

where iy is the phase advance, 27 Q, where Qy is the tune. Mpr)s can be composed into,

Mory = A" RA. (2.16)

The normalisation matrix A transforms the coordinates, and the Mo into a pure rotation.
A can be written in terms of the Courant-Snyder parameters,

A= (2.17)

Ax

\/ﬁ_?)
“VE VB

A direct consequence of the symplecticity is that there is a preserved constant, the emittance,
given in the x — p, plane, €,

€x =Y x()X(8)% +2a,(5)X(5) px () + Br(8) pr(s)?. (2.18)

It relates to the area of the ellipse, in Fig. 2.2 by,
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Area=27mey. (2.19)

The transformation matrix transforms the physical coordinates to the normalised coordinates,

x
Px

The normalisation via the generalised matrix for linear coupling, A, (2n x 2n), where n is the

given in one plane,

:A‘l-(x) 2.20)
Px

planes of motion, to a pure rotation R, is the equivalent to a transformation of coordinates to
action-angle variables. The following is taken from Wolski, [1] and Goldstein [7].

Relating a vector of the action 7, to the physical coordinates and their normal form, and
following the derivation in [1],

The Hamiltonian in one dimension is,

Hi= Qi (2.21)

where Qy is the tune and Ji the action. The evolution of the system with respect to the new
action-angle variables is given by Hamilton’s equations,

OH

=—), (2.22)
Oopi

qi
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3. — _O_H (2.23)
pl - aql ) .
and so,
i OHy
o= = (2.24)
Olc  OHp
or 3(Pk =0. (2.25)

This means that the evolution in time of ¢; proceeds with the tune, while J; remains constant
[7], thus a rotation of the system results in,

Je—= T

Pk — i+ ks

where p is the phase advance. The motion in any degree of freedom, k, is independent to
the other degrees of freedom, even for the case of non-zero linear coupling. An example of
the normalisation and the evolution of motion in the physical and normalised coordinates is
shown in 2.3.

We can define the action in terms of the physical coordinates and the Courant-Snyder param-
eters, which is conserved, given in the x plane,

2] =y x X% +2axXPy + Prp5 (2.26)

Thus, related to the single particle emittance,

2]x =€yx. (227)

The Hamiltonian for nonlinear beam dynamics can be expressed in terms of action-angle
variables via a normal form. This holds true only in certain circumstances, for example, in the
KAM (Kolmogorov-Arnold-Moser theory [8]-[10]) region [4]. Unlike the linear case, the tune
(rate of rotation of the angle) depends on the action. However, the transformation allows the
surface of Poincaré sections to be a pure rotation.
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Physical coordinates Normalized coordinates
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Figure 2.3: Physical to (linearly) normalised coordinates. The motion is a pure rotation.
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2.2.2 Beam Distribution in a Linear machine

For a 6D particle ensemble, the }’ matrix of the second order moments can be defined (in the
physical coordinates).

For the beam to be ‘matched’, or stationary, the ' matrix must be unchanged through one
periodic cell, thatis [1],

MormEMpy = 2. (2.28)

It can be shown the second order moments of the distribution in the normalised coordinates
is a diagonal matrix (the covariance of cross terms is 0 due to symmetry of a circle in phase
space). The A matrix in 6D transforms to uncoupled dynamics (if the coupling is linear).

The eigenvalues of X{2 give the statistical emittances [1],
eigenvalues(X/(2) = +iey. (2.29)

2.2.3 Resonances

Higher order multipoles are common in modern accelerators. In general, solutions to the
equations of motion are not in closed form. Therefore, approximations to the motion are
used to describe the dynamics (e.g. perturbation theory). For a complete explanation of the
relevant theory, see [1], [2]. The given resonances (ny, ny, coefficients) that are driven by a
particular element can be calculated from the Hamiltonian [11] via Resonance Driving Terms
(RDTs). A skew and normal multipole will drive different resonances.

The resonance condition, defined for the single particle tune Qy, Qy, with the integer coeffi-
cients ny, ny, is given by

nxQx+nyQy=C, (2.30)
where C is also an integer. Due to the set tunes, the particle receives a kick that adds coherently

[1]. The source of the kick can be a magnet imperfection, or from a potential that is induced
by the beam itself (e.g. space charge, beam-beam interactions).

The order of a resonance is given by,
|nx|+|ny|- (2.31)

The set-tune, any amplitude dependence of the tune, and the interaction with resonances
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can be visualised in terms of a resonance diagram, which can be plotted up to any resonance

order, Fig. 2.4.
1.0y A

0.8] /

06- :

"IN

0.4 S & ‘
=

, —
0.2 1
Set tune V

0. . . = . .
%.0 0.2 0.4 0.6 0.8 1.0
Q, fractional tune

Qy franctional tune

Figure 2.4: Resonance diagram plotted up to 5th order. The lower order resonances are thicker
lines. An example working point (set tune) is shown.
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2.2.4 Space Charge

Charged particles act on each other with their self-fields, ‘space charge’. Space charge is most
prominent in low energy, high-brightness (small emittance and high intensity) machines [12].
This nonlinear field results in amplitude dependent detuning, (negative defocusing), from the
set tune. The maximum detuning is given by equation 2.32, [12], in the approximation of a
transverse bi-Gaussian distribution.

A Bx
505C - __T0 y{ 24 , 2.32
Qrey 2nefrys ) oxy(8)[0x(s)+0y(9)] (2.32)

1o denotes the classical proton radius, while A represents the longitudinal charge density. The
elementary charge is symbolized by e. The relativistic parameters are indicated by 8, and .
The optics beta function represented by 5, and the beam sizes in the horizontal and vertical
planes are given by oy, .

The amplitude dependent detuning looks like a ‘tune spread’ in the Qy, Qy plane, shown in
Fig. 2.5. The tune spread, larger at low energies, leads to the distribution being more suscepti-
ble to resonances. In the case of bunched beams, the position in longitudinal phase space
affects the tune-spread, as the line density changes the space charge force. This causes the
tune-spread to evolve periodically with the longitudinal motion. If the longitudinal distribu-
tion is sliced, the maximum extent of the tune spread will differ for each slice.

o bare working point

Largest tune shift for
particles in beam core

Figure 2.5: Tune spread from space charge is amplitude dependent in the distribution [13].

The driving terms from the space charge potential can also excite resonances. These are
difficult to compensate for, as opposed to resonances driven by machine imperfections. The
resonances driven can be calculated with perturbation theory [14], [15].

2.2.5 Resonances in Two-Dimensions

The dynamics near one dimensional (only one of ny, n, is non-zero) resonances are well
described and studied, some examples are given by [16], [17]. The dynamics can be seen
through surfaces of Poincaré section [18]. Since the motion is nonlinear, and the linear action-
angle variables no longer hold, the phase space will not be circular and may contain fixed
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points, islands, or separatrices [19]. For example, a third order resonance in one plane, under
certain conditions, will produce islands in the phase space, like those seen in part a) of Fig.2.6.

In the non-resonant plane, py, g2, the phase space is elliptical and the linear action angle
variables are still good approximations. When looking at the cross planes, 4, -, and py, p»
the motion is rectangular and doesn’t have a particular structure (or correlation).

a P, Separatrix b By Py
]

il >
.__/

Figure 2.6: The motion under a 1D resonance is shown on the top left in the canonical variables.
The motion in the other canonical plane is circular in the phase space. In the cross planes,
there is no dependence (rectangular), a). For 2D resonances, there is a structure in the cross
planes, b), and there is no visible structure in the 1D planes. Taken from [19].

For 2D’ resonances, meaning that both the coefficients ny, n,, of equation 2.30 are non-
zero, the trapped particles follow 4D structures in phase space, which look linear in the 1D
planes, p1, g1 and p», g». The structure, a so called ‘fixed-line’ depends on the order of the 2D
resonance. There have been recent analytical, simulation and experimental investigations
to prove the existence and describe how the fixed lines affect the particle dynamics [19], [20].
An experiment to characterize the fixed lines in 2017 in the CERN Proton Synchrotron (PS)
observed the creation of asymmetric halos, due to particles becoming resonant due to a third
order resonance, Qx+2Qy = 19 and scattered to higher amplitudes by the fixed-line trajectories
[21].

The important result for this thesis is that the structures give a higher-order dependence
between the amplitudes in the cross planes. This recent experimental and analytical work
inspired the experimental campaign in the Proton Synchrotron Booster in Chapter 4, on
whether this type of dynamics can introduce non-factorization into the beam distribution.
Non-factorization is when a density function cannot be factorized into functions of the
individual variables, like,
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p(x,¥,2) = px(X)py(¥) pz(2). (2.33)
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2.3 Luminosity

The figure of merit for a collider, is the luminosity. The luminosity of colliding beams is the
convolution of a 3D particle distribution [22], given in terms of the Frenet-Serret coordinates,
(23], [24].

[e.0]
L Kffff 010X, ¥,8,—$0)p2(x,¥,5,50) dxdydsdsy. (2.34)
—00

Where p are the particle densities and K is the kinematic constant defined,

K= \/(171 — 172)2 — (171 X 172)2/02. (2.35)

Sp

Nipi(x,y.s, —so)

@

N2po2(x, Y, s, So)

Figure 2.7: Two counter-rotating bunches colliding head-on.

If the particle distributions are factorizable and the collision is head-on, then the formula can
be simplified,

+00
$=2N1N2VrNbffff P1x(X)P1y (¥ P15(s — S0) P2x (X) P2y (V) p2s(s+ so) dx dy dsdsy. (2.36)

A high integrated luminosity is desirable for particle physics experiments, given by equation
2.37, integrated between two time periods, (f1, 2). The quality of data depends on the statisti-
cal precision, increased by more events (more luminosity), and their ability to measure the
luminosity and cross-sections, which will be discussed further in this chapter. The integrated
luminosity is dependent not only on the beam distribution, but the machine availability.
Machine availability can be linked to the beam dynamics, as large, concentrated losses in
parts of the machine will lead to a machine ‘dump), i.e. removal of the beam from the machine
and a re-filling of proton bunches.
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The integrated luminosity is given by,

1)
Lint = £Ldt, (2.37)

151

and the number of events is proportional to the integrated luminosity and the cross-section of
an interaction,

Nevents = Lint0. (2.38)

2.4 van der Meer scans and Non-Factorization

Whilst the integrated luminosity is a performance indicator, and a high integrated luminosity
is desired by the experiments to produce many events, it is also important to accurately
measure the luminosity in order to measure cross-sections. The calibration of the luminosity
measurement improves the precision of the cross-section measurement [25]. The systematic
uncertainty from the instantaneous luminosity measurement can be a large source of error to
cross-section measurements [26]-[28].

The following is taken from [29]. Interactions between protons are seen as observables in the
luminosity detector. The average number of observables over many measurements is given by,

(Nobservables) = {Nobservables/interaction { Vinteractions)
= (Nobservables/interaction) L
Where p is the average number of interactions per bunch crossing. p is proportional to the

single-bunch crossing instantaneous luminosity, £}, via the frequency of revolution of the
bunches, v, (LHC revolution frequency), and the interaction cross-section, o,

oy
Vr

. (2.39)

To measure the luminosity, the rate of observation is scaled to the luminosity with a calibration
constant, g s,

(Nobservables? v v
&y = opservapes L= (Nobservables? r . (2.40)

(Nobservables/interaction) O Ovis

To calibrate the luminosity measurement, the van der Meer method is used [30], [31]. The
two beams are transversely separated and scanned over each other to measure the o5, which
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relates the luminosity to the measured rate, p.
If the luminosity can be expressed as

Vrniny

, (2.41)
Aefr

2y

Aetr is the effective overlap between two bunches. As defined above in terms of the bunch
densities,

fszvrnlngf p1(x, y)p2(x,y)dxdy. (2.42)
Then, if the assumption is made the beam densities are factorizable in x and y.

1 —_—

(2.43)
Aett

ffl(x)fz(x) dxfgﬂy)gz(y) dy= Wet Heft

Wegr and Hegr are the effective width and height of the ‘luminous region’.

When the beams are displaced in the vertical (k) and the horizontal direction (w), then the
luminosity varies. By scanning in the x and y directions with transverse offset (van der Meer
scan, Fig.2.8), the W s and Hegr can be determined as,

Woee [ AW fLE-wdxdw [ 2Lp(w,0)dw
o JAX) folx)dx £5(0,0)

) (2.44)

[ aWgy-mdydh [ 2,0,h)dh

eff = = (2.45)
D Tei e dy 2,(0,0)

For Gaussian beams, this simplifies to,

Yy=Wep=+/20, and EyZHeff:\/ZUy, (2.46)
and thus,

2n XXy

Ovis = Hyis————. (2.47)
niny

Where L5 is the visible rate. An example scheme of transverse beam separations can be seen
in Fig. 2.9.

30



Relevant contextual and theoretical concepts Chapter 2

CMS Preliminary Fill 8381 (2022, 13.6 TeV)
Scans: vdM3+offs
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Figure 2.8: Measured rate reconstructed with offset van der Meer scans, from CMS van der
Meer run 2022 [25].
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Figure 2.9: LHC beam positions during the different van der Meer scans of 2022, from [25].
Offs is an offset scan whilst diag is a diagonal scan (x-y varied).
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There are various uncertainties associated with this measurement. The analysis of this mea-
surement and the calculation of the uncertainties are independent for each experiment. In
2022 for CMS, the largest bias was the uncertainty due to the non-factorization of the
transverse beam distributions, as seen in Table 2.1, from [32].

Source Uncertainty (%)
Calibration

Beam current 0.20
Ghosts & satellites 0.10
Orbit drift 0.02
Residual beam positions 0.16
Beam-beam effects 0.34
Length scale 0.20
Factorization bias 0.67
Scan-to-scan variation 0.28
Bunch-to-bunch variation 0.06
Cross-detector consistency 0.16
Integration

Cross-detector stability 0.71
Cross-detector linearity 0.59
Calibration 0.89
Integration 0.92
Total 1.28

Table 2.1: Uncertainty sources and their corresponding percentages in the 2022 p-p van der
Meer run of CMS, from [32].

The non-factorization correction to oyjs is found by applying a fit to the x — y distribution
which describes the non-factorization seen. Depending on the fit function used, the size of the
correction differs. Results from the 2022 run of CMS showed there was a dependence of the
non-factorization correction to o5 on the bunch ID (bunch position in the filling scheme),
shown in Fig. 2.10. Every 4th bunch had a lower non-factorization correction. This suggested
a contribution to the difference in non-factorization bias which could have come from the
different rings in the Proton Synchrotron Booster (a four ring machine, which are stacked on
top of each other, with different magnet imperfections). The filling scheme is such that every
4th bunch comes from the same ring.

In 2023, ATLAS quoted that the preliminary uncertainty due to the non-factorization uncer-
tainty was 1.39% [34], for a total uncertainty on the measurement of 2.04%. In 2022, the
preliminary non-factorization uncertainty was 1.07%, for a total uncertainty on the measure-
ment of 2.19% [35].

In the next chapter we will introduce non-factorization in terms of the observables seen by
accelerator physicists and the beam dynamics.
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Figure 2.10: BCID (bunch ID) pattern in the LHC showing how the non-factorization correction
systematic lower correction [25], [33].






] Reconstruction of Beam Distributions

During the operation of accelerators, it is important to control the beam profile, for example to
minimize beam losses or optimise the luminosity of colliders. The beam profile is a projection
of the total distribution onto one plane. In this chapter, we demonstrate that the beam profile
alone is insufficient to characterize beam performance. We derive equations for different
beam distributions from the observation of a profile (1D), to the full transverse distribution
(4D), and show how the choice of constraints on the full distribution alter the luminosity and
losses observed. We will show that the full distribution (4D), given a profile (1D), is not unique,
even in the case of Gaussian beam profiles.

3.1 Definition of a Matched Distribution from the Hamiltonian

If the distribution is ‘matched’, then the distribution is stationary (i.e., invariant in time).
Mathematically, a distribution (of a beam inside a system) is stationary if it is a function of the
Hamiltonian of the system only [36].

We define the normalised transverse Hamiltonian in action-angle coordinates [7] in the two
planes (can be a linear action-angle or the nonlinear action-angle),

ﬁx =QxJx (3.1)
Hy=Q,J,. 3.2)

Where Qy,, are the transverse tunes (in the nonlinear case, the tunes depend on the action),
and,

35



Chapter 3 Reconstruction of Beam Distributions

2+
Jx= 2

B J'}2_|_p'~y2

y- 2 .

Given the transverse planes are uncoupled, the full Hamiltonian is given by,
f=H,+ 1,
If the distribution function is a function of the Hamiltonian only,

f=f(HUx, Ty).

Then f (H) is a constant of the motion if, and only if,

df
L -o.
dt

Using the chain rule,
df df(H) dH

dt ~ dp dt’
and given that,
. O
—={, H+—.
d t H) ot
Then, . .
dH A A OH
—={H,H}+ —
t t
By definition [36],
{H,H =0

Then, if the Hamiltonian does not depend explicitly on time,

oa_,
ot

Thus, A
df(H)
———=0.
dt

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

(3.13)
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Meaning, that the distribution is stationary, or ‘matched’, if it is a function of the Hamiltonian
only, given the condition that the Hamiltonian does not depend on time [37]. Therefore, a 4D
particle distribution in the normalised coordinates must be a function, of f(& + p3, % + p3).
As a direct consequence, this means that the (statistical) phase space in the canonical planes
forms concentric circles. As we will see, given a particular beam profile, this gives only
one solution for a 2D distribution, fop (&% + ﬁi). However, the full 4D beam distribution is
ambiguous as there is not a constraint on the way that the two planes are combined in order to
satisfy the matching. For convenience, for the rest of this chapter, we will re-label X — x and

similar for the other variables. We will always assume to be in the normalised phase space.

3.2 Reconstruction of a 4D Distribution from a Beam Profile

Operationally, a wire scanner can measure the beam profile in the horizontal or the vertical
plane. Mathematically, this is equivalent to performing the integral of the beam distribution
over the other variables of the phase space.

Assuming a 4D phase space distribution f;p(x, px, ¥, py), the profile in the horizontal plane is
obtained as,

le(x)=f f f fap(x, px, ¥y, py)dpxdydpy. (3.14)

If only the profile fip(x) is known, and we want to invert the problem to find the 4D phase
space distribution (in order to accurately model the physics), the solution is not unique.
The constraints are that the projection of fyp(x, px, y, py) must match the observed fip(x).
In addition, the distribution f,p(x, px) and fop(y, py) need to be circularly symmetric in
the canonical planes x — py and y — py, in order for the distribution to be matched to the
Hamiltonian of the system.

From an observed beam profile, we can get the radial distribution of the canonical phase space
variables using the Abel transform [38], [39], that is, fop(x, px). The 4D beam distribution
yielding the given 1D profile has infinite solutions, given no further constraints. To find
two examples of the beam distribution in a higher dimension, we could impose one of the
following additional constraints,

* Case 1) circular symmetry (i.e. round distributions in x-y, and all 2D sub-planes of the
4D distribution).
* Case 2) forcing the transverse planes to be factorizable.
Some equations are given without proof in [40] for circular symmetric distributions in 4D

(case 1). We will demonstrate how to find any circular symmetric distribution from a given
beam profile by using the Abel transform.
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Interlude: The Abel Transform

3.2.1 The Abel Transform
To find the circular symmetric beam distributions in higher dimensions, as functions,

we use the Abel transform. The Abel transform, originally proposed by Niels Henrik
Abel [38], is an integral transform relationship between two functions. Interpreted
geometrically, the Abel transform allows the transformation between 2D circularly
symmetric distributions and their projections in 1D. We use the form from Bracewell,
with a =1/2 [39], where the ‘forward’ transform is given by,

g(x)=&¢[f(r)]=2f Jordr (3.15)

x Vi2—x2
Where g(x) is the projection of a 2D circularly symmetric function which can be ex-
pressed as a function of a radius, r, and angle, 8, except it is uniform in 8, thus can be
described by f(r). «f represents a shorthand for the forward Abel transform.

The inverse transform, <« ~!, verified with an ansatz [38], is given by,

o _ 1 redg dx
f(r)—é?f [g(x)] = ; . E\/ﬁ (3.16)

It can be extended to higher dimensions, such as axial spherical symmetry (3D) [38],
where a function f(r) with r = /x? + y? + z2 exists,

© f(ryrdr

R =y

Here, the projection onto the yz plane is expressed as [(w), where w =/ y? + z2.
The transform can be used in higher dimensions, so 4D for our use case (4D hyper-

l(w)=2 (3.17)

circular symmetry). Furthermore, the inverse Abel transform can be used as a test
of physicality of a profile, as f(r), given an f(x) must be defined positive, detailed in
Appendix B.

3.2.2 Defining Variables

For case 1, imposing circular symmetry in the x — y planes, and thus hyper-circular symmetry
in 4D, we define the following variables, or radii, from the canonical variables,

re=1\/x%2+p3, (3.18)
ry=\/y>+p3 (3.19)
s=1/x2+p2+ 2, (3.20)

38



Reconstruction of Beam Distributions Chapter 3

and a 4D ‘super-radius’,

m:\/r§+r§:\/x2+p§+y2+p§. (3.21)

Given that r, = \/x2 + p2, and the phase space in 2D for canonical variables is circular, to find
fop(ry), the inverse Abel transform is applied once on a profile fip(x). To find fip(m), the
inverse Abel transform is applied three times to fip(x) in accordance with the property of
extension to higher dimensions. Thus, any 4D circular symmetric distribution can be found.

Using the previous defined variables, starting from a projection in 1D, e.g. in x, fip(x), we

obtain, p p
1 o
fZD(Tx)=——f fip) al , (3.22)
TJr dx 2 2
X% —rs
1 r°d d
fin(s)=—= f J ZD re) _4rs (3.23)
T Js I'x r}ZC_SZ
_ _l © df3p(s) ds
fap(m) = - fm s PR (3.24)
This is equivalent to
fip(m) = ot 7t T fip(0]]). (3.25)

Conversely, we can compute the 1D distribution from a given 4D with forward Abel transforms,
equivalent to a Cartesian integration in dpy, dy, dpy,

Nip(x) = [ A fap(m)]]]
00 o0 0O (3.26)
=f_ f_ f_ fan(m)dpydydp,.

Given fip(m), particles can be sampled from the distribution using an inverse sampling
method, adapted from [40], detailed in Appendix A.

3.2.3 Example: Waterbag Distribution

The use of the Abel transform to find circular-symmetric distributions can be validated on
the Waterbag and Parabolic distributions (which are defined in 2D), matching the 4D density
functions given in [40].
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Defining the 2D distribution f,p(r,) as Waterbag yields,

2
2(1- %)

0
fop(ry) = ———,
g

41/ ms —

21,4 ’
Tem,

fip(8) = Hfop(re)l =

fin(m) =2 fsp(s)] =

1"

2
Temg

where m < my defines the region where the distribution is non-zero.

3.2.4 Example: Parabolic Distribution

The case of a Parabolic 2D f>p(ry) distribution yields,

1 i 2
f2D(7’x)=—23(1——2) ,
nmo mO
8(mg_32)3/2

fp() = fop(r)] = ——5—5—,
mw2myg
) 6(mg — m?)
f4D(m) = [st(S)] = W

0

It can be shown that these results are in agreement with the distributions in [40].

3.2.5 Example: q-Gaussian Distribution

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

We often observe beam distributions that are well-fitted by q-Gaussian distributions, such
as those exhibiting heavy tails in the transverse planes [41], [42] in the CERN accelerator
complex. The g-Gaussian can effectively describe these distributions and offers a unique
solution, unlike the combination of two Gaussian distributions with different weights and o.
We can find the q-Gaussian distribution function for the hyper-circularly symmetric, case 1)

distribution, starting from the 1D q-Gaussian [43],

q
fip(x) = eq(—Bqgx™),

Cq

where e is defined as the g-exponential (defined positive),

eq(0)=[1+1-q)xl}°.

(3.33)

(3.34)
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The normalisation factor Cy is defined,

2yl i)

for —co<g<1

6= v1=al 5%’
Cq=1 Vm, forg=1 (3.35)
Vallg)
forl<g<s3.
VaI)

I'is the Gamma function. The distribution arises from the maximisation of the Tsallis entropy
[44]. The g can be interpreted as how light or heavy tailed a distribution is compared to the
Gaussian, (g =1), and the 8, scales the distribution along x. For g =2 it becomes the Cauchy
distribution.

The variance of the distribution is given by,
for g < %

1
variance = { Pa5=39 (3.36)
o, for2=<g<2

The 1D profile is transformed to a 2D density via the inverse Abel transform,

By (q-3)/q—1rx

27

fZD(rx) =—

q+1

+ l)zzq (Bqlg-Dr3)"

i
‘?

D — 3.37
§ (ﬂq(q—nrﬁ (357

Assuming a density in the form fy3p(m), the equation for the 4D density function is obtained
via two further inverse Abel transforms,

1

Ba(a-31q+D 5=
4n2m3f(%)

fap(m)=—

o (g (3.38)
x (Bq(q - 1))22”’F(ﬁ)
T2 o
(ﬂqmz(q 1)“) (Bm*(q =17,
which simplifies to,
Fa-3@ -1\ T(74) L
fan(m,q,Bqy) = (- x x(1+B4(g-1)m)7=a 2. (3.39)
)
e
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This is valid for the specific case of g-values of 1 < g < 3, calculated using Mathematica [45].
(In the CERN accelerator complex, typical g observed are 1-1.4).

To generate a particle distribution for factorizable distributions in x — y (case 2), the 4D density
function is a product of two 2D density functions, one in x — p, and one y — p;,, which are in
themselves functions of only r, and ry. They can be found via one inverse Abel transform for
each plane,

fap(rx, 1y) = fap(ry) x fap(ry). (3.40)

The x— px and y — py distributions are then sampled via two separate Box-Miiller type random
sampling methods [46].

The population of the phase space with a q-Gaussian of g = 1.4 for case 1 yields the x-y
projection shown in Fig. 3.1. The projection on the x or y planes (1D) is shown with the fit of a
q-Gaussian with g =1.4.

Figure 3.2 shows the projection of the density function made from the multiplication of two 2D
distributions (case 2). As in case 1, the projection in x and y fits the q-Gaussian distribution
with g =1.4.

10.0 9
7.5 4 oo - o : . 0.5 4
. 5.0 4
=3
g 25 §
-f:’ 00 = 0 —— g-Gaussian q=1.4
-25
8- 5.0 g ]
S, o]
-75 0.1+
-10.0
T T T T T T T v 0.0 T 7
=7.5 -5.0 2.5 0.0 2.5 5.0 7.5 10.0 -8 -6 —4 -2 0 2 4 6 8
X position a.u. X,y position a.u.

Figure 3.1: Projection in the x — y-plane (left) and the x-plane and y-plane (right) for a
distribution with circular symmetry in all planes (case 1).

3.3 Losses

Taking the two (sampled) distributions of case 1 and 2, which give the same 1D profile, we
can observe the behaviour under a loss process. Projecting on the y — p,, plane, and making a
collimation (or beam scraping) at 3 ¢ in both cases, the y — p,, planes are identical, Fig 3.3.

Depending on if the distribution is case 1 or case 2, the behaviour under a loss process changes
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j 501 0.4
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Figure 3.2: Projection in the x — y-plane (left) and the x-plane and y-plane (right) for a
factorizable distribution (case 2).

- fap(X, Px, Y. Py) fo0(X, px) Xop(y, py)
:: 504 : 5.0 4
© © 25
c ] c
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-.I;J 0.0 _-I;J X -
(%] (%]
o s O 251
o o
5: 5.0 4 5: 5.0 1

y position a.u. I y position a.u. 2

Figure 3.3: Collimation at 3 ¢ in the y plane is the circular cut in the y — p,, plane, identical for
both case 1) and case 2) distributions.

on the x plane in addition to the scraping plane, y. This can be seen by the probability density
of the removed particles by the y aperture seen in Fig. 3.4. The x? + p2 of the removed particles
by a y aperture have a different distribution to the original x* + p2 distribution. This is a
consequence on the non-factorization of the function.

3.4 Non-Factorization

We have shown that the 4D distribution is not unique, given the same fijp. This is a con-
sequence of the free parameters, as the distribution only requires circular symmetry in the
canonical planes, and this condition is identical to the matching condition, f(H). For the
circular symmetric case (for the non-Gaussian cases), the distribution is non-factorizable, and
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Figure 3.4: The x distribution x of the removed particles due to the cut in y, has a different
result for the case 1) and case 2) distribution.

as a consequence we saw the difference in loss behaviour. Non-factorizable means,

fap(x, px, ¥, Py) # foD (X, Px) f2D (¥, Py)- (3.41)

To show that the non-factorizable distribution is matched, we can plot the X’ matrix, the
case 1) fyp derived above, with a g = 1.4, shown in Fig. 3.5. The X' matrix is diagonal beyond
numerical noise due to the sampling, thus there is no linear coupling in the distribution, (a
matched distribution in linear normalised phase space is uncoupled, i.e. the X matrix is
diagonal). The non-factorization cannot be observed by second order moments, as it does not
depend on phase but on amplitude.

¥ Matrix for g-Gaussian, q=1.4, f4p 1 x 10° particles 100
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Figure 3.5: The X' beam matrix for a circular symmetric q-Gaussian distribution witha g=1.4
and 2e6 particles.

X Px y Py

3.5 Luminosity

The luminosity of particle colliders depends, among other parameters, on the transverse
profiles of the colliding beams. At the LHC at CERN, heavy-tailed transverse beam distributions
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are typically observed. The luminosity is usually modeled with the assumption that the x-y
planes are factorizable (i.e. statistically uncorrelated particle distributions between the planes)
in each beam. Below, we evaluate the relative luminosity difference for q-Gaussian profiles
with different 4D distributions. We calculate the luminosity for the circularly-symmetric
distributions as,

2@[ f hHnfe(x,y)dxdy. (3.42)

The integral is done numerically using Eq. (3.37) for fi 2(x, y), replacing r, with \/x? + y2.

For factorizable beam distributions, we obtain the luminosity as,

0 oo
£ f f @A LX L) dxdy, (3.43)
—00 J—00
where fi 2(x) and f; 2(y) are the q-Gaussian 1D distributions, and 1,2 denote the two incoming
bunches.
16 17 @ Factorizable, const. fg
+ Axis-Symmetric, const. By
® Factorizable, const. variance 4+ ¢
a1 Axis-Symmetric, const. variance o
+
& + °
¢ 12
S s !
Py o
= 1 ® b
+= 1.0 +—%
]
] 1]
< b 4
b
0.8 1 b 1
o +
° -
o0 +
0.6 4 o

100 105 110 115 120 125 130 135 140
g-parameter

Figure 3.6: Luminosity variation for different g, but the same 4 (red and blue markers), and
for constant variance (green and black markers), with hyper circularly-symmetric (crosses) or
factorizable (points) distributions in x-y.

Figure 3.6 shows the luminosity for case 1) and case 2), given the constraint of a q-Gaussian
profile in the x and y planes, relative to a 4D circular-symmetric Gaussian distribution (g =1).
The graph shows, as a function of g, a set of q-Gaussian distributions with constant variance
and another set keeping 4 constant. The difference in relative luminosity between non-
factorizable, circularly symmetric (case 1) and factorizable (case 2) distributions becomes
larger as the g-parameter increases. This shows that it is important to know the properties of
the full phase space distribution to accurately calculate the luminosity integrals.
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Amplitude [A.U.]

Figure 3.7: The profile for a q-Gaussian with different g-parameters for constant variance.

For completeness, Fig. 3.7 shows the q-Gaussians beam profiles (1D projections of the phase
space) corresponding to the same g-parameters as in Fig. 3.6 for the case of constant variance.
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Note: Non-factorizable Gaussian beam distributions

3.6 Non-Factorizable Gaussian Beam Distributions

Circularly symmetric, x — y Gaussian distributions are factorizable. However, distribu-
tions which have 1D Gaussian projections, do not have to have a factorizable fip, as
demonstrated in a notebook by G. Sterbini, attached in the Appendix E.

Given a 4D distribution for the canonical variables x, py, y, py in normalised phase
space; if the 1D projections are Gaussian, that is,

e oLy o
f_ . plx,y)dy= me o (Gaussian x-profile), (3.44)
and
" _ L e e
f_ N plx,y)dx= \/ﬁe o (Gaussian y-profile). (3.45)
Considering the action-angle variables, J, and 6, where
Jx= @ (3.46)

it is shown that, given the constraints that the marginal probability density function
(PDF), PDF(Jy|Jy) is a solution of these equations,

+o0
| e orgyradr e (3.47)
0

+00
| epEU DAz, <1 (3.48)

for all J,.
There are two possible solutions for PDE(Jy|Jy),

A1L.PDE(Jy|Jx) = ey, (3.49)

A2.PDF(JylJx) =6y — Jx)- (3.50)

The distributions look like, in x, y, for the Al. case Fig.3.8 and for the A2. case Fig.3.9.

The corresponding X matrices for a sample extracted on from these functions, with 1 x 10°
particles, in the Al. case, Fig. 3.10 and in the A2. case 3.11. Both matrices are diagonal, and are
matched to the lattice, in a normalised linear phase space. However, for the case A2., the x
and y distributions are non-factorizable.
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Figure 3.8: The Al. case for a Gaussian distribution plotted in the x — y and x and y planes.
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Figure 3.9: The A2. case for a Gaussian distribution plotted in the x — y and x and y planes.
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Figure 3.10: The X matrix for the distribution (A1.) showing that it is un-coupled.
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Figure 3.11: The X' matrix for the distribution (A2.) showing that it is uncoupled as the matrix
is diagonal.
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3.7 Measuring Non-Factorization

We have shown that it is important to know the full transverse distribution in order to cor-
rectly model the luminosity and the losses in a collider. Below, we propose a method for the
measuring of the transverse phase space via destructive scraping or collimation, with no ma-
nipulation of the machine optics. In addition to luminosity and losses, the non-factorization
of the bunch results in an important error on the calibration of the luminosity measurement.
An undeveloped version of the following method has been used, in Chapters 4, and 6 to find
the relative non-factorization of a beam distribution in order to find optimum configurations
for the van der Meer bunches (as factorizable as possible) in terms of the injector machine
parameters. In the lower injector machines there are no instruments which measure the full
transverse phase space.

In the LHC, the transverse beam distribution can be measured with the BSRT (Synchrotron-
Light Telescope) or the Coronagraph (uses the synchrotron light but through a lens to amplify
the beam halo), [47]. The BSRT has a noise limit on the beam halo measurement [48], and the
coronagraph is not operational as of 2024.

3.7.1 Reconstruction of PDF(J,, /) with Beam Scraping

A beam scraper (also referred to as a collimator), is an aperture which is controlled during
operation to remove higher amplitude particles in the distribution. Their main purpose is
for machine protection, in order to prevent damage to equipment. Beam scraping has been
used for diagnostics in LHC experiments to find the diffusion coefficient, tail population, loss
rates, and for the detection of beam oscillations [49], [50]. We can also probe the PDF(Jy, Jy)
distribution with scraping measurements.

Going to the distribution in the Jy, J, plane is advantageous when working with an aperture.
For example, in the vertical plane, the y and p, evolve with the vertical tune, however the J,
is constant, and thus the aperture can be modeled as a cut in the beam distribution above a
limit. In Appendix C it is detailed how to calculate the 1D beam profile from an aperture limit
with the Abel transform. To determine the 4D distribution we can do the following.

Before any scraping in the y plane, a y profile measurement plus a transformation results in a
measurement:

PDF(J,). (3.51)

After a vertical scraping, where the scraper is placed at an aperture, A;, in the J, space of
Jy = Aj, we have the new conditional PDF of the y plane, found with a measurement in the y
plane and the Abel transform.
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PDF(JylJy < Aj). (3.52)

If we make a simultaneous measurement in the x plane of the 1D profile, we have another
PDE

PDF(JxlJy < Aj). (3.53)

Successive measurements, of the beam profile in both x and y, with different y apertures
(decreasing in amplitude), provide us with a series of discrete conditional probability density
functions.

The protocol can be represented by a matrix,

0<Jy<Ap 0<]Jy<Ap1 - 0<Jy<A; 0<Jy<Ag
Jx0 an,0 an-1,0 e aio aop,0
Jx1 an,1 an-1,1 a1 aop,1
(3.54)
Jx,m—1 an,m-1 An-1,m-1 al,m-1 agp,m-1
Jx,m an,m Apn-1,m ai,m ao,m

Given that A; are the scraping amplitudes of the scraping protocol, and A;;; is the next
scraping aperture in time, if the collimator starts far from the beam at J, = Ag. To find
PDF(Jx|Ai+1 < Jy < A;) from the PDF(J«|0 < J, < A;), we need to sum for different A;,

i+1 i
PDF(Jx | Ai < Jy < Ais1) =) PDFU;10<Jy<Aj)—) PDFU;|0<],<A4j),  (3.55)
i j=1

yielding the discrete matrix PDFE(Jx | A; < ], < Aj41),

0<]y<An An<]y<An—1 A2<]y<A1 A1<]y<A0

! ! !/ !/

Jx0 an0 a5 1,0 “' a0 0
Ten a a a a

) n,1 n-1,1 1,1 0,1

(3.56)
! ! !/ !/
Jx,m-1 Anm-1 An 1,m-1 a1, m-1 Ay, m-1

! ! !/ !/

]x,m an,m an—l,m T al,m aO,m

Making an approximation from discrete to a continuous distribution, to find,
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PDF(JxlJy = Ay), (3.57)

and given Bayes’ theorem;

PDE(Jy, Jy) = PDF(Jx|J,) x PDE(J), (3.58)

PDF(Jy, /) can be reconstructed. (PDF(J}) is the marginal distribution which can be found
from a profile measurement in y before scraping).

To find the distribution in x, py, y, py, a rotation is used,

Xx=+v2J,cos(Oy) (3.59)
Px=—V2]xsin(0y) (3.60)
y=4/2]ycos(6y) (3.61)

py=—4/2]ysin(8y). (3.62)

The angle, 0y, y, is uniformly distributed. A numerical example to find the PDF(Jy, /) for the Al.
and A2. Gaussian distributions is given in Appendix D. This method is not well-developed for
experiment as of writing, as it depends greatly on the noise of the profile measurement, and the
rate of diffusion during the period of the measurement. Scraping and profile measurements
in both planes has however been used to determine the relative non-factorization between
distributions in Chapters 4 and 6.
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3.8 Summary

It has been shown that given a beam profile, the transverse distribution is not unique. The
losses and luminosity depend on the full transverse distribution. We have seen that non-
factorizable distributions (not coupled) can be stationary (in linear and nonlinear machines,
for integrable motion). It has also been shown that even distributions giving Gaussian profiles
can be non-factorizable.

To increase the non-factorization in a distribution it requires a mechanism that gives energy,
or takes away energy from a particle’s x and y position simultaneously. In the next few
chapters, we will show experimentally (Chapter 4), and with simulation (Chapter 5), how
non-factorization can be introduced into the distribution through coupled resonance crossing
in the presence of space charge. We will also demonstrate through experiment how the non-
factorization is preserved in a synchrotron, and can be passed to higher energy machines
(Chapter 6). This will be discussed in reference to the van der Meer measurements and the
minimisation of the uncertainty due to the non-factorization.
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Experiment of Periodic Resonance
Crossing in the CERN PSB

4.1 Introduction

As we demonstrated in the Chapter 3, an in depth characterisation of the beam distribution is
paramount to anticipate the luminosity performance and how the beam will behave under
loss processes, (particularly for high brightness beams, when the losses can cause machine
damage). Beam profile measurements are the projection of the 6D phase space distribu-
tion onto a single axis (one of the horizontal, vertical and longitudinal planes). Inversions
of the profile to a full distribution do not yield unique solutions, and both factorizable and
non-factorizable distributions can be matched and fit the measured projections. For non-
factorizable distributions, selecting the amplitude of a particle in one plane will condition the
amplitude distribution in another plane. This impacts in a macroscopic way the evolution
of the particle distributions; losing a particle in one plane affects the (normalised) profile
in the other. This can be observed experimentally through scraping of the beam tail, and
measurement of the beam profile in the other planes.

Crossing of coupled x — y resonances is one mechanism that could introduce the aforemen-
tioned non-factorization. Due to the synchrotron motion in bunched beams, particles change
their position within the longitudinal profile. The space charge tune spread depends on the
local line charge density, and thus it is changing as the particles move towards the centre of the
bucket. Particles which were initially not resonant become resonant as their tune approaches
the resonant condition. The motion follows structures in the 4D phase space, resembling
Lissajous figures. The particles x, y position is affected simultaneously. When the particles
no longer meet the resonant condition, the non-factorization persist as the Courant-Snyder
amplitudes in x — py, y — py of a given particle are preserved [51], as will be seen in the next
two chapters. The dynamics under coupled-resonances and the structures formed in the
4D phase space, or ‘fixed-lines’ has been the subject of recent experimental and analytical
investigations, [19]-[21], [52].

In 2017, it was shown that periodic resonance crossing of coupled resonances introduces
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an asymmetric halo in the transverse planes. The experiment was carried out in the CERN
Proton Synchrotron, the machine after the Proton Synchrotron Booster in the CERN proton
injector chain. The idea behind the experiment shown in this chapter was to induce a similar
halo in the bunch via periodic resonance crossing of a coupled resonance, and measure
the non-factorization between planes using beam scraping and profile measurements after
excitation of the resonance had been removed (almost linear machine). The results also
show how excitation of a 1D resonance does not introduce asymmetric halos and furthermore
does not change the non-factorization of the transverse planes.

4.2 Experimental Configuration

The measurement campaign was performed at the CERN Proton Synchrotron Booster (PSB),
which is a machine with four superposed rings with a common magnetic yoke, and all experi-
ments were conducted in Ring 1, the bottom ring. The driving terms of the relevant lattice
resonances for the chosen working points were corrected for, similarly to as detailed in [53].
This enabled controlled excitation of the selected resonance. Two experimental configurations
are presented: the working point (Qy, Qy) = (4.11,4.36) near a third order resonance (1D)
3Qy =13, and (Qy, Qy) = (4.18,4.44) near a coupled third order resonance (2D) Qx +2Q, = 13.
The tune spreads due to space charge are around AQ, =-0.11, AQy =—0.14, calculated using
[54]. The code calculates resonance driving terms by including the space charge potential of a
Gaussian beam in the Hamiltonian. The tune spreads can be seen in fig. 4.2 and fig. 4.1.

Figure 4.3 illustrates the experimental configuration of the cycle. The measurements were
performed at the 160 MeV injection plateau, during which a single bunch of ~ 4 x 10! protons
was stored. The lattice resonance compensation was maintained during the whole cycle.
Measurements were performed with either no resonance excitation, or with a resonance
excitation for a period of 220 ms using a skew or normal sextupole, depending on the selected
resonance. Following a period of ~ 30 ms (~3x 10 turns), corresponding to ~20 synchrotron
periods after the excitation was removed, high amplitude particles of the vertical profile were
scraped away via a controlled vertical closed orbit bump moving the beam onto a dedicated
aperture restriction. Profile measurements in the horizontal and vertical plane were taken with
the wire scanners after the scraping process, along with tomoscope measurements [55] for
the longitudinal plane. The sextupole current and vertical orbit bump were varied to test how
the non-factorization changes as function of the particle amplitude for different resonance
excitations.
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Figure 4.1: The set working point of the 3Q, = 13 experiment with the estimated space charge
tune-spread assuming a Gaussian beam profile and the measured emittances. The excited

resonance is shown in green.
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excited resonance is shown in green.
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Figure 4.3: The experimental configuration along the 160 MeV injection plateau in the PSB.
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4.3 Experimental Results

The initial (after injection, no resonance excitation) profiles in the horizontal, vertical, and
longitudinal planes can be seen from screenshots of the PSB logbook Fig. 4.4. The initial

normalised emittances were 2.1 yum-rad in H and 1.4 um-rad in V. The longitudinal bunch
Ap

profile is parabolic. The longitudinal parameters were optimised to have a small D rms in

order to minimise the effect of dispersion on the beam profile, see Fig. 4.5.

Data taking periods were done with automatic scripting; it was paramount to have the scraping
measurements for a single resonance on the same day, and to avoid effects due to hysteresis
(which could affect the correction of the RDTs). The automatic scripting helped with the
acquisition of numerous measurements for statistics.

Figure 4.6 displays the vertical, horizontal and longitudinal profiles for different scraped
intensities (done with the vertical orbit bump), with and without the resonance excitation.
When the 3Qy, = 13 resonance is not excited, the profiles (normalised to intensity) remain
constant in the non-scraping planes (apart from the reproducibility of measurements). When
the 3Q,, resonance is excited, large tails can be observed in the vertical plane, which are clearly
removed by the scraping. Furthermore, the vertical scraping also changes the longitudinal
profile resulting in reduced bunch length, as particles with large vertical amplitude also have
high longitudinal amplitude. The horizontal profile is not changing, as the 1D resonance
crossing moves particles to higher amplitudes in the vertical plane only for 3Q, = 13.

Figure 4.7 shows the beam profiles in all three planes when measured after the vertical scrap-
ing for the resonance Qy +2Qy = 13 for different scraped intensities, with and without the
excitation during the cycle. As the beam is scraped vertically, for the case with no excitation,
the normalised longitudinal and horizontal profile do not change beyond shot to shot vari-
ation. For the case with the resonance excited, the non-scraped profile has larger tails in

PSB LIU Wirescanner =- - PSB PRO INCA server - PRO CCDA - PSB.USER.MD

Eile Logging View Help
© 04 Sep 2023 10:31:32 PSB - 07 MD1 | MD9484_160MeV_2023 .

[T 7+ 0 LE [[Fac=asaE & 30 EASTL | EAST T8 2023 @] c [cpsop

HL [ H2 [ H3 ["Ha ["v1 [v2 [ v3 [ va | summary |

.......
In delay 600.808ms  600.0

Out delay 800.0

Speed  [LO_SPEED LO_SPEED
PM PM_ALL PM_ALL

ry
Harmonic In 1 1

n
Harmonic Out 1 1

Voltage |Low ~¥| 500.2783

Sett e

F (@] caussiansi |3

PM In (Best: 1)  |PM_1 -

Beta In 4.2052
Dispersion In 0.0

o 0 a0 F)p( ‘

Time Ip 10% Center(mm] enlofmm.mrad]
Mean 47.136 0.84 3177 1.436

sigma 0 o o o
Meas. 1 10:23:06 47.136 0.84 3177 1.436

@

Logging ]
" Log Extract... |

LT

[ Newscan |[ cancel [neas: “1 Mode[ off [status| oK | Message | Error | “

i 10:30:47 Logging BRL.BWS.4LLH in BR1.BWS4L1HfLogging (meas. time 04-09-2023 10:22:16) a

Figure 4.4: The initial vertical beam profile with corrected resonances and no excitation.
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both H and V. As the vertical tails are removed by the scraper, both the horizontal and the
longitudinal profile change shape. This suggests that particles which have been affected by
the resonance have moved to high amplitudes in the vertical and horizontal planes, and a
section of the distribution with large longitudinal amplitude is affected by the resonance. This
is again compatible with space charge induced resonance crossing.

To see the effect of different levels of resonance excitation, the transverse profiles are fitted
with a q-Gaussian distribution [41], [43], where the q-parameter shows how heavy (g > 1)
or light tailed (g < 1) the distribution is compared to a normal Gaussian (g = 1). The bunch
length is determined from the tomoscope data and represents the full width half maximum
(FWHM) length of the bunch. The error given is for the standard deviation of the FWHM
during the measurement of the tomoscope (100 profiles for one measurement). Figures 4.8,
4.9, 4.10 show the relative bunch lengths and the g-parameters of the transverse profiles (g
for the horizontal fit and gy for the vertical fit) for different sextupole currents exciting the
Qx +2Qy =13 resonance, with the error from the covariance matrix of the fitting.

09:59:35 04 Sep 2023
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Figure 4.5: Tomographic reconstruction before any resonance excitation to make sure the
longitudinal parameters were correct.
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Figure 4.6: Beam profile measurements near the 3Q, = 13 vertical resonance. The measure-
ments are after vertical scraping has removed different percentages of the bunch intensity as
per the colour scale, without (top Isx =0 A) and with (bottom Isx =40 A) the resonance excited
by a strongly powered skew sextupole for some period of the cycle.
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Figure 4.7: Beam profile measurements near the Qx +2Q), = 13 coupled resonance. The
measurements are after vertical scraping has removed different percentages of the bunch
intensity as per the colour scale, without (top Isx = 0 A) and with (bottom Igx = 40 A) the
resonance excited by a strongly powered normal sextupole for some period of the cycle.

In the case of Isx =0 A, it can be seen there is almost no dependence of gy and bunch length
on gy (as the beam is scraped in the vertical plane), meaning little or no other coupling or
resonant effects are present. For Isx = 20 A, there are tails created in H and V, and they are
correlated up to a scraping of 15%, along with the longitudinal bunch length. For Isx =40 A, the
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Figure 4.8: Bunch length, gy and gg plotted as a function of the scraped intensity for the

Qx +2Qy =13 configuration. Isx =0 A.
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Figure 4.9: Bunch length, gy and gy plotted as a function of the scraped intensity for the
Qx +2Qy =13 configuration. Isx =20 A.

tails generated by the periodic resonance crossing are even thicker and the three parameters
remain correlated until a vertical scraping of 22%. Increasing the sextupole current and thus
resonance excitation increases the non-factorization in the 6D phase space distribution.
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Figure 4.10: Bunch length, gy and gg plotted as a function of the scraped intensity for the
Qx +2Qy =13 configuration. Isx =40 A.

4.4 Summary

The experimental results presented in this chapter show how periodic resonance crossing of a
coupled resonance can build up non-factorization in a distribution which remains after the
excitation of the resonance is removed (Isx = 0). Depending on the strength of the excitation,
the distribution becomes more or less factorizable. The non-factorization is higher for high
amplitude particles and the particles in the core seem to still have a factorizable distribution,
which is observable by the saturation of the change in the x plane at certain y apertures. In
the case of 1D resonances, a transverse non-factorization is not introduced.

Simulations with symplectic tracking codes, described in the next chapter, will benchmark
these results and offer more insight into the mechanism of the halo creation and the non-
factorization of the amplitudes in the transverse planes.
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Simulation of Coupled Resonance
Crossing in the CERN PSB

5.1 Introduction

The experiment described in the Chapter 4 is simulated for the case of the coupled resonance
excitation, namely Qx +2Q) =13, on a 160 MeV constant energy magnetic cycle in the Proton
Synchrotron Booster (PSB). Two approaches are used, a shorter simulation to investigate
the single particle dynamics, using a frozen space charge model (assumes Gaussian bunch
shape). Then, for the collective behaviour, or the distribution evolution, long term tracking
simulations are used with many macroparticles to benchmark the experiment. In this second
case, a particle-in-cell space charge model (Poisson solver), is used in combination with a
symplectic tracking code, both implemented in Xsuite [56], a modular simulation package for
accelerator physics developed at CERN.

5.2 Single Particle Tracking

The first step was to simulate a few turns and particles under the so-called ‘frozen’ space
charge hypothesis. The positions of the particles for all turns of the simulation were saved. We
can inspect the phase space dynamics and tune diffusion. The short term tracking simulations
are based on code from [57]. For the single particle dynamics, the simulation was as close to
the experimental parameters as possible, the simulation parameters are given in Table 5.1.

An initial particle distribution of 1200 particles was used, with a polar grid in the £—y plane and
alongitudinal slice, that is, all particles are initiated on a z = zmax and the initial momentum

offset % is set to 0. Figure 5.1 shows the initial distribution in (linear) normalised X — j space.

Figure 5.2 shows how z and % vary with synchrotron motion in the longitudinal phase space.

As only a longitudinal slice is used for the 1200 particles, depending on the z,ax value the line
density and thus the space charge forces vary. Assuming a Gaussian (approximation) profile
in the z-direction, the space charge depends on the line density, given by,
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Table 5.1: Simulation Parameters

Initial beam parameters Value
Number of particles per bunch [10'! p] 4.06
Normalised RMS emittance [ey,ey] pmrad  [2.1, 1.4]
RF voltage [kV] 8
RMS % 9.56e-4
RMS bunch length (o) 127 ns
FWHM bunch length 285ns
Programmed tune*[Q 1 Qy] [4.18, 4.44]
Chromaticity ** [-3.7,-6.9]
Kinetic energy 160 MeV
Normal sextupole current Isx 40 A

" The experimental set tunes Q, and Qy are varied in sim-
ulation to account for possible coherent tune shift due
to impedance.

" The chromaticity is defined as the variation of the beta-
tron tune Q momentum deviation Q' = ‘;—g [58].
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Figure 5.1: Initial X — y position of 1200 particles for the short term simulation in the linear
normalised % — j space. The particles for which the dynamics is inspected more closely are
numbered.
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where Nj, is the bunch intensity, o the longitudinal beam size, and z the position. The peak
line density dependence on zy,¢ can be seen in Fig. 5.3. The line density depends on the
position z, which, in the case of z3x =0 m, does not vary with the synchrotron motion. For
large zmax, the line density and thus space charge varies with the synchrotron motion, and

Az) =
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Figure 5.2: Longitudinal slice for short term tracking simulation and how the % varies with z.

thus the detuning varies. This means that particles may periodically cross the resonance
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Figure 5.3: Line density A indicating the slices of longitudinal phase space for different zp-

5.2.1 Tune Diffusion

To determine if the particles are affected by the Q +2Qy = 13 resonance excited by the normal
sextupole in the lattice, a short tracking simulation and an analysis of the frequencies can be
used in a technique known as frequency map analysis (FMA). Particles are simulated using
Xsuite with the frozen space charge model for two synchrotron periods. For different slices of
the longitudinal phase space (zmax), the synchrotron period differs but can be calculated by
observing the periodicity of the z parameter as seen in Fig. 5.4.
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Figure 5.4: The z position for particles with the same initial transverse amplitude but different
Zmax yielding different synchrotron periods, 7.

The individual particle tunes for each synchrotron period are calculated using the NAFF
algorithm [59], implemented in the Python module NAFFlib [60]. A tune diffusion ‘coefficient’
can be calculated using the formula,

d= ln\/( @) +(e® - Q) (5.2)

where Q% are the horizontal and vertical tunes over the first synchrotron period, and Q)(CZ;,
are the tunes over the second synchrotron period. For the calculation of the tune diffusion
coefficient d, it is important to have a full synchrotron period when considering non-zero
chromaticity, (the chromaticity in the experiment could not be corrected for simultaneously
in both the x and y planes). This is not equivalent to defining a constant for diffusion in a
diffusion equation, and is merely an observable of how the tune is changing in time.

The diffusion coefficient indicates how much the tune has changed over the two periods. The
resonance can lead to a change in tune, due to the distortion in phase space [1]. Irregular or
chaotic motion can be predicted with a large tune change in a short period [1].

It is useful to plot the particle’s diffusion coefficient against its initial amplitude in the grid
on the transverse plane, as shown in Figs. 5.5 and 5.6, for two simulations with different zya.
We can observe a band that seems to be affected by the resonance. By plotting the particles
tune in the resonance diagram it is possible to observe particles which are affected by the
resonance, as they can become ‘locked’ to the resonance lines, Figs. 5.7 and 5.8.

In the case of the simulation with the longitudinal slice at zj,ax = 0 m, there are fewer particles
with large diffusion coefficients. For zax = 10 m, many more particles have large diffusion
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coefficients. This is due to the periodic change in longitudinal line density, which allows parti-
cles to periodically cross the resonant condition as the space charge detuning changes. This
suggests a dependence on whether a particle will reach higher amplitudes in the transverse
plane depending on its longitudinal position, as observed in the experiment (see Chapter 4).
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Figure 5.5: Initial distribution for particles on momentum, zmax = 0 m, plotted with their
diffusion coefficient calculated for 2 successive synchrotron periods.
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Figure 5.6: Initial distribution for particles off momentum, zy,x = 10 m, plotted with their
diffusion coefficient calculated for 2 successive synchrotron periods.

5.2.2 Single Particle Dynamics

It is possible to analyse the beam dynamics of the particle in the linear normalized space via a
transformation. The Courant-Snyder (CS) invariants, J, and J, can be tracked as a function of
the turn in the synchrotron. In a symplectic and linear transformation, all linear combination
of Jx and J, are conserved. For the simulated case (non-linear), when the longitudinal slice
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Figure 5.7: FMA for particles on momentum, zmax = 0 m, plotted in the tune diagram with their
initial tune and diffusion coefficient calculated for 2 successive synchrotron periods.
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Figure 5.8: FMA for particles off momentum, zyax = 10 m, plotted in the tune diagram with
their initial tune and diffusion coefficient calculated for 2 successive synchrotron periods.

is at zmax = 0 m, the evolution of J; + 2], (nyJx + nyJy), for a sample of particles, is plotted
over 4000 turns in Fig. 5.9. n, and ny are the resonance coefficients. The non-linearities are
sufficiently small that J + 2y, is almost preserved.

For the case of zpax = 10 m, the evolution of J, + 2], is plotted over 4000 turns in Fig. 5.10.
There is a band of particles that are crossing the resonance condition, which is inferred from
the large and irregular variation in J, +2J,. The band of particles is seen when the linear
combination ny/J, + n,Jy is plotted, but not a coherent band for other linear combinations.
The particles do not appear to be trapped in the resonance, as their amplitude does not
increase indefinitely.

For the nominal RF bucket voltage and with the longitudinal slice at zmax = 10 m, we inspect
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Figure 5.9: Simulation for particles on momentum, zpmax = 0 m, showing over 4000 turns the
Jx + 2] evolution of a single particle colour-coded by its initial J, +2],.
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Figure 5.10: Simulation for particles off momentum, zj,ax = 10 m, showing over 4000 turns the
Jx + 2]y evolution of the single particle colour coded it’s initial Jx +2],.

more closely an unaffected and a particle affected by the resonance. Figure 5.11 shows the
evolution of the phase space (X — px, J — py) and the CS invariants, J, and J, over 4000 turns
for a particle that is not resonant (particle 110 in Fig. 5.1). The CS invariants oscillate (right)
due to nonlinear elements in the lattice, such as space charge and the strongly powered normal
sextupole. The X — p (left) and y - p), (middle) projections remain quite constant over 4000
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turns. Figure 5.12 shows the X — j projection for two 100-turn periods. The motion is not
correlated in the X — j planes.
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Figure 5.11: A non-resonant particle (110) and the evolution of the CS invariants (right) and
the linearly normalised phase space projections X — py (left), and y — p) (middle).

Figure 5.13 shows the evolution of Jy, J,, and the X — p and y — p, phase space of a particle
that is repeatedly crossing the resonance condition but is not trapped (particle 802 in Fig. 5.1).
The J, and Jy, (right) evolve, and the particle either gains or loses energy when the resonance
condition is met. The quantity J, — J, /2 is plotted, corresponding to J/ny — J/ ny, the ‘first
invariant of the perturbed motion’ from [15] with prior work in [61]. J; —J,/2 remains constant
(beyond oscillations due to the approximation of the linear normal form).

Figure 5.14 shows the same particle’s X — y projections for two different periods (top left and
bottom left) at turns 300-400 and 950-1000. The top right shows the same evolution of J, and
Jy, but also the tunes Q, and Qy calculated with a moving window of 40 turns. The bottom
right plot shows the synchrotron motion and the tunes. The particle follows structures in the
X —  plane rather than regular rectangular motion, as it is scattered to higher J, and J, (top
right). These are 2D projections of a 6D structure. The change in J, occurs simultaneously with
the change in J, at a ratio of 1:2, linking the particle’s X position to its y position. This is only

single-particle dynamics, and we cannot yet see how this would change the full distribution
and introduce non-factorization.
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Figure 5.12: Projections on the X —  plane (top left, bottom left) for the turn numbers 300-400
and 900-1000 out of 4000 for a non-resonant particle (position 110). The linear combination
of the tune n,Qy + n,Q,, calculated over a 40 turn window is shown with the CS invariants
and the Jyx/ny—Jy/n, [15], [61] (top right) for 4000 turns. The synchrotron motion is plotted
(bottom right) for the same 4000 turns.
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Figure 5.13: A resonant particle (802) and the evolution of the CS invariants (right) and the

linearly normalised phase space projections X — py (left), and y — p, (middle), as the resonance
is repeatedly crossed.
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Figure 5.14: Projections on the X — y plane (top left, bottom left) for the turn numbers 300-400
and 950-1000 out of 4000 for a resonant particle (position 802 in Fig. 5.1). The tune nyQx+n,Q,
calculated over 40 turn windows is shown with the CS invariants and the J/n, - J,/ny [15]
(top right) for 4000 turns. The synchrotron motion is plotted (bottom right) for the same 4000
turn period.
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5.2.3 Trapping

The simulation was repeated with a lower RF bucket voltage (much lower than in the experi-
ment) to increase the synchrotron period. This slows down the process of resonance crossing.
A zmax of 40 m was used to create a larger variation in the longitudinal line density with the
synchrotron motion. Figure 5.15 shows the £ — py and y — py evolution over 20000 turns,
with a synchrotron period of approximately 18000 turns. The CS invariants are plotted, and
unlike the case of particle 802 from Fig. 5.14, the particle stays on the resonance condition
for a longer period. The CS invariants gradually increase and then decrease back to the initial
amplitude. The situation is much more nonlinear, and the ‘invariant’ for the perturbative case
JxIny—Jy/ny is not valid.

In Fig. 5.16, the particle’s projection of X — y phase space is plotted for different periods: turns
3000-6200 (top left) and 13000-16000 (bottom left). On the top right, the tunes are plotted
with the CS invariants, and the bottom right shows the synchrotron motion and the tunes
over 20000 turns. The synchrotron period is much longer and is therefore almost considered
"frozen.’” This allows for a slower crossing of the resonance condition, and the tunes become
locked for a certain period (pink and blue sections). The X — j projections now have a constant
‘phase’, but a varying amplitude in the structure as the CS invariants increase and then decrease.
The reason for the constant phase of the structure, as opposed to the case in Fig. 5.14, could
be interpreted as the quasi-freezing of the longitudinal motion. Thus, the 2D projection is a
projection of a 4D object rather than a 6D object. By even further reducing the RF voltage, the
shape of the fixed line can fully emerge due to a full trapping of the particle on the resonance,
as seen in Figs. 5.17 and 5.18.
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Figure 5.15: A resonant particle for a simulation with a much longer synchrotron period, the
CS invariants (right) and the linearly normalised phase space projections % — p, (left), and
¥ — py (middle).
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6250 and 13000-16000 out of 20000 of a resonant particle which is trapped due to the longer
synchrotron period and thus slower crossing of the resonance condition. The linear combina-
tion of the tune n,Qy + n,Qy is shown with the CS invariants and the Jx/ny - J/n,, [15] (top
right) for 20000 turns. The synchrotron motion is plotted (bottom right) for the same 20000

turn period.
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Figure 5.17: A resonant particle for a simulation with a much longer synchrotron period, the
CS invariants (right) and the linearly normalised phase space projections % — Py (left), and
¥ — py (middle).
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Figure 5.18: Projections on the X — j plane (top left, bottom left) for the turn numbers 10000-
13000 and 13000-16000 out of 40000 of a resonant particle which is trapped due to the
longer synchrotron period and thus slower crossing of the resonance condition. The linear
combination of the tune n,Qy + n,Qy is shown with the CS invariants and the Jx/ny—J,/n,
[15] (top right) for 40000 turns. The synchrotron motion is plotted (bottom right) for the same

40000 turn period.
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5.3 Multi-particle Tracking

By observing the single particle dynamics, we cannot observe the evolution of the whole
distribution and the non-factorization (see Chapter 3). The non-factorization is a statistical
property, thus the evolution of many particles is needed.

The PSB lattice is simulated at injection energy with parameters consistent with those in
the experiment in Chapter 4 and detailed in Table 5.1. The number of macroparticles re-
quired was determined by convergence simulations, as shown in Fig. 5.19. It was found
that 500000 macroparticles were necessary to accurately reproduce the correct behaviour
with space charge, as the profile distribution at 200000 turns converged after this number of
macroparticles.
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Figure 5.19: Convergence study for different macroparticle numbers. The beam profile is
plotted after 2 x 10° turns in simulation, with PIC 2.5D space charge.

The initial transverse distribution used is a Gaussian distribution with the measured normal-
ized emittances of, €, = 2.1 umrad, €y = 1.4 umrad. The longitudinal distribution is parabolic.
The distribution is injected and matched to the lattice. The working point, or tune, is set to be
the same as the experiment. The excitation of the resonance is with a normal sextupole set to
a current of Isx =40 A. The distribution is tracked using the symplectic tracking code Xtrack,
part of Xsuite, which includes a 2.5D FFT particle-in-cell solver to calculate the space charge.
The space charge forces and kicks are calculated by solving the Poisson equation. The 2.5D’
refers to the fact that the longitudinal distribution is sliced, and space charge is then solved
using a 2D model. The distribution is tracked for 230000 turns, consistent with the resonance
excitation period of the experiment. The simulation is based on code from [62].
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5.3.1 Tune dependence

Initial simulations found a small discrepancy between the simulated halo growth and the halo
observed in the experiment at 230000 turns. Tune scans around the machine’s set tune showed
better agreement, which could be due to a coherent tune shift caused by the impedance of the
ring [63], which is neglected in the simulation.

The long-term tracking simulations, with an offset tune compared to the experiment, repro-
duce the general behaviour of the beam distribution very well. Figure 5.20 shows the final
profile from simulations after 230000 turns, (red) compared with the profiles measured with
the wire scanner and tomograph in the longitudinal plane (blue). The simulation results
include an aperture in the y plane, consistent with the aperture caused by the scraper in
the experiment. When the simulation tunes are set at Qy =4.18, Q) = 4.435, with a AQ, of
-0.005 compared to the experimental tune, the final profiles in y are closest to the observed
experimental profile, Fig. 5.20. Figure 5.21 is from a simulation with a slightly lower vertical
tune, Qy =4.430, and it can be seen the profile in y does not agree as well.
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Figure 5.20: Comparison of the simulated and measured distribution after the resonance
excitation for 230k turns. The set tune was Q =4.18, Qy =4.435.
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Figure 5.21: Comparison of the simulated and measured distribution after the resonance
excitation for 230k turns. The set tune was Q, =4.18, Q, =4.43.
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5.3.2 Non-Factorization in Simulation

To determine if non-factorization is present in the distribution, a series of simulated vertical
apertures are used to remove the tail part of the distribution, and the change in the profile in
the horizontal plane is observed, as was done in experiment. Figure 5.22 shows the profiles
in the three planes, for different y apertures, given by the colour code. The y-aperture is
introduced by a condition on y and p,,. As the aperture moves towards the centre of the bunch,
the y plane shows the tails removed, and in the x plane the tails are also reduced, however
less than in the experiment. The longitudinal plane is also changing, consistent with the
experimental results.
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Figure 5.22: Change in profile in x, y, z for different y apertures given by the colour code. A
change in profile in the other planes apart from y demonstrates a non-factorization in the
distribution. The tune was set at Q =4.18, Q, =4.435 and the emittance the nominal.

5.3.3 Dependence on Initial Emittance

Depending on the initial emittance of the x and y planes, the halo evolution differs. The results
of a simulation with a horizontal normalized emittance of 2 umrad and a vertical normalized
emittance of 3 umrad are shown in Fig.5.23. All other parameters are kept the same as in
the previous simulation, shown in Fig.5.22 which matches the experimental data. The final
profile is shown with different y apertures and how the profile changes in the other planes.
The change in the x plane is stronger than for the experiment in chapter 4. By changing
the emittances, the non-factorization can be increased with the excitation of the coupled
resonance.
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Figure 5.23: Change in profile in x, y, z for different y apertures given by the colour code. A
change in profile in the other planes apart from y demonstrates a non-factorization in the
distribution. The tune was set at Qy = 4.18, Q, = 4.435 and the emittances 2 umrad (x) and

3umrad ().
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5.4 Summary

Through simulation of the single particle dynamics, it has been shown that crossing of a
resonance condition periodically can lead to a change in the CS invariant in both the x and
y plane if the resonance is a coupling one. Particular longitudinal slices are likely to have
more particles which cross the resonance condition. Simulating a much longer synchrotron
period than the experiment, leads to a full trapping of the particle, with the tune constant. The
‘fixed-line’ structures emerge in the x — y plane.

Long term tracking simulations with many macroparticles and PIC space charge agree well
with the experiment in Chapter 4, taking into account a small set tune offset. The non-
factorization is introduced via the periodic crossing, as the initial distribution is a transverse
factorizable Gaussian.

Exploring the parameter space, shows that changing the emittances in the two transverse
planes changes the dynamics and affects the level of non-factorization when subject to the
same resonance and lattice. This experience was used in another experiment to maximise the
non-factorization present in a distribution in order to measure how it is transferred from one
accelerator to another in a chain, as discussed in Chapter 6.
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Non-Factorization Transport along
the CERN Accelerator Complex

6.1 Introduction

The Chapters 4 and 5 demonstrate how non-factorization (NF) can be introduced into the
x — y beam distribution through the periodic crossing of coupled resonances, and that this
non-factorization can be observed in experiments through beam scraping (collimation), and
profile measurements.

At the Large Hadron Collider (LHC), NF has been observed in the beam distribution through
van der Meer scans (vdM). Moreover, the NF of the transverse distribution was the largest
uncertainty in the luminosity calibration, as cited by CMS in the analysis of the 2023 van der
Meer run [32]. An experiment was proposed to determine if NF from periodic resonance
crossing is transferred from a lower energy accelerator in the chain up to the LHC. This
proposal was partly motivated by the observation that the NF correction exhibited a particular
pattern where every 4th bunch in the filling scheme (pattern of bunches injected to the
LHC) had a lower NF correction, which could point to a source from the Proton Synchrotron
Booster (PSB), which has 4 rings [33]. Magnet imperfections (driving coupled resonances),
which differ from ring to ring, could be a possible explanation for this observation, as the
intensity is uniform in each ring (space charge driven). This observation coincided with the
PSB experiments on NF introduced by coupled resonance crossing, leading to the idea that
this phenomenon (not artificially excited) could contribute to the NF observed during the
vdM scans.

In previous years, schemes for the van der Meer bunches did not avoid coupled resonances.
Van der Meer bunches are the bunches used in van der Meer scans, which have a special
configuration in order to produce the desired emittance and intensity at the LHC. A previous
vdM scheme made use of integer resonances to blow up the bunch emittance, and then
exchange the emittance to both transverse planes using the 4th order Montague resonance
[64], [65] until the required parameters were reached [66]. The 4th order Montague resonance
is a coupling resonance, 2Qx —2Qy = 0, and is known to cause emittance exchange [64].
Dynamics due to this resonance could also cause non-factorizable distributions, as shown by
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Figure 6.1: Single particle invariants can be anti-correlated through the dynamics of the
Montague resonance 2Q —2Qy, =0 [65].

the anti-correlated Jy, Jy for a single particle in [65], shown in Fig. 6.1.

An experimental campaign was proposed, to see how non-factorization from lower energy
machines (purposefully introduced into the bunch), is transported to higher energy machines.
The goals of the experimental campaign were as follows:

¢ Is NF or factorization of bunches preserved along the CERN injector chain?
* Is NF observable with scraping measurements in the SPS and LHC?

¢ Could contributions from the CERN injectors be important for the NF observed in van
der Meer scans?

6.2 Experiments in the SPS

The CERN proton accelerator chain consists of the LINAC4, Proton Synchrotron Booster (PSB),
Proton Synchrotron (PS), Super Proton Synchrotron (SPS), and the Large Hadron Collider
(LHC), with increasing momentum for the proton bunches at each stage. To determine if the
non-factorization (NF) introduced into the bunch is transferred from the PSB downstream to
the LHC, the bunch was first measured in the SPS using scraping. The SPS is the next machine
equipped with a scraping or collimation system after the PSB.

6.2.1 Beam Variants

Different bunches with varying degrees of non-factorizability were tested. There were require-
ments on the emittance and intensity of the bunches in order for their use in van der Meer
scans in subsequent experiments. The required intensity was ~ 1 x 10'! ppb and the required
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emittances were 2.5-3.5 pmrad. The bunches differed in their preparation schemes within the
PSB. The two main types are detailed below:

Type A: Coupled Resonance (Non-Factorizable)

A higher-than-desired intensity is injected from LINAC4. Beam tails are removed by initial
scraping upon injection into the PSB from LINAC4. The 3rd order coupling resonance Q, +
2Qy =13 is excited using a normal sextupole during the ramping (accelerating) part of the
cycle. The space charge tune spread is getting smaller as the energy is increased with the ramp.
Thus, the tunes of the PSB must be set sufficiently close to the resonance such that during the
tune spread evolution the distribution continues to be affected. The bunch is then transferred
to the PS and SPS, with efforts made to minimize injection oscillations.

Type B: Van der Meer missteer (Factorizable)

To avoid resonances, the set tune in the PSB and amplitude dependent tune spread due to
space charge were in a resonance free region of the working point diagram, up to 4th order,
as shown in Fig. 6.2. Upon injection to the PSB, approximately 30% of the total intensity
was removed in the to eliminate higher amplitude particles coming from the LINAC4 (linear
accelerator). On injection to the PSB, the required emittance was achieved with missteering
and blow up through a foil. Injection missteering is the process of injecting the beam with an
error in position with respect to the design orbit, resulting in a filamentation which causes
emittance growth [67], [68].
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Figure 6.2: Working point diagram with the estimation of the tune spread from space charge
for the A, ‘vdM missteer’ bunch in the PSB at injection energy (160 Mev). The tune spread was
calculated with [54].
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6.2.2 Observations

The extended flat bottom period—prolonged to accommodate multiple injections from the
PS modified the beam distribution as detected by the SPS scraper. The extended flat bottom
appeared to couple the two planes, resulting in the exchange of emittances. To mitigate these
effects, the following measures were implemented:

1. Adjusting the tune away from the coupling resonance in both the horizontal and vertical
planes.

2. Reducing the flat bottom duration by using cycles designed for single injections rather
than multiple.

6.2.3 Results of Scraping in the SPS

The results of vertical scraping for two different bunch types, type A, ‘coupled resonance’ and
type B, ‘vdM missteer’, are shown in Figs. 6.3 and 6.4. The figures illustrate how the fitted g-
parameter of a q-Gaussian of the beam profile, after increasing removal of intensity by vertical
scraping, changes in both the vertical and horizontal planes. For the ‘coupled resonance’
bunch, which in the PSB was subjected to strong excitation of a resonance leading to a
distribution where high-amplitude particles in x are more likely to also have high amplitudes
in y, we observe that the non-factorization is at least partially maintained. At the point
of scraping in the SPS, the beam encounters an almost linear lattice, with the absence of
significant coupling. However, the removal of high-amplitude particles in the y plane leads to
a change in the distribution in x, specifically a decreasing q-parameter in x.

For the B type bunch, which is optimized to be as factorizable as possible, the q-parameter
remains stable in the horizontal plane as the vertical plane is scraped, while the vertical q-
parameter decreases. The only difference between the two distributions is their preparation
in the PSB, demonstrating how non-factorization from a source, such as periodic resonance
crossing, can be transferred along the machine and is a property of the beam distribution,
rather than the lattice.
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Figure 6.3: Change in vertical and horizontal beam profile, shown as a fit of the g-Gaussian
g-parameter due to a vertical scraping in the SPS for the bunch type A ‘coupled resonance’.
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Figure 6.4: Change in vertical and horizontal beam profile, shown as a fit of the g-Gaussian
g-parameter due to a vertical scraping in the SPS for the bunch type B ‘van der Meer missteer’.
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6.3 Non-Factorization Experiment at LHC Injection Energy

6.3.1 Experimental Configuration

The scraping experiments in the SPS demonstrated that non-factorization can be transferred
to higher energy machines in the CERN accelerator complex. For the van der Meer calibration
scans, non-factorization is observed at the LHC flat top, when the beams are colliding. To
test whether a source of non-factorization originating from lower energy machines could
contribute to the non-factorization of the bunch distribution during collisions (at top energy),
we can first measure the NF at LHC injection, and then at top energy. Different bunch types,
with different PSB configurations, were tested at LHC injection for their NF properties via
beam scraping (collimation) and profile measurements. These bunch types included the
‘coupled resonance’, ‘van der Meer missteer’, and two additional van der Meer-style factorizable
bunches, each with slightly different preparations in the PSB.

As per the filling scheme shown in Fig. 6.5, a total of 8 bunches were in the machine, with 4 in
Beam 1 and 4 in Beam 2. Some key parameters of the different bunch types tested are listed in
Tables 6.1 and 6.2. The LHC machine parameters at injection are detailed in Table 6.3.

Injection energy filling scheme

=1

341 547 1085

A B B A

Figure 6.5: Filling scheme for experiment at injection energy, shown for one circulating beam.
A, B, refer to two different bunch types with different preparations in lower energy injectors.

Table 6.1: Bunch types and their parameters (Part 1)

Bunch Type Scraping PSB Missteering
A: Coupled resonance PSB injection No
B: vdM missteer PSB injection, SPS extraction Yes
C: vdM integer PSB injection, SPS extraction No
D: vdM integer + missteer PSB injection, SPS extraction Yes

Table 6.2: Bunch types and their parameters (Part 2)

Bunch Type Resonance Correction Predicted Non-Factorization
A: Coupled Resonance Corrected High, horizontal-vertical
B: vdM missteer Partially corrected Low

C: vdM integer Corrected Low

D: vdM integer + missteer Partially corrected Low
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Table 6.3: Beam and machine parameters for experiment at injection energy.

Parameter

Injection MD

Beam energy [GeV]
Optics

Crossing angle [urad]
Emittance [umrad]
Intensity [ppb]

450

van der Meer
0

2.5-3.5
~1x101

91



Chapter 6 Non-Factorization Transport along the CERN Accelerator Complex

The essential protocol for the experiment to test the NF of each bunch is detailed as follows:

1. Inject different bunch types (4) into each circulating beam (1 or 2).

2. Move the collimators into the beam in steps of 5 ym until the loss level indicates that
there has been an interception with the beam, and continue moving the collimator until
the total lost intensity is approximately 2%.

3. After each collimation step, take profile measurements in the horizontal and vertical
planes.

4. Repeat by moving the collimators further into the beam for another 2% intensity loss.

5. When the intensity is below a threshold (approximately 40%), dump the beam and refill
the machine with the new bunch variants.

6.3.2 Results at LHC Injection Energy

The bunch by bunch losses are plotted for an injection fill with the A, ‘coupled resonance’
and B, ‘vdM missteer’ type bunches in Fig. 6.6. The losses are plotted as a function of the
vertical collimator gap, and for each bunch and beam (1 or 2). The two bunch types are in
different slots. Slot 0 is an A bunch, and slot 547 is a B bunch. The losses for both bunch
types associated with collimator adjustments are significant when compared to the slower
losses caused by diffusion. The loss patterns differ between the two bunch variants, due to
differences in the tail extent and distribution. Notably, losses for the B begin when the vertical
collimator gap is smaller, and the loss gradient differs from that of the A bunch. The losses
alone cannot tell us about the non-factorization of the distribution, but can give information
on the tail content. Slow losses (between collimation steps) are higher for the type A bunches.

To examine the NE the bunch profiles from wire scanner measurements are plotted as a
function of the vertical collimator gap (colour-coded) and are normalized to have an area
of 1. Additionally, there is further normalization such that the collimator gap is expressed
in units of collimator . This convention assumes that 1o corresponds to the o of a bunch
with an emittance of 3.5 ymrad. To apply this normalization, the optics at the position of
the collimator must be known, and these are provided in Table 6.4. The first normalization
allows us to visualize the probability density function (PDF) rather than the profile. For fully
factorizable bunches, the horizontal PDF would remain unchanged during vertical scraping.

Vertical collimator Bx [m] | Gy [m]
Vertical collimator Beam 1 | 150.4 69.1
Vertical collimator Beam 2 | 146.1 70.3

Table 6.4: The B functions at the location of the vertical collimators.
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Figure 6.6: The vertical collimator gap for Beam 1 and Beam 2 against the intensity of an A
type (bunch slot 0) and the B type (bunch slot 547).

Figure 6.7 shows the changing PDF in the horizontal and vertical planes as a function of
vertical collimator position, for Beam 2. The data is presented on a logarithmic scale, with the
normalizations described earlier to reveal the PDE The A, ‘coupled resonance’ bunch (top),
and the B, ‘vdM missteer’ bunch (bottom), are plotted with the same scale for the collimator
position.

For the A bunch, with the vertical collimator at a large gap, there are large tails (relative to a
Gaussian distribution) in both the horizontal and vertical planes. As the vertical collimator gap
narrows, the tails in the vertical plane are reduced, and the horizontal PDF also changes, with
the tails being reduced in the horizontal plane due to scraping in V. This behaviour indicates
NF for the transverse planes in the distribution, showing that some of the NF is preserved
from the PSB.

For the B bunch (bottom), the initial tails are smaller. As the collimator gap decreases, the
vertical PDF changes, but the horizontal PDF remains almost constant, indicating a more
factorizable bunch. Although the bunches are in the same machine, experience the same
nonlinearities, and have the same linear coupling, their NF differs due to differences in their
production schemes earlier in the accelerator chain.

Figure 6.8 shows the results for another fill with two bunches of the A and two of type B.
Compared to Fig. 6.7, a higher sextupole current was used to excite the coupled resonance
in the PSB. As a result, the tails are visibly larger when the collimator gap is large, and the NF
becomes more apparent with scraping and profile measurements (top). The result for the B
(bottom) is shown to be reproducible.

Figures 6.9, 6.10, 6.11 and show the results of collimator and profile measurements, for three
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Figure 6.7: Wire scanner measurements during LHC scraping at injection for bunch type A
‘Coupled Resonance’ and B ‘vdM Missteer’, LHC Beam 2.

slightly different vdM bunches, which all aim to be factorizable. The scale of the vertical
collimator is set to be the same for all bunches, and is finer than when comparing with the
‘coupled resonance’ type. On the finer scale, differences in the factorization can be seen for the
different vdM bunches. The B ‘vdM missteer’ bunch, Fig. 6.9 performs best at LHC injection
compared with the C ‘vdm injection’ and the D ‘vdm missteer + injection’ types. For the B,
‘vdM missteer’ the interactions with resonances are minimised in the PSB. The vdM run (yearly
luminosity calibration run) was the day after this experiment, and based on the results, the
B ‘vdM missteer’ variant was used. Measuring the NF with collimation and wire scanner
measurements is an independent way for the to determine the level of NF in a bunch and
doesn’t require the complicated analysis of the van der Meer scans.
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Figure 6.8: Wire scanner measurements during LHC scraping at injection for bunch type A,
‘Coupled Resonance’ and B, ‘vdM missteer’, LHC Beam 2. The sextupole current in the PSB for
the ‘coupled resonance’ type was increased with respect to fill 1.
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Figure 6.9: B: vdM bunch made with injection missteering in the PSB. Vertical scraping at LHC

injection
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Figure 6.10: C: vdM bunch made via method of blow up on integer resonances in the PSB.

Vertical scraping at LHC injection.
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Figure 6.11: D: vdM bunch made with injection missteering and blow up on the integer
resonances. Vertical scraping at LHC injection.
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6.4 Non-Factorization Experiment at LHC Top Energy

To determine whether NF created in the injectors is observable at top energy in the LHC, an
experiment was conducted in collaboration with the high energy physics experiments. The
aim was to see if the bunch non-factorization properties would be preserved up to top energy
(6.8 TeV), and if a difference could be noticed between the two (A,B) during the van der Meer
scans.

The flat top experiment was during one single fill, and there were 12 injected bunches, 6 type
A and 6 type B per circulating beam, as per the filling scheme in Fig. 6.12. The experiment had
two separate parts (one with CMS, ATLAS and LHCb, and the other with scraping and wire
scanner measurements). The protocol is described:

1. Inject different bunch types, 6 per type, into each circulating beam (12 total per beam).
2. Ramp in energy from 450 GeV to 6.8 TeV.
3. Put the beams into collision.

4. Experiments, CMS, ATLAS perform van der Meer scans, 2 hours for ATLAS followed by 2
hours for CMS.

5. After the van der Meer scans, scraping with the vertical collimators for both Beam 1
and 2. Periodic wire scanner measurements for the profiles after each movement of the
vertical collimators.

6. The beams are dumped when the intensity goes below a threshold.

Top energy filling Scheme

o 341 547 894 1095 1441 1642 1989 2130 2463 2737 3011
L L ] L ] L ] L ] L ] L L ] L ] L ] L ] L

B B A B A A B A B A A B

Figure 6.12: Filling scheme for experiment going to top energy and collision (6.8 TeV).

As of writing, the results from the van der Meer scans of ATLAS and CMS during the flat top
experiment (not the normal calibration run) have not been published. During the vdM scans
in CMS and ATLAS, type A bunches ‘coupled resonance’ are collided with type A, and type B
bunches ‘vdM missteer’ with type B, after the energy ramp. The visible cross-section, s,
relates the observed rate to the luminosity. Ideally, o,;s should be a constant and independent
of the beam profile. However, in the presence of non-factorization, o,; is reduced. Private
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communication with CMS told us that preliminary results reveal the o,;s was smaller for
the type A bunches compared to type B by 3 standard deviations, which is significant. This
provides evidence that some of the differences in NF due to the different PSB schemes are
preserved up to top energy.

Between the start of collisions at top energy, and the scraping measurements, approximately
6 hours elapsed. During this time, there were significant losses, especially for the ‘coupled
resonance’ bunches, resulting in changes to the bunch distributions. Figure 6.4 shows the
effective cross-section, which is the losses (from the diamond beam loss monitors, DBLMs),
divided by the luminosity for the period of collisions (sometimes referred to as ‘stable beams’)
[69]. Two families are visible, the A ‘coupled resonance’ in red, and the B ‘vdM missteer’ in
blue. The B bunches are much closer to the burn-off limit (losses due to collisions only), while
for the ‘coupled resonance’ type there are extra losses.
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Effective cross-section during period of collisions for two different bunch types
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Figure 6.4: The effective cross-section (relates luminosity to the loss rate) during the
collision period, during which there were van der Meer scans in ATLAS and CMS.
Courtesy of S. Kostoglou [69]. The burn-off limit is plotted by the black line, and is
calculated from the predicted proton-proton inelastic cross-section [70]. Any losses
above the burn-off limit are not from luminosity production. After around 14:40 stable
beams has ended.

Figures 6.14 and 6.13 show the PDF as the vertical collimator gap reduces at top energy
in the LHC after 6 hours of collisions. The non-factorization for the A ‘coupled resonance’
bunch is reduced in comparison with injection energy, but there is still some evidence of
non-factorization in the tail of the distribution. For the B bunch, it looks fully factorizable
on the scale given. These results show that a non-factorization from a source in the CERN
injectors can be preserved up to top energy. Losses change the distribution and hence the
non-factorization is reduced.
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Figure 6.13: Scraping and wire scanner profiles at top energy in the LHC for the ‘coupled
resonance’ bunch.
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Figure 6.14: Scraping and wire scanner profiles at top energy in the LHC for the B ‘van der
Meer missteer’ bunch.

6.4.1 Lifetime Observations for Bunches with Different Tails

Partially due to the observed difference in the bunches with respect to their tail content
and resultant loss rate from this experiment, there were efforts to create a bunch variant
for operation in the LHC with lower tails, ‘BCMS low tail’, (Beam Compression, Merging
and Splitting). The bunch has various beam-dynamics optimisations and scraping of the
beam tail. After some initial operational experience, this variant has an improved lifetime
in the LHC compared to the nominal ‘BCMS’ [71]. This variant has now been the one used
in physics (luminosity production), fills since July 2024 up to the time of submission of this
thesis, September 2024.
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6.4.2 VdM 2024 calibration run

The two LHC experiments described in this chapter took place one day before the usual vdM
calibration run of 2024. Based on the results of the injection experiment and the scraping
measurements, it was decided that the bunch type to be used in the vdM run would be
the ‘vdM missteer’. This bunch is created in the free space of the tune diagram, away from
resonances, and thus, intuitively, would have less NF based on the evidence seen that periodic
resonance crossing of coupled resonances leads to NE However, it was also observed during
the injection MD that it had the least observable NF in scraping measurements of all the vdM
bunches tested. The high amplitude particles were also removed at the SPS via scraping, as it
is shown that the NF observed is at high amplitudes. As of writing, the results of the vdM 2024
run and the size of the NF correction have not been published.

6.5 Summary

The results presented show that to improve the non-factorization at collisions in the LHC, it is
necessary to remove any non-factorization source from the injectors. NF could be introduced
by other mechanisms and also in high energy machines, however in low energy machines,
the space charge is strongest, and thus the tune spread is largest, leaving the distribution
more susceptible to resonances. At higher energies, in addition to the space charge tune
spread being smaller, the beam is more rigid. Given the online analysis possible with scraping
and wire scanner measurements, the bunches can be tuned according to the observed non-
factorization before injection in the LHC (at the SPS energy ramp). The observation of the
relaxation over the fill of the non-factorization is consistent with the larger losses (and lower
lifetime) of the bunch with larger, non-factorizable tails. The non-factorization is nonlinear in
the sense it is present for higher-amplitude particles, consistent with prior observations in the
lower energy machines (SPS, PSB).

The results of the 2024 van der Meer calibration run will not be published for some time. We
will then see if the improvements made in the injector machines have had a direct impact on
the size of the uncertainty from the NF source.

Note: The method detailed in Chapter 3 to reconstruct the full transverse distribution could
be applied with these measurements. However, the method was realised after these mea-
surements were taken, and the scraping steps are too large to justify the assumption of a
continuous distribution. Furthermore, the time between measurements was too large, and
the diffusion rate is not negligible. This could be investigated in further detail.
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7d Conclusions

The present dissertation has focused on the transverse beam distribution, and how it is not
unique given the observation of a beam profile. Depending on the constraints on the free
parameters, it has been shown that there are consequences for loss behaviour in a synchrotron.
Furthermore, the luminosity, the figure of merit for a collider, depends on the full transverse
distribution. In the LHC, where transverse beam profiles are observed that have heavy tails
with a g-parameter up to 1.4, the difference in instantaneous luminosity can be on the order
of 5%.

It has been demonstrated how space charge and periodic crossing of coupling resonances can
lead to a change in the beam distribution in terms of its non-factorization. This has been done
in an experimental campaign in the CERN Proton Synchrotron Booster. Beam scraping and
profile measurements were used in the absence of other methods to characterize the NE A
period of artificial excitation of a third order coupling resonance, followed by a nearly ‘linear’
machine beyond the space charge, show that NF was introduced to the bunch and it remains.

These results have been benchmarked with multi-particle tracking simulations. The behaviour
in terms of the profile evolution and the NF agrees well. Additionally, an understanding of the
dynamics is gained with simulation of the single particle. The Jy, J, amplitudes are changed
when the particle crosses the resonance condition in a ratio that is according to the resonance
coefficients. The random scattering in both planes gives an ultimate increase in amplitude
which, after many turns, changes the overall distribution to have high amplitude particles
in one plane which are more likely to have a high amplitude in the other transverse plane.
Increasing the synchrotron period artificially in simulation, so that the longitudinal motion is
almost frozen, shows how the particle can be trapped in the resonance condition.

Motivated by the non-factorization bias in the luminosity calibration measurement at the
LHC, the experiment to show how the NF introduced via excitation of coupling resonances
demonstrated that the property was preserved (to some extent) up to LHC injection. This
is consistent with results that a non-factorizable distribution can be matched. With the
joint experimental campaign between the accelerators and high-energy physics experiment,
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preliminary results show a systematic difference in the two bunch types (non-factorizable
distributions, A, factorizable distributions, B, in terms of their measured o ,;; when the beams
are in collisions for van der Meer scans. This is a preliminary indicator in the difference in
the non-factorization of the bunches with the same lattice. These results show it is important
to remove sources of non-factorization in the LHC injectors, and results of this thesis have
improved our ability to do so. Online scraping measurements allow the comparison of non-
factorization between bunches, and the avoidance and the correction of resonances has been
shown to be paramount. This was done for the first time in 2024. Results of the van der Meer
run and the correction due to NF have not been published at the time of writing.

Non-factorization could be introduced also in processes in higher energy machines, however
the distribution is particularly sensitive to coupling resonances in lower energy machines
as the beam is less rigid. Moreover, the space charge tune spread is large. It is unclear how
magnet imperfections scale with energy. Processes that destroy non-factorization could be
investigated, for example, Gaussian scattering.

For the operational beams in the CERN accelerator complex, results which were derived from
the experiments in the thesis, (namely the difference in losses for beams with low or high tail
content), partly motivated the creation of a ‘low tail’ operational beam variant. This beam
variant has been shown to reduce the losses in the LHC and improve the performance. This
variant has been the one used in operation since July 2024. Non-factorization has also been
observed in operational beams with orthogonal experiments via the scraping and profile
measurements. These beams have higher brightness (intensity/emittance), than the van der
Meer beams, and the beams used in the PSB experiment to introduce non-factorization. The
source could be from resonances driven by machine imperfections or by space charge. This
should be taken into account to accurately model the losses in the CERN accelerator complex.
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;.\ Inverse Sampling Method

Below details a method adapted from [40], to sample from a particle distribution in 4D with
inverse sampling.

Given the definition of the super radius with the canonical variables,

m:\/r§+r§:\/x2+p)2€+y2+pf,, (A.1)
we define square of the super radius:

2 2 2
F=m?=r2+r? (A.2)

If we want a projection in the x plane fitting a certain known distribution, and we impose
hyper-circular symmetry in 4D, then knowing how F, the super radial square, is distributed
allows us to sample particles. In chapter 3 we derive 4D distribution functions as functions of
m, fyp(m). From this we can find the f4D(m2) = fap(F).

Given

dN

UL B—— A3
dxdp.dydp, fap(F) (A.3)

f4D(x) ny y; py) =

and that the distribution function is normalized under the condition,

ffffﬁ;D(x,px,y,py)dxdpxdydpyz1. (A.4)

To populate the 4D phase space satisfying the distribution fyp(f)=

fF)
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, we define a function g(F), the distribution of the values of F:

dN(F)
F)=7n%fip(F)F = ) A5
gF) =7n°f4p(F) F (A.5)
where d N(F) is the number of particles in the interval (F + dF),
2 21 /2
dN(F)= fap(F)F de d(pf dHf sin2wdw:n2f4D(F)F dF. (A.6)
0 0 0

The distributions are generated with an inverse transverse sampling method and random
angle distributions, analogous to a Box-Muller type generation.

The integral distribution of F is generated via,

F
G(F) = f g(FHdF'. (A.7)
0
The inverse function [ is generated by mapping G(F) back to F,
F=1(G(F)) (A.8)
Then, the distributions are generated as follows,

x=Axcos(fy)
px=—Axsin(fy)

(A.9)
y=—Aycos(fy)
py=A4y sin(,By),
where for each value of 1(G), Ay and A, are two random numbers generated such that,
m® = A3+ A3, (A.10)

and Sy, By are generated uniformly on [0, 27].

Parallels can be drawn to a Box-Muller transformation, used for normalized distributions to
generate two independent random deviates [46],

Zo=Rcos(0) =+ -2InU; cos2nU,) (A.11)
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and
Z1 =Rsin(@) = v -2InU; sin(2nU>) (A.12)

where Z; and Z; are independent random deviates from a normal distribution. In the case of
4D, we have 2 angles . and 3, generated uniformly (analogous to 6), and 2 random variables
Ay and Aj, which come from the 4D distribution as described above (analogous to U; and Us).

107






Physicality of a beam profile

Given that distributions in linearly normalised phase space, in a linear lattice, should be
circular in the Poincaré section x — py, the single inverse Abel transform to find f(r,) is a test
for physicality of a profile. The f(r,), must be defined positive. The condition for the f(r,) to
be defined positive, depends on the integral, and it cannot be defined a condition on the f(x).

Figures B.1 and B.2 show examples of unphysical beam profiles, as f(ry) is negative for certain
rx.
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Figure B.1: Example of ‘hollow’ rectangular beam profile, projected on x in blue. The inverse
Abel transform of f(x), «/~![f(x)] is plotted in orange.
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Figure B.2: Example of discontinuous beam profile, projected on x in blue. The inverse Abel
transform of f(x), «/ [ f(x)] is plotted in orange.
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® The Abel Transform for the Calcula-
tion of Collimated Beam Profiles

Given a physical space distribution of a particle beam in y, we can find the percentage of
particles in the distribution which is removed by an aperture, or collimation set at a particular
amplitude. We can also find the new distribution of particles remaining after the collimation
using the Abel transform.

First, it is easier to normalise the distribution using the machine parameters at the measure-
ment point (linear normalisation of phase space). Given the normalised PDF(7), to calculate
the cut of a distribution from a scraping or collimation, we need to know the PDF(J,).

First we can use the inverse Abel transform to go from the y (o) to PDF(r,), where ry, is defined:
ry=v\/7+Py% (C.1)

PDF(ry) = 2rys/ "' [PDE(§)] (C2)

Where «f ! is the inverse Abel transform.

Given a distribution PDF(r)), we need to find the PDF(J,) where Jy, = r)Z,/ 2. From probability
theory:

If Fx(x) is a PDF of a random variable X, and

s Y=g(X)
* g(x) is differentiable

* g(x)is astrictly increasing function: x; < x, then g(x;) < g(x2)

then:
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Fy(y)=Fx(x1)/ g (x1). (C.3)

Where

glx)=y. (C.4)

Therefore, we can find the PDF of ], = rJz,/ 2 from the PDF of r,

g(ry) = rf,/z,g’(ry) =Ty, (C.5)

therefore,

PDF(J,) = PDF(ry) /1. (C.6)

Then, to find the percentage in the tails, we can remove the distribution beyond an aperture
limit, a, J, > A. The probability beyond the aperture limit A gives us the percentage of
particles the collimator has removed. To find the new distribution with the removed particles,
PDF(JylJy < A) is transformed back into a PDF(ry|J, < A), and then PDF(y1]y < A) with a
forward Abel transform and a linear manipulation.
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Numerical Example of the Scraping
Protocol

A numerical scraping of two distributions which have Gaussian projections, one fully fac-
torizable and one non-factorizable is demonstrated, We will aim to find back their f(Jy, J)
given access to information on only one transverse plane. The derivation of the two different
distributions with Gaussian projections (A1, A2) is given in Chapter 3.

Working in Jy, Jy space, the Al. distribution is plotted in Fig. D.1.

Original PDF(/y, J,)

3.0

0.0200

25 0.0175

20 0.0150

L 0.0125
~ 1.5 47
= L 0.0100 §
a

1.0 L 0.0075

L 0.0050

0.5
: L 0.0025
0.0 L 0.0000

00 05 1.0 15 20 25 3.0
Jx

Figure D.1: True joint PDF(Jy, J;) (Al.) for a factorizable 4D Gaussian.
In Jy, Jy, a scraping or collimation is removing parts of the distribution which have a J, > A;,
as explained above. The distributions f(Jx|0 < J, < A;41..4), from subsequent y apertures, A;,

are plotted in Fig. D.2. Due to the fact the distribution is factorizable, the normalised PDFs
fUxl0 <]y < Ajt1.5) are the same (beyond numerical errors).

Then, the PDFs for the intervals between successive A; are calculated, PDF(Jy|A; 41 < Jy < Aj),
by finding the difference between non-normalised scraping measurements. These functions
are plotted in Fig. D.3.

With the approximation to a continuous distribution and multiplication of the marginal PDE
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Normalized PDF(/x|0 </, <A;) Histogram counts (/x|0 </, <A;)

10

0.20 20000

0.15 15000 -

o

Ai

0.10 10000

'S

0.05 5000

0.00 0+
T T

Figure D.2: Left: Normalized conditional PDFs PDF(J,|0 < Iy < Aj) Right: Histograms of
(Jxl0 < J, < A;) for a particle distribution taken from the initial joint PDF(Jy, J;) of the factor-
izable 4D Gaussian.

Normalized PDF(/x|A;+1 <]y <A)) Histogram counts (/x|A;+1 <Jy <A;)
1.0 5000 10
0.8 4000 \ 8
0.6 3000 6
0.4 2000 ]\ 4
0.214-N\ 1000 2
0.0 1 04— 0
0 2 1 6 8 10 0 2 1 6 8 10
Ix Ix

Figure D.3: Left: Normalized conditional PDFs PDF(Jx|A;+1 < Jy < A;) Right: Histograms of
UxlAjs1 < Jy < Aj) for a particle distribution taken from the initial joint PDF(Jy, J y) of the
factorizable 4D Gaussian.

PDF(J,), we find back the joint distribution, PDF(Jy, ), plotted in Fig. D.4.
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Reconstructed Joint PDF Jy, Jy
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0 0.00
0 2 4 6 8 10
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Figure D.4: Joint PDF(Jy, J,) reconstructed from successive PDF(Jx|A;11 < Jy < A;) for differ-
ent numerical scraping.

Repeating the same with the A2. distribution, plotted in Jy, J; in Fig. D.5.

Original PDF(/y, Jy)
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. . . . 0.12
2.0 o 0.10
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0.5 el [ | —-
. | | | L 0.02
0.0 i i i i i L 0.00
00 05 10 15 20 25 3.0
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Figure D.5: True joint PDF(Jy, /) (A2.) for a non-factorizable 4D Gaussian.

The PDFs for each successive scraping aperture, are plotted in Fig.D.6. Since the distribution
is non-factorizable the normalised conditional PDFs are not the same.

Then, the difference between the PDFs to calculate f(Jy|A;+1 < Jy < A;) is found, plotted in
Fig.D.7.

Then, using the marginal PDF(J,) the original distribution is estimated with Bayes’ theorem,
plotted in Fig. D.8.

We have shown numerically how it is possible to reconstruct the PDF(Jy, J,) of an unknown
beam distribution through scraping measurements. This method is not well-developed for
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Normalized PDF(/x|0 <}, <A;) Histogram counts (/x|0 </, <A;)
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Figure D.6: Left: Normalized conditional PDFs PDF(J,|0 < Iy < Aj) Right: Histograms of
(Jxl0 < Jy < A;) for a particle distribution taken from the initial joint PDF(Jy, J,) of the non-
factorizable 4D Gaussian.

Normalized PDF(Jx|Ai+1<Jy <A) Histogram counts (/x|Aj+1 <Jy <A))
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Figure D.7: Left: Normalized conditional PDFs PDF(Jx|A;+1 < Jy < A;) Right: Histograms of
UxlAjs1 < Jy < Aj) for a particle distribution taken from the initial joint PDF(Jy, J y) of the
non-factorizable 4D Gaussian.

experiment as of writing. It depends greatly on the noise of the profile measurement, and the
rate of diffusion during the period of the measurement. Scraping and profile measurements
in both planes has however been used to determine the relative non-factorization between
distributions in Chapters 4 and 6.
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10 Reconstructed Joint PDF Jy, Jy
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Figure D.8: Joint PDE(Jy, J,) reconstructed from successive PDF(Jx|A;4+1 < Jy, < A;) for differ-
ent numerical scraping for the A2. distribution.
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Connected to base (Python 3.10.12)

Introduction

Let us consider a distribution p(x, y) where x, y are horizontal and vertical positions of a 4D
normalized phase space {z, pz,y, py} such that

2
fjozo p(z,y)dy = %6(7) (Gaussian x-profile)

and

y 2
fjozo p(z,y)dz = %6_(?) (Gaussian y-profile).

We will show in the following that p(z, y) is not uniquely determined and we propose a
possible parametrization of p(z, y).

We can consider the action (J;;) and angle (6) variables in the plane z-pz (similar
conclusions hold on the y-py plane). It is well known that if {z, pz} are normal distributed
then J, = (z2 + px?)/2 is distributed as

_ Jexp(—J;) ifJ; >0
pdf(Jm) o {0 otherwise
and

if0 <6, <2m

pdf(f) = { o

0 otherwise.

Case A

Assuming that the J, and Jy are, in general, statistically dependent (we assume for the
moment that 6, and 6, are independent), the marginal density function pd f(J,|J) should be

a solution of these equations:

Jo € epdf(J,| 1) d T, = e~

[ pdf(Jy|Je)dJ, = 1 for all J,

There are two possible solutions for pd f(Jy|Jz)

Al pdf(J,|J,) = e, that will yield fully zy independence,

A2. pdf(Jy|Jz) = 6(Jy — J), that will yield fully zy dependence.

Case B



Similar considerations hold for the phase.

ST = pdf(6,0,)d6, = & for 0 < 0, < 27

17 pdf(6,]6,)d0, = 1for 0 < 6, < 2

There are two possible solutions for pd f(6,(6,)

Bl. pdf(6:|6,) = % in the usual domain, that will yield fully y independence,

B2. pdf(6:|6,) = §(0y — 6.) in the usual domain, that will yield fully y dependence.

We will focus on the case A1/A2/B2.

# Case Al (for simplicity I consider the extraction in x and y, not in actic
from matplotlib import pyplot as plt

import numpy as np

from scipy.stats import shapiro

from matplotlib.gridspec import GridSpec

N = 100000

fig = plt.figure(figsize=(4, 4))
gs = GridSpec(2, 2, width ratios=[3, 1], height ratios=[1, 3]) # Adjust rat
x_al = np.random.normal (0, 1, N)
px_al = np.random.normal(®, 1, N)
y al = np.random.normal (0, 1, N)

# Plot the 2D distribution

ax0 = plt.subplot(gs[1l, 0])

ax0.hist2d(x _al, y al, bins=100, cmap='viridis')
ax0.set xlabel('x [$\sigma x$1')

ax0.set ylabel('y [$\sigma y$1"')

ax0.set xlim(-4,4)

ax0.set ylim(-4,4)

# Plot the projection onto x-axis

axl = plt.subplot(gs[0, O])
axl.hist(x_al, bins=300, density=True,)
axl.axis('off")

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1l, 1])

ax2.hist(y al, bins=300, density=True, orientation='horizontal')
ax0.set xlim(-4,4)

# An empty subplot to adjust the layout
ax3 = plt.subplot(gs[1l, 1])
ax3.axis('off")

ax0.set ylim(-4,4)



plt.tight layout()
plt.show()

y [oy]

X [0x]

# Case A2

# the pdf of Jx for a Gaussian beam

def rho J(J):
return (np.exp(-J))

J = np.linspace(0,10,10000)

plt.figure()

plt.title('The pdf(J$ x$) of a Gaussian beam')
plt.plot(J, rho J(J),'r")

plt.xlabel('J$ x$ [$\sigma x"2%$1"')

plt.grid(True)

sigma x = 1

# extract a N random numbers from the normal distribution
X_a2 = np.random.normal (0, sigma x, N)

px_a2 = np.random.normal(0®, sigma x, N)

J a2 = (x_a2**2 + px_a2**2)/2

plt.hist(J a2, bins=500, density=True)

plt.xlim(0,8)

theta = np.random.uniform(0,2*np.pi, N)
y a2 = np.sqrt(J _a2*2)*np.cos(theta)
py a2 = np.sqrt(J_a2*2)*np.sin(theta)



The pdf(),) of a Gaussian beam

1.0

0.8

0 1 2 3 4 5 6 7 8
Jx [o%]

assert np.isclose(np.mean(J a2),1, atol=0.05)

#perform Shapiro-Wilk test for normality

assert np.isclose(shapiro(x a2).statistic, 1, atol=0.01)
assert np.isclose(shapiro(px_a2).statistic, 1, atol=0.01)
assert np.isclose(shapiro(y a2).statistic, 1, atol=0.01)
assert np.isclose(shapiro(py a2).statistic, 1, atol=0.01)

/Users/guidosterbini/miniforge3/1lib/python3.10/site-packages/scipy/stats/ _mo
restats.py:1882: UserWarning: p-value may not be accurate for N > 5000.
warnings.warn("p-value may not be accurate for N > 5000.")

from matplotlib.gridspec import GridSpec

# Create a figure and a gridspec layout
fig = plt.figure(figsize=(4, 4))
gs = GridSpec(2, 2, width ratios=[3, 1], height ratios=[1, 31) # Adjust rat

# Plot the 2D distribution

ax0 = plt.subplot(gs[1l, 0])

ax0.hist2d(x a2, y a2, bins=100, cmap='viridis')
ax0.set_xlabel('x [$\sigma x$]')

ax0.set ylabel('y [$\sigma y$]"')

ax0.set xlim(-4,4)

ax0.set ylim(-4,4)

# Plot the projection onto x-axis
axl = plt.subplot(gs[0, 0])



axl.hist(x a2, bins=100, density=True,)
axl.axis('off")

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1l, 1])

ax2.hist(y a2, bins=100, density=True, orientation='horizontal')
ax0.set ylim(-4,4)

# An empty subplot to adjust the layout
ax3 = plt.subplot(gs[1l, 1])
ax3.axis('off")

ax0.set xlim(-4,4)

plt.tight layout()
plt.show()

4
3
2
1
5 o0
=
-1
-2
-3
—4
—4 -2 0 2 4
x [oy]
# Case B2

# from Jx and theta y, we can get y and py

x b2 = x al

px b2 = px al

theta = np.arctan2(px _b2,x b2)

# can you extract Jy from the distribution exp(-Jy) ?
Jy = np.random.exponential(1l, N)

aux = np.linspace(0,10,10000)

y b2 = np.sqrt(Jy*2)*np.cos(theta)
py b2 = np.sqrt(Jy*2)*np.sin(theta)

fig = plt.figure(figsize=(4, 4))



gs = GridSpec(2, 2, width ratios=[3, 1], height ratios=[1, 3])

# Plot the 2D distribution

ax0 = plt.subplot(gs[1l, 0])

ax0.hist2d(x b2, y b2, bins=100, cmap='viridis')
ax0.set xlabel('x [$\sigma x$1')

ax0.set ylabel('y [$\sigma y$1')

ax0.set xlim(-4,4)

ax0.set ylim(-4,4)

# Plot the projection onto x-axis

axl = plt.subplot(gs[0, O])
axl.hist(x b2, bins=100, density=True,)
axl.axis('off")

# Plot the projection onto y-axis

ax2 = plt.subplot(gs[1l, 1])

ax2.hist(y b2, bins=100, density=True, orientation='horizontal')
ax0.set ylim(-4,4)

# An empty subplot to adjust the layout
ax3 = plt.subplot(gs[1l, 1])
ax3.axis('off")

ax0.set xlim(-4,4)

plt.tight layout()
plt.show()

il
3
2
1
L

=

-1
-2
-3
—4

—4 -2 0 2 4

% [oy]

# combination of al and a2
y b2 = np.sqrt(Jy*2)*np.cos(theta)

# Adjust rat



py b2 = np.sqrt(Jy*2)*np.sin(theta)

# Create a figure and a gridspec layout

fig = plt.figure(figsize=(4, 4))

gs = GridSpec(2, 2, width ratios=[3, 11, height ratios=[1, 31) # Adjust rat
#concatanate x and xx

new X = np.concatenate((x al, x a2))

new y = np.concatenate((y al, y a2))

# Plot the 2D distribution

ax0 = plt.subplot(gs[1l, 0])

ax0.hist2d(new _x, new y, bins=100, cmap='viridis"')
ax0.set xlabel('x [$\sigma x$1')

ax0.set ylabel('y [$\sigma y$]"')

# Plot the projection onto x-axis

axl = plt.subplot(gs[0, 0])
axl.hist(new x, bins=100, density=True,)
axl.axis('off")

# Plot the projection onto y-axis
ax2 = plt.subplot(gs[1l, 1])
ax2.hist(new y, bins=100, density=True, orientation='horizontal')

# An empty subplot to adjust the layout
ax3 = plt.subplot(gs[1l, 1])
ax3.axis('off")

plt.tight layout()
plt.show()

y [oy]




# compute KDE of the a2 distribution

from scipy.stats import gaussian kde

k = gaussian kde([x a2,y a2])

Xxi, yi = np.mgrid[-3:3:100j, -3:3:100j]

zi = k(np.vstack([xi.flatten(), yi.flatten()]))

plt.pcolormesh(xi, yi, zi.reshape(xi.shape), shading='gouraud', cmap=plt.cm.
plt.axis('equal')

plt.axis('off")

#

(-3.0, 3.0, -3.0, 3.0)

A photo of the BSRT x-y plane during 2023 (MD1 block)

https://codimd.web.cern.ch/uploads/upload_4b1c8e72127d2e2dc56a3bf34eee39d9.png

# H cut
r cut = 2

r = np.sqrt(x_a2**2+px_a2**2)
# find r<r _cut

x _cut = x a2[r<r_cut]

px _cut = px a2[r<r_cut]

y cut =y a2[r<r_cut]

py cut = py a2[r<r_cut]

plt.plot(x cut,px cut,'."', alpha=0.01)
plt.axis('equal')



Outl[so]: (-2.198072941716593,
2.1959424988666814,
-2.1990696942058476,
2.199443036550486)

2.0

1.5+

1.0+

0.5 4

0.0 1

—0.5 A

—-1.0 4

—=1.5

—2.0 A

In [17]: plt.plot(y cut,py cut,'.', alpha=0.01)
plt.axis('equal')

Outl171: (-2.198064831420603,
2.192833002652979,
-2.1972373516190866,
2.1972431861675874)



In [81]:

2.0

1.5+

1.0+

0.5 -
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—1.0

—1.5

—2.0

plt.hist(x,

bins=100,

density=True)
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