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Abstract

An intriguing feature of scalar-tensor theories is the emergence of different metrics, e.g. when

matter is minimally coupled to a metric non-trivially related to the Einstein metric gµν used

to construct the Ricci scalar. Strong equivalence principle constraints then typically force per-

missible “many-metric” scenarios to reduce to a bimetric picture. In this thesis we first aim

to construct the most general bimetric relation, where the two metrics are related by a single

scalar degree of freedom φ and its derivatives. This results in the disformal metric relation and

a natural extension which we present.

In the context of primordial structure formation, disformal bimetric theories give rise to “gen-

eral single field inflation” models of the P (X,φ) type. We investigate the perturbative properties

of such disformally motivated models. The focus is on non-Gaussian phenomenology and we

establish non-Gaussian fingerprints for inflationary single field models and non-inflationary bi-

metric setups, also going beyond the slow-roll approximation. Furthermore we show that various

dualities exist between disformally motivated P (X,φ) theories and higher-form models. As an

explicit example we use the dual picture to compute non-Gaussian signals for three-form theories.

In the context of dark energy/modified gravity, we show that the conformal subgroup of

the general disformal relation can be used to construct a generalized “derivative” Chameleon

setup. We present and investigate this setup and study its phenomenology. Finally we show

that a natural extension of the disformal relation can generate Galileon solutions from a single

geometrical invariant - the first Lovelock term - in four dimensions.

As such the over-arching theme of this thesis is to show that the disformal bimetric picture and

its extensions present us with a geometrical understanding of scalar-tensor/single field models.

That they provide a unified description of large classes of scenarios linked to accelerated space-

time expansion and also point us towards new physically motivated setups.
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Chapter 1

Introduction

Present-day cosmologists are blessed with vast amounts of rapidly growing and improving obser-

vational data. In interpreting this data two fundamental questions have become prominent, both

relating to the accelerated expansion of space-time. Firstly, to fully understand the origin of small

inhomogeneities in the early universe which act as seeds for the formation of cosmic structure,

from clusters all the way down to planets. Here the leading paradigm is an “inflationary” period of

accelerated expansion [10, 11, 12], stretching quantum fluctuations to become seeds for classical

gravitational structure formation [13]. Secondly, to identify the agent responsible for causing

accelerated expansion of space-time today - “dark energy” or indeed a modified theory of gravity

(for a review see [14]).

The simplest dynamical theories for both inflation and dark energy/modified gravity introduce

a single scalar dof (degree of freedom) φ in addition to the metric dof encoded by gµν . The effective

field theories generated in this way may, in a rather wide sense, be described as scalar-tensor

theories where the scalar drives accelerated expansion of space-time. Such theories can also arise

naturally in a variety of ways even if no new fundamental scalar field is introduced, e.g. as a

result of the appearance of induced scalar(s) in compactifying higher-dimensional theories or via

the introduction of a Stückelberg scalar from introducing a massive graviton.

An interesting feature of scalar-tensor theories is the emergence of different effective metrics.

On the dark energy/modified gravity side, models such as F (R)/chameleon theories [14, 15, 16]

can be constructed by minimally coupling matter to a metric g̃µν conformally related to gµν
via g̃µν = A2(φ)gµν . Alternative setups such as DGP [17] and DBI Galileons [18] arise as

limits of probe brane configurations, where matter on our local 4D brane is minimally coupled

to an induced metric g̃µν = gµν + ∂µφ∂νφ. On the inflationary side, fluctuations in generic

P (X,φ) models [19, 20] propagate along the geodesics of an effective metric different from gµν , so

that bimetric structure emerges perturbatively [21]. On the other hand, fully non-perturbative

DBI-type models [22] can be straightforwardly generated by postulating the existence of two

12
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fundamental metrics [23]. Throughout this thesis we will consider these different models and

others, making their bimetric structure explicit. We will argue that the bimetric perspective is

a particularly intuitive and useful way of understanding and constructing such theories.

Disformal gravity then is an umbrella term for an approach that aims to systematically

construct and investigate the most general relations between different emergent metrics in scalar-

tensor theories of the type described. We will review the disformal relation, first proposed in [24],

and argue that it can be used to provide a unified description of large classes of effective field theo-

ries both in the inflationary and dark energy/modified gravity context. That it points us towards

new types of physically motivated models and also leads to more general insights into generic

single field inflation and dark energy/modified gravity models. As such the overarching aim

throughout this thesis will be to use the bimetric perspective to gain a geometric understanding

of single field/scalar-tensor theories. We hope that, after perusing the thesis, we have convinced

the reader that the disformal approach is a powerful one, both in classifying and understanding

known theories as well as in constructing new scenarios and opening up new vistas.

This thesis is organized as follows. The remainder of the introduction consists of three pro-

logues, mainly reviewing the necessary background for what will follow. Prologue I introduces

the disformal relation from first principles and discusses possible generalizations. Prologue II

reviews basic single field inflationary models, their generalizations and some of the associated

phenomenology. Here we also discuss how bimetric structures manifest themselves in such setups

and how they are related to disformal transformations. Prologue III then recaps scalar-tensor

theories in the context of dark energy/modified gravity. A particular focus are screening mecha-

nisms [25], i.e. the idea that a cosmological scalar, which drives accelerated space-time expansion

on cosmic scales, needs to be screened away on small scales in order to satisfy e.g. solar system

constraints on the presence of fifth forces [26]. Once again we point out how this relates to

disformal setups.

In chapter 2 we investigate the perturbative properties of inflationary effective field theories

with a single dof , as arising in a disformal context. We derive their non-Gaussian signals and

show how this computation can be extended to cases when slow-roll conditions do not hold. As we

will see, “fast-roll” effects significantly alter non-Gaussian phenomenology, leading to a reduced

fequiNL , modified shape-spaces and less stringent parameter-space constraints when confronting

the model with observational data. This allows us to place bounds on slow-roll parameters both

from three-point statistics as well as from tensor modes.

In chapter 3 we extend the results of the previous chapter, making use of the fact that

the disformal bimetric relation also allows us to construct non-inflationary structure formation

models with “superluminally” propagating perturbations without violating causality constraints.

We show how such models can be constructed consistently and investigate their non-Gaussian
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properties.

In chapter 4 we explore the existence of a large class of dualities relating various inflationary

n-form models with single field setups. We focus on a particular set of three-form models [27, 28]

and explicitly construct their power spectra and non-Gaussian features. Interestingly we find

that the simplest set of three-form models with a power-law potential, DBI-type setups and

minimal disformal models all give rise to closely related observational signatures.

In chapter 5 we investigate whether the disformal relation allows new ways of implementing

chameleon-screening in a dark energy/modified gravity context. Chameleon models [15, 16] and

their features are reviewed and discussed from the bimetric disformal perspective. We establish a

no-go theorem for purely disformal chameleon theories but also find that the conformal subgroup

of the disformal relation generates a new type of generalized chameleon model. We investigate

this model in detail and point out how it alters standard chameleon phenomenology.

In chapter 6 we discover the relationship between Vainshtein-screened solutions of the Galileon

type [29] and disformal bimetric setups. We show that an extension of disformal metric relations,

dubbed triformal relations (and introduced in prologue I), naturally generates all Galileon terms

from a single geometric invariant - the first Lovelock term [30, 31]. We investigate the role the

disformal subgroup of triformal transformations can play in this process and conjecture how

other ghost-free scalar-tensor theories are related to the triformal setup.

Finally, in chapter 7, we summarize our findings and discuss possible research avenues for the

future. Various appendices follow which we have reserved for further explanations and technical

details that are relevant to the computations carried out throughout this thesis.

1.1 Prologue I : The relation between gravitational and matter

geometries

1.1.1 The bimetric perspective

In general relativity nature is endowed with a single global Riemannian geometry. Its metric

gµν is used to construct both the Einstein-Hilbert action as well as to (minimally) couple matter

fields to gravity. However, in general the situation may not be this simple and nature may allow

the existence of more than one geometry. In fact, even if at a fundamental level there is only

a single metric gµν , new effective metrics can arise when additional dof are introduced into the

theory. These new effective metrics will then be functions of the fundamental metric and of the

additional dof present in the theory. A promising starting point would then be an action of the

form

S =

∫
d4x
√
g
M2

2
R [gµν ] + Sm

(
g̃(i)
µν ,Ψ(i)

)
. (1.1)
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Here we have built the Einstein-Hilbert term R out of an Einstein metric gµν , but minimally

coupled matter fields Ψ(i) to in principle distinct metrics g̃(i)
µν . This allows for gravity to discrim-

inate between different matter species Ψ(i) putting us in immediate tension with the equivalence

principle. To show why let us state the equivalence principle in its weakest form [14].

The weak equivalence principle (WEP): All uncharged, freely falling test particles follow the

same trajectories, once an initial position and velocity have been prescribed. In other words,

locally gravity does not distinguish between different types of test particles.

An action such as (1.1), which does allow locally distinct metrics to couple to different test

particles, violates this principle unless all g̃(i)
µν are identical. Given tight observational constraints

on equivalence principle violations [26], we will opt to avoid any such violation here and therefore

reduce (1.1) to a bimetric theory

S =

∫
d4x
√
g
M2

2
R+ Sm (g̃µν ,Ψi) , (1.2)

where now we only have two metrics gµν and g̃µν .

How does this relate to the scalar-tensor setup we were motivating above? If gravity is modified

by the presence of a single new scalar dof φ, then φ can alter the way matter couples to gravity,

giving rise to a new distinct metric g̃µν for matter. Before investigating how gµν and g̃µν are

related (and in particular how φ enters this relation), let us first lay out the problem in general

terms without imposing any particular metric relation. Consequently we start with a schematic

action of the following form

S =

∫
d4x
√
g
M2

2
R+ Sm (g̃µν ,Ψi) + Sφ (1.3)

where Ψi are matter fields minimally coupled to g̃µν as before. We have generalized (1.2) by

adding Sφ, which denotes an action giving the scalar field φ dynamics of its own. We emphasize

that there is no a priori requirement constraining Sφ to be formed with either gµν or g̃µν .1 We

will also find it useful to schematically write (1.3) as

S =

∫
d4x
√
gLE (gµν , φ) +

∫
d4x
√
g̃Lm (g̃µν ,Ψi) , (1.4)

where we have split the action into two parts which minimally couple to gµν and g̃µν respectively.

As a consequence Sφ has been absorbed into LE and/or Lm depending on which metric(s) are

used to construct Sφ.
1Note that adding a non-trivial Sφ can be seen as modifying the gravity sector itself if φ is seen as a gravitational

dof .
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1.1.2 Metric relations

We now turn our interest to the relation between gµν and g̃µν . Explicit examples of theories that

have such non-trivial relations depending on φ are readily found and we will discuss and extend

these throughout this thesis. However, here we are wondering what the most general relation

between two such metrics might be. A systematic way of constructing a general matter metric

in the presence of a gravitational scalar φ is to write

g̃µν = g̃µν(gµν , φ, ∂φ, ∂∂φ, ...), (1.5)

which is therefore a function of the gravity metric gµν , the field φ and its derivatives. Eventually

we will want to truncate this derivative expansion at some order. However, for the time being

let us focus on what possible valence (0, 2) tensors we can form out of gµν , φ and its derivatives.

Schematically we can write

g̃µν = F1gµν + F2∂µφ∂νφ+ F3∂µ∂νφ, (1.6)

where Fi are some scalar functions constructed out of coordinate invariants, which we can

group by derivative order φ,X,�φ, .... (insisting on only using coordinate invariants ensures

the appearance of X but not ∂µφ by itself). Here X = −1
2∂µφ∂

µφ is the usual canonical kinetic

term for φ. Note that the signature of gµν used here is (−+ ++), and hence 2X = φ̇2 −
(
~∂φ
)2

in Minkowski space. We therefore have

g̃µν = A2(φ,X,�φ, . . .)gµν +B2(φ,X,�φ, . . .)∂µφ∂νφ+ C2(φ,X,�φ, . . .)∂µ∂νφ, (1.7)

We dub this a “triformal” metric relation. This generalized metric relation consists of a conformal

piece, with A2(φ,X,�φ, . . .) being the conformal factor, a so-called “disformal” piece, where we

shall call B2(φ,X,�φ, . . .) the disformal factor, and a triformal piece with a triformal factor

C2(φ,X,�φ, . . .).

If (1.7) arises in an effective field theory then subsequently higher derivatives of the field can

be suppressed by higher powers of the cutoff scale. This motivates a truncation of (1.7) at

some derivative order. Note, however, that such an argument naturally does not discriminate

between e.g. (∂φ)n and ∂nφ or between ∂µφ∂νφ and ∂µ∂νφ. However, operators such as ∂nφ

with n ≥ 3 are dangerous since they lead to the appearance of equations of motion with higher

than second order derivatives of the field, where we would expect ghost-like instabilities via

Ostrogradski’s theorem [32] (also see appendix A). If n = 2, a finite number of terms can be

constructed [29, 33, 34] for which dangerous higher order terms in the equation of motion cancel

out. We will return to this later in chapter 6, but for now we only permit n = 0, 1 trivially



CHAPTER 1. INTRODUCTION 17

protecting us from having Ostrogradski-type ghosts. In particular this also means we will ignore

the triformal piece ∂µ∂νφ and other higher order terms such as �φ. In other words, we are

reducing (1.7) by requiring C = 0 and A,B to be functions of φ and X only. Consequently the

triformal relation reduces to a disformal one satisfying

g̃µν = A2(φ,X)gµν +B2(φ,X)∂µφ∂νφ. (1.8)

This relation was first proposed by Bekenstein [24] to be the most general relation between

gravitational and matter metrics when a single dof φ and its first derivative are used to construct

a matter metric g̃µν . Note that the argument he used to derive (1.8) differs from the one presented

here2 - for details see appendix B and [24].

In the remaining two prologues we will introduce some of the relevant background for ex-

ploring scalar-tensor theories and their effective bimetric descriptions in inflationary and dark

energy/modified gravity settings. In particular this will show how a disformal description arises

abundantly for wide classes of such theories. The associated bimetric description equips us with

a geometric understanding for these setups, which also makes their causal structure explicit

(e.g. particles travel on geodesics of whichever metric they are minimally coupled to). We will

also find that there are strong hints that a bimetric formulation serves as an excellent guide to

construct theories whose interaction terms are protected from renormalizations [35, 36] - i.e. they

permit a strong coupling regime while maintaining quantum corrections under control. Perhaps

most importantly we will find that the structure of conformal and disformal factors A2(φ,X)

and B2(φ,X) is intimately tied to the phenomenology exhibited by the associated scalar-tensor

theory. For example non-trivial such factors straightforwardly give rise to a varying speed of

sound in inflation models and hence the generation of large non-Gaussian signals. On the dark

energy/modified gravity side, on the other hand, we will find that the conformal and disformal

terms are associated with the appearance of chameleon and Vainshtein screening respectively.

The remainder of the thesis is dedicated to showing how the disformal relation provides an ex-

tremely powerful unified description of known single field inflationary and dark energy/modified

gravity models. In addition we will find it to be an excellent means to explore these models

further and to construct alternative and/or more general single field setups capable of causing

cosmic acceleration in agreement with observational constraints.
2As a brief summary: Bekenstein assumes what is essentially a 4D effective field theory in an overall Finslerian

geometry with gravity and matter metrics related by a single degree of freedom φ up to first order in its derivatives.
He then proceeds to show that this has to reduce to a Riemannian geometry described by (1.8).
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1.2 Prologue II : Inflation and primordial physics

1.2.1 The FLRW universe and Big Bang problems

The cosmological principle requires the universe to be homogeneous and isotropic about every

point. In other words, there are no preferred locations or directions in the universe. While

non-linear evolution and structure formation dynamically breaks these symmetries at small

scales, there is strong evidence for this principle on large scales. Namely the cosmic microwave

background (CMB) is highly homogeneous up to one part in 105 [9].

We can formalize the cosmological principle by constructing a cosmological metric subject

to the requirement of overall homogeneity and isotropy. The result is the FLRW (Friedmann-

Lemaitre-Robertson-Walker) metric, which in spherical polar co-ordinates (t, r, θ, φ) takes on the

following form:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ)

)
. (1.9)

a(t) is the so-called scale factor of the metric, t is proper time and altering the parameter

k = −1, 0 or 1 describes open, flat or closed universes respectively. Note that a(ti) essentially

measures the size of space-like hypersurfaces at a given time ti. The Hubble parameter is then

defined as H = ȧ/a and serves as a convenient measure of the expansion of the universe, since

ȧ > 0 in the expanding case. A dot ˙denotes differentiation with respect to proper time t. It will

prove useful to also introduce conformal time η which satisfies

η =

∫
dt

a
, (1.10)

defining co-ordinates that are “comoving” with the expansion of the universe. We will denote

differentiation with respect to conformal time η by a dash ′ . The conformal Hubble parameter

H then satisfies H = aH.

Now we can expand out the Einstein tensor Gµν and write Einstein equations as

Gµν = Rµν − (R/2− Λ)gµν = 8πGTµν , (1.11)

Rµν denotes the Ricci tensor, R = Rµµ, G is Newton’s gravitational constant and Λ is a potential

cosmological constant, which is however sub-dominant in the primordial universe. Tµν is the

stress energy tensor which can be obtained by varying the matter Lagrangian with respect to

the metric.

Modeling the stress-energy tensor by assuming the universe is filled with a perfect fluid one
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can write

Tµν = (ρ+ P )uµuν + Pgµν , (1.12)

where the four-velocity uµ satisfies uµuµ = −1, P is pressure and ρ denotes the energy density.

The Friedmann equations governing the evolution of the fluid then follow straightforwardly. The

00 equation and the trace of the Einstein tensor then respectively yield

H2 =
8πG

3
ρ− k

a2
+

Λ

3
,

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (1.13)

The observed expansion of the universe, e.g. as implied by the Hubble law, then allows us to

retrodict the universe’s past evolution arriving at a very hot and dense initial state at early

times in the universe. The evolution from such an initial state with a subsequent expanding

universe which dilutes and cools down is the so-called Hot Big Bang model. In this context

nucleosynthesis and the existence of a cosmic microwave background stemming from the epoch

when radiation and matter decoupled are further pieces of observational evidence in favor of this

model. However, such a setup faces a number of important challenges.

The flatness problem: Rewriting the first Friedmann equation in terms of the parameter

Ω = ρ/ρcrit, where ρcrit = 3H2/(8πG) is the critical density for which the curvature of the

universe is zero, one finds

Ω(t)− 1 =
k

(aH)2
=

k

ȧ2
, (1.14)

For an accelerating universe with ä > 0 then Ωm asymptotically approaches Ω = 1 over time,

whereas if ä < 0 it diverges from this value. Current constraints find Ω = 1 within roughly 2%,

at a 2σ confidence [9]. Thus there’s an immediate tension with a decelerating universe, where

any primordial Ω 6= 1 will rapidly diverge away from 1. More precisely, assuming the standard

cosmological evolution where a radiation-dominated era is followed by matter-domination, Ω−1 ∝
a2 ∝ t during radiation-domination and Ω−1 ∝ a ∝ t2/3 during matter/dust-domination. At the

electroweak scale a fine-tuning of |Ω− 1| ∼ 10−27 is therefore required. Note that the argument

here has ignored dark energy, which, since it only becomes relevant in the late universe, will only

mildly alleviate the fine-tuning discussed, however.

The horizon problem: The cosmic microwave background is observed to be highly isotropic

with a smooth temperature to within one part in 105. Yet regions in the CMB separated by

more than ∼ 2 degrees could not have been in causal contact with each other at the time of the

formation of the CMB, assuming the universe had been continuously decelerating in accordance
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with the hot big bang model. More precisely one may define the particle or comoving horizon

η =

∫ a

ai

da

a

1

aH(a)
, (1.15)

which gives the maximum separation between two points that could have been in causal contact

in the past, where ai is the initial value of the scale factor. Evaluating this at photon decoupling

shows that regions in the CMB separated by more than ∼ 2 degrees could not have been in

causal contact, as mentioned above. The fact that they still appear highly thermalized, in the

sense that the temperature across the whole CMB is highly uniform, without an apparent causal

mechanism to explain this uniformity is known as the horizon problem.

The monopole problem: Typically, as a consequence of spontaneous symmetry breaking,

high energy physics predicts that topological defects will generate magnetic monopoles, cosmic

strings, domain walls and textures. The fact that none of these objects have been observed

demands an explanation. In fact, historically this problem was one of the main motivations for

inflation to be proposed.

1.2.2 Single field inflation

Inflation is a period of accelerated space-time expansion in the early universe

d

dt

(
1

aH

)
< 0 ⇒ ä > 0 ⇒ ρ+ 3P < 0 . (1.16)

A prolonged period of inflation can then resolve the big bang problems outlined above. We have

already seen that accelerated expansion drives Ω close to 1, so that Ω ∼ 1 as an “initial value”

for the evolution post-inflation is indeed a generic consequence of inflation models. Objects such

as magnetic monopoles will be diluted away by a phase of rapid expansion, alleviating concerns

about the non-detection of such objects. And finally the horizon problem is resolved, since all

scales which enter the universe in our observable window, e.g. at CMB scales, would have been

within the comoving horizon (and hence in causal contact) pre-inflation. Different regions in

the CMB would therefore have had enough time to thermalize and reach an equilibrium energy

density and temperature.

In order to realize inflation, the universe has to be dominated by matter exhibiting negative

isotropic pressure. Standard model matter (excluding the Higgs) or radiation does not have this

property. At least one extra degree of freedom is therefore typically introduced in order to source

accelerated space-time expansion. In the simplest case we introduce a single scalar field φ and
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consider have an action of the form [19, 20]

S =

∫
d4x
√
−g
[
R

2
+ P (X,φ)

]
, (1.17)

where the pressure P is a general function of a single scalar field φ and its kinetic term X =

−1
2g
µν∂µφ∂νφ. For a canonical field P (X,φ) = X − V (φ) and the energy density is given by

ρ = X +V (φ), from which we can see that canonical inflation corresponds to a period where the

potential V (φ) dominates over the canonical kinetic term X. In principle P can contain higher

derivatives of the field φ as well, however such terms are expected to be suppressed by the UV

cut-off scale in an effective field theory. This motivates studying an action of the form (1.17),

which is the most general Lorentz invariant action for a single scalar field minimally coupled to

gravity that contains at most first derivatives of the field. The pressure p and energy density ρ

for these models are given by

p = P (X,φ) ,

ρ = 2XP,X − P (X,φ) , (1.18)

where P,X ≡ ∂P/∂X.

We will find it useful to characterize the non-canonical nature of (1.17) with the following

quantities [37]

c2
s =

P,X
ρ,X

=
P,X

P,X + 2XP,XX
,

Σ = XP,X + 2X2P,XX =
H2ε

c2
s

,

λ = X2P,XX +
2

3
X3P,XXX , (1.19)

where cs is the so-called adiabatic speed of sound (i.e. the speed with which perturbations

propagate ). An infinite hierarchy of slow-roll parameters ε and εs and their derivatives can then

be constructed for a theory (1.17) with an FRW metric with scale factor a(t) and corresponding

Hubble rate H(t) = ȧ/a. These hierarchies are

ε ≡ − Ḣ

H2
, η ≡ ε̇

εH
, ... ; εs ≡

ċs
csH

, ηs ≡
ε̇s
εsH

, ... (1.20)

The slow-roll approximation requires that ε, η...εs, ηs... � 1 and accelerated expansion takes

place when ε < 1. Requiring a prolonged period of inflation therefore constrains the values taken

by slow-roll parameters. Note that these definitions (1.20) are more general than alternative

definitions in terms of the scalar potential and its derivatives, which assume canonical kinetic
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terms. Perhaps more fittingly (1.20) have therefore also been dubbed “slow-variation parame-

ters” [38, 39, 40]. DBI inflation [22], for example, is slow-varying in this sense yet allows steep

potentials and hence the inflaton is not slow-rolling. However, in order to agree with convention

and avoid confusion, we will refer to (1.20) as slow-roll parameters from now on. Note that

truncating slow-roll parameters at some derivative order, setting the remainder to zero, allows

us to approximate H and cs with Taylor expansions.

1.2.3 The classical curvature perturbation

Here we consider scalar perturbations about an FLRW metric. In order to seed structure for-

mation we require the presence of some initial fluctuations, which we will consider classically in

this section. The quantization and evaluation of quantum correlators between such fluctuations

is left to chapter 2. We now perturb the FLRW metric to first order and find [13]

ds2 = −a2 (1 + 2Φ) dη2 + 2a2B,idηdx
i + a2 [(1− 2Ψ) δij + 2E,ij ] dx

idxj , (1.21)

where we have assumed a flat background metric δij , Ψ is the curvature perturbation and Φ

denotes the lapse function, B1 and E1 are the scalar part of the shear.

Under a gauge transformation xµ → xµ
′

= xµ + ξµ = xµ + (ξ0, ξ,i) metric perturbations δgµν
transform as

δg̃µν(xµ
′
) = δgµν(xµ)− gµρξρ,ν − gρνξρ,µ. (1.22)

Different gauges correspond to different ways of foliating our space-time. Since a background-

perturbation split is not a covariant operation, gauge degrees of freedom are introduced in this

way. The resulting co-ordinate ambiguity can be resolved by fixing a gauge. For this section

we will employ the uniform curvature gauge in which spatial hypersurfaces are flat (otherwise

known as the flat gauge) and we have Ψ = 0 and E = 0. However, in general we may transform

between different gauges by using the following relations (to linear order).

Φ̃ = Φ +Hξ0 + ξ′

B̃ = B − ξ0 + ξ′,

Ψ̃ = Ψ−Hξ0,

Ẽ = E + ξ. (1.23)

Fixing a gauge, we may use the gauge transformations to eliminate two of the four functions

Ψ,Φ, B,E. In the flat gauge, as mentioned above, these are chosen to be Ψ = 0 and E = 0.
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Note that a scalar field quantity such as inflaton perturbations will transform as

δφ̃1 = δφ1 + φ′0ξ
0. (1.24)

We can now define two gauge-invariant curvature perturbations, which coincide on super-

horizon scales. Firstly the curvature perturbation on uniform density hypersurfaces ζ [41] is

given by

− ζ ≡ Ψ +
H
ρ
′
0

δρ , (1.25)

which, when evaluated in flat gauge, simplifies to −ζ = H
ρ′0
δρ. Secondly, the comoving curvature

perturbation R [42], i.e. the curvature perturbation on comoving or uniform field slices, is

R ≡ Ψ +
H
φ′0
δφ , (1.26)

where we can once again simplify this in the flat gauge to obtain R = H
φ′0
δφ. These variables

will prove useful when evaluating inflationary observables. In particular we will be interested in

computing n-point correlation functions such as 〈ζ(k1)ζ(k2)〉 and 〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉, here
shown in Fourier space. Observationally these correspond to correlating temperature fluctua-

tions on different scales k, e.g. ones measurable via the CMB. For further details on related

perturbation theory see [43, 44].

1.2.4 Perturbations and emergent geometry

We begin by considering the general P (X,φ) theory introduced above (1.17) with action

S =

∫
d4x
√
−g
[
R

2
+ P (X,φ)

]
. (1.27)

Following [21] we work out the equation of motion for the scalar field

− δS

δφ
= G̃µν∂µ∂νφ+ 2XP,Xφ − P,φ = 0, (1.28)

where the effective metric G̃µν is given by

G̃µν ≡ P,Xgµν + P,XX∂
µφ∂νφ. (1.29)

We now consider perturbations δφ around a given background φ0. By Leray’s theorem these

propagate causally as determined by the metric G̃µν . As shown in [21] we may write the equations

of motion for the perturbations in terms of a metric conformally related to G̃µν (and which
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consequently preserves the causal structure of G̃µν). This metric Gµν is defined as

Gµν ≡ cs
P 2
,X

G̃µν ,
√
−G ≡

√
−detG−1

µν where G−1
µλG

λν = δνµ, (1.30)

Working out the corresponding inverse metric one finds

Gµν =
P,X
cs

[
gµν − c2

s

(
P,XX
P,X

)
∂µφ∂νφ

]
, (1.31)

where cs is defined as in (1.19). This is evidently of the disformal form with A2(φ,X) =
P,X
cs

and

B2(φ,X) = −csP,XX . The action for perturbations δφ can now be written

Sδφ =
1

2

∫
d4x
√
−G

[
Gµν∂µδφ∂νδφ−M2

effδφ
2
]
, (1.32)

where the effective mass term is

M2
eff ≡

cs
P 2
,X

(
2XP,Xφφ − P,φφ +

∂G̃µν

∂φ
∇µ∇νφ0

)
. (1.33)

Defining a covariant derivative for the metric Gµν , i.e. DαG
µν = 0, the equation of motion for

perturbations can be written as a massive Klein-Gordon equation

GµνDµDνδφ+M2
effδφ = 0. (1.34)

Perturbations therefore propagate on geodesics of Gµν . In this way an emergent metric disfor-

mally related to gµν becomes important when considering perturbations in scalar field models of

primordial physics with non-canonical kinetic terms. Moreover the speed of sound cs with which

perturbations propagate on the background φ0 is intimately tied to the conformal and disformal

factors in the disformal relation (1.8). Specifically we have

A2(φ,X) =
P,X
cs

and B2(φ,X) = −csP,XX (1.35)

c2
s = 1 + 2X

B2

A2
. (1.36)

In this way disformal structure manifests itself for non-canonical scalar field models and a bimetric

formalism of the type outlined becomes appropriate when dealing with perturbations δφ. Two

final comments: A well-posed Cauchy problem now requires initial conditions to be posed on

a hyper-surface which is space-like with respect to both metrics (gµν and G̃µν). Furthermore,
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requiring Gµν to have Lorentzian signature enforces

1

c2
s

= 1 + 2X
P,XX
P,X

> 0. (1.37)

1.2.5 Non-perturbative bimetric structures

In the previous section we saw how a bimetric description becomes applicable when considering

perturbations in generic P (X,φ) theories. But what if the two metrics really are fundamental

and already present at the level of background dynamics? Let us recall the generic bimetric

theory in (1.3)

S =

∫
d4x
√
g
M2

2
R+ Sm (g̃µν ,Ψi) + Sφ. (1.38)

When we first introduced this action we stressed that Sφ can be minimally coupled to gµν or

g̃µν or indeed it may be a hybrid so that we can split Sφ = Sφ [gµν ] + Sφ [g̃µν ].3 Now in the

case of dark energy/modified gravity theories, which we will discuss in the following section,

non-perturbative bimetric structures of the type discussed are readily at hand, since Sm plays a

crucial role in the dynamics. However, in considering early universe theories prior to reheating,

one tends to ignore the effect of other matter particles. Instead it is typically assumed that

universal dynamics are dominated by the scalar field, which only later on decays into standard

model particles during reheating. We are thus effectively dealing with an action

S =

∫
d4x
√
g
M2

2
R+ Sφ. (1.39)

An explicitly bimetric theory at the non-perturbative level therefore means we are dealing with

either Sφ = Sφ [g̃µν ] or Sφ = Sφ [gµν ] + Sφ [g̃µν ]. Let us immediately stress at this point that,

while perturbations around a background specified by such a theory will be captured by the

emergent bimetric structure outlined in the previous section, the presence of any other type of

matter coupled to gravity during this epoch at all should break any degeneracies.

As a particularly simple case study for such a bimetric model we now focus on the scenario

introduced in [23]. Introducing a cosmological constant into the g̃µν-dependent Sφ we have:

Sφ =

∫
d4x
√
g̃(−2Λ̃) . (1.40)

Since
√
g̃ effectively generates a kinetic term plus higher derivative terms (we may confirm this

3Note that, while formulating such actions explicitly in terms of gµν and g̃µν simplifies calculations and does
bring out the causal structure of the theory out more clearly, we can of course always map the whole action into
either frame, since g̃µν = g̃µν (gµν , φ,X). No frame is more physical than the other, in the same sense that Jordan
and Einstein frames are equally physical, but different features of the theory may of course be more readily visible
in either frame. The salient point being that it is really a representational issue which frame(s) are chosen for the
description of the dynamics.
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by expanding out the root), this is sufficient to endow φ with dynamics, even in the absence of

an explicit potential or kinetic term for φ. In fact, since T̃µν = Λg̃µν we find a Klein-Gordon

equation for φ in the g̃µν frame [23]

T̃µν∇̃µ∇̃ν φ = Λ̃g̃µν∇̃µ∇̃ν φ = 0 , (1.41)

Notice that we refrain from calling g̃µν the matter frame now, since we have not specified anything

about Sm yet.

It is interesting to notice, that (1.40) is the unique action yielding a Klein-Gordon equation of

motion for φ in the g̃µν frame [23]. Mapping the φ-action into the Einstein frame we find

Sφ =

∫
d4x
√
−g
√

1 + 2B2X(−2Λ̃) . (1.42)

As shown in [23] such an action is already sufficient in order to generate scale-invariant fluc-

tuations (we will return to this when investigating n-point correlation functions in chapter 3).

Moreover something rather interesting happens when we pair the g̃µν-frame action with a bal-

ancing Sφ action minimally coupled to gµν and also impose Λ̃ = −1/2B2. As such we are now

considering an action Sφ which satisfies

Sφ =

∫
d4x
√
−g̃ 1

B2
−
∫
d4x
√
−g 1

B2
, (1.43)

When mapping this into the Einstein frame this generates a DBI-type action [22] for which

P (X,φ) = −f−1
√

1− 2fX + f−1 − V (φ) (1.44)

where we have identified the DBI warp factor f via f = −B2 and allowed for a potential V (φ).

As such we are considering a minimal DBI-type model with constant warp factor. As we will

discuss in chapter 3 this minimal model straightforwardly generates scale-invariant fluctuations.

Now in the DBI case the sign of the warp factor is constrained to be positive by the signature of

the metric. However, since we are purely considering the effective field theory determined by a

DBI-type action and in fact explicitly constructed it without recourse to any higher-dimensional

setup, f here is simply a free parameter. In summary, φ here has Klein-Gordon dynamics in the

g̃µν frame, but behaves as a DBI field with constant warp factor in the Einstein frame.

There are various ways in which we can generalize this simple model. Promoting matching

“cosmological constants” Λ and Λ̃ to potentials with φ-dependence, we obtain a DBI-model with

φ-dependent warp factor

P (X,φ) = −f−1(φ)
√

1− 2f(φ)X + f−1(φ)− V (φ) . (1.45)
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Finally we may consider a fully bimetric P (X,φ) model with

Sφ =

∫
d4x
√
−g̃P̃ (X̃, φ)−

∫
d4x
√
−gP (X,φ). (1.46)

This most general setup does not have to retain the DBI-form at all of course, but notice that

the DBI-characteristic square-root form for the kinetic term, which generates higher-derivative

interactions and consequently interesting phenomenology such as enlarged non-Gaussianities, is

retained in all such bimetric models. Moreover, as we shall see later on in chapters 6, they retain

second order equations of motion for φ, ensuring the absence of Ostrogradski-type ghosts [32]

and, at least in the limiting simple cases outlined above, come equipped with an effective non-

renormalization theorem to all terms in Xn as generated by the square root in the DBI action [35,

36].

1.2.6 Beyond scalar field inflation

1.2.6.1 Dual non-scalar theories

So far we have only considered early universe scenarios where dynamics is driven by a single

scalar field. This simplest scenario may of course be modified ad infinitum by introducing extra

degrees of freedom. But even without opening this particular Pandoric box, we have already

discussed some such theories in disguise. Examples include multifield models where other more

massive scalar degrees of freedom can be integrated out below a given energy scale, yet still

influence the dynamics by modifying the structure of the effective kinetic term for the remaining

single scalar degree of freedom. This happens for example in the Gelaton scenario [45] where

two canonical scalar fields lead to an effective non-canonical single scalar theory below a given

energy scale.

We may also consider theories where not a scalar (a 0-form), but some other n-form drives

universal dynamics. Then an immediate worry is the breaking of isotropy and homogeneity,

e.g. due to the appearance of preferred directions caused by additional degrees of freedom in

a vector (1-form). But taking isotropy and homogeneity as constraints, higher n-form models

frequently permit an effective scalar field description, since such constraints reduce the effective

number of dof . This may result in e.g. a vector or vector-scalar theory where the vector

can be integrated out consistently (regardless of energy-scale) to yield an effective scalar field

description. A promising strategy is therefore to establish dualities between other n-form models,

explicitly using a Hodge dual mapping between different n-forms, and then to explore whether

dual classes of theories permit an effective scalar description under the assumption of global

isotropy and homogeneity. In chapter 4 we will discuss this idea in more detail, focusing on the

case of inflation driven by a massive three-form field [27, 28].
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1.2.6.2 A bimetric alternative to inflation?

Above we introduced non-perturbative bimetric structures in the context of inflation. But interest

in alternatives to inflation has never floundered - after all, even if we were solely interested in

testing inflation, the ultimate test of any theory is to see how well it fares against any of its

(potential) competitors. Above we have seen that a great variety of inflationary scenarios can

be couched in a bimetric formalism. Here we quickly review how “varying speed of light” (VSL)

scenarios [46, 47, 48], proposed as an alternative to inflation, also permit a bimetric formulation

and how/whether they address the Big Bang problems. For some related recent work on VSL

theories see [49, 50, 23, 8, 7].

VSL theories posit that the invariant speed of propagation associated with “matter” in the

early universe differs from that we see at present. This can be naturally implemented with an

action of the form (1.3), i.e.

S =

∫
d4x
√
g
M2

2
R+ Sm (g̃µν ,Ψi) , (1.47)

where we ignore any potential additional scalar degree of freedom for now. Then R is constructed

out of a gravity metric gµν , with invariant speed cgravity while matter couples to the metric g̃µν
with invariant speed cmatter, where we will be especially interested in cphoton which is identical to

cmatter here. We will now consider how this setup can be used to address the Big Bang problems,

closely following [51].

The horizon problem: We have already discussed the horizon problem in a simple infla-

tionary context in section 1.2.1, but here we will need to be more careful since the introduction

of different invariant speeds also introduces different horizons. The size of the (gravity) particle

horizon when the CMB is formed at t∗ is

Rparticle−horizon(t∗) =

∫ t∗

0

cgravity dt

a(t)
, (1.48)

while for photons one finds

Rphoton−horizon(t∗) =

∫ t∗

0

cphoton dt

a(t)
≥ Rparticle−horizon(t∗). (1.49)

where the inequality holds if cphoton ≥ cgravity throughout the period integrated over. Rphoton−horizon

is of particular interest since it determines the distance scale over which photons can establish

causal contact between different regions in the early universe and thermalize them. In order to

address the horizon problem this has to be compared to the coordinate distance to the CMB
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(surface of last scattering), which at the present time t0 is

Rlast−scattering(t∗, t0) =

∫ t0

t∗

cphoton dt

a(t)
. (1.50)

In order for all CMB scales which we can observe presently to have been in causal contact when

the CMB was formed, we require

Rphoton−horizon(t∗) ≥ 2 Rlast−scattering(t∗, t0) (1.51)

or equivalently

3 Rphoton−horizon(t∗) ≥ 2 Rphoton−horizon(t0). (1.52)

The VSL solution to satisfying this constraint is to require cphoton � cgravity in the primordial

universe. Intuitively this is straightforward to understand, since a “larger” speed of light c in the

early universe allows regions separated by greater distances to become causally connected.4

The flatness problem: From the Friedmann equations we have

Ω− 1 =
K c2

gravity

ȧ2
, (1.53)

as before, but we explicitly keep track of factors of c this time. Now the fact that we have a

factor of cgravity, and not cphoton, is important. This is the case since (1.53) comes from varying

the Einstein–Hilbert action. In the bimetric picture the c here therefore cannot be cphoton. As

such we have

Ω̇ = −2(Ω− 1)

(
ä

ȧ

)
, (1.54)

which also does not depend on cphoton and is therefore unaffected by cphoton 6= cgravity. This also

means that ä > 0, i.e. inflation, is still required in order for Ω = 1 to become an attractor. As

such a bimetric VSL theory of the type considered does not provide an independent solution to the

flatness problem. Of course this does not mean that other implementations of the VSL mechanism

cannot solve the flatness problem in different ways (for a review of different implementations,

e.g. hard breaking of Lorentz invariance via the introduction of preferred frames, see [48]).

Just as for inflation, we defer a discussion of quantizing perturbations and structure formation

in the early universe to later chapters (for bimetric theories with cs � 1 we will do so in

chapter 3). But we conclude this section with two observations. Firstly the fact that we have

a metric formulation means that, even though the invariant speed of one metric might appear

“superluminal” in the frame defined by the other metric, no closed causal curves (CCC) or other
4Typically one require cphoton ≈ cgravity between last scattering and today in order to minimize modifications

to late-time cosmology.
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causality problems arise since e.g. light and gravity signals transform under two different copies

of the Lorentz group [52, 49, 23]. In fact, as long as there is a hyper-surface which is space-like

w.r.t. both metrics, the Cauchy problem is well-defined [21]. Secondly note that the use of

the word “superluminal”, as frequently employed when describing cphoton > cgravity, is rather

misleading. What is important here is the dimensionless ratio of invariant speeds cphoton/cgravity

and in the VSL scenario outlined this is always ≥ 1. So signals can propagate faster than the

invariant speed of the gravity metric. However, light always propagates with cphoton and nothing

propagates faster than light here.

1.3 Prologue III : Dark Energy and Modified Gravity

One of the most important discoveries in recent cosmology is the accelerated late-time expansion

of the universe. Via the use of different standard rulers (Baryon acoustic oscillations, CMB

and Supernovae data) it was found that, assuming general relativity is valid all the way up

to cosmological length-scales, around ∼ 70% of the effective energy density of the universe is

provided for by a component exerting negative pressure and hence causing accelerated expansion.

Moreover its effective equation of state appears to be very close to w = −1, signaling that

whatever this dark component may be, it very closely mimics a cosmological constant. This

leaves us with a few options: Either cosmic acceleration is due to existing dof , e.g. sourced by a

cosmological constant or back-reaction, or dark energy/modified gravity is dynamical, i.e. due to

the presence of new dof . This may be due to a modification of the RHS of the Einstein equation

- a new type of matter acting as “dark energy” - or due to new gravitational dof - a modification

of the LHS of the Einstein equation. Clearly this is not a sharp distinction and whether a new

dof is described as gravitational or “matter” will depend on how it enters into the model under

consideration.

In the context of modified gravity the appearance of new dof is a generic consequence of

departing from GR. This is to be expected given Weinberg’s theorem [53] which states that a

Lorentz invariant theory of a massless spin two field must be equivalent to GR in the low energy

limit. Infrared modifications of gravity therefore necessarily introduce new dof . In the simplest

case which we are interested in here, there is only one new dof and it is a scalar. The way this

scalar is introduced is of course model-dependent. In massive gravity models, where the graviton

is equipped with a small mass or resonance width, the new scalar dof appears when a Stückelberg

scalar is introduced in order to make gauge invariance manifest. In higher-dimensional setups

new scalar dof appear in the effective 4D theory due to dimensional reduction or, in the case of

a probe brane, as an induced scalar specifying the position modulus of the brane in the bulk.

The result is a scalar-tensor theory of modified gravity. The notion of screening mecha-
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nisms [25] - how a light scalar degree of freedom φ can act as dark energy on cosmological scales

while being shielded in dense environments such as on earth - has turned out to be especially

useful in this context. Implementations of such a mechanism include the following: 1) The

chameleon model [15, 16], where a density dependent mass is generated and the field φ becomes

too massive for detection in dense environments. 2) Vainshtein screened setups [54, 55, 56] such

as DGP [17] and Galileon [29]/Horndeski [33] models, where non-linear interactions of φ lead

to strongly coupled dynamics. A density-dependent (classical) renormalization of the kinetic

energy there results in an effectively decoupled scalar in dense environments. 3) Symmetron

models [57, 58, 59], where a scalar φ is coupled to matter with a coupling strength proportional

to the vacuum expectation value of φ. This in turn depends on the ambient density, so that the

scalar effectively decouples in high-density regions. All these mechanisms reconcile the existence

of a light cosmological scalar with tight fifth force constraints on solar-system scales [26]. In

this section we review some of the relevant modified gravity models and why one might want to

consider them rather than e.g. models where accelerated expansion is sourced by a cosmological

constant. We show how they are related to disformal gravity and why bimetric setups naturally

generate such modified gravity models.

1.3.1 A cosmological constant?

Having spent some time motivating why extra dof may be considered if we want to realize a phase

of accelerated late-time expansion, let us briefly step back and recap why the simplest solution

- plain GR with a cosmological constant (CC) - may be considered unsatisfactory. Introducing

an explicit cosmological constant Λ the Einstein equation becomes

Gµν = 8πGTµν + Λgµν . (1.55)

Even if we do not introduce a cosmological constant by hand, the vacuum energy of all matter

species contained in Tµν generates an effective cosmological constant, so that overall one finds

an effective cosmological constant

Λeff = Λ + 8πG〈ρvac〉. (1.56)

Now, from a quantum field theory point of view, GR is an effective field theory valid up to some

cutoff scale, since it is non-renormalizable. The naive expectation for the size of the contribution

of the vacuum energy of matter to Λeff depends on this cutoff scale, so that if we assume GR

to be valid all the way up to the Planck scale we expect

Λeff ∼
(
1027eV

)4
. (1.57)
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This is rather catastrophically different from the observed value

Λeff ∼
(
10−3eV

)4
. (1.58)

Even if we lower the cutoff scale to, say, the supersymmetry breaking scale, a difference of around

60 orders of magnitude remains.

We can see that this is a problem even at very low energies. Following [14] we may consider

the low-energy effective theory obtained by integrating out all the contributions down to just

above the electron mass me. As such Λeff will include a bare term Λ1 and terms coming from

low-energy loops of particles with masses ≤ me. Schematically this means

Λeff = Λ1 + cem
4
e + cνm

4
ν . . . , (1.59)

where ce and cν are coefficients determined by computing the loop corrections for each matter

species. We now lower the energy and integrate out the electron, arriving at

Λeff = Λ0 + cνm
4
ν . . . , (1.60)

where Λ0 is a new bare cosmological constant term. Preserving the same observed value of Λeff ,

Λ1 and Λ0 need to cancel to over 30 decimal places. In other words, loop corrections to any

bare cosmological constant at these energies are generically over 30 orders of magnitude larger

than the resulting overall Λeff , asking for a miraculous cancellation of different contributions

to the effective CC. In this sense a CC with the observed value is technically unnatural in the

absence of some mechanism/symmetry protecting it. This motivates looking for a different agent

causing late-time acceleration. The cosmological constant problem (CCP) of course still needs

to be addressed, but interestingly new dof might very well be introduced as a consequence of

whichever symmetry we impose in order to solve the CCP. Putting the cosmological constant

problem to one side, we therefore now move on to investigate how new dof might be used in

order to drive accelerated space-time expansion.

1.3.2 Screening mechanisms I : Chameleons

Chameleon models [15, 16] are typically constructed with the use of two conformally related

metrics, where the conformal factor is a function of the chameleon field φ only. In particular we

may consider an action of the following form

S =

∫
d4x
√
g

(
M2

2
R+X − V (φ)

)
+ Sm

(
A2(φ)gµν ,Ψi

)
, (1.61)
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All matter species Ψi are therefore universally coupled to the matter metric g̃µν = A2(φ)gµν .

This universal coupling ensures the validity of the weak equivalence principle by design. In other

words we consider the generic action (1.3) subject to the simplifying assumptions of a purely

conformal relation between metrics g̃µν = A2(φ)gµν and a simple canonical Sφ =
∫
d4x
√
gX −

V (φ) minimally coupled to the Einstein metric gµν . As usual a matter stress-energy tensor can

be defined with respect to the matter (“Jordan frame”) metric g̃µν , so that

T̃µν =
2√
g̃

δ
(√
g̃Lm

)
δg̃µν

. (1.62)

Since it minimally couples to g̃µν , it is covariantly conserved with respect to that metric ∇̃µT̃µν =

0. When mapping T̃µν into the Einstein frame one finds

T̃µν = A−6(φ)Tµν . (1.63)

This means Tµν is not covariantly conserved in the Einstein frame ∇µTµν 6= 0. Turning our

attention back to the original action (1.61), one can now work out the equation of motion for

the scalar φ obtaining

�φ = V,φ −A3(φ)A,φT̃ , (1.64)

where the matter stress-energy tensor is defined as in (1.62) and has been contracted with the

matter metric T̃ = T̃µν g̃µν . Specializing to the case of a pressureless, non-relativistic source, the

only non-vanishing component of the stress-energy tensor T̃µν is T̃ 0
0 = −ρ̃. Following from (1.63)

the energy density of matter in the Einstein frame, ρ, is given by ρ = A4ρ̃. As a direct consequence

of ∇̃µT̃µν = 0 we then also find a conserved quantity in the Einstein frame ρ̂ = A3ρ̃ = A−1ρ. In

terms of this conserved quantity (1.64) can therefore be written as

�φ = V,φ +A,φρ̂, (1.65)

and one can integrate up to obtain an effective potential for φ

Veff(φ) = V (φ) + ρ̂A(φ), (1.66)

since ρ̂ is conserved and independent of φ in the Einstein frame.

This setup has interesting phenomenological consequences. Suppose we start with a runaway

potential V (φ), e.g. V (φ) = Mn+4
Pl /φn as desirable from the point of view of quintessence

models [60]. This ensures that, in the limit when we can ignore the matter action Sm (a low-

density environment with ρ̂ → 0 in the language set out above), we recover a quintessence-

like solution to the cosmological constant problem. A slow-rolling light scalar field then drives
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Figure 1.1: Left: Plot showing the effective potential Veff (φ) (solid line), the conformal factor A(φ) = ek1φ

(dotted line) and a runaway potential V (φ) ∼ φ−3 (dashed line) in arbitrary units, cf. equation (1.66). Right:
Plot showing the effective potential for k1 = 1 − 6 from bottom to top. Note how the position of the minimum
φmin is shifted to smaller φ and the curvature and hence mass of oscillations around φmin is enhanced as k1
increases.

accelerated expansion of space-time. But in regions of high density this behavior changes in

the following way. Naively φ does not possess a mass term at all, since V (φ) has no minimum

(except for the trivial one at φ→∞). However, from (1.65) it becomes clear that, for non-zero

ρ̂, a suitably chosen A(φ) can result in a Veff which does have a minimum φmin, such that

Veff,φ(φmin) = V,φ(φmin) +A,φ(φmin)ρ̂ = 0, (1.67)

where the mass of the field m for small oscillations around the minimum φmin is given by

m2 ≡ Veff,φφ(φmin) = V,φφ(φmin) + ρ̂A,φφ(φmin). (1.68)

This is the essence of the chameleon mechanism: An environmentally-dependent way of gener-

ating a large mass for an otherwise very light scalar φ. This reconciles a model such as (1.61)

with fifth force constraints, since φ becomes too heavy for detection in laboratory experiments on

earth, yet can act as dark energy on large scales. Figure 1.1 illustrates the chameleon mechanism

for a conformal factor of the form A(φ) ∼ ek1φ.

Two final comments are in order here. Firstly our argument has been purely phenomenological

in that a suitably chosen conformal factor can give rise to the chameleon mechanism described,

but no arguments for why such an A(φ) is (technically) natural have been given. This issue

is beyond the scope of this thesis, but we refer to [61] for a discussion. Secondly we have not

discussed the thin-shell mechanism so far, which is another essential ingredient for the viability of

the chameleon mechanism in that it suppresses fifth force modifications to e.g. planetary orbits.

We will do so in section 5.5 where radial solutions are investigated in some detail.
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1.3.3 Screening mechanisms II : Vainshtein

The Vainshtein mechanism takes a different approach to screening the scalar φ in dense envi-

ronments. Here the idea is that, while φ has a natural O(1) coupling to matter on cosmological

scales, in dense environments matter becomes effectively decoupled from φ. In order to do so

the Vainshtein mechanism relies on the introduction of non-linearities into the kinetic term for

φ. Equivalently one may explicitly introduce higher derivative interactions into the Lagrangian

for a canonical scalar field φ, so that above some scale Λ5 the field becomes (classically) strongly

coupled and as a result effectively decouples from other fields or matter in general. Schematically

we can picture this mechanism as follows [62]. Consider the theory

L = −1

2
Zµν(φ)∂µφ∂νφ+

φ

MPl
Tµµ , (1.69)

where Zµν essentially plays the role of an effective metric and we have introduced a very simple

conformal coupling to matter φTµµ 6. We have ignored any potential V (φ) since its form is irrel-

evant for the Vainshtein mechanism. Now we introduce a non-standard kinetic term/explicitly

add higher derivative interactions to the Lagrangian by writing [62]

Zµν(φ) ∼ gµν +
1

Λ3
∂µ∂νφ+

1

Λ6
(∂µ∂νφ)2 + · · · (1.70)

In the low-energy regime, which corresponds to cosmological scales, we can ignore derivative

terms (∂µ∂νφ)n since they are suppressed by Λ3n. A canonically normalized kinetic term is then

recovered with Zµν ∼ gµν and the coupling between φ and other matter is unsuppressed. At high

energies, however, Z(φ0)� 1, where φ0 is the background configuration of the field φ. Fluctua-

tions around the background therefore acquire a kinetic term whose dominant contribution is so

that the dominant contribution to the kinetic term is of the form Z(φ0)(∂ϕ)2 ∼ (∂2φ0/Λ
3)n(∂ϕ)2,

for some (model-dependent) n. Canonically normalizing the field one obtains ϕ̂ = ϕ/
√
Z(φ0),

so that fluctuations ϕ̂ have an effective coupling to matter (MPl

√
Z(φ0))−1 � M−1

Pl . When

Z(φ0)� 1 the field therefore effectively decouples from other matter and its dynamics becomes

dominated by its own self-interactions.

DBI probe brane and “irrelevant” interactions: A particularly interesting example of a

theory where higher derivative terms as discussed above are important, is that of a 4D DBI probe

brane embedded in a 5D bulk. Why do we choose this example? While the procedure outlined

above is perfectly valid, it typically needs an extra ingredient in order to be implemented in an
5Note that the scale Λ, in an abuse of notation, has nothing to do with the cosmological constant.
6Note, however, that the non shift-symmetric matter coupling φTµµ has some interesting consequences. While

this coupling is technically natural when just considering φ-loops [63], matter loops do not preserve the form of
such a coupling [64]. For a discussion of whether or not this is any worse than the normal cosmological constant
problem see [63, 64].
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EFT . The higher derivative interactions outlined above are irrelevant from an EFT point of view

and hence non-renormalizable. Typically one would expect the EFT description to only be valid

as long as such terms are subdominant/suppressed by some scale Λ which is then equivalent to

the cutoff scale beyond which the EFT is no longer valid. In the approach above, however, we

are precisely interested in regimes where the higher-derivative interactions are important, e.g.

∂2φ ∼ Λ3. Generically one would therefore expect loop corrections to spoil the validity of the

EFT under consideration.

An additional symmetry is needed in order to keep such corrections under control, giving rise to

a strong coupling regime where derivative interactions of the type considered are important, yet

higher derivative terms (∂nφ)m with n,m > 2 generated by quantum corrections are irrelevant.

In the case of an unwarped DBI probe brane a non-linearly realized 5D Poincare invariance

ISO(1, 4) protects the form of terms in the Lagrangian [18]. Interestingly we can decompose

this larger symmetry group into the 4-dimensional Poincare group, a shift symmetry π → π + c

protecting the canonical kinetic term X and coming from translation invariance in the 5th

dimension, and an additional symmetry associated with rotations in the 5th dimension. This

extra symmetry will turn out to be crucial and we will meet it again below. One can now prove

a non-renormalization theorem [35, 36] stating that terms invariant under these symmetries are

not renormalized and establishing the existence of a stable strong-coupling regime.

The probe brane Lagrangian and Lovelock invariants: Now a generic form for a probe

brane Lagrangian that will be invariant under all these symmetries is [18]

L =
√
gF
(
g̃µν , R̃αβγδ, K̃ρσ, ∇̃ε

)
+Aπ, (1.71)

where F is some scalar constructed out of g̃µν , the induced metric on the probe brane (which

we may expect matter fields to couple to minimally - hence the choice of notation g̃µν), and

R̃α,β,γ,δ, K̃ρσ, ∇̃ε, which are the associated Riemann tensor, extrinsic curvature and covariant

derivative respectively. Aπ is the tadpole term which is invariant since δµπ is a total derivative.

The induced metric on the brane is of the form [18]

g̃µν = gµν + ∂µπ∂νπ. (1.72)

π is the position modulus of the brane along the 5th dimension and gµν is the induced metric

on constant π hypersurfaces. Here we will focus on the simple case when gµν = ηµν , i.e. it is

Minkowski. The unique geometrical quantities which are free of any ghost-like degrees of freedom

are then given by the Lovelock invariants [30, 65, 18]. In addition to the tadpole term π the
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relevant terms are

Fλ = −λ
∫

d4x
√
−g = −λ

∫
d4x
√

1 + (∂π)2 (1.73)

FK = −M3
5

∫
d4x
√
−gK = M3

5

∫
d4x

(
[Π]− γ2[φ]

)
(1.74)

FR =
M2

4

2

∫
d4x
√
−gR =

M2
4

2

∫
d4x γ

((
[Π]2 − [Π2]

)
+ 2γ2

(
[φ2]− [Π][φ]

))
(1.75)

FGB = −βM
3
5

m2

∫
d4x
√
−gKGB

= β
M3

5

m2

∫
d4x γ2

(2

3

(
[Π]3 + 2[Π3]− 3[Π][Π2]

)
+ 4γ2([Π][φ2]− [φ3]) (1.76)

− 2γ2([Π]2 − [Π2])[φ]
)
,

where γ = 1/
√

1 + (∂π)2 and we follow the notation of [29, 18] with Πµν = ∂µ∂νπ and

square brackets [...] denoting the trace operator (w.r.t. the Minkowski metric ηµν). Also

[φn] ≡ ∂π .Πn . ∂π . The form of these interactions is then protected by the nonlinearly realized

5D Poincare symmetry. This becomes especially clear when taking the non-relativistic limit

(∂π)2 � 1 of the Lovelock invariants shown above. We obtain [18]

F2 = SNRλ = −λ
2

∫
d4x (∂π)2 (1.77)

F3 = SNRK =
M3

5

2

∫
d4x (∂π)2�π (1.78)

F4 = SNRR =
M2

4

4

∫
d4x (∂π)2

(
(�π)2 − (∂µ∂νπ)2

)
(1.79)

F5 = SNRGB = β
M3

5

3m2

∫
d4x (∂π)2

(
(�π)3 + 2(∂µ∂νπ)3 − 3�π(∂µ∂νπ)2

)
. (1.80)

which are the Galileon terms first introduced by [29]. The additional symmetry coming from

rotations in the 5th dimension here manifests itself in the form of a non-relativistic Galilean

symmetry, from which the theory inherits its name

π → π + c+ bµx
µ. (1.81)

In other words, in addition to invariance (up to total derivatives) under π → π + c we now have

an extra shift symmetry ∂µπ → ∂µπ + bµ. We therefore have a theory which has the right type

of interactions to exhibit Vainshtein-screening and is also a robust EFT due to the fact that

the interaction terms are protected from renormalizations by the Galilean shift symmetry (or

its relativistic generalization). Note that the equations of motion resulting from these Galileon

terms are purely second order as a result of the Galilean shift symmetry. They are therefore
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a special case of the setups proposed by [33, 34] which derived the most general scalar-tensor

theories with second and first order equations of motion. Such terms are still protected from the

appearance of Ostrogradski-type ghosts, but do not obey the Galilean shift symmetry. Protection

from quantum corrections is therefore lost and one relies on high energy physics to fortuitously

cancel quantum corrections and conspire to give the effective Lagrangian under consideration.

1.3.4 Conformal/disformal geometry and screening

Reminding ourselves of the generic disformal relation

g̃µν = A2(φ,X)gµν +B2(φ,X)∂µφ∂νφ (1.82)

an interesting picture emerges as regards screening in modified gravity theories.

Chameleon screening: In the standard scenario [15, 16] this arises in the conformal limit

of the disformal relation, i.e. B2 = 0, and for a particularly simple non-derivative conformal

factor A2 = A2(φ). In chapter 5 we will show that chameleon screening remains unaffected by

the introduction of disformal terms, but that a more generalized conformal factor A2(φ,X), i.e.

a conformal factor which explicitly does depend on derivatives of the field, can lead to interesting

alterations to the chameleon mechanism. As such the conformal limit of the disformal relation

becomes associated with a generalized chameleon model.

Vainshtein screening: In the previous section we saw how DBI galileons [18] arise when

an induced metric g̃µν = gµν + ∂µφ∂νφ is present. This is of course a trivial disformal metric

with A2 = B2 = 1. In fact the Vainshtein screened terms Fλ and FR arise geometrically

from g̃µν from the determinant of g̃µν and its corresponding Ricci scalar. As we will show

in chapter 6 the remaining terms arise naturally when the full triformal relation is taken into

account. Analogously we expect that generalizing the triformal metric (1.7) by considering non-

trivial B2 and C2 generates the setups alluded to above and proposed by [33, 34], i.e. the most

general scalar-tensor theories with second and first order equations of motion. The salient point

here is that the disformal factor B2 (and the triformal factor C2) controls the generation of

higher derivative interactions and hence Vainshtein screening.

While chameleon phenomenology is a result of considering non-trivial conformal limits of (1.82),

Vainshtein screening therefore arises due to non-trivial disformal factors B2 (and triformal fac-

tors C2). As such the different terms in (1.82) acquire a rather instructive phenomenological

significance.
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Chapter 2

Constraining single field inflation

(beyond slow-roll)

2.1 Introduction

In prologue II of the introduction 1.2 we saw that disformal bimetric models generically and

non-perturbatively generate P (X,φ) setups. Going the other way, we also discovered that, when

considering perturbations in any P (X,φ), an effective bimetric desription arises. Disformal

bimetric models are therefore intimately tied to non-canonical actions. As such we would like

to investigate such P (X,φ) theories in some detail in this chapter, focusing on the inflationary

regime. In particular we would like to ask what generic constraints we can place on inflationary

parameter space for single-field models of inflation as arising in a disformal context. One of

the primary challenges in doing so is to understand inflationary physics beyond the slow-roll

paradigm. And indeed, there has been a lot of progress recently in understanding inflationary

phenomenology without assuming slow-roll conditions [66, 1, 67, 68, 69], i.e. where inflation is

not almost de Sitter. An important question then poses itself: How far may we depart from

the standard slow-roll regime without coming into conflict with observational and theoretical

constraints? More specifically, what bounds can we place on “slow roll” parameters (which

measure the “distance” from purely de Sitter expansion)? In this chapter we present a number

of such constraints for generic classes of inflationary single field models.

Departure from pure de Sitter expansion generically breaks the scale invariance of n-point

correlation functions for the curvature perturbation ζ. However, present-day data constrain the

2-point function (the power spectrum) to be near scale-invariant [9]. Generic single field models

can restore this observed behaviour via the introduction of non-canonical kinetic terms and

hence a time-varying “speed of sound” cs [66]. In doing so, large interaction terms are produced

at the level of the cubic action, leading to the generation of large levels of non-Gaussianity.

40
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These will be heavily constrained by CMB and large scale structure surveys in the near future

and as such non-Gaussianity becomes an excellent tool for constraining slow-roll parameters

and selecting models of primordial structure formation [9, 70, 71, 72, 73, 74]. One of the most

interesting questions one may hope to answer in this way is: Can fast-roll models of inflation be

distinguished observationally?

We investigate the phenomenology associated with such models, extending the work by [66]

and showing that these models have several distinct observable signatures. These include a

generically large running of non-Gaussianity nNG with scale, the suppression of the size of non-

Gaussianity fNL by non-slow-roll εi and the modification of non-Gaussian shapes for single field

models. These considerations widen the number of potential future observations that could be

explained by single field models. And even if future measurements turn out to favor multifield

models, it is still important to fully understand the potential effects of individual fields that may

participate in such models.

The plan for this chapter is as follows. In section 2.1.1 we quickly review P (X,φ) theories and

discuss the requirement of weak coupling. In section 2.2 we then set the stage by considering the

two-point correlation functions for scalar and tensor perturbations in general single field models.

We compute the resulting observational constraints on slow-roll parameters and also summarize

bounds coming from other sources. Then, in section 2.4, we give the explicit non-Gaussian

amplitudes for general single field models without assuming slow-roll conditions (section 2.4.1).

Observational signatures are considered in detail for fequiNL (section 2.4.2), non-Gaussianity shapes

(section 2.4.3) and running with scale nNG (section 2.4.4). In section 2.5 concrete models are

provided for the phenomenologically interesting cases by explicitly constructing their actions.

Finally, in section 2.6, we summarize the salient results of this chapter.

2.1.1 The setup

As introduced in section 1.2.2, we consider general single field inflation models described by an

action

S =

∫
d4x
√
−g
[
R

2
+ P (X,φ)

]
, (2.1)

where X = −1
2g
µν∂µφ∂νφ. We also remind ourselves of the hierarchy of slow-roll parameters

ε ≡ − Ḣ

H2
, η ≡ ε̇

εH
, ... εs ≡

ċs
csH

, ηs ≡
ε̇s
εsH

, ... ,where c2
s =

P,X
P,X + 2XP,XX

(2.2)
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where the non-canonical nature of the action is essentially quantified by

c2
s =

P,X
ρ,X

=
P,X

P,X + 2XP,XX
, (2.3)

Σ = XP,X + 2X2P,XX =
H2ε

c2
s

, (2.4)

λ = X2P,XX +
2

3
X3P,XXX , (2.5)

and cs is the speed of sound with which perturbations propagate. A near de Sitter expansion

is associated with the slow-roll regime, where ε, η...εs, ηs...� 1 and accelerated expansion takes

place as long as ε < 1. We now wish to understand what constraints can be placed on these

parameters. For simplicity we here focus on the case where slow-roll is broken at the first level

in the hierarchy, for ε and εs, but assume that slow-roll conditions still hold for higher order

parameters, setting η, ηs ∼ 0. In other words, following [66, 3, 1] we consider models where

slow-roll conditions are broken by ε, εs ∼ O(1) and constant.

In deriving the constraints presented here we will firstly map present-day observational bounds,

especially those coming from the WMAP experiment [9], onto the parameter space of fast-rolling

models. As a second guidance principle we will impose a minimal theoretical constraint: The

fluctuations described by (2.1) should remain weakly coupled for at least ∼ 10 e-folds. This

range corresponds to the observable window of scales where primordial non-Gaussianity may be

measured (running from CMB, k−1 ∼ 103 Mpc, to galactic scales, k−1 ∼ 1 Mpc).

Why require weak coupling at all? Strong coupling scales are frequently associated with the

appearance of new physics. In the standard model, for example, the would-be strong coupling

scale lies around ∼ 1 TeV , before the Higgs is introduced. We may expect an analogue to be true

for single field inflation models, especially given the generic presence of other massive degrees

of freedom (dof) in UV completions of primordial physics. Such dofs may be integrated out at

low energies, but can become relevant around the would-be strong coupling scale [45, 75]. If so,

predictions beyond this scale will depend on exactly how and which dofs enter. Flipping the

argument around, even if we were able to calculate the dynamics for generic strongly coupled

systems, one should remain cautious whether the effective field theory under consideration is

valid anymore in such circumstances. As such we will require weak coupling to ensure that (2.1)

is predictive over at least the observable window of scales where primordial fluctuations may be

measured.
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2.2 Power spectra

2.2.1 The spectral index ns

In this section we sketch the calculation of the primordial power spectrum of scalar perturbations.

In prologue II we defined perturbations in the FLRW metric and the associated curvature

perturbation on uniform density hypersurfaces ζ (see equations (1.21) and (1.25)). We now

perturb (2.1) to quadratic order in ζ and obtain [20]

S2 =
M2

Pl

2

∫
d3xdτ z2

[(
dζ

dτ

)2

− c2
s(~∇ζ)2

]
, (2.6)

where τ is conformal time, and z is defined as z = a
√

2ε/cs.

As a consequence of considering non-canonical kinetic terms, we have introduced a dynamically

varying speed of sound. This means it is convenient to work in terms of the “sound-horizon” time

dy = csdτ instead of τ [66]. For the case relevant here, i.e. η = ηs = 0 or (equivalently) requiring

ε̇ = ε̇s = 0, one finds

y =
cs

(ε+ εs − 1)aH
. (2.7)

In terms of y-time the quadratic action takes on the familiar form

S2 =
M2

Pl

2

∫
d3xdy q2

[
ζ ′2 − (~∇ζ)2

]
, q ≡

√
csz =

a
√

2ε
√
cs

, (2.8)

where ′ ≡ d/dy. It is useful to list the behavior in proper time τ and in y-time of some relevant

quantities for later reference:

a ∼ (−τ)
1
ε−1 ; cs ∼ (−τ)

εs
ε−1 ; H ∼ (−τ)

−ε
ε−1 ,

a ∼ (−y)
1

εs+ε−1 ; cs ∼ (−y)
εs

εs+ε−1 ; H ∼ (−y)
−ε

εs+ε−1 . (2.9)

Upon quantization the perturbations are expressed through creation and annihilation operators

as follows,

ζ(y,k) = uk(y)a(k) + u∗k(y)a†(−k) , [a(k), a†(k′)] = (2π)3δ3(k− k′). (2.10)

In terms of the canonically-normalized scalar variable v = MPlqζ the equations of motion for the

Fourier modes are

v′′k +

(
k2 − q′′

q

)
vk = 0 . (2.11)
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If ε, η, εs, ηs are constant, as is the case here, one can solve for q′′/q exactly [76]:

q′′

q
=

1

y2

(
ν2 − 1

4

)
. (2.12)

The precise solution for vk(y) depends on which initial vacuum is chosen. Typically this is the

Bunch-Davis vacuum, which is defined to be the state annihilated by a(k) as t → −∞. With

this vacuum choice the solution for vk(y) is

vk(y) =

√
π

2

√
−y H(1)

ν (−ky). (2.13)

where H(1)
ν are Hankel functions of the first kind. However, we note that different adiabatic

vacuum choices are possible in principle and also have distinctive observational signatures (par-

ticularly non-Gaussianities) [77, 78, 79, 80]. For the modes defined in (2.10) one finds

uk(y) =
c

1/2
s

aMPl

√
2ε
vk(y) =

c
1/2
s

aMPl23/2

√
π

ε

√
−yH(1)

ν (−ky). (2.14)

Therefore the 2-point correlation function for ζ is:

〈ζ(k1)ζ(k2)〉 = (2π)5δ3(k1 + k2)
Pζ
2k3

1

, (2.15)

where the expression for the power spectrum Pζ is1

Pζ ≡
1

2π2
k3 |ζk|2 =

(εs + ε− 1)2 22ν−3

2(2π)2ε

H̄2

c̄sM2
Pl

. (2.16)

Note that we have approximated the propagator uk(y) assuming ns − 1� 1 in accordance with

observations here (for details see appendix C - a more general expression for Pζ can be found

in [76]). The bar symbol means that the corresponding quantity has to be evaluated, for each

mode k, at sound horizon exit, i.e. when y = k−1. The spectral index ns is finally given by

ns − 1 ≡
dlnPζ
dlnk

= 3− 2ν =
2ε+ εs
εs + ε− 1

. (2.17)

Therefore exact scale invariance obtains when ns = 1, i.e. εs = −2ε. Constraints on ns

consequently translate into relational constraints on ε and εs. Importantly this means no direct

bound on either ε or εs can be obtained in this way, because for any parameter choice ε one can

find an appropriate εs to yield a (near)scale-invariant solution. This is in contrast to the case of

canonical fields, where the smallness of ns − 1 requires ε to be small. Note that, if we drop our
1This can be evaluated straightforwardly according to the prescription outlined in appendix C.
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assumption η = 0 and consider a fully general canonical field, then the constraint from ns − 1

maps to a more complicated constraint on the full hierarchy of slow-roll parameters associated

with derivatives of H. Generalizing to a general non-canonical field theory and dropping ηs then

opens up the new hierarchy of slow-roll parameters associated with derivatives of cs. The salient

point in all of these cases is that, when considering non-canonical theories additional degrees of

freedom enter and hence the need for additional ways of measuring/fixing these new parameters

becomes more pressing. In what follows we will use the tensor-to-scalar ratio r and three-point

correlation functions for ζ to probe the non-canonical theories in question and mostly focus on

the case of an exactly scale-invariant 2-point function ns = 1 following [66], requiring εs = −2ε

and η, ηs = 0. (ns − 1)-dependent corrections in this setting are considered in appendix D.

2.2.2 The tensor-to-scalar ratio r

In inflation [10, 11, 12, 13] primordial quantum tensor fluctuations are sourced on sub-horizon

scales before leaving the horizon and freezing out in analogy to scalar fluctuations. Present

observational upper bounds on the tensor-to-scalar ratio r therefore constrain the amount of

gravity waves that could have been generated in the early universe. Here we use bounds on r

to constrain slow-roll parameter ε. Note that non-inflationary bimetric models of the primordial

epoch, as discussed in chapter 3 do not resolve the horizon problem for gravitational waves [23].

As no quantum tensor fluctuations are amplified to become classical outside the horizon one does

not expect any significant primordial gravitational wave contribution for these models. Such

models are therefore typically assumed to give r ≈ 0 as no explicit mechanism to generate tensor

perturbations exists for them/footnoteIn addition this of course relies on imposing appropriate

initial conditions such that no significant tensor fluctuations persist to the present era..

The action governing tensor modes is [76]

S =
1

2

∫
d3k

2∑
n=1

∫ (∣∣∣ṽ′k,n∣∣∣2 −
(
k2 − a

′′

a

)
|ṽk,n|2

)
dη (2.18)

where the sum runs over the two distinct polarization modes and we have introduced ṽ to

distinguish between variables ṽ and v associated with tensor and scalar perturbations respectively.

The action is written in terms of a Mukhanov-Sasaki variable ṽk,n = a(η)MPl

2 hk,n, where a is the

scale factor of the FRW metric.

Referring back to our discussion of curvature perturbations in prologue II (see in particu-

lar (1.21)), tensor perturbations correspond to the the δgij = hij component [39]. We express

the associated Fourier modes as hk,n where as mentioned above the index n runs over the two

independent polarization modes. Upon quantization ṽ can be expressed in terms of creation and
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annihilation operators as
ˆ̃vk,n = ṽk(η)ˆ̃ak,n + ṽ∗k(η)ˆ̃a†k,n. (2.19)

The equation of motion for tensor modes can then be written as

ṽ
′′
k +

(
k2 − a

′′

a

)
ṽk = 0. (2.20)

Accordingly we can now write down the power spectrum of tensor perturbations, where the sum

again runs over polarization modes

Ph =
k3

2π2

2∑
n

〈|hk,n|2〉, (2.21)

which can be found to be [39, 76]

Ph = 22µ−3

∣∣∣∣ Γ(µ)

Γ(3/2)

∣∣∣∣2 (1− ε)2µ−1

∣∣∣∣∣
√

2H

πMpl

∣∣∣∣∣
2

k=aH

, (2.22)

where

µ =
1

1− ε
+

1

2
. (2.23)

Importantly the tensor power spectrum is evaluated at horizon crossing for the tensor modes.

For general theories with a non-canonical kinetic term (2.1) this horizon is different from the

corresponding horizon for scalar perturbations. The spectral index of tensor perturbations nt
then is

nt =
−2ε

1− ε
. (2.24)

The tensor-to-scalar ratio r is given by

r ≈ 22µ−3 (1− ε)2µ−1

(εs + ε− 1)2

∣∣∣∣∣ Γ(µ)

Γ
(

3
2

)∣∣∣∣∣
2

16cs(kζ)ε

(
Hh

Hζ

)2

(2.25)

where cs has to be evaluated at scalar horizon crossing and Hh and Hζ correspond to the Hubble

factor at freeze-out for tensor and scalar modes respectively [39].2 Note that the dependence on

the ratio of H at different horizon crossings can induce a strong scale dependence for r.

Present-day observational constraints limit r . 0.3. The WMAP 95 % confidence level bound

is r < 0.24 [9].3 For a given value of ns this can therefore be used to constrain εcs(kζ). Ref [81]
2As a comparison with (2.16) shows, we have assumed ns − 1 = 3− 2ν � 1 here, i.e. near-scale-invariance.
3This bound is obtained assuming nt = −r

8
, however. The relation between nt and r is of course more involved

for general single field models as a comparison between (2.24) and (2.25) shows. However, given that we obtain a
red tilt of tensor modes (and Ph therefore peaks on the largest scales) the bound on r should only weakly depend
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perform an MCMC sampling for general single field models (2.1) to find εcs < 0.023 at 2σ for a

flat prior (note that the result is somewhat prior dependent).

For a horizon crossing sound speed of c̄s = 0.1 this corresponds to ε . 0.23 which agrees with

the approximate bound derived by [66]. However, as shown by [82] present observational limits

for the speed of sound only place a much weaker bound of c̄s∼>0.011 at 2σ on generic single

field inflation models4. In a more model-specific context this bound can be strengthened, e.g.

for DBI-inflation we find c̄s∼>0.034, yielding ε∼<0.68. If future observations can improve bounds

for generic single field models even further, e.g. c̄s∼>0.05, this bound on ε can be improved to

ε . 0.4. However, as we will see in principle far stronger constraints can be obtained from the

running with scale of the three-point function.

2.3 Observational constraints on (non)-slow-roll

As discussed in the introduction, large classes of both inflationary and bimetric models can be

described by action (2.1). Bimetric models generically have ε > 1, necessitating expressions for

observable n-point correlation functions which do not assume the smallness of slow-roll parame-

ters. Such models are discussed in detail in chapter 3. For the inflationary branch ε < 1, however,

observations can be used to constrain the allowed values of slow-roll parameters ε, εs. Establishing

bounds on inflationary physics in this way as well as disclosing generic phenomenology in fast-

roll inflation is our main aim in this chapter. Further associated phenomenology plus constraints

are derived in the following sections and we summarize the resulting bounds upfront here. The

observational bounds considered are the following:

• The spectral index ns: The spectral index of scalar perturbations ns is computed in

section 2.2.1. In terms of the slow-roll parameters it can be written as

ns − 1 =
2ε+ εs
εs + ε− 1

. (2.26)

The WMAP bounds on ns in the presence of tensor perturbations are ns = 0.973± 0.028

at 2σ. Note that these constraints are dependent on e.g. the precise value of H0 [9] and

the physics of reionization [83]. Contrary to the canonical field case, for a general single

field model (2.1) the smallness of ns − 1 � 1 no longer automatically translates into a

constraint on ε alone. Instead, for any parameter ε, one can find a corresponding speed of

sound profile parameterized by εs, which returns any desired spectral index. Bounds on

on the precise value of the tilt.
4Note that these bounds come from non-Gaussian amplitudes, which we will discuss later in this chapter.

Importantly they also ignore the fast-roll suppression will find for such amplitudes, so that the actual bound
which arises when fully taking fast-roll effects into consideration is expected to be significantly weaker still.
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ns therefore only translate into constraints on the relation between ε and εs, not on either

variable by itself.

• The tensor-to-scalar ratio r: The tensor-to-scalar ratio r is similarly constrained by

CMB observations. The WMAP experiment provides a bound r < 0.24 at 2σ [9]. As we

have seen above in section 2.2.2, the first order relation r = 16εcs is modified in general

single field models without slow-roll and one can compute corresponding bounds on slow-

roll parameter ε. For DBI-type models we find ε . 0.68.

• The running nNG: Introducing non-canonical kinetic terms can lead to a strong running

of non-Gaussianities with scale nNG [66, 84, 85, 86], irrespective of whether the 2-point

correlation function as measured by ns is near-scale-invariant or not. This can impose

further constraints on ε. If non-Gaussianities show a blue tilt, this means they peak on

smaller scales. For a perturbative treatment to be applicable, one therefore needs to ensure

that non-Gaussianities on the smallest observable scales are not too large for a perturbative

approach to break down. We discuss this in detail in section 2.4.4. There we also identify

under which conditions non-Gaussianities are blue tilted and what constraints on ε follow.

We show that constraints are in principle model-dependent. However, for a very large

subclass of models one can obtain rough bounds

ε . 0.2 if fNL(CMB) ∼ O(100) (2.27)

ε . 0.3 if fNL(CMB) ∼ O(10) (2.28)

ε . 0.5 if fNL(CMB) ∼ O(1). (2.29)

This result agrees with bounds obtained in the exactly scale invariant case [66]. However,

we show that these limits are somewhat dependent on parameters cs,Σ, λ.

• The Big Bang problems: Observational bounds only place constraints on primordial

perturbations for a small range of scales: CMB (∼ 103Mpc) to galactic scales (∼ 1Mpc).

ns,r and nNG as discussed above are therefore only observationally constrained over these

scales.

In an inflationary setup this corresponds to approximately 10 e-folds, where the number of

e-folds N of inflation is given by dN = −Hdt. In order to resolve the flatness, homogeneity

and isotropy problems of cosmology, a greater number of e-folds is needed. Conventionally

this is chosen N ∼ 60, although the minimal amount of e-folds needed is not very well

defined and depends e.g. on the energy scale of inflation, details of the reheating mecha-

nism, etc. [87] The inflationary condition ε < 1 is sufficient to yield an attractor solution

towards flatness, homogeneity and isotropy [66]. A large number of e-folds requires ε < 1
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for several Hubble times, which is controlled by parameter η. As we consider cases for

which η ∼ 0 � 1, the fractional change in ε per Hubble time is small and hence starting

with ε < 1 guarantees that a prolonged phase of inflation takes place.

However, we should note that several other solutions are possible as well. For example, the

scaling phase responsible for near-scale-invariant perturbations on observable scales may be

followed by a different inflationary phase (scaling or not) [66]. Particle physics may suggest

that inflation is actually a multiple step process, where one relatively short initial phase

is responsible for observable structure on very large scales [88]. Inflation then ends and

is followed by (an)other phase(s) of accelerated expansion later. It could also be that an

altogether different mechanism5 resolves the problems in question here [46, 47, 48]. In any

case no competitive constraints on ε can be derived from consideration of these cosmological

problems. Also note that bimetric models resolve these problems in a radically different

way [46, 47, 48].

In summary, if near-future CMB experiments discover observable non-Gaussianities, then

inflationary models of the type envisaged by (2.1), with ε . 0.3, meet all the observational

bounds. In the absence of observable non-Gaussianities, bounds on the tensor-to-scalar ratio r

are likely to provide the strongest constraints on ε. We aim to explore such bounds further in

the future.

2.4 Non-Gaussianity

In this section we compute the 3-point correlation function for the curvature perturbation ζ. The

3-point function then measures the strength of interactions of the field6 which are described by

the interaction vertices in the cubic action. Perturbing (2.1) to cubic order in ζ one obtains this

effective action as derived in [37, 80]. The result is valid outside of the slow-roll approximation

and for any time-dependent sound speed:

S3 = MPl
2

∫
dtd3x

{
−a3

[
Σ

(
1− 1

c2
s

)
+ 2λ

]
ζ̇3

H3
+
a3ε

c4
s

(ε− 3 + 3c2
s)ζζ̇

2

+
aε

c2
s

(ε− 2εs + 1− c2
s)ζ(∂ζ)2 − 2a

ε

c2
s

ζ̇(∂ζ)(∂χ)

+
a3ε

2c2
s

d

dt

(
η

c2
s

)
ζ2ζ̇ +

ε

2a
(∂ζ)(∂χ)∂2χ+

ε

4a
(∂2ζ)(∂χ)2 + 2f(ζ)

δL

δζ

∣∣∣∣
1

}
, (2.30)

5And of course, as the flatness, homogeneity and isotropy problems are essentially initial value problems, the
correct initial values may be set by pre-inflationary physics. Whilst such a solution may be very non-definitive
and as such less appealing, one should keep in mind that there is certainly no guarantee that all cosmological
puzzles can be answered at energy scales we have (in-)direct access to.

6A free field is Gaussian, hence the 3-point function captures the non-Gaussian statistics for ζ.
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where dots denote derivatives with respect to proper time t, ∂ is a spatial derivative, and χ is

defined as

∂2χ =
a2ε

c2
s

ζ̇ . (2.31)

Note that the final term in the cubic action, 2f(ζ) δLδζ |1 is proportional to the linearized equations

of motion and can be absorbed by a field redefinition ζ → ζn+f(ζn) - for details see appendix C.

In order to aid comparison with the literature note that we may also express the cubic action in

an even simpler form [37, 67]

S3 =

∫
d3x dτ a2

{
Λ1

a
ζ ′3 + Λ2ζζ

′2 + Λ3ζ(∂ζ)2 + Λ4ζ
′∂jζ∂j∂

−2ζ ′ + Λ5∂
2ζ(∂j∂

−2ζ ′)(∂j∂
−2ζ ′)

}
.

(2.32)

At first order in perturbation theory and in the interaction picture, the 3-point function is

given by [89, 37, 80]

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = −i
∫ t

t0

dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t
′)]〉 , (2.33)

whereHint is the Hamiltonian evaluated at third order in the perturbations and follows from (2.30).

Vacuum expectation values are evaluated with respect to the interacting vacuum |Ω〉.

The 3-point correlation function is conventionally expressed through the amplitude A

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)P 2
ζ

1

Πjk3
j

A . (2.34)

Also by convention the power spectrum Pζ in the above formula is calculated for the mode

K = k1 + k2 + k3. By using (2.10) we can now calculate the amplitudes for each term appearing

in the action (2.30). Using a self-evident notation the overall amplitude is therefore given by

A = Aζ̇3 +Aζζ̇2 +Aζ(∂ζ)2 +Aζ̇∂ζ∂χ +Aε2 , (2.35)

where Aε2 accounts for the ∂ζ∂χ∂2χ and (∂2ζ)(∂χ)2 terms in the action (2.30).

In the following subsections we first present the main result (Sec. 2.4.1), which is a general

expression for A where ε is not constrained to satisfy ε � 1 are given. We then study three

physically interesting properties of these three-point functions: The size of the amplitude as

parameterized by the variable fNL (Sec. 2.4.2), its shape (Sec. 2.4.3) and the running of the

non-Gaussianity nNG (Sec. 2.4.4). Current observational bounds are also discussed for these

properties.
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2.4.1 The full amplitudes

We first present expressions for the full non-Gaussian amplitude A following [66]. Details of the

calculation are given in appendix C. We stress that these expressions do not assume slow-roll

conditions for ε, εs and are therefore valid even when these parameters become ε, εs ∼ O(1).

Here we focus on results for models with an exactly scale-invariant 2-point function (ns−1 = 0).

O(ns − 1) corrections are discussed in appendix D - also see [3, 1, 67, 69]. Interestingly, as we

will see in the following subsections, it is precisely the part of the amplitude that vanishes in

DBI type models that is instrumental for much of the new phenomenology we find for general

slow-roll violating single field models (2.1).

In what follows it will be useful to define the variable α, satisfying

α =
2ε− εs
εs + ε− 1

= − 4ε

1 + ε
, (2.36)

where the second equality holds in the scale-invariant limit εs = −2ε. Also note that we can

relate Σ, λ by introducing a new parameter fX [37, 66]

λ =
Σ

6

(
2fX − 1

c2
s

− 1

)
(2.37)

where

fX =
εεs
3εX

, εX = − Ẋ

H2

∂H

∂X
, (2.38)

and we note that there is in principle no dynamical requirement fixing εX (and hence fX) to

be small or large, even in the presence of constraints for ε [37]. As we will see the size of non-

Gaussianities can then be expressed as a function of the parameters
{
c−2
s , fX , ε, ns

}
, where fX

essentially measures the strength of the first interaction vertex ζ ′3. Relating it back to the cubic

action (2.32) it satisfies [67]

Λ1 =
2ε

3Hc4
s

(
1− c2

s − fX
)
. (2.39)

For DBI models (discussed in 2.5.1) fDBI
X = 1 − c2

s, so consequently the first term in the

action (2.30) vanishes and there is no Aζ̇3 contribution to the amplitude, i.e. Λ1 = 0. For

the computation of Aζ̇3 we otherwise assume for simplicity that fX (and hence the kinetic part

of ε, εX) is constant.
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The non-Gaussian amplitudes A are then given by [66]

Aζ̇3 = − 1 + ε

2c̄2
s

[
2c̄2
s + (fX − 1) cos

απ

2
Γ(3 + α)

] k2
1k

2
2k

2
3

K3
;

Aζζ̇2 =
1

4c̄2
s

[6c̄2
s + (ε− 3) cos

απ

2
(2 + α)Γ(1 + α)

] 1

K

∑
i<j

k2
i k

2
j+

−
[
3c̄2
s + (ε− 3) cos

απ

2
Γ(2 + α)

] 1

K2

∑
i 6=j

k2
i k

3
j

 ;

Aζ(∂ζ)2 =
(1 + 5ε)

8c̄2
s

cos
απ

2
Γ(1 + α)

1 + α

1− α
∑
j

k3
j +

2− α2

1− α
2

K

∑
i<j

k2
i k

2
j

− 2(1 + α)
1

K2

∑
i 6=j

k2
i k

3
j −

α

K(1− α)

∑
i

k4
i +α

1 + α

1− α
k1k2k3

]

− 1

8

∑
j

k3
j +

4

K

∑
i<j

k2
i k

2
j −

2

K2

∑
i 6=j

k2
i k

3
j

 ;

Aζ̇∂ζ∂χ =− ε

4c̄2
s

cos
απ

2
Γ(1 + α)

∑
j

k3
j +

α− 1

2

∑
i 6=j

kik
2
j − 2

1 + α

K2

∑
i 6=j

k2
i k

3
j − 2αk1k2k3

 ;

Aε2 =
ε2

16c̄2
s

cos
απ

2
Γ(1 + α)(2 + α/2)

∑
j

k3
j −

∑
i 6=j

kik
2
j + 2k1k2k3

 , (2.40)

where Aε2 accounts for the ∂ζ∂χ∂2χ and (∂2ζ)(∂χ)2 terms.

2.4.2 fNL

The size of the three-point correlation function is usually quoted using parameter fNL. Here we

focus on the equilateral limit k1 = k2 = k3 = K/3 and define fequiNL in terms of the amplitudes

A [66]:

fequiNL = 30
Ak1=k2=k3

K3
, (2.41)

where we have matched amplitudes at k1 = k2 = k3 = K/3, i.e. in the equilateral limit. Defined

in this way fequiNL is essentially the value of the amplitude A at a particular point in k-space

and serves as a convenient single number measure of the amplitude of non-Gaussianity in the

equilateral limit k1 = k2 = k3

Note that we follow theWMAP sign convention here, where positive fNL physically corresponds

to negative-skewness for the temperature fluctuations. In the literature expressions for fequiNL for
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a general theory with action (2.1) has been investigated in detail for slowly varying cs and to first

order in slow-variation parameters [80]. For (potentially) rapidly varying cs when the 2-point

correlation function is exactly scale invariant only a small section of the parameter space has been

explored so far [66] (namely only cases assuming fX ∈ {0, 1}). Here we generalize these results

by exploring the full observationally allowed parameter-space to arbitrary order in slow-variation

parameter ε, focusing on the novel effects on fequiNL due to the departure from slow-roll.

Since requiring a scale-invariant 2-point function yields εs = −2ε, fast-roll models with ε ∼
O(1) lead to a rapidly decreasing cs (as long as inflation is not ghost-like, i.e. ε 6< 0). They

therefore naturally yield regimes where cs is small and the 3-point function is large. A useful

fitting formula illustrating this point in this context is [66]

fequiNL = 0.27− 0.164

c̄2
s

− (0.12 + 0.04fX)
1

c̄2
s

(
1− 4ε

1 + ε

)
. (2.42)

In order to establish a connection between different conventions we remind ourselves that fX can

be expressed in terms of λ/Σ [37], given that

fX =
1

2

((
6
λ

Σ
+ 1

)
c2
s − 1

)
. (2.43)

It follows that |fX | � 1 in the presence of c2
s ≤ 1 entails

∣∣ λ
Σ

∣∣ � 1. From (2.42) a good order of

magnitude estimate for models with a large amount of non-Gaussianity as measured by fequiNL � 1

is

fequiNL ∼ O(c−2
s ) +O(

λ

Σ
) ∼ O(c−2

s ) +O(
fX
c2
s

). (2.44)

Interestingly, this result corresponds to the case where fluctuations in the scalar field dominate

over those in gravity [22, 90]. Equation (2.44) suggests that deviations from slow-roll and breaking

of scale invariance alone are not sufficient to generate significant levels of non-Gaussianity by

themselves.

However, departures from slow-roll can have a significant effect for non-Gaussianities of de-

tectable size fequiNL ∼>O(1). Note that, considering the parametric dependence of the amplitude,

εs is fixed in terms of ns, ε via (2.36). For a given ns, an fNL increasing with larger ε therefore

corresponds to εs decreasing whilst fNL increases and vice versa. The left graph in figure 2.1

show how considering non-slow-roll ε can lead to a suppression of fequiNL . In fact, if ε is allowed

to range to ε∼>0.3 this can even result in a sign change in fequiNL .7

Particularly instructive is the case when a large amplitude A is primarily due to λ/Σ � 1.

Then, the exact expression for fequiNL simplifies considerably and we obtain (irrespective of whether

7We will see why we only consider ε ∈ {0, 0.3} here when we consider the dependence on scale k of the 3-point
function itself.
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cs is large or small)

ffX�1
NL ∼ −(1 + ε)

fX
c̄2
s

cos
(
α
π

2

)
Γ(3 + α). (2.45)

At first sight a good estimate for fequiNL in this case is fequiNL ∼ O(fX/c
2
s) ∼ O( λΣ) in agreement

with (2.44). However, the amplitude is suppressed by a factor of cos απ2 Γ(3+α). For 0 < ε . 0.33

this factor indeed always causes a suppression, which can easily reduce the size of the amplitude

by more than an order of magnitude for ε ∼ 0.3, for example. As before, if ε is allowed to range

all the way up to e.g. ε ∼ 0.4, this effect will lead to a change in sign for fequiNL . Thus slow-roll

models with an fequiNL that violate present bounds (see below) can be reconciled with observations

when non-slow-roll effects are taken into consideration.

Observational constraints on fequiNL depend on which non-Gaussian shape is being probed [91,

92, 93], as discussed in the next subsection. Frequently these constraints are quoted for three

shapes. Firstly, the equilateral shape, peaking in the limit k1 = k2 = k2 and going to zero in the

flat limit k1+k2 = k3. This roughly corresponds to the shapes following fromAζ̇∂ζ∂χ,Aε2 and also

approximately Aζ̇3 (although for Aζ̇3 there are small differences in the flat limit k1 + k2 = k3).

A second possibility is the local shape, which peaks in the squeezed limit k1 = k2 � k3 and

goes to zero in the equilateral limit. This is loosely associated with the shapes of Aζζ̇2 and

Aζ(∂ζ)2 . Finally, one may consider orthogonal/folded shapes. Here a suitable template shape is

one which peaks in the folded configuration 2k1 = 2k2 = k3 and goes to zero in the equilateral

and squeezed limits cf. [82, 94]. This corresponds to the difference between Aζ̇3 and a more exact

equilateral shape such as Aζ̇∂ζ∂χ or Aε2 . For a list of possible factorizable shape ansätze we refer

to [95, 82, 77].8 Current WMAP limits on fNL for each of these shapes are [9]

f equil
NL = 26± 240 (95% CL),

f local
NL = 32± 42 (95% CL),

forth
NL = −202± 208 (95% CL). (2.46)

2.4.3 Shapes

In the previous section the information contained in A was condensed into a single parameter,

fequiNL . However, there is vastly more information available, encoded in the functional dependence

of A [91, 92, 93]. This is uniquely specified by the four parameters ε, ns, c̄s, fX .9 In order to

disentangle effects from a possible running of A with wavenumber K and the shapes themselves,
8A complete basis capable of describing arbitrary shapes in k-space in principle has infinitely many “shape-

members”. However, for the models considered here these three basis shapes will be sufficient.
9Note that there is an issue of choice here as we have six variables ε, εs, ns, c̄s, fX , λ/Σ and two constraint

equations (2.17) and (2.43). For instance specifying ε, εs, c̄s, λ/Σ therefore also fixes the amplitude.
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Figure 2.1: Left: fequiNL vs. ε for a horizon-crossing c̄s = 0.1 and fX = −70. Middle: The dimensionless
bispectrum A(k1, k2, k3)/(k1k2k3) plotted in the slow-roll limit ε → 0 for c̄s = 0.07 and fX = −53. Triangular
shapes denote the equilateral, enfolded and squeezed/local limit clockwise from top left. Right: Analogous plot
for ε = 0.3. Note how the overall amplitude is suppressed and the shape has changed, now peaking in the enfolded
limit.

in this section we present the shape of the amplitude at fixedK. In interpreting the shapes shown

in this section it may be useful to emphasize that from (2.41) it follows that a good estimate for

the size fNL corresponding to a given plotted shape (we normalize one wavevector k and hence

plot A(1, k1, k2)/(k1k2)) is the value of the plotted amplitude in the equilateral limit.

In the near future the shape and running of A will hopefully become experimentally accessible

and, if a significant amount of non-Gaussianity is detected, will greatly constrain models of struc-

ture formation in the early universe. After all, at present these models are only observationally

constrained to fit or respect upper limits on a number of single value parameters (The amplitude

of scalar perturbations A, its spectral tilt ns, fNL, the tensor-to-scalar ratio r). Fitting a full

function would prove far more challenging and provide a strong model selection tool.

The prototypical shape that has been associated with significant non-Gaussianity in single-

field models is one of the equilateral type [80, 66, 77, 96, 3], where the amplitude peaks in the

limit k1 = k2 = k3. If we fine-tune Aζ̇3 to cancel out the dominant equilateral contribution of the

other shape functions, a small region of parameter-space can also be shown to display dominant

orthogonal or folded signals, i.e. non-Gaussian amplitudes peaking in in the limit [82]. A generic

single field shape is therefore a superposition of equilateral and orthogonal/folded shapes, with

the orthogonal/folded configuration typically being subdominant. This is in contrast to e.g.

multifield models which can also give rise to strong local contributions to A (i.e. peaking in

the squeezed limit k1 ≈ k2 � k3) [77] via superhorizon interactions local in position space.

This is because superhorizon evolution is local in space, as different regions are not causally

connected with each other. Therefore any amount of non-Gaussianity generated after horizon

exit is also local in position space and hence not local in k-space. It consequently peaks in the

squeezed limit. In single field models, on the other hand, ζ is frozen in upon horizon exit, so

no superhorizon evolution takes place. Far inside the horizon modes typically oscillate and their

contributions to A average out. For known exceptions to this see [78, 79, 80, 96, 97, 98]. Thus
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A is almost completely sourced by modes exiting the horizon at similar times and hence with

similar wavelengths. Consequently A peaks in the equilateral limit.

An interesting question to ask is therefore: Do deviations from slow-roll modify non-Gaussian

shapes produced by single field models? And, if so, how? But before considering fast-roll scenar-

ios, let us first understand the slow-roll limit a bit better. In this limit the cubic action (2.30) is

dominated by its first three terms

Sslow−roll ∼ MPl
2

∫
dtd3x

{
−a3

[
Σ

(
1− 1

c2
s

)
+ 2λ

]
ζ̇3

H3

+
a3ε

c4
s

(ε− 3 + 3c2
s)ζζ̇

2 +
aε

c2
s

(ε− 2εs + 1− c2
s)ζ(∂ζ)2 + ...

}
, (2.47)

This is visible from (D.15) and (D.16) as we can see there that the amplitudes corresponding to

the remaining terms in the action are suppressed by powers of ε. The leading order contributions

to A are therefore

Aslow−roll ∼ Aζ̇3 +Aζζ̇2 +Aζ(∂ζ)2 . (2.48)

A breaking of scale-invariance will then introduce a local component into the amplitude in

accordance with Maldacena’s consistency relation for the squeezed/local limit10. This states

that, in the absence of large subhorizon interactions, the very squeezed limit is dominated by a

local shape contribution proportional to ns − 1 [89, 99]

〈ζk1ζk2ζk3〉 ∼ −(ns − 1)δ3(
∑
i

ki)
Pζ(k1)Pζ(k3)

4k3
1k

3
3

. (2.49)

The middle and bottom row of Figure 2.2 then show how considering non-canonical fields with

cs 6= 1 and/or |fX | � 1 can amplify A. As expected, the resulting shapes are predominantly

equilateral. It is important to note that, while breaking of scale-invariance does induce a local

contribution, this contribution only dominates the signal in the squeezed limit. The extreme

squeezed limit is of course not observationally accessible, as it corresponds to considering modes

with infinite wavelength. If the local contribution is sufficiently subdominant outside the extreme

squeezed limit, as in the case plotted in the middle row of Figure 2.2, it is therefore possible that

the observable section of the amplitude A is consistent with it being purely equilateral, despite

there being a (small) local contribution.

What happens once we violate the slow-roll conditions and consider cases with ε ∼ O(1) con-

sistent with constraints derived above? Firstly the remaining interaction terms in (2.30),Aζ̇∂ζ∂χ
and Aε2 , which were previously suppressed by powers of ε, now become relevant. Even more

10This is also shown in the left column of Figure 2.2, where the amplitude is plotted for a slow-rolling near-
canonical field (i.e. with cs ∼ 1 and fX ∼ 0) and spectral index ns = 0.96. For the O(ns − 1) corrections used to
plot these graphs see appendix D
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Figure 2.2: Here we plot the Non-Gaussian amplitude A(k1, k2, k3)/(k1k2k3) disentangling effects
from ε, c̄s and fX . Note that we are plotting a different section of k-space in comparison with
figure 2.1. Axes correspond to k2/k1 and k3/k1 just as in figure 2.1. Here the top right corner
is the equilateral limit, the folded limit is at the center of the box, while the bottom right and
top left corners both represent the squeezed limit - hence the symmetry of the plots. Top row:
The effect of varying ε. The amplitude is plotted for ε = 0.01, 0.1, 0.3 respectively from left
to right. c̄s = 1 and fX = 0.01. Middle row: The effect of varying c̄s. The amplitude is
plotted for c̄s = 1, 0.1, 10 respectively from left to right. ε = 0.01 and fX = 0.01. Bottom row:
The effect of varying fX . fX = 0.01, 100, −100 respectively from left to right. ε = 0.01 and
c̄s = 1.
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Figure 2.3: Here we plot the Non-Gaussian amplitude A(1, k1, k2)/(k1k2) for fX = −100 and
cs = 0.05. Axes label k2/k1 and k3/k1 as before. Plots for the left and right columns are for
ε = 0.001, 0.3 respectively.

importantly the remaining terms receive large corrections from ε. This is most easily shown by

considering the case when non-Gaussianities are primarily sourced by fX � 1. In this case we

have

A(fX � 1) ∼ Aζ̇3 ∼ −
fX − 1

2c̄2
s

(ε+ 1) cos
απ

2
Γ(3 + α)

k2
1k

2
2k

2
3

K3
. (2.50)

As we already saw in the previous section (2.45) this means the amplitude is suppressed by a

factor of cos απ2 Γ(3 +α). Considering violations of slow-roll can therefore lead to interesting new

phenomenology, as previously suppressed contributions become important.

How can one understand the fast-roll suppression of the non-Gaussian amplitude as manifest

in (2.50) physically? In essence one can separate the effect of considering large ε, εs on the

amplitude into two categories. On the one hand the interaction Hamiltonian that follows directly

from (2.30) is modified, since the “coupling constants” for individual interaction terms depend on

ε, εs. The interaction terms one can ignore in the slow-roll limit (2.47) are all proportional to ε,

so that their effect linearly increases upon breaking slow-roll. This explains why in the canonical

case with ignorable fx (as depicted in the left panel of figure 2.1) an increase in ε leads to an

enhanced non-Gaussian signal. For in the canonical extreme slow-roll limit one is essentially

considering a free field and interaction terms “switch on” as larger values of slow-roll parameters

are considered.

The second effect of large ε, εs, which lies at the root of the fast-roll suppression of A discussed

above, is a modification to the propagators (2.14). In other words the functional dependence

of ζ on slow-roll parameters can then become important. The argument is analogous to the

original one presented for the emergence of an equilateral shape for single field models. We recall

that this argument invoked modes far inside the horizon oscillating so that their contributions

to A average out. Considering non-slow-roll propagators can now have a similar effect. For the
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Figure 2.4: Left: nNG−1 plotted against ε in the small cs limit. Green, yellow and orange (< 2/3, < 1, < 4/3)
regions are those allowed by perturbative constraints assuming fequiNL (CMB) ∼ O(100),O(10),O(1) respectively.
Middle: Contour plot showing the region in parameter space allowed by theWMAP 2σ constraint fequil

NL = 26±240
in the slow-roll limit ε→ 0. Right: Analogous plot for ε = 0.3. Note how the allowed region widens.

appearance of suppression factors as shown in equations (2.45) and (2.50) is essentially due to

a “destructive interference” of modes. This means cancellations between contributions to the

amplitude A can occur, since the oscillatory behaviour of ζ is modified.

Figures 2.1 and 2.3 show concrete case studies to illustrate our results. In particular they show

the ε-suppression of otherwise dominant contributions. The left graph in figure 2.3 shows the

amplitude for the given choice of parameters in the case of slow-roll. A very large amplitude with

fNL ∼ 1000 is produced, which violates present upper bounds on the level of non-Gaussianity.

Deviating away from slow-roll has two important effects here. Firstly the fast-roll suppression

moves the amplitude back within observational constraints. Therefore new regions in the param-

eter space {cs, fX} open up. This is shown in figure 2.4. Secondly a delicate cancellation between

terms can bring out contributions from otherwise suppressed orthogonal/folded shapes. This is

shown by the ε ∼ O(1) amplitudes in Figure 2.3 peaking in the folded limit 2k1 ≈ 2k2 ≈ k3. A

shape which cannot be decomposed into local and equilateral shapes alone, but requires a strong

orthogonal/folded component.

Violation of slow-roll therefore naturally leads to the generation of intermediate shapes with

equilateral, local (in the case of broken scale-invariance) and orthogonal/folded contributions.

Hence fast-rolling single field models with ε 6� 1 can produce a richer phenomenology than

found in the extreme slow-roll limit, as fast-roll effects both lead to a suppression of the overall

amplitude (opening up new regions of parameter-space) as well as altering the “shape” of non-

Gaussian signals. And whilst general statements about limits of the three-point function for

single field models, such as [89, 99] remain true, models beyond the slow-roll paradigm have a

more complex fingerprint when considering the full amplitude.
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2.4.4 The running nNG

Having studied the shapes of non-Gaussianity at fixed K in the previous section, we now in-

vestigate the running of A with scale K [84, 85, 86]. Introducing a dynamical speed of sound

can in principle lead to a strongly scale-dependent non-Gaussian amplitude A. To see why we

rewrite c̄s, the speed of sound at sound horizon crossing, in terms of the wavenumber K (which,

we remind ourselves, is defined as K = k1 + k2 + k3)

c̄s ∼ K
−εs

εs+ε−1 . (2.51)

Different scales K will therefore ”see“ a different c̄s upon crossing the horizon. To quantify this

difference we follow [84] in defining a spectral index for fequiNL as

nNG − 1 ≡ d ln |fequiNL |/d lnK. (2.52)

where we evaluate the running nNG at a fixed point of the amplitude as measured by fequiNL to

separate effects from the running and shape.

Expanding around the phenomenologically motivated small cs limit, we find

nNG − 1 =
4ε

1 + ε
+

4ε(8ε− 55)Sec
[

2επ
1+ε

]
c2
s

(55 + 8fX + 2ε(15ε+ 12εfX − 47− 16fX))Γ
[

4
1+ε − 3

] +O(c4
s), (2.53)

which is an exact result in ε (the solution to all orders in cs can be found in [1]). Interestingly

this means we have a generically blue running of non-Gaussianities (as long as ε 6< 0), resulting

in larger interactions and hence enlarged signals on smaller scales. In other words, primordial

non-Gaussianities measured on e.g. galaxy cluster scales would be larger than those measured at

CMB scales. However, this also means interactions will eventually become strongly coupled for

sufficiently small scales. Following [100] we take the ratio of cubic and quadratic Lagrangians as

our measure of strong coupling, requiring

L3

L2
∼ O(1, ε, fX)

ζ

c2
s

� 1 (2.54)

for fluctuations to be weakly coupled, roughly corresponding to fNL � 105. If this condition

breaks (at horizon crossing, where n-point correlation functions are evaluated here), quantum

loop corrections are no longer suppressed and a perturbative treatment is no longer applicable.

We now impose a minimal constraint of at least ∼ 10 e-folds of weakly coupled inflation

governed by action (2.1), corresponding to the window of scales where primordial non-Gaussianity
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may be observable.11 In principle levels of non-Gaussianity are observable for all scales running

from CMB scales (k−1 ∼ 103Mpc) down to galactic scales (k−1 ∼ 1Mpc) [66, 85, 101, 102]. In

terms of the scale K this therefore corresponds to Kgal/KCMB ' 103. For the non-Gaussian tilt

this means

fequiNL (CMB) ≈ 10−3(nNG−1)fequiNL (Gal) . (2.55)

Blue/red tilted 3-point functions thus correspond to larger/smaller non-Gaussian amplitudes on

smaller scales. As we found above, in order for fluctuations to be weakly coupled so that a

perturbative treatment is applicable, the non-Gaussian contribution to ζ must be much smaller

than the Gaussian part fequiNL � ζ−1 ' 105 for all observable scales. Present observational

constraints on CMB scales give fequiNL (CMB) . O(100). In case of a scale-invariant or red-tilted

3-point function, where the amplitude is largest for large scales, a perturbative treatment is valid

all the way down to the smallest scales. However, for blue-tilted 3-point functions one can find

interesting constraints on nNG and hence on the slow-roll parameters. Specifically we have

nNG − 1 . 2/3 for |fequiNL (CMB)| ∼ O(100)

nNG − 1 . 4/3 for |fequiNL (CMB)| ∼ O(1). (2.56)

Depending on the size of fequiNL at CMB scales, this results in different bounds on nNG as shown in

figure 2.4. If the bound on nNG is satisfied, non-Gaussian interactions remain under perturbative

control throughout the range of observable scales. In the optimistic scenario with detectable

CMB non-Gaussianities, i.e. fequiNL (CMB) & O(10), we can combine these constraints with

equation (2.53) to put an upper bound on ε: ε . 0.3. [66, 1] If fequiNL (CMB) & O(100) the bound

is strengthened to ε . 0.2. To cover the full range of models capable of generating interesting

CMB non-Gaussianities, the explicit examples and plots we provide throughout the chapter are

therefore chosen to satisfy bounds

ε . 0.3 if fequiNL (CMB) & O(10). (2.57)

This shows how one can constrain the amount of slow-roll violation by requiring the action (2.1)

to be a valid effective field theory over the observable range of scales for primordial fluctuations.12

Constraints from nNG can therefore be used to put bounds on ε. These bounds can become

important here, since considering non-slow-roll models naturally gives rise to a large running nNG
of non-Gaussianity with scale, which are consequently a smoking-gun signature of such fast-roll

11Beyond those 10 e-folds several options exist, depending on the UV-completion of the low-energy effective
P (X,φ) theory [75, 45]: new degrees of freedom may become important, resulting in an inflationary weakly
coupled multi-field theory, the dispersion relation may change, a strongly coupled phase of inflation may take
place,...

12Note that eqn. (2.53) shows that these bounds receive O(c2s) corrections - see appendix D.4.
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models. Again we reiterate that we use “fast-roll” as a description for an evolution which violates

the “slow-variation” condition ε � 1 and not just as a reference to properties of the potential

V (φ) (see discussion in section 2.2). Note that in the event near-future experiments such as

Planck do not observe any CMB non-Gaussianities, the bounds on ε from nNG will become

weaker and the strongest available bounds on ε may very well come from considerations of the

tensor-to-scalar ratio r (see previous section).

2.5 Concrete model examples

In the previous sections we derived general expressions for the levels of non-Gaussianity ex-

hibited by single field models 1.17 without assuming slow-roll and discussed their associated

phenomenology. Here we consider two concrete model implementations, writing down explicit

actions for each model and showing how departure from slow-roll and scale-invariance affects

their non-Gaussian signatures. For single field models with large non-Gaussianity there are two

interesting limits. From (2.44) we have

fNL ∼ O(c−2
s ) +O(

λ

Σ
), (2.58)

so that models with cs � 1 and |λ/Σ| � 1 will lead to large non-Gaussianities. The two concrete

examples we provide are therefore examples of models with these signatures: (I) DBI inflation

(cs � 1) and (II) Models with λ/Σ� 1.

2.5.1 Fast-roll DBI inflation

In DBI inflation [22] a 3 + 1 dimensional brane moves in warped extra dimensions, giving rise

to an effective 4D theory with action (2.1), where

P (X,φ) = −f−1(φ)
√

1− 2f(φ)X + f−1(φ)− V (φ) . (2.59)

f(φ) is the so-called warp factor and is constrained to be positive by the signature of the space

(in this paper we use the convention − + ++). We only consider the 4-D effective field theory

defined by (2.59). If the full dynamics of a particular higher dimensional implementation are

considered, far stronger constraints (e.g. from gravitational waves [103]) can be obtained. The

speed of sound in DBI models is given by

cs =
√

1− 2f(φ)X (2.60)
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which is the inverse of the Lorentz boost factor γ, so cs � 1 since the inflaton rolls ultra-

relativistically. Importantly one also finds

λ =
H2ε

2c4
s

(1− c2
s) , fDBI

X = 1− c2
s, (2.61)

so that the otherwise typically dominant Aζ̇3 contribution vanishes, and the amplitude conse-

quently becomes independent of parameter fX , resulting in:

fDBI
NL ∼ O(c−2

s ). (2.62)

DBI inflation is the leading example of a single field model with large non-Gaussianity to be

found in the literature, and it is associated with an equilateral shape A [80, 77, 96]. This is the

case since Λ1 = 0 (cf. (2.32)) and hence no dominant orthogonal/folded non-Gaussianities can

be produced here. From (2.40) we can therefore write

ADBI = Aζζ̇2 +Aζ(∂ζ)2 +Aζ̇∂ζ∂χ +Aε2 , (2.63)

i.e. DBI-type models are a simple subcase of the more general P (X,φ) setups considered above.

As expected the equilateral shape can receive a small squeezed correction upon breaking of

scale-invariance (cf. (D.15)), which becomes relevant in the squeezed limit. Also, just as for the

more general single field case considered in section 2.4.3, we find that departure from slow-roll

suppresses the overall amplitude.

2.5.2 Fast-roll inflation with
∣∣ λ

Σ

∣∣� 1

We now build an explicit action for a model realizing |λ/Σ| � 1. First we consider a number of

constraints that can be placed on the differential properties of P (X,φ). We can write slow-roll

parameter ε as

ε =
3

2− P
XP,X

. (2.64)

In order to satisfy the null energy condition p + ρ ≥ 0 and 1 ≤ c2
s < 0 one must require,

respectively:

2XP,X > 0. , P,XX > 0, (2.65)

as can be seen from the expression for the speed of sound

c2
s =

P,X
ρ,X

=
P,X

P,X + 2XP,XX
. (2.66)
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Observational bounds on parameters such as ns, r, nt therefore only constrain the first two

derivatives XP,X and X2P,XX [104]. Expressing λ and Σ in terms of derivatives of P with

respect to the canonical kinetic term X one finds

λ

Σ
=

1 + 2
3X

P,XXX
P,XX

2 +
P,X

XP,XX

, (2.67)

so that in order for |λ/Σ| � 1 we require

∣∣X2P,XXX
∣∣� |P,X | . (2.68)

Large non-Gaussianities sourced by λ/Σ (or equivalently fX) thus open up the doors for con-

straining P,XXX .

Adapting the scheme introduced by [104] we can therefore construct a general form for any

action that gives rise to a large non-Gaussian amplitude A and is consistent with constraints on

XP,X , X2P,XX and X3P,XXX . We find:

P̃ (X,φ) = q(X,φ) + P (X0, φ)− q (X0, φ)

+ [P,X (X0, φ)− q,X (X0, φ)] (X −X0)

+
1

2
[P,XX (X0, φ)− q,XX (X0, φ)] (X −X0)2

+
1

6
[P,XXX (X0, φ)− q,XXX (X0, φ)] (X −X0)3 . (2.69)

(where q is an arbitrary function of φ and X) so that higher derivatives along X remain uncon-

strained. X0 can be fixed by a gauge choice, associated with field redefinitions φ → φ̃ = g(φ)

([104] use the gauge X(Ne) = 1/2 where Ne is the number of e-folds of inflation). Choosing

a value for X at a specific time in this way is also equivalent to choosing a normalization of

φ. Having obtained the general action (2.69) one can thus write down a theory with any given

value for λ/Σ as discussed in section 2.4.3, since P,XXX is not constrained in any other way than

through the value taken by λ/Σ.

As shown above in (2.50) the dominant shape generated by |fX | � 1 is equilateral

A(fX � 1) ∼ Aζ̇3 ∼ −
fX − 1

2c̄2
s

(1 + ε) cos
απ

2
Γ(3 + α)

k2
1k

2
2k

2
3

K3
. (2.70)

and fX > 1 is associated with negative-sign non-Gaussianities (just as produced by DBI-

inflation), whereas fX < 1 yields positive-sign non-Gaussianities (note that this statement is

only true as long as ε . 0.3 - otherwise the signs are reversed).
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2.6 Summary

In this chapter we have considered the amplitude A, size fNL, shape and running nNG of the

non-Gaussianity to be found in single field models, without assuming slow-roll. We have shown

that observational constraints allow significant violations of slow-roll conditions ε� 1 and εs � 1

in inflationary single field models. As such we derived explicit bounds on slow-roll parameter ε

in generic single field inflation scenarios. We found models with ε as large as ∼ 0.3 satisfying

all present bounds in the optimistic case of detectable (near-future) CMB non-Gaussianities (i.e.

fNL∼>O(10)). We also found a number of significant consequences for fast-roll phenomenology:

• Fast-roll suppresses fNL. Figure 2.1 and eqn. (2.42) show that for equilateral non-

Gaussianity, fequiNL is generically reduced when departing from the slow-roll regime. This

implies that models with e.g. such a small speed of sound cs that they violate observational

constraints in the slow-roll limit, can still be allowed when considering fast-roll scenarios.

• The shape of the bispectrum is modified. Figure 2.1 also shows that fast-roll

suppression is not an artefact of focusing on the equilateral limit, but that in fact the

full bispectrum as described by A is fast-roll suppressed. Furthermore the shape of the

amplitude is modified, where figure 2.1 illustrates a particular case where a predominantly

equilateral shape is altered into an “enfolded” shape, peaking in the limit 2k1 = k2 = k3.

• The allowed parameter-space for fX , cs becomes wider. As a result of fast-roll

suppression observational bounds, e.g. the WMAP result [9] f equil
NL = 26 ± 240 at 95%

confidence, map onto weaker constraints for parameters fX , cs at the expense of enlarged

ε. Figure 2.4 shows how constraints are altered, cf. [82].

• Blue running non-Gaussianities and strong coupling constraints. Fast-roll models

generically give rise to a large blue running of non-Gaussianity nNG with scale. Pairing this

signal with the requirement of having weakly coupled fluctuations (so that a perturbative

treatment is still applicable) allows us to put bounds on the running. We have presented

exact values for the running in terms of the model parameters in section 2.4.4 and used

those bounds to constrain the amount of slow-roll violation as parameterised by ε.

Non-Gaussianity is one of the best tools available for testing theories of primordial structure

formation. With upcoming experiments promising to measure not just the size, but the full

functional space mapped out by A, constraints from the shape of non-Gaussianity may become

even more important in differentiating models. In this chapter we have demonstrated that single

scalar fields can source large non-Gaussianities with a much richer phenomenology than the

negative fNL, pure equilateral type non-Gaussianity produced by e.g. DBI inflation. Only time

will tell, but while future observations might show that slow-roll single field models are ruled
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out, the simplest explanation could also very well still be a single field model. One that violates

slow-roll.



Chapter 3

Constraining non-inflationary single

field models

3.1 Introduction

In the previous chapter we considered effective P (X,φ) theories as arising in disformal bimetric

models in an inflationary context. Here we wish to explore potential non-inflationary setups

as already introduced in section 1.2.6. Consequently the overarching aim of this chapter is to

show that non-inflationary models within the bimetric remit are capable of yielding primordial

structure formation with a (near) scale-invariant power spectrum and distinct observational

signatures. In the previous chapter we saw that an adiabatic scale invariant spectrum is produced

even if the expansion - albeit still inflationary - is far from exponential (slow-roll parameters such

as ε effectively measured the “distance” from de-Sitter expansion), provided the speed of sound

varies appropriately. Here we will consider a “superluminal” phase with cs > 1 which allows us to

consider expansions that are not even inflationary, as long as the condition H2 ∝ cs is satisfied

(here H is the Hubble parameter - also see [49].

We begin by reminding ourselves of the salient features of disformal bimetric theories (for which

the speed of gravity differs from the speed of light [105, 106]) as important for this chapter. As

outlined in the introduction we construct the Einstein-Hilbert action from an “Einstein” metric

gµν (the Einstein frame), whilst minimally coupling the matter fields to a “matter” metric ĝµν
(the matter frame), with:

S =
M2
Pl

2

∫
d4x
√
−g R[gµν ] +

∫
d4x
√
−g̃Lm[g̃µν ,Ψi] + Sφ (3.1)

in which Sφ determines the dynamics. The two metrics are related by a disformal relation, where

67
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we will focus on the particularly simple case:

g̃µν = gµν −B(φ)∂µφ∂νφ , (3.2)

where φ is the “bi-scalar” field and we have reduced the general disformal relation (1.8) by fixing

the conformal factor A(φ,X) = 1 and by considering the non-derivative limit for the disformal

factor, i.e. B(φ,X) → B(φ). Here B is chosen to have dimensions of M−4, so that φ has

dimensions of M . We reiterate that we use metrics with signature −+ ++, and B is defined so

that B > 0 corresponds to a speed of light larger than the speed of gravity. As such there are two

light cones at any point, one for massless matter particles, another for gravitons. More generally

the two metrics may be seen as independent representations of the local Lorentz group (or two

non-equivalent tetrads [106]), one valid for gravitons and the other for matter. Thus, different

Lorentz transformations must be used to transform among measurements made with matter and

gravity (or equivalently, with clocks and rods operated by matter or gravitational phenomena).

For this reason no causality paradoxes arise, in contrast to straightforward tachyonic matter [107].

This argument shows why the bimetric construction is important in interpreting “superluminal”

structure formation models.

A number of dynamics Sφ for bimetric theories have been considered. It was pointed out

in [23] that a Klein-Gordon equation for φ in the matter frame translates into DBI dynamics in

the gravity frame. As we saw in 1.2.5, its corresponding Lagrangian, however, is not the Klein-

Gordon Lagrangian in the matter frame, but simply a cosmological constant. (It was first noted

in [105] that for bimetric theories a Klein-Gordon action in the matter frame doesn’t translate

into a Klein-Gordon equation in that frame). Thus a particularly simple bi-scalar dynamics is

generated by

Sφ =

∫ √
−g̃(−2Λm) , (3.3)

and Λm < 0 leads to a speed of light larger than the speed of gravity. If we require the field φ

to have Klein-Gordon dynamics in the Einstein frame at low energies (when matter and gravity

frames coincide), we should consider additionally:

Sφ =

∫ √
−g̃ 1

B
−
∫ √

−g 1

B
(3.4)

i.e. a positive constant term Λm in the Einstein frame balanced by a negative one in the matter

frame, both with magnitude tuned to 1/(2B). This action maps into the DBI action [108, 22]

in the gravity frame with a DBI warp factor f = −B. For a choice of sign where the speed

of light in the gravity frame is larger than one (f = −B < 0), this is sometimes labeled “anti-

DBI” (although one should note that “flipping” the sign of f means that this setup cannot be

interpreted as portraying a relativistic probe brane embedded in a five dimensional bulk, as
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usual for DBI; for an earlier study of anti-DBI theories see also [109]). As we will show in this

chapter, when combined with a mass potential in the gravity frame it leads to scaling solutions

and scale-invariant fluctuations (for related work also see [110, 111, 49]), without the need for

accelerated expansion or a contracting pre-Big-Bang phase.

We will also be interested in the non-Gaussian signatures for such bimetric models. In the

previous chapter we saw how, in the presence of a speed of sound cs 6= 1 for adiabatic pertur-

bations, the three-point function contains terms which are proportional to the power spectrum

squared and further terms which are amplified by an additional factor c−2
s [37, 80, 66]. This c−2

s -

dependence is of course instrumental in generating large non-Gaussian signals for non-canonical

scalar field models, since in the subluminal case cs < 1, the “c−2
s " terms dominate. In addition

to enhancing non-Gaussianities in e.g. DBI inflation, we also saw that this makes the three-

point function scale dependent [101, 85] in the case of a varying speed of sound. This happens

since the requirement of (near) scale-invariance sets the combination H2/cs to be approximately

constant. As a result terms that appear with different powers of cs will therefore run with the

scale. In the opposite limit, the one of large speed of sound that we are considering here, the

“c−2
s " terms are suppressed and we will consequently find that the remaining terms inherit the

scale invariance from the power spectrum of the two point function. The dimensionless quantity

fequiNL is of order 1 and has opposite sign to DBI inflation, i.e. fequiNL ∼ O(1) > 0 (with the WMAP

sign convention).

The structure of this chapter is as follows. In Section 3.2 we review some of the relevant

cosmological perturbation theory as discussed in the previous chapter, but with an eye on

difference introduced by a “superluminal” speed of sound. Then, in Section 3.3 we explain how

scale invariance may be achieved in these models and also show how a non-scale-invariant power

spectrum is generated when a non-trivial disformal factor B(φ) is considered. We derive the

associated non-Gaussian features in Section 3.4 and also show how a departure from an exactly

scale-invariant two-point function can lead to interesting non-Gaussian properties here. Finally

we will examine our results from a wider perspective in a concluding section 3.5.

3.2 The power spectrum

Here we adapt the calculation from section 2.2, but in the context of disformal bimetric models

with cs > 1. Projecting (3.4) onto the Einstein frame leads to the (anti)-DBI action, which

belongs to the general class of P (X,φ) models. We recall that this means we are considering an

action of the form:

S =

∫
d4x
√
−g
[
R

2
+ P (X,φ)

]
. (3.5)
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The energy density reads ρ = 2XP,X − P while, as before, the speed of sound is given by

c2
s =

P,X
ρ,X

=
P,X

P,X + 2XP,XX
. (3.6)

Note that, if we consider a non-inflationary solution i.e. a space-time with decelerating expansion

rate ä < 0, then conformal time can be taken to be positive and starting from zero (in contrast

to inflation where it starts at −∞ and inflation ends at τ = 0). Accordingly we know from (2.9)

that, in the case of constant ε and εs we can now express the (conformal) time-dependence of

the speed of sound as

cs ∼ (τ)
εs
ε−1 (3.7)

We are in a non-inflationary solution, so ε > 1 and we may already suspect from 2.2 that a

negative εs is needed in order to obtain a scale-invariant solution. We now show that this is

indeed the case, postulating a speed of sound which diverges with conformal time according to

cs ∝ τ−α, where we have introduced α = −εs/ε− 1 as shorthand (i.e. α > 0 here). Whether

we employ a hydrodynamical or a scalar field description, the density fluctuations are described

by the modified harmonic oscillator equation (2.11). Writing this in terms of conformal time we

have

v′′ +

[
c2
sk

2 − z′′

z

]
v = 0 . (3.8)

where the curvature perturbation ζ obeys ζ = −v/z and z ∝ a
cs
. Written in this form the solution

is provided by Bessel functions with1

v =
√
βη(AJν(βcskτ) +BJ−ν(βcskτ)) . (3.9)

Defining β = 1/(α− 1) > 0, it was shown in [49] that the order ν is given by

ν = β

(
α− 3(1− w)

2(1 + 3w)

)
, (3.10)

where we have assumed a constant equation of state w. Considering the asymptotic solution

inside the sound horizon (i.e. when the c2
sk

2 term dominates) one can derive a WKB solution

for v inside the horizon

v ∼ eik
∫
csdτ

√
csk

∼ e−iβcskτ√
csk

. (3.11)

Considering the opposite regime, the power spectrum outside of the sound horizon can now be

found as well. In this regime

v ∼
√
βτ

(cskτ)ν
. (3.12)

1As shown in 2.2 this reduces to a Hankel function solution if written in terms of sound horizon time y.
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where we have only shown the negative order solution, since csτ being a decreasing function

of time, this is the growing mode. Scale-invariance of the curvature fluctuation (i.e. requiring

k3ζ2 to be constant) is still associated with ν = 3/2, i.e. the order parameter of the Bessel

function remains invariant under a change from conformal time τ to sound horizon time y. For

a scale-invariant power spectrum we therefore require

α = α0 = 6
1 + w

1 + 3w
(3.13)

and if we rewrite cs in terms of the density ρ we conclude that this implies cs ∝ ρ for all (constant)
w.

Different spectral indices can be obtained by introducing α < α0 or α > α0, which becomes

clear when rewriting (2.17) in terms of α and β

ns − 1 =
2ε+ εs
εs + ε− 1

= β(α− α0) . (3.14)

[49] also shows that the power spectrum may be written

k3ζ2 ∼ (5 + 3w)2

1 + w

ρ

M4
Plcs

, (3.15)

reiterating that cs ∝ ρ for a scale invariant power spectrum.2 In other words, a rapidly decreasing

speed of sound cs can provide a scale-invariant power spectrum even in non-inflationary settings,

where the fact that cs � 1 initially here allows us to solve the horizon problem as outlined

in 1.2.6.

Working explicitly with conformal time τ makes the physical significance of a rapidly decreasing

cs more visible, but now we switch back to the computationally more convenient sound horizon

time y. As before the quadratic action then takes the form

S =
M2

Pl

2

∫
d3xdy q2

[
ζ ′2 − (~∇ζ)2

]
, (3.16)

where ′ ≡ d/dy, and

q ≡
√
csz =

a
√

2ε
√
cs

. (3.17)

and the solution for canonically-normalized v = MPlqζ is given in terms of Hankel functions

vk(y) =

√
π

2

√
y H(1)

ν (ky). (3.18)

2For standard cosmology to arise at low energy densities, we effectively require cs = c0(1 + ρ/ρ?), where cs is
approximately constant at low-energy and ρ? is the density scale at which the speed of sound begins to diverge.
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The expression for the ζ power Spectrum in terms of slow-roll parameters still reads

Pζ ≡
1

2π2
k3 |ζk|2 =

(εs + ε− 1)2 22ν−3

2(2π)2ε

H̄2

c̄sM2
Pl

. (3.19)

This reiterates that for scale-invariance to obtain, cs ∝ H2 and since we can relate H2 to the

energy density ρ via the Friedmann equations, this once again establishes cs ∝ ρ as a requirement

for a scale-invariant solution.

3.3 Scaling solutions

Generically the parameter B appearing in the simplified disformal transformation (3.2) consid-

ered in this chapter is itself a function of φ. In this section we show that non-minimal theories

with power-law B(φ) lead to tilted spectra, without running. We also establish the scale-invariant

limit which corresponds to the zeroth order B = constant solution. For the bimetric theories

discussed in the above, in the Einstein frame the action takes the DBI-form:

P (X,φ) = −f−1(φ)
√

1− 2f(φ)X + f−1(φ)− V (φ) (3.20)

where we have made the identification B(φ) = −f(φ). Scaling solutions of this action have been

studied in [112, 66, 107]. In particular we can solve for the Hubble parameter H and speed of

sound cs as functions of the scalar field φ. For constant ε and εs we have

H(φ) = H(φ0)

(
φ

φ0

)−2ε/εs

(3.21)

cs(φ) = cs(φ0)

(
φ

φ0

)2

. (3.22)

The Friedmann equations then give a solution for V (φ) and f(φ)

V = 3M2
PlH

2(φ)

(
1− 2ε

3

1

1 + cs(φ)

)
(3.23)

f(φ) =

(
1

2M2
Plε

)
1− c2

s(φ)

H2(φ)cs(φ)
(3.24)
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where substituting in for H and cs we find

V = 3M2
PlH

2(φ)

1− 2ε

3

1

1 + cs(φ0)
(
φ
φ0

)2

 (3.25)

f(φ) =
1

2M2
PlεH

2(φ0)cs(φ0)

(
φ

φ0

)2ε/εs−2
(

1− cs(φ0)

(
φ

φ0

)2
)

(3.26)

In the large φ limit, which we can see from (3.21) corresponds to the large cs limit, we can

simplify these expressions to obtain

V ∼ 3M2
PlH

2(φ) = V0

(
φ

φ0

)−4ε/εs

(3.27)

f(φ) ∼ −
(

1

2M2
Plε

)
cs(φ)

H2(φ)
= − cs(φ0)

2M2
PlεH

2(φ0)

(
φ

φ0

)2+4ε/εs

. (3.28)

As before a scale-invariant two-point function is associated with εs = −2ε, so that the potential

V and warp factor f then become

V (φ) ∼ 3V0

(
φ

φ0

)2

(3.29)

f(φ) ∼ − cs(φ0)

2M2
PlεH

2(φ0)
, (3.30)

i.e. V ∝ φ2 and f = constant in the scale-invariant limit. Importantly we can explicitly show via

the Friedmann equation that ρ ∼ H2 and consequently ρ ∼ φ2 ∝ cs here. This means that, in the

large φ/large cs limit and for scale-invariant solutions, we recover the solution discussed in [23].

As we discussed in the previous section this shows how scale-invariance is associated with the

universal law cs ∝ ρ, constant disformal factor B and a quadratic potential. As equation (3.25)

shows the same does not happen if we depart from scale-invariance, in which case in particular

the disformal factor B picks up a dependence on φ. A power-law B, however, does not generate

running and is consistent with constant ε and εs. Naturally, more complicated B(φ) would lead

to more complex spectra, so that this absence of running is not a general feature of models with

arbitrary disformal factor B(φ).

3.4 Non-Gaussian signals

Having worked out solutions for power spectra with various constant spectral indeces ns we now

turn our attention to non-Gaussian features. In the previous chapter we reproduced (2.40) which

applied for any P (X,φ) model regardless of how precisely the speed of sound varied. As we have
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seen, in a non-inflationary bimetric model we require cs � 1 during structure formation. In this

large cs limit (which corresponds to the large φ limit) the amplitude of the three point function

A can be read straightforwardly from (2.40) (we refer the interested reader to chapter 2 and

the appendices for details). Comparing with the cubic effective action (2.30) we find that only

the Aζζ̇2 and Aζ(∂ζ)2 terms are not subdominant as cs → ∞. The resulting total amplitude is

independent of the parameters (w or ε) and reads

Acs→∞ = −1

8

∑
i

k3
i +

1

K

∑
i<j

k2
i k

2
j −

1

2K2

∑
i 6=j

k2
i k

3
j . (3.31)

This is precisely the equilateral shape, peaking for k1 = k2 = k3, that is also obtained in the

scaling solutions considered in [66] in the ε→ 0, α→ 0 limit. More specifically one obtains

Aε→0 =

(
1− 1

c2
s

)
Acs→∞ + O(ns − 1) , (3.32)

Interestingly this means that the non-Gaussian amplitude is uniquely fixed and does not depend

on other background parameters in the scale-invariant limit here. Also note that, while the full

three-point function contained terms proportional to P 2
ζ and further terms which are amplified

by an additional factor c−2
s , these additional terms are suppressed in the large cs limit. Since

the relevant non-Gaussian amplitude here is consequently proportional to P 2
ζ , the (near) scale-

invariance of the power spectrum straightforwardly maps onto the three-point function. In

contrast to the inflationary models considered in the previous chapter, where the additional

c−2
s dependence was instrumental both in yielding large non-Gaussian amplitudes as well as in

generating a sizeable running of the three-point function nNG, nNG ∼ 1 here.

In terms of fequiNL comparison with (2.42) shows we here have fequiNL ∼ 0.27+O(c−2
s +O(ns−1).

In particular we would like to stress that the fX -dependence is suppressed by c−2
s . Whilst no

fNL � 1 is obtained in accordance with (2.44), this shows that non-Gaussianities in excess of

the levels yielded by slow-roll inflation (fsrNL ∼ ε � 1) are possible here. In other words, in

the minimal bimetric model considered here the dimensionless quantity fequiNL is of order 1 and

has opposite sign to DBI inflation, i.e. fNL ∼ 0.27 > 0. Thus the model is quite distinct in

this respect to standard slow-roll inflation (for which fNL ∼ ε) and DBI inflation (for which

fNL ∼ −O(100) is a distinct possibility.) Notice there’s been some confusion [22], both among

theorists and observers, regarding the sign of fNL. Here we adopt the convention used by WMAP,

where positive fNL physically corresponds to negative-skewness for the temperature fluctuations:

this means we assign a negative fNL to DBI inflation, so that fNL > 0 for the anti-DBI models

under consideration.

We finish this section by estimating the O(ns− 1) corrections to the non-Gaussian amplitude.
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Figure 3.1: We plot the non-Gaussian amplitude from Eq. (3.33) −A(1, x2, x3)/(x2x3) for ns = 1
(left) and ns = 0.96 (right).

Following the procedure outlined in appendix D, we may combine terms from equations (D.15)

and (D.16). Taking the small tilt (ns − 1� 1) and cs � 1 limits, we find

A =

(
k1k2k3

2K3

)ns−1
−1

8

∑
i

k3
i +

1

K

∑
i<j

k2
i k

2
j −

1

2K2

∑
i 6=j

k2
i k

3
j

+ (ns − 1)

−1

8

∑
i

k3
i −

1

8

∑
i 6=j

kik
2
j +

1

8
k1k2k3 +

1

2K

∑
i<j

k2
i k

2
j −

1

2K2

∑
i 6=j

k2
i k

3
j


+O

(
1

c2
s

)]
, (3.33)

where the only dependence on ε and εs appears either in the “observable" combination ns − 1

or in the subleading O(1/c2
s) terms. Upon approaching scale invariance only the first line inside

the square brackets stays relevant, ensuring that A reduces to the equilateral amplitude (3.31)

as required. The amplitude (3.33) is plotted in figure 3.1 and peaks in the equilateral limit

k1 = k2 = k3. In the local limit k1 � k2, k3, on the other hand, the first line inside the square

brackets of Eq. (3.33) goes to zero. In agreement with the consistency relation [89, 99] we then

have

Ak1�k2,k3 ≈ −
1

2
(ns − 1)

(
k1

k2

)ns−1

(3.34)

The predictive power of our result lies in establishing a consistency relationship between ns and

A. In fact, we find a distinctive Non-Gaussian signal for any given spectral index ns. Whilst

the overall non-Gaussian amplitude A still peaks in the equilateral limit k1 = k2 = k3 in both
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red- and blue-tilted cases, its shape is modified when compared with the scale invariant limit.

Note that this approach is an estimate in the sense that we have ignored higher order propagator

corrections, i.e. we have essentially approximated the Hankel function dependence of the mode

function vk in the limit |ky| � 1, ignoring additional O(ns − 1) corrections (see appendix D for

details). However, naturally such extra corrections are expected to modify the (ns−1) dependence

of the amplitude, but they should not re-introduce any dependence on background quantities

such as ε. One may therefore expect that the non-Gaussian amplitude is still uniquely specified

in terms of ns− 1, even as scale-invariance is broken. It will be an interesting task for the future

to explicitly check whether higher order propagator corrections leave this feature unmodified.

Regardless of whether this is the case or not one should remember that this correction will be

very challenging to detect observationally, so that a non-Gaussian amplitude without running

and consequently scale-independent and almost constant fNL ∼ 0.27 is the key observational

signal here (still challenging, but perhaps not impossible when additional modes, e.g. via 21cm

surveys, are taken into account). Note that the peaks in the squeezed limit in figure 3.1 are

solely due to breaking of scale-invariance and thus are a direct measure of ns. They may still

be observationally elusive, if confined too far into the squeezed limit. We once again emphasize

that no significant constraints arise for bimetric theories from nNG, as the tilt of the three-point

function is strongly suppressed for cs � 1.

3.5 Summary

Strict scale-invariance has been associated with superluminal bimetric models, where the speed of

light is larger than the speed of gravity in the early Universe [49, 23]. Indeed this is a feature of the

minimal bimetric model, but in this chapter we showed how tilted spectra, red or blue, could be

generated by a non-minimal bi-scalar coupling B(φ). At first this might suggest we’ve fallen into

the “theory of anything” trap, but it’s not the case. A unique non-Gaussian shape is predicted for

the scale-invariant case and distinct distortions away from the scale-invariant equilateral shape

appear for each of the tilted cases. These distortions can be seen as “consistency conditions” for

this class of models. This is particularly relevant given the absence of gravitational waves for all

non-inflationary and “superluminal” bimetric models of this kind. (Note that these models solve

the horizon problem for matter but not for gravity, so tensor modes don’t start their lives inside

the horizon.)

One might wonder where the proposed running coupling B(φ) comes from. First note that we

don’t need the full (anti-)DBI action (2.59) resulting from (3.4), unless we impose Klein-Gordon

dynamics for φ in the Einstein frame at low energies. This may not be necessary, and if we relax

this requirement all we need is (3.3), i.e. a negative cosmological constant Λm in the matter
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frame (which, we stress, does not lead to an AdS solution). In fact, if we relax the low-energy

requirement, Λm doesn’t even need to be related to B. If, however, we do insist on Klein-Gordon

dynamics for φ in the Einstein frame at low energies, then the negative matter frame cosmological

constant should be exactly balanced by a positive Einstein frame cosmological constant, and their

common magnitude should be 1/(2B).

A number of interesting theoretical connections can be made. In the context of emergent geom-

etry, it’s been pointed out that different emergent metrics may apply to bosons and fermions [113].

The fact that the vacuum energy is negative for fermions and positive for bosons suggests an

action of the proposed form, with a speed of light larger than the speed of gravity (i.e. an anti-DBI

action in the Einstein frame). Also these models become asymptotically a cuscaton [110, 111]

model, a feature that may be used to support the view that they are a UV-complete alternative

to inflation. Finally, it is possible that this construction results from an entirely different set up,

such as deformed dispersion relations [114]. It is interesting that the dispersion relations needed

for scale-invariance are of the same form as those discussed in the context of Horava-Lifshitz

theory [115]. More generally a connection with deformed special relativity remains to be fully

explored [116, 117, 118]. Absence of exact scale-invariance could then also be a major clue into

the foundations of these theories.

In summary, in this chapter we showed how cosmological structure formation may proceed

in non-inflationary bimetric models. (Near) scale-invariant power spectra are readily produced

and come associated with a distinctive non-Gaussian signature. Interestingly we also saw that

the minimal disformal model with constant disformal factor B leads to scale-invariance, whereas

power-law profiles for B are associated with a spectral tilt ns without running.



Chapter 4

Beyond single field models :

Three-form inflation

4.1 Introduction

While invoking the presence of one or multiple scalar fields in order to drive inflation has proven

to be a particularly simple and popular approach, several alternatives have been proposed. These

include inflation driven by vector fields [119, 120, 121, 122, 123], and higher form fields [124, 125,

126]. And even though, while this thesis is being written, scalar fields (most probably the Higgs

field) have been observed in nature for the first time, this hardly proves the case for scalars in

cosmology, perhaps serving as motivation to explore non-scalar field scenarios further in this

context. However, for non-scalar inflationary models the techniques to make predictions beyond

the power spectrum are less well understood than for scalar field models. In this chapter, our

interest lies in extending existing techniques for the recently proposed three-form inflationary

scenario [27, 28], in which inflation is driven by a massive three-form field.

As we have seen in chapter 1, during inflation quantum fluctuations are promoted to classical

perturbations, and the statistics of these perturbations are probed e.g. by observations of the

cosmic microwave background and of large scale structure. In contrast to higher order form

models, the techniques for making predictions for the statistics of perturbations produced by

general P (X,φ) inflation models as relevant in the disformal bimetric context are extremely well

developed (see for example [89, 37, 80] and references therein). The aims in this chapter are

therefore two-fold.

Firstly we review and extend previous work [28] on the existence of a series of dualities between

different n-form theories. In particular we will show that these dualities relate the actions for

several higher-order form field models to that of equivalent scalar field models. Essentially this

happens since imposing global symmetries in accordance with an FLRW space-time (homogeneity

78
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and isotropy) reduces the effective degrees of freedom in the theory, so that an effective scalar field

description can be recovered. This opens up a tempting avenue for understanding the dynamics

and observational predictions of e.g. three-form inflation. Namely, having established a dual

scalar field description, we may move to working with the dual non-canonical scalar field model,

for which suitable techniques are readily available. Here we point out various subtleties in the

mapping between theories (which is generically rather complicated), and use dualities in order

to establish a self-contained three-form formalism. In the end this allows computation of, in

particular, the bispectrum without explicit reference to the dual scalar field theory (i.e. the final

result can be expressed in terms of three-form quantities only). This approach recovers previous

results for the two-point function [27, 28, 127] and also allows us to rapidly derive expressions

at higher order in perturbation theory. Secondly, we use the resulting formalism to investigate

non-Gaussian features of the three-form theory for a particularly simple case - slow-rolling 3-

form inflation with a power-law potential. We find that the phenomenology closely resembles

that of DBI-inflation [22] and hence of minimal bimetric models as discussed in the previous two

chapters.

The map for this chapter is as follows. We begin by reviewing 3-form inflation in 4.2. Given

the central importance of dualities to our work, we then discuss these in 4.3. Employing these

dualities we then derive non-Gaussian features in 4.4, expressing the cubic action in terms of

three-form variables and the curvature perturbation ζ only. We also discuss the explicit example

of a power-law three-form potential. Finally we summarize results in 4.5.

4.2 Three-form inflation

We will focus on a canonical theory minimally coupled to Einstein gravity with action [27, 28]

S = −
∫
d4x
√
−g
(
R− 1

48
F 2 − V (A2)

)
, (4.1)

where F = ∇.A is a four-form, A a three-form, and we have adopted a compact notation in

which indices are suppressed once the valance of an object is specified, squaring a quantity

denotes contraction of all indices (for example e.g. F 2 ≡ FµνρσF
µνρσ), and a dot (·) denotes

contraction on the first index (for example ∇ · A = ∇µAνρσ). Here and throughout Greek

indices label space-time dimensions and Roman indices spatial dimensions. The potential V (A2)

here generically breaks the gauge A → A + λI, allowing the three-form to become dynamical

(otherwise the four-form field strength will simply act as an effective cosmological constant [128]).

In the cosmological context, the unperturbed three-form must be consistent with the universe’s

symmetries of homogeneity and isotropy. The non-zero components of the background three-form
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compatible with this geometry can therefore be written in the form

Aijk = a(t)3εijkχ(t) (4.2)

where a(t) is the scale factor of the universe as a function of cosmic time, χ(t) is a comoving

field and the totally antisymmmetric tensor is defined properly in section 4.3.2.1 Hence the

unperturbed three-form satisfies A2 = χ2/62. The dynamics of the universe are then governed

by the behavior of the scalar quantity χ(t) which is directly related to the three-form. As

emphasized elsewhere [27, 28], when written in terms of this scalar quantity, the role of the

three-form potential and the equations of motion which govern the universe are straightforward

to interpret. In particular the Friedmann equations are given by (adopting units where 8πG = 1)

3H2 =
1

2
(χ̇+ 3Hχ)2 + V (χ2)

Ḣ = −1

2
χV,χ. (4.3)

The energy density and pressure of the field χ are therefore given by

ρχ =
1

2
(χ̇+ 3Hχ)2 + V (χ) , (4.4)

pχ = −1

2
(χ̇+ 3Hχ)2 − V (χ) + χV,χ . (4.5)

(4.6)

We can therefore write the equation of state for the three-form, wχ = pχ/ρχ as

wχ = −1 +
χV,χ
ρχ

. (4.7)

Interestingly this directly shows that cosmological constant-like behavior is directly linked to a

“slow-rolling” potential here: w = −1 when the potential’s slope vanishes. We also note that the

equation of state is unbounded from both above and below.
1Throughout this chapter we will explore Hodge duals between different n-forms. But, jumping ahead slightly,

we may explain the form of A very simply in this way: Consider the dual of A in a four-dimensional theory
- a vector B. In order for a single-vector theory to be consistent with isotropy and homogeneity, no preferred
directions can exist in the theory, i.e. the vector needs to be aligned with the time-like direction of the cosmological
frame. Hence the three-form dual is space-like.

2Note that in [27, 28], the three form quantity was denoted by X not χ, but here we reserve X for denoting
the canonical kinetic term for the scalar φ in order to match notation in previous chapters
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4.3 Dual n-form theories

In this section we discuss a number of dualities which inter-relate n-form theories in four space-

time dimensions. This will be an essential step in establishing a number of n-form theories which

can be described by an effective scalar-tensor theory as arising in disformal bimetric setups. Even

outside of the disformal context, these dualities are very useful, since they allow us to analyze

n-form theories in terms of equivalent formulations where the degrees of freedom of a particular

model are more transparent. Some of these dualities were already pointed out in [28] and we

extend results wherever needed. As we will see, the dual picture makes further calculations

significantly more tractable, promoting the existence of a class of dual theories from a curiosity

to an efficient calculational tool.

4.3.1 Equations of motion for the three-form

We begin by considering a Palatini-type action, which treats the three-form A and the four-

form F as independent variables, and which is equivalent to (4.1) up to boundary terms. The

Lagrangian for the matter part of the action is given by

L1 =
1

48
F 2 − 1

6
A∇ · F − V (A2) . (4.8)

Variations of the associated action relate A and F . The resulting equations of motion are

F = −4 [∇A]

∇ · F = −12AV ′
(
A2
)
, (4.9)

where a prime denotes differentiation with respect to the argument in brackets. Integrating the

middle term of L1 by parts inside the action, one finds

L2 =
1

48
F 2 +

1

6
F [∇A]− V (A2), (4.10)

which consequently shares the same equations of motion. The first equation of (4.9) now appears

as a constraint equation and may be substituted back into L2 to confirm that we do indeed

recover (4.1). We note that we are always free to perform such an integration by parts and

this procedure leaves the dynamics of the theory invariant. Moreover, we are free to substitute

constraint equations which do not change the order back into the action.
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4.3.2 Dual fields

Our aim is to rewrite Lagrangians (4.8) and (4.10) in terms of fields Hodge (∗) dual to Aµνρ and
Fµνρσ. Here we set up the dual field picture, providing some additional pedagogical detail, since

this procedure has led to significant confusion in previous treatments of this topic. We recall

that any p-form has a dual d-p form and begin by defining a totally anti-symmetric tensor ε as

εα1,α2...αp =
1√
|g|


+1 if (α1, α2...αp) is an even permutation of (1, ...d)

−1 if (α1, α2...αp) is an odd permutation of (1, ...d)

0 otherwise,

(4.11)

where d is the dimension of the space ε lives in and dt is the number of temporal dimensions, so

dt = 1 for the cases we will consider in this chapter which have signature (−+ ++). Note that

for a diagonal metric consequently (−1)dt = sign(g), where g is the determinant of gµν . Lowering

all indices with the metric gµν (note this is a valid procedure since we are explicitly dealing with

the tensor ε, not its associated tensor density) one finds

εα1,α2...αp = (−)dt
√
|g|


+1 if (α1, α2...αp) is an even permutation of (1, ...d)

−1 if (α1, α2...αp) is an odd permutation of (1, ...d)

0 otherwise.

(4.12)

A particularly useful identity we will use repeatedly is

εα1....αnε
β1...βn = (−)dtd!δ

[β1
[α1
δβ2α2

...δ
βn]
αn]. (4.13)

Let us now consider an arbitrary p-form living in an n-dimensional space, where we choose a

coordinate basis and write

P ≡ 1

p!
Pα1,...αpdx

α1 ∧ ...dxαp , (4.14)

In terms of the totally antisymmetric tensor ε the (Hodge ?) dual of this p-form is given by

(?P )α1,...αd−p =
1

p!
εα1,...αd−pβ1....βpP

β1,...βp . (4.15)

As expected this means any p-form has therefore a dual which is a d-p form.

4.3.3 Dual actions

Our primary aim is to rewrite Lagrangians (4.8) and (4.10) in terms of the Hodge (∗) dual fields
to A and F . We recall that any p-form has a dual (d− p)-form, where d is the number of space-

time dimensions, four in our context. In particular, the three-form A and four-form F that make
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up (4.10) can be expressed in terms of their duals as

(?F ) =
1

4!
εαβγδF

αβγδ ≡ Φ Fαβγδ = −εαβγδΦ

(?A)α =
1

3!
εαβγδA

βγδ ≡ Bα Aβγδ = −εαβγδBα (4.16)

The Hodge duals to F and A enable us to recast the original theory (4.1) into a scalar-vector

description, with Lagrangian

L3 = −1

2
Φ2 − Φ∇ ·B − V

(
−6B2

)
, (4.17)

which follows from Lagrangian (4.10). The equations of motion for Φ and Bµ can now be obtained

either by varying (4.17) or equivalently by substituting Hodge duals into (4.9). They are

Φ = −∇ ·B,

∇Φ = −12BV ′(−6B2). (4.18)

The first equation of motion now appears as a constraint equation with respect to L3 and can

be substituted back to express our original theory (4.8) as a pure vector theory. Integrating the

middle term of L3 by parts (or equivalently substituting A and F for their duals in L2), however,

one finds that the converse is true, and the second equation of motion in (4.18) appears as a

constraint and may be substituted into the action to remove the vector field in favour of the scalar

(or equivalently its dual four form). With an eye on calculating inflationary observables, and in

particular the 3-point correlation function, the scalar picture is particularly intriguing, since, as

we have discussed, it opens up the possibility of using existing machinery for dealing with scalar

field models of inflation. The final set of equivalent actions for a four-form, three-form, vector

and scalar respectively are

LIV (F,∇ · F ) = − 1

48
F 2 + 2A2(∇ · F )V ′

(
A2(∇ · F )

)
− V (A2(∇ · F )), (4.19)

LIII(A,∇A)) = −1

3
[∇A]2 − V (A2), (4.20)

LI(B,∇ ·B) =
1

2
(∇ ·B)2 − V

(
−6B2

)
, (4.21)

L0(Φ,∇Φ) = −1

2
Φ2 − 12B2(∇Φ)V ′

(
−6B2(∇Φ)

)
− V

(
−6B2(∇Φ)

)
. (4.22)

Here V
(
−6B2(∇Φ)

)
and V (A2(∇ · F )) indicate that the second equation of motion in (4.18)

has to be used in order to express A2 in terms of ∇ · F and B2 in terms of ∇Φ. Note that we

cannot simultaneously use the first equation of motion (Φ = −∇ ·B) to substitute for −Φ∇ ·B
in the action in order to replace it with Φ2, since this would change the order of the action.
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It is interesting to examine the form of these dual theories. The potential for A/B essentially

gets mapped into a non-canonical kinetic term for the F/Φ (4-form/scalar) theory respectively.

The canonical kinetic terms in the A/B picture, on the other hand, give rise to simple quadratic

potential terms in the corresponding 4-form/scalar theories. This is important for several reasons.

First, in this way an effective non-canonical scalar theory arises from a very simple three-form

theory.3 Second, this immediately tells us that all scalar models dual to the three-form share the

same simple quadratic potential. This is particularly important for standard slow-roll inflation4,

where in the dual scalar picture the potential dominates over the kinetic terms. The fact that all

models share the same dual scalar potential then implies that the form of the original three-form

potential (which turns into a non-canonical kinetic term) is not important when computing, for

example, the spectral index ns. We will return to this point later.

Finally, one may wonder how one can come up with an effective single scalar theory dual to

a three-form theory, which in principle possesses more physical degrees of freedom. However,

starting with the most general canonical and minimally coupled 3-form action in 4D, as we

do here, guarantees that such a dual single scalar field description always exists. This is the

case, because 1) the canonical kinetic term for the three-form dualises to a Φ2 potential 2) the

three-form potential is a function of A2 only, because in 4d this is the only covariant scalar

combination that can be built from a 3-form - thus the potential only depends on one effective

degree of freedom: A2 and 3) these two degrees of freedom, Φ and A2, are related via an equation

of motion, leaving only one effective independent degree of freedom, thus explaining the existence

of a dual single scalar description.

4.4 Non-Gaussianities

4.4.1 Correlation functions

We will now proceed to utilise our results thus far to compute observables for the three-form

inflationary theory under consideration. Because our action is dual to that for a non-canonical

scalar field, the calculation follows precisely that of Garriga & Mukhanov [20] to calculate the

power spectrum, and Seery & Lidsey [37] and Chen et al. [80] to calculate the three-point

function. Here we simply provide an overview of the main steps and the important results.

The 2-point correlation function for the curvature perturbation ζ is defined as

〈ζ(k1)ζ(k2)〉 = (2π)5δ3(k1 + k2)
Pζ
2k3

1

, (4.23)

3The reader might have noticed that there are differences in factors and signs when comparing (4.10) and (4.19)
with corresponding equations presented in [28]. The version presented here corrects a small number of typograph-
ical mistakes in that work.

4By this we here mean ε, η...� 1 as well as requiring no rapidly varying speed of sound.
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and is calculated using the second order action

S2 =

∫
dtd3x

[
a3 Σ

H2
ζ̇2 − aε(∂ζ)2

]
, (4.24)

where the quantities c2
s,Σ, λ (introduced in the previous section) are explicitly given in terms of

derivatives of the Lagrangian for theories of the type L = P (X,φ) by [37]

c2
s =

L,X
ρ,X

=
L,X

L,X + 2XL,XX
,

Σ = XL,X + 2X2L,XX =
H2ε

c2
s

λ = X2L,XX +
2

3
X3L,XXX . (4.25)

Note that for the effective scalar theory (4.19) one can replace all derivatives of L with respect

to X (L,X ,L,XX , ..) with derivatives of the potential V expressed in terms of the scalar, since

only terms coming from V (A2) depend on X.

As found by [20] the power spectrum is

Pζ ≡
1

2π2
k3 |ζk|2 =

1

2(2π)2ε

H2

csM2
Pl

∣∣∣∣
∗
, (4.26)

where ∗ indicates that the expression is evaluated at horizon crossing csk = aH. The spectral

index ns is then given by

1− ns = 2ε+
ε̇

εH
+

ċs
csH

. (4.27)

The slow-roll approximation (i.e. neglecting χ̈ in the equation of motion for χ) implies that

χ,N
χ
≈ −2

3

1

χ2

(
1− 3

2
χ2

)
ε. (4.28)

Substituting this into the Friedmann equation we obtain [27]

ε ≡ − Ḣ

H2
≈ 3

2
χ
V,χ
V

(
1− 3

2
χ2

)
. (4.29)

Eliminating the term in brackets from the last two equations we can write

χ,N
χ

= −4

9

1

χ2

V

χV,χ
ε2. (4.30)

This expression allows us to easily compute ε̇ from the definition of ε to find ε̇/εH = 2ε+O(ε2).

Similarly, we find that ċs/csH ≈ O(ε2) and also λ̇/λH ≈ O(ε2). This means that to first order
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in the slow-roll parameters, the scalar spectral index is simply ns = 1− 4ε.

The ratio of tensor to scalar perturbations was computed in Ref.[28] and shown to be related

to the slow roll parameter ε as5

r = 16csε, (4.31)

mirroring the analogous expression for non-canonical scalar field models. One can also compute

the spectral index for tensor perturbations nt, finding nt = −2ε to first order in slow-roll

parameters as usual.

The third order action, as provided in the previous chapter, is needed to calculate the three-

point correlation function. For convenience we recall that it is given by [37, 80]

S3 =

∫
dtd3x

{
−a3

[
Σ

(
1− 1

c2
s

)
+ 2λ

]
ζ̇3

H3
+
a3ε

c4
s

(ε− 3 + 3c2
s)ζζ̇

2

+
aε

c2
s

(ε− 2εs + 1− c2
s)ζ(∂ζ)2 − 2a

ε

c2
s

ζ̇(∂ζ)(∂σ)

+
a3ε

2c2
s

d

dt

(
η

c2
s

)
ζ2ζ̇ +

ε

2a
(∂ζ)(∂σ)∂2σ +

ε

4a
(∂2ζ)(∂σ)2 + 2f(ζ)

δL

δζ

∣∣∣∣
1

}
, (4.32)

where f(ζ)δL/δζ|1 indicates terms proportional to the functional derivative of the Lagrangian

evaluated at first order in ζ. This would be zero if ζ was Gaussian. Such terms can be removed by

a field redefinition (though one must recall the redefinition when forming correlation functions so

as to form corrections of ζ itself). This form of the action thus identifies the relevant interaction

vertices which contribute towards the three-point function.

At tree level in quantum field theory, and in the interaction picture, the In-In (equal time)

three-point correlation function is given by the expression

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = −i
∫ t

t0

dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t
′)]〉 , (4.33)

where Hint is the Hamiltonian evaluated at third order in the perturbations and follows directly

from (4.32). Vacuum expectation values are evaluated with respect to the interacting vacuum

|Ω〉. By convention the 3-point correlation function is parametrised by the amplitude A.

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)P 2
ζ

1

Πjk3
j

A , (4.34)

where, again by convention the power spectrum Pζ in the above formula is calculated for the

mode K = k1 + k2 + k3. Evaluating (4.33), one can determine A
5A more exact answer, fully taking into account that tensor and scalar modes freeze out at different times

for models with cs 6= 1, can be found in [39]. Here we just note that this extra effect means that the actual
tensor-to-scalar ratio r is in fact smaller than naively expected from r = 16csε for cs < 1.
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In principle A is a general function of the three Fourier modes, which are related by the

condition k1 + k2 + k3 = 0 (within the slow-roll approximation the full form of A is given

in Ref. [80]). For a given shape of non-Gaussianity, however, (see figure 4.3) the size of non-

Gaussianity can be adequately characterised by a single-value measure fNL. For an equilateral

shape (i.e. one peaking in the limit k1 ∼ k2 ∼ k3), this can be defined as [66]

f equil
NL = 30

Ak1=k2=k3

K3
, (4.35)

where amplitudes are matched at k1 = k2 = k3 = K/3. Note that we follow the WMAP

sign convention here, where positive fNL physically corresponds to negative-skewness for the

temperature fluctuations. As before the parameters controlling the overall size of f equil
NL are

cs,Σ, λ. Following [80] we may now compute f equil
NL in the slow-roll regime, finding the result at

leading order to be6

f equil
NL ≈ 5

81

(
1

c2
s

− 1− 2
λ

Σ

)
− 35

108

(
1

c2
s

− 1

)
+O

(
ε,
ε

c2
s

, ε
λ

Σ
,
λ̇

λH

)
. (4.36)

4.4.2 A self-contained three-form formalism

Our primary aim in this section is to use the dual map to devise a self-contained description of

perturbative properties at the three-form level. Since the two- and three-point correlation func-

tions are controlled by parameters cs,Σ, λ it will be useful to write down equivalent expressions

in terms of the three-form variable χ. This turns out to be rather straightforward. In particular,

we employ the expressions7

B2 = −χ2, X ≡ −gµν∇µΦ∇νΦ = −122B2
(
V ′(−6B2)

)2
, (4.37)

which follow from the definition of the Hodge dual to A, Eq. (4.16), and from Eq. (4.18)

respectively, to find

X = V 2
,χ, and

∂χ

∂X
=

1

2V,χV,χχ
. (4.38)

From the discussion of dualities, and in particular L0, we see that the P (X,φ) theory dual to

our minimally coupled three-form theory was parametrised by

P (X,φ) = −1

2
φ2 − 12B2V ′(−6B2)− V (−6B2)

= −1

2
φ2 + χV,χ − V (6χ2). (4.39)

6Note that (4.36) differs from the expression found by Chen et al. [80] by an overall sign. This is because Chen
et al. use a sign convention opposite to that used by WMAP and throughout this paper.

7Note that the convention for X used in this chapter differs from that used in previous chapters by a factor of
1/2.



CHAPTER 4. BEYOND SINGLE FIELD MODELS : THREE-FORM INFLATION 88

Differentiating this expression with respect to X and using (4.38) we find P,X , P,XX and P,XXX
which upon substitution into (4.25) and by replacing derivatives with respect to X with deriva-

tives w.r.t. χ allows us to write

c2
s =

V,χχχ

V,χ
, Σ =

V 2
,χ

2V,χχ
, λ = −

V 3
,χV,χχχ

12V 3
,χχ

. (4.40)

This constitutes the result we aimed for, since it enables us to write the perturbed action solely in

terms of the background dynamics of the three-form, and the perturbed quantity ζ. Comparing

results with Kovisto & Nunes [28] we find that the expression for cs matches exactly that found

by them when working directly with the perturbed 3-form theory. (they did not work out Σ, λ

since the focus of their paper does not extend beyond the power spectrum). Moreover, formally

passing to the dual scalar theory calculating the perturbed action and writing this in terms of ζ,

background quantities and cs, must be equivalent to calculating the perturbed action working

with the ‘raw’ 3-form action and writing this in terms of ζ and these quantities. This means that,

once we have worked out c2
s,Σ, λ in terms of three-form quantities, we can immediately extract

non-Gaussian features from action (4.32). In other words, having expressed these quantities

purely in terms of three-form quantities, we can now work out non-Gaussian signatures generated

by any three-form theory

S = −
∫
d4x
√
−g
(
R− 1

48
F 2 − V (A2)

)
. (4.41)

directly without the need to explicitly refer to the dual description. The power of this approach

is that we can also readily probe higher order statistics, such as the trispectrum, since the quartic

action has already been calculated for P (X,φ) theories [129, 130]. This involves the quantity Π,

defined in Ref. [130], which for completeness, we calculate to be

Π =
1

40

V 3
,χV,χχχ

V 3
,χχ

+
3

40

V 4
,χV

2
,χχχ

V 5
,χχ

− 1

40

V 4
,χV,χχχχ

V 4
,χχ

, (4.42)

in terms of the three-form quantity χ. In [5] the cubic action is worked out in the three-form

picture explicitly, establishing the equivalence of cubic actions for the three-form theory and for

the equivalent scalar field theory as argued for here.
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4.4.3 Example I: A power-law potential

We now consider some concrete examples, and begin by considering a three-form model self-

interacting through a simple power-law potential

L = − 1

48
F 2 − V0A

2p , (4.43)

that is, V (A2) = V0A
2p = V0

(
6χ2
)p, where p is a constant.

This is a special example, where the equivalent P (X,φ) theory is relatively simple, and is

given by

Lφ = (2p− 1)

(
1

V0

)1/(2p−1)( X

24p2

) p
2p−1

− 1

2
φ2, (4.44)

where one now sees explicitly that the 3-form potential has been mapped into a non-canonical

kinetic term for the effective scalar φ. As long as 2p−1 6= 0, one can check that equations (4.25)

and (4.40) equivalently yield

c2
s = 2p− 1 ,

λ

Σ
=

1

3

1− p
2p− 1

, (4.45)

and we can immediately make observational predictions for the theory, finding several interesting

results.

Here both the speed of sound and λ/Σ are constant, and we have ns−1 = −4ε. The constancy

of the speed of sound has the interesting consequence that the observational requirement of

obtaining a (near)-scale-invariant spectral index ns forces ε to be close to zero and slowly-varying

here (compare (4.27) and also [66]). For this power-law model, slow-roll therefore becomes an

observational requirement in contrast to models with varying speed of sound.

We now need to calculate this quantity N e-folds before the end of inflation. It was shown in

[27] that for a power law potential, the value of the field at this time can be estimated to be

χ2
N =

2

3
− 4

18p

1

1 + 2N
, (4.46)

which upon substitution in (4.29) gives

εN ≈
1

1 + 2N
. (4.47)

Assuming that N ≈ 60 is required to solve the horizon problem, we predict that the spectral
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Figure 4.1: Dependence of fequilNL on c2
s for the power law potential V = V0(6χ2)p and N = 60. A

large and generically negative non-Gaussian amplitude is found. The shaded region is disallowed
by the WMAP 2σ bound −214 < fequilNL < 266.[9] We recall that c2

s = 2p− 1 for this model.

index on observationally relevant scales for a three-form with power law potential is

ns ≈ 0.97, (4.48)

and independent of the value of the power p. Naturally the spectral index will be closer to

scale-invariant the longer inflation lasts. Substituting for c2
s and λ/Σ into (4.36) we obtain the

dependence of f equil
NL on c2

s illustrated in Fig. 4.1. It clearly shows that a small speed of sound

leads to a large f equil
NL as expected. Substituting for the speed of sound for a power law potential

in Eqs.(4.31) and (4.36) we can relate f equil
NL and r. Figure 4.2 illustrates how these two quantities

are related, and shows the region of the parameter space (r, fNL) that is allowed given current

bounds.

Phenomenologically we find that no large non-Gaussian amplitude of the enfolded or orthogo-

nal types (which have peaks in the folded limit k1 ∼ k2 ∼ 2k3) can be generated here in contrast

to generic single field inflation models. To see why, it is useful to notice that one may express

λ/Σ as [37, 66]
λ

Σ
=

1

6

(
2fX + 1

c2
s

− 1

)
(4.49)

where

fX =
εεs
3εX

, εs =
ċs
Hcs

, εX = − Ẋ

H2

∂H

∂X
. (4.50)



CHAPTER 4. BEYOND SINGLE FIELD MODELS : THREE-FORM INFLATION 91

Figure 4.2: The solid lines show how the parameters f equil
NL and r are related to each other for

the power law potential, V = V0(6χ2)p and for N = 50, 60, 80 from top to bottom. The shaded
region is disallowed by the WMAP 2σ bound −214 < fequilNL < 266.[9]

Now, since the speed of sound is constant for the power-law model, εs, fX are identically zero here.

A large and predominantly orthogonal (or enfolded) amplitude, however, requires a negative and

non-zero fX (assuming positive ε and 0 ≤ cs ≤ 1)[82]8. As such the non-Gaussian shape found

here is always predominantly equilateral. Furthermore, since parameters λ and Σ are simply

related to cs via (4.49), the non-Gaussian amplitude is completely controlled by c2
s for a power-

law potential. This means that f equil
NL ∼ O(c−2

s ) for subluminal and positive speed of sound cs,

i.e. p ε [1/2, 1]. Figure 4.3 illustrates these points. Finally note that, analogous to e.g. DBI

inflation, any sizable level of non-Gaussianity has a negative f equil
NL associated with it here.

4.4.4 Example II: Exponential potential

Let us now consider an alternative potential. Even though it is fairly simple in its analytical

form, the exponential potential, V = V0 exp(βA2) = V0 exp(6βχ2), becomes very complex when

written as a P (X,φ) theory,

L0 = (W (x)− 1)V0 exp

(
1

2
W (x)

)
− 1

2
φ2, (4.51)

8In general P (X,φ) inflation models a predominantly orthogonal or folded shape can be generated by finely
balancing the contributions from the ζ̇3 interaction vertex (which depends on λ/Σ) against the other vertices
such that the generically predominant equilateral shape contributions cancel out. In this way the otherwise
subdominant orthogonal or folded configurations are brought out. As stated above, this delicate cancellation
relies on fX -dependent contributions though, whereas fX = 0 identically for the power-law example given.
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Figure 4.3: The dimensionless bispectrum A(k1, k2, k3)/k1k2k3 in the slow-roll limit for the
power law potential, V = V0(6χ2)p with p = 0.505, corresponding to cs = 0.1, and with N = 60.
Triangular shapes denote the equilateral, squeezed/local and enfolded limit clockwise from top
right. A predominantly equilateral shape is found.

where W (x) is the Lambert-W function and x = X/12βV 2
0 . Dealing with this model in the

P (X,φ) description is therefore very difficult. This is a good example showing that perform-

ing the calculations in the original three-form theory is far simpler than going to the P (X,φ)

description.

Inflation ends when ε ≈ 1 which for this potential takes place when

χ2
e =

1

3
+

1

3

(
1− 1

3β

)1/2

. (4.52)

This expression implies that inflation only ends if β > 1/3. In particular, if β � 1/3 we can

approximate

χ2
e ≈

2

3
− 1

18β
. (4.53)

In this case, the solution of (4.28) and (4.29) is non-analytical and we must resort to an ap-

proximation. Defining χ2 = 2/3 − y, since we know that inflation occurs very close to 2/3, we

obtain

χ2
N =

2

3
− 1

18β

1

1 +
√

6N
. (4.54)

The slow-roll parameter N e-folds before the end of inflation is then εN ≈ 1/(1 +
√

6N). Here,
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Figure 4.4: Dependence of fequilNL on c2
s for the exponential potential, V = V0 exp(6βχ2) and

N = 60. A small and generically positive non-Gaussian amplitude is found. Notice the lower
bound c2

s & 11/3 for this model.

c2
s = 1 + 12βχ2 and it can be verified that ċs/csH = −ε2/χ2 ∼ O(ε2), hence, for N = 60, we

obtain for this model

ns ≈ 0.97, (4.55)

independent of the value of β. The fact that the value of the scalar spectral index is independent

of parameter β, or p in the case of the power law potential, and we obtain the same value in

both examples, should not come as a surprise. The reason becomes clear when considering the

dual P (X,φ) theory, which for any three-form potential, has the same quadratic scalar potential.

Since we are in a slow-roll regime, the functional form of the kinetic term is not important with

respect to the potential which leads to identical results for the spectral index.

It was found above that the choice of the exponential three-form potential offers an exit from

inflation only if β > 1/3. Taking χ2
N ≈ 2/3, this puts the lower bound, c2

s & 11/3, which means

that the speed of sound is superluminous.

The amplitude of the three-point function is controlled by c2
s and λ/Σ, which are given by

c2
s = 1 + 12βχ2,

λ

Σ
= −6β2χ2(1 + 4βχ2)

c4
s

. (4.56)

Varying β and substituting for c2
s and λ/Σ N e-folds before the end of inflation into (4.36), we

obtain the dependence of fequilNL on c2
s which we show in Fig. 4.4 for N = 60.

In Fig. 4.5 we see how r and fequilNL relate to each other. In particular, we observe that the
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Figure 4.5: The solid lines show how the parameters f equil
NL and r are related to each other for

the exponential potential, V = V0 exp(6βχ2) and for N = 50, 60, 80 from top to bottom. The
shaded region is disallowed by the WMAP 2σ bound r . 0.2.[9]. End points for the solid lines
at fequilNL ∼ 0.215 correspond to the lower bound c2

s & 11/3 for this model.

large values of c2
s render this model disfavored by current bounds on the ratio of tensor to scalar

perturbations, r . 0.2 for N = 60.9 Of course, if we allow for more e-folds of inflation this

reduces the relevant ε and hence r. A crude estimate for the minimal amount of inflation to

bring this model into agreement with current 2σ bounds on r may be obtained by assuming a

speed of sound right at the lower bound of cs &
√

11/3 and r ∼ 0.2, yielding N & 62 for the

exponential model considered here. Finally we see in Fig. 4.6 that the sign of fequilNL ∼ 0.2 is

positive, albeit with a rather small amplitude. The non-Gaussian shape here is predominantly

equilateral, but also picks up contributions in the enfolded/orthogonal limit.10

4.5 Summary

In this chapter we have considered 3-form theories of inflation and their non-Gaussian features.

The salient results may be summarized as follows.

• We explored dualities between various n-form models in four dimensional space-times. In

particular these allowed linking the 3-form theory under consideration to an effective scalar-

tensor description with a P (X,φ) action, due to the reduction of the effective number of dof
9Note that this bound significantly depends on the assumption of no running spectral index ns. If a running

ns is allowed the bound weakens to r < 0.49.
10Note that considering departure from slow-roll could modify this statement, e.g. potentially rendering the

shape predominantly enfolded or orthogonal[1, 2]. For further details on fast-roll corrections also see[67, 69].
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Figure 4.6: The dimensionless bispectrum A(k1, k2, k3)/k1k2k3 in the slow-roll limit for the
exponential potential, V = V0 exp(6βχ2) with β = 1, corresponding to cs ≈ 3 and for N = 60.
Triangular shapes denote the equilateral, squeezed/local and enfolded limit clockwise from top
right. fequilNL ∼ 0.2 and a predominantly equilateral shape is found.

from requiring isotropy and homogeneity. The three-form theory can therefore effectively

be described by a disformal bimetric setup. Since the three-form potential is mapped to

the scalar fields kinetic term in a non-trivial way, such setups generically result in highly

non-canonical P (X,φ) theories.

• Using these dualities the cubic action necessary to compute non-Gaussian features is simply

that of generic P (X,φ) theories. However, we can use the mapping between dual theories to

express the parameters controlling the non-Gaussian amplitude, such as cs,Σ, λ, in terms of

three-form quantities. This allows us to rewrite the cubic action in terms of the background

dynamics of the three-form and the perturbed quantity ζ only. Hence we can capture all

non-Gaussian features of the theory in a self-contained three-form language.

• Finally, using the tools developed, we explored the observational and particularly non-

Gaussian features of two example three-form models:

– First, we investigated three-form inflation with a power-law potential. This simple

setup produces a constant speed of sound and generically equilateral non-Gaussian

shapes with negative fequilNL , similar to DBI-type inflation. Observational limits on

this form of non-Gaussianity constrain this model.
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– Secondly, we explored the phenomenology for a three-form inflationary model with an

exponential potential. We found the non-Gaussianity was once again predominantly

of equilateral shape, but in this case was unobservably small. We found, however,

that the model can be constrained from limits on the tensor-to-scalar ratio r.

• An interesting general result is that the spectral index for all three-form inflationary models

is ns ≈ 0.97 to leading order in slow-roll when 60 e-folds of inflation occur. This was shown

explicitly for the two models at hand, but will hold much more generally. The value of

ns is therefore uniquely predicted once N , the number of e-folds of inflation, is specified,

independent of the exact form of the three-form potential and as long as ε� 1.
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Dark energy and modified gravity
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Chapter 5

Derivative Chameleons

5.1 Introduction

We now turn our attention to scalar-tensor theories in the context of modified gravity/dark

energy theories. As discussed in chapter 1, modified gravity theories (see e.g. [14, 131] for

reviews) have enjoyed continued interest over the past few decades. With our focus being on

disformally motivated scalar-tensor theories, the notion of screening mechanisms - how a light

scalar degree of freedom φ can act as dark energy on cosmological scales while being shielded

in dense environments such as on earth - has turned out to be especially useful in this context.

We discussed implementations of such a mechanism in 1.3. They include the following: 1) The

chameleon model [15, 16], where a density dependent mass is generated and the field φ becomes

too massive for detection in dense environments. 2) Vainshtein screened setups [54, 55, 56] such

as DGP [17] and Galileon [29]/Horndeski [33] models, where non-linear interactions of φ lead

to strongly coupled dynamics. A density-dependent (classical) renormalization of the kinetic

energy there results in an effectively decoupled scalar in dense environments. 3) Symmetron

models [57, 58, 59], where a scalar φ is coupled to matter with a coupling strength proportional

to the vacuum expectation value of φ. This in turn depends on the ambient density, so that the

scalar effectively decouples in high-density regions. All these mechanisms reconcile the existence

of a light cosmological scalar with tight fifth force constraints on solar-system scales [26].

In this chapter we wish to focus on chameleon models and potential extensions thereof.

Chameleon phenomenology has already been studied extensively [132, 133, 134, 135, 136, 137,

138, 139, 140, 141, 142, 143, 144, 145] for variants of the model introduced by [15, 16]. Typically

such theories are built by universally coupling matter to a metric conformally related to the

Einstein metric gµν . Making this bimetric structure explicit we here investigate whether there are

any interesting and qualitatively new implementations of the chameleon mechanism that arise

when going beyond the simple conformal relationships considered so far. Can the chameleon

98
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effect occur in new guises for generic 4D effective field theories? In other words, we will be

asking two questions: What forms can the conformal relation generically take? And does it have

to be conformal or are there more general bimetric structures that can produce chameleonic

phenomenology?

A systematic way of undertaking this investigation is to proceed as we have done above in

section 1.1 and construct a generic matter metric as a function of the Einstein metric gµν , φ

and derivatives of the field ∂nφ. By showing how what we dub derivative chameleons arise

in this framework, this chapter aims to illustrate how such an approach unveils qualitatively

new constructions. More specifically we show that derivative chameleons naturally give rise

to a new mass-altering mechanism, which changes the mass of oscillations around an effective

potential minimum. The mass-lifting branch may help in ensuring φ can escape detection in

fifth force experiments and consequently may be of use in alleviating fine-tuning constraints

for chameleon models. However, we also show that care needs to be taken in order to avoid

ghost-like instabilities for mass-lifting solutions. The mass-lowering branch of solutions, on the

other hand, is generically stable. Importantly the new mechanism works for purely derivative

conformal factors too, opening up the exciting possibility of having a chameleon mechanism

which comes endowed with a shift-symmetry in the field φ → φ + c, offering better protection

from quantum-corrections. Furthermore we discuss modifications to the radial solutions around

spherical matter sources and modifications to the thin-shell mechanism. We also point out why

non-conformal geometries are not expected to display chameleon-screening, establishing a no-go

theorem for so-called disformal geometries.

The plan for the chapter is as follows. In section 5.2 we review the standard chameleon

picture and how this gives rise to an effective potential with a large mass for oscillations around

the effective minimum. Section 5.3 then reviews the bimetric framework, explicitly formulating

metric relations which we then use to construct new types of chameleon models. In doing so we

focus on conformally related metrics, pointing out the phenomenology of the resulting generalized

chameleon model, in particular the new mass-altering mechanism. In 5.4 this is followed up

by presenting a few simple concrete examples that implement this new-found mechanism and

show how it can be realized for purely derivative conformal factors. Modifications to thin-shell

screening are then discussed while investigating radial solutions around a massive source in

section 5.5. In 5.6 we go beyond conformal relationships, arguing that their natural extension

- disformally related geometries - cannot produce chameleon phenomenology (they do, however,

naturally generate Vainshtein-type screening solutions). Finally we conclude in 5.7.
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5.2 Conformal chameleons I: The minimal theory

We already reviewed the standard chameleon theory in section 1.3.2. Here we briefly summarize

the essential features with an eye on extending the standard setup in the following section.

Chameleon models [15, 16] are a particularly simple conformal bimetric theory, where the con-

formal factor A(φ) is a function of the chameleon field φ only. The original model proposed

by [15, 16] has action

S =

∫
d4x
√
g

(
M2

2
R+X − V (φ)

)
+ Sm

(
A2(φ)gµν ,Ψi

)
, (5.1)

Working out the corresponding equations of motion we find

�φ = V,φ −A3(φ)A,φT̃ , (5.2)

where T̃ = T̃µν g̃µν is the trace of the matter stress-energy tensor which is defined as usual

T̃µν =
2√
g̃

δ
(√
g̃Lm

)
δg̃µν

. (5.3)

Importantly it is therefore defined with respect to the matter (“Jordan frame”) metric g̃µν . Note

that T̃µν is covariantly conserved with respect to the matter metric ∇̃µT̃µν = 0, since matter

minimally couples to that metric.1

For a pressureless, non-relativistic source, the only non-vanishing component of the stress-

energy tensor is T̃ 0
0 = −ρ̃. The equation of motion (5.2) can therefore be written as

�φ = V,φ +A,φρ̂, (5.4)

where ρ̂ is a conserved quantity in the Einstein frame (in particular it is independent of φ).

This follows from the covariant conservation of T̃µν . Requiring ∇̃µT̃µν = 0 directly leads to a

corresponding conserved quantity in the Einstein frame, which is ρ̂ = A3ρ̃ = A−1ρ. Note that

this is not the energy density of matter in the Einstein frame, which we denote by ρ and which

is given by ρ = A4ρ̃. Finally we can use the fact that ρ̂ is independent of φ and integrate up the

equation of motion to obtain an effective potential for φ

Veff(φ) = V (φ) + ρ̂A(φ). (5.5)

Note that, even though this equation gives the impression that the sign of A(φ) is relevant, this
1When mapping T̃µν into the Einstein frame one finds T̃µν = A−6(φ)Tµν , so that Tµν is not covariantly

conserved in the Einstein frame ∇µTµν 6= 0.
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is not the case as would be expected from a theory that only depends on A2(φ). We can confirm

this by noting that equation (5.5) depends on ρ̂A(φ) = A4ρ̃. As long as the energy density is

well-defined in the matter frame g̃µν , there is consequently no sign ambiguity introduced related

to the sign of A(φ).

A particularly interesting example is when we start with a runaway potential V (φ), e.g.

V (φ) = Mn+4
Pl /φn as desirable from the point of view of quintessence models [60]. This ensures

that, in the limit when we can ignore the matter action Sm (a low-density environment with

ρ̂ → 0 in the language set out above), we recover a quintessence-like solution which leads to

accelerated expansion of space-time. In analogy with inflation a slow-rolling light scalar field

drives accelerated cosmic expansion. But in regions of high density this behavior changes, because

of the ρ̂A(φ) term in the effective potential. From (5.4) we can see that, for non-zero ρ̂, Veff
can acquire a minimum φmin, subject to a suitably chosen conformal factor A(φ). Specifically

we require

Veff,φ(φmin) = V,φ(φmin) +A,φ(φmin)ρ̂ = 0, (5.6)

Oscillations around the minimum φmin of the effective potential then acquire a mass

m2 ≡ Veff,φφ(φmin) = V,φφ(φmin) + ρ̂A,φφ(φmin). (5.7)

Interestingly therefore, even though φ naively does not possess a mass term at all, the conformal

factor A(φ) causes the field to become massive in dense environments. This is the essence of

the chameleon mechanism: An environmentally-dependent way of generating a large mass for an

otherwise very light scalar φ. This reconciles a model such as (5.1) with fifth force constraints,

since φ becomes too heavy for detection in laboratory experiments on earth, yet can act as dark

energy on large scales.2

The chameleon mechanism therefore hinges on the existence of two conformally related metrics

gµν and g̃µν , respectively used to construct the gravitational part of the action (the Ricci scalar)

and the matter part of the action (i.e. matter fields Ψi are minimally coupled to g̃µν). Having

introduced the minimal (standard) chameleon model in this section, the question we now want to

answer in this chapter is: What happens when this relationship is modified? To be more specific,

are there other classes of scalar-tensor theories that offer qualitatively distinct implementations

of the chameleon mechanism (which we take to be an environmentally dependent generation of

mass for an otherwise light cosmological scalar φ)?
2Note that we have said nothing about the thin-shell mechanism so far. This mechanism is important in order

to ensure the viability of the chameleon mechanism in that it suppresses fifth force modifications to e.g. planetary
orbits. We will review this mechanism in detail in section 5.5.
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5.3 Conformal chameleons II: Derivative setups

5.3.1 Derivative bimetric setups

In this section we want to lay out the problem in more general terms without imposing as

restrictive a metric relation as in section 5.2. Consequently let us start with a schematic action

of the following form

S =

∫
d4x
√
g
M2

2
R+ Sm (g̃µν ,Ψi) + Sφ (5.8)

where Ψi are matter fields minimally coupled to g̃µν as before and Sφ denotes an action giving

the scalar field φ dynamics of its own. We emphasize that there is no a priori requirement

constraining Sφ to be formed with either gµν or g̃µν . To enable comparison with the existing

chameleon literature we fix the form of Sφ such that

S =

∫
d4x
√
g

(
M2

2
R+X − V (φ)

)
+ Sm (g̃µν ,Ψi) , (5.9)

i.e. Sφ equips φ with a canonical kinetic term and a potential minimally coupled to gµν . In

order to investigate (5.9) it now becomes necessary to specify how gµν and g̃µν are related, and

in particular how φ enters this relation. For this it will be useful to schematically write (5.9) as

S =

∫
d4x
√
gLE (gµν , φ) +

∫
d4x
√
g̃Lm (g̃µν ,Ψi) . (5.10)

In the previous section 5.2 gravity and matter metrics were conformally related by g̃µν =

A2(φ)gµν . Here we are interested in investigating more general metric relations. To this end we

recall the disformal relationship where g̃µν and gµν are “disformally” related by

g̃µν = A2(φ,X)gµν +B2(φ,X)∂µφ∂νφ, (5.11)

where we again recognize X as φ’s kinetic term. In this chapter our focus lies on considering

the conformal subset of this full disformal relation. In other words, we will reduce the bimetric

relationship (5.11) to the simple case B(φ,X) = 0. This is the most general purely conformal

relation permitted by (5.11). As such the conformal factor A2(φ,X) is an arbitrary function of

the field φ and the first higher order coordinate invariant X, φ’s kinetic term, and we have

g̃µν = A2(φ,X)gµν . (5.12)

This is in contrast to the minimal chameleon model, where the conformal factor is a function of

φ only. As such this means the full action under consideration is that of a generalized conformal
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chameleon

S =

∫
d4x
√
g

(
M2

2
R+X − V (φ)

)
+ Sm

(
A2(φ,X)gµν ,Ψi

)
. (5.13)

The relation between matter stress-energy tensors in different frames straightforwardly gener-

alizes to T̃µν = A−6(φ,X)Tµν . We will now first compute the associated equations of motion

for φ and then comment on the impact a generalized conformal factor has on the chameleon

mechanism.

5.3.2 Equation of motion and effective potential

With a matter stress-energy tensor defined as in (5.3) and metrics related by (5.11), we can write

down the equations of motion for the general action (5.9). Varying (5.9) we find

∂LE
∂φ

+
1

2

√
g̃

g
T̃µν

∂g̃µν
∂φ

= ∇α
∂LE
∂φ,α

+
1

2

∂g̃µν
∂φ,α

∇α

(√
g̃

g
T̃µν

)
+

1

2

√
g̃

g
T̃µν∇α

∂g̃µν
∂φ,α

. (5.14)

Note that these expressions in fact neither assume anything about the form of T̃µν nor rely

on a conformal relationship between gµν and g̃µν as considered above. It is, however, worth

emphasizing that T̃µν is explicitly a stress energy tensor not including any contributions from

Sφ in (5.8), so it does not satisfy the Einstein equations by itself. Instead, after having mapped

all quantities into the Einstein frame, one finds Gµν = 8πG
(
T

(matter)
µν + T

(φ)
µν

)
.

Specializing to the conformal case with g̃µν = A2(φ,X)gµν , the equation of motion for φ that

follows from (5.13) can be written in the following form using (5.14)

−V,φ +A,φA
3T̃ = −�φ+

∑
i

Ji, (5.15)

where � ≡ ∇µ∇µ and

J1 = −A,XA3T̃�φ

J2 = 2A2T̃ (AA,Xφ + 3A,XA,φ)X

J3 = A2T̃
(
AA,XX + 3A2

,X

)
Π

J4 = −A3A,X g̃µν∂
αφ∇̃αT̃µν , (5.16)

and we have defined Π ≡ ∇µ∇νφ∇µφ∇νφ = ∇µ∂νφ∂µφ∂νφ. We have assumed that T̃µν is

symmetric and expressed derivatives acting on T̃µν in terms of matter frame variables to avoid

mixing operators and variables defined for different frames. More explicitly this means using

∇αT̃µν = ∇̃αT̃µν − 2Γ
(µ
βαT̃

ν)β, (5.17)
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where Γµβα is the connection associated with transformations between g̃µν (∼ Jordan) and gµν

(Einstein) frames (for details please see the appendix). Additionally there are two further types

of terms one might naively expect to arise from varying (5.13)

J5 ∝ A4A2
,X T̃

βνΠνρ∂βφ∂
ρφ

J6 ∝ A4A,XA,φ∂βφ∂νφT̃
βν , (5.18)

where Πνρ ≡ ∇ν∇ρφ = ∇ν∂ρφ. However, the symmetry imposed on the conformal factor (i.e. A

only being a function of coordinate invariants) means that contributions proportional to J5 and

J6 cancel and hence do not appear in the equation of motion. As an immediate consequence

there is no direct, Vainshtein-like coupling between the stress-energy tensor and derivatives of

the field, but matter only enters via T̃ .3 Taking g̃µν inside its covariant derivative and using that

∇̃s = ∇s = ∂s for any scalar s (i.e. covariant derivatives related to both metrics act on scalars

in the same way), the overall equation of motion can therefore be written

−V,φ +A,φA
3T̃ = −

(
1 +A3T̃A,X

)
�φ

+ 2A2T̃ (AA,Xφ + 3A,XA,φ)X

+ A2T̃
(
AA,XX + 3A2

,X

)
Π

− A3A,X∂
αφ∂αT̃ . (5.19)

We now proceed to simplify these expressions by considering a uniform matter source, making

the following key assumption about the system under consideration

• The stress-energy tensor describes a pressureless, non-relativistic fluid (T̃ 0
0 = −ρ̃) with all

other stress-energy tensor components vanishing.

Later on (in section 5.5) we will also assume a static, uniform source in the matter frame

(∇̃αT̃µν = 0 inside the source). Combining this with the first assumption, this is equivalent

to assuming ∇̃αρ̃ = ∂αρ̃ = 0 (again, inside the source). This means J4 = 0 everywhere except

in the transition between source and surroundings. For this reason we will keep the full J4

term when evaluating radial profiles across this boundary and not make any further assumptions

about J4 for the time being. Note that we also do not assume a static profile for φ (∂0φ = 0),

which one may want to impose for further simplification in a late-universe system like the solar
3Note that, at any rate, the Vainshtein-like coupling referred to here would be a derivative coupling which

leads to a screening, i.e. a classical renormalization of the kinetic energy, that depends locally on Tµν . This means
that there will be no screening effect even a small distance away from the source. This is in contrast to Vainshtein
screening sourced by derivative self-interactions of the scalar φ, e.g. a X�φ term in the action, which will lead
to screening inside a Vainshtein radius rV that can extend beyond the source itself, subject to introducing an
appropriate coupling between matter and φ such as the linear φT̃ .
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system, which has had time to settle. Modeling matter as a pressureless, non-relativistic fluid

results in

J1 = A,X ρ̂�φ

J2 = −2ρ̂
(
A,Xφ + 3A−1A,XA,φ

)
X

J3 = −ρ̂
(
A,XX + 3A−1A2

,X

)
Π

J4 = A3A,X∂
αφ∂α

(
A−3ρ̂

)
, (5.20)

where we have substituted A3T̃ = −ρ̂ (or equivalently ρ̂ = A3ρ̃), since ρ̂ is a conserved quantity

in the Einstein frame. Explicitly working out J4, which will be relevant when modeling the

transition across matter boundaries, one finds

J4 = 6A−1A,XA,φρ̂X + 3A−1A2
,X ρ̂Π +A,X∂

αφ∂αρ̂. (5.21)

This considerably simplifies the equations of motion, revealing additional symmetries that arise

due to the functional form of A in combination with requiring a non-relativistic, pressureless

fluid as the matter source. Consequently the equation of motion for φ may be written as

V,φ +A,φρ̂ = (1− ρ̂A,X)�φ+ 2ρ̂A,XφX + ρ̂A,XXΠ−A,X∂αφ∂αρ̂. (5.22)

An instructive way to think of the physical properties of this system is to explicitly write it as

a Klein-Gordon equation with an effective potential that only depends on φ and “friction terms”

that encode the dependence on higher derivatives of φ. If we are purely interested in the profile

inside the source (and hence ignore ∂αρ̂), this means we can write

Veff,φ(φ) = �φ+ F1 (φ,X, ρ̂)X + F2 (φ,X, ρ̂) Π

= �φ+ “friction terms”. (5.23)

To make the form of the effective potential explicit, one can Taylor-expand the conformal factor

A in powers of X, writing

A(φ,X) = A(0)(φ) +A(1)(φ)X +O(X2), (5.24)

which allows us to write down the effective potential for φ as

Veff,φ(φ) =
(
V,φ + ρ̂A

(0)
,φ

)(
1−A(1)ρ̂

)−1
. (5.25)
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5.3.3 Phenomenology and comments

Given some original potential of the runaway form V (φ), the chameleon mechanism generates an

environmentally dependent effective potential that gives φ a large mass in high density regions.

Here “high density” and “large mass” are essentially references to solar system constraints [26] on

the presence of a fifth force mediated by a scalar degree of freedom. As such, any theory with

a runaway V (φ) that successfully implements the chameleon mechanism at the very least has to

tick two boxes. Firstly it needs to give rise to an environmentally-dependent effective potential

which has a minimum. And secondly the mass of small oscillations around that minimum has

to be large enough to satisfy fifth force constraints. With this in mind let us investigate the

effective potential described by (5.22) and (5.25). Note that in section 5.4 we will give explicit

examples illustrating each of the effects outlined here in detail.

Position of minimum: For a finite density ρ̂ and conformal factor A (more precisely, A(1)),

(5.25) shows that a potential minimum requires

V,φ (φmin) + ρ̂A
(0)
,φ (φmin) = 0, (5.26)

which is identical to the condition for the minimal conformal chameleon discussed in section 5.2.

In other words, the position of the minimum, φmin, is not altered by the introduction of an X-

dependent conformal factor. This also shows that a conformal factor which does not depend on

φ itself, but only on derivatives of φ, (i.e. A(0)
,φ = 0, as is the case for A = A(X)) cannot generate

an effective potential with a minimum, if the original V (φ) does not already possess a minimum

itself. The φ-dependence of A is consequently essential to obtaining a successful implementation

of the chameleon mechanism, if starting with a runaway potential (e.g. V (φ) ∼ φ−n). A potential

V (φ) with very small mass m2
V can however be uplifted by a pure derivative conformal factor

(e.g. A(X)), leading to an effective potential with mass m2 � m2
V . Below and in the next

section we will give explicit examples illustrating this behavior.

Effective mass: A derivative-dependent conformal factor affects the curvature of the effective

potential. This means derivative chameleons generically come equipped with a new mass-altering

mechanism. The effective potential, and hence the mass of the field, is classically renormalized

by introducing higher order invariants into the conformal relation as follows

m2 = Veff,φφ(φmin) =
(
V,φφ(φmin) + ρ̂A

(0)
,φφ(φmin)

)(
1−A(1)(φmin)ρ̂

)−1

= m2
standard

(
1−A(1)(φmin)ρ̂

)−1
, (5.27)

wherem2
standard denotes the effective mass for small oscillations around the minimum for a theory

with identical conformal factor in the limit A(φ,X → 0). In other words,m2
standard is the effective
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mass for the theory in the limit where higher-derivative contributions can be neglected. This

mass-altering mechanism can be separated into three branches, which we will discuss now.

Mass-lifting, ghost-like instabilities and anti-chameleons: Equation (5.27) shows that

the effective mass m2 is enlarged when 0 < A(1)(φmin)ρ̂ < 1. This is interesting since it suggests

that derivative chameleon models provide an additional mass-lifting mechanism, potentially

alleviating the fine-tuning involved in obtaining a sufficiently large mass in dense environments

for standard chameleon models. However, care must be taken when considering mass-lifting

solutions for the following reason. Suppose we consider a conformal factor A such that a mass-

lifting mechanism is in place, i.e. 0 < A(1)(φmin)ρ̂1 < 1 for some given energy density ρ̂1.

Now, assuming A has no density-dependence itself, one can solve for a (larger) critical density

ρ̂crit above which the solution becomes unstable. The effective potential switches sign since

1−A(1)(φmin) becomes negative, so that φmin becomes φmax and Veff,φφ(φmin) turns negative.

Thus we are left with a negative “mass term”, signaling instabilities, and the solution becomes

ghost-like. Figure 5.1 illustrates these different regimes. That different energy densities ρ̂ will

interpolate between stable mass-lifting and ghost-like solutions can also be seen from the relevant

part of the equation of motion

V,φ +A,φρ̂ = (1− ρ̂A,X)�φ+ ..., (5.28)

where, if ρ̂A,X > 1, this can be traced back to an action with the “wrong” sign for φ’s kinetic

term.4

There appear to be two obvious solutions to this instability problem.5 Firstly one could

consider making A(φ,X) a function of the energy density ρ̂ as well. However, especially given

that the matter stress-energy tensor T̃µν is a variation of the matter Lagrangian with respect

to the metric g̃µν = A2(φ,X)gµν , it is not clear what such an iterative dependence on T̃µν

would mean. Nevertheless it will be an interesting task for the future to think about whether

there is some convincing way of implementing such a dependence. In any case, from a purely

phenomenological point of view, a density dependent A allows us to have a stable, derivative

dependent mass-lifting mechanism for all ρ̂. Secondly one may choose a conformal factor such

that ρ̂A,X∼<1 up to the density cutoff of the theory. Note, however, that the effective chameleon

mass m2 is proportional to (ρ̂crit − ρ̂)−1, where we have defined a critical density ρ̂crit such that

A(1)(φmin)ρ̂crit = 1. Introducing a cutoff at ρ̂crit will then render derivative-dependent effects
4Jumping ahead slightly, also note that, if A,X is a function of φ and the field is not approximately constant

φ ∼ φmin inside the source (the so-called “thick-shell regime - see section 5.5), one needs to be aware that ρ̂A,X(φ)
being smaller than unity for some initial φi(r = 0) no longer guarantees that this remains true for all values of φ
taken inside the source.

5Should we decide to bite the bullet and accept the existence of ghost-like solutions above some density-scale ρ̂,
such an approach will also face major challenges when confronted with high energy/density early universe physics.
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on m2 suppressed by that same cutoff scale

m2 =
m2
standard

(ρ̂cutoff − ρ̂)A(1)(φmin)
= m2

standard

(
1− ρ̂

ρ̂cutoff

)−1

. (5.29)

If the cutoff is low enough, significant derivative-dependent effects on m2 may still be obtained,

but for a high cutoff density such as the Planck density ρP they will be strongly suppressed.

The third branch of mass-altering solutions corresponds to the case when A(1)(φmin) < 0?

Then the effective mass of φ is reduced, counter-acting chameleon screening effects

m2 =
m2
standard

1 +
∣∣A(1)(φmin)ρ̂

∣∣ . (5.30)

This branch is free of instabilities and provides a robust mechanism to suppress mass terms in

models with derivative conformal factors A, since the derivative dependence reduces the curvature

of Veff . This suggests that the simplest A2(φ,X) models, where A is independent of ρ̂ and no

ghost-like instabilities arise for any ρ̂, are anti-chameleon models in the sense that the effective

mass m2 is reduced compared with the non-derivative chameleon limit A(φ,X → 0).

Thin shell regime: The computation of Veff and its minima/maxima and masses above was

oblivious to “friction” terms in (5.23) (by definition, since the effective potential is a function

of φ and not its derivatives). But such terms automatically arise as a consequence of a higher

order conformal coupling. Here “friction terms” is a reference to terms other than �φ that have

a derivative dependence on φ, e.g. J2 and J3 which encode the dependence on X and Π. While

not influencing Veff , these terms do impact the dynamics of φ, warranting further investigation.

One particularly interesting consequence is a modification of the so-called thin-shell regime.

In typical chameleon theories the chameleon-charge of large, massive objects can be Yukawa-

screened with only a thin-shell on the outside of the object contributing to the exterior φ-

profile [15, 16]. This is essential for e.g. avoiding unacceptably large effects on planetary orbits

due to a chameleonic fifth force. Now the presence of additional friction terms modifies the

gradient of φ inside the source and one therefore expects a modification of the thin-shell effect

as well. We will discuss this in detail in section 5.5, where we investigate radial solutions around

massive sources, focusing on new-found phenomenology due to derivative conformal factors.

Equivalence principle (violations): A final comment on possible equivalence principle

violations. By construction, chameleon models (both standard as well as the derivative general-

ization considered here) respect the weak equivalence principle. In the non-derivative case, the

extra degree of freedom φ locally influences the dynamics, but it does not discriminate between

different test masses/types of matter due to the universal coupling of A2(φ) to all matter fields

Ψi (field-dependent couplings are discussed in [146]). In the derivative case, an additional degree
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of freedom X enters. But since all matter still universally couples to A2(φ,X)gµν , all test masses

locally experience the same gravitational force (note that φ is viewed as a gravitational scalar

here). In both cases φ’s profile of course does not remain constant across space-time, as it

depends on the ambient density. This means the strong equivalence principle is trivially violated

(as is, in fact, the Einstein equivalence principle - cf. with e.g. the Horndeski constructions

in [147] where the strong, but not the Einstein equivalence principle is broken).

The main point we wish to make here is that a prima facie worry one might have when

considering A2(φ,X), namely that a derivative-dependent coupling to matter violates even the

weak equivalence principle, is not justified. This is simply due to the fact that there is no

dependence of the gravitational coupling on the momentum of matter (Ψi) test masses, but only

a derivative coupling to the gravitational scalar φ. Nevertheless this is an area that warrants

further investigation, since known violations of the strong equivalence principle in chameleon

models (cf. [148, 63, 149, 150, 151]) will be modified by introducing a derivative dependence.

Computing this in detail should enable further disentangling of derivative vs. non-derivative

chameleons.

5.4 Effective potentials and the chameleon mass

In this section we illustrate how chameleon mechanisms arise in derivative theories with a number

of explicit examples. We focus on the mass-altering mechanism for different conformal factors.

5.4.1 Example I: Taylor-expanding A(φ,X)

We begin by reminding ourselves of (5.24) and Taylor-expanding the conformal factor

A(φ,X) = A(0)(φ) +A(1)(φ)X +O(X2), (5.31)

where the associated mass of oscillations around an effective minimum is given by (5.25). We will

ignore higher orders in X and, as a first simple example, focus on the zeroth order contribution

in φ to A(1), treating it as a constant. As such the conformal factor takes on the form

A(φ,X) = A(0)(φ) + kXX. (5.32)

The resulting potential and effective mass can be computed to give

Veff (φ) =
V (φ) + ρ̂A(0)(φ)

1− kxρ̂
, (5.33)

m2 =
V,φφ(φmin) + ρ̂A

(0)
,φφ(φmin)

1− kX ρ̂
=
m2
standard

1− kX ρ̂
. (5.34)
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This illustrates the point made in the previous section about the existence of a mass-raising and

a mass-lowering branch for derivative chameleon models. In the simple setup considered here, if

kX is negative, the chameleon mass m2 is reduced compared with the standard A = A(φ) theory.

The fine-tuning necessary in order to get a sufficiently large chameleon mass is therefore made

more severe in this case, since an additional mass-lowering mechanism is at work. For positive kX
a mass-lifting mechanism operates, increasing m2. However, for kX ρ̂ = 1 the mass diverges and,

once kX ρ̂ exceeds unity, the “mass” turns negative and the solution ghost-like. As discussed in the

previous section, this is cause for concern, since given some gravitational theory the conformal

factor is fully specified (and hence kX is fixed in this case). As such, sources with densities above

ρ̂crit = 1/kX essentially see an unstable inverted potential −Veff inside the source. The bottom

left graph of figure 5.1 illustrates this point by plotting the dependence of the effective potential

on kX for some given source density ρ̂1. This amounts to considering different normalizations

of the effective potential. On the other hand, the bottom right plot shows how varying ρ̂ for

some given, positive and fixed kX affects the solution. Note that having restricted to positive

kX means there are no mass-lowering solutions present in this plot. As expected from (5.33),

changing ρ̂ modifies both the position of the minimum as well as as changing the potential’s

normalization and hence curvature/mass via the 1− kxρ̂ term.

As an aside, notice that, if one does allow the conformal factor to depend on energy density

ρ̂ (for a discussion of this approach see the previous section), then one can construct a solution

which remains ghost-free inside sources with arbitrarily large energy densities ρ̂. E.g. we may

impose

A(φ,X) = ek1φ + ρ̂−1
(

1− ek2φ
)
X +O(X2), (5.35)

which results in an effective mass given by

m2 = ek2φmin
(
V,φφ(φmin) + k2

1ρ̂e
k1φmin

)
. (5.36)

In other words, in this particular example k2 allows tuning the massm2 arbitrarily. The potential

is stable for all φ and the mass can be altered by modifying the X-dependence of the conformal

factor A2.6

5.4.2 Example II: A separable A(φ,X)

In the Taylor-expanded picture laid out in the previous section, considering a separable conformal

factor A(φ,X) amounts to setting A(0)(φ) = A(1)(φ). An interesting feature compared with the

kX case discussed above is that the normalization of the potential now also becomes a function
6If one is concerned that additional singularities are introduced by the ρ̂−1 dependence of A here, notice that

a condition such as A(1)ρ̂ ∼ 1− e−ρ̂ will also ensure a ghost-free mass-lifting regime.
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of φ. To see this explicitly we write the conformal factor as

A(φ,X) = B(φ)C(X), (5.37)

which means the effective potential satisfies

Veff,φ(φ) =
(
V,φ + ρ̂B,φC

(0)
)(

1−BC(1)ρ̂
)−1

, (5.38)

where Ci refers to the i-th component in a Taylor-series expansion of C(X) in powers of Xi.

Since at the minimum of the potential Veff,φ(φmin) = 0, we obtain an effective chameleon mass

for oscillations around φmin of

m2 =
V,φφ(φmin)− 1

2 ρ̂C
(0)B,φφ(φmin)

1− 1
2k2B(φmin)C(1)ρ̂

. (5.39)

Viewing the effective potential as a renormalized version of the corresponding standard (i.e. non-

derivative) chameleon setup with C = 1, the effect of the B(φmin) term in the denominator can

be described as making this renormalization φ-dependent. The top right plot in figure 5.1 shows

the effective potential for a separable conformal factor of the form A(φ,X) = Exp [k1φ+ k2X].

Note that we require a positive k2, because otherwise the conformal factor diverges as ∂µφ→ 0,

i.e. no stable, static solution is possible. Now the effective mass can be written as

m2 =
V,φφ(φmin) + ρ̂k2

1e
k1φmin

1− k2ek1φmin ρ̂
= m2

standard

(
1− k2e

k1φmin ρ̂
)−1

. (5.40)

The solution again separates into the three branches discussed. For positive B(φ) and when

0 < k2Bρ̂ < 1 the effective potential has a well behaved minimum protected by an infinite

potential barrier at φcrit, where φcrit satisfies k2B(φcrit)ρ̂ = 1 for a given ρ̂. Equation (5.40)

then shows that m2 is enhanced by the derivative-dependence of A(φ,X). For values of φ > φcrit

there do exist unstable regions of parameter space. However, a particle, which starts at an initial

field value φi for which k2B(φi)ρ̂ < 1, is protected from entering the unstable region. A more

physically insightful understanding of the inherent instabilities in these models can be gained by

phrasing the same argument in terms of a critical density. In particular we note that, given a

conformal factor that fixes k2, solutions with positive k2B(φ) inside a source with energy density

such that ρ̂ > (k2B)−1 are unstable. Finally, for negative k2B(φ)C(1) a stable, mass-lowering

solution is obtained similar to the one discussed in the previous section. The top right plot of

figure 5.1 illustrates these three branches and one can see the generation of an effective minimum

and how the mass m2 can be tuned by varying k2 (for a fixed ρ̂) at the expense of lowering the

critical field value φcrit.



CHAPTER 5. DERIVATIVE CHAMELEONS 112

Figure 5.1: Top Left: Plot showing the effective potential Veff (φ) (solid line) for a separable conformal factor
A(φ,X) = B(φ)C(X) = ek1φ+k2X (dashed line) and a runaway potential V (φ) ∼ φ−3 (dotted line) in arbitrary
units. Top Right: Logarithmic plot showing Veff (φ) for different choices of k2 (negative, zero and positive from
bottom to top with ρ̂ = 1 in arbitrary units). This shows how the amplitude, and hence mass, of the chameleon
field grows as k2 is enlarged, while the stable region of parameter space is reduced. The dashed line shows how the
pole in the denominator of Veff creates a discontinuity at φcrit and the effective potential assumes a runaway form
for values of φ∼>φcrit. In other words, the solution transitions between the mass-lifting and ghost-like branches at
φcrit. Note that the value taken by φcrit is a function of ρ̂ and the effective potential. Bottom Left: Plot showing
the effective potential for a conformal factor as in equation (5.32) and for different values of the parameter kX
and fixed ρ̂: The solid line shows the non-derivative chameleon with kX = 0, dashed lines show the mass-lifting
branch with 0 < kX ρ̂ < 1, dot-dashed lines show the mass lowering branch with kX < 0 and dotted lines lie
in the unstable region with kX ρ̂ > 1. Bottom Right: Analogous plot varying ρ̂ for some fixed positive kX
(hence no mass-lowering branch is present here). Varying ρ̂ changes the position of the minimum as well as the
normalization of Veff and hence its curvature and mass m2. ρ̂ is zero for the solid line and below/above ρ̂crit for
dashed/dotted lines respectively.
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5.4.3 Example III: A purely derivative conformal factor A(X)

Suppose we have a purely derivative conformal factor that does not depend on the field value of

φ itself. This is interesting, since it means the theory has a shift symmetry φ→ φ+c, potentially

protecting it from a number of quantum corrections7 (assuming this is at most softly broken by

the potential V (φ) - cf. [152], where this point is discussed in an inflationary setting). As such,

let us consider a conformal factor of the following form

g̃µν = A2(X)gµν =
(

1 +A(1)X +O(X2)
)
gµν , (5.41)

where A(0) has been appropriately normalized (i.e. there is no fundamental reason why it should

be unity) and where all Ai are now constants and therefore not functions of φ. The reason

to require A(0) 6= 0 is that otherwise any coupling between gravity and matter vanishes once

∂µφ = 0, e.g. once φ has settled into its minimum. The full action can then be written as

S =

∫
d4x
√
g

(
M2

2
R+X − V (φ)

)
+ Sm

(
A2(X)gµν ,Ψi

)
. (5.42)

Now we have already seen that a conformal factor, which does not depend on the field value φ

itself, cannot create an effective potential with a minimum, if V (φ) is of the runaway form (so it

does not have a mass term). But what if dark energy is in fact sourced by a very light, but not

massless, cosmological scalar? Then V (φ) does already have a (very small) mass term and hence

a minimum. Let us focus on a particularly simple toy model and consider a power-law potential

of the form

V (φ) =
1

2

(
φ

φ0

)2

, (5.43)

i.e. a simple mass term for mφ = φ−1
0 , which allows us to tune the mass of the field by choosing

φ0. In order for this field to act as dark energy on large scales, it has to be extremely light

mφ = φ−1
0 . H0 ∼ 10−33eV . Now the effective equation of motion for φ is

V,φ = (1− ρ̂A,X)�φ+ ρ̂A,XXΠ−A,X∂αφ∇αρ̂. (5.44)

and we can write down an effective potential Veff (φ) = V (φ)
(
1−A(1)ρ̂

)−1. In dense environ-

ments the effective mass of the chameleon field consequently goes as

m2 =
V,φφ

1−A(1)ρ̂
=
(
φ2

0 − φ2
0A

(1)ρ̂
)−1

, (5.45)

7This statement is of course not as strong as for a theory with an additional Galilean shift symmetry (cf. [29])
where an effective non-renormalization theorem can be derived [35, 36]. Note, however, that even there analogous
concerns enter due to the non shift-symmetric matter coupling φT̃ , cf. discussions in [63, 64].
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which can be very large subject to 0 < 1−A(1)ρ̂� 1. This outlines how a mass-lifting mechanism

caused by a purely X-dependent conformal factor can give rise to a viable chameleon-type

solution. An otherwise extremely light cosmological scalar field then acquires a large mass in

dense environments.

We emphasize that the point made here is independent of the exact form of the potential.

Given any potential for a non-massless field φ, i.e. a potential with a minimum at φc, the

mechanism outlined here will raise the field’s mass in a density-dependent manner. We can

therefore apply this purely derivative mass-lifting mechanism to any potential V (φ) for a field

with a small mass mφ 6= 0, which reproduces the desired dark energy behavior on cosmological

scales.

However, this approach faces a major obstacle. The field’s mass has to be enlarged by several

orders of magnitude if a light cosmological scalar φ is to escape detection on solar system scales.

This means A(1)ρ̂ ∼ 1 for a large range of densities ρ̂, so that A(1) has to depend on ρ̂ in

order to suppress the otherwise strong dependence of m2 on ρ̂ and in order to prevent ghost-like

instabilities from developing. We refer to section 5.3 and the previous examples in this section

for a discussion of the possibility of such a density-dependent conformal factor. Also note that

the mass-lowering branch with A(1) < 0, albeit perhaps less interesting phenomenologically, does

not face this problem just as discussed in the previous examples.

5.5 Radial solutions, the thin-shell effect and “friction terms”

In this section we investigate the static, radial φ-profile in and around a spherically symmetric

body with uniform density ρ̂ - a good approximation for the profile around the sun or earth, for

example.8 Expressing the general equation of motion (5.22) for such a profile one finds

V,φ +A,φρ̂ = (1− ρ̂A,X)

(
d2φ

dr2
+

2

r

dφ

dr

)
− ρ̂A,Xφ

(
dφ

dr

)2

+ ρ̂A,XX
d2φ

dr2

(
dφ

dr

)2

−A,X∂αφ∂αρ̂, (5.46)

where ρ̂ and φ are functions of r. We now modify the approach taken in [16] in that we still

assume

ρ̂(r) =

{
ρ̂c for r � R

ρ̂∞ for r � R.
(5.47)

where R is the radius of the spherical object, ρ̂c is its density and ρ̂∞ is the density of the

surroundings. With an eye on computing the gradient term ∂αρ̂(r) in (5.46), we model the
8For a time-dependent chameleon field in the case of a radially pulsating mass, see [153].
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boundary between source and surroundings by a very sharp, but smooth, transition between ρ̂c
and ρ̂∞. The particular template we shall adopt is

ρ̂(r) =
1

2
(ρ̂c − ρ̂∞)(1− Tanh [s(r −R)]) + ρ̂∞, (5.48)

taking s� 1, so that ρ̂ effectively remains at its asymptotic values except for a sharp transition

around r = R. A unique solution for (5.46) requires specifying two boundary conditions. Again

following [16], we take these to be dφ(r = 0)/dr = 0, so that the solution is non-singular at the

origin, and φ→ φ∞ as r →∞, which ensures that the φ-mediated force between two test bodies

vanishes as r →∞.

In what follows we will first recap how this setup gives rise to a thin-shell effect for the minimal

conformal chameleon (i.e. the standard case). Then we discuss how radial solutions and thin-

shell behavior are modified by introducing derivative conformal factors, paying special attention

to the effect of “friction terms” in (5.46) (i.e. X and Π dependent terms as in J2 and J3 (5.20)).

5.5.1 The thin-shell effect for standard chameleons

Figure 5.2: Left: The radial solution for a standard chameleon with conformal factor A(φ) = ek1φ and different
values for the parameter k1 = 1, 1.05, 1.1, 1.2 from bottom to top. The initial φi(r = 0) remains fixed for all k1
here (note that the position of the extremum φc also depends on A and hence k1). Right: Plot showing how a
suitably chosen φi leads to a radial solution that asymptotes to φ∞ as r →∞. k1 = 1 here.

Any given physical system will come equipped with a specific V (φ), ρ̂, R etc. This will then

allow us to compute the corresponding solution to (5.46), in particular fixing the initial field-

value φi at r = 0. Alternatively one can explore the system’s solutions by choosing some φi and

finding the corresponding region in (ρ̂, R, ...) parameter space [16].9

9This amounts to solving (5.46) as a classical mechanics problem with φ being a position- and r being a
time-coordinate. Note that the opposite signs for temporal and spatial dimensions in gµν ’s signature mean that,
for the radial solution we are considering here, the particle whose “position” is described by φ “moves” on the
inverted, and hence unstable, potential −Veff .
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Now for the minimal conformal chameleon, as described in section 5.2, the radial equation of

motion is simply

V,φ +A,φρ̂ =

(
d2φ

dr2
+

2

r

dφ

dr

)
. (5.49)

Outside the source, i.e. at a radius r > R, the solution for φ then assumes the form [16]

φ(r) ∼
(

∆R

R

)
Mce

−m∞(r−R)

r
,

∆R

R
∼ φ∞ − φc

Φc
∼ R−Rroll

R
� 1, (5.50)

where R is the radius of the source, Mc is its mass, φ∞ and m∞ are the field value and mass

of the field as r → ∞, φc is the local extremum of the φ-potential inside the source10 and Φc

is the Newtonian potential at the surface of the source. We have also assumed that ∆R/R,

the so-called thin-shell suppression factor, is small. An intuitive picture for this setup is the

following: The field is released at “time” r = 0 from φi. Inside the source the field remains stuck

near φi with its dynamics dominated by the 2/r · dφ/dr friction term. Eventually, at r = Rroll,

the field φ starts rolling and hence developing gradient terms. Only contributions from the

region between Rroll and R, i.e. the region where gradient terms develop, are felt by the exterior

profile. Since ∆R/R � 1, the chameleon force from a large massive body on a test mass is

therefore thin-shell suppressed. This is essential in explaining why e.g. planetary orbits are not

affected by a chameleonic force. In the language set out above the thin-shell regime corresponds

to φi − φc � φc.

In contrast, the radial solution for the unsuppressed “thick-shell” regime, where φi∼>φc, is given
by

φ(r) ∼ Mce
−m∞(r−R)

r
. (5.51)

Here the field starts significantly displaced from φc and consequently starts rolling almost imme-

diately. Gradient terms develop inside the source and there is no thin-shell suppression (hence the

absence of the ∆R/R factor). It is intuitively clear that the presence of further derivative terms

in the general solution (5.22) will modify this behavior, since it will affect gradient terms in φ.

We now move on to explore such “friction” terms and their effect on the thin-shell mechanism.11
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Figure 5.3: Left: Plot of the radial solution for a conformal factor as in (5.32) with kX = 0 (solid line),
kX increasingly positive (dashed lines - kX increases as one moves out from the solid line) and kX increasingly
negative (dotted lines - kX decreases as one moves out from the solid line). Middle: Plot of the radial solution
for a conformal factor as in (5.54). Again the solid line denotes kX = 0. Dashed lines are for fixed positive kX
and outwardly increasing k2, while dotted lines are for negative kX , again with outwardly increasing k2. In order
to illustrate the effect of derivative contributions more clearly the solution is shown for an initial displacement
φi − φc ∼ O(φc/10), i.e. an intermediate region between thin- and thick-shell screening. Notice that the most
significant effect comes from the ∂ρ̂ term at r = R, which produces a “kink” in the radial solution (actually smooth
due to the density profile (5.48)). Right: Analogous plot with the solid line describing kX = 0. kX is positive
above and negative below the solid line. Here dashed lines represent the solution including the friction term that
depends on A,Xφ (cf equation (5.55)), while dotted lines ignore this contribution. The additional “friction term”
therefore drives the solution further away from the non-derivative limit.

5.5.2 Radial solutions for derivative chameleons

Derivative solutions without “friction terms” : How does the radial solution and thin-shell

suppression change once we go beyond the simplest chameleon setups? We begin by considering

a simple conformal factor of the form

A(φ,X) = ek1φ + kxX, (5.52)

i.e. a sum-separable A(φ,X) = B(φ) + C(X) with purely linear dependence on X. This

reduces (5.46) to

V,φ +A,φρ̂ = (1− ρ̂A,X)

(
d2φ

dr2
+

2

r

dφ

dr

)
−A,X∂αφ∂αρ̂. (5.53)

In contrast with the standard chameleon case there are therefore two new effects. Firstly the

(1− ρ̂A,X) term, which effectively renormalizes the potential and is responsible for the mass-

changing mechanism discussed in section 5.4. And secondly the new gradient term in ∂αρ̂, which

will only be significant very close to r = R. Importantly we have no X- or Π-dependent friction

terms for a conformal factor of the form considered here.

We plot radial solutions for (5.53) in the left panel of figure 5.3 for different values of kx. The
10Since we are effectively dealing with motion along −Veff , φc is the same as φmin in previous sections.
11Further discussions of standard thin-shell screening and spherically symmetric solutions can be found e.g.

in [15, 16, 154, 155].
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behavior observed can be understood as follows. For positive kX , the (1− ρ̂A,X) term increases

the curvature of the effective potential (and hence the mass of oscillations around the minimum).

This means that the driving term Veff,φ is enhanced and will overcome the 2/r · dφ/dr friction

“earlier” in the evolution, i.e. it will reduce Rroll. In other words, in order to obtain the same

thin-shell screened exterior solution one now needs to release the particle φ from even closer to

the minimum value φc, so that φderivativei � φstandardi . The ∂αρ̂ term in fact further increases this

tendency, giving an additional positive “kick” to the gradient of φ. Note that this second effect

is oblivious to the profile inside the source and as such does not modify the thin-shell condition.

However, in order to reach the same boundary value φ∞ as r → ∞, both new terms require an

initial φi closer to φc than in the non-derivative case.

For negative kX the converse is true. The curvature and associated mass of the effective

potential is reduced and thin-shell screening is enhanced, i.e. Rroll is pushed closer to R. This

broadens the thin-shell screened parameter-space and reaching the boundary value φ∞ as r →∞
requires an initial φi further away from φc than in the non-derivative case for negative kX .

Overall the new derivative dependent effects found here modify the parameter-space for thin-shell

screened solutions, with a positive/negative kX weakening/strengthening thin-shell screening

respectively. As intuitively expected from modifying the curvature of the effective potential, the

mass-lifting branch is therefore associated with a suppressed thin-shell mechanism, whereas the

mass-lowering branch enhances thin-shell screening.

Derivative solutions with “friction terms” : Here we finally wish to examine the effect of

“friction terms” that depend on derivatives of φ. The toy model we adopt has a conformal factor

A(φ,X) = ek1φ + kXe
k2φX +O(X2), (5.54)

where we will ignore the higher order corrections O(X2). This means the radial solution (5.46)

simplifies as Π-dependent contributions drop out (such contributions only come in for a conformal

order with non-linear dependence on X). The equation of motion consequently becomes

V,φ +A,φρ̂ = (1− ρ̂A,X)

(
d2φ

dr2
+

2

r

dφ

dr

)
− ρ̂A,Xφ

(
dφ

dr

)2

−A,X∂αφ∂αρ̂. (5.55)

In the middle and right panel of figure 5.3 we plot solutions for constant k1, but varying k2

and kX , essentially tuning the contribution of the 2ρ̂A,XφX term. One can see that a large

k2 in combination with the presence of the ∂αρ̂ term magnifies the “kick” at r ∼ R. Perhaps

more interestingly, for positive kX the direct coupling of φ to its derivative in the conformal

factor again counteracts the thin-shell effect, by driving the field away from near its minimum

φc. As before this results in a reduced Rroll. Also as before the converse is true for negative kX .

The inclusion of the 2ρ̂A,XφX term therefore strengthens the tendencies observed above: The
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mass-lifting branch becomes yet more fine-tuned in order to obtain a thin-shell screened solution,

while for the mass-lowering branch the parameter-space corresponding to thin-shell screening is

broadened.

This concludes our brief survey of how radial solutions around a massive source are modified

by the introduction of derivative terms into the conformal factor. As a generic feature, we

observe that a positive kX , linear dependence on X, which leads to a mass-lifting mechanism,

simultaneously tightens thin-shell screening constraints, requiring a value of φi closer to φc in

order to maintain a nearly constant field value inside the source. The converse is true for negative

kX .

5.6 Disformal chameleons: A no-go theorem

Until here we have only been considering conformal couplings to matter. Here we wish to inves-

tigate whether switching on the disformal B2 term (5.11) can result in interesting modifications

to the chameleon mechanism (for other disformal dark energy models we refer to [156, 157, 158]).

As such, matter now couples to the full disformal matter metric

g̃µν = A2(φ,X)gµν +B2(φ,X)∂µφ∂νφ. (5.56)

Note that such a metric always has a well-defined inverse [24] given by

g̃µν = A−2(φ,X)
(
gµν −B2(φ,X)C−1(φ,X)∂µφ∂νφ

)
, (5.57)

subject to the condition that A2(φ,X) 6= 0 6= C(φ,X), where C = A2(φ,X) + B2(φ,X)X. We

then have

S =

∫
d4x
√
g

(
M2

2
R− 1

2
X − V (φ)

)
+ Sm

(
A2(φ,X)gµν +B2(φ,X)∂µφ∂νφ,Ψi

)
. (5.58)

Just as in the conformal case we consider a non-relativistic, pressureless source. In addition we

here focus on static solutions for which ∂0φ = 0 (requiring spherical symmetry could reduce this

further to φ = φ(r)). As such our assumption list now is

• The stress-energy tensor describes a pressureless, non-relativistic fluid (T̃ 0
0 = −ρ̃) with all

other stress-energy tensor components vanishing.

• φ’s dynamics are described by a static solution (∂0φ = 0).

As before we may also assume a static, uniform source in the matter frame (∇̃αT̃µν = 0 inside

the source), but this won’t be necessary for the argument here. Instead we are solely interested
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in whether a chameleon mechanism can arise inside a source as a consequence of disformal

contributions here at all.

The equation of motion (5.14) then immediately gives rise to a no-go theorem. This is because

all disformal (B2-dependent) terms in fact involve a contraction of one of the following forms

∂µφ∂νφT̃
µν , ∂µφT̃

µν , ∂α∂µφT̃
µν , ∂µφ∇ν T̃µν . (5.59)

As such all disformal contributions vanish for a static solution around a non-relativistic, pres-

sureless source, since the only non-zero component of the stress energy tensor is T̃ 00, which

vanishes when contracted with ∂0φ for a static solution. Chameleonic effects from the disformal

coupling are therefore suppressed when considering e.g. solutions around the earth. We do

expect disformal effects to play an important role when computing relativistic or non-static

corrections to this solution, however. Nevertheless, this shows that, with the mild assumptions

implemented above, the dominant contribution to the chameleon profile necessarily has to come

from a conformally coupled matter metric. Disformal effects here only come in at next order

in relativistic corrections and for non-static profiles. Note that we have focused on chameleonic

behavior here. As comparison with the discussion of J5 and J6 (5.18) in section 5.3 shows,

Vainshtein-like screening can arise as a consequence of disformal couplings.12

5.7 Summary

The main results of this chapter can be summarized as follows.

• A derivative chameleon model described by (5.13), where all matter is universally and

minimally coupled to a metric g̃µν = A2(φ,X)gµν , generically comes with a new mass-

altering mechanism. This separates into three branches depending on the local energy

density ρ̂ and the conformal factor A: A mass-lifting (“screening”) branch, where derivative

effects lead to an additional enhancement of the effective chameleon mass compared with

the non-derivative A2(φ,X → 0) limit. For high energy-densities above some ρ̂crit this

transitions into a ghost-like branch in which the effective potential becomes unstable.

Thirdly there is a stable mass-lowering branch.

• This suggests that derivative chameleon models which are not plagued by ghost-like insta-

bilities typically lower the effective chameleon mass. Implementing a mass-lifting mecha-

nism while avoiding ghost-like instabilities for a range of different densities ρ̂ requires some
12Once the metric g̃µν is promoted to a building block for further gravitational parts of the action as in [18] -

e.g. a cosmological-constant-like term
√
g̃Λ, an extrinsic curvature K̃µν and a Ricci scalar R̃ for g̃µν - then a full

galileon/Horndeski type solution can be obtained, making the Vainshtein screening in question more robust.
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additional “engineering”, e.g. introducing either an appropriate energy density cutoff or a

density-dependent conformal factor.

• A very light, but massive, cosmological scalar can in principle be chameleon-screened by

a purely derivative-dependent conformal factor A2(X) in the mass-lifting branch, which

offers added protection from quantum corrections over A2(φ) due to the presence of the

shift symmetry φ→ φ+ c.

• The position of the minimum φmin of an effective chameleon potential Veff cannot be

affected by derivative dependent terms (X-dependent as well as for higher order terms).

This is the reason why for A2(X) to yield chameleon screening a (small) mass term is

needed, whereas A2(φ,X) can produce chameleon screening even in the absence of an

explicit mass-term. Consequently, if we start with a runaway potential, e.g. V (φ) ∼ φ−n for

some positive n, which does not contain any explicit mass term, this means a φ-dependent

conformal factor is necessary in order to produce chameleon screening.

• Radial solutions and the thin-shell mechanism are modified in derivative chameleon models.

The region of parameter-space exhibiting thin-shell screening is reduced in the mass-lifting

branch and enhanced in the mass-lowering branch of solutions.

• Disformal contributions to the matter metric cannot source chameleon phenomenology for

a static solution around a non-relativistic, pressureless source (they can source Vainshtein-

screened solutions though).

To conclude, chameleon models provide a well-established framework for reconciling the pres-

ence of a light cosmological scalar that drives cosmic acceleration with small scale fifth force

constraints. Here we have shown how chameleon-type setups can be generalized to derivative-

dependent conformal couplings, suggesting that this naturally generates a further mass-changing

mechanism. The mass-lifting branch offers the possibility to alleviate the fine-tuning involved

in making a chameleon fit fifth force constraints and also comes with the exciting promise of

making chameleon models more robust from a quantum perspective by endowing them with

a shift symmetry. However, this branch also faces a ghost-problem which may be answered by

introducing a ρ̂-dependent conformal factor or a ρ̂-dependent cutoff for the theory. For the mass-

lowering branch no such problems exist, suggesting that a mass-suppressing mechanism is in fact

a typical feature of derivative chameleon models. As such we hope that this work contributes

to the enterprise of providing a wider survey of the ways in which chameleon-phenomenology

might be implemented, realizing what types of challenges it has to face, and therefore putting

such models on a firmer footing by showing what requirements stable chameleon models have to

meet.



Chapter 6

Emergent Galileons

6.1 Introduction

In the previous chapters we saw how non-canonical scalar fields of the P (X,φ) type arise from

disformal bimetric structures in inflationary settings and we also already explored the disformal

metric relation in a chameleon setting, leading us to construct generalized derivative chameleon

models. However, in the chameleonic setting we only found the conformal subgroup of the

disformal relation to be of relevance. To close the cycle, here we investigate what type of effect

disformal and indeed triformal metrics (1.7) have on modified gravity scenarios. In section 1.3.3

and indeed in chapter 5 we already pointed out that Vainshtein screening is associated with

effective metrics of the type g̃µν = gµν + ∂µπ∂νπ, i.e. of the disformal type and here we wish to

develop this observation further.

In this context Galileons [29] and in particular their extensions/generalizations [33, 34]1 are a

particularly intriguing specimen here, aiming to construct the most general ghost-free scalar-

tensor theories. For further related constructions see [159, 160, 161, 162] In the standard

Galileon theory this comes paired with a Galilean shift symmetry, which also leads to a non-

renormalization theorem [35, 36] (and hence technical naturalness) for the Galileon terms. This

coincides with purely second order equations of motion. In the generalized scenarios proposed

by [33, 34], ghost-freedom is maintained by requiring equations of motion which are at most

second order, but the absence of a shift symmetry now also allows first order terms in the

equations of motion.

Our aim here then is to show that Galileons naturally arise when considering general bimetric
1Note that, while these theories are “extensions” from a model-building point of view, Horndeski’s construc-

tion [33] historically significantly predates the Galileon model of [29].

122
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scalar-tensor theories with the metric proposed at the very start of this thesis in 1.1.2.2

g̃µν = gµα (δαν +B∂απ∂νπ + C∂α∂νπ) . (6.1)

Constructing geometric invariants similarly to the probe brane construction [18] reviewed in

section 1.3.3, this will afford us with a geometric understanding of Galileons at the level of an

effective 4D theory without the need to wed our proposal to a particular UV-completion (be it

higher-dimensional or otherwise).

The plan for the chapter is very straightforward. In section 6.2 we review the standard Galileon

construction and introduce some notation by [34] which is instrumental in further computations

as well as in establishing the equivalence between classes of theories (non-trivially) related by total

derivatives. In section 6.3 we show how a disformally related metrics generate subset of Galileon

terms, before showing in section 6.4 how the full set of Galileon terms follows from considering

the full triformal relation. Interestingly, while the disformal relation can only generate two

Galileon terms via the two Lovelock invariants available in 4D [30, 31], the triformal relation in

fact generates all Galileon terms only via the single “cosmological constant” Lovelock term
√
g̃.

Finally we summarize our finding and provide an outlook onto further research in section 6.5.

6.2 Galileons

We reviewed Galileon models [29] in section 1.3.3. Here we summarize some salient features of

such models and introduce a more compact notation. This will be extremely useful when manip-

ulating similar models in the following sections and also makes the relation between classically

equivalent Lagrangians clearer (i.e. ones which are related by total derivatives and consequently

produce identical equations of motion). But firstly let us remind ourselves of the DBI-Galileon

probe brane Lagrangian [18] discussed in section 1.3.3. We have

L =
√
gF
(
g̃µν , R̃αβγδ, K̃ρσ, ∇̃ε

)
+Aπ, (6.2)

where the form of the Lagrangian is protected by a non-linearly realized 5D Poincare invariance.

In particular we find that the Lagrangian can be written as a sum of Lovelock invariants [30, 31,
2We note that for the purposes of this chapter we have defined the disformal and triformal factors to be B and

C and not B2 and C2 as in (1.7) in the introduction.
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18, 65]

Fλ = −λ
∫

d4x
√
−g = −λ

∫
d4x
√

1 + (∂π)2 (6.3)

FK = −M3
5

∫
d4x
√
−gK = M3

5

∫
d4x

(
[Π]− γ2[φ]

)
(6.4)

FR =
M2

4

2

∫
d4x
√
−gR =

M2
4

2

∫
d4x γ

((
[Π]2 − [Π2]

)
+ 2γ2

(
[φ2]− [Π][φ]

))
(6.5)

FGB = −βM
3
5

m2

∫
d4x
√
−gKGB

= β
M3

5

m2

∫
d4x γ2

(2

3

(
[Π]3 + 2[Π3]− 3[Π][Π2]

)
+ 4γ2([Π][φ2]− [φ3]) (6.6)

− 2γ2([Π]2 − [Π2])[φ]
)
,

where γ = 1/
√

1 + (∂π)2 and we remember that Πµν = ∂µ∂νπ and square brackets [...] denoting

the trace operator (w.r.t. the Minkowski metric ηµν). Also [φn] ≡ ∂π .Πn . ∂π . In this chapter

we will focus on the non-relativistic limit of Galileon terms. In flat Minkowski space-time and in

the non-relativistic limit (∂π)2 � 1 one then finds that the above Lovelock invariants reduce to

F2 = SNRλ = −λ
2

∫
d4x (∂π)2 (6.7)

F3 = SNRK =
M3

5

2

∫
d4x (∂π)2�π (6.8)

F4 = SNRR =
M2

4

4

∫
d4x (∂π)2

(
(�π)2 − (∂µ∂νπ)2

)
(6.9)

F5 = SNRGB = β
M3

5

3m2

∫
d4x (∂π)2

(
(�π)3 + 2(∂µ∂νπ)3 − 3�π(∂µ∂νπ)2

)
. (6.10)

Note that in the above we are ignoring the the tadpole term F1 = π, which also satisfies the

required symmetries and can therefore be added to any Galileon Lagrangian as well.

In order to keep notation concise we will follow [34] and define

πµ ≡ ∂µπ , πνµ ≡ ∂µ∂νπ. (6.11)

Written in this way one can then establish the following notation, defining a shorthand for

[φi] = 〈i〉 and similarly a shorthand for [Πi] = [i] by

[i] ≡ πµ1µ2π
µ2
µ3π

µ3
µ4 · · ·π

µi
µ1 (6.12)

〈i〉 ≡ πµ1π
µ1
µ2π

µ2
µ3π

µ3
µ4 · · ·π

µi
µi+1

πµi+1 . (6.13)
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The simplest cases are therefore given by

[1] = �π , [2] = παβπ
β
α (6.14)

〈1〉 = παπ
α
βπ

β, 〈2〉 = παπ
α
βπ

β
σπ

σ. (6.15)

It is also useful to set up notation at this point which will later on allow us to straightforwardly

establish properties such as mass dimensions of various terms (e.g. in order to aid power-counting

arguments). As such we denote the number of derivatives ∂, n, and the number of factors of the

field π, m, by (n,m). In particular this means that the following holds

X̄n → (2n, 2n) (6.16)

[n] → (2n, n) (6.17)

〈n〉 → (2n+ 2, n+ 2), (6.18)

where we have defined X̄ ≡ ∂µπ∂
µπ (in order to keep notation concise and in contrast to

X ≡ −1/2X̄). Having established this notation, the non-relativistic Galilean Lagrangians (6.7)-

(6.10) can now be rewritten very concisely as

L2 = X̄ (6.19)

L3 = X̄[1] (6.20)

L4 = X̄
(
[2]− [1]2

)
(6.21)

L5 = X̄
(
3[1][2]− 2[3]− [1]3

)
. (6.22)

A general Galileon Lagrangian can then be written as a linear superposition of these terms

L =
∑

i ciLi.3 Note that we have ignored the tadpole term L1 = π in the above again and

that there are no terms at higher derivative order (here meaning the number of derivatives in

the term or analogously: the term’s mass-dimension) than L5. The corresponding equations of

motion are given by Ei = δLi
δπ = 0 and we find

E2 = [1] (6.23)

E3 = [2]− [1]2 (6.24)

E4 = −2[3] + 3[1][2]− [1]3 (6.25)

E5 = 6[4]− 8[1][3]− 3[2]2 + 6[1]2[2]− [1]4. (6.26)
3We have therefore absorbed all “coupling constants” λ,M5,M4, . . . into the ci.
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Written in this form one can also spot the instructive pattern

Ln = X̄En−1, (6.27)

which is directly related to the fact that all Galileon Lagrangians can be constructed using Euler

hierarchies [163, 164, 165], with the series terminating after L5 in four dimensions. Two further

observations may be made here. Firstly note that X
(
6[4]− 8[1][3]− 3[2]2 + 6[1]2[2]− [1]4

)
is

a total derivative, explicitly confirming that the series terminates after five Lagrangians are

generated. Secondly, with Lagrangians as written in (6.27), it is straightforward to generalize

the standard Galileon with purely second order equations of motion [29] to the most general

scalar field theory with equations of motion of order two or lower. The result [34] is a theory

with Lagrangians Li = f(π, X̄)LGalileon
i .

While there are no integration-by-parts ambiguities at the level of the equations of motion,

the original Lagrangians Li may of course be represented in different forms. The form chosen

above can be related to other forms in the literature by noticing that the following combinations

are total derivatives [166]

TD3 = X̄[1] + 2〈1〉 (6.28)

TD4 = 2 ([1]〈1〉 − 〈2〉) + X̄
(
[1]2 − [2]

)
(6.29)

TD5 = 2
(
[1]2 − [2]

)
〈1〉 − 4 ([1]〈2〉 − 〈3〉) + X̄

(
[1]3 + 2[3]− 3[1][2]

)
. (6.30)

We will use these identities repeatedly in deriving the results presented in the following section.

6.3 Disformal Galileons

In the previous section we reviewed how Galileon terms can be constructed from geometric

invariants by considering the effective theory on a 4-brane embedded in a fifth dimension. Of

course this higher-dimensional motivation is attractive, but not ultimately necessary for con-

sidering Galileon-like theories. One may alternatively simply treat the Galileon Lagrangians as

an effective 4D field theory, constructing the most general ghost-free scalar-tensor theory (and

further requiring technical naturalness if we restrict ourselves to the standard Galileon model with

purely second order equations of motion). Approaching the problem in this way, the geometric

understanding is lost, but we also free ourselves from any commitment to a particular UV-

completion. The approach promoted here is, so to speak, trying to have the best of both worlds:

Obtain a geometric understanding in terms of (effective) metric structures at the level of a purely

four-dimensional field theory without reference to possible UV-completions (higher-dimensional

or otherwise). As we will see, this hybrid approach naturally generates Galileon solutions and
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their various extensions, showing that very simple metric theories constructed from the general

scalar-tensor metrics (1.8) recover known Galileon-like solutions in a very intuitive way.

In contrast to the 5D DBI probe brane construction alluded to above, in a purely 4D theory

there are only two Lovelock invariants for any geometry specified by a given metric gµν [30, 31]

Fλ = −λ
∫

d4x
√
−g (6.31)

FR =
M2

4

2

∫
d4x
√
−gR, (6.32)

where R[gµν ], i.e. the Ricci scalar is formed with the metric gµν . Here we wish to explore a purely

4D effective theory with these two simple Lovelock invariants and general disformal metric. Note

that the remaining terms FK and FGB, which we encountered above, only arise as boundary

terms in a five-dimensional theory [18], in particular making explicit reference to the extrinsic

curvature Kµν , which satisfies

Kµν = − ∂µ∂νπ√
1 + (∂π)2

. (6.33)

As discussed in section 1.3.3, in the DBI probe brane case, the induced 4D metric is precisely of

the disformal type with trivial disformal factor B: g̃µν = gµν + ∂µπ∂νπ. This further motivates

focusing on the disformal relation.

As such we reduce the triformal relation to the purely disformal case with C = 0 with trivial

conformal factor A = 1

g̃µν = gµα (δαν +B∂απ∂νπ) . (6.34)

Focusing on the first Lovelock invariant (6.31) for the metric g̃µν , we have to work out Det[g̃µν ].

To this end we can use the relation

Det [I + α] = Exp [Tr [Ln [I + α]]] (6.35)

where we can expand Det[g̃µν ] = Det[gµν ]Det[I + α], where

α = B∂απ∂νπ. (6.36)

Fortuitously the disformal relation has the special property that (Tr[α])2 = Tr[α2], allowing a
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re-summation of terms in the determinant expansion. Specifically we have

g̃ = gExp
[
Tr
[
α− α2

2
+
α3

3
− . . .

]]
(6.37)

= gExp
[
Tr [α]− Tr

[
α2

2

]
+ Tr

[
α3

3

]
− . . .

]
(6.38)

= gExp

[
BX̄ − BX̄

2

2
+
BX̄

3

3
− . . .

]
(6.39)

= g(1 +BX̄). (6.40)

This means the first Lovelock invariant corresponding to the general 4d effective metric g̃µν is

Fλ = −λ
∫

d4x
√
−g̃ = −λ

∫
d4x
√
−g
√

1 +BX̄. (6.41)

Having specified the metric g̃µν we can also read off the expression for the second Lovelock

invariant from (6.5)

FR =
M2

4

2

∫
d4x
√
−gR =

M2
4

2

∫
d4x γ

((
[1]2 − [2]

)
+ 2γ2 (〈2〉 − [1]〈1〉)

)
(6.42)

where γ is the Lorentz factor introduced above and we notice that, for trivial disformal factor

B = 1, this may also be written as

γ =

√
g

g̃
. (6.43)

L3 and L5 on the other hand can not be generated in this way from a disformal g̃µν . As such

a purely disformal Galileon has Lagrangian Ldisformal = c1π + c2L2 + c4L4. In other words,

the disformal relation generates a subset of Galileon solutions. However, as shown by [29], a

solution with c3 = c5 = 0 cannot give rise to stable and spherically symmetric solutions with de

Sitter asymptotics (i.e. self-accelerating solutions). Instead of attempting to salvage the purely

disformal Galileon we have constructed in this section, however, we will now move on to show

how the natural extension of the disformal relation which we constructed in the first chapter,

the triformal relation (1.7), can produce the full Galileon solution.

6.4 Triformal Galileons

We begin by reminding ourselves of the triformal relation, which for the purposes of this chapter

we write

g̃µν = gµα (δαν +B∂απ∂νπ + C∂α∂νπ) . (6.44)
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We have chosen a trivial conformal factor A = 1 (as discussed in chapter 5, if A 6= 1 is chosen,

we expect chameleon screening to arise on top of the Vainshtein-screened solutions which we are

interested in in this chapter) and where the conformal and triformal factors B(φ,X,�φ, . . .) and

C(φ,X,�φ, . . .) are in principle arbitrary functions of scalar coordinate invariants formed with φ

and its derivatives. In the Galileon context investigated here, two interesting observations can be

made straightaway. Firstly note that the triformal term C∂α∂νπ somewhat mimics the extrinsic

curvature term (6.33) in the higher-dimensional setup discussed above in that it introduces a

dependence on ∂α∂νπ. Secondly, had we been unaware of the existence of Galileon-like solutions,

an obvious worry when presented with the triformal relation would have been that the triformal

factor introduces higher-order derivatives, which then lead to the appearance of ghosts. Here,

however, our aim is to show that the higher-order derivative terms introduced into the action by

a triformal factor are precisely of the Galileon type, so that the equations of motion for π remain

second-order and no Ostrogradski ghosts [32] are introduced.

The aim of this section now is the following. Consider the first Lovelock invariant again

Fλ = −λ
∫

d4x
√
−g̃. (6.45)

Starting from the triformal metric (6.44), we once again work out the determinant of g̃µν by

expanding it as

Det [I + α] = Exp [Tr [Ln [I + α]]] (6.46)

where now

α = B∂απ∂νπ + C∂α∂νπ. (6.47)

What we wish to show is that, in the limit where we can treat α as small (α < I)4 and where we

are considering non-relativistic solutions (X̄ � 1) for constant disformal and triformal factors

B,C, the first Lovelock invariant is enough to generate all the Galileon terms. In the future

we intend to generalize this results, dropping the assumptions of small α and considering fully

relativistic regimes while allowing for arbitrary B and C, but for the time being let us concentrate

on the simple case in question.

Once again we have

g̃ = gExp
[
Tr
[
α− α2

2
+
α3

3
− . . .

]]
(6.48)

= gExp
[
Tr [α]− Tr

[
α2

2

]
+ Tr

[
α3

3

]
− . . .

]
(6.49)

4In other words, we are considering regimes with weak and intermediate (O(1)) coupling here, not ones where
we have a strongly coupled solution with g̃µν ∼ (∂µ∂νπ)n.
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However, even the simplified triformal relation we are considering here, no longer has the property

that (Tr[α])2 = Tr[α2]. This means we will not be able to straightforwardly re-sum all terms in

the determinant expansion. However, for α < I we can truncate the expansion eventually. We

therefore begin by explicitly writing down all relevant terms up to O(α4).

T2 = Tr [α] = BX̄ + C[1] (6.50)

T3 = Tr
[
α2

2

]
=
B2

2
X̄2 +

C2

2
[2] + 2BC〈1〉 (6.51)

T4 = Tr
[
α3

3

]
=
B3

3
X̄3 +

C3

3
[3] +BC2〈2〉+B2CX̄〈1〉 (6.52)

T5 = Tr
[
α4

4

]
=
B4

4
X̄4 +

C4

4
[4] +

1

2
B2C2X̄〈2〉+B2CX̄2〈1〉+BC3〈3〉+B2C2〈1〉2.(6.53)

Earlier on we introduced the notation (n,m) to denote the number of derivatives ∂, n, and the

number of factors of the field π, m, for a given term. We also found

X̄n → (2n, 2n) [n]→ (2n, n) 〈n〉 → (2n+ 2, n+ 2). (6.54)

Now, when expanding out the exponential in(6.48), we find that each trace operator proportional

to αi contributes at order n = 2i in number of derivatives5. However, cross-terms between

different trace operators of course also contribute so that for each order n we find contributions

from the following operators

n = 2 : T1 (6.55)

n = 4 : T2 & T 2
1 (6.56)

n = 6 : T3 & T 3
1 & T2T1 (6.57)

n = 8 : T4 & T 4
1 & T 2

2 & T3T1 & T 2
1 T2. (6.58)

In table 6.1 all the resulting terms are summarized, ordered by their dimensions (n,m) and with

arising total derivative combinations arising for each n,m. When considering all terms arising

from the triformal determinant expansion, after some algebra we find that interestingly only

terms of the form (2(i − 1), i) do not vanish up to total derivatives. Of course this is exactly

the form of the Galileon terms which we may label as Li and where the tadpole term π satisfies

(0, 1) so that we may explicitly verify that all terms have the form (2(i − 1), i) by noting that

non-relativistic Galileon terms (6.19) are of the form (0, 1), (2, 2), (4, 3), (6, 4), (8, 5). And indeed

when considering all terms in the triformal determinant expansion that do not vanish up to total
5This is equivalent to mass dimension, if we choose π to have dimension zero. Otherwise the mass dimension

of a given term is given by n+mD, where D is the mass dimension of the field π.
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(n,m) Terms Total derivative combinations

(2,1) [1] [1]

(2,2) X̄ –

(4,2) [2], [1]2 [2]− [1]2

(4,3) 〈1〉, X̄[1] X̄[1] + 2〈1〉

(4,4) X̄2 –

(6,3) [3], [2][1], [1]3 [1]3 + 2[3]− 3[2][1]

(6,4) 〈2〉, X̄[2], X̄[1]2, [1]〈1〉 2 ([1]〈1〉 − 〈2〉)+X̄
(
[1]2 − [2]

)
(6,5) X̄〈1〉, X̄2[1] 4X̄〈1〉+ X̄2[1]

(6,6) X̄3 –

(8,4) [4], [3][1], [2]2, [1]2[2], [1]4 [1]4 +8[1][3]+3[2]2−6[1]2[2]−
6[4]

(8,5) 〈3〉, 〈2〉[1], 〈1〉[1]2, X̄[2][1], X̄[1]3, X̄[3] 2
(
[1]2 − [2]

)
〈1〉 −

4 ([1]〈2〉 − 〈3〉) +
X̄
(
[1]3 + 2[3]− 3[1][2]

)
(8,6) 〈1〉2, X̄〈2〉, X̄[1]〈1〉, X̄2[1]2, X̄2[2] X̄2[2] − X̄2[1]2 + 2X̄〈2〉 −

4X̄[1]〈1〉

(8,7) X̄3[1], X̄2〈1〉 3X̄2[2] + X̄3[1]

(8,8) X̄4 –

Table 6.1: This table summarizes the terms arising in the triformal determinant expansion,
grouping terms by (n,m), where n denotes the number of derivatives ∂ and m denotes the
number of factors of the field π for a given term. We list terms up to n = 8. Only contributions
from the (white background) (2(i− 1), i) terms do not vanish up to total derivatives.

derivatives, after some more algebra we may write the result very concisely as

g̃ = g

(
1 + X̄

∑
i

ciEi +O
(
X̄2
))

, (6.59)

where Ei are the equations of motion resulting from each non-relativistic Galileon term (6.23).

It is now straightforward to write down the first Lovelock invariant since in the non-relativistic

limit we have ∫ √
−̃g =

∫ √
−g

(
1 + X̄

∑
i

ciEi −O
(
X̄2
))

, (6.60)

where, given that we are working in the non-relativistic limit, we may now also drop terms of

order X̄2 and higher. This is the main result of this chapter. Since, as we saw earlier on, the non-

relativistic Galileon Lagrangians can be written Ln = X̄En−1, this result is enough to generate
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all Galileon terms. For the minimal triformal metric g̃µν (6.44) with constant coefficients B and

C, in the non-relativistic limit the first Lovelock invariant therefore satisfies

FNRλ = −λ
∫

d4x
√
−g̃ = −λ

∫
d4x
√
−g

(
1 +

∑
i

ciLi

)
, (6.61)

where the Li label the non-relativistic Galileon terms

L2 = X̄ (6.62)

L3 = X̄[1] (6.63)

L4 = X̄
(
[2]− [1]2

)
(6.64)

L5 = X̄
(
3[1][2]− 2[3]− [1]3

)
. (6.65)

Not only does the first Lovelock invariant therefore generate all Galileon terms when starting

with a triformal metric relation, it also uniquely specifies the “coupling constants” ci, where one

finds ci ∝ BC(i−1) for i ≥ 1, i.e. ignoring the tadpole term6.

What about terms of the form (n,m) with n > 8? These terms vanish up to total derivatives

in four dimensions. This may be seen by comparison with the result of [34], who show that

Lagrangian terms of the form L = T µ1...µiν1...ν1(2i) πµ1ν1 . . . πµiνi only generate field equations of at

most order 2, i.e. Galileon-like solutions. Here T(2i) is a 2i contravariant tensor that is a function

of π and ∂π only and is totally antisymmetric in its first i indices µi as well as separately in its

final i indices νi. Comparison with equation (6.48) shows that all terms generated by the first

Lovelock invariant from a triformal metric and which satisfy (n,m) = (2(i− 1), i) are evidently

of this form (up to total derivatives). The fact that these terms are totally antisymmetric in

their first i indices µi is then enough to conclude that these terms vanish for n > 8, since there

are at least 5 indices i then, so antisymmetry paired with a 4D space-time will eliminate these

terms.

Finally we once again stress that in deriving the results presented here we have worked in

the weak to intermediate coupling limit with α < I. We leave it to future work to show that

the result remains true even in the strong coupling regime where α > I, but we here wish to

point out that there is excellent reason to believe this is indeed the case. Normally, if we do an

expansion in α in increasing powers of αn, this expansion will of course not converge for α > 1.

However, even though α > 1 in the strong coupling regime, a power expansion up to order α4

will, as we have shown in this section, recover all terms which are not total derivatives. In these

circumstances we are therefore not worried whether the exact expression for remaining higher

order terms converges, since these will be total derivatives and hence irrelevant classically anyway.
6Note that the tadpole term can in fact be generated once we introduce a non-trivial conformal factor A(π).
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Finally note that, by subtracting the equivalent Lovelock invariant for the Einstein metric gµν
we can still engineer a theory with an effective strongly coupled metric qµν ∼ ∂µ∂νπ even though

α < I. In the future we plan to explicitly verify these claims by constructing example models.

6.5 Summary

In this chapter we have related Galileons [29] to bimetric scalar-tensor theories. We showed how

Galileon-like solutions are generated simply from the first Lovelock invariant (or equivalently:

from
√
g̃) for a triformal metric g̃µν . This is very intriguing in that the full Galileon spectrum

of terms can be generated by a single and very simple term in the Lagrangian now, which is

simply motivated by considering a general bimetric scalar-tensor theory. This also equips us

with a geometric understanding of Galileon theories at the level of an effective 4D field theory

as was previously only available within the context of a particular UV-completion (the DBI

Galileon [18]). Moreover, while the triformal relation does generate all Galileon terms7 and gives

rise to a Lagrangian L =
∑

i ciLi, the coefficients ci are uniquely fixed by the disformal and

triformal factors B,C in the metric relation. This means a particular subset of solutions will be

particularly motivated from this geometric perspective.

This leads us straightaway to pressing questions which will be addressed in future work.

It will be very interesting to generalize the solutions obtained to non-constant disformal and

triformal factors B,C. As shown by [33, 34] the most general scalar-tensor theory with field

equations of order 2 or lower has Lagrangians of the form Li = f(π, X̄)LGalileon
i . This strongly

suggests that letting B and C depend on (π, X̄) will generalize the purely second order Galileon

solutions generated in this chapter to the more general solutions with L = f(π, X̄)LGalileon.

The same result also implies that letting the disformal and triformal factors depend on �π or

other higher order coordinate invariants will introduce ghost-like behavior. We also hope to

investigate constraints from the existence of spherically symmetric and stable solutions with de

Sitter asymptotics, which put constraints on the ci and hence also on B,C. Finally the fact that

all terms which are not of the (2(i−1), i) form vanish in the derivative expansion in the previous

two sections might hint at the existence of a symmetry protecting generalized Galileons. For

the standard Galileon this has been identified with a Galilean shift symmetry in the effective

4D theory [29] which may stem from 5D Poincare invariance [18], if we choose to embed the

theory in a higher-dimensional context. However, for the more general Galileon-like solutions

with L = f(π, X̄)LGalileon to our knowledge no corresponding symmetry has been shown to exist

explicitly so far, so it will be an interesting task for the future to investigate whether such a

symmetry can be found.
7We also saw how the purely disformal subset of solutions can generate two of the Galileon terms, L2 and L4,

but not the others.
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In summary we hope to have demonstrated that triformal bimetric theories and Galileon

solutions are intimately linked, with the minimal triformal model with constant B,C generating

the standard Galileon with purely second-order equations of motion and consequently protection

from non-renormalization theorems. The geometric understanding of Galileon theories both

shifts the focus onto a particularly motivated subgroup of Galileon solutions, which we hope to

investigate more in the future, and also will hopefully help us in gaining a better understanding

of ghost-free scalar-tensor theories in the future.
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Chapter 7

Conclusions and Outlook

In this thesis we have attempted to show that the bimetric framework we have coined “dis-

formal gravity” and its extensions are very powerful tools in improving our understanding of

scalar-tensor theories, both in the context of primordial physics (inflationary or not) and of

dark energy/modified gravity. How successful have we been? We would like to argue: very.

Throughout this thesis we have seen that the disformal bimetric framework (and its triformal

extension) provides a unified description of general single field/scalar-tensor models and allows

us to systematically classify and construct such models. As such we have obtained a geometrical

understanding of how such models arise in the context of generic 4D effective field theories.

But perhaps this approach is really a calculational curiosity, only providing a, albeit useful,

description of known models? As this thesis has shown, this is not the case. To this end let us

briefly summarize the findings of the foregoing chapters.

• In chapter 1 we set the scene and showed how a general bimetric scalar-tensor theory can

be constructed systematically. As a result we re-derived the disformal relation between

metrics as initially proposed by [24] and found its natural extension, which we dubbed the

“triformal relation”. In an inflationary context, it was shown how disformal setups generate

generic inflation models of the P (X,φ) type [19] and how their perturbative properties

automatically give rise to an effective bimetric description [21]. In particular we pointed

out a link between DBI-type solutions [22] and the minimal disformal model [23]. Finally,

in a dark energy/modified gravity context, we showed how both chameleon- [15, 16] as well

as Vainshtein-screened [54] solutions arise in generic scalar-tensor theories, emphasizing

how these link to the conformal and purely disformal subgroups of the disformal relation

respectively.

• In chapter 2 we investigated the perturbative properties of P (X,φ) models [19], as arising in

a disformal context. In particular we focused on deriving the non-Gaussian phenomenology
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of such models without assuming slow-roll conditions. It was found that a much broader

region of parameter space is allowed by present observational constraints, when “fast-roll”

effects are taken into account [9, 66, 1, 2]. This is the case because of a generic “fast-roll”

suppression of the non-Gaussian amplitude we found, which occurs jointly with modified

non-Gaussian shapes. We obtained bounds on slow-roll parameters from the induced

running of the three-point correlation function and outlined how tensor modes may provide

us with even stronger constraints in the future.

• In chapter 3 we made use of the fact that the disformal bimetric relation allows us to con-

struct models with “superluminally” propagating perturbations without violating causality

constraints e.g. by producing CCCs (closed causal curves). We reviewed the construction

of such a disformal bimetric model and then investigated its non-Gaussian properties in an

analogous fashion to the foregoing chapter. The shape found is predominantly equilateral

and challenging to detect experimentally, but is uniquely defined in the large cs (“superlu-

minal”) limit, thus making this model instantly falsifiable in future surveys [23, 3, 1].

• In chapter 4 we showed that disformally motivated P (X,φ) models also capture the dy-

namics of a large class of n-form models, which permit an effective scalar field descrip-

tion [27, 28, 5]. We derived dualities between various n-form descriptions. Focusing on

a particular set of three-form models [27, 28], we obtained their two- and three-point

correlation functions and investigated two particular example models with power-law and

exponential three-form potentials respectively. Distinctive observational signatures are

ns ∼ 0.97 irrespective of the potential used (assuming the number of e-folds N ∼ 60)

and generically equilateral non-Gaussianities. Interestingly no predominantly orthogonal

amplitudes can be produced in the simplest setups with a power-law potential, reminiscent

of the minimal DBI-type disformal setups discussed in chapter 1.

• In chapter 5 we investigated whether the disformal relation allows new ways of imple-

menting the chameleon mechanism [15, 16]. We established a no-go theorem for disformal

chameleons, but in the process also found a generalized conformal chameleon setup, which

we named the “derivative chameleon” [4]. This setup includes a new mass-altering mecha-

nism and we discussed how this chameleon mechanism might be implemented and how the

chameleon mass as well as thin-shell screening effects are modified.

• In chapter 6 we finally investigated the full triformal relation and how it links to Vainshtein-

screened dark energy/modified gravity solutions [6]. We showed how all Galileon terms [29]

can be recovered from a single geometric invariant - the first Lovelock term
√
g̃ [30, 31]

- for a minimal triformal metric. We also conjectured how more general triformal setups
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generalize the Galileon solutions. This is the first time Galileon type solutions have been

constructed geometrically without the need to refer to higher-dimensional setups.

As such we believe that the bimetric disformal/triformal approach has both been extremely

rewarding in pointing us to the existence of previously unknown models as well as providing us

with a unified geometric understanding of generic scalar-tensor theories, both in inflationary and

dark energy/modified gravity settings.

Several further lines of research suggest themselves following on from the findings discussed

above. In particular we hope to investigate disformal models and their extensions in the following

contexts

• Existing disformal theories assume an overall Riemannian geometry and metrics related

by only one scalar degree of freedom [24]. Going beyond such restrictions should prove ex-

tremely rewarding, potentially giving further clues into how gravity can behave/be modified

at large distances. In particular it may be interesting to generalize the bimetric relations

constructed here to models with more than just one extra degree of freedom φ, subject to

conditions such as ghost-freedom.

• Having constructed Galileon solutions [29] from triformal metrics in the dark energy/modified

gravity context, a natural next step would be to implement these in an early universe setting

as well. Following work on Galileon inflation [152, 161] we hope to investigate the particular

subset of models motivated by triformal setups. Exploring their primordial signatures is

an emphasis in this context.

• Surveys of the galaxy bispectrum and cluster counts are placing continuously improving

constraints on primordial non-Gaussianity over a large range of scales. This opens up

new possibilities to constrain models with running 3-point functions where amplitudes are

enlarged on smaller scales. As we saw, P (X,φ) “fast-roll” models, as arising in a disfor-

mal setting, generically display this behavior. Further investigating large scale structure

phenomenology for such models, specifically cluster counts and galaxy bispectra as well as

future 21cm surveys, should consequently prove very rewarding.

• Constraining scale-dependent non-Gaussianities might allow identifying strong coupling

scales for cosmological perturbations [167, 100, 75], i.e. determining scales at which e.g.

the self-interactions of an inflaton become too large for a perturbative analysis to remain

valid. Using observational data one may be able to identify potential strong coupling

scales and hopefully extract generic signatures associated with strongly coupled single field

models. Further exploring models such as the Gelaton scenario [45], where new degrees of

freedom enter at the would-be strong coupling scale, should also provide new insights in

this context.
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• General slow-roll violations can be viewed as a combination of continuous slow-roll vio-

lations investigated in chapter 2 and temporary, feature-like, violations as described by

the so-called “Generalized Slow Roll” approach [168]. Merging these two complementary

approaches in order to develop a framework capable of analyzing generic types of fast-roll

behavior in cosmology will be an exciting task for the future.

• Deriving the effective cubic action for general n-form theories, also when the extra phys-

ical dof explicitly break the duality to scalar field theories, should be very interesting.

Studying three-point correlations in this way will allow identifying potentially new shapes

of non-Gaussianity and investigating scale-dependence and the overall amplitude of the

bispectrum. A long-term goal is the development of an effective field theory for n-form

models permitting a homogeneous and isotropic (FLRW) cosmology. This should also

prove useful in constraining and quantifying a potential breaking of overall homogeneity

and isotropy (e.g. preferred directions due to a vector field). This approach goes hand in

hand with generalizing the disformal relation to more additional degrees of freedom.

• Equivalence Principle violations are a natural consequence of emergent fifth forces that are

the result of introducing a new scalar dof (see e.g. [148, 63, 149, 150, 151]). Examining this

in the context of bimetric theories should allow constraining terms in the metric expansions

e.g. the disformal and triformal factors B and C. It will therefore be interesting to further

compute and investigate related effects on e.g. galactic halos, clustering behavior, galaxy

luminosities etc. in this context (i.e. for both chameleon and Vainshtein-screened theories).

• In constructing Galileon-type theories, investigating the radiative stability and associated

non-renormalization theorems for higher derivative terms has been a very powerful tool.

But various avenues warrant further exploration. Perhaps there exist related symmetries

protecting non-Galilean theories which still give rise to second order equations of motion

and are ghost-free, but which do not impose a Galilean shift symmetry (see e.g. [160, 34].

Furthermore, in coupling Galilean scalars the prototypical coupling assumed has been a

πTµµ coupling. Studying generic bimetric couplings
√
g̃T̃µµ should prove useful in showing

what (other) type of couplings are technically natural and and what classes of couplings are

observationally acceptable. We hope to explore this avenue more in the future (see [63, 64]

for some recent progress).

Much remains to be done, but we hope to have shown that the bimetric perspective has been

a very instructive one in exploring single field/scalar-tensor effective field theories. When the

theory of general relativity was formulated and explored in the early 20th century, it opened

up new vistas of a geometric understanding of gravity and its associated phenomenology. In

this spirit this thesis has aimed to review and extend geometrical interpretations of our current
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best theories of primordial structure formation and late-time acceleration. Perhaps the main

conclusion to draw then is that, when it comes to gaining a geometric understanding of gravity-

related phenomena, there is still a lot left in the tank!
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Appendix A

Ostrogradski ghosts

Here we give a brief summary of Ostrogradski’s theorem stating that equations of motion with

higher than second-order derivatives exhibit instabilities. For simplicity we only show this for a

single 1D point particle with position q(t) here, closely following [169] - for details see [32].

Consider a Lagrangian L which is a function of q̈, i.e., L(q, q̇, q̈). The corresponding equations

of motion are
d2

dt2
∂L

∂q̈
− d

dt

∂L

∂q̇
+
∂L

∂q
= 0 . (A.1)

In principle (unless higher order terms cancel as in the Galileon scenario outlined in chapter 6 and

section 1.3.3 of the introduction), this is a fourth order differential equation. A unique solution

has to specify four initial conditions, e.g. q(ti), q̇(ti), q̈(ti) and
...
q (ti) at some initial time ti.

Casting this in Hamiltonian form requires four canonical variables, which we may choose to be

q1 ≡ q , q2 ≡ q̇ , and p1 ≡
∂L

∂q̇
− d

dt

∂L

∂q̈
, p2 ≡

∂L

∂q̈
. (A.2)

If the Lagrangian is non-degenerate, i.e. p2 ≡ ∂L/∂q̈ can be inverted to determine q̈, we

can Legendre-transform the Lagrangian w.r.t. coordinates q̇ ≡ q2 and q̈ in order to find the

Hamiltonian

H(q1, q2, p1, p2) = p1q2 + p2q̈(q1, q2, p2)− L (q1, q2, q̈(q1, q2, p2)) . (A.3)

Now a problem arises, because the Lagrangian is a function of only three variables, since it does

not depend on ∂q̈. When expressing the Lagrangian in terms of canonical variables p1 is therefore

not needed to do so. As a result p1 only enters the Hamiltonian linearly via the term p1q2.

As a result H is unbounded from below and therefore describes an unstable system. If the dof

described by the given equation of motion (q and its derivatives here) interacts with other dof

at all, this instability means modes these other dof can be excited to arbitrarily high energies,
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since there is no lower bound on the energy of the “q-system”. This is particularly worrying if we

would like to eventually quantize the theory. Then the vacuum becomes exponentially unstable

since fluctuations can be excited at will.

Introducing even higher derivative terms into the equation of motion cannot change this

conclusion. In fact, barring Galileon-like cancellations, the degree of the equations of motion

is enhanced by 2 with each added higher derivative term. For a Lagrangian of degree 2 + n,

n+ 1 pairs of canonical variables are needed in order to write down the Hamiltonian, Expressing

the Lagrangian in terms of canonical variables only requires the use of n + 2 of these. Hence n

momenta appear only linearly via terms of the form piq̇i(q1, . . . , qn+1, pn+1). The Hamiltonian

consequently has n unstable directions.

We finish with two points worth noting. Firstly, escaping the Ostrogradski instability while

allowing higher derivative terms can in principle be achieved via two routes. Either L is degen-

erate or constraints are added to the system. If we add n constraints, these may be used to

eliminate the n canonical variables which are associated with unstable directions. Secondly, note

that having an equation of motion for a degree of freedom φ, which is second-order or lower in

its derivatives, of course does not guarantee by itself that the theory is ghost-free.



Appendix B

Bekenstein’s derivation of the disformal

relationship

Bekenstein’s derivation of the disformal relationship [24] is different to the one presented in

chapter 1. For comparison we here give a brief summary of Bekenstein’s argument. We begin by

assuming a Finsler geometry, the most general geometry in which the line-element satisfies

ds2 = f(xµ, dxν) , f(xµ, αdxν) = α2f(xµ, dxν), (B.1)

If f(xµ, dxν) is a simple quadratic in dxµ then the geometry is Riemannian. It can be shown [24]

that the line element may be written in terms of a so-called quasi-metric Gµν , such that

ds2 = Gµνdxµdxν . (B.2)

The important difference to a standard Riemannian theory is that Gµν can also depend on

coordinate-increments dxµ. In order to honor the spirit of covariance as well as in order to

prevent the metric to be ill-defined locally (a dependence on dxµ essentially amount to having a

different metric depending on which way one is “moving”, i.e. it is no longer enough to just specify

position), Bekenstein requires Gµν as well as its inverse Gµν to be independent of dxµ and to be

a function of co-ordinate invariants only. In order to construct non-trivial co-ordinate invariants

a new dof is needed, which is the reason why Bekenstein introduces a scalar φ. Invariants are

then constructed out of φ and ∂µφ as well as the Einstein metric gµν . Higher derivative terms

are precluded explicitly in Bekenstein’s construction in order to trivially avoid higher derivative

terms from appearing in the equations of motion (we have already seen that such terms can lead

to Ostrogradski-type ghosts).
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Unsurprisingly the result is a Riemannian metric, namely the disformal relation

g̃µν = A2(φ,X)gµν +B2(φ,X)∂µφ∂νφ. (B.3)

We have already pointed out that this relationship is portrayed as yielding the most general

metric g̃µν that is a function of gµν , φ and its derivatives and which respects causality and the

weak equivalence principle. Clearly this is only true subject to ignoring terms in ∂2φ and higher.

Also let us stress here that the disformal relation as it stands says nothing about causality

or the weak equivalence principle. The fact that we have a metric formulation here with well

defined past and future “light-cones” is enough in order to yield causal propagation for each

individual metric. No closed causal curves (CCCs) exist [52]. In a bimetric theory an additional

complication is the existence of a well-posed Cauchy problem, which requires the existence of

a hyper-surface which is space-lie both with respect to gµν and g̃µν . This puts a constraint on

the conformal and disformal factors A2(φ,X) and B2(φ,X), but does not constrain the form of

the disformal relation itself [52]. Similarly the weak equivalence principle is satisfied by virtue

of having all matter universally couple to the same metric g̃µν and not because this metric has

any particular form.



Appendix C

Details on the computation of the

three-point function

C.1 The cubic action

In this appendix we give some further details showing how the non-Gaussian amplitudes discussed

in chapter 2 and chapter 3 are computed explicitly. These amplitudes were first computed in [66]

and we closely follow their presentation here.

We begin by recalling the cubic effective action derived in [37, 80] and valid for all P (X,φ)

theories. This does not assume any slow-roll approximations to hold and is valid for arbitrary

time-dependent speed of sound cs:

S3 = MPl
2

∫
dtd3x

{
−a3

[
Σ

(
1− 1

c2
s

)
+ 2λ

]
ζ̇3

H3
+
a3ε

c4
s

(ε− 3 + 3c2
s)ζζ̇

2

+
aε

c2
s

(ε− 2εs + 1− c2
s)ζ(∂ζ)2 − 2a

ε

c2
s

ζ̇(∂ζ)(∂χ)

+
a3ε

2c2
s

d

dt

(
η

c2
s

)
ζ2ζ̇ +

ε

2a
(∂ζ)(∂χ)∂2χ+

ε

4a
(∂2ζ)(∂χ)2 + 2f(ζ)

δL

δζ

∣∣∣∣
1

}
. (C.1)

Dots here denote differentiation w.r.t. proper time t, ∂ is a spatial derivative and χ is shorthand

notation for

∂2χ =
a2ε

c2
s

ζ̇ . (C.2)

For the final term in the cubic action (C.1), 2f(ζ) δLδζ |1, which denotes the variation of the

quadratic action with respect to the perturbation ζ, we have

δL

δζ

∣∣∣∣
1

= a

(
d∂2χ

dt
+H∂2χ− ε∂2ζ

)
, (C.3)
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f(ζ) =
η

4c2
s

ζ2 +
1

c2
sH

ζζ̇ +
1

4a2H2
[−(∂ζ)(∂ζ) + ∂−2(∂i∂j(∂iζ∂jζ))]

+
1

2a2H
[(∂ζ)(∂χ)− ∂−2(∂i∂j(∂iζ∂jχ))] , (C.4)

where ∂−2 is the inverse Laplacian. Since δL
δζ |1 is proportional to the linearized equations of

motion, it can always be absorbed by a field redefinition

ζ → ζn + f(ζn) . (C.5)

However, if η = 0 this simplifies considerably. This happens because only the ïňĄrst term in

equation (C.4) contributes to the correlation function, as all other terms in f(ζ) contain one or

more derivatives of ζ and consequently vanish outside the horizon, where ζ freezes in. For further

details see [37, 80].

The standard calculation for the three-point function [89, 37, 80] can now be carried out, at

first order in perturbation theory and in the interaction picture, leading to

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = −i
∫ t

t0

dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t
′)]〉 , (C.6)

where Hint is the Hamiltonian evaluated at third order in the perturbations and is directly

derivable from (2.30) and vacuum expectation values are evaluated w.r.t. the interacting vacuum

|Ω〉. We recall from chapter 2 that, upon quantization, ζ can be expressed through creation and

annihilation operators in the following way,

ζ(y,k) = uk(y)a(k) + u∗k(y)a†(−k) , [a(k), a†(k′)] = (2π)3δ3(k− k′). (C.7)

where the mode functions uk(y) satisfy

uk(y) =
c

1/2
s

aMPl

√
2ε
vk(y) =

c
1/2
s

aMPl23/2

√
π

ε

√
−yH(1)

ν (−ky). (C.8)

With this information we can calculate the three point function for each term appearing in the

action (2.30).

C.2 A useful integral

In computing the three-point function explicitly we frequently encounter integrals of the following

type [66, 3].

C =

∫ yend

−∞+iε
dy

(
y

yend

)γ
(−iy)neiKy , (C.9)
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where y is sound horizon time as defined in (2.7). Only the imaginary part of this integral

contributes to our calculation. yend < 0 denotes the end of the inflationary phase in sound

horizon time and K ≡ k1 + k2 + k3 as before. Note that for any observable mode K|yend| is a

small quantity. Focusing on scale-invariant solutions we have

H

c
1/2
s

=
Hend

c̄
1/2
s end

(γ = 0) , (C.10)

For γ + n > −2 the imaginary part of (C.9) is convergent as yend → 0. Note especially the iε

term which is necessary in order to regularize the integral. We can now approximately extend

the upper limit of integration to 0, which amounts to neglecting terms of higher order in (k|yend|)
One finds

Im C = −(K|yend|)−γ cos
γπ

2
Γ(1 + γ + n)K−n−1 . (C.11)

C.3 The individual three-point amplitude computation

The non-Gaussian amplitudes calculated in the way outlined above were given in (2.40). Here

we illustrate their computation with an example, focusing on the contribution to the overall

three-point function stemming from the ζζ̇2 term in (C.1). This can be expressed as

〈ζ(k1)ζ(k2)ζ(k3)〉ζζ̇2 = i(2π)3δ3(k1 + k2 + k3)uk1(yend)uk2(yend)uk3(yend)

×
∫ yend

−∞+iε
dy
cs
a

a3ε

c4
s

(ε− 3 + 3c2
s)u
∗
k1(y)

du∗k2(y)

dy

du∗k3(y)

dy
+ perm.+ c.c., (C.12)

where c.c. denotes complex conjugates and we have applied the commutation relation (C.7)

several times. Substituting in the mode functions and taking time-independent combinations

outside of the integral this leads to

〈ζ(k1)ζ(k2)ζ(k3)〉ζζ̇2 = i(2π)3δ3(k1 + k2 + k3)
H3

end(1− ε− εs)4

43 ε2 c
3/2
s end

1

Πjk3
j

×
∫ yend

−∞+iε
dy

H

c
5/2
s

(ε− 3 + 3c2
s)(1− ik1y)k2

2k
2
3e
iKy + perm.+ c.c. (C.13)

Background-dependent functions inside the integrand have one of two time-dependences, which

both give rise to convergent integrals (C.11)

H

c
1/2
s

=
Hend

c̄
1/2
s end

(γ = 0) ,
H

c
5/2
s

=
Hend

c
5/2
s end

(
y

yend

)α
(γ = α) , (C.14)
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where we recall that

α =
2ε− εs
εs + ε− 1

= − 4ε

1 + ε
, (C.15)

where the second equality holds in the scale-invariant limit where εs = −2ε. Expressing the final

answer in terms of quantities calculated at horizon-crossing (denoted by a bar) the amplitude

found is

〈ζ(k1)ζ(k2)ζ(k3)〉ζζ̇2 (I) = (2π)3δ3(k1 + k2 + k3)
H̄4(1 + ε)4

16ε2 c̄4
s

1

Πjk3
j

k2
2k

2
3

K

×
{

(ε− 3) cos
απ

2
Γ(1 + α)

[
1 + (1 + α)

k1

K

]
+ 3c̄2

s

[
1 +

k1

K

]}
+ sym. (C.16)



Appendix D

Non-Gaussian amplitudes - O(ns − 1)

corrections

The main results presented in this thesis and the computation in the previous appendix focused

on the leading order non-Gaussian contribution corresponding to a scale-invariant spectral index

ns = 1. In this appendix we estimate the O(ns − 1) corrections by approximating the Hankel

function dependence of the “propagator” uk(y) in the limit |ky| � 1. Higher order propagator

corrections have since been computed in [67, 69] and combined with the corrections derived by

us in [1, 3] to complete the task of working out generic non-Gaussian amplitudes beyond the

slow-roll paradigm. We refer to [69] for general slow-roll violating amplitudes taking higher-

order propagator corrections into account, but here briefly summarize the estimate, which is

significantly less cumbersome.

D.1 Mode functions uk(y)

In section 2.2.1 we found that the mode functions for scalar perturbations are given by

uk(y) =
c

1/2
s

aMPl

√
2ε
vk(y) =

c
1/2
s

aMPl23/2

√
π

ε

√
−yH(1)

ν (−ky). (D.1)

We now expand at |ky| � 1 to obtain an approximate expression for the Hankel function

H
(1)
ν (−ky)

H(1)
ν (−ky) = −i 2νΓ(ν)(−ky)−ν

π
[1 + iky +O(ky)2]e−iky . (D.2)

which gives the following approximate expression for uk,

uk(y) ≈ −i H(ε+ εs − 1)

2MPl

√
csk3ε

(
−ky

2

)3/2−ν
(1 + iky)e−iky, (D.3)
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where we have used Γ(ν ≈ 3/2) ≈
√
π/2 as scale invariance constrains ν − 3/2 � 1. One can

check that modes freeze out in the y → 0 limit by comparing with (2.9) and noting that

H

c
1/2
s

∼ (−y)ν−3/2 . (D.4)

Differentiating uk(y) with respect to y one also finds

u′k(y) ≈ −i H(ε+ εs − 1)

2MPl

√
csk3ε

(
−ky

2

)3/2−ν
k2y e−iky. (D.5)

D.2 The individual three-point amplitude computation

Here we show the computation of Aζζ̇2 in detail. All the other amplitudes are computed along

the same lines. The corresponding three-point correlator is

〈ζ(k1)ζ(k2)ζ(k3)〉ζζ̇2 = i(2π)3δ3(k1 + k2 + k3)uk1(yend)uk2(yend)uk3(yend)

×
∫ yend

−∞+iε
dy
cs
a

a3ε

c4
s

(ε− 3 + 3c2
s)u
∗
k1(y)

du∗k2(y)

dy

du∗k3(y)

dy
+ perm.+ c.c. (D.6)

The subscript “end” means that the quantity has to be evaluated at the end of the structure

forming (scaling) phase. Making use of (2.9), (D.3) and (D.5) we take some time-independent

combinations outside the integral and evaluate them at y = yend:

〈ζ(k1)ζ(k2)ζ(k3)〉ζζ̇2 = i(2π)3δ3(k1+k2+k3)
H6

end(1− ε− εs)626ν−9

43MPl
4 ε2 c 3

s end

(k1k2k3)3−2ν

Πjk3
j

|yend|6(
3
2
−ν)

×
∫ yend

−∞+iε
dy(ε− 3 + 3c2

s)
a2

c3
s

(1− ik1y)k2
2k

2
3y

2eiKy + perm.+ c.c. . (D.7)

Note that we have dropped a factor of Πj(1 + ikjyend)e
−iKyend as this will be negligibly small for

any observable modes. Evaluating the integral and re-expressing variables in terms of quantities

calculated at sound horizon crossing (when, by convention, y = K−1) we obtain

〈ζ(k1)ζ(k2)ζ(k3)〉ζζ̇2 = (2π)3δ3(k1 + k2 + k3)
H̄4(ε+ εs − 1)426ν−9

16MPl
4ε2 c̄4

s

1

Πjk3
j

(Πjk
3
j )

3−2ν

K9−6ν

×k
2
2k

2
3

K

{
(ε− 3) cos

α2π

2
Γ(1 + α2)

[
1 + (1 + α2)

k1

K

]
+ 3c̄2

s cos
α1π

2
Γ(1 + α1)

[
1 + (1 + α1)

k1

K

]}
+sym.

(D.8)
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where we have defined

α1 = 3− 2ν =
2ε+ εs
εs + ε− 1

; α2 =
2ε− εs
εs + ε− 1

. (D.9)

In evaluating this expression we have once again (cf. discussion in the previous appendix)

made use of the convergent integral

Im C = −(K|yend|)−γ cos
γπ

2
Γ(1 + γ + n)K−n−1 , (D.10)

where the two types of common behavior encountered are now

a2y2

cs
=

cs
(1− ε− εs)2H2

=
cs end

(1− ε− εs)2H2
end

(
y

yend

)α1

(D.11)

a2y2

c3
s

=
1

(1− ε− εs)2H2cs
=

1

(1− ε− εs)2H2
endcs end

(
y

yend

)α2

. (D.12)

D.3 The full amplitudes

We recall that the 3-point correlation function may be conventionally expressed through the

amplitude A
〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)P 2

ζ

1

Πjk3
j

A . (D.13)

where, by convention, the power spectrum Pζ in the above formula is calculated for the mode

K = k1 + k2 + k3. Computing the amplitude in this way for each term in the action (C.1) we

can write

A = Aζ̇3 +Aζζ̇2 +Aζ(∂ζ)2 +Aζ̇∂ζ∂χ +Aε2 , (D.14)
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where Aε2 accounts for the ∂ζ∂χ∂2χ and (∂2ζ)(∂χ)2 terms in the action (C.1). Computing each

of the interaction vertices this yields

Aζ̇3 =
1

2c̄2
s

(
k1k2k3

2K3

)ns−1 [
(ε+ εs − 1)(fX − 1)Iζ̇3(α2) + c̄2

s(ε+ εs − 1)Iζ̇3(α1)
]

;

Aζζ̇2 =
1

4c̄2
s

(
k1k2k3

2K3

)ns−1 [
(ε− 3)Iζζ̇2(α2) + 3c̄2

sIζζ̇2(α1)
]

;

Aζ(∂ζ)2 =
1

8c̄2
s

(
k1k2k3

2K3

)ns−1 [
(ε− 2εs + 1)Iζ(∂ζ)2(α2)− c̄2

sIζ(∂ζ)2(α1)
]

;

Aζ̇∂ζ∂χ =
1

4c̄2
s

(
k1k2k3

2K3

)ns−1 [
−ε Iζ̇∂ζ∂χ(α2)

]
;

Aε2 =
1

16c̄2
s

(
k1k2k3

2K3

)ns−1 [
ε2 Iε2(α2)

]
, (D.15)

where

Iζ̇3(α) = cos
απ

2
Γ(3 + α)

k2
1k

2
2k

2
3

K3
;

Iζζ̇2(α) = cos
απ

2
Γ(1 + α)

(2 + α)
1

K

∑
i<j

k2
i k

2
j − (1 + α)

1

K2

∑
i 6=j

k2
i k

3
j

 ;

Iζ(∂ζ)2(α) =− cos
απ

2
Γ(1 + α)

(∑
i

k2
i

) K

α− 1
+

1

K

∑
i<j

kikj +
1 + α

K2
k1k2k3



= cos
απ

2
Γ(1 + α)

 1

1− α
∑
j

k3
j +

4 + 2α

K

∑
i<j

k2
i k

2
j −

2 + 2α

K2

∑
i 6=j

k2
i k

3
j

+
α

(1− α)

∑
i 6=j

kik
2
j − αk1k2k3

 ;

Iζ̇∂ζ∂χ(α) = cos
απ

2
Γ(1 + α)

∑
j

k3
j +

α− 1

2

∑
i 6=j

kik
2
j − 2

1 + α

K2

∑
i 6=j

k2
i k

3
j − 2αk1k2k3

 ;

Iε2(α) = cos
απ

2
Γ(1 + α)(2 + α/2)

∑
j

k3
j −

∑
i 6=j

kik
2
j + 2k1k2k3

 , (D.16)

where we remind ourselves that Aε2 accounts for the ∂ζ∂χ∂2χ and (∂2ζ)(∂χ)2 terms in the

action (2.30). K = k1 + k2 + k3 is the sum of the lengths of the three wavevectors k1,k2,k3.
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D.4 General expressions for fNL and nNG

Using the full amplitudes derived above, we may express the size of the (equilateral) non-Gaussian

amplitude

fequiNL = 30
Ak1=k2=k3

K3
, (D.17)

and its running with scale k

nNG − 1 ≡ d ln |fequiNL |/d lnK. (D.18)

Comparison with (D.15) and (D.16) shows that we can always schematically express

ln |fequiNL | = ln |C1|+ ln |1− C2c̄
−2
s |. (D.19)

where C1 and C2 are functions of the slow-roll parameters Ci(ε, ns, fX) or equivalently Ci(ε, εs, fX).

Specifically we find that

fgeneralNL =

5 · 2−3−ns3−2−3ns

c2
s(1 + ε)(ns − 2)

(
36c2

s(1 + ε)(−27 + ns(13 + 7ns))Γ[ns]sin
[nsπ

2

]
+

16c2
s(1 + ε)2Γ[2 + ns]sin

[nsπ
2

]
+
(
−9
(
9ε3(ns − 2)(ns − 1)− 3ε2(38 + 5(ns − 7)ns)+

8ε
(
21− 22ns + 8ns

2
)
− 4(33 + ns(5ns − 31))

)
Γ

[
(3ε− 1)(ns − 2)

1 + ε

]
+

16(1 + ε)2(fX − 1)Γ

[
4− 4ε− ns + 3εns

1 + ε

])
sin
[

(ε(8− 3ns) + ns)π

2(1 + ε)

])
. (D.20)

and the functions Ci = Ci(ns, ε, fX) are given by

C1(ns, ε, fX) ∼
5(−243 + ns(121 + 67ns + 4ε(1 + ns)))Γ[ns]sin

[
nsπ

2

]
21+ns32+3ns(ns − 2)

, (D.21)

C2(ns, ε, fX) ∼ −5 · 2−3−ns3−2−3ns

(1 + ε)(ns − 2)

(
9
(
9ε3(ns − 2)(ns − 1)− 3ε2(38 + 5(ns − 7)ns)+

8ε
(
21− 22ns + 8ns

2
)
− 4(33 + ns(5ns − 31))

)
Γ

[
(3ε− 1)(ns − 2)

1 + ε

]
−

16(1 + ε)2(fX − 1)Γ

[
4− 4ε− ns + 3εns

1 + ε

])
sin
[

(ε(8− 3ns) + ns)π

2(1 + ε)

]
. (D.22)

As a result we can also see that the non-Gaussian tilt nNG is given by

nNG − 1 =
−2εs

εs + ε− 1

C2

c̄2
s − C2

, (D.23)
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where the functions Ci = Ci(ns, ε, fX) are as specified above.



Appendix E

Covariant derivatives for derivative

chameleons

Here we present some details of the calculation for a generalized equation of motion in conformal

derivative chameleon setups, expanding on the results presented in section 5.3. We start with a

metric relation

g̃µν = A2 (φ,X) gµν . (E.1)

The covariant derivatives for the two metrics are related by

∇̃αωβ = ∇αωβ − Γγαβωγ . (E.2)

For the Einstein frame covariant derivative ∇α acting on the matter frame stress-energy tensor,

one therefore finds

∇αT̃µν = ∇̃αT̃µν − ΓµβαT̃
βν − ΓνβαT̃

µβ. (E.3)

In calculating the connection Γµβα explicitly, the following relations will be useful

∇αA = A,φ∂αφ+A,X∂αX,

= A,φ∂αφ−A,X∂α∂µφ∂µφ.

∇αA,X = A,Xφ∂αφ+A,XX∂αX,

= A,Xφ∂αφ−A,XX∂α∂µφ∂µφ. (E.4)
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As such we can work out the connection, arriving at

Γγαβ =
1

2
g̃γδ (∇αg̃βδ +∇β g̃αδ −∇δ g̃βα)

= A−1
(

2δγ(β∇α)A− gαβgγδ∇δA
)

= 2A,φA
−1δγ(β∂α)φ− 2A,XA

−1δγ(β∂α)∂µφ∂
µφ

− gαβg
γδ∂δφA

−1A,φ + gαβg
γδ∂δ∂µφ∂

µφA−1A,X . (E.5)
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