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Abstract
Weexplore the relationship between entropy and quantummeasurements and present a
variational algorithm for preparing statistical ensembles on quantum computers using
mid-circuit measurements. This algorithm optimizes both the entropy and variational
parameters describing the state to obtain theminimum free energy of quantum systems
in thermal equilibrium with some external heat bath. We demonstrate our algorithm
on IBM-Q Lagos.

Keywords Quantum computing · Quantum algorithm · Entropy · Mid-circuit
measurement

1 Introduction

Quantum statistical ensembles are needed in many application areas, including solv-
ing optimization problems [1, 2], training Boltzmann machines in quantum machine
learning [3–6], and simulating equilibrium physics [7–11]. Simulating equilibrium
physics is important to a wide variety of solid-state and chemistry problems including
heat transfer, chemistry in solution, charge mobility, and many more. The ability to
prepare arbitrary quantum statistical ensembles on quantum computers is, therefore,
critical for conducting simulations in these areas.

Someof the earliest quantumalgorithms for preparingmixed states includequantum
walks via ametropolis algorithm [12–14], quantum rejection sampling [15, 16], dimen-
sion reduction [17], dynamical simulation [10, 18, 19], and variational techniques
[5–10, 20–23]. All mixed-state preparation techniques require that a non-unitary oper-
ator is applied to the system. There are several techniques for effectively applying the
requirednon-unitary operator, including state amplificationviaGrover’s algorithm [14,
16, 17], quantum imaginary time evolution [10, 11], and simulating a thermal envi-
ronment by coupling the system to a bath of auxiliary qubits [5, 6, 8, 15, 20, 22, 24,
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25]. It is possible to avoid the use of auxiliary qubits when the simulated environment
can be modeled by the environment of the quantum computer itself. In this case, some
degree of control over that environment is required [26, 27].

Herein, we present a variational quantum algorithm for the preparation and opti-
mization of mixed states on quantum computers based on a different approach.
Specifically, we prepare mixed states that describe canonical ensembles of open quan-
tumsystems in thermal equilibriumwith someexternal heat bath. Theneeded statistical
mixtures in our algorithm are obtained throughmid-circuitmeasurements. The entropy
in our method is a function of the variational parameters in the quantum circuit. Thus,
the entropy does not need to be determined from the final measurements, which can be
challenging [8, 22]. Furthermore, because we do not use auxiliary qubits, our method
requires the least number of qubits possible. Having direct access to the entropy and
using minimal quantum resources are two main advantages of our method.

This paper is organized as follows. Section2 presents the method we use to gen-
erate the quantum statistical ensembles. Section3.1 presents ansatzes for generating
specific values of entropy. In Sect. 4, we present a demonstration of our algorithm for
a two-site Hubbard model. Section5 provides a deeper discussion about mid-circuit
measurements. Lastly, we present some concluding remarks in Sect. 6

2 Method

2.1 Problem definition

Consider a quantum system described by a Hamiltonian Ĥ connected to an external
heat bath with temperature T . The relevant thermodynamic potential for this canonical
ensemble is the Helmholtz free energy

F(ρ̂) = E(ρ̂) − T S(ρ̂), (1)

which is given by the internal energy

E(ρ̂) = Tr(Ĥ ρ̂), (2)

and the von Neumann entropy

S(ρ̂) = −k Tr(ρ̂ ln ρ̂), (3)

where ρ̂ is the density operator that describes the state of the system and k is the
Boltzmann constant. Our goal is to find the ρ̂ that minimizes F(ρ̂) using a quantum
computer.

We assume that a map from the Fock space F of the quantum system to the Hilbert
space H⊗Q of a quantum register with Q qubits is provided (e.g., the Jordan–Wigner
mapping). A basis for H⊗Q is the set of states {|n〉} that is formed by all states of the
form |n〉 = ⊗Q

q=1 |nq〉, where nq ∈ {0, 1} specifies the basis state |nq〉 of qubit q. In
this basis, a general density operator can be written as ρ̂ = ∑

nn′ pnn′ |n〉〈n′|, where
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pnn′ are complex coefficients. Density operators can be constructed on the quantum
register using a combination of quantum logic gates and mid-circuit measurements.
Details of this construction are described in Sect. 3.

2.2 Approach

We need a way to create mixed states with nonzero entropy. We accomplish this by
introducing mid-circuit measurements. The challenge is that the measurement of a
quantum system in any pure state collapses that state to another pure state, and as
all pure states have zero entropy, no single measurement induces entropy by itself.
However, quantum mechanics is a probabilistic theory, where repeated measurements
of the same system in the same state do not necessarily produce the same outcome.
Thus, repeated measurements of the same system can produce quantum ensembles
with nonzero entropy.

When we describe performing operations on a quantum computer, we are always
referring to performing repeated operations on identically prepared quantum states.
Let us define

�̂0 = |0〉〈0|, (4)

as the initial density operator of the identically prepared quantum systems. Measuring
this density operator simply returns the same density operator. In order to generate
entropy, we must rotate the density operator out of the {|n〉} basis. We define

�̂(φ) = V̂ (φ)�̂0V̂
†(φ), (5)

where V̂ (φ) is a unitary operator and φ is a collection of parameters. We assume
there is a known relation s(φ) such that when �̂ is measured the resulting density
operator has the entropy s(φ). Let us define M(�̂) to represent the measurement of
�̂. In principle any complete set of measurement operators can be used. In this work,
we choose to perform measurements in the occupation basis {|n〉}. These mid-circuit
measurements then yield statistical samples of the basis states |n〉, which we use to
approximate the probability distribution. After the measurement, the density operator
becomes,

ρ̂meas(φ) = M[�̂(φ)]. (6)

From the construction of V̂ (φ), we have S(ρmeas) = s(φ). This density operator has
nonzero entropy; however, it is diagonal in the {|n〉} basis.Wewant the density operator
to be diagonal in the eigenbasis of the Hamiltonian. Thus, we perform a second unitary
operation Û (θ) with a second collection of parameters θ and define

ρ̂(φ, θ) = Û (θ)ρ̂meas(φ)Û (θ). (7)

Because the entropy cannot be changed by applying a unitary operator, we know
that S(ρ̂) = s(φ). To obtain E(ρ̂), we use the standard measurement protocol [28]
for calculating expectation values from quantum measurement samples. There are
more sophisticated measuring techniques [28]. However, those techniques are beyond
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the scope of this work. Once both S(ρ̂) and E(ρ̂) have been obtained, F(ρ̂) can be
calculated from Eq. (1).

The goal is to optimize bothφ and θ in order tominimize theHelmholtz free energy.
We know from statistical mechanics that the free energy is minimized by the canonical
ensemble

ρ̂∗ = 1

ζ

∑

λ

e−βEλ |ψλ〉〈ψλ|, (8)

where Eλ are the eigenvalues and |ψλ〉 are the eigenstates of Ĥ , λ runs over the set of
eigenstates, and ζ is the partition function

ζ =
∑

λ

e−βEλ , (9)

where β = (kT )−1. In Appendix A, we show that there exist a V (φ) and Û (θ) that
generate the canonical ensemble.

2.3 Algorithm

Using the approach discussed above,we can define a variational quantum algorithm for
optimizing φ and θ so that the Helmholtz free energy (1) is minimized. The algorithm
is shown in Table 1.

In step 1 of the algorithm, we choose initial values for φ0 and θ0. Certain choices
could speed up the optimization and help to avoid local minima. One choice that is
likely to speed up the optimization is to setφ0 so that V (φ0) generates the Fermi–Dirac
distribution

n̄q = 1

1 + eβ(εq−μ)
, (10)

over the basis states |nq〉 of the qubits where εq are the Hartree–Fock energies and μ

is the chemical potential.
In step 3, we initialize identical copies of the quantum register. Requiring identical

copies of the quantum register is not unique to our algorithm. It is required for any
quantum algorithm that aims to calculate the expectation value of an operator. For any
such algorithm, identical copies are required in order to acquire enough shots for a
statistically accurate measurement of the expectation value. In practice, the quantum
operations acting on these copies can be run sequentially instead of simultaneously,
allowing us to reuse the same quantum register for each run.

In step 12, we choose a new set of parameters φ′
i and θ ′

i and use those parameters
in step 13 to compare two values of the free energy. This is the classical optimization
routine that is common to quantum variational algorithms. The parameters φ′

i and θ ′
i

must be related in some way to the original parameters φi and θ i . Let φiα , θiα , φ′
iα ,

and θ ′
iα be parameters in the collections φi , θ i , φ

′
i , and θ ′

i , respectively. We can relate
the parameters by a small offset

φ′
iα = φiα + �φiα

θ ′
iα = θiα + �θiα,

(11)
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Table 1 Free-energy minimization algorithm

1 Choose initial values for φ0 and θ0

2 Iterate over i

3 Initialize identical copies of the quantum register to

Form the initial ensemble �̂0

4 Apply a set of quantum gates that perform the first

Unitary operation V (φi )

5 Measure each state of the quantum ensemble

6 Apply a set of quantum gates that perform the second

Unitary operation Û (θ i )

7 Measure each state a second time to calculate the

Energy expectation value of the ensemble E(φi , θ i )

8 Use E(φi , θ i ) and s(φi ) to calculate the free energy

F(φi , θ i )

9 If F(φi , θ i ) has converged

10 Exit the loop

11 Else

12 Repeat (3)-(8) with a set of perturbed parameters φ′
i and

θ ′
i to calculate F(φ′

i , θ
′
i )

13 Using a predefined-optimization scheme, compare

F(φi , θ i ) to F(φ′
i , θ

′
i ) in order to find a new set of

parameters φi+1 and θ i+1

14 Return the optimized free energy

where |�φiα| and |�θiα| are small. In our demonstration below, we use the SPSA opti-
mizer in which �φiα = ±�φiβ and �θiα = ±�θiβ for all α and β. The parameters
in the next iteration are then chosen by taking the difference of the free energies

φi+1α = φiα − γ
F(φ, θ) − F(φ′, θ ′)

�φiα
. (12)

for some predefined-optimization rate γ .

3 Entropy circuits

3.1 Discrete entropy injection via mid-circuit measurements

We want to find a unitary operator V̂ (φ) such that when �̂ = V̂ (φ)†|0〉〈0|V (φ) is
measured, the resulting density operator ρ̂meas = M(�̂) has an entropy S(ρ̂meas) =
s(φ). Let us consider a simple example of how measurements can inject entropy into
the quantum system. Consider a single qubit initialized to �̂0 = |0〉〈0|. Then, apply a
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Hadamard operator Ĥ = 1√
2

(
σ̂x + σ̂z

)
. This results in a density operator

�̂ = 1

2
(|0〉 + |1〉)(〈0| + 〈1|). (13)

Next, perform the measurements

ρ̂meas = 1

2
(|0〉〈0| + |1〉〈1|). (14)

The entropy of the initial state is zero

S(�̂0) = 0, (15)

while the entropy of the measured state is

S(ρ̂meas) = k ln 2. (16)

If instead of a single qubit, we have a set of Q qubits andwe apply Hadamard operators
to QH of them, then the entropy becomes

S(ρ̂meas) = QHk ln 2. (17)

Thus, we can define

V̂ disc(φ0) =
	 φ0
ln 2 
∏

i=0

Ĥi , (18)

whereφ0 is a parameter, 	 
 denotes the floor function, and Ĥi is theHadamard operator
acting on qubit i . This works as long as we only need to inject discrete amounts of
entropy.

3.2 Continuous entropy injection via mid-circuit measurements

The construction in Sect. 3.1 is only able to generate entropy that is an integer multiple
of k ln 2. In general, we want to be able to generate any amount of entropy from
Smin = 0 to Smax = Nk ln 2, where N is the total number of qubits. This can be
accomplished by applying a continuous rotation to one of the qubits. Let us define the
operator

R̂i (φ) = Ẑi R̂
y
i (2φ) = Ẑi cos(φ) + X̂i sin(φ), (19)

where Ẑi and X̂i are the Pauli-z and Pauli-x matrices acting on qubit i , R̂ y
i is the

rotation operator around the y-axis of the Bloch sphere, and φ is an arbitrary angle.
The Ẑi operator is used so that we can access the Hadamard operator, R̂i (π/4) = hi .
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Fig. 1 The value of s(φ) given
input φ and QH . The straight
lines from bottom to top have 0,
1, 2, and 3 Ĥi operators and no
R̂i operators. The curves from
bottom to top have 0, 1, and 2 Ĥi
operators and 1 R̂i operator

Applying this operator to �̂0 = |0〉〈0| gives us

�̂ = R̂0(φ)�̂0 R̂0(φ)

= [
cos(φ)|0〉 + sin(φ)|1〉][ cos(φ)〈0| + sin(φ)〈1|]. (20)

Measuring generates an entropy

S[M(�̂)] = −k cos2(φ) ln
[
cos2(φ)

]
− k sin2(φ) ln

[
sin2(φ)

]
, (21)

that has a minimum of 0 and a maximum of k ln 2. Therefore, we can generate an
arbitrary amount of entropy by applying QH = 	φ0/ ln 2
 Hadamard operators to the
first QH qubits and a R̂i operator to the next qubit. We can apply these operators by
setting V̂ (φ) to

V̂ (φ) = V̂ disc(φ0)RQH+1 (φ) , (22)

where φ contains only a single parameter φ0 and we define φ = φ0 − QH for
convenience. The entropy is then given by

s(φ)/k = − cos2(φ) ln
[
cos2(φ)

]
− sin2(φ) ln

[
sin2(φ)

]
+ QH ln(2). (23)

Figure1 shows plots of s(φ) for various combinations of Hadamard and rotation
operations. We see that any input entropy can be generated from this form of V (φ).
It should be noted that when V̂ (φ) is in this simple form, it does not need to be
implemented on the quantum computer, see Appendix B for details.

3.3 Arbitrary distributions via mid-circuit measurements

Generating arbitrary entropy is not enough to generate an arbitrary density operator.
Two density operators with the same entropy can have different eigenvalues. The
eigenvalues of a density operator cannot be changed by applying unitary operators.
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Therefore, a scheme to prepare a density operator with an arbitrary distribution of
eigenvalues is required to solve for the minimum free energy in the most general case.

Preparing a density operator with arbitrary eigenvalues requires a V̂ (φ) composed
of 2N operators, in general. In order to avoid an exponential number of operators,
V̂ (φ) has to be tailored to the specific problem. Bespoke operators are a common
feature of variational quantum algorithms. See Appendix C for an example V̂ (φ) that
balances complexity with control over the eigenvalues.

The entropy generated bymeasuring the density operator after applying an arbitrary
V̂ (φ)may not be easily calculable. Fortunately, we do not have to calculate the entropy
by hand. Instead, we can use the results of the mid-circuit measurements to obtain the
entropy. The measurements provide us with a list of states {|n〉} and the number of
shots that were measured to be in each state {Pn}. While it is difficult to recover
the entropy of the incoming ensemble, the entropy of the outgoing ensemble can be
approximated using the results of the mid-circuit measurements. After the mid-circuit
measurements, we approximate the density operator as ρ̂ ≈ ∑

n Pn/Ns |n〉〈n|, where
NS is the total number of shots. Therefore, the entropy is

S ≈ −
∑

n

Pn
NS

ln
Pn
NS

, (24)

where the sum runs over only those states for which a shot is collected. The
approximation becomes an equality for an infinite number of shots.

The number of shots required for an accurate approximation of S depends on the
spread of the eigenvalues in the density operator. The distribution of eigenvalues in
the canonical ensemble is controlled by the temperature. For both low kT << Emax
and high kT >> Emax temperatures, where Emax is the width of the energy spectrum,
the specific distribution of the eigenvalues of the density operator does not have a
significant effect on the free energy. For low temperature, the majority of the weight is
on the ground state. For high temperature, the weight tends toward an even distribution
among all states. Therefore, we can use the form of V̂ (φ) in Sect. 3.2 for both the low
andhigh entropy regimes. In the intermediate-temperature regime,wemayneed amore
involved V̂ (φ) in which there is not a simple relation s(φ) for the entropy. Because the
weights in the canonical ensemble (8) exponentially decay with energy, we expect to
get a good approximation for the entropy using Eq. (24) with a subexponential number
of shots, even in the intermediate regime.

3.4 Algorithm complexity

The overall complexity of the algorithm depends on many factors. For one, it depends
on the circuit depth of V̂ (φ). As we have shown above, a full covering of the entropy
can be achieved with a V (φ) that requires only Q gates. Further detail can be found
in Appendix C.

The complexity also depends on the required depth of Û (φ) and on the number of
optimization iterations required for the free energy to converge. These requirements are
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Fig. 2 Depiction of the circuit model we use in our demonstration. V̂ (φ) is composed of all of the operators
before the initial measurement and Û (θ) is composed of all of the operators after the initial measurement.
For Û (θ), we take the hardware efficient ansatz. In the figure, V̂ (φ) is composed of a Hadamard operator
on the first qubit and a rotation on the second qubit; however, the optimizer is free to replace the Hadamard
operator with a rotation on the first qubit if it removes the rotation from the second qubit. The rotation in
V̂ (φ) is decomposed into native operators R̂i (φ) = R̂ y

i (2φ)Ẑ , where R̂ y
i (φ) is a rotation about the y-axis

of the block sphere for qubit i and Ẑ is the Pauli-z matrix. The two qubit operators are controlled-NOT
gates

open problems. However, it is generally believed that quantum variational algorithms
require low depth circuits and can be optimized efficiently [29].

Finally, the complexity depends on the number shots required to achieve an accu-
rate sampling of the probability distribution during both the mid-circuit and final
measurements. The number of shots required to achieve an accuracy of ε goes as
Ns = O(1/ε2) [29]. Notice that the ln function in the definition of the entropy Eq. (3)
means that a direct approximation of the entropy Eq. (24) can require high accuracy
for some cases. However, we argue in Sect. 3.3 that we can use exact expressions for
the entropy in most cases. We further argue that, for the cases where these expressions
are not available, the entropy is well approximated without high accuracy.

4 Demonstrating the algorithm

We demonstrate our algorithm for the two-orbital Hubbard model described by the
Hamiltonian

HHubbard = μ(n̂0 + n̂1) + t(c†0c1 + c†1c0) + un̂0n̂1, (25)

where c†i and ci are creation and destruction operators, respectively, n̂i = c†i ci is
the number operator, μ is the chemical potential, t is the kinetic energy, and u is the
fermion interaction strength. We scale all of the parameters by t. We set μ = −3.7t
and u = 0.7t . We use the Jordan–Wigner transformation to convert Eq. (25) to a spin
model that can be mapped to the quantum register.

Figure 2 shows the circuit model. Unless otherwise stated, we choose V̂ (φ) to be a
list of Hadamard operators and one R̂i (φ) operator, as described in Eq. (19), and we
take Û (θ) to be the hardware efficient ansatz. For V̂ (φ), we start with no Hadamard
operators and a rotation operator on the first qubit. If the angle of the rotation operator
reaches φ = π/4 then a Hadamard operator is added to the first qubit, the rotation
operator is moved to the second qubit, and the angle is reset to φ = 0. The entropy
associated with φ is determined by the relationship s(φ) from Eq (23). We are free
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Fig. 3 Simulation of the free-energy algorithm. a shows the free energy as a function of optimization
iterations. The blue curve is the simulated data and the orange line is the true minimum of the free energy. b
shows the difference between the true minimum of the free energy and the simulated result as a function of
temperature. The blue line with the blue dots shows results from the continuous-entropy method described
in Sect. 3.2, where we use only one R̂i (φ) operator. The blue dots show the data points the blue line is plotted
to guide the eye. The green line with the green triangles shows the results from the arbitrary-distribution
method described in Appendix. B, where an R̂i (φi ) operator is applied to each qubit. The green triangles
show the data points and the green line is plotted to guide the eye. c shows the difference between the true
minimum of the free energy and the simulated result for different numbers of layers of the ansatz. In a and
b, Nθ = 4 and in a and c, kT = 3.3 t

Fig. 4 Run of the free-energy algorithm on IBM-Q Lagos. a the free energy as a function of temperature.
The orange curve is the true minimum of the free energy, the large blue data points are from classical
simulation, and the small pink data points are taken from the quantum computer. For the quantum data,
we use the optimized angles and entropy from the classical simulation. b the difference between the free
energy measured on the quantum device and the free energy from the simulation. In both a and b, Nθ = 4

to choose the number of angles in θ , which we define as 2Nθ so that Nθ counts the
number of layers in Û .

In Fig. 3, we show the results of a noise-free classical simulation of our algorithm. In
Fig. 3a, we plot the free energy as a function of the optimization iterations.We observe
an initial fast optimization for about 20 iterations then a second slow optimization
with convergence around 600 iterations. In Fig. 3b, we plot the energy difference
between the true-minimum free energy and the results of our simulated algorithm. The
simulation is most accurate for small and large values of T . The decrease in accuracy
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in the intermediate-temperature regime is expected, as discussed in Sect. 3.3. Even in
this intermediate regime, the free energy from the simulation gets well within 10% of
the true minimum of the free energy. Also, as predicted in Sect. 3.3, the free energy in
the intermediate regime is more accurate when using the balanced ansatz described in
Appendix C thanwhen using the continuous-entropy ansatz described in Sect. 3.2. The
accuracy of the algorithm is also dependent on Nθ . Figure3c shows the free energy as
a function of Nθ . We see that the final result improves as Nθ is increased from 1 to 4.
At Nθ = 5 and beyond, the algorithm does not improve.

We use the optimized parameter values from the classical simulation to test the
circuit on a quantum computer. Figure4 shows data from the quantum computer IBM-
Q Lagos. See Appendix D for details about the quantum computer. Figure4a shows
the free energy as a function of temperature. Figure4b shows the difference in free
energy between the data from the simulation and the data from the quantum device.
The error from the quantum device is less than 10% at T = 0 and decreases as the
temperature is raised. This is due to the fact that at higher temperature, the density
operator becomes more evenly spread across the eigenspectrum, so the free energy is
tolerant of inexact quantum operators.

5 Discussion

While we focus on calculation of the Helmholtz free energy using a variational
approach, we foresee the use of mid-circuit measurements to generate entropy as
a component that can be used in a variety of algorithms. Mid-circuit measurements
can be used, in general, to both increase and decrease the entropy as a subroutine in a
quantum algorithm.

Above, we go into detail about how mid-circuit measurements can be used to
increase entropy. More care is required in order to decrease entropy. As an expression
of the second law of thermodynamics, we cannot reduce the entropy of the quantum
system bymeasurement alone. If wewant to reduce the entropy, wemust perform post-
selection using themeasurement results. By sorting out shotswith certainmeasurement
outcomes, we artificially set some of the Pm = 0 in Eq. (24). This is analogous to
the idea of a Maxwell Demon, which lowers the entropy of a system by selectively
allowing only low energy particles through a screen. Postselection, like the Maxwell
Demon, does not lower the entropy of the universe but simply redefines what we
consider to be the system.

6 Conclusion

We present a method for generating quantum ensembles on quantum computers using
mid-circuit measurements. The ability to generate mixed-state quantum ensembles
is a critical component in simulating any physical system that is not isolated from
its environment. Our work establishes a relationship between entropy and quantum
measurements, which applies to all quantum algorithms that utilize mid-circuit mea-
surements. We use this relationship to construct an algorithm for finding the free
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energy of open systems on a quantum computer. We use the measurement apparatus
as the environment for the open system. This allows us to avoid using auxiliary qubits.
Furthermore, as entropy is unchanged after the mid-circuit measurement, we do not
need to measure the final entropy, which can be challenging. Thus, we have two main
advantages. First, because we do not use auxiliary qubits, the amount of quantum
resources needed for our algorithm is greatly reduced. Second, the entropy does not
need to be approximated because it is provided as an input parameter. Furthermore, our
method is a natural extension of the variational quantum eigensolver and is practical
for near-term quantum hardware.

Appendix A: Existence of an exact solution within the framework of
our method

Here, we show that unitaries V̂ ∗ and Û∗, that generate the exact canonical ensem-
ble Eq. (8), exist. These unitaries require information about the eigenvalues of the
Hamiltonian and cannot be generated efficiently in general. However, it is important
to demonstrate that the algorithm has the capacity to find the global minimum free
energy. This is analogous to the variational quantum eigensolver algorithm in which
there is some unitary operator that generates the exact ground state but in practice we
use an ansatz that may not reach the global energy minimum.

Let us choose V̂ ∗ such that

�̂ = 1

ζ

(
∑

n

e−βEn/2|n〉
) (

∑

n′
e−βEn′/2〈n′|

)

, (A1)

where |n〉 describes the state of the quantum register as in the previous section. As �̂

represents a normalized pure state, there is guaranteed to be a unitary operator V̂ ∗ that
generates this state. Next, we measure �̂ and obtain

ρ̂meas = 1

ζ

∑

n

e−βEn |n〉〈n|. (A2)

The next step is to apply the second unitary operator Û∗. We can build Û∗ out of the
eigenvectors of Ĥ such that |ψλ=n〉 = Û∗|n〉. Applying this Û∗ to ρ̂meas , we have

ρ̂ = 1

ζ

∑

λ

e−βEλ |ψλ〉〈ψλ| (A3)

and, thus, ρ̂ = ρ̂∗. Therefore, there exists a Û∗ and a V̂ ∗ that generate the absolute
minimum of the free energy.
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Appendix B: Classical simulation of themeasurement procedure

The algorithm is composed of two unitary operators: V̂ (φ), which is applied before the
entropy-injecting measurement, and Û (θ), which is applied after the measurement.
When V̂ (φ) is composed of only single-qubit operators, it can be efficiently simulated
on a classical computer. The result of measuring �̂ = V̂ †(φ)|0〉〈0|V̂ (φ) can simply be
stated. Each qubit with a Hadamard operator has a fifty percent chance of being in the
|1〉 state while each qubit with an R̂i (φ) operator has a cos2(φ) chance of being |1〉
state. As there are no entangling operators, orientation of each qubit is independent of
all the other qubits.

Therefore, instead of generating ρ̂meas = M(�̂) on the quantum computer, we can
start each shot of the algorithm in a randomly generated state

ρ̂meas,s =
∏

i

X̂ nsi
i |00 . . .〉〈00 . . .|

∏

i

X̂ nsi
i , (B1)

wherensi ∈ {0, 1} is a randombinary.We select eachnsi fromaprobability distribution
P(nsi = 1) that depends on the operator that V̂ (φ) applies to qubit i :

Ĥi �→ P(nsi = 1) = 1/2,

R̂i (φ) �→ P(nsi = 1) = cos2(φ),

Îi �→ P(nsi = 1) = 0,

(B2)

where Îi is the identity acting on qubit i . With enough shots we effectively generate
the desired ensemble

ρ̂meas = lim
NS→∞

1

NS

NS∑

s=1

ρ̂meas,s . (B3)

While generating ρ̂meas classically in this manner is equivalent to Eq. (22), it
does not reproduce an arbitrary V̂ (φ), where ρ̂meas can be exponentially difficult
to approximate.

Appendix C: A balanced ansatz to control the density operator

While the full range of entropy can be reached using the methods in the main text, we
cannot generate an arbitrary distribution of eigenvalues for the density operator using
single-qubit rotations alone. In this section, we discuss how one can systematically
increase control over the density operator. In general, the density operator has 2N

eigenvalues, where N is the number of qubits. However, we assume that we only ever
need a subexponential number of control parameters. This assumption is based on
the fact that the canonical ensemble (8) exponentially decays with energy. While this
decay can be washed out at very high temperature, the high-temperature regime is well
captured by the methods in the main text. It is only in the intermediate-temperature
regime where deep control over the eigenvalues of the density operator is required.
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In the main text, we take some data for a pre-measurement ansatz that applies
single-qubit rotation R̂i (φi ) operators to each qubit, where each φi is an independent
parameter. Let us go into more detail about this ansatz as it is an excellent balance
between control of the density operator and depth of the circuit. After mid-circuit
measurements, the density operator becomes

M(�̂) =
∑

n1,n2,...

∏

i

cos2(1−ni )(φi ) sin
2ni (φi )

× |n1n2 . . .〉〈n1n2 . . .|,
(C1)

for ni ∈ {0, 1}.
The measured density operator has an entropy of

S[M(�̂)] = −
∑

n1,n2,...

∏

i

cos2(1−ni )(φi ) sin
2ni (φi )

× ln

[
∏

i

cos2(1−ni )(φi ) sin
2ni (φi )

]

.

(C2)

This entropy is exponentially difficult to calculate as there are 2N terms in the sum-
mation. However, we can approximate the entropy from the mid-circuit measurement
results as described in Sect. 3.3.

Notice that in Eq. (C1) the density operator M(�̂) has 2N nonzero eigenvalues.
However, there are only N independent control parameters. Therefore, many of the
eigenvalues are coupled. To decouple the eigenvalues we must apply multi-qubit
rotations

R̂n
{i}n (φ) = cosφ{i}n

∏

i∈{i}n
Ẑi + sin φ{i}n

∏

i∈{i}n
X̂i , (C3)

where {i}n is a set of n indices. We can systematically increase the control over
the eigenvalues of the density operator by successively adding additional rotation
operators to the pre-measurement ansatz. In general, if we apply Nr unique rotations,
as described by Eq. (C3), followed by mid-circuit measurements, we have a density
operator of the form

M(�̂) =
∑

n1,n2,...

f (φ1, φ2, . . . , φNr )|n1n2 . . .〉〈n1n2 . . .|, (C4)

where f is a sum of products of trig functions. We see that each additional rotation
provides an additional control parameter to decouple the eigenstates of the density
operator. In the limit Nr = 2N , the eigenvalues are fully controlled; however, this
requires exponentially many rotations.

Even for relatively few multi-qubit rotations, the circuit depth can become large
as the rotations can require several CNOT operators. The number of CNOT operators
depends on the exact arrangement of the indices and the layout of the qubits on the
chip. Fortunately, there are two aspects of the algorithm that work in our favor. For one,
the mid-circuit measurements restart the decoherence. This means that increasing the
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Table 2 Specifications of
IBM-Q Lagos during the
execution of our algorithm

q0 q1

Frequency (GHz) 5.24 5.10

T1 (μs) 112.9 118.6

T2 (μs) 41.0 89.9

Readout error 0.0075 0.0109√
X error 0.00025 0.00031

CXqi ,q0 error 0.0076

CXqi ,q1 error 0.0076

CXqi ,q2 error 0.0074

CXqi ,q3 error 0.0083

depth of the pre-measurement ansatz does not increase the decoherence in the post-
measurement ansatz. Secondly, because single-qubit rotations can span all possible
values of the entropy, it is rare that we need more than a few two qubit rotations. As
shown in Ref. [9], a quantum statistical ensemble with the correct entropy can often
be transformed into a good approximation of the desired ensemble using only unitary
operators.

Appendix D: Device specifications

We demonstrate our method on IBM-Q Lagos, which is a seven-qubit quantum com-
puter. Lagos has the following qubit pairs connected: (q0, q1), (q1, q2), (q1, q3),
(q3, q5), (q4, q5), (q5, q6), where qi refers to qubit i . We use only qubits q0 and
q1. The specifications of the device at the time we ran our circuits can be found in
Table 2. All of the operators were converted to z-rotations Rz , root-x operators

√
X ,

and controlled-not operators CX using the Qiskit transpile function. The Rz operators
have no error as they are implemented by changing the measurement angles. These
specifications are based on a calibration performed on August 25, 2022.
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