

Freudenthal duality and black holes: From groups of type E_7 to pre-homogeneous spaces

Alessio Marrani

*Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”,
Via Panisperna 89A, I-00184, Roma, Italy*

*Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova,
and INFN, sez. di Padova,
Via Marzolo 8, I-35131 Padova, Italy
E-mail: Alessio.Marrani@pd.infn.it*

Freudenthal duality can be defined as an anti-involutive, non-linear map acting on symplectic spaces. It was introduced in four-dimensional Maxwell-Einstein theories coupled to a non-linear sigma model of scalar fields.

In this short review, I will consider its relation to the U -duality Lie groups of type E_7 in extended supergravity theories, and comment on the relation between the Hessian of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kähler metric of the pre-homogeneous spaces associated to the U -orbits.

Keywords: Extended supergravity; duality; Freudenthal triple systems; special Kähler geometry; pre-homogeneous vector spaces.

1. Freudenthal Duality

We start and consider the following Lagrangian density in four dimensions (*cfr. e.g.*¹):

$$\mathcal{L} = -\frac{R}{2} + \frac{1}{2}g_{ij}(\varphi)\partial_\mu\varphi^i\partial^\mu\varphi^j + \frac{1}{4}I_{\Lambda\Sigma}(\varphi)F_{\mu\nu}^\Lambda F^{\Sigma|\mu\nu} + \frac{1}{8\sqrt{-G}}R_{\Lambda\Sigma}(\varphi)\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}^\Lambda F_{\rho\sigma}^\Sigma, \quad (1)$$

describing Einstein gravity coupled to Maxwell (Abelian) vector fields and to a non-linear sigma model of scalar fields (with no potential); note that \mathcal{L} may -but does not necessarily need to - be conceived as the bosonic sector of $D = 4$ (*ungauged*) supergravity theory. Out of the Abelian two-form field strengths F^Λ 's, one can define their duals G_Λ , and construct a symplectic vector :

$$H := (F^\Lambda, G_\Lambda)^T, \quad {}^*G_{\Lambda|\mu\nu} := 2\frac{\delta\mathcal{L}}{\delta F^{\Lambda|\mu\nu}}. \quad (2)$$

We then consider the simplest solution of the equations of motion deriving from \mathcal{L} , namely a static, spherically symmetric, asymptotically flat, dyonic extremal black hole with metric²

$$ds^2 = -e^{2U(\tau)}dt^2 + e^{-2U(\tau)}\left[\frac{d\tau^2}{\tau^4} + \frac{1}{\tau^2}(d\theta^2 + \sin\theta d\psi^2)\right], \quad (3)$$

where $\tau := -1/r$. Thus, the two-form field strengths and their duals can be fluxed on the two-sphere at infinity S_∞^2 in such a background, respectively yielding the electric and magnetic charges of the black hole itself, which can be arranged in a

symplectic vector \mathcal{Q} :

$$p^\Lambda := \frac{1}{4\pi} \int_{S_\infty^2} F^\Lambda, \quad q_\Lambda := \frac{1}{4\pi} \int_{S_\infty^2} G_\Lambda, \quad (4)$$

$$\mathcal{Q} := (p^\Lambda, q_\Lambda)^T. \quad (5)$$

Then, by exploiting the symmetries of the background (3), the Lagrangian (1) can be dimensionally reduced from $D = 4$ to $D = 1$, obtaining a 1-dimensional effective Lagrangian (' := $d/d\tau$)³:

$$\mathcal{L}_{D=1} = (U')^2 + g_{ij}(\varphi) \varphi^{i'} \varphi^{j'} + e^{2U} V_{BH}(\varphi, \mathcal{Q}) \quad (6)$$

along with the Hamiltonian constraint³

$$(U')^2 + g_{ij}(\varphi) \varphi^{i'} \varphi^{j'} - e^{2U} V_{BH}(\varphi, \mathcal{Q}) = 0. \quad (7)$$

The so-called “effective black hole potential” V_{BH} appearing in (6) and (7) is defined as³

$$V_{BH}(\varphi, \mathcal{Q}) := -\frac{1}{2} \mathcal{Q}^T \mathcal{M}(\varphi) \mathcal{Q}, \quad (8)$$

in terms of the symplectic and symmetric matrix¹

$$\mathcal{M} := \begin{pmatrix} \mathbb{I} & -R \\ 0 & \mathbb{I} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & I^{-1} \end{pmatrix} \begin{pmatrix} \mathbb{I} & 0 \\ -R & \mathbb{I} \end{pmatrix} = \begin{pmatrix} I + RI^{-1}R & -RI^{-1} \\ -I^{-1}R & I^{-1} \end{pmatrix}, \quad (9)$$

$$\mathcal{M}^T = \mathcal{M}; \quad \mathcal{M}\Omega\mathcal{M} = \Omega, \quad (10)$$

where \mathbb{I} denotes the identity, and $R(\varphi)$ and $I(\varphi)$ are the scalar-dependent matrices occurring in (1); moreover, Ω stands for the symplectic metric ($\Omega^2 = -\mathbb{I}$). Note that, regardless of the invertibility of $R(\varphi)$ and as a consequence of the physical consistence of the kinetic vector matrix $I(\varphi)$, \mathcal{M} is negative-definite; thus, the effective black hole potential (8) is positive-definite.

By virtue of the matrix \mathcal{M} , one can introduce a (scalar-dependent) *anti-involution* \mathcal{S} in any Maxwell-Einstein-scalar theory described by (1) with a symplectic structure Ω , as follows:

$$\mathcal{S}(\varphi) := \Omega\mathcal{M}(\varphi); \quad (11)$$

$$\mathcal{S}^2(\varphi) = \Omega\mathcal{M}(\varphi)\Omega\mathcal{M}(\varphi) = \Omega^2 = -\mathbb{I}; \quad (12)$$

in turn, this allows to define an anti-involution on the dyonic charge vector \mathcal{Q} , which has been called (scalar-dependent) *Freudenthal duality*⁴⁻⁶:

$$\mathfrak{F}(\mathcal{Q}; \varphi) := -\mathcal{S}(\varphi) \mathcal{Q}; \quad (13)$$

$$\mathfrak{F}^2 = -\mathbb{I}, \quad (\forall \{\varphi\}). \quad (14)$$

By recalling (8) and (11), the action of \mathfrak{F} on \mathcal{Q} , defining the so-called (φ -dependent) Freudenthal dual of \mathcal{Q} itself, can be related to the symplectic gradient of the effective

black hole potential V_{BH} :

$$\mathfrak{F}(\mathcal{Q}; \varphi) = \Omega \frac{\partial V_{BH}(\varphi, \mathcal{Q})}{\partial \mathcal{Q}}. \quad (15)$$

Through the attractor mechanism⁷, all this enjoys an interesting physical interpretation when evaluated at the (unique) event horizon of the extremal black hole (3) (denoted below by the subscript “ H ”); indeed

$$\partial_\varphi V_{BH} = 0 \Leftrightarrow \lim_{\tau \rightarrow -\infty} \varphi^i(\tau) = \varphi_H^i(\mathcal{Q}); \quad (16)$$

$$S_{BH}(\mathcal{Q}) = \frac{A_H}{4} = \pi V_{BH}|_{\partial_\varphi V_{BH}=0} = -\frac{\pi}{2} \mathcal{Q}^T \mathcal{M}_H(\mathcal{Q}) \mathcal{Q}, \quad (17)$$

where S_{BH} and A_H respectively denote the Bekenstein-Hawking entropy⁸ and the area of the horizon of the extremal black hole, and the matrix horizon value \mathcal{M}_H is defined as

$$\mathcal{M}_H(\mathcal{Q}) := \lim_{\tau \rightarrow -\infty} \mathcal{M}(\varphi(\tau)). \quad (18)$$

Correspondingly, one can define the (scalar-independent) horizon Freudenthal duality \mathfrak{F}_H as the horizon limit of (13):

$$\tilde{\mathcal{Q}} \equiv \mathfrak{F}_H(\mathcal{Q}) := \lim_{\tau \rightarrow -\infty} \mathfrak{F}(\mathcal{Q}; \varphi(\tau)) = -\Omega \mathcal{M}_H(\mathcal{Q}) \mathcal{Q} = \frac{1}{\pi} \Omega \frac{\partial S_{BH}(\mathcal{Q})}{\partial \mathcal{Q}}. \quad (19)$$

Remarkably, the (horizon) Freudenthal dual of \mathcal{Q} is nothing but (1/ π times) the symplectic gradient of the Bekenstein-Hawking black hole entropy S_{BH} ; this latter, from dimensional considerations, is only constrained to be an homogeneous function of degree two in \mathcal{Q} . As a result, $\tilde{\mathcal{Q}} = \tilde{\mathcal{Q}}(\mathcal{Q})$ is generally a complicated (non-linear) function, homogeneous of degree one in \mathcal{Q} .

It can be proved that the entropy S_{BH} itself is invariant along the flow in the charge space \mathcal{Q} defined by the symplectic gradient (or, equivalently, by the horizon Freudenthal dual) of \mathcal{Q} itself :

$$S_{BH}(\mathcal{Q}) = S_{BH}(\mathfrak{F}_H(\mathcal{Q})) = S_{BH}\left(\frac{1}{\pi} \Omega \frac{\partial S_{BH}(\mathcal{Q})}{\partial \mathcal{Q}}\right) = S_{BH}(\tilde{\mathcal{Q}}). \quad (20)$$

It is here worth pointing out that this invariance is pretty remarkable: the (semi-classical) Bekenstein-Hawking entropy of an extremal black hole turns out to be invariant under a generally non-linear map acting on the black hole charges themselves, and corresponding to a symplectic gradient flow in their corresponding vector space.

For other applications and instances of Freudenthal duality, see^{9–11}.

2. Groups of Type E_7

The concept of Lie groups of type E_7 as introduced in the 60s by Brown¹², and then later developed *e.g.* by^{13–17}.

Starting from a pair (G, \mathbf{R}) made of a Lie group G and its faithful representation \mathbf{R} , the three axioms defining (G, \mathbf{R}) as a group of type E_7 read as follows:

(1) Existence of a (unique) symplectic invariant structure Ω in \mathbf{R} :

$$\exists! \Omega \equiv \mathbf{1} \in \mathbf{R} \times_a \mathbf{R}, \quad (21)$$

which then allows to define a symplectic product $\langle \cdot, \cdot \rangle$ among two vectors in the representation space \mathbf{R} itself:

$$\langle Q_1, Q_2 \rangle := Q_1^M Q_2^N \Omega_{MN} = -\langle Q_2, Q_1 \rangle. \quad (22)$$

(2) Existence of (unique) rank-4 completely symmetric invariant tensor (K -tensor) in \mathbf{R} :

$$\exists! K \equiv \mathbf{1} \in (\mathbf{R} \times \mathbf{R} \times \mathbf{R} \times \mathbf{R})_s, \quad (23)$$

which then allows to define a degree-4 invariant polynomial I_4 in \mathbf{R} itself:

$$I_4 := K_{MNPQ} Q^M Q^N Q^P Q^Q. \quad (24)$$

(3) Defining a triple map T in \mathbf{R} as

$$T : \mathbf{R} \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}; \quad (25)$$

$$\langle T(Q_1, Q_2, Q_3), Q_4 \rangle := K_{MNPQ} Q_1^M Q_2^N Q_3^P Q_4^Q, \quad (26)$$

it holds that

$$\langle T(Q_1, Q_1, Q_2), T(Q_2, Q_2, Q_2) \rangle = \langle Q_1, Q_2 \rangle K_{MNPQ} Q_1^M Q_2^N Q_2^P Q_2^Q. \quad (27)$$

This property makes a group of type E_7 amenable to a description as an automorphism group of a *Freudenthal triple system* (or, equivalently, as the conformal groups of the underlying Jordan triple system - whose a Jordan algebra is a particular case -).

All electric-magnetic duality (U -duality^a) groups of $\mathcal{N} \geq 2$ -extended $D = 4$ supergravity theories with symmetric scalar manifolds are of type E_7 . Among these, degenerate groups of type E_7 are those in which the K -tensor is actually reducible, and thus I_4 is the square of a quadratic invariant polynomial I_2 . In fact, in general, in theories with electric-magnetic duality groups of type E_7 holds that

$$S_{BH} = \pi \sqrt{|I_4(\mathcal{Q})|} = \pi \sqrt{|K_{MNPQ} Q^M Q^N Q^P Q^Q|}, \quad (28)$$

whereas in the case of degenerate groups of type E_7 it holds that $I_4(\mathcal{Q}) = (I_2(\mathcal{Q}))^2$, and therefore the latter formula simplifies to

$$S_{BH} = \pi \sqrt{|I_4(\mathcal{Q})|} = \pi |I_2(\mathcal{Q})|. \quad (29)$$

Simple, non-degenerate groups of type E_7 relevant to $\mathcal{N} \geq 2$ -extended $D = 4$ supergravity theories with symmetric scalar manifolds are reported *e.g.* in Table 1 of²⁰. Semi-simple, non-degenerate groups of type E_7 of the same kind are given by

^aHere U -duality is referred to as the “continuous” symmetries of¹⁸. Their discrete versions are the U -duality non-perturbative string theory symmetries introduced by Hull and Townsend¹⁹.

$G = SL(2, \mathbb{R}) \times SO(2, n)$ and $G = SL(2, \mathbb{R}) \times SO(6, n)$, with $\mathbf{R} = (\mathbf{2}, \mathbf{2} + \mathbf{n})$ and $\mathbf{R} = (\mathbf{2}, \mathbf{6} + \mathbf{n})$, respectively relevant for $\mathcal{N} = 2$ and $\mathcal{N} = 4$ supergravity. Moreover, degenerate (simple) groups of type E_7 relevant to the same class of theories are $G = U(1, n)$ and $G = U(3, n)$, with complex fundamental representations $\mathbf{R} = \mathbf{n} + \mathbf{1}$ and $\mathbf{R} = \mathbf{3} + \mathbf{n}$, respectively relevant for $\mathcal{N} = 2$ and $\mathcal{N} = 3$ supergravity¹⁶.

The classification of groups of type E_7 is still an open problem, even if some progress have been recently made *e.g.* in²¹ (in particular, *cfr.* Table D therein).

In all the aforementioned cases, the scalar manifold is a *symmetric* cosets $\frac{G}{H}$, where H is the maximal compact subgroup (with symmetric embedding) of G . Moreover, the K -tensor can generally be expressed as¹⁷

$$K_{MNPQ} = -\frac{n(2n+1)}{6d} \left[t_{MN}^\alpha t_{\alpha|PQ} - \frac{d}{n(2n+1)} \Omega_{M(P} \Omega_{Q)N} \right], \quad (30)$$

where $\dim \mathbf{R} = 2n$ and $\dim G = d$, and t_{MN}^α denotes the symplectic representation of the generators of G itself. Thus, the horizon Freudenthal duality can be expressed in terms of the K -tensor as follows⁴:

$$\mathfrak{F}_H(\mathcal{Q})_M \equiv \tilde{\mathcal{Q}}_M = \frac{\partial \sqrt{|I_4(\mathcal{Q})|}}{\partial \mathcal{Q}^M} = \epsilon \frac{2}{\sqrt{|I_4(\mathcal{Q})|}} K_{MNPQ} \mathcal{Q}^N \mathcal{Q}^P \mathcal{Q}^Q, \quad (31)$$

where $\epsilon := I_4 / |I_4|$; note that the horizon Freudenthal dual of a given symplectic dyonic charge vector \mathcal{Q} is well defined only when \mathcal{Q} is such that $I_4(\mathcal{Q}) \neq 0$. Consequently, the invariance (20) of the black hole entropy under the horizon Freudenthal duality can be recast as the invariance of I_4 itself:

$$I_4(\mathcal{Q}) = I_4(\tilde{\mathcal{Q}}) = I_4 \left(\Omega \frac{\partial \sqrt{|I_4(\mathcal{Q})|}}{\partial \mathcal{Q}} \right). \quad (32)$$

In absence of “flat directions” at the attractor points (namely, of unstabilized scalar fields at the horizon of the black hole), and for $I_4 > 0$, the expression of the matrix $\mathcal{M}_H(\mathcal{Q})$ at the horizon can be computed to read

$$\mathcal{M}_{H|MN}(\mathcal{Q}) = -\frac{1}{\sqrt{I_4}} \left(2\tilde{\mathcal{Q}}_M \tilde{\mathcal{Q}}_N - 6K_{MNPQ} \mathcal{Q}^P \mathcal{Q}^Q + \mathcal{Q}_M \mathcal{Q}_N \right), \quad (33)$$

and it is invariant under horizon Freudenthal duality:

$$\mathfrak{F}_H(\mathcal{M}_H)_{MN} := \mathcal{M}_{H|MN}(\tilde{\mathcal{Q}}) = \mathcal{M}_{H|MN}(\mathcal{Q}). \quad (34)$$

3. Duality Orbits, Rigid Special Kähler Geometry and Pre-Homogeneous Vector Spaces

For $I_4 > 0$, $\mathcal{M}_H(\mathcal{Q})$ given by (33) is one of the two possible solutions to the set of equations²²

$$\begin{cases} M^T(\mathcal{Q}) \Omega M(\mathcal{Q}) = \epsilon \Omega; \\ M^T(\mathcal{Q}) = M(\mathcal{Q}); \\ \mathcal{Q}^T M(\mathcal{Q}) \mathcal{Q} = -2\sqrt{|I_4(\mathcal{Q})|}, \end{cases} \quad (35)$$

which describes symmetric, purely \mathcal{Q} -dependent structures at the horizon; they are symplectic or anti-symplectic, depending on whether $I_4 > 0$ or $I_4 < 0$, respectively. Since in the class of (super)gravity $D = 4$ theories discussed the sign of I_4 actually determines a stratification of the representation space \mathbf{R} of charges into distinct orbits of the action of G into \mathbf{R} itself (usually named duality orbits), the symplectic or anti-symplectic nature of the solutions to the system (35) is G -invariant, and supported by the various duality orbits of G (in particular, by the so-called “large” orbits, for which I_4 is non-vanishing).

One of the two possible solutions to the system (35) reads²²

$$M_+(\mathcal{Q}) = -\frac{1}{\sqrt{|I_4|}} \left(2\tilde{\mathcal{Q}}_M \tilde{\mathcal{Q}}_N - 6\epsilon K_{MNPQ} \mathcal{Q}^P \mathcal{Q}^Q + \epsilon \mathcal{Q}_M \mathcal{Q}_N \right);$$

$$\mathfrak{F}_H(M_+)_{MN} := M_{+|MN}(\tilde{\mathcal{Q}}) = \epsilon M_{+|MN}(\mathcal{Q}).$$

For $\epsilon = +1 \Leftrightarrow I_4 > 0$, it thus follows that

$$M_+(\mathcal{Q}) = \mathcal{M}_H(\mathcal{Q}), \quad (36)$$

as anticipated.

On the other hand, the other solution to system (35) reads²²

$$M_-(\mathcal{Q}) = \frac{1}{\sqrt{|I_4|}} \left(\tilde{\mathcal{Q}}_M \tilde{\mathcal{Q}}_N - 6\epsilon K_{MNPQ} \mathcal{Q}^P \mathcal{Q}^Q \right); \quad (37)$$

$$\mathfrak{F}_H(M_-)_{MN} := M_{-|MN}(\tilde{\mathcal{Q}}) = \epsilon M_{-|MN}(\mathcal{Q}). \quad (38)$$

By recalling the definition of I_4 (24), it is then immediate to realize that $M_-(\mathcal{Q})$ is the (opposite of the) Hessian matrix of (1/π times) the black hole entropy S_{BH} :

$$M_{-|MN}(\mathcal{Q}) = -\partial_M \partial_N \sqrt{|I_4|} = -\frac{1}{\pi} \partial_M \partial_N S_{BH}. \quad (39)$$

The matrix $M_-(\mathcal{Q})$ is the (opposite of the) pseudo-Euclidean metric of a non-compact, non-Riemannian rigid special Kähler manifold related to the duality orbit of the black hole electromagnetic charges (to which \mathcal{Q} belongs), which is an example of pre-homogeneous vector space (PVS)²³. In turn, the nature of the rigid special manifold may be Kähler or pseudo-Kähler, depending on the existence of a $U(1)$ or $SO(1, 1)$ connection^b.

From its definition, a PVS is a finite-dimensional vector space V together with a subgroup G of $GL(V)$, such that G has an open dense orbit in V . PVS are subdivided into two types (type 1 and type 2), according to whether there exists an homogeneous polynomial on V which is invariant under the semi-simple (reductive) part of G itself. For more details, see *e.g.*^{23,25–27}.

Amazingly, simple, non-degenerate groups of type E_7 (relevant to $D = 4$ Einstein (super)gravities with symmetric scalar manifolds) *almost* saturate the list of irreducible PVS with unique G -invariant polynomial of degree 4 (sup²⁵; also *cfr.* Table

^bFor a thorough introduction to special Kähler geometry, see *e.g.*²⁴.

2 of Ref. 20); in particular, the parameter n characterizing each PVS can be interpreted as the number of centers of the regular solution in the (super)gravity theory with electric-magnetic duality (U -duality) group given by G .

Acknowledgments

I would like to thank Leron Borsten, Mike J. Duff, Sergio Ferrara, Emanuele Orazi, Mario Trigiante, and Armen Yeranyan for collaboration on the topics covered in this review.

References

1. P. Breitenlohner, G. W. Gibbons, and D. Maison, *Four-Dimensional Black Holes from Kaluza-Klein Theories*, Commun. Math. Phys. **120**, 295 (1988).
2. A. Papapetrou, *A static solution of the equations of the gravitational field for an arbitrary charge distribution*, Proc. R. Irish Acad. **A51**, 191 (1947). S. D. Majumdar, *A Class of Exact Solutions of Einstein's Field Equations*, Phys. Rev. **72**, 930 (1947).
3. S. Ferrara, G. W. Gibbons, and R. Kallosh, *Black holes and critical points in moduli space*, Nucl. Phys. B500, 75 (1997), [hep-th/9702103](#).
4. L. Borsten, D. Dahanayake, M. J. Duff, and W. Rubens, *Black holes admitting a Freudenthal dual*, Phys. Rev. **D80** (2009) 026003, [arXiv:0903.5517 \[hep-th\]](#).
5. S. Ferrara, A. Marrani, and A. Yeranyan, *Freudenthal Duality and Generalized Special Geometry*, Phys. Lett. **B701** (2011) 640, [arXiv:1102.4857 \[hep-th\]](#).
6. L. Borsten, M. J. Duff, S. Ferrara, and A. Marrani, *Freudenthal Dual Lagrangians*, Class. Quant. Grav. **30** (2013) 235003, [arXiv:1212.3254 \[hep-th\]](#).
7. S. Ferrara, R. Kallosh, and A. Strominger, $\mathcal{N}=2$ *Extremal Black Holes*, Phys. Rev. **D52**, 5412 (1995), [hep-th/9508072](#). A. Strominger, *Macroscopic Entropy of $\mathcal{N}=2$ Extremal Black Holes*, Phys. Lett. **B383**, 39 (1996), [hep-th/9602111](#). S. Ferrara and R. Kallosh, *Supersymmetry and Attractors*, Phys. Rev. **D54**, 1514 (1996), [hep-th/9602136](#). S. Ferrara and R. Kallosh, *Universality of Supersymmetric Attractors*, Phys. Rev. **D54**, 1525 (1996), [hep-th/9603090](#).
8. S. W. Hawking: *Gravitational Radiation from Colliding Black Holes*, Phys. Rev. Lett. **26**, 1344 (1971). J. D. Bekenstein: *Black Holes and Entropy*, Phys. Rev. **D7**, 2333 (1973).
9. P. Galli, P. Meessen, and T. Ortín, *The Freudenthal gauge symmetry of the black holes of $\mathcal{N}=2, d=4$ supergravity*, JHEP **1305** (2013) 011, [arXiv:1211.7296 \[hep-th\]](#).
10. J.J. Fernandez-Melgarejo and E. Torrente-Lujan, $\mathcal{N}=2$ *Sugra BPS Multi-center solutions, quadratic prepotentials and Freudenthal transformations*, JHEP **1405** (2014) 081, [arXiv:1310.4182 \[hep-th\]](#).
11. A. Marrani, C.-X. Qiu, S.-Y. D. Shih, A. Tagliaferro, and B. Zumino, *Freudenthal Gauge Theory*, JHEP **1303** (2013) 132, [arXiv:1208.0013 \[hep-th\]](#).
12. R. B. Brown, *Groups of Type E_7* , J. Reine Angew. Math. **236**, 79 (1969).
13. K. Meyberg, *Eine Theorie der Freudenthalschen Triplesysteme. I, II*, Nederl. Akad. Wetensch. Proc. Ser. **A71**, 162 (1968).
14. R. S. Garibaldi, *Groups of type E_7 over Arbitrary Fields*, Commun. in Algebra **29**, 2689 (2001), [math/9811056 \[math.AG\]](#).

15. S. Krutelevich, *Jordan algebras, exceptional groups, and higher composition laws*, [arXiv:math/0411104](https://arxiv.org/abs/math/0411104). S. Krutelevich, *Jordan algebras, exceptional groups, and Bhargava composition*, J. of Algebra **314**, 924 (2007).
16. S. Ferrara, R. Kallosh, and A. Marrani, *Degeneration of Groups of Type E_7 and Minimal Coupling in Supergravity*, JHEP **1206** (2012) 074, [arXiv:1202.1290](https://arxiv.org/abs/1202.1290) [hep-th].
17. A. Marrani, E. Orazi, and F. Riccioni, *Exceptional Reductions*, J. Phys. **A44**, 155207 (2011), [arXiv:1012.5797](https://arxiv.org/abs/1012.5797) [hep-th].
18. E. Cremmer and B. Julia, *The $\mathcal{N}=8$ Supergravity Theory. 1. The Lagrangian*, Phys. Lett. **B80**, 48 (1978). E. Cremmer and B. Julia, *The $SO(8)$ Supergravity*, Nucl. Phys. **B159**, 141 (1979).
19. C. Hull and P. K. Townsend, *Unity of Superstring Dualities*, Nucl. Phys. **B438**, 109 (1995), [hep-th/9410167](https://arxiv.org/abs/hep-th/9410167).
20. A. Marrani, *Freudenthal Duality in Gravity: from Groups of Type E_7 to Pre-Homogeneous Spaces*, p-Adic Numbers, Ultrametric Analysis and Applications, 2015, Vol. 7, No. 4, 322, [arXiv:1509.01031](https://arxiv.org/abs/1509.01031) [hep-th].
21. S. Garibaldi and R. Guralnick, *Simple groups stabilizing polynomials*, Forum of Mathematics, Pi (2015), vol. 3, e3, [arXiv:1309.6611](https://arxiv.org/abs/1309.6611) [math.GR].
22. S. Ferrara, A. Marrani, E. Orazi, and M. Trigiante, *Dualities Near the Horizon*, JHEP **1311** (2013) 056, [arXiv:1305.2057](https://arxiv.org/abs/1305.2057) [hep-th].
23. T. Kimura : “*Introduction to prehomogeneous vector spaces*”, Translations of Mathematical Monographs **215**, AMS (Providence, 2003).
24. D. S. Freed, *Special Kähler Manifolds*, Commun. Math. Phys. **203**, 31 (1999), [arXiv:hep-th/9712042](https://arxiv.org/abs/hep-th/9712042).
25. M. Sato and T. Kimura, *A classification of irreducible prehomogeneous vector spaces and their relative invariants*, Nagoya Mathematical Journal **65**, 1 (1977).
26. R. W. Richardson, *Conjugacy Classes in Parabolic Subgroups of Semisimple Algebraic Groups*, Bull. London Math. Soc. **6**, 21 (1974).
27. E. Vinberg, *The classification of nilpotent elements of graded Lie algebras*, Soviet Math. Dokl. **16** (6), 1517 (1975).