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Freudenthal duality and black holes:
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Freudenthal duality can be defined as an anti-involutive, non-linear map acting on sym-
plectic spaces. It was introduced in four-dimensional Maxwell-Einstein theories coupled
to a non-linear sigma model of scalar fields.

In this short review, I will consider its relation to the U-duality Lie groups of type
E7 in extended supergravity theories, and comment on the relation between the Hessian
of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kéhler metric
of the pre-homogeneous spaces associated to the U-orbits.
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1. Freudenthal Duality

We start and consider the following Lagrangian density in four dimensions (cfr-
e.g.1):
EZ,EJFEQ..( ) 8,0 O j+l[ ()FAFE““/+#R ();wpoFAFE
2 21]90 P @ 4AE<F7 " 8mAE§0€ uvd’pos
(1)
describing Einstein gravity coupled to Maxwell (Abelian) vector fields and to a non-
linear sigma model of scalar fields (with no potential); note that £ may -but does
not necessarily need to - be conceived as the bosonic sector of D = 4 (ungauged)
supergravity theory. Out of the Abelian two-form field strengths F**’s, one can
define their duals G, and construct a symplectic vector :

oL

T *
H = (FA,GA) , GA““, = 2W (2)

We then consider the simplest solution of the equations of motion deriving from
L, namely a static, spherically symmetric, asymptotically flat, dyonic extremal black
hole with metric?

dr? 1
ds? = 2V dr? 4 o2V |04 (362 4 sin0dy?) | (3)
T T
where 7 := —1/r. Thus, the two-form field strengths and their duals can be fluxed

on the two-sphere at infinity S2 in such a background, respectively yielding the
electric and magnetic charges of the black hole itself, which can be arranged in a
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symplectic vector Q :

1 1
A A
= — F = — G 4
p e = ” A (4)
T
Q:=(p" qn) . (5)

Then, by exploiting the symmetries of the background (3), the Lagrangian (1)
can be dimensionally reduced from D = 4 to D = 1, obtaining a 1-dimensional
effective Lagrangian (' := d/dr)3:

Lot = (U) + 95 (9) "¢ + ¢ Viu (¢,9) (6)
along with the Hamiltonian constraint?3
(U) + i1 (9) ¢ = Vi (0, Q) = 0. (7)

The so-called “effective black hole potential” Vg appearing in (6) and (7) is defined

as?

Vi (¢, Q) = — Q" M(¢) @ ®)

in terms of the symplectic and symmetric matrix

-1 _ pr—1
M._(HR>(IO)<HO)_ I[+RIT'R —RI o
= ) = :

01 J\or RI ip

MT = M;  MOM = Q, (10)

where T denotes the identity, and R () and I () are the scalar-dependent matrices
occurring in (1); moreover, € stands for the symplectic metric (22 = —I). Note
that, regardless of the invertibility of R (¢) and as a consequence of the physical
consistence of the kinetic vector matrix I (¢), M is negative-definite; thus, the
effective black hole potential (8) is positive-definite.

By virtue of the matrix M, one can introduce a (scalar-dependent) anti-
involution S in any Maxwell-Einstein-scalar theory described by (1) with a sym-
plectic structure €, as follows:

S(p) + =AM (p); (11)
S%(p) = AM () OM (p) = O = - (12)

in turn, this allows to define an anti-involution on the dyonic charge vector Q, which
has been called (scalar-dependent) Freudenthal duality® ©:

F(Qip) + ==S(p) (13)
3 =-L (V{e}). (14)

By recalling (8) and (11), the action of § on Q, defining the so-called (p-dependent)
Freudenthal dual of Q itself, can be related to the symplectic gradient of the effective
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black hole potential Vpp:

OViu (v, Q)
09 '

Through the attractor mechanism?, all this enjoys an interesting physical inter-

(i) =0 (15)

pretation when evaluated at the (unique) event horizon of the extremal black hole
(3) (denoted below by the subscript “H”); indeed

0,Ver =0 lim o' (1) = ¢} (Q); (16)
A
SBH (Q) == TH =T VBH|6<PVBH:0 = 7%QTMH (Q) Q7 (17)

where Spy and Ap respectively denote the Bekenstein-Hawking entropy® and the
area of the horizon of the extremal black hole, and the matrix horizon value Mg
is defined as

M (Q) = lim M (p(r)). (18)
Correspondingly, one can define the (scalar-independent) horizon Freudenthal du-
ality §g as the horizon limit of (13):

0 108
G=5u(Q) = lim_§(Qi¢(r) = -0Mu (@) = 102 (S),

Remarkably, the (horizon) Freudenthal dual of Q is nothing but (1/7 times) the
symplectic gradient of the Bekenstein-Hawking black hole entropy Spg; this latter,

(19)

from dimensional considerations, is only constrained to be an homogeneous function
of degree two in Q. As a result, 0=0 (Q) is generally a complicated (non-linear)
function, homogeneous of degree one in Q.

It can be proved that the entropy Spp itself is invariant along the flow in the
charge space Q defined by the symplectic gradient (or, equivalently, by the horizon
Freudenthal dual) of Q itself :

Spu (Q) = Spn (¥u (Q)) = Spu (iQ&??qQ(Q)) = Spu (é) : (20)

It is here worth pointing out that this invariance is pretty remarkable: the
(semi-classical) Bekenstein-Hawking entropy of an extremal black hole turns out
to be invariant under a generally non-linear map acting on the black hole charges
themselves, and corresponding to a symplectic gradient flow in their corresponding
vector space.

For other applications and instances of Freudenthal duality, see? 1.

2. Groups of Type E;

The concept of Lie groups of type E; as introduced in the 60s by Brown'2, and
then later developed e.g. by 317,

Starting from a pair (G, R) made of a Lie group G and its faithful representation
R, the three axioms defining (G, R) as a group of type E; read as follows:
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(1) Existence of a (unique) symplectic invariant structure €2 in R:
JdQ=1ecR xR, (21)

which then allows to define a symplectic product (-, -) among two vectors in the
representation space R itself:

(Q1,Q2) == QY QY Wun = — (Q2,Q1).- (22)
(2) Existence of (unique) rank-4 completely symmetric invariant tensor (K-tensor)
in R:
JK=1€ (RxRxRxR),, (23)
which then allows to define a degree-4 invariant polynomial I in R itself:
I = KunpeoQY QN QP QY. (24)
(3) Defining a triple map T in R as
T:RxRxR—R; (25)
(T(Q1,Q2,Qs),Qu) : = KnnrQ' QY QY QF, (26)
it holds that

(T(Q1,Q1,Q2) , T (Q2,Q2,Q2)) = (Q1,Q2) KarnroQY QY QYQS.  (27)

This property makes a group of type E; amenable to a description as an auto-
morphism group of a Freudenthal triple system (or, equivalently, as the confor-
mal groups of the underlying Jordan triple system - whose a Jordan algebra is
a particular case - ).

All electric-magnetic duality (U-duality®) groups of NV > 2-extended D = 4
supergravity theories with symmetric scalar manifolds are of type E7. Among these,
degenerate groups of type E7 are those in which the K-tensor is actually reducible,
and thus I is the square of a quadratic invariant polynomial I5. In fact, in general,
in theories with electric-magnetic duality groups of type E7 holds that

Spr =7/ |14 (Q) :77\/|KMNPQQMQNQPQQ|7 (28)

whereas in the case of degenerate groups of type Er it holds that I (Q) = (I3 (Q))?,
and therefore the latter formula simplifies to

Spr =/ |11 (Q) =7 [ (Q)|. (29)

Simple, non-degenerate groups of type E; relevant to N > 2-extended D = 4
supergravity theories with symmetric scalar manifolds are reported e.g. in Table 1
of20. Semi-simple, non-degenerate groups of type E7 of the same kind are given by

aHere U-duality is referred to as the “continuous” symmetries of 8. Their discrete versions are

the U-duality non-perturbative string theory symmetries introduced by Hull and Townsend 9.
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G = SL(2,R) x SO(2,n) and G = SL(2,R) x SO(6,n), with R = (2,2 + n) and
R = (2,6 + n), respectively relevant for A" = 2 and A/ = 4 supergravity. Moreover,
degenerate (simple) groups of type E7 relevant to the same class of theories are G =
U(1,n) and G = U(3,n), with complex fundamental representations R = n+ 1 and
R = 3 + n, respectively relevant for N' = 2 and N = 3 supergravity 1.

The classification of groups of type E7 is still an open problem, even if some
progress have been recently made e.g. in?! (in particular, ¢fr. Table D therein).

In all the aforementioned cases, the scalar manifold is a symmetric cosets %,
where H is the maximal compact subgroup (with symmetric embedding) of G.
Moreover, the K-tensor can generally be expressed as!”

n(2n+1) d

Kynpg = — 6d Mnta|lPQ — mQM(PQQ)N ) (30)

where dim R = 2n and dim G = d, and t§; 5 denotes the symplectic representation
of the generators of G itself. Thus, the horizon Freudenthal duality can be expressed
in terms of the K-tensor as follows?:

5 014 (Q) 2 N oP
$u(Q)y = Qu = =e Kunpo@VQPQ%, (31
" oM 114 (Q)]
where € := I;/|I4]; note that the horizon Freudenthal dual of a given symplec-

tic dyonic charge vector Q is well defined only when Q is such that Iy (Q) # 0.
Consequently, the invariance (20) of the black hole entropy under the the horizon
Freudenthal duality can be recast as the invariance of I itself:

1(Q=1:(Q) =1 (Qavg“g@)') . (32)

In absence of “flat directions” at the attractor points (namely, of unstabilized
scalar fields at the horizon of the black hole), and for I, > 0, the expression of the
matrix My (Q) at the horizon can be computed to read

1 ~ =
Mugun(Q) = L (2QMQN — 6K ynpoQF Q9 + QMQN) , (33)
and it is invariant under horizon Freudenthal duality:
S Mu)yn = MH\MN(@) = Mpuun(Q). (34)

3. Duality Orbits, Rigid Special Kiahler Geometry and
Pre-Homogeneous Vector Spaces

For Iy > 0, My (Q) given by (33) is one of the two possible solutions to the set of

equations??

MT (Q) QM (Q) = %
MT(Q) =M (9Q); (35)

Q"M (Q) Q= -2/ (Q)],
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which describes symmetric, purely Q-dependent structures at the horizon; they are
symplectic or anti-symplectic, depending on whether Iy > 0 or Iy < 0, respectively.
Since in the class of (super)gravity D = 4 theories discussed the sign of I actually
determines a stratification of the representation space R of charges into distinct
orbits of the action of G into R itself (usually named duality orbits), the symplectic
or anti-symplectic nature of the solutions to the system (35) is G-invariant, and
supported by the various duality orbits of G (in particular, by the so-called “large”
orbits, for which I, is non-vanishing).
One of the two possible solutions to the system (35) reads??

1 -
M (Q) = _\/ﬁ ( QmON — 6eKpnpoQf Q9 +€QMQN> ;

S (My)yy = M+|MN(Q) = €M+\MN(Q)-
For e = +1 & Iy > 0, it thus follows that
M (Q) =My (Q), (36)

as anticipated.
On the other hand, the other solution to system (35) reads??

1 PO
- (Q) — m (QMQN — GEKMNPQQPQQ> ; (37)

Sa(M_)yn = M_yn(Q) =eM_yn(Q). (38)

By recalling the definition of I, (24), it is then immediate to realize that M_ (Q)
is the (opposite of the) Hessian matrix of (1/7 times) the black hole entropy Spp:

1
M_ N (Q) = —0mONV | 14| = *;3M5'NSBH- (39)

The matrix M_ (Q) is the (opposite of the) pseudo-Euclidean metric of a non-
compact, non-Riemannian rigid special Kéhler manifold related to the duality orbit
of the black hole electromagnetic charges (to which Q belongs), which is an example
of pre-homogeneous vector space (PVS)23. In turn, the nature of the rigid special
manifold may be Kéhler or pseudo-Kéahler, depending on the existence of a U(1) or
SO(1,1) connection®.

From its definition, a PVS is a finite-dimensional vector space V together with
a subgroup G of GL(V), such that G has an open dense orbit in V. PVS are
subdivided into two types (type 1 and type 2), according to whether there exists an
homogeneous polynomial on V' which is invariant under the semi-simple (reductive)
part of G itself. For more details, see e.g.23:25 727,

Amazingly, simple, non-degenerate groups of type E; (relevant to D = 4 Ein-
stein (super)gravities with symmetric scalar manifolds) almost saturate the list of
irreducible PVS with unique G-invariant polynomial of degree 4 (?°; also cfr. Table

PFor a thorough introduction to special Kihler geometry, see e.g. 4.



The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/25/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

4191

2 of Ref. 20); in particular, the parameter n characterizing each PVS can be inter-
preted as the number of centers of the regular solution in the (super)gravity theory
with electric-magnetic duality (U-duality) group given by G.
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