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Freudenthal duality and black holes:

From groups of type E7 to pre-homogeneous spaces
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Freudenthal duality can be defined as an anti-involutive, non-linear map acting on sym-
plectic spaces. It was introduced in four-dimensional Maxwell-Einstein theories coupled
to a non-linear sigma model of scalar fields.

In this short review, I will consider its relation to the U -duality Lie groups of type
E7 in extended supergravity theories, and comment on the relation between the Hessian
of the black hole entropy and the pseudo-Euclidean, rigid special (pseudo)Kähler metric
of the pre-homogeneous spaces associated to the U -orbits.
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1. Freudenthal Duality

We start and consider the following Lagrangian density in four dimensions (cfr.

e.g.1):

L = −R

2
+

1

2
gij (ϕ) ∂μϕ

i∂μϕj +
1

4
IΛΣ (ϕ)FΛ

μνF
Σ|μν +

1

8
√−GRΛΣ (ϕ) εμνρσFΛ

μνF
Σ
ρσ,

(1)

describing Einstein gravity coupled to Maxwell (Abelian) vector fields and to a non-

linear sigma model of scalar fields (with no potential); note that L may -but does

not necessarily need to - be conceived as the bosonic sector of D = 4 (ungauged)

supergravity theory. Out of the Abelian two-form field strengths FΛ’s, one can

define their duals GΛ, and construct a symplectic vector :

H :=
(
FΛ, GΛ

)T
, ∗GΛ|μν := 2

δL
δFΛ|μν . (2)

We then consider the simplest solution of the equations of motion deriving from

L, namely a static, spherically symmetric, asymptotically flat, dyonic extremal black

hole with metric2

ds2 = −e2U(τ)dt2 + e−2U(τ)

[
dτ2

τ4
+

1

τ2
(
dθ2 + sin θdψ2

)]
, (3)

where τ := −1/r. Thus, the two-form field strengths and their duals can be fluxed

on the two-sphere at infinity S2
∞ in such a background, respectively yielding the

electric and magnetic charges of the black hole itself, which can be arranged in a
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symplectic vector Q :

pΛ : =
1

4π

∫
S2∞

FΛ, qΛ :=
1

4π

∫
S2∞

GΛ, (4)

Q : =
(
pΛ, qΛ

)T
. (5)

Then, by exploiting the symmetries of the background (3), the Lagrangian (1)

can be dimensionally reduced from D = 4 to D = 1, obtaining a 1-dimensional

effective Lagrangian (′ := d/dτ)3:

LD=1 = (U ′)2 + gij (ϕ)ϕ
i′ϕj′ + e2UVBH (ϕ,Q) (6)

along with the Hamiltonian constraint3

(U ′)2 + gij (ϕ)ϕ
i′ϕj′ − e2UVBH (ϕ,Q) = 0. (7)

The so-called “effective black hole potential” VBH appearing in (6) and (7) is defined

as3

VBH (ϕ,Q) := −1

2
QTM (ϕ)Q, (8)

in terms of the symplectic and symmetric matrix1

M : =

(
I −R
0 I

)(
I 0

0 I−1

)(
I 0

−R I

)
=

⎛⎝ I +RI−1R −RI−1

−I−1R I−1

⎞⎠ , (9)

MT = M; MΩM = Ω, (10)

where I denotes the identity, and R (ϕ) and I (ϕ) are the scalar-dependent matrices

occurring in (1); moreover, Ω stands for the symplectic metric (Ω2 = −I). Note

that, regardless of the invertibility of R (ϕ) and as a consequence of the physical

consistence of the kinetic vector matrix I (ϕ), M is negative-definite; thus, the

effective black hole potential (8) is positive-definite.

By virtue of the matrix M, one can introduce a (scalar-dependent) anti-

involution S in any Maxwell-Einstein-scalar theory described by (1) with a sym-

plectic structure Ω, as follows:

S (ϕ) : = ΩM (ϕ) ; (11)

S2 (ϕ) = ΩM (ϕ)ΩM (ϕ) = Ω2 = −I; (12)

in turn, this allows to define an anti-involution on the dyonic charge vector Q, which

has been called (scalar-dependent) Freudenthal duality 4–6:

F (Q;ϕ) : = −S (ϕ)Q; (13)

F2 = −I, (∀ {ϕ}). (14)

By recalling (8) and (11), the action of F on Q, defining the so-called (ϕ-dependent)

Freudenthal dual ofQ itself, can be related to the symplectic gradient of the effective
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black hole potential VBH :

F (Q;ϕ) = Ω
∂VBH (ϕ,Q)

∂Q . (15)

Through the attractor mechanism7, all this enjoys an interesting physical inter-

pretation when evaluated at the (unique) event horizon of the extremal black hole

(3) (denoted below by the subscript “H”); indeed

∂ϕVBH = 0⇔ lim
τ→−∞ϕi (τ) = ϕi

H (Q) ; (16)

SBH (Q) =
AH

4
= π VBH |∂ϕVBH=0 = −π

2
QTMH (Q)Q, (17)

where SBH and AH respectively denote the Bekenstein-Hawking entropy8 and the

area of the horizon of the extremal black hole, and the matrix horizon value MH

is defined as

MH (Q) := lim
τ→−∞M (ϕ (τ)) . (18)

Correspondingly, one can define the (scalar-independent) horizon Freudenthal du-

ality FH as the horizon limit of (13):

Q̃ ≡ FH (Q) := lim
τ→−∞F (Q;ϕ (τ)) = −ΩMH (Q)Q =

1

π
Ω
∂SBH (Q)

∂Q . (19)

Remarkably, the (horizon) Freudenthal dual of Q is nothing but (1/π times) the

symplectic gradient of the Bekenstein-Hawking black hole entropy SBH ; this latter,

from dimensional considerations, is only constrained to be an homogeneous function

of degree two in Q. As a result, Q̃ = Q̃ (Q) is generally a complicated (non-linear)

function, homogeneous of degree one in Q.

It can be proved that the entropy SBH itself is invariant along the flow in the

charge space Q defined by the symplectic gradient (or, equivalently, by the horizon

Freudenthal dual) of Q itself :

SBH (Q) = SBH (FH (Q)) = SBH

(
1

π
Ω
∂SBH (Q)

∂Q
)

= SBH

(
Q̃
)
. (20)

It is here worth pointing out that this invariance is pretty remarkable: the

(semi-classical) Bekenstein-Hawking entropy of an extremal black hole turns out

to be invariant under a generally non-linear map acting on the black hole charges

themselves, and corresponding to a symplectic gradient flow in their corresponding

vector space.

For other applications and instances of Freudenthal duality, see9–11.

2. Groups of Type E7

The concept of Lie groups of type E7 as introduced in the 60s by Brown12, and

then later developed e.g. by13–17.

Starting from a pair (G,R) made of a Lie group G and its faithful representation

R, the three axioms defining (G,R) as a group of type E7 read as follows:
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(1) Existence of a (unique) symplectic invariant structure Ω in R:

∃!Ω ≡ 1 ∈ R×a R, (21)

which then allows to define a symplectic product 〈·, ·〉 among two vectors in the

representation space R itself:

〈Q1, Q2〉 := QM
1 QN

2 ΩMN = −〈Q2, Q1〉 . (22)

(2) Existence of (unique) rank-4 completely symmetric invariant tensor (K-tensor)

in R:

∃!K ≡ 1 ∈ (R×R×R×R)s , (23)

which then allows to define a degree-4 invariant polynomial I4 in R itself:

I4 := KMNPQQ
MQNQPQQ. (24)

(3) Defining a triple map T in R as

T : R×R×R→ R; (25)

〈T (Q1, Q2, Q3) , Q4〉 : = KMNPQQ
M
1 QN

2 QP
3 Q

Q
4 , (26)

it holds that

〈T (Q1, Q1, Q2) , T (Q2, Q2, Q2)〉 = 〈Q1, Q2〉KMNPQQ
M
1 QN

2 QP
2 Q

Q
2 . (27)

This property makes a group of type E7 amenable to a description as an auto-

morphism group of a Freudenthal triple system (or, equivalently, as the confor-

mal groups of the underlying Jordan triple system - whose a Jordan algebra is

a particular case - ).

All electric-magnetic duality (U -dualitya) groups of N 	 2-extended D = 4

supergravity theories with symmetric scalar manifolds are of type E7. Among these,

degenerate groups of type E7 are those in which the K-tensor is actually reducible,

and thus I4 is the square of a quadratic invariant polynomial I2. In fact, in general,

in theories with electric-magnetic duality groups of type E7 holds that

SBH = π
√
|I4 (Q)| = π

√
|KMNPQQMQNQPQQ|, (28)

whereas in the case of degenerate groups of type E7 it holds that I4 (Q) = (I2 (Q))
2
,

and therefore the latter formula simplifies to

SBH = π
√
|I4 (Q)| = π |I2 (Q)| . (29)

Simple, non-degenerate groups of type E7 relevant to N 	 2-extended D = 4

supergravity theories with symmetric scalar manifolds are reported e.g. in Table 1

of20. Semi-simple, non-degenerate groups of type E7 of the same kind are given by

aHere U -duality is referred to as the “continuous” symmetries of18. Their discrete versions are
the U -duality non-perturbative string theory symmetries introduced by Hull and Townsend19.
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G = SL(2,R) × SO(2, n) and G = SL(2,R) × SO(6, n), with R = (2,2+ n) and

R = (2,6+ n), respectively relevant for N = 2 and N = 4 supergravity. Moreover,

degenerate (simple) groups of type E7 relevant to the same class of theories are G =

U(1, n) and G = U(3, n), with complex fundamental representationsR = n+ 1 and

R = 3+ n, respectively relevant for N = 2 and N = 3 supergravity16.

The classification of groups of type E7 is still an open problem, even if some

progress have been recently made e.g. in21 (in particular, cfr. Table D therein).

In all the aforementioned cases, the scalar manifold is a symmetric cosets G
H ,

where H is the maximal compact subgroup (with symmetric embedding) of G.

Moreover, the K-tensor can generally be expressed as17

KMNPQ = −n(2n+ 1)

6d

[
tαMN tα|PQ − d

n (2n+ 1)
ΩM(PΩQ)N

]
, (30)

where dimR = 2n and dimG = d, and tαMN denotes the symplectic representation

of the generators of G itself. Thus, the horizon Freudenthal duality can be expressed

in terms of the K-tensor as follows4:

FH (Q)M ≡ Q̃M =
∂
√|I4 (Q)|
∂QM

= ε
2√|I4 (Q)|KMNPQQNQPQQ, (31)

where ε := I4/ |I4|; note that the horizon Freudenthal dual of a given symplec-

tic dyonic charge vector Q is well defined only when Q is such that I4 (Q) �= 0.

Consequently, the invariance (20) of the black hole entropy under the the horizon

Freudenthal duality can be recast as the invariance of I4 itself:

I4 (Q) = I4

(
Q̃
)
= I4

(
Ω
∂
√|I4 (Q)|

∂Q

)
. (32)

In absence of “flat directions” at the attractor points (namely, of unstabilized

scalar fields at the horizon of the black hole), and for I4 > 0, the expression of the

matrix MH (Q) at the horizon can be computed to read

MH|MN (Q) = − 1√
I4

(
2Q̃MQ̃N − 6KMNPQQPQQ +QMQN

)
, (33)

and it is invariant under horizon Freudenthal duality:

FH (MH)MN :=MH|MN (Q̃) =MH|MN (Q). (34)

3. Duality Orbits, Rigid Special Kähler Geometry and

Pre-Homogeneous Vector Spaces

For I4 > 0, MH (Q) given by (33) is one of the two possible solutions to the set of

equations22 ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

MT (Q)ΩM (Q) = εΩ;

MT (Q) = M (Q) ;

QTM (Q)Q = −2√|I4 (Q)|,

(35)
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which describes symmetric, purely Q-dependent structures at the horizon; they are

symplectic or anti-symplectic, depending on whether I4 > 0 or I4 < 0, respectively.

Since in the class of (super)gravity D = 4 theories discussed the sign of I4 actually

determines a stratification of the representation space R of charges into distinct

orbits of the action of G into R itself (usually named duality orbits), the symplectic

or anti-symplectic nature of the solutions to the system (35) is G-invariant, and

supported by the various duality orbits of G (in particular, by the so-called “large”

orbits, for which I4 is non-vanishing).

One of the two possible solutions to the system (35) reads22

M+(Q) = − 1√|I4|
(
2Q̃MQ̃N − 6εKMNPQQPQQ + εQMQN

)
;

FH (M+)MN : = M+|MN (Q̃) = εM+|MN(Q).

For ε = +1⇔ I4 > 0, it thus follows that

M+(Q) =MH (Q) , (36)

as anticipated.

On the other hand, the other solution to system (35) reads22

M− (Q) =
1√|I4|

(
Q̃MQ̃N − 6εKMNPQQPQQ

)
; (37)

FH (M−)MN : = M−|MN (Q̃) = εM−|MN(Q). (38)

By recalling the definition of I4 (24), it is then immediate to realize that M− (Q)

is the (opposite of the) Hessian matrix of (1/π times) the black hole entropy SBH :

M−|MN (Q) = −∂M∂N
√
|I4| = − 1

π
∂M∂NSBH . (39)

The matrix M− (Q) is the (opposite of the) pseudo-Euclidean metric of a non-

compact, non-Riemannian rigid special Kähler manifold related to the duality orbit

of the black hole electromagnetic charges (to which Q belongs), which is an example

of pre-homogeneous vector space (PVS)23. In turn, the nature of the rigid special

manifold may be Kähler or pseudo-Kähler, depending on the existence of a U(1) or

SO(1, 1) connectionb.

From its definition, a PVS is a finite-dimensional vector space V together with

a subgroup G of GL(V ), such that G has an open dense orbit in V . PVS are

subdivided into two types (type 1 and type 2), according to whether there exists an

homogeneous polynomial on V which is invariant under the semi-simple (reductive)

part of G itself. For more details, see e.g.23,25–27.

Amazingly, simple, non-degenerate groups of type E7 (relevant to D = 4 Ein-

stein (super)gravities with symmetric scalar manifolds) almost saturate the list of

irreducible PVS with unique G-invariant polynomial of degree 4 (25; also cfr. Table

bFor a thorough introduction to special Kähler geometry, see e.g.24.
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2 of Ref. 20); in particular, the parameter n characterizing each PVS can be inter-

preted as the number of centers of the regular solution in the (super)gravity theory

with electric-magnetic duality (U -duality) group given by G.
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