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Abstract
In this thesis, the structure of non-perturbative U-duality symmetry in string- and M-theory is inves-

tigated. Non-perturbative duality symmetries have dramatically changed string theory and led to the con-
jecture that all string theories are different limits of an eleven-dimensional theory called M-theory, whose
exact shape is yet unclear. An investigation of its symmetries could give hints to a possible construction.
U-duality is one of these symmetries, and a precise definition of U-duality and its effects in� � � is the
main subject of this thesis. This is investigated in a toy model closely resembling low energy M-theory, and
then in M-theory itsself. In the latter, the known classical������ duality symmetry is made manageable
by embedding its algebra within������, and the definition of U-duality leads to study discrete subgroups
of Lie groups acting on admissible lattices in basic representations. This yields generators for���������

and higher dimensional U-dualities. Known subgroups of the symmetry are investigated, and different U-
duality definitions are compared with the one found. U-duality in� � � is constructed by using different
orders of compactification. Applications of U-duality in the context of stringy black holes and solitons are
given. Elementary solitons in� � � are shown to be vortex solutions. Solutions admitting simultaneously
null- and space-like Killing vectors are considered from a supersymmetric perspective. Finally,Maple

codes to generate highest weight matrix representations of Lie groups used in this thesis are presented and
discussed.

Zusammenfassung
In dieser Arbeit wird die Struktur nicht-perturbativer U-dualitätsgruppen in der String- und M-theory

untersucht. Nichtstörungstheoretische Dualitätssymmetrien haben die Stringtheorie dramatisch verändert
und zu dem Vorschlag geführt, daß alle Stringtheorien als unterschiedliche Grenzwerte einer elfdimen-
sionalen, sogenannten M-theorie verstanden werden können, deren Struktur bisher noch unklar ist. Eine
Untersuchung ihrer Symmetrien erlaubt Rückschl̈usse darauf, wie diese Theorie zu konstruieren ist. U-
dualiẗat ist eine dieser Symmetrien, und eine präzise Definition der U-dualitätsgruppe und ihrer Effekte
in � � � ist Hauptthema dieser Arbeit. Diese wird erst in einem Spielzeugmodell untersucht, das der M-
theorie strukturell stark̈ahnelt, und dann in der M-theorie selbst. In letzterem Fall wird die Behandlung der
klassischen������ Symmetrie in� � � durch Einbettung ihrer Algebra in������ stark vereinfacht, und die
Definition von U-dualiẗat führt zur Untersuchung diskreter Lie Gruppen auf sogenannten zulässigen Gittern
in sogenannten einfachen Darstellungen. Dies ergibt Generatoren von��������� und den ḧoher dimen-
sionalen U-dualiẗatsgruppen. Bekannte Untergruppen werden untersucht, und die hier benutzte Definition
der U-dualiẗatsgruppe wird mit anderen Definitionen in der Literatur verglichen, undÜbereinstimmung
festgestellt. Die U-dualitätsgruppe in� � � wird durch verschiedene Kompaktifizierungsreihenfolgen
konstruiert. Anwendungen von U-dualität im Zusammenhang mit Schwarzlochsolitonen in der Stringtheo-
rie werden gegeben. Es wird gezeigt, daß elementaren Objekten in� � � Vortexlösungen entsprechen.
Lösungen mit gleichzeitigem Null- und raumartigen Killingvektor werden von einer supersymmetrischen
Perpektive beleuchtet. Abschließend werdenMaple Programme vorgestellt, die in dieser Arbeit benutzt
wurden, zur Erzeugung von Matrix-Höchstgewichtsdarstellungen von Liegruppen.
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1

Chapter 1

Introduction

Die Symmetrie � � � bildet auch den eigentlichen Kern jener Grundgleichung. [52]

What is ���������? [1]

One of the most influential and, at the same time, most challenging topics in modern physics
is unification. After it was realized in the sixtieth and seventies of the last century that the elec-
tromagnetic force and the weak nuclear force may be understood in an electroweak theory with
spontaneous symmetry breaking, a main focus of research was to find out if this is also true when
incorporating the strong nuclear force, thus unifying these three forces in one interaction broken
spontaneously. This led to several ”grand unified theories” (GUTs) that, on the other hand, all
predict a proton decay not seen in nature. This problem could partially be removed by introducing
supersymmetry, a symmetry between bosonic and fermionic particles, and experiments hint that
the coupling constants indeed approach each other and might unify at an energy scale known as
”GUT” scale that is, however, far from being observable in experiment.

The force in nature most directly experienced in daily life, gravity, has proven to be much
more stubborn and to withstand most approaches to incorporate it into a unified quantum theory.
The main problem with ”conservative” approaches to quantum gravity or supergravity is that
those theories are not renormalizable.

At current stage, string theories are promising candidates for quantum theories that incorpo-
rate gravity. The perturbative description of string theory admits consistently a spin two particle
propagating on a gravitational background and coupling to other matter fields. However, the main
problem with perturbative string theories is the variety of possible constructions. Perturbative su-
perstring theories have been formulated in ten dimensions and need to be compactified to� � �
to make contact with phenomenology. However, there is a wide and seemingly unconstrained va-
riety how to do this, while none of the approaches has been able to reproduce the Standard Model
of elementary particle physics exactly, though similar structures have been found.

However, string theories have considerably changed in recent years, and this is due to the
study of non-perturbative duality symmetries in these theories. The five perturbative string the-
ories are now understood to be related by a web of duality symmetries connecting them. Fur-
thermore, new objects called D-branes have been introduced in the theory, and this has led to
successfully address the question of microscopic black hole entropy in string theory. The theory
has considerably been en-richened by the inclusion of non-perturbative effects.

Recent development has thus addressed the unification of string theories themselves. It has
been argued that a theory exists containing all perturbative string theories in different regions of
moduli space. This theory is called M-theory, but still, the M seems to reflect mystery. Though
several attempts have been made to understand the structure of this eleven dimensional theory,
none has been completely successful yet.



2 1. Introduction

It seems the more important to have a clear picture of the symmetries M-theory admits in
order to probe its structure. This has been a main motivation for the work presented in this thesis.
M-theory, when compactified on the torus, is known to have a large self-duality group known as
U-duality, corresponding to discrete subgroups of Lie groups of the exceptional series. A precise
definition of its generators lacked in the literature, and this is the main focus of this thesis. The
construction of U-duality will be investigated, and a set of generators will be given and proven to
be correct. Applications of U-duality that are connected to black holes in string theory are also
given.

In order to address these questions, the necessary background shall be briefly reviewed in this
chapter. For more detailed descriptions, the reader is referred to the references and the textbook
[81].

1.1 DSZ quantization condition

In this section an issue is discussed that will be used when defining U-duality in later chapters. It is
related to a phenomenon in physics that, due to its absence in experiment, still seems mysterious:
magnetic charge.

The striking fact that the Maxwell equations of electromagnetism admit a rotational symmetry
between electric and magnetic sector, but this symmetry is broken by the absence of magnetic
charge, inspired Dirac to introduce his famous monopole solution [30].

Consider a sphere around a monopole. Since the integrated flux on this sphere is nonzero
if the magnetic charge is nonzero, a vector potential cannot be introduced globally. However,
by introducing a vector potential that is defined everywhere but on a ”Dirac-string”, a nonzero
magnetic charge� arises when calculating the total flux on a sphere surrounding the monopole,
e.g. by introducing two copies of the gauge field for the northern and southern hemisphere of the
sphere (Wu-Yang type argument, see e.g. [76]) that are related by a gauge transformation.

This may be given as follows: In� 	 , choose coordinates�	� � �
� �� �� and let
 ��

� 
 �� 
 �� as usual, and consider the Dirac-string to be along the negative z-axis. The

corresponding ”northern” hemisphere gauge potential� is given by

��
� �

�

�

��

�
 
 ��

� ��
� �

�

�





�
 
 ��
� ��

� � �

which yields

��� ��� � �� �
�

�

�



	

except along the negative z-axis. The normalization is chosen for later convenience, as will be-
come clear in a moment. On this ”southern” hemisphere, introduce

��
� �

�

�

�


�
 � ��
� ��

� �
�

�

�


�
 � ��

� ��
� � �

which gives

��� ��� � �� �
�

�

�



	

except along the positive z-axis. In spherical coordinates, one has

��
� �

�

�

��� �
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the other components zero. Both gauge fields are related by a gauge transformation

��
� � ��

� �
�


 ��� �
Æ�� � ��������

so the gauge parameter is� � ��. The total flux is then, by cutting the sphere in northern and
southern hemisphere�� � �� , respectively,

� �

�
�
���� ��� � ��� �

�
��

���� ��� � � ��� 


�
��

���� ���� � ���

�

�
�	
��
�

� ��� � ���� � ��� � ����

Consider a point particle with electric charge�, moving in this field. In a quantized context, the
wave function of the particle acquires a phase, induced by the minimal coupling of the electro-
magnetic field, of the form

�����	���

(in ”natural” units� � � � �) upon a gauge transformation. However, completing a circle around
the equator, the wavefunction should be unique. This implies

�� � �� � 	 ��

the famous Dirac quantization condition [30]. Assuming the existence of a single monopole in
the universe would therefore imply the quantization of electric charge seen in nature.

The same quantization condition may be obtained in a more heuristic way by considering
the quantization of angular momentum. When incorporating an electromagnetic field, the purely
mechanical angular momentum is not a conserved quantity, but needs to be augmented by the
momentum of the electromagnetic field to be conserved. Taking the magnetic field as above, the
quantization of this conserved angular momentum yields the same quantization condition.

These arguments have been studied for a situation with two particles with electric charge��
and�� and magnetic charge�� and�� in [84, 85, 99, 98] in a relativistic context. The quantization
condition then has to be modified, and is given by

���� � ���� � �� � 	 �

called (referring to the above authors) the DSZ-quantization condition.
Introducing the symplectic form� with

� �

�
� ��
� �

�

the quantization condition may be written in a more compact form by introducing charge vectors
� � ��� ���. It may then be written as

����� � �� � 	 ��

For theories admitting a number� of ���� gauge fields, one may define� -dimensional charge
vectors� � ��� ��� analogously. The DSZ quantization condition may then be written as above
by using the�� � �� symplectic form.

The above condition shall be applied in the following in supergravity theories that are low
energy actions of string theories. In supergravity theories, magnetic monopoles reflecting the
above structure, that is, with magnetic U(1) field admitting a Dirac string, have been found [50].



4 1. Introduction

Like for the Reissner Nordström black hole, the Maxwell equations are those for the source-free
case on curved space, since the singularity inducing nonzero flux is a singularity of space-time.
If one assigns charges, e.g. in the asymptotically flat limit, to the gauge fields, these charges are
restricted by the same semiclassical quantization condition. This has been a main tool to restrict
global symmetries one encounters in supergravity to discrete subgroups that are symmetries of a
quantized theory.

The Dirac quantization condition may be extended by the same Wu-Yang type argument to
p-forms potentials in higher dimensions where the configuration is asymptotically flat (see e.g.
[8] and references).

1.2 Electric-Magnetic Duality

Another important ingredient of this thesis is the notion of electric-magnetic duality.
For nonzero sources, the Maxwell equations are

���
�� � �� � ��  ��� � �

�!
��������� � "� �

where��� � ��
���� is the field strength,! is the Levi-Civita symbol with!���	 � �� and�� ,
"� are the electric and magnetic currents. The Maxwell equations admit a symmetry

��� �  ��� �  ��� � ���� �

�� � "�� "� � ���� (1.1)

where the minus sign takes account of the fact that� �� � �� in Minkowski spacetime. This
implies on the charge vector� � ��� ���

�
�
�

�
� � � �� �

� ��
�

�
�

This is also a symmetry of the above DSZ quantization condition. This symmetry is called
electric-magnetic duality.

The above quantization condition actually admits a larger symmetry that could be any group
leaving the symplectic form invariant under conjugation. This is����� � � � ����� � � in this
case, and the fact that the charge are quantized to integers breaks the group to a discrete�������
group.

Actually, for electromagnetic theory as����� gauge theory spantanously broken to���� (see
[51] for a review), this is a duality group that has been proposed. With Higgs field# transforming
in the adjoint of�����, and including instanton effects by adding a ”� term” to the Lagrangian,
the Lagrangian gets in the Higgs vacuum


 �
�

�
������ 


���

����
���  ��� �

The������� symmetry is then spanned by two generators: a transformation corresponding to
electric-magnetic duality for� � �, and shifts of the� vacuum. Defining

$ �
�

��



�

�

where�� � are the elementary quantums of magnetic and electric charge, (in this theory the ele-
mentary quantum of magnetic charge is twice the one introduced above [51]), these two transfor-
mations correspond to

$ � �$��
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and

$ � $ 
 ��

These transformation also induce a transformation on the charges. The electric charge is now
related to the gauge field

 % � �
Æ

Æ�

due to the presence of the� term. One may define charges

& �

�


 �� � �

�


��

and

� �

�


%

where Q is a ”� shifted” charge obeying

& � � 

��

��
��

If the above fractional linear transformation may be represented by a matrix

' �

�
( )
� �

�
� $ � ($ 
 )

�$ 
 �

then it may be compensated by relabelling the states by acting with the inverse group element on
the vector��� ���.

However, this conjecture of electric magnetic duality for the quantum theory [74] meets sev-
eral obstacles: it maps a weakly coupled theory to a strongly coupled one and is therefore hard to
test. Nonetheless, it seems very attractive to have a description of a theory with strong coupling
by a weakly coupled one. However, it is known that no exact matching of states is possible, since
the monopole is spherical symmetric corresponding to spin zero, and the gauge boson carries spin
one. Furthermore, quantum corrections will affect the mass spectra.

This situation is improved in supersymmetric theories. In [86], a duality map was used to
explicitly determine the vacuum structure in� � � supersymmetric Yang-Mills theory. With
� � � supersymmetry, monopoles and gauge bosons correspond to the same multiplets, and
masses are protected by non-renormalization theorems. This theory is therefore supposed to
admit the above symmetry as self-duality, similar to the toroidally compactified string theories
and their low energy supergravity counterparts, that have� � � supersymmetry. They shall be
considered now.

The vacuum Maxwell equations admit a larger symmetry than electric-magnetic duality: they
allow rotations of the electric and magnetic fields into each other, and since there are no charges,
this symmetry is unrestricted. However, in the supergravity case, large symmetry groups exists
known as classical duality symmetries (see table 1.1 below) that rotate equations of motion and
Bianchi identities into each other. In this case, the fields carry charges due to the nontrivial grav-
itational background, and the symmetries, as mentioned above, get broken to discrete subgroups.
All these groups are have been shown to be subgroups of�������� [41], and this is in accor-
dance with the above DSZ condition.
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1.3 Bogomolnyi Bound

A main tool in studying duality symmetries in string theory and supersymmetric field theory has
been the Bogomolnyi bound. It gives a bound on the mass of supersymmetric states. States
saturating this bound live in ”shortened” multiplets that can be used to test duality conjectures.

Since in this thesis the focus is on four dimensions, the four-dimensional supersymmetry
algebra [46, 55] shall be considered in the following.

Consider the N-extended supersymmetry algebra in� � �. It is given by

�&� � � &�� �� � �*�*� ���+�Æ�� 
 	� ��*� �� 
 , ���*�*����

where the following notations are used: Use the gamma matrices in the Weyl representation

*� �

�
� ��

�� �

�
� *� �

�
� -�

�-� �

�
� *� �

� ��� �
� ��

�
�

where the-� are the Pauli matrices. The indices�.� /� are spinor indices, while the indices0� 1
are����� indices. The supersymmetry charges&� are Majorana spinors in� � �, obeying

&� � 	*��&����

and the� �� and, �� are antisymmetric central charge matrices commuting with the rest of the
algebra, that shall be specified further below.

Consider now the expectation value of a physical state

��&� � � &�� ��
 � 2 ����������

The operator on the left hand side is manifestly positive definite. This can be used to derive a
bound on the mass of physical states in supersymmetry, known as Bogomolnyi bound.

For this, consider the matrix2 . It must be a a positive definite�� � �� matrix. Going to the
rest frame where+� � �3� ��, it is

2 ��������� � �3Æ��Æ�� 
 	�*����� �� 
 �*�*����, ��

Look at the eigenvalue problem of�2 ���������
. This amounts to finding 32 component eigen-
spinors! satisfying

��3 � 4���� � ! � �	�*����� �� 
 �*�*����, ��� !

To solve this, consider the square of the above equation. On the right hand side, in the Weyl
representation of the gamma matrices, one has the�� � �� matrix�

���
���� � � �

� ���� � �
� � ���� �
� � � ����

�
		


where

��� � �� �� � 	, �� 
�
The matrix� is complex antisymmetric and may therefore always be brought in skew diagonal
form. The hermitian matrix��� thus can be diagonalized with real eigenvalues����

�� � �
� � � � ��5�� where��5�� is the integer part of�5�. This implies that the matrix2 has eigenvalues

4� � 3 � �����
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However, since2 is a positive definite matrix, the eigenvalues are bounded by

3 � max�����

This is the Bogomolnyi bound on the mass of a state in supersymmetric theories.
In the case of� � � supersymmetry that will be of interest here,� can have four different

eigenvalues. Suppose all are equal, and furthermore that the mass equals this eigenvalue.
Then2 has 16 zero eigenvalues, and thus a 16 component supersymmetry exists annihilating

the state. Translated into Majorana spinors, this means however the state preserves� � � or half
of the total supersymmetry.

Correspondingly, if two eigenvalues are equal and the mass equal to them, the state preserves
a quarter of the supersymmetry, and finally, if the mass is equals one eigenvalue, the state preserve
one eighth of the supersymmetry.

The supersymmetries acting non-trivially span a multiplet of states, but this multiplet is
smaller than the generic multiplet or is ”shortened”, since some super-charges annihilate the
state. This shortening makes these states very attractive for tests of duality conjectures. For
theories with� � �, mass and charges are not renormalized. The shortening of multiplets then
cannot be disturbed e.g. by changing the coupling constant, and one therefore may follow such a
shortened multiplet from weak to strong coupling.

In perturbative string theory, a BPS state corresponds to a state whose mass equals its (electric)
charge. For supergravity theories (e.g. corresponding to low energy expansions of string theories),
the above global supersymmetry algebra is the asymptotic limit of a local supersymmetry algebra
generated by spinors!� , and BPS solutions correspond to solitons of the theory. Usually, one is
interested in purely bosonic solutions. In such a case,3 may be chosen to correspond to the
ADM mass of an asymptotically flat solution, and the charges are the asymptotic charges of the
���� fields of the theory, dressed by the asymptotic (constant) values of the scalars.

In the case of� � � supersymmetry, one may write the central charge matrix as [56]

��� � 6������� 
 	����

where the6��
� are generators of the vector representation of�����, and the where���� 
 	���� are

the dressed charges.
In setting all fermions to zero, the supersymmetry transformations of the bosonic fields of

the theory vanish trivially. The Bogomolnyi bound may then be seen to be saturated if an exact
local spinor!� exists such that the supersymmetry transformations of the fermions vanish in the
whole space [55, 45]. This leads to equations that are called Killing spinor equations, since the
supersymmetry transformation of the gravitino equals the supercovariant derivative of the spinor,
where the spin connection of this derivative contains the usual gravitational spin connection, plus
a term containing fermions and gauge fields. Such equations and the corresponding solutions that
are solitons of string theory will be the subject of chapter 4.

1.4 Perturbative String Theories and Low Energy Approximation

With this background at hand, one is now set to discuss string theories and their dualities.
String theories are maps of a two-dimensional world-sheet with metric��� and coordinates

-� $ into a target space with coordinate'� and metric��� . It shall be briefly described how
string theories are related to space-time fields.

The� � � gravity of the world sheet may be decoupled by restricting the string to propagate
in a specific dimension, which is� � �	 if only bosonic fields live on the world sheet, and
� � �� for the superstring with fermionic world sheet partners. Two different cases may be
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distinguished: the closed string where the spacetime embedding coordinates are periodic with
respect to the world sheet coordinate-,

'� �- 
 ��� � '� �-�

and the case when the string is open and ends in spacetime with specific boundary conditions.
The closed superstring shall be taken as illustration here. The simplest action may be given

by

� � � �

��

�
�-�$7��

�
��'

���'
� 
 �	���8����

�
�
7��

where7�� is the� � � Minkowski metric,7�� the Minkowski metric in target space.�� is a
real� � � Majorana spinor, and8� are the� � � gamma matrices.

Denoting spinor indices by��� and light cone coordinates by-� � $ � -, one may expand
the fields���'

� into modes by

��'� �


���

.� �
�� ���������

��
� �



�������

/� �
�� ����������

� takes account of the following: For the fermions, one may choose periodic (R=Ramond) or an-
tiperiodic (NS=Neveu-Schwarz) boundary conditions, implying� � � or� � �5�. The canonical
quantization then uses commutation relations

�.� �
� � .� �

� � � �Æ�����7
��

�/� �
� � /� �

� � � Æ�����7
��

to define states

.������ � � � /������
���� (
.� ����� � � � /� �����

���� )
�

where the��� �� are momentum zero modes. These states carry representations of the spacetime
Lorentz group and are identified with fields in spacetime. The parameters(� ) indicate chirality
of a fermionic ground state.

The tensoring of the right and left moving states leads to different sectors. Bosons correspond
to either R-R or NS-NS states. One gets two theories in� � �� with common NS-NS sector
containing a spin 2 field identified with the graviton, an antisymmetric two-form potential and
a dilaton. The theories have different RR sector: A one-form and a three-form potential or an-
other scalar, two-form and a four-form potential, corresponding to type IIA and type IIB� � �
supergravity in� � ��.

The bosonic string propagates in� � �	, but has a tachyon in the spectrum. However, it may
be used (by compactification, see below) to construct a chiral theory in� � �� by combining
a right-moving bosonic and left-moving superstring to obtain a theory with field content corre-
sponding to the above NS-NS sector, and additional gauge fields transforming in the adjoint of
�� � �� or ������. This corresponds to� � � supergravity in� � ��.

Finally, one can also consider open strings, that lead to the spectrum of type I supergravity
theory in� � �� corresponding to a graviton, antisymmetric two-form, dilaton, and a gauge field
transforming in the adjoint of������.

If the curvature of the space is small, the theory and dynamic can be analyzed perturbatively.
If the characteristic length scale is long compared to the string, it is possible to ignore the internal
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structure of the string and use a low energy effective theory that corresponds to a usual point
particle quantum field theory with specific cutoff. This theory is determined as follows. The
massless spectrum of the string gives the field content. Weyl invariance of the world-sheet implies
the equations of motion for these fields, and they are in lowest order identical to those of the above
supergravity theories. One may then also check that the corresponding partition functions agree.

For many applications and discussions the low-energy approximation is used in the literature,
especially, since the ”traditional” string theories are defined only perturbatively. The low energy
theory however admits solitons carrying charges that are not carried by the perturbative string.
This issue will become important when discussing dualities. Especially solitons that correspond
to exact solutions of string theory, that is, where the higher order corrections to the equations of
low energy supergravity are known to vanish, are of interest, and such solutions will be discussed
in chapter 4.

1.5 String Theory Dualities

1.5.1 T-duality

T-duality, or target space duality, is a perturbative symmetry of string theory connecting strings
propagating on different target spaces (see [49] for a review).

Consider the purely closed bosonic closed string in the following notation

� �
�

��.�

�
�-�7����'

���'
�7��

where-� $ are coordinates on the two-dimensional world-sheet, and'� are coordinates of the
embedding target space. As mentioned, an obstacle to string theories is that they are confined to
26 for the bosonic and 10 dimensions for the superstring by the condition that the spectrum is free
of ghosts. One is therefore interested in compactifications of string theory, that is, when the target
space splits into a lower dimensional space and a decoupled ”internal” space that is supposed to
be invisible for the physical fields.

The most simple example is given in the above framework by assuming that one coordinate is
compact. Say'�� is this coordinate. The periodicity condition on this coordinate is

'���- 
 ���� '���-� 
 ��9:�: 	 ��

which reflect the fact that the string can wind: times along the compact direction. The mode
expansion of this coordinate is then given by

'�� � '��� 
'���

'��� �$ � -� � �
�

�� 
 ��

� ���$ � -� 
 	

�
��
�



����

�
�.

� ��
� ���������

'��� �$ 
 -� � �
�

�� 
 ��

� ���$ 
 -� 
 	

�
��
�



����

�
�.
� ��
� ���������

where the momentum along the compact direction is quantized, since the direction is compact, by

��� �
�

9
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and the left- and right-moving momentum zero-modes in the above expansion are defined by

���� �

�
�

.�

��
.�

9
�� 9�

.�
:

�

���� �

�
�

.�

��
.�

9
�


9�
.�

:

�
�

The mass of the state is then given by evaluating the Hamiltonian constraint of the string: The
canonical momentum is given by

+� �
�

��.�
��'

�

(its zero mode equals the momentum zero modes of the coordinates) and the Hamiltonian is given
by

% �

�
�-����'�� 
 ���'���

and annihilates a physical state. Inserting the mode expansions of the coordinates leads to, with

:� � �



���   ��

����

where the�� are the momentum zero modes of'� , to

3� �
�

.�
��� 
�� � �� 


�

.�

�
��

.�

9�

:�

9�

.�

�

where��� �� are the oscillator quantum numbers, obeying the constraint

�� ��� � :9

resulting the condition that rigid- translations on the world-sheet should not change the physics
for the closed string [81].

The mass is invariant under the map

9�
.�

�
�
.�

9
� �� :�

which indicates that the string ”looks” the same whether it is considered at small or at large radius
of the internal circle. This symmetry is called target space or T-duality, and it is known that it is a
symmetry of the string partition function to all orders.

The radius is often called modulus and is associated with the vacuum expectation value of a
scalar field new in the string spectrum; it is generated by the internal creation operators along the
compact direction.

So far, only the transformation of the momentum zero modes has been addressed. The other
modes, however, transform as well. More generally, it can be seen that the OPEs of the world sheet
conformal field theory do not change if the T-duality transformation is summarized, including the
remaining modes, by

'� � �'�� '� � '��

for the compact coordinate. This is important in the context of the superstring, where world-sheet
fermions and their oscillators are included. The above transformation amounts to a space-time
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chirality in target space, interchanging type IIA and type IIB theory. Both theories are thus related
by T-duality (see [2] for a recent discussion).

To compactify to lower dimensions, the easiest example is compactification on the torus.
Consider again the closed bosonic string. The ”internal” part of the action is given by

� �
�

��

�
�-�

�
������'

���'
!��! 
 !����'

���'
!��! � �

�

�
��9���

where the constant matrices��! , ��! describe the geometry of the torus and are interpreted as
vacuum expectation values of the corresponding string fields. Defining a vielbein��! � � �

� � �
! ,

one has an orthonormal basis in target space.
The coordinates get identified as

'��- 
 ��� � '��-� 
 ��:�

where the:� are winding modes parallel to above, and the canonical momentum of the coordinate
'� is now

��+� � ��!��'
! 
��!��'

!

and the zero mode gets again quantized due to the compactness of the coordinate'� with integer
momentum��.

The zero mode part of the mass of the string is then of the form, by calculating the Hamiltonian
parallel to above,

3� � �
�

�
���

�� �!�! 
:�����������!:
! 
 �:���"��

���"!�!

�
� �
��

�3�� (1.2)

where

� � �:�� �!�
�� 3 �

�
������� ����

����� ���

�
�

The mass is invariant under the���� ���� transformation acting simultaneously as

3 � �3��� � � ���

and the same is true for the partition function. The internal momenta are given by

�� � ��� 
:��� ������
�

� � �� � ��� �:��� ������
�

� �

they lie on an even self-dual lattice. In the low energy effective field theory, T-duality is repre-
sented by acting on the above moduli and the charges of the corresponding U(1) fields arising by
action of the compact creation operators.

1.5.2 S-duality

In contrast to the above perturbative symmetry, non-perturbative symmetries have drawn much
attention. Among those, duality symmetries relating theories at strong and weak coupling are
of special interest, since they allow to address questions at strong coupling by means of weak
coupling methods. As will be explained in chapter 4, the microscopic interpretation of black hole
entropy relies on such a symmetry.

For the heterotic string theory compactified on the torus, strong-weak coupling duality was
investigated in a series of papers (see e.g. [87, 89, 88]). The theory admits a scalar field which
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is a complex combination of an axion and the string coupling constant (originally called� in
[37]), and an����� � � acts by fractional linear transformation on this field and the gauge fields
of the theory, resembling an electromagnetic duality transformation. It was conjectured that this
symmetry is an exact symmetry of the heterotic string theory. Since such a duality seems hard
to ”prove” due to the poor understanding of physics at strong coupling (and the fact that the
heterotic string is defined perturbatively only), several recipes that ”test” these dualities were
developed. The low energy effective theory should admit such a strong-weak coupling duality as
a symmetry of the equations of motion and/or the Lagrangian. Furthermore, as discussed above,
states that saturate the Bogomolnyi bound live in shortened multiplets and are protected from
quantum corrections if the theory has supersymmetry� � �, and thus this spectrum, calculated
with the tree-level Lagrangian, should show S-duality symmetry. Such tests have been performed
successfully e.g. in [87].

This and similar tests have been applied to several different string theories. In contrast to
the above case which is a self-duality of one string theory, different string theories on different
manifolds were compared, and agreement was found in a astonishing variety of cases that led to
the name ”web of dualities” (see e.g. [90] for a review).

This thesis is mostly concerned with the case corresponding to toroidal compactifications of
the superstring. As will become clear shortly, the superstring is special in some respects. Before
addressing this point, it shall first be mentioned that the type IIB string was suggested to have
a similar������� duality as the heterotic string. The type IIB string has two scalar fields in
the massless bosonic spectrum: the dilaton and a scalar field form the RR sector of the theory
sometimes called an axion. Thus, a similar������� acting on a complex combination of these
fields as in the heterotic case has been suggested in [83], involving a strong-weak coupling duality.
On the other hand, this symmetry mixes the three-form field strength from the NS-NS sector and
the R-R sector of the theory, where the first carries charge of the fundamental string, while the
second corresponds to the charge of a solitonic string.

1.5.3 M-theory Conjecture

It is well known that the type IIA supergravity, the low energy effective field theory, is a maximal
supergravity and related to simple eleven-dimensional supergravity by Kaluza-Klein reduction.
More specifically, the dilaton of type IIA theory, corresponding to the string coupling constant, is
proportional to the radius of the circle eleven dimensional supergravity is compactified on. Using
this, it was argued that, for strong coupling, the theory decompactifies to an eleven dimensional
theory, which is now commonly called M-theory. It has eleven dimensional supergravity as low
energy effective limit [93, 97].

Considering BPS states, type IIA theory should then contain states that carry charges with
respect to the Kaluza Klein field along the compact direction. However, this field is in the R-R
sector, and the perturbative type IIA string does not couple to it. It was noticed, however, that ob-
jects exist within a quantized theory that couple to these charges: they correspond to open strings
that have Neumann boundary conditions in (p+1) dimensions and Dirichlet boundary conditions
in the remaining directions, and are usually called Dp-branes [81]. The introduction of Dp-branes
has been one of the most revolutionary developments in string theory, which is remarkable since
they were known for six years before they caught attention in this context [27]. The D0-brane
carrying charge with respect to the Kaluza-Klein field was shown to be exactly the state needed
here. In the context of the M-theory conjecture, the above type IIB S-duality may be reinterpreted:
It was found that, if type IIB theory is compactified on��, the S-duality is simply the modular
group of the torus when including the eleventh direction. Compactifications of M-theory have
been studied, and it is of special interest that the heterotic string arises by a compactification on
an interval (orbifold) (see [90]).
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What is M-theory? Eleven dimensional simple supergravity, though being the ”maximal”
supergravity filling the spin 2 multiplet, is known to be non-renormalizable and therefore suffers
from ultraviolet divergencies. It is tempting to suspect that the supergravity is just a low energy
approximation in the same way it is for string theories. Since the theory admits a membrane and
a five-brane solution, M-theory could be thought of as theory of membranes and five-branes. A
review of the quantized supermembrane theory has recently been given in [78], and the reader
is referred to this review for a discussion of membrane theory. Recently, a theory of free D0-
particles has been understood to give the same Lagrangian as the super-membrane in the infinite
momentum frame. This theory is known as Matrix theory. For a discussion of successes and
drawbacks in identifying it with M-theory the reader is referred to the extensive literature (see
e.g. [54]).

While the structure of M-theory is not determined yet, it seems profitable to study its symme-
tries. This is a main subject of this thesis, and shall be addressed now by discussing U-duality.

1.5.4 U-duality

Consider M-theory/type II string theory compactifications on the torus.
In this theory, one expects the above type IIB S-duality to be present, as well as the target

space symmetry arising from the compactification on the torus. However, both groups do not
need to commute, a phenomenon first discovered in [89].

This has led to the conjecture [97] that a larger duality group is spanned by the non-commuting
action of the type IIB S-duality and T-duality, forming a duality group���� by

���� � ������� ;< ����� ����� (1.3)

where;< refers to the non-commuting action of both groups.
For M-theory compactified on T#��, the modular group of the� 
 �-torus is���� 
 ����,

containing the above������� as a subgroup, as stated above. Therefore, rather than (1.3), the
definition

���� � ����
 ���� ;< ����� ���� (1.4)

may be adopted.
The original U-duality conjecture, however, was stated differently [56] and used the hidden

symmetries of low energy supergravity ([59, 19], see also [21, 22]).
The low-energy effective field theory of type II theory on T� is � � � � � � maximal

supergravity and has������ global symmetry [20] acting in the fundamental56 representation.
It is a electromagnetic duality transformation acting on the charges, and simultaneously on the
scalar fields.

The Dirac-Schwinger-Zwanziger quantization condition in four dimensions discretizes elec-
tric and magnetic charges of the���� gauge fields of the theory. The global������ symmetry is
therefore broken to a discrete��������� symmetry, inducing integer shifts on the charge lattice.
It was conjectured in [56] that this group is the full non-perturbative duality symmetry group of
type II string theory compactified on the torus to� � �.

This has an interesting consequences. The global������ symmetry acts on the�� scalars
of the theory. They are therefore put on the same footing by this symmetry, and, specifically,
the eleventh compact ”M-theory” direction is treated on the same footing as the other compact
directions, which makes this symmetry a true M-theory symmetry.

It was furthermore shown in [56] that elementary solitons exists for each type of charge in the
56-plet. This is a necessary condition for the DSZ quantization condition to restrict all charges
to integers. It will be shown that this is actually a purely group theoretical consequence of the
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Dimension Supergravity Duality Group� String T-duality Conjectured U-duality
��� ����� ��5�� � �

��� ����� � � � �������
� ����� � � ����� �� �� ������� � ��
� ����� � � � ����� � � ���� ���� ������� � �������
� ���� �� ���� ���� ���� ����
	 ����� � � ���� ���� �������
� ����� ���� ���� ��������

� ����� ��	� 	��� ��������

� ����� ���� ���� ��������

� ����� ���� ���� ��������

� ������� ���� ���� ����������

Table 1.1: U-duality groups

56 representation������ transforms under. The above solutions were derived by compactifying
and/or wrapping higher dimensional solitonic brane solutions on the torus. The fact that the
complete multiplet was found to be solitonic indicated that actually the complete type II string
and/or M-theory may be understood as a soliton and is remarkable concerning the structure of
M-theory.

The discrete group��������� was specified in [56] by the following argument: on the charge
lattice, choose normalizations such that all charges are integers. Then��������� is the subgroup
in ������ of matrices whose entries are entirely integers, that is, that preserve the charge lattice.
A direct construction of��������� was not given, rather, the following argument was used: it is
known that the most general duality group on the field configuration discussed is������ � � [41].
Thus, acting on the charge lattice, the��������� discrete group is

��������� � ������ � ����	��� (1.5)

where����	��� consists of matrices with entirely integer entries.
In this thesis, the intersection with the symplectic group is not used for construction, rather,

the discrete group will be constructed by defining it directly by the condition that it preserves the
charge lattice. It follows from the above construction that this is identical to (1.5).

For applications of U-duality it is instructive to have a set of generators of the duality group.
The above definition as intersection with the discrete symplectic group is however unsuitable for
this, since the corresponding embedding is rather complicated.

A main focus in this thesis is to determine a set of generators for the above discrete U-duality
group. Once a charge lattice has been defined, the group will be shown to be uniquely determined
by a remarkable fact:56 is the unique minimal representation of������, and this will be used
to determine the set of generators. The corresponding definition is then used to show that the
definitions (1.3) and (1.4) agree with the one found here.

Higher dimensional dualities of M-theory on the torus are found by intersections with the
discrete group���������. They correspond to table 1.1 given in [56]. However, for� � �, the
situation is more complicated.

The classical continuous duality symmetry in three dimensions is������, explicitly used for
construction in [67]. But the meaning of a duality group is not clear since only scalars remain
in the theory and electric charge seems ill defined. It will be shown that elementary solitons in
this theory, given by compactifying arrays of solitons in� � � carrying just one charge, are not
asymptotically flat and correspond to vortex solutions.
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In this thesis, an explicit construction of the U-duality group in three dimensions is given
by extending a conjecture made by Hull and Townsend [56], parallel to a method applied to
the heterotic string by Sen [89, 88]. It relies on the fact that eight different ways exist how to
compactify first to four and then to three dimensions. This gives eight different four dimensional
U-duality groups embedded into the� � � theory. It will be discussed how these groups merge
together to give the� � � duality.

The compactification to� � � has several interesting features. First of all, the above method
will give a quantization condition in� � � form a � � � one. One the other hand, reduced
models are often useful to uncover the structure of a theory. The two last rows in table 1.1 are
interesting: the procedure outlined above is suitable for lower dimensions as well, and it is an
interesting question what a discrete subgroup of a affine or hyperbolic Kač-Moody group might
be. This question is left for future work based on the results given here, hence the last two lines
in table 1.1 still are somewhat of a mystery.

U-duality has several applications. It is a main tool in finding proper configurations that allow
a microscopic interpretation of black hole entropy, as will be shown in chapter 4. For all these
applications, an explicit knowledge of the way U-duality acts is useful and sometimes seems to
have lacked in the literature. This was also a motivation to study the way these group acts on
M-theory fields closely by using the results of [20].

It shall also be noted, though it will not be discussed in this thesis, that U-duality, rephrased in
an algebraic language [33], has been used in the infinite momentum frame of Matrix theory, pre-
dicting BPS states for compactifications not yet accessible to Matrix theory and new “mysterious”
states especially for compactifications to three dimensions. U-duality extends to a generalized
electric-magnetic duality of the Super-YM theory. Upon inclusion of the light-like momentum on
the M-theory circle, the group was even proposed to be extended by rank (see [79] for a review
and references therein).

In [33], the Weyl group of U-duality was used and charge orbits discussed, while in [79] a
set of generators within the algebraic formulation is proposed using the definition 1.4. These
generators will be compared with the set of generators found in this thesis. U-duality in [79] was
applied to study BPS spectra in diverse dimensions, to generate U-duality invariant mass formulae
and to study9� corrections to type II theory as well as the implications on Matrix theory, and the
reader is referred for these subjects to this extensive review.

1.6 Structure of the Thesis

This thesis is structured as follows. In chapter two, U-duality will be studied in a toy model that
closely resembles the structure of M-theory and serves to introduce the main concepts. It will be
shown how U-duality in� � � is defined, and how the� � � group may be constructed, in detail.

In chapter three, U-duality in M-theory will be discussed. U-duality in� � � will be identified
by the discretization implied by the DSZ-quantization condition, and a proof is presented for a
set of generators for arbitrary Lie groups acting on admissible lattices in basic representations.
T- and S-duality subgroups are identified and discussed, and the definitions of U-duality outlined
above are compared. U-duality is then constructed for� � � following the same procedure as in
the toy model, but, as will be shown, remarkably with different result.

In chapter four, some applications of U-duality are shown in the context of black hole soli-
tons and black hole entropy. Furthermore, a result on BPS-conditions and Null-Killing [42] is
discussed from a strictly supersymmetric perspective.

Chapter five concludes this thesis.
In the appendix, Lie algebras are reviewed andMaple Procedures described that generate

highest weight matrix representations and have been used for this thesis.
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Chapter 2

Discrete Duality Symmetries in � � �

and Lower Dimensions: The ������ Toy
Model

2.1 Motivation

It has been known for a long time that simple� � � supergravity closely resembles� � ��
supergravity [13, 19]. Apart from the gravitational fünfbein, it contains a five-dimensional vector
field and a Dirac spinor�� , parallel to the elfbein, three-from potential and Rarita-Schwinger
Majorana fermion of simple� � �� supergravity. Its Lagrangian turns out to have exactly the
same structure as the� � � supergravity in� � ��.

The theory does not contain a scalar field and may therefore, referring to a possible higher
dimensional ”origin”, be called a no-moduli theory. Such theories are of interest for string phe-
nomenology (see e.g. [29]). It is known that the model arises by a Calabi-Yau compactification
of � � �� simple supergravity [10, 34, 35], but an additional truncation is needed in the scalar
multiplets. To obtain the model from a Calabi-Yau or orbifold compactification of string theory
or M-theory without truncations seems difficult, since the dilaton needs to be ”orbifolded away”.
However, asymmetric orbifold compactifications have been studied intensely in the literature, and
it is tempting to associate this theory with a strong coupling limit of a theory in� � � with only
the dilaton as modulus, the way M-theory is associated with type IIA string theory. However,
such a construction has not been given yet, though the authors of [26] state that there seems to be
”no fundamental reason” that it should not exist.

The theory has a solitonic string and particle solution of very similar structure than the M2 and
M5 brane [47, 44]. In [72, 40, 39], this similarity has been studied and motivated investigations
of the AdS/CFT conjecture ([66], see [3] for a recent review) in this theory. In [16], cosmological
solutions of this model have been constructed, motivated by the manifestly U-duality covariant
solutions in� � � from Calabi-Yau three-fold compactifications of M-theory [64].

In this thesis, the model will be used as a toy model for U-duality in M-theory. It will be
shown how a symmetry resembling U-duality may be found, what its generators are and how the
interplay of different compactifications yields the generators in lower dimensions. The important
mechanisms will be introduced and discussed in detail in this model in order to simplify the
discussion of M-theory in the next chapter.

In section 2.2, the five dimensional model is introduced, and in order to study the symmetry
resembling U-duality, it is compactified to� � �. The analogue of stringy U-duality is constructed
and discussed in section 2.3. The construction of the U-duality group in� � � is then discussed
in section 2.4.
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2.2 M-theory Analogue: � � � Simple Supergravity

The arguments of the following sections and the definition of U-duality will be given on the purely
bosonic side of the theory, as is usual in the literature. This is possible since the fermionic side,
corresponding to the definition of supersymmetry, follows by using supersymmetry transforma-
tions.

The corresponding part of the Lagrangian of� � � simple supergravity [73, 72, 13, 19] will
be used in the following form:
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where��� � ��
��� �. 3��� � � � are curved and���� � � � flat five-dimensional indices.
The Lagrangian is invariant under reparametrizations and gauge transformations (up to a total
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The analogue of U-duality will be defined by using� � � arguments, and hence, the compacti-
fication to� � � shall be addressed now. Note that, here as well as in the next chapter, it will
be important to keep in touch with the� � � fields. This will be explicitly used when discussing
� � � U-duality. Quite generally, many questions and phenomena in M-theory are addressed by
looking at the� � �� fields, and thus it is important, in the compactified theory, to know the
corresponding relations and constraints.

Assuming that the 5th direction is compact and cannot be probed with energies below a certain
cutoff set, a consistent low-energy approximation is to keep only the zeroth Fourier component
of the fields with respect to the fifth coordinate. It shall therefore be assumed that the above
Lagrangian is independent of the fifth coordinate. The Lagrangian may then be reduced to an
effectively� � � Lagrangian. Consider first the Einstein-Hilbert action alone.

2.2.1 Reduction to � � �: Gravity

The compactification shall be discussed generally as reduction step from� 
 � to � dimensions
in this section. This will be useful for later sections. Consider the Einstein-Hilbert action in the
form

� �

�
�#��
������

It is convenient to use a non-coordinate basis in tangent space by defining

��& � � �
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& � �
' ��� � 7&'

(see e.g. [96], [76]), where7&' is the Minkowski metric with signature�
 � ������, and� �
&

is the vielbein with inverse� &
� such that

��� � � &
� � '

� 7&' �

���� � � � are flat indices, lowered and raised by the Minkowski metric, and3��� � � � curved
indices. The Lie bracket of the non-coordinate basis is non-vanishing,
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where
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are the anholonomy coefficients, and���� denotes antisymmetrization as usual,
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The connection coefficients in this basis are given by
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Demanding that the connection has no torsion, one may express the Ricci scalar by the anholon-
omy coefficients only. Vanishing torsion implies
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and this yields the Ricci scalar
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Thus the Einstein-Hilbert action becomes
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where� � det� &

� , neglecting the total derivative.
Assume now that the Einstein-Hilbert action does not depend on one specific coordinate, and

call this coordinate� as curved and�� as flat index here. The indices in� dimensions will denoted
by @� A� � � � for curved and.� /� � � � for flat indices. A convenient gauge choice for the vielbein,
using local����� �� invariance, is then
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where
� � are real numbers. Let��#���� be the anholonomy coefficients with respect to�
�#� �
� . In

terms of the above vielbein, one has
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all remaining anholonomy coefficients equal zero. This yields, after integrating out the coordinate
� and demanding
 � ���� ��, the action
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The field��� is a���� gauge field: Consider reparametrization invariance in�
�. The vielbein
transforms as
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This implies
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that is, the residual reparametrization invariance with respect to the coordinate� acts as����
gauge transformation of the gauge field��. This is actually the key point of the Kaluza-Klein
mechanism:� 
 � gravity with one compact dimension yields gravity plus electromagnetism in
� dimensions, plus a dilaton that may be set to zero.
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2.2.2 Reduction to � � �: � � � Simple Supergravity

Consider now the full theory. As will be seen, the reduction yields a theory that has a generalized
electromagnetic����� � � symmetry mixing magnetic and electric sector. This symmetry will be
discussed in the next section. Since it is not visible in the ”naı̋ve” reduction, it is often called a
”hidden” symmetry, and one needs to define the fields of the theory in a proper way to uncover it.

For the reduction, the fünfbein shall be used as

�
���&
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�
��
�����
�� 8���

� 8

�
�

�@� �A� � � � are curved and�.� �/� � � � flat indices in four dimensions.
The metric gets

�������* � 8�������*� ������* � �8��*�
������ � �8�� 
 8��*�

�*� ���� � 8�������

Writing �� � ����� ���, the Lagrangian gets up to a total derivative, using (2.4),
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where the field strength

����� � ��
������

is the Kaluza-Klein���� gauge field strength as above. A second gauge field strength in the
theory is

� ����� � ��
���
�
���� ���� � ��� �������

���� is invariant with respect to reparametrizations along the compact directions, and from (2.2) is
a���� gauge field. It is convenient to define

�
���
���� � � ����� 
�������

to simplify the Lagrangian.
To put the Lagrangian in a from such that the mentioned ”hidden” symmetry gets manifest,

one may follow the recipe as used in [20],[72].���� is dualized by adding a Lagrange multiplier
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Defining the new field strength ����� � ��
��  ����, this yields
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and the vector part of the Lagrangian may be rewritten, using the vector notation
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as
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This may be simplified considerably by combining the scalars of the theory,�� and8, in a field
���� 	 ����� � �5����� (which reflects two free parameters). A convenient representation of
this field is given by using an Iwasawa decomposition for a group element� 	 ����� � � [53]: �
admits a decomposition

� � "B)

where" is an element of the maximal compact subgroup,B is an element of the Cartan subgroup,
and) is an element of the subgroup with Lie algebra corresponding to all positive roots. Stripping
" off, one may thus define
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and+ is a basis transformation to be specified.
The4 representation is symplectic. One has
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� is of the usual form
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Coming back to the vector fields, one may define the dual magnetic field strength by
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Explicitly, one has
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It may then be verified that the vector fields obey a relation called a twisted self-duality in [21] by
combining all electric and magnetic fields in one four-dimensional vector. The relations is then
given by
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The vector Lagrangian may therefore be written as
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For the scalar part of the Lagrangian, one may easily derive
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 � �� � �� one arrives at the Lagrangian
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2.3 U-duality in � � �

Apart from reparametrization invariance and gauge symmetries, the Lagrangian (2.11) has fur-
ther symmetries that will be investigated in this section. Consider first the scalar part of the
Lagrangian. It is invariant under a transformation

���� � B�
������� � 	 ����� � �� B�
� 	 ������

where the local����� transformation is parallel to the local Lorentz transformations in the viel-
bein formalism and is used to restore the����� � �5����� gauge chosen in coset space.

The vector part of the Lagrangian is invariant with respect to the local symmetry, or, in other
words, depends only on the ”metric”� ��������, but the global����� � � is not a symmetry of the
Lagrangian. Rather, the form (2.10) of the Lagrangian indicates a group

� � ���� �� � ����� � ��

which allows�����. However, the full����� � � is a symmetry of the equations of motion, since
it interchanges Bianchi identities
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by acting on the vector� ���� as
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This symmetry is usually called classical (hidden) duality symmetry. It should be kept in mind
that the scalars of the theory in the field� ��� transform simultaneously.

Following [56], one may define the analogue of U-duality in this theory. Define the four-
dimensional charge vector
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where the position of the indices reflects the symplectic character of the representation introduced
above.

The� charges are magnetic, the� charges Noether electric charges, and the charge vector�
transforms as

� � ����� � 	 ����� � �

under the classical duality symmetry.
One may now impose the semiclassical DSZ quantization condition on dyons,
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The situation is complicated in this model by the fact that the fields ����� and����� are not treated
on the same footing by the����� � � symmetry, but the����� carries weight -3, while ����� carries
weight +1. It is easy to see that e.g. the solution

�� �&� �' � � �&� �'� 	 �

to (2.12) is incompatible with the����� � � symmetry generated by (2.7), since no matrix in this
basis exists in����� � � that is nontrivial and entirely integral.

An easy way to see this is to consider the Birkhoff decomposition [75] of an element� 	
����� � �: � admits a triangular decomposition
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where�� � �������� �, �� � ��������, ���� �� 	 � , and� is given by
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Writing out the Birkhoff decomposition in the above basis, one sees that no matrix exists that is
entirely integral!

However, this is just a problem of finding the correct basis in����� � � representation space.
To find a solution compatible with the����� � � symmetry, change the basis by
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which implies that, in the new basis, the action of the generators��5�#,��5�# is entirely integral.
This basis is called an admissible lattice, and such basis’ will be studied in more detail when M-
theory is considered.

The DSZ quantization condition now reads

 �, ���� ���  � � �  �
�& ���& �  �

� �& ���& 

�

�
� �'  ��' �  �

�'  ��'� � �� � 	 � � (2.14)

The maximal subgroup of����� � � preserving this discretization is�������, as shall be shown
now, and this group will be used as analogue of U-duality in M-theory.
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2.3.1 � � � U-duality and �������

Consider the Lie algebra��� associated with����� � � with generators�����%� obeying

���� � � %� �%��� � �� and�%�� � � ����
Lie algebra conventions and representations are summarized and explained in appendix A.1, and
the reader is referred to this appendix to clarify notations and conventions.

Remember that��� may be represented on vector spaces that allow a basis characterized by
the eigenvalues of the Cartan subalgebra, that is,% in this case, called weights. The irreducible
representations are uniquely characterized by a highest weight4� with associated basis vectorC�,
satisfying�C� � � and%C� � 4�C�.

The representations may then be given by defining basis vectorsC� � ��5	#�� �C�. Then

%C� ���� � �	�C��

�C� ��	
 ��C����

�C� ���� � 	
 ��C���� �	 � ���

The representation for4� � � is exactly the representation (2.13)!
In the above situation, the gauge fields and charges, respectively, thus correspond to the basis

vectors in the representation space of highest weight 3. Normalizations of the basis vectors in
representation space corresponds to charge normalizations. A way to make the����� � � symme-
try compatible with the discretization (2.14) is now to choose a basis in which����� � � is broken
to a nontrivial subgroup corresponding to matrices with integral entries. This subgroup is usually
called�������, and shall be studied now.

The generators of the discrete group������� are well-known from the literature. It is how-
ever instructive to recall a proof for the generators here, since this allows to introduce concepts
needed in the next chapter, dealing with M-theory, in a simplified context.

In order to make contact with the literature, consider first the fundamental representation with
highest weight 1.

Fundamental Representation

For the fundamental representation, choose basis vectors�C�� C�� in , with %C� � C�,%C� �
�C� and normalizations such thatC� � �C� andC� � �C�. The representation matrices8�����
of the generators may then be given by

8��� �

�
� �
� �

�
� 8�� � �

�
� �
� �

�
� 8�%� �

�
� �
� ��

�
�

The associated group� � ����� � � is given by representation matrices�
( )
� �

�
� ()� �� � ��

For the discrete group���� � �������, this implies(� )� �� � 	 �.

Proposition. The discrete group������� is generated by

2� � ������� 2� � ����� ��

More common is the equivalent set2 � ������ and� � ������� ����� � �������, where
� represents the Weyl group modulo a phase. E.g. in the fundamental representation, it maps
C� � C� andC� � �C�.
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Proof. The simple proof given here uses the Birkhoff decomposition and the Euclidian algorithm.
As shall be shown in the next chapter, for more complicated groups these are the essential tools
as well.

Consider an element� 	 ������� of the form

8��� �

�
�8������ �8������
�8������ �8������

�

with all entries in�. � admits a triangular decomposition (Birkhoff decomposition)

� � �� � ���

where, as above,�� � �������� �, �� � ��������, ���� �� 	 � , and� is given by

� �
�

�

���6��� 6� 	 � � ���6� � ����6�� �����6��� � ����6���

RememberingC� � �C� andC� � �C�, one has

���6�C
� � �6��C�� ���6�C

� � 6C��

Any matrix 8���, � 	 � is therefore either diagonal or off-diagonal. Furthermore,���������
acts as -Id on�C�� C��. Note that� � ������.

Suppose�8������ �� � (if �8������ � �, consider8����), then the Birkhoff decomposition
implies that8��� is a diagonal matrix. Let�8������ � �, then

�8������ ��

�8������ �� ���
�8������ �� ���

This implies� 	 � and���� �� 	 � . Consider now8��2������ for : 	 � (note that2� �
2�2 , �2���� � �2����. One has

�8��2��������� �� �� ����
�8��2��������� �
 ��: � �� �����

There always exists some integer: such that

��8�������� � ��8��2���������� D ��8��������

Thus, by repeating this operation, one arrives at a� � 	 � such that�8������� � � (Euclidian
algorithm). This, on the other hand, forces�8�� ����� � �� by the condition on the determinant.
If �8������� � ��, multiply with ���� to have�8������ � 8���������� � �, if �8������� � �,
take��� � ��. �8�������� � ���� then implies���� 	 �, and��� � ���������� � �2��

-��� .
Thus, each� 	 ������� is generated by2� � ������ and2� � ����� �, or equivalently

2 � 2� � ������ and� � �2��
��2��2���� �.

The Representation 4

Note that the definition of the generators and the resulting group���� turns out to be independent
of the representation. However, the proof of the above proposition may easily be repeated for the
representation with highest weight 3, and thus shall be given for completeness.
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Consider the highest weight vectorC� that satisfies�C� � � and%C� � 4�C� and has weight
3. As seen, the remaining basis vectors areC� � ��5	#�� �C� in the representation (2.13).

Denote the4 representation by8. The first row and first column in the Birkhoff decomposition
� � �����, �� � �������� �, �� � �������� are, parallel to above,

8����� � � 	 �

8����� � ������ ������ ��	��� 	 �

8����� � ������ ������ ��	�� 	 �� 	 �� ��

Say

���� � �� � 	 ��

Consider again8��2������. One has

8���	� �
�

��
�	

8��2������	� �
�

��
���:��	�

and one can always find an: 	 � such that

���:�� � ���

and hence find a sequence of operations that yields a� � such that8����	� � �, which implies, by
the Birkhoff decomposition,8�� ���� � � and8������ � ��. Since in the above representation
again�� � ���, if 8������ � ��, multiply with � to have8����� � 8������� � �, and consider
��� � �� if 8������ � � . Then, however, necessarily��� � ���������� � �2��

-��� �.

2.3.2 � � � U-duality Group

The U-duality group is thus generated by the modular group generators+ ���+ and+��2+ ,
where

� � �����  �� ���  � �����  �� �

�
���

��
�

��
�

�
		
 � 2 � ���  � �

�
���

� � � �
� � �

� �
�

�
		
 �

This symmetry shall be used as analogue of U-duality in M-theory. Note two physical effects of
this symmetry.

Take a look at the charges. If the� � �&�  � �&� � ��&� �&� are chosen to be integer, the�������
symmetry and DSZ condition yield that� �' �  �'� are in��.

The������� induces the familiar modular transformations� � � 
 � and� � ��5� under
2 and� on the scalar� � ��5���� 
 	8.

This may be understood from another perspective: consider the Lagrangian (2.5) truncated by
demanding��� � �. In an asymptotic limit where��� 8 � const.,� is exactly the$ parameter
of electromagnetism plus theta term for the field� �

�� . However, the above������� symmetry,
since the representation is irreducible, will always mix all four types of charges and not preserve
such a truncation.
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2.4 U-duality in � � �

Having defined the U-duality analogue in� � �, it shall now be demonstrated how the analogue
of U-duality in lower dimensions may be given.

This is done by explicitly following a conjecture made by Hull and Townsend [56], parallel
to a method applied to the heterotic string by Sen [89, 88]. The focus is to find a set of generators
for a discrete quantum symmetry. For this, is it assumed, as in [89], that the U-duality, discretized
by the DSZ quantization in� � �, is not broken by assuming that another coordinate is compact
and is a symmetry of the quantized theory in� � � as well.

Consider the coordinates��� �� �� as three-dimensional coordinates, while the coordinates
� and� are taken to be compact. Interpreting the coordinates��� �� �� �� as four-dimensional,
this results in a discrete 4-dimensional U-duality. The theory in� � � will be shown to have a
classical������ symmetry. The corresponding Lie algebra������ is the maximally noncompact
real form (”normal form”) of�� corresponding to canonical normalization of the generators (see
[48]). The� � � U-duality is a discrete subgroup in this symmetry in� � �.

However, one may also interpret the coordinates��� �� �� �� as four-dimensional, which gives
another discrete U-duality, which actsdifferently on the fields of theory. Again, this symmetry
is a discrete subgroup of the������ symmetry in� � �, and the subgroup rotating these two
symmetries into each other is the analogue of T-duality. Merging both symmetries together, one
has the analogue of U-duality in� � �. This philosophy is illustrated in figure 2.1. It is instructive

T

4

3

2

1

0

��
��

����

������� �������

Figure 2.1: Construction of Three-Dimensional U-duality in the������ Toy Model

to study the compactification and symmetry groups by considering ”elementary” solitons in� � �
and the action of U-duality on their charges. One may then consider their counterparts in the
� � � theory. It will be shown later how these solitons emerge and that the action of the� � �
U-dualities exactly corresponds to the� � � action on the charge lattice.

2.4.1 � � � Theory

Starting from (2.11), consider first the situation that the coordinate� is compact. This may be used
to further compactify the theory to� � �. In doing so, the fields will be “maximally dualized”
[21]: Since two-forms are dual to one-forms in� � �, the situation where only scalars remain in
the theory will be discussed here.

The compactification procedure is given in the following. Again, the results derived here are
useful for the next chapter as well, and the discussion is therefore done in a more general fashion.
Consider in� � � the Lagrangian


 � ��������� 
 �
���
����  ����� 
 �

-��
����tr�E�+

���
�� �E�+ ��� ���� (2.15)
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where����� � ��
������ is a vector of���� gauge field strengths, and the����� are dual magnetic
field strength, determined by the condition

����� �
� �����
�����

�
� �E�������E������

�
 �����
 �����

�
�

where

� �

� ��
�

�

is the symplectic form in�� dimensions, andE�� ���� 	 ���� � ������ is a field containing
scalar matter, with

��E������E�������� � E�&���� � 
E�+ ���� �� &���� 	 ����� + ���� 	 ���� � �����

���� is the Lie algebra of����, and���� its maximal compact subalgebra.
E������ is in the�� representation of����, and��� is assumed to be the Dynkin (or second)

index of the�� representation, so that one may write

�
-��

����tr�E�+
���
�� �E�+ ��� ���� � �����+ ����� � + ��� ��


where��� �
 is the abstract (representation independent) inner product of����.
Since the�� is symplectic, writing

E�������E������ �
�

( )
)� �

�

the symplectic condition

�������� � ����������
implies��E�� �����E�������� � �Id, therefore

)�� � �)� ()� � )(� �� � �)��� � �(�

Thus

����� � ���  ����� � )�������� �

Assume that the above Lagrangian does not depend on the coordinate denoted by� in the follow-
ing, with flat counterpart��. The vielbein is chosen to be

�
��� ��
�� �

�
��.��

�#��
� ���.� ���

� ���.�

�
�

with signature�
����, which implies

�����* � �����	��*� �����* � ���� ��*�

������ � ��� 
 ��� ��*
��*� ���� � ����	��

The gravitational Lagrangian is then treated as above, and it becomes, together with the scalar
Lagrangian,


gr+s� ���	���	� 
 �
��
�	�����

��� �
��
�����	� ����

���� 
 ��	��+ ���� � + ��� �
�
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Consider the vector fields. The Levi-Civitta symbol is chosen to be!��	� � �� !���� � !���.
The vector fields get

 ��� � ��	�!���

�
��� ��*��* 
 ����

� � ��� ��*
��*��

� 
 ��� ��� ������

�
 ��� � �

��
�	�!���

�
������� 
 ��� �����

� � ��� �����
�

�
�

Defining the� � � ���� field strengths

���� � ��
����� � �������� ���� � ��
�����

one has
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Inserting this into the Lagrangian yields


+ � �
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In � � �, the vector fields may now be dualized by adding the Lagrange multipliers


��� ���� � �

�
!�����7������� 
 F��

������

Integrating out� ��� yields

���7 � ���

which together with the definition

��7 � ���

and

� �

�
7
�7

�

is a key relation for� � � theory and the discussion of dualities. Integrating out the Kaluza-Klein
field strength gives

��F � ��

�
��	�!������� ���� � �

�
�������

The Lagrangian becomes


 � ���	���	� 
 �
��
�	�����

��


���
�	�������F 
 �

�����������F 
 �
��������


���
�	�������E�������E���������


��	��+ ���� � + ��� �
 (2.16)

and contains only gravity and scalars in� � �.
Assume now that a group��	� exists containing���� as subgroup, and the following holds

(the reader should consult appendix A.1 for notations and conventions):
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(i) If ���� is of rank�, ��	� is of rank�
�, and���� corresponds to the Dynkin sub-diagram of
��	� given by erasing the vertex of the simple root.��� (���� is a direct subalgebra of��	�).

(ii) The space of roots. 	 $���� allows a� grading with respect to the root coordinate
�
���,

such that, for the positive roots. 	 $����

� , one has sets$����

� � �$����

� ��� .�� with

$����

� � �. � 
�
��� � ���

� � �/ � 
�
��� � ���

.� � �* � 
�
��� � ��

where� is the set of weights of���� of the representation carried by� ���, and.� is the
highest root of��	�.

The generators��� , /� 	 � then admit an ordering

���� � ��� � � ��!��� �

������ ��� � � E������!����

whereE is the�� representation such thatE�� ���� is written asE�� ���� � ����E�������. Two
further formulas concerning the exponential mapping are useful:

���
��/� �

�
��6�'� 


�
�� �6!'!� ��6�'�� 


�
	� �6"'"� �6!'! � ��6�'��� 
 � � �

�
���/�

�'���' � �
 ����� 
 �
� ��� ������ 
 � � � � 6� 	 � � '�� ��� 	 ��

Consider generators��� with /� 	 �. It is assumed that canonical normalizations have been
chosen, that is,

tr�E�����E���� �� � �� tr�E�����E����� �� � �)

which implies, for%� � ���� ����, the trace tr�E�%���E�%���� � ��), and�) is the Dynkin
index of the representationE.

One may now define a scalar field in� � �, using the Iwasawa decomposition of��	�, as

��	� � ���� �������%��� ���������� ����F����

in a representation independent way. Using

�����5�%������ ������5�%��� � �����

�����5�%������ ������5�%��� � ��.����

�����������#���� � E����#��!����

one may considerany faithful irreducible representation E of ��	� and��	� to get

��
 E���	���  E���	����� � ��

 E�������  E���������

�����  E�%��� 
 ��.�����E������!�

 E���� �


������ 
 �
�����!���!�  E������

and thus

�+ �	�� � + �	� �
 � �+ ���� � + ��� �

 �
�����

��


���
�����E�������E���������


���
������ 
 �

������������ 
 �
���������

The Lagrangian (2.5) therefore takes the simple form


 � ���	���	� 
 ��	��+ �	�� � + �	� �
�
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2.4.2 ������

Thus, the Lagrangian may be written in the above simple form if a group exists obeying the
conditions specified.

This group is������, and the algebra������ will be used in conventions that shall be explained
in this subsection.������ is the maximally noncompact real form of��, it is a real Lie algebra
corresponding to canonical normalizations of the generators (see [48]). The exact definitions of
the generators as used here are given below.

�� is a rank two non-simply laced Lie algebra. Its roots are given by, as explained in appendix
(A.1),

��! � e� � e! �� � 	 �� � � ���

�� � ��e� � �

�

	

0��

e0� �� � 	 � �� (2.17)

displayed in figure 2.2.�e� � � � 	 � �� is a set of orthonormal vectors in��, and the roots lie
in a hyperplane is normal to

�	
��� e�.

���

���

���

��

����

���

����

��

����

���

���

��

Figure 2.2: Roots of��

The corresponding positive and negative root generators of�� will be denoted by

�e�� � ��
! �

�e� � ���

��e� � ��� �

and

�%� � ���
���� �

���
� � � 	 � �� ��

is a basis of the Cartan subalgebra. The positive roots generators are� �
! � � � 	 � � � �,

��� � � 	 � � and��	 , and the generator��� corresponds to the long simple positive root, the
generator�� to the short one.
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There are several ways to find the commutation relations for the complete algebra, e.g. by
using the bilinear asymmetry function of appendix A.1. However, since the model is studied as
toy model for M-theory, the conventions shall be as parallel as possible to the conventions used
in the next chapter for������, where a decomposition of exceptional Lie algebras with respect to
their ��� direct subalgebras is used [38].������ has a straightforward embedding into������ (see
appendix A.1). This embedding is explicitly described in the next chapter, at this point, the result
shall just be given. The commutation relations are
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%��

� ��� ��� � � �%� 
%��

� �	� ��	 � � �%� � �%�� (2.18)

2.4.3 The ������ Coset

������ has a maximal subgroup����� � �����, where the two����� groups are generated by
the short simple and the lowest root (see figure 2.3).

e�e���e��

Figure 2.3: Decomposition of������ � ����� � �����. The root surrounded by a circle is the
lowest root added to the Dynkin diagram.

In the Iwasawa decomposition, the����� generated by the short simple root may be asso-
ciated with� ���, while the����� generated by the lowest root carries the� � � dilaton and
dualized Kaluza-Klein gauge field. To see this, consider the vector

�� � �
��
�
��	 ������

��
�
��� ��	��

It is easy to see from 2.18 that this corresponds exactly to the vector����� of the last subsection
by noting

������� � �+���+ ���! �! � ���� ���� � �+���+ ���! �! �
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and

�����! � � ��!�
�
	

where the��� are the����� � � generators given in (2.7),+ is given in (2.8), and the�� denote
the components of the vector� as given above.

The Dynkin index of the4 representationE of ����� is 10, while the Dynkin index of the
14 representation E of �� is 8. The generator�� corresponds to a short root of�� and obeys
tr�  E����  E������ � ���� in the normalizations chosen1. Thus, one arrives at the field
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with ��	� 	 ������5�����, and as usual
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and the Lagrangian
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The four-dimensional vector� is given by

���7 � ��	� ��7 � ��	� � �

�
7
�7

�
� (2.19)

Thus it corresponds to the� � � gauge fields. When discussing arrays of solitons in� � � that
yields solitons in� � �, it will be shown that it carries the� � � charges of these ”fundamental”
particles.

The fieldF is given by

��F � ��

�
��	�!������� ���� � �

�
������� (2.20)

and carries the dualized Kaluza-Klein field. Note that, considering the bosonic Lagrangian only,
no representation of������ is fixed from the equations of motion in contrary to the situation in
� � �. However, the14 decomposes, as already used, as

������ � ����� � � � ����� � �

�	 � ���	� 
 ����� 
 �����

and thus contains the familiar4 representation from� � � of ����� in its representation matrices,
while e.g. the7 decomposes as

������ � ����� � � � ����� � �


 � ����� 
 �����

1Note that the factor��� � �����
�� in (2.11) indicates that, in a reduced model, the� � � ��� symmetry algebra

should be embedded into a larger algebra such that it corresponds to ashort root, and actually the factor� uniquely
determines this algebra to be��!
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where the first����� corresponds to the short simple root, and thus does not contain the4 rep-
resentation as a sub-representation. The14 representation matrices look with respect to this de-
composition like

� ���� �

�
��������

4
4

3
1

1
1

�
							


�

containing the familiar4 block. However, it is again stressed that no explicit representation is
needed for the theory in� � �.

2.4.4 Identifying � � � U-duality in the � � � Theory

Consider

� 	 ����� � �� � � �/ � ' � ( �� 
 ) ��� 
 � �B� � B��� (� )� � 	 �

The� � � symmetry is then easily found:
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(2.21)

therefore

� ���� � � ������� and� � E����
whereE is the spin 3/2 representation (2.7).

This is exactly the four dimensional U-duality in the reduced model. The vector� carries the
� � � charges, as will be illustrated when considering solitons.

The symmetry was broken to a discrete subgroup by the DSZ condition, and thus the discrete
� � � U-duality in� � � is generated by

�� � ��������� ������� ���������� 2 � � ��������

2.4.5 Connection to � � � Fields

In order to compare the different compactification in figure 2.1 and join the� � � U-duality
groups together to a� � � U-duality group, a parametrization of the coset matrix will be given
that simplifies this comparison. Define the fields
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polynomially connected to the fields used so far. This indicates that the factors added are BCH
terms, and indeed, using (2.18), one arrives at the field
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where the� � � ”internal” vielbein has been used, defined by
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Explicitly, # and�� obey, using (2.6), (2.9), (2.19), (2.20) and (2.22)
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This exactly reproduces the result of [72] obtained by direct reduction to� � �.

2.4.6 T-duality in � � �

An analogon of T-duality may be identified within������ by investigating the diagonal subgroup
%. The components of the diagonal of the internal vielbein� ��� ( %: is flat index:) correspond to
the radii of the compactification torus. Consider

 ��	� � ���
�
� ����

��
��%� � ����

��
��
��
��%�

�
�

Since one has%� � %��� and%� � %��� , one may write%� � %��� �%��� , and this yields

 ��	� � ���
�
� ����

��
��%��� � ����

��
��%���

�
� (2.23)

A transformation exchanging the two radii is a Weyl reflection in root space exchanginge� and
e�. This is exactly given by���, defined as

��� � ��������� �������� ���������
and it may be easily checked that a conjugation with��� exactly exchanges� ��� with �

��
� in (2.23).

Since the ”T-duality” transforms the left hand side of figure 2.1 to the right hand side, one may
expect this operator to be the transformation merging the� � � U-dualities together. This will be
shown now.
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2.4.7 Different Orders of Compactification

The compactification presented above corresponds to the left side of figure 2.1. It was done
stepwise by considering


��������&� � �� �� 
����������&� � ���� ���� 
�	������&� � ��� �	� ���

where��@� � ��� �� �� ��. The resulting scalar coset matrix will be called� �	���. The � � �
U-duality is generated by

�� � ��������� ������� ���������� 2 � � ��������

Consider now the right hand side of figure 2.1. The compactification corresponds to the steps
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where��@� � ��� �� �� ��. This compactification may be performed strictly parallel to the above

by putting����&� into a suitable gauge using local Lorentz symmetry in� � �. Starting from
(2.22), consider the transformation
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which yields&'� � � 8	.���.��	. Using this parameterization, the compactification is identical
to above, when taking instead of��@� � ��� �� �� �� the coordinates��@� � ��� �� �� �� as� � �
coordinates. A subtlety arises from the Chern-Simons term in� � � (see (2.5)) that changes sign
(!���	� � �!����	). Taking this into account, one notices that
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The� � � discrete U-duality is again generated by

�� � ��������� ������� ���������� 2 � � ��������
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2.4.8 Joining � � � U-dualities in � � �

The above two compactifications lead to the same theory in� � �, and the corresponding coset
matrices should therefore be related by a symmetry of the theory. Indeed, one finds

��	��� � �+����
�� ���

�
����� � ����

� ��	��� +��� (2.24)

where� is given by&'� � � 8	.���.��	 as above.��� is indeed the T-duality introduced above.
Somewhat unexpected is the appearance of+ in (2.24).+ is a “parity” transformation given

by

+ � �����1��1�� � ���	�
� � �����

and is an element of� � � U-duality corresponding to a charge conjugation of the� � � charges,
since in the representation (2.7),����� � ��� as may be easily checked.

Turning to the U-duality transformations, consider a transformation� on� �	���. One has
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 � is thus a matrix generated by

�� � ��������� ������� ���������� 2 � � ��������

The joint U-duality group���� in three dimensions is therefore generated by

��� ��� 2 �� 2 ��

2.4.9 � � � U-duality Group

The fact that one arrives at the above group���� is an interesting result. It will be shown in the
next chapter that discrete subgroups of Lie groups acting on admissible lattices are generated by
�� 2 generators forall Chevalley generators of the Lie algebra. This would mean that one has to
take��

! � �
�� 2 �

! � 2
� for all positive roots of������.

But quite obviously���� is not ���������, but the former is strictlysmaller than the latter.
All generators of���� correspond to short roots of������. It is only possible to generate e.g.
�2 ���

	 from them, but not�2 ���.
It will be shown that the above definition of��������� relies on the action on admissible

lattices in basic representations where all nontrivial weights or of same length. This isnot the
case for the14 of ��, but would be for the7. The definition of the group, generated by�’s and
2 ’s for all roots, is however representation independent.

That the definition does not agree with the U-duality group found is obviously connected to
the fact that������ is not simply laced.� � � simple supergravity has no moduli fields, and no
string compactification described by this supergravity at low energies is known. Therefore one
cannot determine which is the “correct” U-duality group until such a microscopic realization is
found.

The disagreement will be further discussed at the end of the next chapter.
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2.5 Summary

In this chapter, a toy model was discussed that resembles the structure of M-theory in the low
energy limit.

It was shown how the theory is compactified to� � �, exhibiting a ”hidden” classical
����� � � duality symmetry mixing electric and magnetic sector.

The analogue of U-duality was derived from first principles by imposing the DSZ quantization
condition. The resulting discrete group was shown to be standard������� with two generators
�� 2 , and its transformation on charges and scalars was discussed.

The U-duality group for further compactification to� � � was then derived. Only scalars
remain in the theory after dualization, and the Lagrangian resulting from this compactification
was shown to exhibit an enlarged symmetry, which is������. The discrete subgroup analogue
of U-duality was derived by using different orders of compactification and merging the resulting
� � � duality groups embedded into� � � together, and the analogue of T-duality was identified.
Remarkably, the resulting discrete group was shown to be strictly smaller than the one expected
from group theoretical analysis as discussed in the next chapter.
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Chapter 3

U-duality in M-theory

U-duality in M-theory was introduced and motivated in the first chapter. In this chapter, generators
of this symmetry will be given in dimensions� G �. For this, parallel to the toy model in
the preceding chapter, the construction of [56] will be applied. The treatment will therefore be
semiclassical.

The discussion will lead to a discrete subgroup definition, and generators for these groups will
be suggested and proven to span the whole group.

In the section 3.1, the low energy effective action of M-theory is introduced and the compact-
ification to� � � is discussed. In section 3.2, the construction of U-duality is given, and physical
subgroups are discussed. Section 3.3 the discusses the construction of U-duality in� � �.

3.1 Maximal Supergravity

M-theory is supposed to have eleven-dimensional supergravity as low energy limit. Again, in this
chapter, only the bosonic part of the theory will be considered, and the fermionic side will be
implied to follow from supersymmetry transformations.

The bosonic part of the Lagrangian of eleven-dimensional supergravity is given by [20]
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where���$ % � ��
���$ %�, and antisymmetrization of� indices is weighted with��#���.
Indices3��� � � � now run from������, the metric has signature�
 � � � � � ��. Comparing this
to (2.1), the similarity of the two Lagrangians is immediately apparent.

The Lagrangian has general reparametrization invariance, local Lorentz invariance and� � ��
gauge invariance generated with parameters=� , �&

' and>�$ as
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To define U-duality, as in [56], the DSZ quantization in� � � shall be used. Thus, the compacti-
fication on the torus to four dimensions shall be described now.

For this, it is assumed that the dimensions��� � � � ��� cannot be probed with energies below a
certain cutoff that shall be imposed. Thus, the theory has a low energy approximation where the
Lagrangian does not depend on these coordinates. Consider, again, pure gravity first.

3.1.1 Reduction to � � �: Gravity

Consider again the Einstein-Hilbert action. If the�
 � dimensional Einstein-Hilbert action does
not depend on� coordinates corresponding to� commuting Killing vectors, the action may be
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reduced e.g. in a stepwise fashion as in section 2.2.1. The reduction may be performed in one
step as well: Choosing a vielbein
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with det� �
� � ���, 
� � 	 � , the nonzero anholonomy coefficients are now
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Integrating out the coordinates corresponding to the above isometries and demanding
 � ������
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where��� � � �
� � 3

� ��Æ�3� is an ”internal” metric with signature�� � � � � ��, describing the
geometry of internal space. Parallel to above, the fields� �

� � � �
� ��

� are� ���� gauge field,
since the internal reparametrization invariance yields

��
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� 
 ��=
��

Though not used in this thesis, consider for a moment an Einstein-Hilbert action invariant under
a set of non-commuting isometries with Killing vectors��� obeying
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One has, with vielbein parallel to (3.1) and��" � �",
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Thus the vielbein components in� 
 � dimensions depend on the coordinates", however, if the
isometry of the internal space is unimodular, the Einstein-Hilbert action gets independent of these
coordinates, and one has an action of the form (see e.g. [18])
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where�"
�� � ��
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0
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0� �0
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�
� is now a non-abelian field strength with gauge group

corresponding to the above isometry group,E� is the covariant derivative with respect to this
group,��������� is the Ricci scalar for the ”internal” space and describes a self-interaction of
the scalar fields���, and� is a cosmological constant.

3.1.2 Reduction to � � �: Maximal Supergravity

The reduction to� � � was carried out in detail e.g. in [20] (see also [21] for a more recent
treatment) and shall be briefly recalled. Choose the vielbein to be parametrized as
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with the internal vielbein8 ���� . �	� �( are curved and flat internal indices respectively. Actually, it
will be assumed later that the vielbein is triangular, reflecting the fact that the reduction could
have been performed by repeating reduction steps�
 � to �.

In the following, it is important to keep in mind that internal coordinates are labeled as�����.
This choice might seem odd at first sight, but will be useful when the symmetries of the theory
are addressed, and later when the� � � theory is discussed. However, the starting formulas when
reducing to� � � will look a little messy, but patience will pay off when the������ symmetry is
addressed.

An internal metric may be chosen as usual to be� ���� � 8 �� ��8
��
�� and has signature�� � � � �.

Its determinant is
�
$ � (�& 8 ����. �@� �A� � � � are curved and�.� �/� � � � flat four dimensional indices,

they run in� � � � �.
The Einstein-Hilbert action is then treated as above, and together with the vector field part,

using

��������* � $�.��������*� �����
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one has
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The theory has the 7���� Kaluza-Klein field strengths� ���
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��� whose gauge symme-

try is generated by the internal diffeomorphisms. For the fields�
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, the following

definitions are used:
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They ensure that the 21 field strengths� �
���� ���!

are���� gauge fields with gauge symmetry gen-
erated by>��"�����0���, while they are invariant under the symmetries generated by> ����0��� and
internal� � �� diffeomorphisms. The three-form field strengths� �

���� �� ��
is invariant with respect
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to the internal diffeomorphisms and gauge symmetries>��"�����0���, but admits a gauge symmetry
generated by>����0��� as
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Integrating out� �
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and� �
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yields

� ��#���
�� � ��	��������!����

�6��$�
��� ��
���� �� 
 �

��!
���!�"�0 �����
� �������������!�����"����� �������������
�(3.3)

 �
���!
���� � ����

�
$  �

��� ���!
���� � #��� 


���
��� �!�
����


��!
���!�"�0 �����


�
�
���

���� ���!
�� �������������
���

����
��� �5
���� �����5�����"�����0����� �������������
�

�
(3.4)

with  �
���!
���� � ��
��  �

���!
���. Parallel to the preceding section, one may introduce the vector notation
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where
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and the vectors are thus 28-dimensional, and the dual magnetic fields� ���� obey

%
�&
���� ���! � � �

����
 

�
Æ


Æ  ����� ���!

�
� %

�&
���� ��� � � �

����
 

�
Æ


Æ  ����� ���

�
�

One has

%
�&
���� ���! � �� ����� ���! (3.7)

�%
�&
���� �
� �

�
$  �

���
���� �
 � �  �

���!
���������������!�����
�

���!
���!�"�0 �����
���� �������������
������������!�����
������"�����0�����	��

��� �	
����


��!
���!���� �����
���� �������������
������������������
��

�
���� ���!


�#��� 

��Æ
�!�
�
 �

�
���� ���! � (3.8)

Turn to the scalar sector. It is shown in [20] that the the 70 scalars of the theory,� ��������!�����"���,

8 ���� and#��� ��, may be joint together in a field� ��� 	 ������5�����, where the corresponding
algebra������ is again the maximally noncompact form [48] of��. ���� is a representation matrix
in the fundamental56 representation. This representation is given in chapter VIII of [12] and
presented here as in [20].

The representation space is spanned by two antisymmetric tensors

���! � ����! , where indices�	���

are chosen to run in� � � � �. On a vector�
���! �����!��, the algebra������ acts by the real matrices
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where����" � �� ���" , ����� � � obviously represents an����� subalgebra,)���!�"�0 is totally antisym-

metric, and)����!�"�0 � �
��
!
���!�"�0 �����
�5) �����
�5. The representation (3.9) is symplectic and preserves the

symplectic from
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where� � Æ
���!��"�0.

The field���� was found to be
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whereC���� is an����� vielbein, given by
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and

����� � ���

�
� �7 �����5�	

� �����5�	 �

�
(3.12)

with the definition
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 �����5Æ
�
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The coupling of the vector fields to the scalars is given by the twisted self-duality relation
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(3.13)

where, with respect to the representation (3.9), the 56-dimensional vector� ���� corresponds to the
representation space vector�
� ���.

From����, a field+ ���� is defined as usual by
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The Lagrangian is then
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In passing, note that the vector field part of the action may also be written as

�

�	
����

�
�,
���� �  � ����

�
with

� �

�
�

�

�
�

3.1.3 ������ and ������

The fact that the above theory admits a hidden������ is remarkable and has fascinated many
authors. How ever, the number of fields of this symmetry is large and the explicit form of fields
rather complicated. However, for many applications within M-theory such as the identification
of states with higher dimensional branes wrapped around the torus, the connection to the� � ��
fields is needed, as given above. Several steps shall now be taken to simplify the situation.

In this thesis, the symmetries will rephrased in a more modern form by expressing the scalar
field carrying the56 of ������ by the exponential mapping of the Lie algebra������.

For this, commutation relations and generators of������ need to be given. It will prove to be
useful to consider������ as subalgebra of the maximally noncompact real form������ (already)
at this stage. As will be shown, this gives a nice way to describe the56 representation, discussed
in the next section, and simplifies the discussion of the� � � theory.

������ is given conveniently by using its decomposition with respect to its��� subalgebra,
parallel to [38].

Realization of ������ and ������

�� decomposes with respect to its maximal subalgebra��� (see figure 3.1) as

�	� � ��� �	� �	�

where80 is the embedded adjoint of���, and the84 (�	) are in the notation of appendix A.1 the
�� � � � � � � �� and�� � � � � � � �� irreducible highest weight representations, corresponding to
(3,0) ((0,3)) antisymmetric tensor representations. The generators of�� may therefore be equipped
with an index structure reflecting this decomposition. Any element of�� may be specified by a
triple:

�' !�

�� � C��!�"� � C
���!�"� � �' is traceless;C,C� are totally antisymmetric� 	�� ��� "� � �� � � � � ���

The Lie bracket of the two elements�'���� C���� C
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where!��!�"�0�����5�	��� � �!��!�"�0�����5�	��� . The indices are raised and lowered by the metric

diag���� � � � ����. If all the tensors' !�

�� , C��!�"� andC��
�!�"� are restricted to real numbers, then

the relation (3.15) defines the maximally noncompact real form������.
In the above algebra, generators for the Cartan subalgebra%��%�!" and generators��

! , ��!",
���!" may be defined by introducing
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respectively. Writing
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the����
, �����

, ������
are positive and negative root generators of������, and the��! , ���!" are

������ roots given by

��! � e� � e! �� � 	 �� � � ���
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in a hyperplane of� � orthonormal to
��

��� e�, wheree� � e! � Æ�! is a orthonormal basis of� �

(see appendix A.1, especially (A.3) and (A.6)).

��� ��� ��	 �	
 �
�

�	
�

���� ��� ���

Figure 3.1:�� � ��� decomposition. The root surrounded by a circle is the lowest root added to
the Dynkin diagram. For the simple root convention see (3.17).

Take

%� � ���
���� �

���
� � (total 8)
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as the basis of the Cartan subalgebra
 � �%� � 	 � �� ���� �� of ������. The commutation
relations of the������ generators are then from (3.15) given by (repeated indices arenot summed
over unless stated explicitly)
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Within this algebra, the������ subalgebra may be identified by selecting the proper roots within
������ root space. Using (A.6), it is generated by

B����� �
����� ������� �

��
�! � �

���!�"� �����!�"� (3.19)

Before addressing the56 representation of this algebra, it shall be shown, as promised, how������
is embedded.

Realization of ������

Quite parallel to above, the Lie algebra�� is known to allow a�	 grading and decompose into
the adjoint and two fundamental representations of its maximal subalgebra����� (see figure 3.2):

�	 � �� �� ��

This implies a realization parallel to above by traceless matrices' !�

�� , � � 	�� �� � � and two
vectors C�� and C��

�
, � � 	� � � with similar commutation relations. As discussed in appendix A.1,

��������

Figure 3.2:������ � ��	 decomposition. The root surrounded by a circle is the lowest root added
to the Dynkin diagram. For the root convention see (2.17).

������ can be embedded into������ by choosing any�� subalgebra. Consider the�� subalgebra
displayed in figure 3.3 (for the������ roots remember (3.17)). The�� roots are
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������ � ��

��	


��������

���

Figure 3.3: Construction of������: �� Subalgebra of������

$�� � �������������������� � 	 � ������!�� � 	 � � � ����

The corresponding������ generators are given by, following [61]
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It is then easy to shown that the commutator relations (2.18) follow from (3.18).
For the realization parallel to (3.15), consider two triples�'����  C����  C

�
����, �'����  C����  C

�
����.

Their bracket gives rise to a new element of������ specified by�'�	��  C�	��  C
�
�	��, and may be

derived easily from 3.15 by putting C�� � C���� 
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where!��!�"� � �!��!�"� , and indices are raised and lowered by the metric diag����������.
Again, if all ' !�

�� ,  C�� and C��
�
are restricted to real numbers, the relations (3.20) define the maxi-

mally noncompact real form denoted by������.
The generators%�, ��, ��� , ��

! may be simplified to be
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in this notation.
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3.1.4 The �� Representation of ������

In [20], a main key while exhibiting this hidden������ structure was the fact that������ has the

above56 dimensional irreducible representation, consisting of two antisymmetric tensors

���! � ����! ,

that could be identified with the index structure carried by the electric and magnetic fields of the
theory. The fact that this representation is the uniqueminimal irreducible representation of������,
that is, all weights are mapped into each other by the Weyl group, and no zero weights exist, will
be of interest when discussing U-duality.

For a reduction to� � � discussed later, the coset matrix� � carrying the scalar matter fields in
� � � will need to be expressed as exponential of a sum over Lie algebra generators. Furthermore,
many calculations will become simple when a Cartan subalgebra and the corresponding positive
and negative weight generators are identified within (3.9).

For this, the56 representation of������ is constructed as representation of highest weight [1
0 0 0 0 0 0] and the corresponding representation matrices of the generators of������ are given,
and a transformation of the representation space basis is found such that the algebra is put into
the form (3.9). Normalizations and conventions follow appendix A.1 and the preceding section.

��� ��� ��	 �	
 �
����

�	
�

��� ��� ��	 �	
 �
�

����

�	
�

���� ��� ���

Figure 3.4: Decomposition of������ � ������ ������ and������ � �����

The weights of the56 representation are given in table 3.1. Corresponding basis vectors need
to be normalized in representation space.

This shall be done in the following way: The56 is minimal, thus a simple root is subtracted or
added to a weight at most once (see appendix A.1.2), and all subspaces corresponding to weights
� are of dimension one. One may then choose, if. is a simple root and�� � ��., where����
are weights,

C� � ���C
�� � C�

�
� ����C

��

In this theory, gauge fields and charges again correspond to basis vectors of specific weight.
Normalizations in the representation space thus corresponds to charge normalizations.

If for the basis�C�� the lattice��C�� is considered, the above choice corresponds to an
admissible lattice, that is, a lattice that is invariant with respect the�-form  � of the universal
enveloping algebra, see A.1.2. That the charges can be chosen to live on such a lattice will
enormously simplify the definition of discrete U-duality.

The above normalizations shall now be specified further by considering a basis easily acces-
sible: a basis within the adjoint representation of������.

The adjoint representation of������ decomposes with respect to its maximal������ 
 ���
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subalgebra (see figure 3.4) as

�	� � �������� ������� ����� (3.21)

The133 corresponds to the������ subalgebra of figure 3.4 generated within������ by

%����� �
����� ������� �

��
�! � �

���!�"� �����!�"�

and one56 of the above decomposition is carried by the positive root generators in the coset
������ � ������, corresponding to the roots

� � ������!�� ����� �����! � �����
where� � �	��� � �, while the other is carried by the corresponding negative root generators. The
decomposition (3.21) is a�-graded decomposition with respect to the simple root��� of ������,
that is, the roots. 	 ������ have
�

���
� �, the roots. 	 � satisfy
�

���
� � and��� corresponding

to the��� factor in (3.21) has
���
���

� �.
The roots may be associated with their������ weights given for% 	 �%��%���� by

�%���� � � 4��8 ��� � �� 	 �

as in table 3.1. Defining the representation matrices for the simple positive and negative root
generators in������ by

����� � ��� � � E������!���� � ." 	 *�
��
� � �� 	 ��

the corresponding entries may be read off from table 3.1 using (3.18). They are given in table 3.2.

To obtain all generators of������ in this representation, the procedures presented in appendix
A.1 were used to generate the adjoint of������ as a whole, and the�	��	 submatrix correspond-
ing to the adjoint action of the generator in the������ subalgebra on the generators with roots in
� was extracted (the result may be verified by hand using table 3.1). Consider
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with B���, B� ���, ����! , ������, ����!�", F����! , F����, F����!�" 	 � . '�
��
� is given in table 3.4.
To get'�
��
� in the form (3.9), the��� subalgebra (figure (3.4)) in (3.9) and table 3.4 may

be compared. For this, the representation (3.9) is conveniently generated on the computer. The
correspondingMaple code is given in figure 3.3.

The resulting relations between the above parameters and the�
�!
��

and)���!�"�0 may be summed
up by defining
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# �
��
� weight level ������
��� ��� ��� ��� ��� ��� ���� root

1 1 0 0 0 0 0 0 0 ���

2 -1 1 0 0 0 0 0 1 ���

3 0 -1 1 0 0 0 0 2 ���

4 0 0 -1 1 0 0 0 3 ���

5 0 0 0 -1 1 0 1 4 �	�

6 0 0 0 0 -1 1 1 5 �
�

7 0 0 0 0 1 0 -1 5 ��
��

8 0 0 0 0 0 -1 1 6 ���

9 0 0 0 1 -1 1 -1 6 ��	��

10 0 0 0 1 0 -1 -1 7 ��	
�

11 0 0 1 -1 0 1 0 7 �����

12 0 0 1 -1 1 -1 0 8 ���
�

13 0 1 -1 0 0 1 0 8 �����

14 0 1 -1 0 1 -1 0 9 ���
�

15 0 0 1 0 -1 0 0 9 ���	�

16 1 -1 0 0 0 1 0 9 �����

17 1 -1 0 0 1 -1 0 10 ���
�

18 0 1 -1 1 -1 0 0 10 ���	�

19 -1 0 0 0 0 1 0 10 �����

20 -1 0 0 0 1 -1 0 11 ���
�

21 1 -1 0 1 -1 0 0 11 ���	�

22 0 1 0 -1 0 0 1 11 �����

23 -1 0 0 1 -1 0 0 12 ���	�

24 1 -1 1 -1 0 0 1 12 �����

25 0 1 0 0 0 0 -1 12 ����

26 -1 0 1 -1 0 0 1 13 �����

27 1 0 -1 0 0 0 1 13 �����

28 1 -1 1 0 0 0 -1 13 ����

29 -1 1 -1 0 0 0 1 14 �����

30 -1 0 1 0 0 0 -1 14 ����

31 1 0 -1 1 0 0 -1 14 ����

32 0 -1 0 0 0 0 1 15 �����

33 -1 1 -1 1 0 0 -1 15 ����

34 1 0 0 -1 1 0 0 15 ���	

35 0 -1 0 1 0 0 -1 16 ����

36 -1 1 0 -1 1 0 0 16 ���	

37 1 0 0 0 -1 1 0 16 ���


38 0 -1 1 -1 1 0 0 17 ���	

39 -1 1 0 0 -1 1 0 17 ���


40 1 0 0 0 0 -1 0 17 ����

41 0 0 -1 0 1 0 0 18 ���	

42 0 -1 1 0 -1 1 0 18 ���


43 -1 1 0 0 0 -1 0 18 ����

44 0 0 -1 1 -1 1 0 19 ���


45 0 -1 1 0 0 -1 0 19 ����

46 0 0 0 -1 0 1 1 20 ��	


47 0 0 -1 1 0 -1 0 20 ����

48 0 0 0 -1 1 -1 1 21 ��	�

49 0 0 0 0 0 1 -1 21 ���

50 0 0 0 0 -1 0 1 22 ��
�

51 0 0 0 0 1 -1 -1 22 ��


52 0 0 0 1 -1 0 -1 23 ��	

53 0 0 1 -1 0 0 0 24 ���

54 0 1 -1 0 0 0 0 25 ���

55 1 -1 0 0 0 0 0 26 ���

56 -1 0 0 0 0 0 0 27 ���

Table 3.1: The56 Representation of������
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i j ���
���� i j ���

���� i j ���
���� i j ���

	���
1 2 1 2 3 1 3 4 1 4 5 1

16 19 -1 13 16 -1 11 13 -1 9 11 -1
17 20 -1 14 17 -1 12 14 -1 10 12 -1
21 23 -1 18 21 -1 15 18 -1 18 22 -1
24 26 -1 22 24 -1 24 27 -1 21 24 -1
27 29 -1 25 28 1 26 29 -1 23 26 -1
28 30 1 29 32 -1 28 31 1 31 34 1
31 33 1 33 35 1 30 33 1 33 36 1
34 36 1 36 38 1 38 41 1 35 38 1
37 39 1 39 42 1 42 44 1 44 46 1
40 43 1 43 45 1 45 47 1 47 48 1
55 56 -1 54 55 -1 53 54 -1 52 53 -1

i j ��	

��� i j ��


���� i j ��	
����
5 6 1 6 8 1 5 7 1
7 9 -1 9 10 -1 6 9 -1

12 15 -1 11 12 -1 8 10 1
14 18 -1 13 14 -1 22 25 1
17 21 -1 16 17 -1 24 28 -1
20 23 -1 19 20 -1 26 30 1
34 37 1 37 40 1 27 31 1
36 39 1 39 43 1 29 33 -1
38 42 1 42 45 1 32 35 1
41 44 1 44 47 1 46 49 -1
48 50 1 46 48 1 48 51 1
51 52 -1 49 51 -1 50 52 -1

Table 3.2: Matrices for the������ Simple Root Generators in the56 Representation

The transformed representation space base is given by

�� �
�
� �����!��
���� � ���

���! ������
�
�

! � �
�


���! � 


���� � ����! � �����
�
� (3.23)

Then

�������� �! � �� � ! � � �� �)������ �! � �� � ! �� � � (3.24)

with

! � � � � ! � ! �� � ) � !

exactly reproduces the action of (3.9), and therefore, the adjoint action on� may be used to get
the56 representation8�� of ������ as subalgebra of������.



52 3. U-duality in M-theory

# e7 in (Lambda, Sigma) representation
#
#
# Cremmer, Julia, NPB 159 p.200-204
#
#
# e7 parameters
S := array(1..8,1..8,1..8,1..8,antisymmetric):
L:=array(1..8,1..8):
Sst:= array(1..8, 1..8, 1..8, 1..8,antisymmetric):
eps:=array(1..8,1..8,1..8,1..8,1..8,1..8,1..8,1..8,
antisymmetric):

eps[1,2,3,4,5,6,7,8]:=1:
for i1 from 1 to 8 do
for j1 from 1 to 8 do
for k1 from 1 to 8 do
for l1 from 1 to 8 do

Sst[i1,j1,k1,l1]:=1/24*sum(sum(sum(sum(
eps[i1,j1,k1,l1,r1,s1,t1,u1]*S[r1,s1,t1,u1],
r1=1..8),s1=1..8),t1=1..8),u1=1..8):

od:
od:

od:
od:
# representation space
x:=array(1..8,1..8,antisymmetric):
y:=array(1..8,1..8,antisymmetric):
dx:=array(1..8,1..8,antisymmetric):
dy:=array(1..8,1..8,antisymmetric):

# transformations
for a from 1 to 8 do
for b from 1 to 8 do
dx[a,b]:= sum(-L[c,a]*x[c,b],c=1..8)+
sum(-L[c,b]*x[a,c],c=1..8)+
sum(sum(Sst[a,b,c,d]*y[c,d], c=1..8),d=1..8):

dy[a,b]:= sum(L[a,c]*y[c,b],c=1..8)+
sum(L[b,c]*y[a,c],c=1..8)+
sum(sum(S[a,b,c,d]*x[c,d], c=1..8),d=1..8):

od:
od:
e7:=matrix(56,56):
# representation matrix
In1:=0:
for i from 1 to 8 do
for j from i+1 to 8 do
In2:=0:
In1:=In1+1:
for k from 1 to 8 do
for l from k+1 to 8 do
In2:=In2+1:

e7[In1,In2]:=coeff(dx[i,j],x[k,l]):
e7[In1,In2+28]:=coeff(dx[i,j],y[k,l]):
e7[28+In1,In2]:=coeff(dy[i,j],x[k,l]):
e7[28+In1,28+In2]:=coeff(dy[i,j],y[k,l]):

od:
od:

od:
od:

Table 3.3:Maple Code:56 Representation of������ as given in [20]
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3.1.5 The � � � Scalar Sector Revisited

Assuming the internal vielbein8 ��
�� to be of upper triangular shape, the relation (3.22) may now

be used to reexpress the field� ��� by the embedding the algebra������ into ������. From the
results of [20] (3.9), (3.10), (3.11), (3.12), one gets, using (3.18),(3.19), (3.22), (3.23)

���� � ���

�
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�

����

��
�
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�����������!�����"� �
���!�"

�

 � (3.25)

where the56 representation is given by the adjoint action on the basis

�� �
�
� �����!��
���� � ���

���! ������
�
�

of the������ algebra generated by

B����� �
����� ������� �

��
�! � �

���!�"� �����!�"

as stated above. This relation will allow to directly and easily address the further compactification
to � � �. 8��� ����

is the submatrix of8 ���� with columns and rows��
 �� � � � �.

3.2 U-Duality in � � �

The scalar part of the action is invariant under

���� � B�
������� � 	 ������� B�
� 	 �����

where the local����� is used to restore the parameterization of coset space.
Turn to the vector Lagrangian. A global symmetry has to act as

����� � �������� � ���� � ������ � 	 � � �������

Not the full������ is a symmetry of the Lagrangian, since it would have to preserve�. It follows

that only����" in (3.9) can be nonzero, the action is invariant under the����� subgroup in figure
3.4. However, the equations of motion of the theory show the full������ invariance, since the
above symmetry rotates equations of motion and Bianchi identities. This is the classical (hidden)
duality symmetry of the theory, and U-duality is a discrete subgroup of this symmetry.

To define U-duality as in [56], consider charges

� �

�
�
�

�
� � �

�

��

�


�� � �
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��
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It has been argued in [56] that all magnetic and electric charges exist. However, this is ac-
tually clear from the basis by noting that the56 representation of������ is minimal. Hence, all
weights of the representation and the corresponding basis vectors in the representation space,
are rotated into each other by the Weyl group of������. If a solution with one nonzero charge
exists, solutions with a single charge carried by all other gauge fields may be obtained. The dis-
cussion in [56] led to identify such states with higher dimensional branes compactified to� � �,
as mentioned in the introduction.

The DSZ condition now reads

�� � � � � �� � 	 ��

Hence it breaks the continuous symmetry to a discrete subgroup���������, demanding inte-
ger shifts on the lattice defined by the basis vectors (3.23). Thus, the matrix representation of
��������� consists of matrices with integer entries. As discussed in the first chapter, this group
has been proposed to be a unified duality symmetry of type II string theory in [56], called U-
duality for short, unifying strong-weak coupling dualities and target space dualities and putting
all 70 moduli of the theory, including the string coupling constant, on the same footing. The
subgroups corresponding to T- and S-duality are discussed below after introducing generators for
the discrete group.

3.2.1 Discrete Subgroups of Lie Groups

The question what proper generators of the above group denoted by��������� are shall be ad-
dressed now. This will be done in a general context by addressing discrete subgroups���� of
the Lie groups� acting on admissible lattices, since this allows to cover a wider class of dis-
crete groups, including��������� and���������. For the necessary Lie algebra conventions and
notations, the reader is referred to appendix A.1.

Definition and Remarks

Let � be a complex simple Lie group, and� be the Lie algebra of�. Consider a nontrivial
representation8 of � in an irreducible module, , and let� be the set of all weights in, .
Demand that all nontrivial weights of, are transformed into each other by the Weyl group. Then
all nontrivial weights are of multiplicity one, and the representation, is basic.

Actually, if one is interested in string dualities, it is enough to consider only this particular
class of representations, since actually all the representations relevant to string duality symmetries
are of this type. E.g., the248 of �� is basic, while the56 of �� is minimal.

Choose a basis�C�� 	 , such that the lattice,� � ��C�� forms an admissible lattice, that
is, a lattice stable under the action of the�-form  � of the universal enveloping algebra of� (see
appendix A.1.2).

Definition. Thediscrete group ���� is defined by

���� � �� 	 � � 8��� stabilizes,���

An admissible lattice fixes in which basis of, the entries of the elements of���� are restricted
to integer values. For example,

������� �

��
( )
� �

�
� (� )� �� � 	 �� (�� )� � �

�
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stabilizes the admissible lattice

�

�
�
�

�
� �

�
�
�

�
�

In other generic basis’ of, , ������� is not represented as a group of matrices with integral
entries. In� � � duality in general, each���� gauge field corresponds to different weight space
and one can always normalize the charge lattice so that it may coincide with an admissible lattice.
Therefore this definition of���� and the concept of discrete duality groups agree.

Discrete Subgroups in Basic Representations

Let � be a complex simple Lie group, and� be the Lie algebra of�. Fix a Cartan subalgebra

of �, let$ be the set of roots of� relative to
, $� the set of positive/negative roots and* the set
of simple roots.

Consider a nontrivial representation8 of � in an irreducible module, of highest weight��,
and let� be the set of all weights� in , , and demand that, is basic, that is, all nontrivial weights
are transformed into each other be the Weyl group. All nontrivial weights are then of multiplicity
one. Choose a basis�C�� C�� � and demand that the lattice,� � ��C� ��C�� � is admissible. The
following proposition shall be proven:
Proposition.

(i) If , is a basic module of� and� does not contain zero weights,���� coincides with the
group generated by

�������. 	 ��
denoted by���� in the following.

(ii) If , is a basic module of� with zero weights in�,

���� � ����

if the same is true for the direct subgroups of type������ ����� and����� in �.

Proof.

Basic representation without zero weights. All corresponding representations are fundamental
representations [69, 57]. The proof is conducted via reduction by rank: It will be shown that, if
� 	 ����, one has an element�� with � � I���I�, I�� I� 	 ����, obeying�� 	 ����� with
�� � � and rank�� D rank�. The representation of� decomposes again into representations
of �� of same type, and thus, by repeating these operations, one may reduce any� to aI���I�

where�� 	 ����� in the fundamental representation, implying���� � ����.
Let .� be the simple root dual to the highest weight�� of , . Let$�

� be the set of positive
roots orthogonal to4�: $�

� � �. 	 $���4�� .� � ��.
An order may then be defined for the positive roots (denoted byD) such that. D / if . 	 $ �

�

and/ 	 $� � $�
�. Similarly, for�.��/ 	 $�

�, we define�/ D �. if . D /. Within $
��

and$� �$
��, fix an order of the simple roots and order the remaining roots by their height with

respect to the simple roots, that is, if height�.� D height�/�,. D / and�/ D �. for .� / 	 $ �
�

or.� / 	 $� �$�
�.

It is known that any� 	 � can be written in the form (Birkhoff decomposition) [75]

� �
�

����
����������� � ���� �

�
����

��������� (3.26)
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with ���� being an element

���� �
�

�

����6��� 6� 	 � � /� 	 $�� ���6� � ����6��� �����6������ ����6����

Let the multiple products in (3.26) be ordered with respect to the above order among the positive
roots. Consider

8���C�� �


���

�8��������C�� �8�������� 	 ��

If �8��������� � �, let �� � ������ � �������� �������� �������� 	 ����, . 	 $�.
Then8���� sendsC� to a vector proportional toC�����, where-� is the Weyl reflection with
respect to.. Since any weight of8 is transformed to the highest weight by the Weyl group, one
can find some� 	 ���� (written as a product of��’s) such that8���C� " C�� for any weight�.
Thus, assume�8��������� �� �.

Since8����C�� � � for any positive root., and since8�������� �� � only if � � ��

for any negative root. and any weight�, the assumption�8��������� �� � implies that���� in
(3.26) stabilizes the highest weight��, i.e. 8������C�� � �C�� for some constant� 	 � .

The fact that the representation is basic without zero weights implies that���� .
 	 ������
for . 	 $. Thus the first column and row of the matrix8��� are from (3.26)

�8�������� � � � 8
�
� �

�� �� ��
�� 
 �������

�


����

	 ��

�8������� � � � 8
�
� �

�� �� ��
�� 
 �����

�


����

	 ��

Consider first the case when� is simply laced. For simply laced algebras, any. 	 $� � $�
�

cannot be decomposed into a sum of two other such roots (consider���� .
). For���� � . 	
$� �$�

�, one therefore has

�8��������� � � 	 ��

�8�������� � ���� 	 ��

�8�������� � ����� 	 �� (3.27)

If � is a weight but cannot be reached from the highest weight�� by a single Weyl reflection,
then�8�������� (�8��������) is expressed as� times a polynomial of��� (��).

Suppose that�8�������� �� �, � � �� � . for the minimal. 	 $� � $�
� with respect

to this order. Parallel to������� in the previous section, define6� � ����� 	 ����, and
�� � 6��� 6��6

��
� 	 ����. Then for� 	 � one has

8�6������������ � #�8��������

8�6����������� � ��8��������� ���8���������

One may always find an integer� such that�8�6����������� � D ��8���������. Therefore, by
repeating this operation, one may arrive at an� � such that�8�������� equals 0 (Euclidean algo-
rithm).

Assume next that there exists a/ 	 $��$�
� such that�8�������� � � for all � � ���.,

. D /, and�8����������� �� �. Then applying a similar operation using�� , 6��, we have
8�I���������� � � with I� 	 ����.
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Since any. 	 $��$�
� cannot be decomposed into a sum of two other such roots, the order

in $� �$�
� ensures that the inductive assumption�8�������� � � for all � � �� � ., . D /

can never be violated by the operation for�� � /. Thus, one arrives at8�I���������� � � for
all . 	 $� �$�

� for some elementI� 	 ����.
The Birkhoff decomposition ofI�� may be written as

I�� �
�

�� ��
������������ � J��� �

�
�� �

����������� (3.28)

Therefore, for any weight� �� ��, we have8�I������� � � and, by the condition that the
determinant of the representation matrix equals one,8�I�������� � ��. Take�� � I��, and if
8�I�������� � ��, consider�� � ���I�� for . 	 $� �$�

� to have8��������� � �.
One then arrives at

8�������� � ��

8������� � ��� 	 ��

8������� � ��

where. 	 $� �$�
�. ThusI� �

�
�� �� �� ����������� (where the product is arranged in

reverse order with respect to the one in (3.28) ) belongs to����, and

8�I��I������� � �

8�I��I������ � ��

8�I��I������ � ��

for all the weights� �� ��. Consider a Birkhoff decomposition forI��I�. The elements�
contained in this decomposition that correspond to roots. 	 $�$ � are restricted to be diagonal
by the fact that they stabilize the highest weight. On the other hand, diagonal elements are in
%, but% � % � �����%���, where% � corresponds to the Cartan subgroup of the group�� with
algebra�� and roots$�. But 8�I��I������� � � implies � � �. Therefore,I��I� belongs
to the subgroup�� � � with Lie algebra�� whose simple roots are*�� � *� � .�, and the
representation8 of � is again decomposed into a direct sum of representations of� � of same
type. The reduction chain therefore ends with fundamental representations of�����, proving the
proposition.

As illustration, the corresponding chain for the56 representation of������ is given in figure
3.5.

If � is not simply laced, the same arguments apply, except for the modification in the consis-
tent order of operations. Some roots in$� � $�

� can be written as a sum of two roots (sum of
three roots for��) in $� � $�

� if � is not simply laced, and (3.27) gets additional terms of c
times polynomials in the corresponding��’s (���’s). The reduction is performed as above, but
by changing the order of operations, since the order induced by ordering the roots with respect
to their height fails to ensure consistency. Such orders however always exists. If. decomposes
into two roots, that is,.� /� * 	 $� �$�

�, . � / 
 * and/ D *, a consistent order is given by
setting the��� � /���� entry, then��� � .���� and��� � *���� entry to zero.

For��, the consistent order is illustrated in appendix 3.2.1. Since its (unique) basic represen-
tation involves a zero weight, representation with such weights will be discussed first.

Basic representations with zero weights. The only basic representations of this type are those
where the nontrivial weights in� correspond to the short roots of� [69]. They are fundamental
representation, with the exception of the adjoint of�����. Suppose first thatthe representation
is fundamental.
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�� � ��

10�8+1+1

�� � ��

3�2+1
�� � ��

3�2+1
�	 � ��

4�3+1
�	 � ��

4�3+1

�� � ��

3�2+1

�� � ��

16�10+5+1

��: 8

�� � �	

8�4+ ��

�	: 4

��: 10

10�(2,3)+(1,3)+(1,1)
�� � �� ���

��: 5

�� � �	

5�4+1

��: 3��: 2 ��: 2��: 3

�� � ��

��: 2

3�2+1

��: 2

��: 56

�� � �


�
 � ��

27�10+16+1

��: 10 ��: 16

��: ���� � ��: (2,3)

��: 27 ( ���)

56�27+ ���+1+1

�	: 4 (��)

Figure 3.5:���������: Reduction Chain for the56 Representation
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For a proof of the above proposition, a reduction by rank parallel to the one described above
holds, but modifications for the entries�8��������� and�8���������� are needed., is a subspace
of the adjoint module, and the representation matrices for' � ����K �may be given by the action

����adK ��C�� � 8�'�����C
�� � ' 	 ��

,� is admissible, and without loss of generality one may setC�
�

� ��� , since the lattice is
defined only modulo a multiplication of the highest weight vector with a scalar. Furthermore, the
%�� with .� 	 * � � are lattice vectors in,�1 . Again, consider the Birkhoff decomposition
(3.26) and assume with the same reasoning as above that�8��������� �� � (if �8��������� �� �
is the only nonzero entry, multiply with a suitable������� 	 ���� and proceed as above) and
therefore8������C�� � � C�� , � 	 � . The first column and row are then given by

�8�������� � � � 8
�
� �

�� �� ��
�� 
 ������ 
 �

������
������

��

�


����

	 ��

�8�������� � � � 8
�
� �

�� �� ��
�� 
 ���� 
 �

�����
�����

��

�


����

	 ��

For�� � � � . 	 $� �$�
�,

�8��������� � � 	 ��

�8�������� � ���� 
 � � � 	 ��

�8�������� � ����� 
 � � � 	 ��

parallel to above, where the� � � are nonzero only for non-simply laced groups, where an. 	
$� �$�

� may decompose into roots/� 	 $� �$�
�, and contain terms of type

�
�

�

���

�
�
�

�

����

�
� . �



�

/�� 	 � �� .� /� 	 $� �$�
��

parallel to above. If� is a weight but cannot be reached from the highest weight�� by a single
Weyl reflection, then�8������� (�8�������) is expressed as� times a polynomial in the corre-
sponding��� (��). Furthermore, one has

�8��������� �  :� ���� 
 � � � 	 ��

�8��������� � :� ����� 
 � � � 	 ��

�8���������� � #������� 
 � � � 	 ��

�8���������� � #�������� 
 � � � 	 �� (3.29)

where the dots contain terms as above. Since����� � ��� � � �%�� one has :��:� 	 �.
The reduction is then carried out exactly as in the case when� does not contain zero weights.

Choosing a suitable order of operations, one arrives at a� � of the form
1It is known [57], if a highest weight vector� has been fixed, that any module	 of a Lie algebra� contains a

minimal and a maximal admissible lattice. The minimal lattice is given by��� (see appendix A.1.2), containing the

��

in the above case, and any admissible lattice in	 contains this lattice. The maximal lattice is dual to the minimal
lattice of the dual representation space	 �. Any admissible lattice is contained in this maximal lattice. For example,
for the adjoint module of���, the basis of the minimal admissible lattice is given by���� 
�� ����, while the basis
of the maximal admissible lattice is���� ���
�� ����.
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�8���������� � 
� 	 ��

�8���������� � �:� � ���� 	 ��

�8����������� � #� ������� 	 ��

Consider�6���������
�, � 	 � . This yields

�8��6����
�����

�������� � 
�������
� 	 ��

�8��6����
�����

�������� � �:��� ��� ��� ������
�� 	 ��

�8��6����
�����

��������� � #��
 ��� ���� 
��� ������
�� 	 ��

Using��� � �5: � �5�� � 	 ��: 	 �:�� 	 �, one gets

� ������
� �

�

:��
��

��
 ��� ���� 
��� ������
�� �

�

:��
�:�
����

and one can always find an integer� such that

�:�
��� D ����

and repeat this operation until aI���, I� 	 ���� is reached with�8�I����������� � �, imply-
ing �8�I���������� � � (Euclidian algorithm).

Thus, reduction by rank holds also for basic representations including zero weights. However,
the endpoints of the corresponding chains need further study. If the endpoint corresponds to basic
representations with zero weights of�����, ����� or �����, further study is needed.

If the reduction chain ends at a group of rank two in a representation whose highest weight is
the sum of the two simple roots (5 of ����� or 8 of �����), then no further reduction to rank one
is possible. Consider� � I���I�, I� 	 ���� with �� 	 ����� (�� 	 �H���), and8���� acts in
the5 (8) plus singlets on,�. One may then apply�6���

��� to reach�� � I��I�, I� 	 ����,
where� is an element of�� with 8���������� � ��,  �� being the highest weight of the5 (8)
representation. But still such element may exist that are not in����. If the reduction chain ends
with �H��� acting in the adjoint representation plus singlets, e.g.���0������� is a matrix with
integral entries, but not in����.

However, if the above representations are accompanied by further basic representations in,�
that do not involve zero weights, the latter fix the maximal set of integral representation matrices
on ,�. In these cases, one therefore still has���� � ����. This is the case for the adjoint
representations of������ (and������), where the endpoints of the reduction chain corresponds
to �����, but adjoint representation are accompanied by fundamental ones. The corresponding
chains are given in the figures 3.6, 3.7.

Finally, considerthe adjoint of �����. Here, one can again achieve by the same reasoning that
�8��������� � � and�8��������� � � for � �� ��, and�8���������� � � where�� � I��I��
andI�� I� 	 ����. One may however still have elements of�5�� in the normalizer contained
in the Birkhoff decomposition of� � of the form��� ��%�� �%�����, where.�� .��� correspond
to the endpoints of the Dynkin diagram of���. However, this elements acts as identity times a
factor on each sub-lattice of�� � �H�� � �� (the next reduction step) in,�, and therefore, the
reduction may be carried out as before, and� � �.

This completes the proof of the proposition.�
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��: 56

��: 248

248�133+56+56+1+1+1

��: 133

�� � ��

Figure 3.6:���������: Reduction Chain for the Adjoint Representation

Illustration: �����

Consider the algebra�� with conventions as in 2.4.2. Consider the (unique) basic representa-
tion 7 with highest weight�� � ��� �� in Dynkin components. Choose as admissible lattice the
sub-lattice of the adjoint representation with weights corresponding to the short roots (weights
3,4,6,8,10,11,12 in figure A.9, roots numbering as in this figure). The corresponding represen-
tation matrices are sub-matrices of the one given in figure A.10. With the above��, one has
$� � �.��.

A general group element� admits a Birkhoff decomposition (3.26). Suppose8�������� �� �,
else, if8������� �� �, multiply with the corresponding�� for nontrivial� or with ���6�� for the
zero weight to get8�I�������� �� �, I� 	 ����.

The first column8������� in the7 representation is then given by

�
���������

�
� ��
�� �	

� �� � � �� �	
�� �� 
 � � �� �� � � ����

� �	
� �� � �� �	 ��

� �� �� � � �	 �� 
 � ����
� � � � �� �	 ��

�
								


Note that.� � .	 
 .�, .� � .� 
 .	 
 .� � �.� 
 .	 and.� � .	 
 .�, as the above
Birkhoff decomposition indicates.

This implies operations��6���
���� in the order.�, .�, .�, .�, .	 to set all8��������� ��

�� consistently to zero, that is, without violating a zero of a previous operation.
Consider the resulting group element given byI���. Its Birkhoff decomposition implies

�8�I���������� � ��. If �8�I���������� � ��, consider e.g.�8������
�I���������� � �.

The Birkhoff decomposition for the first row then implies� � I���I� with �� 	 �� � �����
with Lie algebra corresponding to the root.�. The7 decomposes into two fundamental represen-
tations plus three singlets with respect to��, as can be read off from the weights in figure A.9.
Thus,����� � ����.
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133�66+32+32+1+1+1
�� � �


(1,1)+(1,1)+(1,1)

28�(2,2,2)+(3,1,1)+
(1,3,1)+(1,1,3)

��: 28

�	 � ��

15�(1,6)+(2,4)+(1,1)
�� � �� ��	

�
 � ��

32�15+15+1+1

��: (3)

8�6+1+1
�� � �	

�� ���: (2,8)

�� � ��: (2,2) �� � ��: (2,2)

�� � ��

��: (2)

66�(1,28)+(2,8)+(2,8)+(3,1)+
�
 � �� ���

�� � �� � �� ���

(1,3,1)+(1,1,3)
(2,2,2)+(3,1,1)

�	: 6

6�(1,1)+(1,1)+
�	 � �� ����	 � �� ���

(2,2)(2,2)
6�(1,1)+(1,1)+ 4�(1)+(3)

3�(1)+(2)

��: 15 ( ���)

�� � �� � ��:
�	: 6 �� � �	: (2,4)

��: 66

��: 133

��: 32

Figure 3.7:���������: Reduction Chain for the Adjoint Representation



64 3. U-duality in M-theory

Groups over �

In this section, an abstract definition of discrete subgroups of Lie groups [62, 68, 69] using group
schemes over� due to Chevalley [17] is reviewed. The resulting groups are analogous to the
analytic definitions given above and might, by their connection to more powerful algebraic defini-
tions, proof useful for further study of dualities symmetries and their associated groups, especially
in lower dimensions.

Consider a connected semi-simple algebraic group� of automorphisms on a vector space,
over� . Let � be the corresponding Lie algebra and consider the universal enveloping algebra 
as introduced in appendix A.1.2. is a Hopf algebra over� [62] with diagonal map� + �
 �

� � 
 �� 
, co-unit! + !�
� � � and antipode� + ��
� � �
 for 
 	 �, and the�-form  � is
a Hopf algebra over�.

A Hopf algebra���� over the group� may then be as follows [62]: Consider an admissible
lattice,� in , and fix a basis�C��with dual basis�J�� in , �. Define thenF�!�I� � �IC�� J!
 for
all I 	  �. TheF�! then generate a Hopf algebra���� over�, and the set of ring homomorphisms
of ���� into �

�� � Hom��������

has a group structure, induced by the Hopf algebra structure of����. �� is called thegroup over
� associated with�.

A subgroup' of � induces the corresponding subgroup'� of ��. For each root. 	 $�,
define a subgroup�� � ����� ���. The elements in the union of��

�
are calledfundamental

unipotents, and the subgroup of�� generated by all��
�

will be denoted by�.
In [69], it is proven that�� and� agree if the same holds for the subgroups�����, �����,

����� by considering basic representations and reducing the problem with respect to the rank.

3.2.2 � � � U-duality Group

The above considerations directly apply to the maximally noncompact real forms, since the cor-
responding Lie algebras are in the above normalization. Thus, one may now identify U-duality
with the group generated by

2
��
�! � �����

��
�!��

�	 D �� � 2
��
�! � �����

��
�!��

�	 G ���

2 �
��� � ������

���� � 2 ����� � ������������

2
���!�" � �����

���!�"� � 2 ����!�" � ���������!�"� (3.30)

or alternatively

2
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�! � �����

��
�!�� � �

��
�! � �������!��� �����

��
�!� ������

�!
��
� �	 D ���

2 �
��� � ������

���� � ��
��� � ������������ ������

���� �������������
2
���!�" � �����

���!�"� � �
���!�" � ����������!�"� �����

���!�"� ����������!�"� (3.31)

in the representation��, where the� generators are known to carry a representation of the Weyl
group modulo�� (see e.g. [63]).

Two things should be noted: on the basis�, the actions of the� generators are Weyl reflec-
tions and may therefore be easily given. The action of the2 generators is significantly simplified
by the fact that the56 representation is minimal. This implies that the square of all Chevalley
generators vanishes on this basis, and this the action is again easily read off from the basis�.

This discrete group was constructed by compactifying the theory to� � � and using a suitable
quantization condition. For compactifications to higher dimensions, the symmetry groups of the



3.2. U-Duality in� � � 65

theory are direct subgroups (see chapter one), and the corresponding U-duality groups are given
by their embeddings into the discrete subgroup constructed here.

This is simplified enormously by noting that the discrete subgroup found is actually represen-
tation independent. Hence the notion of the above generators is representation independent, and
the��������� etc. U-duality generators follow directly from truncating the Dynkin diagram and
identifying the corresponding subsets of generators.

Note that, apart from this fact, the symmetry groups in higher dimensions all act in minimal
representations, which can be read off explicitly from the basis (3.23). Actually, in this sense, all
U-dualities follow from the adjoint representation of������, and this may be taken as indication
that������ is a fundamental underlying structure of M-theory.

The explicit shape of this U-duality transformations shall be used in the next chapter when
discussing solitons. Here, some well known subgroups shall be investigated: T- and S-duality,
along the lines of [87, 89].

3.2.3 T-duality

T-duality shall be discussed in two ways: first, it shall be identified by considering the subset of
fields called NS-NS sector. Then, it shall be discussed by considering the moduli of the internal
torus, parallel to the preceding chapter.

The known superstring theories in ten dimensions have a common low-energy sector whose
spectrum is the same as the NS-NS sector of type II theories. The corresponding low-energy
fields will be called NS-NS fields. In� � �, the fundamental string can carry electric charge with
respect to the U(1) fields in the NS-NS sector ([77], see also chapter one). T-duality is identified
with the subgroup of������ that stabilizes the NS-NS charge lattice.

The NS-NS sector in� � �� consists of the metric, the dilaton and an antisymmetric two-
form. In order to identify the corresponding� � � fields, take the direction�� as compact
eleventh spatial dimensions, and��� � � � � �� as space time coordinates the string propagates in.
Considering (3.1.2), the corresponding� � � fields are

�
�����
�� � 8

��
� � 8

��
��
� ����

��
� �

where indices with tilde run in� � � � �. The� � �� antisymmetric two-form corresponds to the
components

������� ������� ����!�

of the� � �� three-form potential. The� � � U(1) field strengths in the NS-NS sector are then
easily identified using (3.6,3.7,3.2) to be

�%���� ���� �  �
���
���� �  	 	 ��� � � � ���

where it is assumed that the remaining (RR) fields not in the NS-NS sector vanish.
With (3.23),(3.5),(3.13) this corresponds to the representation space basis

���
���� ������� (3.32)

With (3.18) one may verify that the subgroup stabilizing this basis is the obvious��	� 	� subgroup
generated as indicated in figure 3.8. With the above representation basis one may verify that it
acts in the fundamental representation and preserves the metric�

�

�

�
� (3.33)
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e�� e�� e�	 e	
 e
�e��

e	
�

e���

Figure 3.8: Decomposition of������ � ��	� 	�� �����

where1 is the six dimensional unit matrix, as expected. The dual fields

�%���� ���� �  �
���
���� �  	 	 ��� � � � ��

correspond to the basis

�������� �
��
��

and transform in the transpose inverse representation of the above fundamental representation of
��	� 	�, again as expected.

Consider now the full theory. The above split of the basis explicitly reflects the decomposition

������ � ��	� 	�� ������ �

�� � ������ 
 ������

as mentioned in [56]. The���� field strength in the R-R sector transform in the�� spinor
representation of��	� 	�, which is unexpected, since this means that T-duality mixes electric and
magnetic fields in the R-R sector.

Note that one Kaluza-Klein field (corresponding to the compactification� � �� to � � ��)
is in the99 sector and is therefore neglected when determining the basis (3.32). One might
speculate if, including it into the discussion and thereby changing indices 	� �	 in (3.32), a larger
subgroup exists stabilizing this basis, which e.g. could be���� ��. However, this is not the case,
since����� � ��	� 	� is a maximal subgroup and does not allow an extension by rank, and e.g.
no���� �� subgroup exists in������, which, from this side, justifies that the eleventh direction
plays a different r̂ole than the other directions (see chapter one).

However, the eleventh direction does not need to be identified with the coordinate��, but, of
course, any compact coordinate can be chosen as eleventh direction. This yields different bases

���
���� ������� �	 �� �

leading to different��	� 	� subgroups, connected to the above by the Weyl reflection exchanging
e� with e�, generated by��

�.
Turn back to the above��	� 	� subgroup. It shall now be investigated from another perspec-

tive: by looking at the action on the moduli. The action of��	� 	� on the Cartan subalgebra part
of (3.25) can be seen by looking at the submatrix of (3.25) corresponding to the basis (3.32). This
yields a matrix with the8 ��

� $� �
� on the diagonal. The8 ��

� correspond to the radii of the compact-
ification torus transforming under��	� 	�, while$�.� is the volume of the 7-torus including the
eleventh direction. The appearance of the factor$��.� indicates that8 ��� , corresponding to the
radius of the eleventh compact direction, transforms as well under T-duality and is not decoupled,
as was pointed out e.g. in [79]. This transformation therefore mixes strong weak coupling duality
of the type IIB string [83, 4], that corresponds to modular transformations involving8

��
� , with a

transformation of the moduli corresponding to the compactification torus of type II string theory.
Note that the��	� 	� in our formulation is not a symmetry of the action, but only of the

equations of motion.
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3.2.4 S-duality

Turn to the commuting������ � factor in figure 3.8, which is a symmetry of the action (3.14)2.
It was suggested in [56] to interpret this factor like in the heterotic case [87] as a� � �

S-duality, not to be confused with the� � �� S-duality of the type IIB string.
Interpreting the above������ � factor as S-duality, a�� symmetry exchanging electric and

magnetic sector is expected to be present. The natural candidate is� ���. Using (3.18), it is
interesting to note that���� transforms the magnetic into the electric sector and vice versa, but,
considering the NS-NS-fields, takes the Kaluza-Klein sector into the 3-form field sector (and vice
versa) as well.

In the basis we have chosen,���� has to be accompanied by an��	� 	� transformation in order
to transform the magnetic to the electric field strength of a specific vector field. This corresponds
to the above preserved metric (3.33), which is equal to

�
��9�!

�
��
�!

�
��9�!

�
���!��

3.2.5 Definitions of U-duality

Finally, the definition found for the U-duality group��������� in (3.30), (3.31) shall be compared
with the definitions (1.3) and (1.4).

Since�� is simply laced, the generators in (3.30) corresponding to simple roots generate all
other generators and therefore the whole���������. On the other hand, the same is true for the
simply laced groups��	� 	��� and������� as subgroups of���������. Both groups correspond
to subdiagrams of the Dynkin diagram of�� and act in minimal representations. The subgroup
��	� 	� is indicated in figure 3.8, the subgroup����� simply corresponds to erasing the roote���
for the�� Dynkin diagram. Joining their generators together, we get the whole set of generators
of ���������. The two definitions are therefore equivalent.

In the algebraic approach reviewed in [79], Weyl and Borel generators were used to define
the discrete group. These actually correspond to the� and2 generators in (3.31). For the Weyl
group, the identification

��
! � ���! � ��!" � �2�!"

holds, where hatted indices are the Weyl generators of [79]. The� �
! correspond to the exchange of

two radii, while the��!" correspond to a simultaneous inversion of three radii. Only the� �!� are
elements of the T-duality group��	� 	�, corresponding, as pointed out above, to a simultaneous
inversion of two radii and the radius corresponding to the eleventh dimension connected to type
IIB S-duality. The Borel generators are identified correspondingly.

3.3 U-Duality in � � �

The above construction has given generators for U-duality in dimensions� G �. However, an
analogous construction in� � � seems difficult, since a proper quantization condition is unclear.
Therefore, the procedure demonstrated for the toy model in the last chapter will be now applied to
the full theory, assuming the the assumption of an additional compact coordinate does not break

2This is analogous to the manifestly������ � invariant action from the dual� � � � � �� supergravity theory
in [87] for the heterotic string. The connection is obvious when all R-R fields are set to zero.
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the symmetry quantized by the DSZ condition in� � �. Note that this has an attractive side
effect: starting from a quantization condition in� � �, one constructs a symmetry in� � � that
shall hold in the proper quantum theory as well.

The procedure is illustrated in figure 3.9. By compactifying M-theory on the torus, we can
choose eight different ways how to compactify first to four dimensions. This results in eight
��������� actingdifferently on M-theory fields. By compactifying the theory further to three
dimensions, these groups are merged together to form the three dimensional duality group.

T T T T T T T
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0
�����	��� �����	��� �����	��� �����	��� �����	��� �����	��� �����	��� �����	���

��
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����

Figure 3.9: Construction of Three-Dimensional U-duality

3.3.1 � � � Theory: The ������ Coset

The compactification to� � � is strictly parallel to the toy model: Choose the vielbein to be

�
�����
�� �

�
��.��

�	��
� ���.� ���

� ���.�

�
�

where@� . now run from� � � � �. Using the results of section (2.4.1), the Lagrangian may be
written as


 � �����	�9�	� 

�

�
��	�!"�+ �	�� + �	��� (3.34)

provided a proper group exists obeying the conditions stated there. This group is (of course)
������, and the basis

�� �
�
� �����!��
���� � ���

���! ������
�
�

has already been introduced above and is discussed. (3.22), (3.24) show that the representation
generated by the adjoint action on� is indeed the56 representation in the form needed, and

����� � ����

follows directly from (3.18).
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Choosing proper normalizations, the Lagrangian is given by (3.34) with� � ���, and the
scalar field� �	� is

��	� � ���� ���
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�
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F ���
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with

����	���	��� � &�	�� 
 + �	�� � &�	�� 	 ������� + �	�� 	 ������ � ����	�

The scalar fields are

��7 � ��	� ���7 � ��	� � �

�
7
�7
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�

��F � �����	�!������� ���� � ������ �

The Lagrangian admits local����	� and global������ symmetry. Note that, again, the
bosonic Lagrangian does not single out a specific representation of������. However, the248
adjoint representation of������ is the smallest (and unique basic) representation of������, and
has a nice additional property: as already seen, it decomposes as

������ � ������ �� ������

�	� � ������ 
 ������� 
 ������

� ���� therefore has block structure

� ���� �

�
������������

56

��

133

1
1

1

�
											


�

and contains the familiar�� blocks as representation matrix.

3.3.2 Identifying � � � U-Duality in the � � � Theory

Parallel to (2.21), an element

� 	 ������� � � �/ � ' 	 ������

acts within� �	� as

���� � ������� and� � 
������

which is the� � � U-duality embedded into the� � � theory. As already mentioned, in the next
chapter it will be shown that the vector� carries the� � � charges by considering solitons.

The generators of the discrete group are identical to (3.30) resp. (3.31) in the248 adjoint
representation of������.
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3.3.3 Connection to � � �� fields

Parallel to the toy model, a suitable parametrization of the scalar coset matrix will prove useful
when addressing different orders of compactifications.

Define the fields
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Again, the polynomial transformation indicates that the additional terms might be understood as
BCH terms. Of course, this has been done on purpose, since one finds, using (3.18)
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 (3.35)

where summations have been spelled out, and the eleven-dimensional vielbein
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has been used. The#�! , �� obey, using (3.2),(3.4),(3.8)
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where	� �� "� � � � � � � � � �. This is exactly the result of [71] found by direct reduction to� � �.
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3.3.4 Different Orders of Compactification

Consider the different compactifications indicated in figure 3.9. Like in the toy model, eight
different ways exists how to identify a set of� � � coordinates with fixed� � � coordinates,
leading to eight different Lagrangians. Note that this construction puts indeedall directions on
the same footing, that is, no specific eleventh ”M-theory” direction is singled out, and therefore
goes beyond the string oriented conjecture of [56]. The compactification is then straightforward,
and the corresponding eight coset matrices may be read off directly from (3.35), if the vielbein is
put into a proper shape by a local Lorentz transformation, that is,�
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(3.36)

Taking the sign change in the Chern-Simons term into account, the scalar coset matrix for the
compactification obtained by taking��� �� �� �� 
 ��� as four dimensional coordinates is
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In each compactification, the U-duality group is generated by (3.30) resp. (3.31).

3.3.5 Joining U-dualities in � � �

As in the toy model, the coset matrices may be easily seen to be connected by, using (3.18),

��	��� � �+��
�
��
�� B� ��	��� +��

�
��

B� is the natural lift to������ of the local transformation (3.36),��� generates the Weyl reflection
exchanginge� with e� and is actually the additional� � � T-duality in the first compactification
as in the toy model, and+� is again a “parity” transformation that obeys

+� � ����1	
��1	�

�

�
�
1�

� ������������
����

��
� � � � � ��

+� � ����1	
��1	 � ������������
��

+� is an��������� transformation corresponding to a charge conjugation in� � �, but leaves the

fields  ���!
���� , ����

�!
���� , �� �� � unchanged. As we have seen, this exactly corresponds to a specific set

of NS-NS fields.
The� � � U-duality is therefore given by joining all

�� � +��
�
� � �+��

�
��
��

where� is an element of������ spanned by (3.19), and in the discrete case by (3.30) resp. (3.31).

3.3.6 � � � U-duality group

It is easily seen from appendix A.1 that the intersection of two different U-dualities is exactly
������ as expected. Joining all�� gives, in this case, the whole of������. Thus, the� � �
discrete U-duality is generated by the set of generators obtained by exponentiating the Chevalley
generators for all roots.

Since the248 is the unique basic representation of������ and the adjoint itself corresponds
to the minimal admissible lattice, this coincides with��������� as defined above.

This completes the discussion of generators of U-duality in� � �.

3.4 ������ in ������

It has been shown that the algebra������ is embedded into������ by choosing any�� subalgebra
in ������. This is parallel to the truncation of the physical theory

������ � � ����� � 
 ���;�� �

����� � � ��
	
���� $ 1� 1 � �

���

� $ �
� 
 �
� $ �
� 
 �
� $ �
��� (3.37)

in [80], where�	 is the flat six dimensional Euclidean space,1 is its Kähler form and�����, ����

is the eleven dimensional three form and the five dimensional one-form potential.
In the toy model, the discrete U-duality construction does not yield���������, but a smaller

group. However, this may be seen as a consequence of the embedding of������ into ������,
involving generator sums at the level of the algebra, indicating a non-simply laced algebra.
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3.5 Summary

In this chapter, the structure of U-duality in M-theory has been investigated, and generators have
been given in all dimensions� G �.

The low energy effective theory of M-theory compactified on the torus to� � � has been
reviewed, and rephrased by giving the fundamental56 representation of������ embedded into
the adjoint of������. By using the exponential mapping, the assignment of the 70 scalars of the
theory to������ generators was given.

U-duality was defined following [56] from first principles by imposing the DSZ quantization
condition. The resulting discrete subgroup��������� was analyzed by investigating discrete Lie
groups stabilizing admissible lattices in basic representations, using two simple ingredients: the
Birkhoff decomposition and the Euclidian algorithm. This gave also a definition of���������,
to be compared with the� � � U-duality, and���������, where disagreement with toy model
U-duality in� � � is found as already stated.

T- and S-duality subgroups have been identified in� � �, and their role and action on scalars
(or moduli, respectively) and charges has been seen in some points not to correspond to the picture
in the literature, and clarified.

The definition of discrete U-duality as found in this thesis has been compared to the definitions
present in the literature, and it was found that they agree.

U-duality in� � � has been constructed by applying the same method as in the toy model and
extending the original conjectures. The merged U-duality in� � � has been found to agree with
the above definition of���������. The disagreement of��������� and toy model U-duality has
been argued to be caused by the embedding of������ into ������ leading to a non-simply laced
algebra.
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Chapter 4

String Theory Solitons

4.1 Stringy Black Holes

4.1.1 Motivation

In this section, applications of U-duality on solitonic solutions of M-theory are discussed briefly.
A general review on solitons in string theory shall not be given, the reader is referred to extensive
literature (for a recent review, see [92]). Rather, some examples shall be given and put into the
framework developed in the preceding chapters.

Solitons in theories that correspond to the low-energy effective action on string theories have
been of interest for several reasons. On the one hand, they may be viewed as solitonic ”coun-
terparts” of strings [56]. The charges carried by these solitons are in the56 multiplet introduced
above. However [81], it is known that the fundamental string does couple only to the charges
in the NS-NS sector introduced above, while the R-R fields appear in the vertex operator only
through their field strengths. Thus, since U-duality demands objects that carry these charges,
this has led to extend the former picture of string theory considerably by open strings ending on
boundary surfaces, now known as D-branes. A detailed description of these objects may be found
in [81].

Macroscopic solitons of string theory that have a regular horizon are interesting in the context
of a microscopic interpretation of black hole entropy ([65], for a recent account, see [11] and
references). Since the Schwarzschild radius of a black hole is proportional to its mass, for suffi-
ciently large mass the Schwarzschild radius of a black hole will be larger than the string scale. A
string of this mass will then lie inside the black hole, and may thus be interpreted as black hole
itself. However, this gives a possibility to define black hole entropy by statistical means. One
may associate it with the degeneracy of string states carrying the quantum numbers associated
with the black hole. Attempts to calculate the black hole entropy for the general non-charged
Schwarzschild solutions have been made, but are problematic since the string state masses can
get renormalized. However, for a recent calculation where a agreement was found see [28].

However, the situation is much simplified in the case where no quantum corrections are ex-
pected, that is, for black holes saturating the Bogomolnyi bound and in theories admitting enough
supersymmetry. In this case, the general procedure is: fix the set of charges and find the string
and/or D-brane configurations that correspond to BPS states (mass=charge). One may then calcu-
late their degeneracy at weak coupling where the microscopic description of the states is reliable.
BPS states, since they break a fraction of supersymmetry, live in shortened multiplets, and the de-
generacy is not expected to change when the string coupling is changed. Therefore, one may then
increase the string coupling to sufficiently large value such that the state becomes a black hole.
The entropy of this black hole should then be given by the degeneracy calculated at weak cou-
pling. To verify the correctness of the result, one may then look for a string soliton corresponding



4.1. Stringy Black Holes 75

to black hole carrying the same charges and mass, and calculate the Bekenstein-Hawking entropy,
and agreement was found for various cases. For� � � supersymmetric theories, it was found
that higher derivative terms need to be incorporated into the low energy effective action to reach
agreement with the microscopic calculation (see [11] and references).

Some application of U-duality within the context of black holes in string theory shall be given
now.

4.1.2 Black holes and U-duality

Those solitonic solutions that saturate the Bogomolnyi bound and carry just one charge in the56
dimensional charge vector will be called elementary. They preserve half of the supersymmetry,
corresponding to the fact that just one non-zero charge exists and hence all eigenvalues of the
central charge matrix are equal. The Killing spinor equation will be solved explicitly in section
4.3.1.

Such a solution was found in [43]. An easy embedding into� � � maximal supergravity is
given by setting���$ � �, which corresponds to the above solitons charged under one Kaluza-
Klein gauge field.

The solution is then given by one harmonic function%. The metric is of the form

��� � %��.��6� �%�.���
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�����

where standard spherical coordinates�
� �� �� have been chosen. Select and fix one specific
�" 	 �������. Set the remaining diagonal components of the internal metric to one (notations are
as in the preceding chapter), all off-diagonal components and the internal three-form potential to
zero. Furthermore, set all gauge fields to zero except one, which is the Kaluza-Klein gauge field
corresponding to the direction�". One then has
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����"
�� � �%����%� ��"�" � %�

all other fields zero, with

% � � 

&
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As shown in the next section, this solution corresponds to a boosted� � � Schwarzschild solution
and preserves half of the supersymmetry. It has a nasty property: in the canonical Einstein metric,
it is a naked singularity, whose gravitational force is ”dressed” by the anti-gravitating effect of the
dilaton. The interpretation as soliton in this frame seems difficult, however, in the Weyl rescaled
”string-frame” it has an ordinary interpretation as soliton interpolating between two vacua, which
may be seen to be Minkowski spacetime in the asymptotically flat limit at spatial infinity and
the Robinson-Bertotti vacuum down an infinite Einstein-Rosen throat [31]. These solitons with
charges in the NS-NS sector are exact classical solutions to type II string theory [56], not only of
the low energy sector.

Since the solution saturates the Bogomolnyi bound, gravitational and electromagnetic forces
cancel each other, and is is not surprising that one also has a multi-black hole solution
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�
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��
 � �
��

reflecting the fact that there are no forces between the constituents, allowing a superposition
despite the nonlinearity of the Einstein equations. Such a multi-black hole will be used in the
next section.
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The solution has a dual magnetic solution given by
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with the harmonic form
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for the single soliton with magnetic charge P, and
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for the multi-magnetically charged black hole.
Remember from the preceding chapter that the gauge fields are multiplied a basis vector
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that spans the56 representation of������. Since
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both solutions are transformed into each other by

�����
�"�!��

�!
�"

reflecting a mixed T- and S-duality transformation, as defined in the preceding chapter.
Solutions charged with respect to the other gauge fields of the theory may now be obtained

by the action of������ (respectively,���������). They correspond to wrapped membrane and
five-brane solutions of M-theory. While the� generators take single charge solutions to single
charge solutions, the2 generators will yield solitons with multiple charge.

Note that the solitons may carry electric or magnetic charges, but there are no dyonic states
in this Kaluza-Klein multiplet. Looking the above representation space basis, one sees that no
corresponding2 generators exist. This is not surprising, since the dyonic solutions are known to
have a different conformal structure, while U-duality does not act on the space-time metric.

Dyonic solutions were considered in [43] and shown to preserve a quarter of supersymmetry
in [25], corresponding to two eigenvalues of the central charge matrix being equal to the mass.

They are given by choosing two nonzero gauge fields in the Kaluza-Klein sector and two
nontrivial diagonal metric components, while the other diagonal metric components are one, and
all other fields except the metric zero. Choose and fix two numbers�"��� 	 ������. Then, the
solution is given by
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with the harmonic functions
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and the spacetime is given by
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(4.1)

which reflects the ”harmonic function rule” for intersecting solutions of� � �� supergravity
reduced to� � � [95].

We may now give another solution by transforming e.g. the vector fields� ���
�" to � ����" �

�% �&
���"

and���� �! to � ����! � �% �&
���!

simultaneously for a fixed�	, such that� ����" carries charge&5�

and� ����! carries charge+5�.
Looking again at the basis�, this corresponds to the following��������� transformation:
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The transformation of the scalars under this��������� transformation is given by the relations
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which is identical to the relations given in [24] as discrete������ transformation between the ”3-
form” solution and the KK dyonic solution. The latter was calculated from scratch and compared
with the KK dyonic solution in [24]. Note that the explicit knowledge of the action of������ on
the fields coming from the dimensional reduction renders this calculation obsolete!

Other solutions corresponding to BPS solitons that preserve 1/4 and 1/8 supersymmetry have
been identified with multi-particle bound states of the “elementary” solitons charged with respect
to different gauge fields [32]. Generically these correspond to intersecting p-brane configura-
tions in higher dimensions [94]. The most general 1/8 BPS soliton is known to depend on five
parameters, four charges and one relative phase.

This solution was given in [23] in the NS-NS sector of the heterotic string and shown to be an
exact solution of the string theory to all orders. It shall be embedded into the notation of this thesis
here. The solution carries five charges that are associated with the gauge fields of the theory as
follows: Pick two internal dimensions, say� and��. One then has electric and magnetic charges
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For completeness, the explicit form of the fields shall be given here: Define 5 harmonic functions
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and
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The gauge fields are then
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and finally the metric and moduli are
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That this solution corresponds to the ”most general” solution can be seen as follows: Consider
the asymptotic values� ���� of the scalars. In the above solution, it is actually the identity matrix.
The combination� ���� �, where� is the charge vector, is then invariant with respect to������,
but transforms with respect to�����. The subgroup of����� that stabilizes the above charge
configuration is�����������, and thus the symmetry�����5�������������, acting on the
solution, generates new charge configurations with 51 new charge parameters. The general black
hole is then given by acting with an������ transformation on the scalars, which leaves� ���� �
invariant, but changes the asymptotic values of the scalars and dresses the charges.

The generating solution was recently discussed in another framework in [5] which corre-
sponds to a truncation to� � � supergravity within� � � supergravity. However, both solution
should be related by a field redefinition and������ transformation. This is work in progress that
should not prove to be too difficult. Since the solution has a regular horizon and Bekenstein-
Hawking black hole entropy
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In [5], the entropy was derived by using the central charge matrix and the quartic invariant of
������ directly. It is a most interesting task to perform a state counting for this solution and
compare the result to the above entropy, since this would indeed give ”the most general” counting.
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A useful tool in this is again U-duality. Since it transforms the charges, it may be used to find
different charge configurations that simplify the calculation. In [6] a transformation to a purely
RR charged soliton is considered, and the corresponding relation to the charges of a system of D3-
branes intersecting at nontrivial angles such that 1/8 supersymmetry is preserved is considered, as
well as a D0-D4 brane system. The microscopic state counting has, for the general solution, not
been performed yet. However it has been done for the solution with� � � where agreement was
found (see references in [6]). This is a stimulating subject for further study.

4.2 Elementary solitons in � � �

In this section, the elementary solitons are embedded into the� � � theory.
Consider the elementary multi-BPS solitons given above where copies of a single BPS soli-

ton of the four dimensional theory are put along the 3-direction with distance��9 among two
of them. The force equals zero condition allows this, though configurations of this type have
also been studied for Schwarzschild solutions. Usually, this reduction is called direct or vertical
reduction.

This corresponds to the harmonic form
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where� � &�+ for the electric resp. magnetic case.
The above sum is logarithmically divergent, but the divergence can be regularized by adjusting

an additive constant. One can add e.g. a regulator of the form

� �
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�

The derivatives of H with respect to the Cartesian coordinates shall be studied. It has been shown
in [89] that the dependence of H on
	 falls off exponentially if the compactification radius is
small. To study the derivatives with respect to
�� 
�, the summation is approximated by an
integration [65], which finally yields
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where we introduced polar coordinates8 �
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�� and�1. The result depends logarithmi-

cally on8 and therefore corresponds to the naı̈ve solution of the� � � reduced field equations
(harmonic function in� � �). The� � � fields read
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1See also [7].



80 4. String Theory Solitons

in the magnetic case, where7� �7 as in the preceding chapter. This corresponds to the vortex solu-
tions studied in [89]. Note that this solution is not asymptotically flat, therefore an interpretation
as soliton seems difficult [79].

Under� � �
��, one encounters the discrete� � � charges by the shifts�7�"� � �7�"�
&5�9

and7�"� � 7
�"� 
 +5�9. Full rotations translate to discrete������ transformations parallel to

[89]. Note that the charges are ”dressed” by the compactification radius.
Note that the electric and magnetic solutions are embedded in a perfectly equal way. The

spectrum significantly unifies in� � �, since only particle and string-like configurations survive.

4.3 Null-Killing Vectors and Killing Spinors

In this section, a result by Gebert and Mizoguchi [42] shall be discussed.

4.3.1 Example

Consider the metric
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in five dimensions, corresponding to a Schwarzschild black hole smeared along the fifth spacial
direction (3Schwarzschild� � ). Apply an infinite boost along the fifth direction as�

6
�

�
�
�

ch/ �sh/
�sh/ ch/

��
6
�

�
�

In the limit / �%, 
� � � and
���� � ��, the metric takes the form
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The parameter q has a physical interpretation: it may be viewed as electric charge when compact-
ifying the fifth dimension. To see this, one may write the metric as
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corresponding to the standard Kaluza-Klein reduction with fünfbein
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which yields an Einstein-Maxwell system plus dilaton in� � �. Explicitly, one gets
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which is a static, asymptotically flat solution, with electric charge
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and ADM mass, by evaluating the Komar integral for the Killing vector��,
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The above metric therefore saturates the Bogomolnyi bound3 � &. In this limit, the spacetime
structure corresponds to a naked singularity, which is ”dressed” by the anti-gravitating effect of
the scalar field.

The infinite boost has yielded a configuration that saturates the Bogomolnyi bound upon re-
duction. On the other hand, it has given a configuration with covariantly constant Killing vector
in � � �. To see this, write the above metric (4.3) as
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where light-cone coordinates
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are used. This is a special case of a pp- or Brinkmann wave [9], admitting a covariantly constant
null-Killing vector

=��� � �
� E�=� � ��

Therefore, the authors of [42] investigated if the existence of a null-Killing vector together with
a another space-like Killing vectornecessarily implies the saturation of the Bogomolnyi bound
upon reduction along space-like direction. This was done by considering the geometrical proper-
ties of such solutions to the Einstein equations.

Here, the question if a null-Killing vector together with a (commuting) space-like Killing
vector imply saturation of the Bogomolnyi bound shall be viewed from another perspective.

Consider again the above example. One may easily see that the� � � solution, in the context
supergravity, preserves a fraction of local supersymmetry, as is well known in the literature. This,
on the other hand, automatically implies the saturation of the Bogomolnyi bound in the reduced
theory [25]!

To see this, consider a supersymmetric embedding of the above situation, that is, e.g. simple
� � � supergravity. As already mentioned,� � � simple supergravity contains, apart from pure
gravity, a 1-form potential�� and a Dirac spinor�� . Truncating the theory to pure gravity by
setting�� � �, �� � �, the supersymmetry transformations are [13]
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with the� � � gamma matrices

*� � �*�� *�� 	*���

where*�� *� are the� � � gamma matrices, and*� as usual, and*&' is the antisymmetrized
product of*& and*' . Thus, a nontrivial supersymmetry transformation is given by finding a
Dirac spinor! that is regular and covariantly constant in the whole space, that is,

Æ�� � E� ! � �� (4.5)

The integrability condition of this equation is
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where9��=$ is the Riemann tensor, which upon contraction with*$ by using the first Bianchi
identity yields

9��*� ! � ��

and by multiplication with9��*
�, where3 is not summed over

9��9 �
� ! � �

which was called a ”Ricci-null” condition in [36]. Thus, if the gravitational equations of motion
(Ricci tensor equal to zero) is satisfied, the equation is integrable, however, finding a Killing
spinor does not always imply that the equations of motion are satisfied, since there might be cases
when the Ricci tensor is ”null” but not zero.

Here, a solution is easily found: Split the curved indices into3 � �	� I� C� and the flat into
� � �(���
�. Choosing the vielbein
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where% � �5
, the only nonzero connection coefficient is
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and thus a solution is given by a constant Dirac spinor!� obeying
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Thus, the above solution is a solution to� � � supergravity that preserves half of the super-
symmetry. When performing a Kaluza-Klein reduction along the Killing direction�, this is also
a solution of� � � supergravity. The reduction does not break supersymmetry, and thus the
� � � solution is also supersymmetric, and furthermore, as seen above, asymptotically flat and
static. For such configurations, the Bogomolnyi bound holds between mass and charges [25]. It
is saturated, if and only if (4.5) holds, that is, a regular Killing spinor exists globally, which is the
case.

Thus, the saturation of the Bogomolnyi bound in� � � may be understood as a consequence
of the fact that the� � � solution admits an exact Killing spinor (or is a ”spin-manifold”). This
is a simple condition, and it should be interesting to compare it to the perspective of [42].

4.3.2 Null Killing Vectors and the BPS Condition

General metrics admitting a null-Killing vector were investigated closely in [60]. A correspond-
ing vielbein was the starting point of the investigation of [42], augmented by the further assump-
tion that another space-like Killing vector exists, commuting with the null-Killing vector. The
saturation of the BPS bound was then derived by using a coordinate transformation to obtain a
space-like and time-like Killing vector from the above and reducing along the space-like Killing
vector. Choosing a Weyl rescaling of the metric such that the� � � gravitational Lagrangian is
Einstein-Hilbert, the Komar integral was then (by using the equations of motion) evaluated for the
time-like Killing vector and shown to give the mass equal to the purely electric charge, assuming
that the spacetime is asymptotically Minkowskian.

As in the example, this result would follow automatically if the space considered in [42]
admits a Killing spinor. If the theory is reduced along a space-like direction and is asymptotically
flat, the Bogomolnyi is saturated if an exact Killing spinor exists tending to a constant at infinity.
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It shall be investigated here if this is the case by considering a general vielbein obeying the
above properties.

Consider a metric admitting a null-Killing-vector=��� � �
 and a space-like Killing vector
>��� � �> in � 
 � dimensions, whereI andC are light-cone coordinates as above. Split the
curved coordinates into3 � �@� I� C� and the flat coordinates into� � �.���
�. A general
vielbein in this configuration is given by [60]
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In [42], a coordinate transformation was used to obtain a time-like Killing vector� � and a space-
like Killing vector �� from �
� �> by

I � � 6
 
 �� C � � 6
 � ��

The vielbein may then be identified, using a local Lorentz boost, with Kaluza-Klein reduction
vielbein (4.4). This results in the� � � U(1) gauge potential
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and dilaton
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This configuration was argued to be purely electric in [42]. Here, this shall be used from the start
to simplify the calculation. Assume therefore

�� � �� �M� � �I�

This will significantly simplify the above vielbein. The null-Killing vector obeys a normality
condition [60] that implies

�J� � N��I

where u shall be identified with the above light-cone coordinate. Then the vielbein may be put
into the simple form
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where	 � �I� C� and( � ���
�.
A necessary condition for the Killing spinor equation

E�! � �

to be integrable is that the Ricci tensor obeys the condition that9�
� is null. Since it is assumed that

the above vielbein obeys the equations of motion, that is, the space is Ricci flat, the Killing spinor
equation is integrable. It remains however to check whether a Killing spinor exists admitting the
correct properties for a saturation of the Bogomolnyi bound in� � �. For this, it has to be regular
on the whole space and to approach a constant on a sphere at infinity.
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To investigate the Killing spinor equations, one calculates the non-vanishing components of
the spin connection with the above vielbein. They are

?
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��� � ?

�#���
���

?
�#���
��3 � � �

�3 ���� -�

where�()� means symmetrized,�()� antisymmetrized indices. Let�-�� be a representation of
the gamma matrices in�
 �. The Killing spinor equations then reduce to
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The Killing spinor should be asymptotically constant in the reduced� � � theory in order to
saturate the Bogomolnyi bound. Therefore, one has to demand

�
! � �>! � ��

Thus, the first two equations become
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��! � �
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These equations have a nontrivial solution only for��
 � �, that is,
 is constant.
One may now investigate if this is a consequence of the equations of motion and the above

assumptions. The equations of motion show that
 is a harmonic function on the��� dimensional
Riemannian space with Weyl-rescaled vielbein
����#����� . However, only if the function
 has
compact support, it is actually constant! But one may not assume this to be the generic case,
which seems to make it impossible to find a proper solution!

If x is constant, this however implies that the above solution is actually a Brinkmann wave,
with covariantly constant null-Killing vector [60] (the covariant derivative of=� vanishes for
constant
). Such waves and their supersymmetry have been studied closely in the literature
(see e.g. [36] and references for a recent treatment). In the above situation, the Killing spinor
equations reduce by demanding

*�! � � (4.6)

to

��� 

�

�
?
�#���
��3 -�3�! � �

Thus (at least) half of the supersymmetry is broken2. The integrability condition of this equation
is Ricci-flatness for the connection?�#�����3 , which, using the constancy of
, is again the� 
 �
dimensional field equation9�� � �.

Coming back to a five-dimensional example as in the preceding section, for�� � � � Ricci
flatness implies flatness, and the spinor is not further constrained. For higher dimensions, the
supersymmetry might be further broken on the transverse space.

2Note that, if� � � is even, the condition (4.6) may be seen to be consistent with the spinor decomposition when
reducing to� dimensions [25]



4.4. Summary 85

Finally, it shall be commented on the speculations that these solitons might be suitable to
probe the structure of the hyperbolic���. ��� is supposed to arise upon a null reduction to one-
dimensional supergravity as a symmetry. If the above solitons, however, doby construction not
depend on the light cone coordinates as assumed here, a direct reduction to� � � by forming
periodic arrays in transverse space will always yield a trivial, that is constant solution in� � �,
and it seems hard to imagine a nontrivial interpretation of this scenario.

4.4 Summary

In this chapter, soliton solutions of M-theory and connected applications of U-duality have been
discussed.

Soliton solutions that correspond to black holes with regular horizon allow a microscopic
interpretation of black hole entropy by using duality symmetries and counting of D-brane and
string states. These corresponding concepts have been reviewed and explained.

Elementary solitons carrying just one nonzero charge have been introduced, as well as dyonic
solutions, and applications of U-duality on these solutions have been given. The most general
spherical symmetric black hole has been embedded into the conventions of this thesis and re-
viewed, its relevance to the microscopic entropy discussion and the importance of U-duality in
this context has been shown.

Elementary solitons in� � � have been constructed by forming periodic arrays in� � � and
direct reduction to� � �. They have been shown to carry the� � � charges, dressed by the
compactification radius, and discrete U-duality transformations correspond to travelling around
the solutions on full circles.

The question if the existence of a null-Killing vector implies the saturation of the Bogomolnyi
bound has been addressed from a supersymmetric point of view. It has been shown that, in
general, both assumptions are not equivalent in this view. The solutions have, however, been
argued not to be suitable to probe a hyperbolic symmetry in M-theory.
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Chapter 5

Conclusions and Outlook

The main results of this thesis shall briefly be summarized.
M-theory admits a class of large non-perturbative duality symmetries, called U-dualities,

putting all the moduli of the theory on the same footing. These symmetries may be constructed
from first principles in the low energy effective approximation by imposing the DSZ quantiza-
tion condition. This breaks the classical duality symmetries present in these theories to discrete
subgroups. For M-theory compactifications on the torus, these groups were investigated in this
thesis.

In a toy model resembling the low energy effective limit of M-theory, it was shown that a
hidden classical duality symmetry may be ”uncovered” by using a proper set of fields. The DSZ
condition was shown to break the classical group to a discrete group, which turned out to be
�������, acting in the4 representation, with standard generators2� �. The � � � discrete
groups acts as electric-magnetic duality with theta term in the asymptotic limit, but always mixes
all four types of charges.

Upon further compactification to� � �, different views of the compact theory by choosing
different orders of compactification lead to different� � � U-duality groups embedded into the
� � � theory. These groups merge together to form the� � � U-duality. It turned out that the
discrete group given by this construction is strictly smaller than the one expected from the action
of admissible lattices in basic representations. This indicates that, even in the most simple case of
toroidal compactification, the discrete groups need to addressed with care, and the same should
be kept in mind when addressing truncations of M-theory, as the toy model corresponds to such a
truncation.

For the low energy limit of M-theory, compactification on the torus leads to a� � � theory
that exhibits a classical������ duality. This theory can be made more manageable by embedding
the������ algebra into������ and defining the fundamental56 carried by the vector fields and the
scalars of the theory by the adjoint action of the������ subalgebra within������.

The discrete U-duality is given by imposing the DSZ quantization condition. The representa-
tions space may then be chosen to be an admissible lattice. Lie algebras acting on those lattices in
basic representations are generated by the analogies of the������� �� 2 generators for all roots,
and thus, a set of generators for the discrete U-duality group��������� is found. Subgroups iden-
tified with T- and S-duality involve subtleties and mix non-trivially, e.g., a true electric-magnetic
duality for one specific gauge field is always a combination of S- and T-duality, and the string
coupling constant related to the� � �� compactification radius always transforms non-trivially
under a T-duality.

Using the definition of generators of���������, the different definitions of U-duality given
in the literature are seen to agree.

U-duality in� � � is given by merging the discrete� � � duality groups embedded into the
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� � � theory together. For M-theory, this gives the expected result: The U-duality group in� � �
agrees with the definition of��������� by the action on admissible lattices.

Solitons in the theory play an important role as counterpart of strings, and especially for a
microscopic interpretation of black hole entropy if they correspond to black holes with nonzero
horizon. Elementary solitons correspond to naked singularities dressed by an anti-gravitating
dilaton, and fill the56-plet by the fact that the representation is minimal. Explicit knowledge
of U-duality proves useful when calculating multiplets of dyonic black holes. The most general
spherically symmetric black hole has five nonzero charges, and all other charged black holes of
same topology are generated from it. However, no state counting procedure has been found yet
for this black hole, and U-duality is a useful tool to look for configuration that might allow such
a counting.

The� � � analogies of the elementary� � � solitons are shown to be vortex solutions, and
discrete duality transformations correspond to traveling around them on a full circle.

Finally, purely gravitational solutions that admit a null-Killing vector and a space-like Killing
vector and are asymptotically flat when reducing along a space-like Killing direction were shown
in the literature to saturate the Bogomol’nyi bound. This would follow immediately if these solu-
tion can generally be shown to be supersymmetric, however, for the most general case, this seems
not to be possible. The solutions seem not to be suitable to address the questions of hyperbolic
symmetries in M-theory, since they are trivial in the corresponding reduction.

Several future directions of research are suggested by the results of this thesis.
The methods to study U-duality are quite general and also apply to compactifications of

M-theory that admit less supersymmetry, and it is interesting to study corresponding U-duality
groups from a physical and mathematical point of view in this context.

U-duality has several other applications for which a precise knowledge of the discrete group
proves useful. Apart from the search for a proper regime that allows a state counting of the most
general spherical symmetric BPS black hole, it may e.g. be applied to determine counter-terms
and non-perturbative effects in string theory, a subject not reviewed in this thesis. A precise
definition of U-duality as given here might prove useful in this context as well.

The method used to construct� � � U-duality can be extended to lower dimensions. This
would then yield a discrete subgroup of an affine or hyperbolic group, and would, which is even
more attractive, make contact to the quantized approaches in these dimensions. This might give
new insights into the structure of M-theory, and it should be interesting to consider this ”stringy”
symmetry and compare it to e.g. the known quantized symmetries in� � �.

Finally, it is interesting to connect the discrete group construction found here to the super-
groups discussed in [58] and references.
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Appendix A

Lie Algebras and Maple Procedures

In this appendix, definitions and conventions for Lie algebras are introduced and procedures are
presented that generate representation matrices for highest weight representations of simple Lie
algebras. The weights of the representation are demanded to be nondegenerate, except for adjoint
and basic representations that include zero weights with degeneracy equal to the number of simple
roots among the weights. A procedure to study tensor products is discussed as well.

For the work presented in this thesis, these procedures were used to generate and investigate
representations of������, ������, ������ as well as������, for discrete subgroup calculus and for
the calculation of coset spaces. For further study, the procedures were extended to general Lie
algebras.

As platformMaple V Release 5 was used. A description of its syntax and procedures
may be found in [14, 15]. However, the procedures were programmed to be as simple as pos-
sible and may be migrated to any other platform or programming languages likeFORTRAN, C
or LISP with minor changes in the syntax and by using standard procedures e.g. for matrix
inversion.

A.1 Lie Algebras: Definitions and Conventions

For the necessary mathematical background in Lie algebras used in this appendix see [61, 57, 48].
A collection of tables and useful recipes can be found in [70, 91]. The necessary definitions and
conventions shall be briefly recalled in this section.

A.1.1 Lie Algebras

Some general definitions shall be stated first.
A Lie algebra may be defined as a vector space� over a field� (taken to be� or � in the

following) with bilinear bracket�� � � � + �
� �� � � satisfying

�
� 
� � �� 
 	 ��

�
� ��� ��� 
 ��� ��� 
�� 
 ��� �
� ��� � � �Jacobi identity�� 
� �� � 	 ��

A subspace�� � � closed under the bracket is called a (Lie)subalgebra of �. If ��� � �� & ��, it is
said to beinvariant. Any algebra that contains an invariant subalgebra is calledreducible, while
an irreducible Lie algebra is calledsimple. Only those algebras will be of interest here.

An important class of subalgebras may be given by using two further definitions: For a sub-
algebra��, one may define thenormalizer � in � by � � �
 	 � � �
� ��� � ���. Furthermore, the
adjoint of an element� 	 � is defined by the map ad+ 
 	 �� � '� �
� ��, and an algebra� is said
to benilpotent if �ad���=0 for some� 	 � . A Cartan subalgebra 
 � � is then defined to be a
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subalgebra that is nilpotent and equals its normalizer in�. For simple Lie algebras over� , Cartan
subalgebras are abelian, and the action of a fixed Cartan subalgebra may be simultaneously diag-
onalized. This plays a central role in defining proper generators of a Lie algebra. A general set of
generators shall now be presented and discussed.

Define anH � H (generalized) Cartan matrix �� by demanding that��
�� � �, ��

�! 	 �� for
	 �� � and��

�! � � ( ��
!� � �. It is assumed that�� is symmetrizable, that is, a nondegenerate

diagonal matrixE exists such thatE�� is symmetric, and that it may not be put into block-
diagonal form by the exchange of rows and columns (ensuring irreducibility).

To each such Cartan matrix�� aKač-Moody algebra may be associated generated by the sets
���� �� � � � 	 � H� and�%� � � � 	 � H�, and the generators satisfy the following relations:

�%��%! � � �� � � 	� � � H�

���� ��� � %�� ���� �! � � � � � 	 �� � � H�

�%�� �! � � ��
!��! � �%�� �! � � ���

!��! � � � 	 �� � � H�

�ad���
�&�

������!� � �� 	 �� ��

�ad���
�&�

������!� � �� 	 �� �� (A.1)

The�%� � � � 	 � H� 	 
 obviously form a Cartan subalgebra.
The last two relations are calledSerre relations. If the matrixE�� is indefinite or positive

semi-definite, the algebra is infinite dimensional. IfE�� is positive definite, the above Lie algebra
is finite dimensional. This will be assumed in the following.

A realization of��
�! may then be given on an�-dimensional real Euclidian space with scalar

product� by defining sets of vectors*� � �.�� � � � � .0� for which

��
�! � �.�� .!
 � �

.� � .!

.! � .!
� .�� .! 	 *�� 	� � � � � � � H�

The sets*� are called sets ofsimple roots. In view of (A.1), the��� �� will be denoted��� � ���� ,
and the%� by%�� in the following.

A multiple commutator' � �ad ��	�
��� � � � �ad ��	�

�����	���
, if nontrivial, satisfies

�%�� �'� � �.� .�
', where. �
�

� (�.3� 
 .3��� , )� 	 ��� � � � � H�, (� 	 � , and is there-
fore associated with theroot .. Theset of all roots is called$�, and from (A.1) it may be written
as$� � $�

� )$�
�, where
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�
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are called the sets ofpositive and negative roots. The�
�
� � will be calledroot coordinates.

For the roots. 	 $� the following properties may be shown from (A.1):

� 5	 $�

. 	 $� ( �. 5	 $�� � 	 �� ��� �� ��

. 	 $� ( �. 	 $��

.� / 	 $� ( -��/� � / � �/� .
. 	 $��

.� / 	 $� ( �/� .
 	 �� (A.2)

The-� are calledWeyl reflections and form theWeyl group *. It may be shown that, if. 	 $�,
- 	 * exists such that-�.� 	 *�.
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Recall that, investigating (A.2), it may be shown that the finite dimensional simple Lie alge-
bras split intosimply laced Lie algebras, where all roots are of the same length, andnon-simply
laced Lie algebras with exactly two different lengths. The simply laced algebras fall into three
classes, denoted by�0� �0 and�0, while the non-simply laced algebras are classified as�0� 
0� �� and
��. Their Cartan matrices may be conveniently given byDynkin diagrams.

Dynkin diagrams are defined to haveH vertices, with vertices	 and� connected by���
�! � lines

if ���
�! � � ���

!��, and an arrow pointing towards vertex� if ���
�! � G �, that is, pointing towards

the shorter root. The Dynkin diagrams for simple finite dimensional Lie algebras as used here are
listed in figure A.1.
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Figure A.1: Lie Algebra Conventions

The root systems shall now be described in more detail in order to present generators and relations
for the full algebras. Consider an Euclidian space with standard basise�� � � � � e0 and scalar product
e� � e! � Æ�! . For the simply laced Lie algebras�0� �0� �0 the simple roots may be represented as

*�� � �.� � e� � e�� .� � e� � e	� � � � � .0 � e0 � e0����
*�� � �.� � e� � e�� � � � � .0�� � e0�� � e0� .0 � e0�� 
 e0��
*�� � �.� � e��0 � e���0� � � � � .0�� � e� � e�� .0 � ��	�e� 
 � � �
 e�� 
 e� 
 e� 
 e��

(A.3)

satisfying.� � .� � � for all simple roots. They span the remaining roots by
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The roots for the non-simply laced algebras�0� 
0� ��� �� are connected to those of the simply laced
algebras by second and third order automorphisms�@ on specific root spaces [61]. Consider

$���� + �@�.�� � .�� � � 	 � H � �� �@�.0� � .0��� �@�.0��� � .0�

$����� + �@�.�0�"� � ."� " � � � � � �H � ��

$�	 + �@�.�� � .�� �@�.�� � .�� �@�.	� � .	� �@�.�� � .�� �@�.�� � .�� �@�.�� � .��

$�� + �@�.�� � .	� �@�.	� � .�� �@�.�� � .�� �@�.�� � .�� (A.4)
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and define

$�
0 � �. � .� 	 $�� � �@�.�� � .���

$�
� � �. � 
����@�.�� 
 � � � 
 �@��.��� � .� 	 $�� � �@�.�� �� .�� (A.5)

for ��� ��� 
� � ���0� �0��� ��� �
0� ��0��� ��� ���� ��� ��� ���� ��� ���. This gives thelong and short
roots for the non-simply laced algebras, their union gives the set of all roots for these algebras.
For the simple roots one obtains

*�� � �.� � v� � v�� � � � � .0�� � v0�� � v0� .0 � v0��
*�� � �.� � ��
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�
�v0��
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��v� � v� � v	 � v����

*�� � �.� � v� � v�� .� � �
	��v� 
 �v� � v	��

where thev� form again a basis of� � andv� � v! � Æ�!
1. The root spaces (A.5) are spanned by
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Finally, the sets of all roots for the simple Lie algebras following from the construction introduced
above shall be given.
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1The above construction gives specific orthonormal base vectors�v�� for � � ���� ��� ��� ���. Explicitly,
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With these conventions, the simple Lie algebras� of figure A.1 with simple roots.� 	 *�

spanning root spaces�. � . 	 $�� may be given completely. They are

� �



�

B��%�� 




�

����� B�� � �� 	 � �

�%�� �%�� � � ��

�%�� � ��� � �.� .�
�� . 	 $��

���� ���� � %� . 	 $��

���� �� � � � .� / 	 $�� .
 / 5	 $� ) ����
���� �� � � !�.� /����� .� /� . 
 / 	 $�� � 	 ��0� �0� �0��
���� �� � � ��
 ��!�.�� /������ .� /� . 
 / 	 $�� � 	 �
0� �0� ��� ����

� 	 � � . � �/ 	 $�� .� ��
 ��/ 5	 $� (A.7)

where!�.� /� is a bimultiplicative asymmetry function [61] obeying

!�.
  .� /� � !�.� /�!� .� /�

!�.� / 
  /� � !�.� /�!�.�  /�� .�  .� /�  / 	 $��

It may be given by choosing an orientation for the Dynkin diagram of� as in figure A.2.

   . . .    . . .

   . . .

�� �� �� ��

��	�� 	!� � �� if 
 � � or if
����

��	�� 	!� � �� otherwise, i.e., or

�� �� ��

����

���� � �

��

���� ���� ������ ��

�0�0

�� �� �� ���� ��
�0

Figure A.2: Bimultiplicative Asymmetry Function

For the algebras� 	 ��0� 
0� ��� ���, the primed roots refer to the embedding (A.5)2, and orien-
tations are used invariant under the automorphisms (A.4), displayed in figure A.3. The automor-
phisms (A.4), calleddiagram automorphisms, are indicated by arrows.

A.1.2 Representations

For a Lie algebra�, consider an�-dimensional vector space, , endowed with the operation
�� , � , + �'� C� '� 'C that satisfies

�(' 
 )K �C �(�'C� 
 )�K C��

'�(C 
 )J� �(�'C� 
 )�'J��

�'�K �C �'K C � K 'C� �'�K 	 �� C� J 	 , � (� ) 	 ��� (A.8)

2The corresponding Lie algebra generators are embedded by�� � ���� � � � ��

� ,
�� � ���
���� � � � �� ���
������ � � ��

� 
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Figure A.3: Bimultiplicative Asymmetry Function for Non-Simply Laced Algebras

Such a vector space is called a�-module and defines a representation� + � � ���, �. An
irreducible �-module contains only itself and 0 as submodules.

The Cartan subalgebra
 acts diagonally on, , and, may be decomposed into a direct sum
over,� where� � �4�� � and,� � �C 	 , � %��C � 4�� C�. The� are calledweights and,�
theweight space of �.

For a finite dimensional irreducible module, a unique weight�� and vectorC� exist such
that��C� � � for all . 	 $�

�. This weight is called thehighest weight of , , andC� thehighest
weight vector. Conversely, for each such highest weight vector an irreducible�-module exists.

The representation theory of� � �� with generators�� � �, ��� � � , %� � % shall be
recalled briefly. Choose a maximal weight�� and consider a maximal vectorC� 	 , �

�
. Define

C� � ��5	#�� �C�. Then

%C� ���� � �	�C��

�C� ��	
 ��C����

�C� ���� � 	
 ��C���� �	 � �� (A.9)

as may be easily shown by induction. Furthermore, if: is the smallest integer such thatC� ��
�� C��� � �, the last equation shows: � �� for 	 � :
 �, that is,�� is a nonnegative integer.

In the general case of an algebra� and a finite dimensional�-module, , define for each simple
root.� 	 *� the corresponding algebra����� consisting of��� , ���� and%�� . Then a highest
weight of� is also a highest weight of the�����, showing that in the general case for�� � �4��� �
the4�

�

� 	 � , and it may be seen that, is the sum of finite dimensional�����-modules.
A �-module with highest weight�� is calledfundamental if

�
� 4
��
� � �. All irreducible

representations of� may be generated by tensor products from the fundamental ones. One such
fundamental irreducible representation exists that generates all others, and has4�

�

" � �, where
." corresponds to an endpoint of the Dynkin diagram of�.

A �-module with highest weight�� will be calledbasic if all nontrivial weights are trans-
formed into each other by the Weyl group. Then all weights are of multiplicity one, and the
multiplicity of the weight 0 equals the number of simple roots among the weights of, . The only
basic representations that contain zero weights are those whose set of weights equals the the short
roots of� [57, 69].

A �-module with highest weight�� will be calledminimal if no other highest weight �� of
� exists such that�� �  �� �

�
� )�/�, where)� 	 � and/� 	 $�

�. Then���� .
 	 ������
for all . 	 $�, and the Weyl-orbit of the highest weight is saturated (thus, basic representations
containing no zero weights are minimal).
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For the procedures to follow, the space, shall be specified more explicitly by describing
possible basis’ of, and considering the action of the generators��� � ���� on them.

For this, consider all roots�/�� ���� /#� 	 $�
� and fix a specific ordering3. Define� �

�(�� � � � � (#�, � � �)�� � � � � )0� andM � ���� � � � � �#�, where(�� )�� �� 	 � and consider

�& �
������

��

(�#
� � �

������
��

(##
�

%' �

�
%��

)�

�
� � �

�
%��

)0

�
�

�( �
�����

-�

��#
� � �

�����
-�

�##

where �
%��

)�

�
�

%���%�� � �� � � � �%�� � )� 
 ��

)�#
�

The elements�&%'�( form an� basis of ���, theuniversal enveloping algebra of �. Denote
by  �

�
,  �

�
and �

�
the� spans of�&, %' and�( , and by � the� span of�&%'�( .

The�-span of a specific basis in, shall be called alattice of , . A lattice3 that is invariant
under the action of � is calledadmissible. Obviously, this implies the action of all��

�5�# in ,
to be integral.

For an admissible lattice3 , consider a basis vector C� 	 , �, and let� � �4�� � be a
highest weight for����! for some� � � � H. Consider another basis vector of3 denoted by

 C6��
	 , ��6�� �� . By considering

�
6��
��

4�! #

�
6��
��

4�! #
 C�

it may be shown that necessarily

 C6��
� ��

6��
��

4�! #
 C��

This fact will be of interest in section 3.2.1. For the procedures to follow, the basis shall be
specified further. Consider now the�-module, with highest weight��. Theminimal admissible
lattice of , may then be defined by3 �  �

�
C�. For each, � � , one may choose basis vectors

C�" by the intersection3 �, � (3 spans, over� ). Consider such a basis�C�" � in , . The action
of the����! on such a basis may then be given quite analogously to (A.9), that is, if� is a weight
of , , 4�! a highest weight of an����!-module and C��"�� 	 , ��"�� a basis vector of3 ,

%��  C��"�� ��4�! � �"� C��"�� �

���  C��"�� ��" 
 �� C���"����� �

���  C��"�� ��4�! � " 
 �� C���"����� �

where C���"����� 	 , ���"����� and C���"����� 	 , ���"����� are again basis vectors of3 .
Note that the spaces, ����� , � � � � 4�! need not be one-dimensional (in this case the weight
�� �.! is calleddegenerate).

3E.g., fix an ordering of the simple roots and order the remaining roots by theirheight, that is, by the number of
simple roots they decompose into. For roots of the same height, the ordering of simple roots may be used again.
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For the following procedures, roots. will either be given by their root coordinates�
�
� �, or

in Dynkin components �(�
� � given by

(�
� � �.� .�
 � 
�

! �
�
!��

Weights� will be given by�4�� � as defined above, corresponding to Dynkin components.

A.2 Maple Procedures

The Maple procedures used to generate highest weight matrix representations are grouped into
several subroutines.

A.2.1 Lie Algebra Data

The procedureinitialize generates the necessary Lie algebra data to be used in subsequent
procedures. It is called with a specific group (1 for�0, 2 for �0, 3 for 
0, 4 for �0, 5 for �0, 6 for ��,
7 for ��) and RankH and generates the Cartan matrix with conventions as in figure A.1, as well as
the simple roots and the highest root in Dynkin components. The correspondingMaple code is
given in table A.1.

A.2.2 Normalizations

The procedureKacnorm , when called with two roots.� / of a specified simply laced algebra�,
returns the asymmetry function!�.� /�. Let �
�

� �, �
�
� � be the corresponding root coordinates.

Using bimultiplicativity, one has

!�.� /� �
�
��!

�!�.�� .!��
��� �
�

with the definitions of figure A.2.
For non-simply laced algebras�, for.� / 	 $� corresponding.�� /� 	 $�� of the embeddings

(A.5) need to be determined. Defining

*���� + �.� � .�� 	 � � � � � H�

*����� + �.� � .�� 	 � � � � � H�

*�	 + �.� � .�� �.� � .	� �.	 � .�� �.� � .��

*�� + �.� � .�� �.� � .��

they are calculated as follows: Let. 	 $� and�
�
� � be the corresponding root coordinates,

�. 	 $�� , �.� 	 *�� , ��� ��� � ���0� �0���� �
0� ��0���� ���� ����, then one may use

�. �



�

��
�
� ��.� 
 ����


�
� ��@��.���

with �@ given in (A.4) and


�
� ��
�

� � ����

�
� �

1 1 0
2 1 1
3 2 1
4 2 2
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It may be easily seen that this yields a root�. 	 $�� . The procedure then checks for.� 	
��.� �@��.�� and/� 	 ��/� �@� �/�� if .� 
 /� 	 $�� . If so, !�.�� /�� is calculated with orientations as
in figure A.3, and returned.

For. 	 $�� , �. 	 $�� , �.� 	 *�� ,

�. �



�

��
�
� ��.� 
 ����


�
� ��@��.�� 
 �����


�
� ��@

���.��

with �@ as in (A.4) and


�
� ��
�

� � ����

�
� � �����


�
� �

1 1 0 0
2 1 1 0
3 1 1 1

For .� 	 ��.� �@��.�� �@���.�� and/� 	 ��/� �@� �/�� �@�� �/�� it is checked if.� 
 /� 	 $�� and, if
so, !�.�� /�� is calculated using orientations as in figure A.3, and returned. The corresponding
Maple code is given in table A.2.

Apart from the realization (A.7), for the exceptional series and�� the realization using a
decomposition with respect to��� subalgebras following Freudenthal [38] is used in this thesis,
as described in sections 2.4.2, 3.1.3. This amounts to calculating different normalizations!�.� /�
(where!�.� /� is not necessarily bimultiplicative) in (A.7) to obtain the commutators (2.18) and
(3.18). The corresponding calculations have therefore been implemented as well.

For this, define (cf. (A.3))

��! � e� � e! �� � 	 �� � � ���

��� � ��e� � �

�

	

0��

e0� �� � 	 � ���

���!" � ��e� 
 e! 
 e" � �

�

�

0��

e0� �� � 	 D � D " � ���

Given a root in Dynkin components, the procedurefreuden extracts the indices	� �� " of ��,
��! and��!". The procedurefreudeneps is then used to calculate!�.� /� when generating
representation matrices. For this, as will become clear in subsequent subsections, it is sufficient
to consider. 	 *� and/ 	 $�

�. The procedure is called with indices for.� / and. 
 / and
contains the necessary information to calculate and return!�.� /�. The correspondingMaple
code is given in table A.3.

A.2.3 Matrix Calculus

Since most representation matrices, especially in higher dimensional representations, have only
a very limited number of nonzero entries, procedures were used for matrix calculus that benefit
from this fact. Computation times and the usage of memory could be shortened considerably by
this.

Matrices are stored in arrays that list only the nonzero entries and their position within the
matrix, as well as the total number of nonzero entries. The basic operations (scalar multiplication
scalmult , matrix multiplicationmult , matrix sumaddi ) are then straightforward, as well as
the procedure for commutatorscommu. In order to generate matrices in their “ordinary” form
to make them accessible for more complicated operations withinMaple , the procedurematri
may be used.

All Maple codes are listed in table A.4.
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A.2.4 Generation of Representation Matrices

Representation matrices of the algebra� on the�-module, with highest weight�� are deter-
mined by the procedurehighweightrep called with a specific group, rank and highest weight
vector.

If degenerate weights exist in, , the calculation of the action of the generators on, involves
in general a deeper study of its basis. In the case of no degenerate weights, using the conventions
of section A.1, the action can be simply read off from the Dynkin components of the weights
of , . In this thesis, only modules without degenerate weights are of interest, and therefore the
procedure is restricted to assume that no degenerate weights exist, with two exceptions: Adjoint
representations that have a weight 0 with degeneracy equal to the rank of the algebra, and general
basic representations that have a zero weight of degeneracy equal to the number of short roots in
*�.

For the following, consider, with highest weight��, and call the set of all weights of,
��� . The procedure works in two steps.

In the first step, the weight lattice��� is constructed, and the entries in the generator matrices
are produced. The procedure starts by checking if�� corresponds to the highest root or yields a
basic representation. Consider first the case that this is not the case. The weight�� is checked
for nonzero4��" � � � " � H. If the 4��" G � for specific", the corresponding chain of weights
�� � �� � 	.", � � 	 � 4��" is produced, and the�� are added to a set ��� . The entries in the
representation matrices for��� , ���� are then made corresponding to

����C� � E������!�C!

whereC� 	 , �� and the base vectorC� and the entriesE�����!� follow the convention intro-
duced in section A.1.2. This is then done subsequently for all the following weights��, and if
4��" G �� � � " � H, new weights and the corresponding entries in the representation matrices
are created. Since it is assumed that no degenerate weights exist, when creating a new weight,
it is checked if the weight already has been added to ��� , and if so, the entries of the represen-
tation matrices are produced correspondingly. This finally yields ��� � ��� and representation
matrices for all simple roots of�. Note that the matrices have entries in� � in this construction.

In the case of adjoint representations, the procedure works as above, but additional normal-
izations are added. If the weight�� corresponds to the root. and the simple root." is added
or subtracted, the representation matrix entry for���� is produced as above and multiplied with
!��."� .�, such that the representation matrices correspond to

����� � ��� � � E������!����

where algebra conventions (A.7) are used for all algebras except� 0, H � 	 and��. For the latter,
conventions corresponding to sections 2.4.2, 3.1.3 are applied as default, but conventions (A.7)
may be used as well. If a zero weight is reached, the procedure adds all zero weights at once
and then generates matrix entries corresponding to (A.7) and 2.4.2, refe8freud, respectively. The
representation matrices in this case have entries in�.

The weights of basic representations are, as already mentioned in section A.1.2, simply sub-
sets of the weights of the adjoint representations. This is used for all basic representations with
degenerate zero weight. The procedure creates the representation matrices as above, yielding
matrices with entries in�.

In the second step, matrices for the remaining generators are produced by multiple commu-
tators of the simple root generator matrices, with normalizations adjusted to (A.7) and sections
2.4.2, 3.1.3 respectively. This is done again subsequently by generating the negative weights
(corresponding to negative roots) of the adjoint representation. If the simple root." is subtracted
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from the weight� corresponding to the root�., ����� � ���� and ���� � ��� is calculated and
normalized to give������ and������ , where the normalization is again simply given from the
Dynkin indices of� and by calculating!�."� .��� �!��."��.�� corresponding to (A.7) and
sections 2.4.2, 3.1.3, respectively.

The correspondingMaple code is given in table A.5.

A.2.5 Lie Algebra Check

In the process of developing the above algorithms, a procedure was also created to check if the
generated representation matrices are correct and give a faithful representation of the algebra.

The proceduretestCartan is called with the representation matrices for the positive and
negative root generators, along with their corresponding roots in Dynkin components, for a spe-
cific group and rank. It then checks all relations (A.1) for these matrices, and the commutator
���� ���� � %� for all positive roots.. The correspondingMaple code is given in table A.6.

A.2.6 Tensor Products

For a given finite dimensional simple Lie algebra�, all irreducible representations can in principle
be generated from the ones generated by the above procedures by tensor products. Therefore, a
simple proceduretens was generated. Let' 	 �, and consider two�-modules, � and, � of
dimension�� and�� with basis�C��� and�C�� �. Let the corresponding representation matrices
be given by'��3, '

�
�! and'�� on the tensor product module, � � , �, where0 � (	 runs from

� � � � �� � ��. One has

'���C
� � C���? � '���3!�C

�
3 � C�! � � �'��3Æ�! 
 Æ�3'

�
�!��C

�
3 � C�! ��

The proceduretens is called with the matrices' �
�3 and'��! and dimensions��,��. It returns

'�� . The correspondingMaple code is given in table A.7.
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Lie Algebra Data
initialize:=proc(grou,Ran,Cart,highest,Dimen,car)
local k,k1,k2,Temp,zaes;
with(linalg):
#
# Cartan matrices, highest root, Dimension
#
for k from 1 to 7 do
Cart[k]:=array(1..Ran,1..Ran,sparse):

od:
highest:=array(1..7):
for k from 1 to 7 do
highest[k]:=array(1..1,1..Ran,sparse):

od:
#
# A series (=sl(Ran+1))
#
Dimen[1]:=(Ran+1)ˆ2-1:
Cart[1][1,1]:=2:
Cart[1][1,2]:=-1:
Cart[1][Ran,Ran-1]:=-1:
Cart[1][Ran,Ran]:=2:
for k from 1 to Ran-2 do
Cart[1][1+k,k]:=-1:
Cart[1][1+k,k+1]:=2:
Cart[1][1+k,k+2]:=-1:

od:
for k1 from 1 to Ran do
car[1][k1]:=submatrix(Cart[1],k1..k1,1..Ran):od:
for k from 1 to Ran do
highest[1]:=
evalm(highest[1]+submatrix(Cart[1],k..k,1..Ran)):

od:
#
# B series (=so(2Ran+1))
#
if Ran>1 then
Dimen[2]:=(2*Ran+1)*Ran:
if Ran=2 then
Cart[2]:=matrix([[2,-2],[-1,2]]):

fi:
if Ran>2 then
Cart[2][1,1]:=2:
Cart[2][1,2]:=-1:
Cart[2][Ran-1,Ran-2]:=-1:
Cart[2][Ran-1,Ran-1]:=2:
Cart[2][Ran-1,Ran]:=-2:
Cart[2][Ran,Ran-1]:=-1:
Cart[2][Ran,Ran]:=2:
for k from 1 to Ran-3 do
Cart[2][1+k,k]:=-1:
Cart[2][1+k,k+1]:=2:
Cart[2][1+k,k+2]:=-1:

od:
fi:
for k from 1 to Ran do
car[2][k]:=submatrix(Cart[2],k..k,1..Ran):

od:
highest[2]:=car[2][1]:
for k from 2 to Ran do
highest[2]:=evalm(highest[2]+2*car[2][k]):

od:
fi:
#
# C series (=sp(2Ran))
#
if Ran>1 then
Dimen[3]:=(2*Ran+1)*Ran:
Cart[3]:=transpose(Cart[2]):
for k from 1 to Ran do
car[3][k]:=submatrix(Cart[3],k..k,1..Ran):

od:
highest[3]:=car[3][Ran]:
for k from 1 to Ran-1 do
highest[3]:=evalm(highest[3]+2*car[3][k]):

od:
fi:

#
# D series (=so(2Ran))
#
if Ran>3 then
Dimen[4]:=(2*Ran-1)*Ran:
Cart[4][1,1]:=2:Cart[4][1,2]:=-1:
Cart[4][Ran-2,Ran-3]:=-1:Cart[4][Ran-2,Ran-2]:=2:
Cart[4][Ran-2,Ran-1]:=-1:Cart[4][Ran-2,Ran]:=-1:
Cart[4][Ran-1,Ran-2]:=-1:Cart[4][Ran-1,Ran-1]:=2:
Cart[4][Ran,Ran-2]:=-1:Cart[4][Ran,Ran]:=2:
for k from 1 to Ran-3 do
Cart[4][1+k,k]:=-1:Cart[4][1+k,k+1]:=2:
Cart[4][1+k,k+2]:=-1:

od:
for k from 1 to Ran do
car[4][k]:=submatrix(Cart[4],k..k,1..Ran):

od:
highest[4]:=car[4][Ran]+car[4][Ran-1]+car[4][1]:
for k from 2 to Ran-2 do
highest[4]:=evalm(highest[4]+2*car[4][k]):

od:
fi:
#
# E series
#
if Ran>5 and Ran<9 then
Temp:=matrix([
[2,-1,0,0,0,0,0,0],[-1,2,-1,0,0,0,0,0],
[0,-1,2,-1,0,0,0,0],[0,0,-1,2,-1,0,0,0],
[0,0,0,-1,2,-1,0,-1],[0,0,0,0,-1,2,-1,0],
[0,0,0,0,0,-1,2,0], [0,0,0,0,-1,0,0,2]]):
Cart[5]:=submatrix(Temp, 8-Ran+1..8, 8-Ran+1..8):
for k from 1 to Ran do
car[5][k]:=submatrix(Cart[5],k..k,1..Ran):

od:
if Ran=6 then
highest[5]:=matrix(1,6,[0,0,0,0,0,1]):
Dimen[5]:=78:

fi:
if Ran=7 then
highest[5]:=matrix(1,7,[0,0,0,0,0,1,0]):
Dimen[5]:=133:

fi:
if Ran=8 then
highest[5]:=matrix(1,8,[1,0,0,0,0,0,0,0]):
Dimen[5]:=248:

fi:
fi:
#
# F4
#
if Ran=4 then
Cart[6]:=matrix([
[2,-1,0,0],[-1,2,-2,0],[0,-1,2,-1],[0,0,-1,2]]):

for k from 1 to Ran do
car[6][k]:=submatrix(Cart[6],k..k,1..Ran):

od:
highest[6]:=matrix(1,4,[1,0,0,0]):
Dimen[6]:=52:

fi:
#
# G2
#
if Ran=2 then
Cart[7]:=matrix([[2,-3],[-1,2]]):
for k from 1 to Ran do
car[7][k]:=submatrix(Cart[7],k..k,1..Ran):

od:
highest[7]:=matrix(1,2,[1,0]):
Dimen[7]:=14:

fi:
#
# output
#
print(‘Cartan matrix‘, Cart[grou],‘highest root‘,
highest[grou],‘Dimension‘, Dimen[grou]);
end:

Table A.1:Maple Code: Lie Algebra Data
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Kač’s Normalization
Kacnorm:=proc(vec1,vec2,Ran,grou,Cart)
local eps,roco,k1,k2,Rann,si,sim,rocon,test,
rococh1,rococh2,Test;

eps:=1:
roco[1]:=evalm(vec1&*inverse(Cart[grou])):
roco[2]:=evalm(vec2&*inverse(Cart[grou])):
# B series
if grou=2 and Ran>1 then
# Cartan matrix of
# mapped simply laced algebra (D (Ran+1))
Rann:=Ran+1:
Test:=array(1..Rann,1..Rann,sparse):
Test[1,1]:=2:Test[1,2]:=-1:
if Rann>3 then
Test[Rann-2,Rann-3]:=-1:Test[Rann-2,Rann-2]:=2:
Test[Rann-2,Rann-1]:=-1:Test[Rann-2,Rann]:=-1:
Test[Rann-1,Rann-2]:=-1:Test[Rann-1,Rann-1]:=2:
Test[Rann,Rann-2]:=-1:Test[Rann,Rann]:=2:
for k1 from 1 to Rann-3 do
Test[1+k,k]:=-1:Test[1+k,k+1]:=2:Test[1+k,k+2]:=-1:

od:
fi:
if Rann=3 then
Test:=matrix([[2,-1,-1],[-1,2,0],[-1,0,2]]):

fi:
# calculate corresponding roots
# of simply laced algebra
for k1 from 1 to Ran-1 do
si[k1]:=array(1..1,1..Rann,sparse):
sim[k1]:=array(1..1,1..Rann,sparse):
si[k1][1,k1]:=1: sim[k1][1,k1]:=1:

od:
si[Ran]:=array(1..1,1..Rann,sparse):
sim[Ran]:=array(1..1,1..Rann,sparse):
si[Ran][1,Ran+1]:=1:
sim[Ran][1,Ran]:=1:
for k1 from 1 to 2 do
for k2 from 1 to 2 do
rocon[k1,k2]:=array(1..1,1..Rann,sparse):

od:
od:
for k2 from 1 to 2 do
for k1 from 1 to Ran-1 do
rocon[k2,1]:=

evalm(rocon[k2,1]+roco[k2][1,k1]*si[k1]):
rocon[k2,2]:=

evalm(rocon[k2,2]+roco[k2][1,k1]*sim[k1]):
od:

od:
for k2 from 1 to 2 do
if roco[k2][1,Ran]=1 then
rocon[k2,1]:=evalm(rocon[k2,1]+si[Ran]):
rocon[k2,2]:=evalm(rocon[k2,2]+sim[Ran]):

fi:
if roco[k2][1,Ran]=2 then
rocon[k2,1]:=evalm(rocon[k2,1]+si[Ran]+sim[Ran]):
rocon[k2,2]:=evalm(rocon[k2,2]+sim[Ran]+si[Ran]):

fi:
od:
# check and select
for k1 from 1 to 2 do
for k2 from 1 to 2 do
test:=evalm((rocon[1,k1]+rocon[2,k2])&*

Test&*transpose(rocon[1,k1]+rocon[2,k2])):
if test[1,1]=2 then
rococh1:=rocon[1,k1]:rococh2:=rocon[2,k2]:

fi:
od:

od:
# calculate epsilon
for k1 from 1 to Rann do
for k2 from 1 to Rann do
if k1>k2 and Test[k1,k2]<>0 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
if k1=k2 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
od:

od:
fi:

# F4
if grou=6 and Ran=4 then
# Cartan matrix
# of mapped simply laced algebra (E 6)
Rann:=6:
Test:=matrix([
[2,-1,0,0,0,0],[-1,2,-1,0,0,0],
[0,-1,2,-1,0,-1],[0,0,-1,2,-1,0],
[0,0,0,-1,2,0], [0,0,-1,0,0,2]]):

# calculate corresponding roots
# of simply laced algebra
for k1 from 1 to 4 do
si[k1]:=array(1..1,1..Rann,sparse):
sim[k1]:=array(1..1,1..Rann,sparse):

od:
si[1][1,6]:=1:sim[1][1,6]:=1:
si[2][1,3]:=1:sim[2][1,3]:=1:
si[3][1,2]:=1:sim[3][1,4]:=1:
si[4][1,1]:=1:sim[4][1,5]:=1:
for k1 from 1 to 2 do
for k2 from 1 to 2 do
rocon[k1,k2]:=array(1..1,1..Rann,sparse):

od:
od:
for k1 from 1 to 2 do
for k2 from 1 to 2 do
rocon[k2,1]:=
evalm(rocon[k2,1]+roco[k2][1,k1]*si[k1]):

rocon[k2,2]:=
evalm(rocon[k2,2]+roco[k2][1,k1]*sim[k1]):

od:
od:
for k1 from 1 to 2 do
for k2 from 3 to 4 do
if roco[k1][1,k2]=1 then
rocon[k1,1]:=evalm(rocon[k1,1]+si[k2]):
rocon[k1,2]:=evalm(rocon[k1,2]+sim[k2]):

fi:
if roco[k1][1,k2]=2 then
rocon[k1,1]:=evalm(rocon[k1,1]+si[k2]+sim[k2]):
rocon[k1,2]:=evalm(rocon[k1,2]+si[k2]+sim[k2]):

fi:
if roco[k1][1,k2]=3 then
rocon[k1,1]:=evalm(rocon[k1,1]+2*si[k2]+sim[k2]):
rocon[k1,2]:=evalm(rocon[k1,2]+si[k2]+2*sim[k2]):

fi:
if roco[k1][1,k2]=4 then
rocon[k1,1]:=
evalm(rocon[k1,1]+2*si[k2]+2*sim[k2]):

rocon[k1,2]:=
evalm(rocon[k1,2]+2*si[k2]+2*sim[k2]):

fi:
od:

od:
for k1 from 1 to 2 do
for k2 from 1 to 2 do
test:=evalm((rocon[1,k1]+rocon[2,k2])&*
Test&*transpose(rocon[1,k1]+rocon[2,k2])):

if test[1,1]=2 then
rococh1:=rocon[1,k1]:rococh2:=rocon[2,k2]:

fi:
od:

od:
for k1 from 1 to Rann do
for k2 from 1 to Rann do
if k1>k2 and (k1<4 and k2<4)
and Test[k1,k2]<>0 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
if k1<k2 and ((k1>2 and k1<>6)
and (k2>2 and k2<>6)) and Test[k1,k2]<>0 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
if k1=6 and k2=3 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
if k1=k2 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
od:

od:
fi:

Table A.2:Maple Code: Normalizations for Adjoint Representations (Kač)
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# simply laced
if (grou=1 or grou=4 or grou=5) or Ran=1 then
for k1 from 1 to Ran do
for k2 from 1 to Ran do
if k1>k2 and Cart[grou][k1,k2]<>0 then
eps:=eps*(-1)ˆ(roco[1][1,k1]*roco[2][1,k2]):

fi:
if k1=k2 then
eps:=eps*(-1)ˆ(roco[1][1,k1]*roco[2][1,k2]):

fi:
od:

od:
fi:
# C series
if grou=3 and Ran>1 then
# Cartan matrix of
# mapped simply laced algebra (A (2*Ran-1))
Rann:=2*Ran-1:
Test:=array(1..Rann,1..Rann,sparse):
Test[1,1]:=2:Test[1,2]:=-1:
Test[Rann,Rann-1]:=-1:Test[Rann,Rann]:=2:
for k1 from 1 to Rann-2 do
Test[1+k1,k1]:=-1:Test[1+k1,1k+1]:=2:
Test[1+k1,k1+2]:=-1:

od:
# calculate corresponding roots of
# simply laced algebra
for k1 from 1 to Ran do
si[k1]:=array(1..1,1..Rann,sparse):
si[k1][1,k1]:=1:
sim[k1]:=array(1..1,1..Rann,sparse):
sim[k1][1,2*Ran-k1]:=1:

od:
for k1 from 1 to 2 do
for k2 from 1 to 2 do
rocon[k1,k2]:=array(1..1,1..Rann,sparse):

od:
od:
for k1 from 1 to Ran do
for k2 from 1 to 2 do
if roco[k2][1,k1]=1 then
rocon[k2,1]:=evalm(rocon[k2,1]+si[k1]):
rocon[k2,2]:=evalm(rocon[k2,2]+sim[k1]):

fi:
if roco[k2][1,k1]=2 then
rocon[k2,1]:=evalm(rocon[k2,1]+si[k1]+sim[k1]):
rocon[k2,2]:=evalm(rocon[k2,2]+sim[k1]+si[k1]):

fi:
od:

od:
# check and select
for k1 from 1 to 2 do
for k2 from 1 to 2 do
test:=evalm((rocon[1,k1]+rocon[2,k2])&*
Test&*transpose(rocon[1,k1]+rocon[2,k2])):

if test[1,1]=2 then
rococh1:=rocon[1,k1]:rococh2:=rocon[2,k2]:

fi:
od:

od:
# calculate epsilon
for k1 from 1 to Rann do
for k2 from 1 to Rann do
if k1>k2 and k1<Ran+1
and k2<Ran+1 and Test[k1,k2]<>0 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
if k1<k2 and k1>Ran-1
and k2>Ran-1 and Test[k1,k2]<>0 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
od:

od:
fi:

# G2
if grou=7 and Ran=2 then
# Cartan matrix
# of corresponding simply laced algebra (D 4)
Rann:=4:
Test:=matrix([
[2,-1,0,0], [-1,2,-1,-1], [0,-1,2,0], [0,-1,0,2]]):
# calculate corresponding roots
# of simply laced algebra
for k1 from 1 to 2 do
for k2 from 1 to 3 do
si[k1,k2]:=array(1..1,1..Rann,sparse):

od:
od:
si[1,1][1,2]:=1:si[1,2][1,2]:=1:si[1,3][1,2]:=1:
si[2,1][1,1]:=1:si[2,2][1,3]:=1:si[2,3][1,4]:=1:
for k1 from 1 to 2 do
for k2 from 1 to 3 do
rocon[k1,k2]:=array(1..1,1..Rann,sparse):

od:
od:
for k1 from 1 to 3 do
rocon[1,k1]:=
evalm(rocon[1,k1]+roco[1][1,1]*si[1,1]):

rocon[2,k1]:=
evalm(rocon[2,k1]+roco[2][1,1]*si[1,1]):

od:
for k1 from 1 to 2 do
if roco[k1][1,2]=1 then
rocon[k1,1]:=evalm(rocon[k1,1]+si[2,1]):
rocon[k1,2]:=evalm(rocon[k1,2]+si[2,2]):
rocon[k1,3]:=evalm(rocon[k1,3]+si[2,3]):

fi:
if roco[k1][1,2]=2 then
rocon[k1,1]:=evalm(rocon[k1,1]+si[2,1]+si[2,2]):
rocon[k1,2]:=evalm(rocon[k1,2]+si[2,2]+si[2,3]):
rocon[k1,3]:=evalm(rocon[k1,3]+si[2,3]+si[2,1]):

fi:
if roco[k1][1,2]=3 then
for k2 from 1 to 3 do
rocon[k1,k2]:=
evalm(rocon[k1,k2]+si[2,1]+si[2,2]+si[2,3]):

od:
fi:

od:
for k1 from 1 to 3 do
for k2 from 1 to 3 do
test:=evalm((rocon[1,k1]+rocon[2,k2])&*
Test&*transpose(rocon[1,k1]+rocon[2,k2])):

if test[1,1]=2 then
rococh1:=rocon[1,k1]: rococh2:=rocon[2,k2]:

fi:
od:

od:
for k1 from 1 to Rann do
for k2 from 1 to Rann do
if k1=2 and k2<>2 and Test[k1,k2]<>0 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
if k1=k2 then
eps:=eps*(-1)ˆ(rococh1[1,k1]*rococh2[1,k2]):

fi:
od:

od:
fi:
eps:
end:

Table A.2:Maple Code: Normalizations for Adjoint Representations (Kač)
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Freudenthal’s Normalization
freuden:=proc(Ran,grou,vec,inde)
local Temp,Cart,ro,rootco,epsis,c7;
inde:=array(1..5):
if grou=5 then
Temp:=matrix([
[2,-1,0,0,0,0,0,0],[-1,2,-1,0,0,0,0,0],
[0,-1,2,-1,0,0,0,0],[0,0,-1,2,-1,0,0,0],
[0,0,0,-1,2,-1,0,-1],[0,0,0,0,-1,2,-1,0],
[0,0,0,0,0,-1,2,0], [0,0,0,0,-1,0,0,2]]):

Cart:=submatrix(Temp, 8-Ran+1..8, 8-Ran+1..8):
ro[7]:=ep[7]-ep[8]:
ro[8]:=-1/3*(ep[1]+ep[2]+ep[3]+ep[4]+ep[5]+ep[6]+
ep[7]+ep[8]+ep[9])+ep[6]+ep[7]+ep[8]:

ro[6]:=ep[6]-ep[7]:
ro[5]:=ep[5]-ep[6]:
ro[4]:=ep[4]-ep[5]:
ro[3]:=ep[3]-ep[4]:
ro[2]:=ep[2]-ep[3]:
ro[1]:=ep[1]-ep[2]:
rootco:=evalm(vec&*inverse(Cart)):
epsis:=sum(rootco[1,c6]*ro[c6+8-Ran],c6=1..Ran):

fi:
if grou=7 then
Temp:=matrix([[2,-3],[-1,2]]):
ro[1]:=ep[1]-ep[2]:
ro[2]:=ep[2]-1/3*(ep[1]+ep[2]+ep[3]):
rootco:=evalm(vec&*inverse(Temp)):
epsis:=sum(rootco[1,c6]*ro[c6],c6=1..Ran):

fi:
inde[4]:=0:
for c7 from 1 to 9 do
if (coeff(epsis,ep[c7])=1) then
inde[4]:=inde[4]+1: inde[inde[4]]:=c7: inde[5]:=0:

fi:
od:
for c7 from 1 to 9 do
if (coeff(epsis,ep[c7])=-1) then
inde[4]:=inde[4]+1: inde[inde[4]]:=c7: inde[5]:=0:

fi:
od:
for c7 from 1 to 9 do
if (coeff(epsis,ep[c7])=2/3) then
inde[4]:=inde[4]+1: inde[inde[4]]:=c7: inde[5]:=+1:

fi:
od:
for c7 from 1 to 9 do
if (coeff(epsis,ep[c7])=-2/3) then
inde[4]:=inde[4]+1: inde[inde[4]]:=c7: inde[5]:=-1:

fi:
od:
end:

freudeneps:=proc(inde1,inde2,inde3,eps)
local epsilon;
epsilon:=array(1..9,1..9,1..9,1..9,1..9,1..9,
1..9,1..9,1..9,antisymmetric):

epsilon[1,2,3,4,5,6,7,8,9]:=1:
eps:=1:
if inde1[4]=2 then
if inde2[4]=2 then
if inde1[1]=inde2[2] then eps:=-1:fi:

fi:
if inde2[4]=3 and inde2[5]=-1 then
eps:=-1:

fi:
if inde2[4]=1 and inde2[5]=-1 then
eps:=-1:

fi:
fi:
if inde1[4]=3 then
if inde2[4]=3 and inde2[5]=-1 then
eps:=+epsilon[6,7,8,inde2[1],inde2[2],inde2[3],
inde3[1],inde3[2],inde3[3]]:

fi:
if inde2[4]=3 and inde2[5]=+1 then
if inde2[1]=6 and inde2[2]=7 then eps:=-1:fi:
if inde2[2]=6 and inde2[3]=7 then eps:=-1:fi:
if inde2[1]=7 and inde2[2]=8 then eps:=-1:fi:
if inde2[2]=7 and inde2[3]=8 then eps:=-1:fi:

fi:
if inde2[4]=2 then
if inde2[1]=7 then eps:=-1:fi:

fi:
fi:
if inde1[4]=1 then
if inde2[4]=1 and inde2[5]=-1 then
eps:=+epsilon[2,inde2[1],inde3[1],4,5,6,7,8,9]:

fi:
if inde2[4]=1 and inde2[5]=+1 then
eps:=-1:

fi:
fi:
end:

Table A.3:Maple Code: Normalizations for Adjoint Representations (Freudenthal)
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Conventions
Matrices are stored in arrays:
matrix � �� array a
a[1,4]: total number of nonzero entries in �

a[k,1]:i, a[k,2]:j, a[k,3]: ��� , k=1...a[1,4]

Scalar Multiplication
scalmult:=proc(co1,c)
local z1,final;
#
# co1: matrix, c: scalar
#
# final: c*co1
#
if c=0 then final[1,4]:=0:fi:
if c<>0 then
for z1 from 1 to co1[1,4] do
final[z1,1]:=co1[z1,1]:
final[z1,2]:=co1[z1,2]:
final[z1,3]:=c*co1[z1,3]:

od:
final[1,4]:=co1[1,4]:

fi:
final:
end:

Matrix Multiplication
mult:=proc(co1,co2)
local z1,z2,k1,k2,k3,k4,co3,indew,final;
#
# co1,co2: matrices
#
#
# final: co1*co2
#
z1:=0:
for k1 from 1 to co1[1,4] do
for k2 from 1 to co2[1,4] do
# check for nonzero entry
if co1[k1,2]=co2[k2,1] then
# if already exists, add
indew:=0:
for k3 from 1 to z1 do
if co1[k1,1]=co3[k3,1]
and co2[k2,2]=co3[k3,2] then
indew:=1:
co3[k3,3]:=co3[k3,3]+co1[k1,3]*co2[k2,3]:

fi:
od:
# if does not exist, new
if indew=0 then
z1:=z1+1:
co3[z1,1]:=co1[k1,1]:
co3[z1,2]:=co2[k2,2]:
co3[z1,3]:=co1[k1,3]*co2[k2,3]:

fi:
fi:

od:
od:
# keep only nonzero entries
z2:=0:
for k3 from 1 to z1 do
if co3[k3,3]<>0 then
z2:=z2+1:
for k4 from 1 to 3 do
final[z2,k4]:=co3[k3,k4]:

od:
fi:

od:
final[1,4]:=z2:
final:
end:

Matrix Sum
addi:=proc(co1,co2)
local z1,z2,z3,z4,indew,co3,final;
#
# co1,co2: matrices
#
# final: co1+co2
#
# if one matrix is zero, result equals the other
if co1[1,4]=0 then final:=co2:fi:
if co2[1,4]=0 then final:=co1:fi:
# if both are not zero
if co1[1,4]<>0 and co2[1,4]<>0 then
# add first matrix to result
for z1 from 1 to co1[1,4] do
for z2 from 1 to 3 do
co3[z1,z2]:=co1[z1,z2]:

od:
od:
z3:=co1[1,4]:
# add second matrix
for z1 from 1 to co2[1,4] do
# if entry exists already, add
indew:=0:
for z2 from 1 to co1[1,4] do
if co3[z2,1]=co2[z1,1] and co3[z2,2]=co2[z1,2] then
indew:=1:
co3[z2,3]:=co3[z2,3]+co2[z1,3]:

fi:
od:
# if entry does not exists, new
if indew=0 then
z3:=z3+1:
for z2 from 1 to 3 do
co3[z3,z2]:=co2[z1,z2]:

od:
fi:

od:
# keep only nonzero entries
z2:=0:
for z1 from 1 to z3 do
if co3[z1,3]<>0 then
z2:=z2+1:
for z4 from 1 to 3 do final[z2,z4]:=co3[z1,z4]:od:

fi:
od:
final[1,4]:=z2:

fi:
final:
end:

Commutator
commu:=proc(co1,co2)
#
# co1,c2: matrices
#
# final: [co1,co2]
#
local final;
final:=
addi(mult(co1,co2),scalmult(mult(co2,co1),-1)):

final:
end:

Matrices from Arrays
matri:=proc(co1,d)
#
# co1: array, d: dimension of the representation
#
# ma: matrix
#
local k,ma;
ma:=array(1..d,1..d,sparse):
for k from 1 to co1[1,4] do

ma[co1[k,1],co1[k,2]]:=co1[k,3]:
od:
ma:
end:

Table A.4:Maple Code: Matrix Calculus
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Generation of Representation
Matrices

highweightrep:=proc(grou,Ran,vec,rep,Repdimen,pco,mco)
local a1,a2,z0,z1,z2,z3,z5,k1,k2,k3,adj,adjf,chain,
test,dummy,indi1,indi2,indi3,indi4,indi5,indi6,
indi7,indi8,eps,roco,indes,inde;

#
# grou: group, Ran: rank, vec: highest weight
# rep: weights/roots, Repdimen: Dim. of the rep.
# pco/mco: pos./neg. root generators (entries)
#
initialize(grou,Ran,’Cart’,’highest’,’Dimen’,’car’):
# test if adjoint
adj:=1:
for k1 from 1 to Ran do
if vec[1,k1]<>highest[grou][1,k1] then
adj:=0:

fi:
od:
# test if basic
if (grou=6 and sum(vec[1,ka],ka=1..4)=1
and vec[1,4]=1) or (grou=3 and
sum(vec[1,ka],ka=1..Ran)=1 and vec[1,2]=1) then
adjf:=1:adj:=1:

else
adjf:=0:

fi:
# initial values:
rep:=array(1..2):
rep[1][1]:=vec:
pco:=array(1..Dimen[grou]):
mco:=array(1..Dimen[grou]):
z1:=1:
z5:=array(1..Ran,sparse):
chain[1]:=array(1..1000,1..Ran,sparse):
chain[2]:=array(1..1000,1..Ran,sparse):
indi1:=0:
# FIRST RUN: produce simple root generators
# SECOND RUN: produce remaining generators
for k2 from 1 to 2 do
# initial values for the second run
if k2=2 then
adj:=1:
indi1:=0:
z1:=Ran:
for k1 from 1 to z1 do
rep[2][k1]:=evalm(-car[grou][k1]):

od:
fi:
# Freudenthal’s indices: initial values
if (grou=5 and Ran>5 and Ran<9) or grou=7 then
indes:=array(1..2): inde:=array(1..2):
for k1 from 1 to Ran do
freuden(Ran,grou,-car[grou][k1],indes[k2][k1]):

od:
freuden(Ran,grou,rep[k2][1],inde[k2][1]):
if k2=2 then
for k1 from 1 to Ran do
freuden(Ran,grou,rep[k2][k1],inde[k2][k1]):

od:
fi:

fi:
# begin
for z0 from 1 to 2000 while indi1=0 do
# run as long as new weights are produced
indi1:=1:
# if there’s more weights to look at, run further
if z1>z0 then indi1:=0:fi:
# check for positive entries
for z2 from 1 to Ran do
# if positive entry exists and
# weight is not in a chain already
# cared for (see below) proceed
if rep[k2][z0][1,z2]>0 and chain[k2][z0,z2]=0 then
# new chain starts if entry is larger than 1
if rep[k2][z0][1,z2]>1 then
chain[k2][z0,z2]:=rep[k2][z0][1,z2]:

fi:
# produce chain/ new weight
test:=evalm(rep[k2][z0]):
dummy:=z0:
for k3 from 1 to rep[k2][z0][1,z2] do
indi1:=0:
test:=evalm(test-car[grou][z2]):
# check if zero
indi2:=0:
for k1 from 1 to Ran do
if test[1,k1]<>0 then indi2:=1:fi:

od:

# check if the new weight already exists
indi3:=0:
indi4:=0:
for z3 from 1 to z1 do
indi5:=0:
for k1 from 1 to Ran do
if rep[k2][z3][1,k1]<>test[1,k1] then
indi5:=1:

fi:
od:
if indi5=0 then
# YES, EXISTS
indi3:=1:
# check if entry in generatormatrix
# has been made, if not, do a new one
indi6:=0:
for k1 from 1 to z5[z2] do
if k2=1 and pco[z2][k1,1]=z0
and pco[z2][k1,2]=z3 then
indi6:=1:

fi:
od:
# if no entry yet and not zero weight
# in adjoint rep or basic rep
if indi6=0 and not(indi2=0 and adj=1)
and not(indi2=0 and adjf=1) then
if k2=1 then
# Kacnorm
eps:=1:
indi8:=0:
for k1 from 1 to Ran do
if rep[k2][dummy][1,k1]<>0 then indi8:=1:fi:

od:
if adj=1 and indi8=1 then
roco:=
evalm(rep[k2][dummy]&*inverse(Cart[grou])):

indi7:=0:
for k1 from 1 to Ran do
if roco[1,k1]<0 then indi7:=1:fi:

od:
if indi7=1 then
eps:=-Kacnorm(
car[grou][z2],-rep[k2][dummy],Ran,grou,Cart):

fi:
if indi7=0 then
eps:=Kacnorm(
car[grou][z2],rep[k2][z3],Ran,grou,Cart):

fi:
fi:
# Freudenthal
if ((grou=5 and Ran>5 and Ran<9) or grou=7)
and adj=1 then
eps:=1:
freuden(Ran,grou,rep[k2][z3],inde[k2][z3]):
freudeneps(indes[k2][z2],
inde[k2][dummy],inde[k2][z3],’eps’):

fi:
# entries
z5[z2]:=z5[z2]+1:
pco[z2][z5[z2],1]:=dummy:
pco[z2][z5[z2],2]:=z3:
pco[z2][z5[z2],3]:=
eps*(rep[k2][z0][1,z2]+1-k3):

mco[z2][z5[z2],1]:=z3:
mco[z2][z5[z2],2]:=dummy:
mco[z2][z5[z2],3]:=eps*k3:

fi:
dummy:=z3:

fi:
# if zero weight in adjoint
if indi2=0 and adj=1 and indi4=0 and k2=1 then
a1:=Ran:a2:=0:
if grou=6 and adjf=1 then a1:=2:a2:=2:fi:
if grou=3 and adjf=1 then a1:=Ran-1:a2:=0:fi:
for k1 from 1 to a1 do
# Check CSA
if Cart[grou][z2,k1+a2]=2 then
z5[z2]:=z5[z2]+1:
pco[z2][z5[z2],1]:=z0:
pco[z2][z5[z2],2]:=z3+k1-1:
pco[z2][z5[z2],3]:=-2:
mco[z2][z5[z2],1]:=z3+k1-1:
mco[z2][z5[z2],2]:=z0:
mco[z2][z5[z2],3]:=-1:
dummy:=z3+k1-1:

fi:
if Cart[grou][z2,k1+a2]<>2
and Cart[grou][z2,k1+a2]<>0 then
z5[z2]:=z5[z2]+1:
pco[z2][z5[z2],1]:=z0:
pco[z2][z5[z2],2]:=z3+k1-1:

Table A.5:Maple Code: Generation of Representation Matrices
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pco[z2][z5[z2],3]:=-Cart[grou][z2,k1+a2]:
mco[z2][z5[z2],1]:=z1+1:
mco[z2][z5[z2],2]:=z3+k1-1:
mco[z2][z5[z2],3]:=Cart[grou][z2,k1+a2]:

fi:
od:
# set indicator to cope with degeneracy
# (do the above only once for zero root)
indi4:=1:

fi:
fi:

od:
# NO, DOES NOT EXIST YET
# if zero weight in basic/adjoint rep:
# create all zero weights
if (indi2=0 and indi3=0 and adj=1 and k2=1) then
indi3:=1:
a1:=Ran:a2:=0:
if grou=6 and adjf=1 then a1:=2:a2:=2:fi:
if grou=3 and adjf=1 then a1:=Ran-1:a2:=0:fi:
for k1 from 1 to a1 do
rep[k2][z1+k1]:=evalm(test):
if Cart[grou][z2,k1+a2]=2 then
z5[z2]:=z5[z2]+1:
pco[z2][z5[z2],1]:=z0:
pco[z2][z5[z2],2]:=z1+k1:
pco[z2][z5[z2],3]:=-2:
mco[z2][z5[z2],1]:=z1+k1:
mco[z2][z5[z2],2]:=z0:
mco[z2][z5[z2],3]:=-1:
dummy:=z1+k1:

fi:
if Cart[grou][z2,k1+a2]<>2
and Cart[grou][z2,k1+a2]<>0 then
z5[z2]:=z5[z2]+1:
pco[z2][z5[z2],1]:=z0:
pco[z2][z5[z2],2]:=z1+k1:
pco[z2][z5[z2],3]:=-Cart[grou][z2,k1+a2]:
mco[z2][z5[z2],1]:=z1+a1+1:
mco[z2][z5[z2],2]:=z1+k1:
mco[z2][z5[z2],3]:=Cart[grou][z2,k1+a2]:

fi:
od:
z1:=z1+a1:

fi:
# if nontrivial weight
if indi3=0 then
indi1:=0:
z1:=z1+1:
rep[k2][z1]:=evalm(test):
# check if member of a chain
if rep[k2][z0][1,z2]>1 then
chain[k2][z1,z2]:=rep[k2][z0][1,z2]-k3:

fi:
# Kacnorm
eps:=1:
indi8:=0:
for k1 from 1 to Ran do
if rep[k2][dummy][1,k1]<>0 then
indi8:=1:

fi:
od:
if adj=1 and indi8=1 then
roco:=evalm(rep[k2][dummy]&*
inverse(Cart[grou])):

indi7:=0:
for k1 from 1 to Ran do
if roco[1,k1]<0 then indi7:=1:fi:

od:
if indi7=1 then
eps:=-Kacnorm(
car[grou][z2],-rep[k2][dummy],Ran,grou,Cart):

fi:
if indi7=0 then
eps:=Kacnorm(

car[grou][z2],rep[k2][z1],Ran,grou,Cart):
fi:

fi:
# Freudenthal
if ((grou=5 and Ran>5 and Ran<9) or grou=7)
and adj=1 then
eps:=1:
freuden(Ran,grou,rep[k2][z1],inde[k2][z1]):
freudeneps(indes[k2][z2],
inde[k2][dummy],inde[k2][z1],’eps’):

fi:
# entries
if k2=1 then
z5[z2]:=z5[z2]+1:
pco[z2][z5[z2],1]:=dummy:
pco[z2][z5[z2],2]:=z1:
pco[z2][z5[z2],3]:=
eps*(rep[k2][z0][1,z2]+1-k3):

mco[z2][z5[z2],1]:=z1:
mco[z2][z5[z2],2]:=dummy:
mco[z2][z5[z2],3]:=eps*k3:

fi:
# second run: produce generator
if k2=2 then
pco[z1]:=
scalmult(commu(pco[z2],pco[dummy]),-1/k3*eps):

mco[z1]:=
scalmult(commu(mco[z2],mco[dummy]),1/k3*eps):

fi:
dummy:=z1:

fi:
od:

fi:
od:

od:
for k1 from 1 to Ran do
pco[k1][1,4]:=z5[k1]:mco[k1][1,4]:=z5[k1]:

od:
if k2=1 then
print(‘Weights:‘);
for k1 from 1 to z1 do
print(k1, rep[k2][k1]);

od;
print(‘Number of entries for
simple root generator k‘);

for k1 from 1 to Ran do print(k1,z5[k1]); od;
Repdimen:=z1:

fi:
if k2=2 then
print(‘positive root generators:‘);
for k1 from 1 to z1 do
rep[k2][k1]:=evalm(rep[k2][k1]*(-1)):
if grou<>5 and grou<>7 then
print(‘generator‘,k1,‘rootcoordinates‘,
evalm(rep[k2][k1]&*inverse(Cart[grou])));

fi;
if (grou=5 and Ran>5 and Ran<9) or grou=7 then
if inde[2][k1][4]=2 then
test:=seq(inde[2][k1][3-k3],k3=1..2):

else
test:=seq(inde[2][k1][k3],k3=1..inde[2][k1][4]):

fi:
print(‘generator‘,k1,‘rootcoordinates‘,
evalm(rep[k2][k1]&*inverse(Cart[grou])),
‘-‘,‘epsilon‘,test);

else
print(‘generator‘,k1,‘rootcoordinates‘,
evalm(rep[k2][k1]&*inverse(Cart[grou])),
‘epsilon‘,test);

fi;
fi;

od:
fi:

od:
end:

Table A.5:Maple Code: Generation of Representation Matrices
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Lie Algebra Check
testCartan:=proc(pco,mco,rep,grou,Ran)
local Le,k1,k2,k3,rest,roco,h,test;
initialize(grou,Ran,’Cart’,’highest’,’Dimen’,’car’):
# relative lengths of roots
for k1 from 1 to Ran do
for k2 from 1 to Ran do
for k3 from 1 to 7 do
Le[k3][k1,k2]:=1:

od:
od:

od:
for k1 from 1 to Ran-1 do
Le[2][k1,Ran]:=2:
Le[2][Ran,k1]:=1/2:
Le[3][k1,Ran]:=1/2:
Le[3][Ran,k1]:=2:

od:
Le[6][1,2]:=1:Le[6][2,1]:=1:
Le[6][1,3]:=2:Le[6][3,1]:=1/2:
Le[6][1,4]:=2:Le[6][4,1]:=1/2:
Le[6][2,3]:=2:Le[6][3,2]:=1/2:
Le[6][2,4]:=2:Le[6][4,2]:=1/2:
Le[6][3,4]:=1:Le[6][4,3]:=1:
Le[7][1,2]:=3:Le[7][2,1]:=1/3:
# Calculate CSA
for k1 from 1 to Ran do
h[k1]:=commu(pco[k1],mco[k1]):

od:
# Test Cartan Matrix
print(‘Test [H alpha i, E alpha j]=A ji E alpha j‘);
for k1 from 1 to Ran do
for k2 from 1 to Ran do
rest:=addi(commu(h[k1],pco[k2]),
scalmult(pco[k2],-Cart[grou][k2,k1])):

if rest[1,4]=0 then print(k1,k2,ok); fi;
if rest[1,4]<>0 then print(k1,k2,ups); fi;

od;
od;
print(‘Test [H alpha i, E -alpha j]=A ji E -alpha j‘);
for k1 from 1 to Ran do
for k2 from 1 to Ran do
rest:=addi(commu(h[k1],mco[k2]),
scalmult(mco[k2],Cart[grou][k2,k1])):

if rest[1,4]=0 then print(k1,k2,ok); fi;
if rest[1,4]<>0 then print(k1,k2,ups); fi;

od;
od;
# Test normalizations
# [E alpha,F alpha]=H alpha for positive roots
# Calculate H alpha
print(‘Test [E alpha,F alpha]=H alpha
for positive roots‘);

for k1 from Ran+1 to (Dimen[grou]-Ran)/2 do
roco:=evalm(rep[2][k1]&*inverse(Cart[grou])):
h[k1]:=scalmult(h[1],roco[1,1]*

(sum((roco[1,e1])ˆ2*Le[grou][e1,1],e1=1..Ran)+
sum(sum(roco[1,e1]*roco[1,e2]*Cart[grou][e2,e1]*
Le[grou][e1,1],e2=e1+1..Ran),
e1=1..Ran))ˆ(-1)):

for k2 from 2 to Ran do
h[k1]:=addi(scalmult(h[k2],roco[1,k2]*
(sum((roco[1,e1])ˆ2*Le[grou][e1,k2],e1=1..Ran)+
sum(sum(roco[1,e1]*roco[1,e2]*Cart[grou][e2,e1]*
Le[grou][e1,k2],e2=e1+1..Ran),
e1=1..Ran))ˆ(-1)),h[k1]):

od:
od:
# Check with [E alpha,F alpha]
for k1 from Ran+1 to (Dimen[grou]-Ran)/2 do
rest:=addi(h[k1],commu(mco[k1],pco[k1])):
if rest[1,4]=0 then print(k1, ‘ok‘):fi:
if rest[1,4]<>0 then
print(k1, ‘ups‘,rest[1,4]):

fi:
od:
# Check [E alpha i,F alpha j] for simple roots
print(‘Check [E alpha i,F alpha j]=0 for simple roots,
i not equal to j‘):

for k1 from 1 to Ran do
for k2 from 1 to Ran do
if k1<>k2 then
rest:=commu(pco[k1],mco[k1]):
if rest[1,4]=0 then print(k1,k2,‘ok‘):fi:
if rest[1,4]<>0 then print(k1,k2,‘ok‘):fi:

fi:
od:

od:
# Check Serre relations
print(‘Test Serre relations
(adj[E alpha i]ˆ(-A ji+1))(E alpha j)=0‘);

for k1 from 1 to Ran do
for k2 from k1+1 to Ran do
test:=commu(pco[k2],pco[k1]):
for k3 from 1 to -Cart[grou][k1,k2] do
test:=commu(pco[k2],test):

od:
if test[1,4]=0 then print(k2,k1,ok):fi:
if test[1,4]<>0 then print(k2,k1,ups):fi:

od:
od:
for k2 from 1 to Ran do
for k1 from k2+1 to Ran do
test:=commu(pco[k2],pco[k1]):
for k3 from 1 to -Cart[grou][k1,k2] do
test:=commu(pco[k2],test):

od:
if test[1,4]=0 then print(k2,k1,ok):fi:
if test[1,4]<>0 then print(k2,k1,ups):fi:

od:
od:
end:

Table A.6:Maple Code: Lie Algebra Check

Tensor Products
tens:=proc(ma1,d1,ma2,d2)
local z1,z2,z3,z4,tens1,tens2,tens3;
z3:=0:
for z1 from 1 to ma1[1,4] do
for z2 from 1 to d2 do
z3:=z3+1:
tens1[z3,1]:=z2+(ma1[z1,1]-1)*d2:
tens1[z3,2]:=z2+(ma1[z1,2]-1)*d2:
tens1[z3,3]:=ma1[z1,3]:

od:
od:
tens1[1,4]:=z3:

z4:=0:
for z1 from 1 to ma2[1,4] do
for z2 from 1 to d1 do
z4:=z4+1:
tens2[z4,1]:=ma2[z1,1]+(z2-1)*d2:
tens2[z4,2]:=ma2[z1,2]+(z2-1)*d2:
tens2[z4,3]:=ma2[z1,3]:

od:
od:
tens2[1,4]:=z4:
tens3:=addi(tens1,tens2):
tens3:
end:

Table A.7:Maple Code: Tensor Products
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A.3 Examples

In this section, some simple examples to show how the above procedures can be applied are
presented.

A.3.1 ��: 4

The first example is given in table A.8. The4 of ��� is generated by the procedurehigh-
weightrep . The representation matrices, known from the main part of this thesis, are then
printed.

> highweightrep(1,1,([[3]]),ro,’d’,pco,mco);

Cartan matrix, [2], highest root, [2], Dimension, 3
Weights:

1, [3]
2, [1]
3, [-1]
4, [-3]

Number of entries for simple root generator k
1, 3

positive root generators:
generator, 1, rootcoordinates, [1]

> print(matri(pco[1],d),matri(mco[1],d),
matri(commu(pco[1],mco[1]),d));

�
���

� � � �
� � � �
� � � �
� � � �

�
��� �

�
���

� � � �
� � � �
� � � �
� � � �

�
��� �

�
���

� � � �
� � � �
� � �� �
� � � ��

�
���

Table A.8: Example:4 of ��

A.3.2 ��: 14

A more complicated example is the14 adjoint representation of��, involving �� modules of
dimension 4. It is generated by callinghighweightrep . The normalization has been chosen
to correspond to section 2.4.2, refe8freud.

The correctness of the representation matrices is tested by callingtestCartan . The corre-
sponding output is given in table A.9.

The whole algebra is then given in one matrix by

E���� �



�

%�E�%��� 




�

+�E����� 




�

3�E������� .� 	 *�� � /� 	 $��
�

where the roots/� correspond to the list given byhighweightrep . TheE�%���, E�����,
E����� denote the representation matrices, and the parameters%�, +�, 3� can be chosen to be
in � or � depending on the real form needed (the latter choice corresponds to the normal form
������). The result is given in table A.10.
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> highweightrep(7,2,([[1,0]]),ro,’d’,pco,mco);

Cartan matrix�
�

� ��
�� �

�
� highest root, [1 0], Dimension, 14

Weights:
1, [1 0]
2, [-1 3]
3, [0 1]
4, [1 -1]
5, [2 -3]
6, [-1 2]
7, [0 0]
8, [0 0]
9, [-2 3]
10, [1 -2]
11, [-1 1]
12, [0 -1]
13, [1 -3]
14, [-1 0]

Number of entries for simple root generator k
1, 7
2, 9

positive root generators:
generator, 1, rootcoordinates, [1 0], epsilon, 1, 2
generator, 2, rootcoordinates, [0 1], epsilon, 2
generator, 3, rootcoordinates, [1 1], epsilon, 1

generator, 4, rootcoordinates, [1 2], -, epsilon, 3
generator, 5, rootcoordinates, [1 3], epsilon, 2, 3
generator, 6, rootcoordinates, [2 3], epsilon, 1, 3

> testCartan(pco,mco,ro,7,2);

Cartan matrix�
�

� ��
�� �

�
� highest root, [1 0], Dimension, 14

Test [halphai, e alphaj]=A ji e alphaj
1, 1, ok
1, 2, ok
2, 1, ok
2, 2, ok

Test [halphai, f alphaj]=-A ji f alphaj
1, 1, ok
1, 2, ok
2, 1, ok
2, 2, ok

Test [ealpha,falpha]=halpha for all roots
3, ok
4, ok
5, ok
6, ok

Check [ealphai,f alphaj]=0 for simple roots, i not equal to j
1, 2, ok
2, 1, ok

Test Serre relations (adj[ealphai] ˆ (-A ji+1))(e alphaj)=0
2, 1, ok
1, 2, ok

Table A.9: Example:14 of ��
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> G:=scalmult(pco[1],P[1])
> for k from 2 to 6 do G:=(addi(scalmult(pco[k],P[k]),G)):od:
> for k from 1 to 6 do G:=(addi(scalmult(mco[k],M[k]),G)):od:
> for k from 1 to 2 do
> G:=(addi(scalmult(commu(pco[k],mco[k]),H[k]),G)):od:
> print(matri(G,d));
�
���������������������

�
 �
 ��� ���� ��� � ��� � � � � � � �
�
 ��� ��
 ��� � � ���� �� ���� ��� � � � � �
�� �� �� ��� � ���� � ��� � ��� ��� � � �
��� � ��� ��� ��
 ��� �
 ��� �� � ���� � �� � �
��� � � ���� ���� � ��
 � ���
 ��
 � ��� � � �� �
� ��� ���� �
 � ��� ��
 �� ���� ��� � ��� �� � �

���� ��� ���� ���� ��
 � � � �
 � ��� ��� �� ���
��� ��� ���� ��� � ��� � � � �� �� ��� �� ��
� ��� � � � ���� ��
 ���
��� � ��
 � ��� � � ��
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 ��
 ��� �� �
� � ��� � � ��� �� ��� �� ��
 �� ��
���� � ��
� � � �� � �� � �� � ��� ���� ��� ��� ���
� � � � �� � ��� ��� � ��� � �������� ��
��

� � � � � � �� � �� � ��� ���� ��
 ��


�
���������������������

Table A.10: Example:14 of �� (Representation Matrix)

A.3.3 ��: 26

A third example is the26 of ��, the (only) basic representation of this algebra. Again,high-
weightrep is called (see table A.11) and the algebra is given as a whole in one representation
matrix with conventions as above (table A.12).

> highweightrep(6,4,([[0,0,0,1]]),
ro,’d’,pco,mco);

Cartan matrix�

�
���������

� �� � �
�� � �� �
� �� � ��
� � �� �

�
���������
�

highest root, [1 0 0 0], Dimension, 52

Weights:
1, [0 0 0 1]
2, [0 0 1 -1]
3, [0 1 -1 0]
4, [1 -1 1 0]
5, [-1 0 1 0]
6, [1 0 -1 1]
7, [-1 1 -1 1]
8, [1 0 0 -1]
9, [0 -1 1 1]

10, [-1 1 0 -1]
11, [0 0 -1 2]
12, [0 -1 2 -1]
13, [0 0 0 0]
14, [0 0 0 0]
15, [0 0 1 -2]
16, [0 1 -2 1]
17, [0 1 -1 -1]
18, [1 -1 0 1]
19, [1 -1 1 -1]
20, [-1 0 0 1]
21, [-1 0 1 -1]
22, [1 0 -1 0]
23, [-1 1 -1 0]
24, [0 -1 1 0]

25, [0 0 -1 1]
26, [0 0 0 -1]

Number of entries for simple root generator k
1, 6
2, 6
3, 11
4, 11

positive root generators:
generator, 1, rootcoordinates, [1 0 0 0]
generator, 2, rootcoordinates, [0 1 0 0]
generator, 3, rootcoordinates, [0 0 1 0]
generator, 4, rootcoordinates, [0 0 0 1]
generator, 5, rootcoordinates, [1 1 0 0]
generator, 6, rootcoordinates, [0 1 1 0]
generator, 7, rootcoordinates, [0 1 2 0]
generator, 8, rootcoordinates, [0 0 1 1]
generator, 9, rootcoordinates, [1 1 1 0]
generator, 10, rootcoordinates, [1 1 2 0]
generator, 11, rootcoordinates, [0 1 1 1]
generator, 12, rootcoordinates, [0 1 2 1]
generator, 13, rootcoordinates, [0 1 2 2]
generator, 14, rootcoordinates, [1 1 1 1]
generator, 15, rootcoordinates, [1 2 2 0]
generator, 16, rootcoordinates, [1 1 2 1]
generator, 17, rootcoordinates, [1 1 2 2]
generator, 18, rootcoordinates, [1 2 2 1]
generator, 19, rootcoordinates, [1 2 2 2]
generator, 20, rootcoordinates, [1 2 3 1]
generator, 21, rootcoordinates, [1 2 3 2]
generator, 22, rootcoordinates, [1 2 4 2]
generator, 23, rootcoordinates, [1 3 4 2]
generator, 24, rootcoordinates, [2 3 4 2]

Table A.11: Example:26 of ��
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A.3.4 Tensor Products

Finally, a simple example shall be given for thetens procedure introduced above. For���,
consider the tensor product�� � � �
 �. The corresponding output is given in table A.13.

The base vectors for the two zero weights of the tensor product module1 +3 need to be rotated
in order to see the singlet directly. For general tensor products, to separate the irreducible blocks,
the representation space basis will need to be transformed correspondingly. If the aim is to find
a specific irreducible module by constructing it in a tensor product, finding the transformation
to get block diagonal structure of the representation matrix might be nontrivial, and in general it
might be easier to consider closely the basis of this module and to construct it directly.

> highweightrep(1,1,([[1]]),ro,’d’,pco,mco):
> G1:=scalmult(pco[1],P):
> G1:=(addi(scalmult(mco[1],M),G1)):
> G1:=(addi(scalmult(commu(pco[1],mco[1]),H),G1)):
> print(matri(G1,d));

�

 �
� �


�

> x:=matri(tens(G1,2,G1,2),4):print(x);
�
���


 � � �
� � � �
� � � �
� � � ��


�
���

> y:=array(1..4,1..4,[[1,0,0,0],[0,1,0,-1],[0,1,0,1],[0,0,1,0]]):
> evalm(inverse(y)&*x&*y);

�
���

�
 �� � �
� � � �
� �� ��
 �
� � � �

�
���

Table A.13: Example:�� � � �
 � for ��
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