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Abstract

These lectures treat some of the basic features of moduli spaces of
hyperkahler manifolds and in particular of K3 surfaces. The relation
between the classical moduli spaces and the moduli spaces of conformal
field theories is explained from a purely mathematical point of view.
Recent results on hyperkéhler manifolds are interpreted in this context.
The second goal is to give a detailed account of mirror symmetry of
K3 surfaces. The general principle, due to Aspinwall and Morrison,
and various special cases (e.g. mirror symmetry for lattice polarized or
elliptic K3 surfaces) are discussed.
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1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension 2N with holon-
omy group SU(N). If N > 2 then there is a unique complex structure I
on M such that g is a Kahler metric with respect to I. For given g and [
a symplectic structure on M is naturally defined by the associated Kéahler
form w = g(I( ), ). This construction locally around ¢ yields a decompo-
sition of the moduli space of all Calabi-Yau metrics on M as M™¢ (M) =
MEPY M) x MMY(M), where MCPY(M) is the moduli space of complex struc-
tures on M and M*M (M) is the moduli space of symplectic structures. Mir-
ror symmetry in a first approximation predicts for any Calabi-Yau manifold
(M, g) the existence of another Calabi-Yau manifold (MV, g¥) together with
an isomorphism M™e (M) = M™(MV) which interchanges the two factors
of the above decomposition, e.g. MP(M) =2 M*BL(A1V).

The picture has to be modified when we consider the second type of
irreducible Ricci-flat manifolds. If the holonomy group of a 4n-dimensional
manifold (M, g) is Sp(n), i.e. (M,g) is a hyperkdhler manifold, then the
moduli space of metrics near g does not split into the product of complex and
kéhler moduli as above, e.g. for a given hyperkédhler metric there is a whole
sphere S? of complex structures compatible with g. Hence mirror symmetry
as formulated above for Calabi-Yau manifolds needs to be reformulated for
hyperkahler manifolds. It still defines an isomorphism between the metric
moduli spaces, but the relation between complex and symplectic structures
are more subtle. Nevertheless, mirror symmetry is supposed to be much
simpler for hyperkahler manifolds, as usually the mirror manifold MV as a
real manifold is M itself.

These notes intend to explain the analogue of the product decomposition
of the moduli space of metrics on a Calabi-Yau manifold in the hyperkahler
situation and to show how mirror symmetry for K3 surfaces, i.e. hyperkéahler
manifolds of dimension 4, is obtained by the action of a discrete group.

After recalling the main definitions and facts concerning the complex
and metric structure of these manifolds in Section 2 we will soon turn to the
global aspects of their moduli spaces. In Sections 3 and 4 we introduce these
moduli spaces as well as the corresponding period domains. The geometric
moduli spaces are studied via maps into the period domains. This will be
explained in Section 5. Some of the main results about compact hyperkéahler
manifolds can be translated into global aspects of these maps.
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Compared to other texts (e.g. [1]) on moduli spaces of K3 surfaces we
will try to develop the theory as far as possible for compact hyperkéhler
manifolds of arbitrary dimension. The second main difference is that we
also treat the less classical moduli spaces of certain CFTs. This will be
done from a purely mathematical point of view by considering hyperkahler
manifolds endowed with an additional B-field, i.e. a real cohomology class
of degree two. This will lead to new features starting in Section 6, where we
let act a certain discrete group on the various moduli spaces. This section
follows papers by Aspinwall, Morrison, and others. Using this action mirror
symmetry of K3 surfaces will be explained in Section 7. The advantage of
this slightly technical approach is that various versions of mirror symmetry
for (e.g. lattice polarized or elliptic) K3 surfaces can be explained by the
same group action. Of course, explaining mirror symmetry in these terms
is only possible for K3 surfaces or hyperkahler manifolds. Mirror symmetry
for general Calabi—Yau manifolds will usually change the topology.

The text contains little or no original material. The main goal was to
explain global phenomena of moduli spaces of K3 surfaces, or more generally
of compact hyperkéahler manifolds, and to give a concise introduction into
the main constructions used in establishing mirror symmetry for K3 surfaces.

We encourage the reader to consult the survey [1] and the original arti-
cles [3, 4].

2 Basics

In this section we collect the basic definitions and facts concerning irre-
ducible holomorphic symplectic manifolds and compact hyperkahler mani-
folds. Most of the material will be presented without proofs and we shall
refer to other sources for more details (e.g. [6, 20]).

Definition 2.1 An irreducible holomorphic symplectic manifold (IHS, for
short) is a simply connected compact Kdhler manifold X , such that H°(X, Q%)
1s generated by an everywhere non-degenerate holomorphic two-form o.

Since an ITHS is in particular a compact Kahler manifold, Hodge decom-
position holds. In degree two it yields

H?*(X,C) = H?»(X)o HY'(X)o H**(X)
= Coo H"(X) o Co.
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The existence of an everywhere non-degenerate two-form o € H%(X,03%)
implies that the manifold has even complex dimension dim¢(X) = 2n. More-
over, ¢ induces an alternating homomorphism o : 7x — x. Since the two-
form is everywhere non-degenerate, this homomorphism is bijective. Thus,
the tangent bundle and the cotangent bundle of an IHS are isomorphic.
Moreover, the canonical bundle K x = Q3" is trivialized by the (2n, 0)-form
o”. Thus, an IHS has trivial canonical bundle and, therefore, vanishing first
Chern class ¢1(X).

In dimension two IHS are also called K3 surfaces (K3=Kéhler, Kodaira,
Kummer). More precisely, by definition a K3 surface is a compact complex
surface with trivial canonical bundle K y and such that H'(X,Ox) = 0. It is
a deep fact that any such surface is also Kihler [40]. Moreover, H1(X,Ox) =
0 does indeed imply that such a surface is simply-connected.

Here are the basic examples.

Examples 2.2 i) Any smooth quartic hypersurface X C P3 is a K3 surface,
e.g. the Fermat quartic defined by z3 + x{ + 25 + 23 = 0.

ii) Let T = C2/T be a compact two-dimensional complex torus. The
involution x — —x has 16 fixed points and, thus, the quotient 7'/+ is singular
in precisely 16 points. Blowing-up those yields a Kummer surface X — T'/+,
which is a K3 surface containing 16 smooth irreducible rational curves.

iii) An elliptic K3 surface is a K3 surface X together with a surjective
morphism 7 : X — P!, The general fibre of 7 is a smooth elliptic curve.

It is much harder to construct higher dimensional examples of THS and all
known examples are constructed by means of K3 surfaces or two-dimensional
complex tori. The list of known examples has been discussed in length in
the lectures of Lehn (see also [20]).

So far we have discussed THS purely from the complex geometric point
of view. However, the most important feature of this type of manifolds is
the existence of a very special metric.

Definition 2.3 A compact oriented Riemannian manifold (M, g) of dimen-
sion 4n is called hyperkdhler (HK, for short) if the holonomy group of g
equals Sp(n). In this case g is called a hyperkdhler metric.

Remark 2.4 If g is a hyperkahler metric, then there exist three complex
structures I, J, and K on M, such that g is Kahler with respect to all three
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of them and such that K = IoJ = —Jol. Thus, I is orthogonal with respect
to g and the Kéhler form wy := ¢g(I( ), ) is closed (similarly for J and K).
Often, this is taken as a definition of a hyperkahler metric. Note that our
condition is stronger, as we not only want the holonomy be contained in
Sp(n), but be equal to it.

Proposition 2.5 Let (M,g) be a HK. Then for any (a,b,c) € R? with a® +
b% + c? =1 the complex manifold (M, al + bJ + cK) is an IHS.

Thus, for any HK (M, g) there exists a two-sphere S? C R? of complex
structures compatible with the Riemannian metric g.

Remark 2.6 Let (M,g) be a HK. The associated Kéhler forms wy, wy,
wg span a three-dimensional subspace Hi(M, g) C H*(M,R). In fact,
this space will always be considered as a three-dimensional space endowed
with the natural orientation. If X = (M,I), then H2(M,g) = (H*°(X) &
H%2(X))r@Rwy, where the orientation is given by the base (Re(c),Im(c),wy).
In order to see this, one verifies that the holomorphic two-form ¢ on X =
(M, I) can be given as 0 = wy + iwg (cf. [20]).

Definition 2.7 Let X be an IHS. The Kihler cone Kx C HY'(X,R) is
the open convex cone of all Kdahler classes on X, i.e. classes that can be
represented by some Kdhler form.

The most important single result on THS is the following consequence of
the celebrated theorem of Calabi—Yau:

Theorem 2.8 Let X be an IHS. Then for any o € Kx there exists a unique
hyperkéhler metric g on M, such that o = [wg] for wr = g(I( ), ).

Thus, on any IHS X the Kéhler cone Kx parametrizes all possible hy-
perkahler metrics g compatible with the given complex structure. Below
we will explain how the Kéhler cone Kx can be described as a subset of
HY(X).

Remark 2.9 Thus, an THS X together with a Kéahler class o € Kx is the
same thing as a HK (M, g) together with a compatible complex structure 1.
As a short hand, we write (X, a) = (M, g,I) in this case.
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Definition 2.10 The BB(Beauville—Bogomolov)-form of an IHS X is the
quadratic form on H%*(X,R) given by

ax(o) = § [ oooy !+ (1 =m)( [

X

ao_n—lo_n)(/ ao_na_n—l)7
X
where o € H*%(X) is chosen such that [y (0G)™ =1

For any Kihler class [w] we obtain a qx-orthogonal decomposition H?(X,R) =
(H?*9(X) o H*?(X))r ® Rw® HY(X),. Here, H(X),, is the space of w-
primitive real (1,1)-classes. Note that we get a different decomposition for
every Kahler class [w] € Kx, but that the quadratic form gx does not depend
on the chosen Kéahler class.

The following proposition collects the main facts about the BB-form ¢ x.

Proposition 2.11 i) For any Kdhler class [w] € Kx on an IHS X the BB-
form qx is positive definite on (H*°(X) ® H*?(X))r ® Rw and negative
definite on HY1(X),,.

ii) There exists a positive real scalar A1 such that gx ()™ = A1 - [y a®" for
all o« € H*(X).

iii) There exists a positive real scalar Ao such that Ay - qx is a primitive
integral form on H?(X,Z).

iv) There exists a positive real scalar A3 such that qx (a) = Az [y o /td(X)
for all o € H*(X).

After eliminating the denominator of /td(X) by multiplying with a uni-
versal coefficient ¢, that only depends on n we obtain an integral quadratic
form ¢, - [ @?1/td(X). In general this form need not be primitive, but this
will be of no importance for us. Moreover, since any THS has vanishing odd

Chern classes, 1/td(X) = 1/A(X). (Everything that matters here is that

td(X) is purely topological in this case.) Therefore, in these lectures we
will use the following modified version of the BB-form.

Definition 2.12 The BB-form qx of an 2n-dimensional THS X is given by

qX(a):cn-/XaQ\/fl(X).

With this definition we see that gx only depends on the underlying man-
ifold M, i.e. for two different hyperkahler metrics g and ¢’ and two compat-
ible complex structures I resp. I’ the BB-forms with the above definition of
X =(M,I) and X' = (M, I') coincide.



194 D. Huybrechts

Note for n = 1 we have ¢; = 1 and thus ¢x is nothing but the intersection
pairing a U « of the four-manifold underlying a K3 surface. The quadratic
form in this case is even, unimodular and indefinite and can thus be explicitly
determined:

Proposition 2.13 The intersection form (H?*(X,Z),U) of a K3 surface X
is isomorphic to the K3 lattice 2(—FEg) @ 3U, where U is the standard hyper-
bolic plane (Z2,(91)).

Definition 2.14 The BB-volume of a HK (M, g) is

q(M, g) :== gx([wr]),

where X = (M, 1) is the IHS associated to one of the compatible complex
structures I and wy is the induced Kdahler form.

Note that the BB-volume does not depend on the chosen complex struc-
ture. Analogously one can define the volume of an THS endowed with a
Kihler class « as gx(a). For a K3 surface one has ¢(M,g) = [w?, which
is the usual volume up to the scalar factor 1/2. In higher dimension the
usual volume is of degree 2n and the BB-volume is quadratic. Of course,
due to Proposition 2.11 one knows that up to a scalar factor ¢(M, g)™ equals
the standard volume, but this factor might a priori depend on the topology
of M.

What makes the theory of K3 surfaces and higher-dimensional HK so
pleasant is that they can be studied by means of their period.

Definition 2.15 Let X be an IHS. The period of X is the lattice (H?*(X,Z), qx)
endowed with the weight-two Hodge structure H*(X,7Z) ® C = H*(X,C) =
Co® HY(X,C) @ Co.

Since H'1(X,C) is orthogonal with respect to ¢x and C& is the complex
conjugate of Co, the period of the IHS X is in fact given by the lattice
(H?(X,Z),qx) and the line Co ¢ H*(X,C).

The theory of K3 surfaces is crowned by the so called Global Torelli
Theorem (due to Pjateckii-Sapiro, Shafarevich, Burns, Rapoport, Looijenga,
Peters, Friedman):

Theorem 2.16 Let X and X' be two K3 surfaces and let ¢ : H*(X,Z) &
H?(X',7) be an isomorphism of their periods such that p(Kx) N Kx: # 0.
Then there exists a unique isomorphism f: X' = X such that f* = .
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Moreover, an arbitrary isomorphism between the periods of two K3 sur-
faces is in general not induced by an isomorphism of the K3 surfaces, but
the K3 surfaces are nevertheless isomorphic.

The uniqueness assertion in the Global Torelli Theorem is roughly proven
as follows (cf. [29]): If f is a non-trivial automorphism of finite order with
f* = id then the holomorphic two-form ¢ is invariant under f and the
action at the fixed points is locally of the form (u,v) +— (¢-u,& 1 v). Using
Lefschetz fixed point formula and again f* = id one finds that there are 24
fixed points. Thus, the minimal resolution X of the quotient X/(f) contains
24 pairwise disjoint curves. Moreover, one verifies that X is again a K3
surface. The last two statements together yield a contradiction.

The Global Torelli Theorem in the above version fails completely in
higher dimensions. E.g. if f : X 2 X is an automorphism of a K3 surface
X such that f* = id, then f = id. This does not hold in higher dimen-
sions [7]. Even worse, due to a recent counterexample of Namikawa [36] one
knows that higher dimensional IHS X and X’ might have isomorphic periods
without even being birational. A possible formulation of the Global Torelli
Theorem in higher dimensions using derived catgeories was proposed in [36].
However, uniqueness is not expected. Compare the discussion in Section 5.4.

Often, a certain type of K3 surfaces is distinguished by the form of the
period. We explain this in the three examples presented earlier. In fact, the
proofs of these descriptions are all quite involved.

Example 2.17 i) Let X be a K3 surface such that Pic(X) = H?(X,Z) N
HY'(X) is generated by a class a with a? = 4. Then X is isomorphic to a
quartic hypersurface in P? and « corresponds to O(1) (cf. [1, Exp. VIJ).

ii) Let X be a K3 surface such that Pic(X) contains 16 disjoint smooth
irreducible rational curves C1,...,C1s C X such that > [C;] € H*(X,Z) is
two-divisible. Then X is isomorphic to a Kummer surface.

This description of Kummer surfaces is not entirely in terms of the period.
Later we will rather use the following description of an even more special
type of K3 surfaces: Let X be a K3 surface such that the lattice (H?%(X)®
H%2(X))z is of rank two and any vector z in this lattice satisfies 22 =
mod 4. Then X is a Kummer surface. It turns out that K3 surfaces with this

type of period are exactly the exceptional Kummer surfaces, i.e. Kummer
surfaces with rk(Pic(X)) = 20 (cf. [1, Exp.VIII]).
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iii) Let X be a K3 surface such that there exists a class « € H?(X,Z) N
HY1(X) with o = 0. Then X is an elliptic K3 surface. Clearly, if X — P!
is an elliptic K3 surface then the class of the fibre defines such a class. But
note that conversely not every class a with a? = 0 is automatically a fibre
class of some elliptic fibration, but by applying certain reflections it can be
be made into one (cf. [8]).

In order to get a better feeling for the set of all possible hyperkahler
structures on an IHS X we shall discuss the Kéhler cone in some more
detail.

Definition 2.18 The positive cone Cx of an IHS X is the connected compo-
nent of the open set {a | gx(a) > 0} C HYY(X,R) that contains the Kdihler
cone Kx.

(Here we use the fact that ¢x(a) > 0 for any Kéhler class «.) Thus,
Cx U (—Cx) can be entirely read off the period of X. This is no longer
possible for the Kéhler cone, but one can at least try to find a minimal set

of further geometric information that determines K x as an open subcone of
Cx.

Proposition 2.19 The Kdhler cone Kx C Cx is the open subset of all
a € Cx such that fca > 0 for all rational curves C C X. If X is a K3
surface it suffices to test smooth rational curves (cf. [1, 5, 20]).

Since any smooth irreducible rational curve C' in a K3 surface X defines
a (=2)-class [C] € HM(X,Z), one can use this result to show that for
any class a € Cx there exists a finite number of smooth rational curves
Ci,...,Cr C X such that s¢, ...s0, () € Kx, where s¢ is the reflection
in the hyperplane [C]l. Of course, these reflections s¢ are contained in the
discrete orthogonal group O(T') of the lattice I' = (H?(X,Z),U).

3 Moduli spaces

Ultimately, we will be interested in moduli spaces of irreducible holomor-
phic symplectic manifolds (IHS), hyperkahler manifolds (HK), etc. In this
section we will introduce moduli spaces of such manifolds endowed with an
additional marking. A marking in general refers to an isomorphism of the
second cohomology with a fixed lattice. The choice of such an isomorphism
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gives rise to the action of a discrete group and the quotients by this group
will eventually yield the true moduli spaces. For this section we fix a lattice
I of signature (3,b — 3) and an integer n.

3.1 Moduli spaces of marked THS

Definition 3.1 A marked THS is a pair (X, ) consisting of an IHS of
complex dimension 2n and a lattice isomorphism ¢ = (H*(X,Z),qx) = T.
We say that two marked IHS (X, @) and (X', ¢") are equivalent, (X,p) ~
(X', ¢"), if there exists an isomorphism f : X = X' of complex manifolds
such that ¢’ = po f*.

Definition 3.2 The moduli space of marked IHS is the space

’]Efpl = {(X,¢) = marked IHS}/~ .

A priori, ’Z}Cpl is just a set, but, as we will see later, it can be endowed
with the structure of a topological space locally isomorphic to a complex
manifold of dimension b — 2.

Let X be an IHS and ¢ a marking of X. If X — Def(X) is the uni-
versal deformation of X = Xp, then Def(X) is a smooth germ of dimension
h'(X,Tx). We may represent Def(X) by a small disc in C"'(7%) The
marking ¢ induces in a canonical way a marking ¢; of the fibre &} for any
t € Def(X). Using the Local Torelli Theorem (cf. Section 5) we see that the
induced map Def(X) — ’TFCpl is injective, i.e. any two fibres of the family
X — Def(X) define non-equivalent marked IHS. The various Def (X) C T pl
for all possible choices of X and markings ¢ cover the moduli space TFCPI.
Since the universal deformation X — Def(X) of X = A} is, at the same
time, also the universal deformation of all its fibres X}, one can define a
natural topology on Tlfpl by gluing the complex manifolds Def(X). Thus,
locally 7! is a smooth complex manifold of dimension h'(X,Tx) = b — 2.
However, T;pl is not a complex manifold, as it does not need to be Haus-
dorff. In fact, no example is known, where ’TFCpl would be Hausdorff and
conjecturally this never happens.

A family (X,9) — S of marked IHS is a family X — S of IHS of
dimension 2n and a family of markings ¢; of the fibres X; locally constant
with respect to t.

The universality of X — Def(X) immediately implies the following
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Lemma 3.3 If (X,¢) — S is a family of marked IHS, then there exists a
canonical holomorphic map n: S — Tlfpl, such that n(t) = [(Xy, 1)) U

Remark 3.4 In order to construct a universal family over ’TFC Pl one would
need to glue universal families X — Def(X), ) — Def(Y'), where (X, ¢) and
(Y,) are marked IHS, over the intersection Def(X) N Def(Y) C T Pl This
is only possible if for ¢ € Def(X)NDef(Y') there exists a unique isomorphism
[ & = Yy with ¢y = o f*. For K3 surfaces the uniqueness can be ensured
due to the strong version of the Global Torelli Theorem (see Thm. 2.16), but
in higher dimensions this fails. Thus, 7% Pl is, in general, only a coarse moduli
space.

3.2 Moduli spaces of marked HK

Definition 3.5 A marked HK is a triple (M, g,¢), where (M,g) is a com-
pact HK of dimension 4n in the sense of Proposition 2.3 and ¢ is an isomor-
phism (H*(M,7),q) = T. Two triples (M,g,0), (M', g, ") are equivalent,
(M,g,0) ~ (M’ g, ¢"), if there exists an isometry f : (M, g) = (M', ¢") with
¢ =¢po fr.

Definition 3.6 The moduli space of marked HK is the space

Tt .= {(M, g, ) = marked HK}/~ .

A slightly different approach towards 7" will be explained in Section
3.5. There, the manifold M is fixed and only the metric g is allowed to vary.

3.3 Moduli spaces of marked complex HK or Kahler THS

Recall (cf. Remark 2.9) that there is a bijection between HK with a compat-
ible complex structure and THS with a chosen Kéahler class. Thus, the two
moduli spaces are naturally equivalent.

Definition 3.7 A marked complex HK is a tuple (M, g,1, ), where (M, g, )
is a marked HK and I is a compatible complex structure on (M, g). A marked
Kahler THS is a triple (X, a, @), where (X, @) is a marked IHS and o € K x
is a Kdahler class. Two marked complex HK (M,g,I,p), (M', ¢, I',¢") are
equivalent if there exists an isometry f : (M,g) = (M',¢") with I = f*I' and
¢ = po f*. Analogously, one defines the equivalence of marked Kdhler IHS.
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Note that the equivalence relation is compatible with the natural bijec-
tion {(M, g, 1,¢)} < {(X,a,9)}.

Definition 3.8 The moduli space of complex HK or, equivalently, of Kdhler
1HS is the space

Tr = {(M,g,I,p) = marked complex HK} /~
= {(X, o, ) = marked Kahler THS}/~ .

Obviously, there are two forgetful maps m : (M, g,I,¢) — (M, g, ) and
¢: (X,a,p) — (X,¢9). The following diagram is the hyperkéhler version
of the product decomposition of the metric moduli space for Calabi—Yau
manifolds.

7*1_‘ m t]’r‘met

™

Proposition 3.9 The set Tr has the structure of a real manifold of dimen-
sion 3(b—2). The fibre c1(X, p) = Kx is a real manifold of dimension b—2.
The fibre m~Y(M, g, @) is naturally isomorphic to the complex manifold P'.
The induced map c : P* = m~1(M, g, 0) — ’TFCpl 1$ a holomorphic embedding.
The map m : ¢ (X, p) — T is a real embedding. O

The line P! C ’]}Cpl is also called ‘twistor line’. Disposing of a global
deformation like this, is one of the key tools in studying moduli spaces of
IHS.

3.4 CFT moduli spaces of HK

From a geometric point of view the following moduli space is an almost trivial
extension of 7. However, it will become of central interest in later sections,
when we will let act the full modular group on it. This group action will
relate very different HK and thus gives rise to mirror symmetry phenomena.

Definition 3.10 A marked complex HK with a B-field is a tuple (M, g,1, B, ¢),
where (M, g,1,¢) is a marked complex HK and B € H?(M,R). Two such
tuples (M, g,I,B,p), (M',¢',I', B',¢') are equivalent if there exists an isom-
etry f: (M,g) 2 (M',q") with I = f*I', o' = po f*, and f*(B') = B.
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Definition 3.11 The (2,2)-CFT moduli space of HK is the space
7% .= {(M, 9,1, B,p) = marked complex HK with B—field}/~ .

Clearly, the moduli space ’2}(2‘2) is naturally isomorphic to 7r x I' ® R
by mapping (M,g,1, B,¢) to (M,g,1,¢),¢r(B)). In particular, T** is a
real manifold of dimension 4b — 6.

Analogously, one defines the (4,4)-CFT moduli space
T .= {(M, g, B, p) = marked HK with B—field}/~ .

In particular, there is a natural forgetful map TF(2’2) — 7}(4’4) which is sur-
jective with fibre S2.

3.5 Moduli spaces without markings

All previous moduli spaces parametrize various geometric objects with an
additional marking of the second cohomology. Of course, what we are re-
ally interested in are the true moduli spaces /\/l%pl, Mt Mp, M(F2’2), and
MED) Eg. M%pl is the moduli space of THS X of dimension 2n such that
(H?(X,Z),qx) is isomorphic to I', but without actually fixing the isomor-
phism. Analogously for the other spaces. In other words one has:

C cpl me me
MFPIZO(F)\TFI)» Mpet :O(F)\TF ’ MF:O(F)\TD
2,2 (2,2) 4.4 (4,4)

M’ )=0(r)\7r : M )ZO(F)\TF :

The Teichmiiller spaces 7% are in general better behaved. E.g. the moduli
spaces are usually singular at points that correspond to manifolds with a
bigger automorphism group than expected. This usually leads to orbifold
singularities. However, sometimes the passage from the Teichmiiller space to
the moduli space is really ill-behaved. E.g. the action of O(T') on 7 Pl is not
properly discontinuous. Thus, TFC Pl Wwhich already is not Hausdorff, becomes
even worse when divided out by O(I") (cf. the discussion in Section 6).

There is yet another approach to these moduli spaces where one actually
fixes the underlying manifold and constructs the moduli space as a quotient
of the space of hyperkédhler metrics by the diffeomorphism group. We will
briefly discuss this.
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Let M be a compact oriented differentiable manifold of real dimension
4n and let gps be the quadratic form on H?(M,Z) given by qu(a) = ¢, -

I o2\/ A(M). We write T' = (H2(M,Z), qar) and call this identification .

By Diff(M) we denote the group of orientation-preserving diffeomor-
phisms of M. In fact, at least for by # 6, the group Diff(M) is the full
diffeomorphism group of M, as any orientation-reversing diffeomorphism f
would induce an isomorphism (H2(M,Z), qn) = (H*(M,7Z), —qar) which is
impossible for ba(M) # 6. The set of all hyperkdhler metrics g on M is
denoted by Met ™8 (M). Clearly, Diff(M) acts naturally on Met" (M) by

(f,9) = [*g.

Definition 3.12 The group Diff (M) C Diff (M) is the connected compo-
nent of Diff (M) containing the identity id s € Diff (M). The group Diff (M) C
Diff (M) is the kernel of the natural representation Diff (M) — O(H?(M,Z), qur)-

Mapping g € Met"8(M) to (M, g, o) € 7 induces a commutative
diagram

Met"S (M) /Diff, (M) —Ls  Fpnet
1 1

Met"& (M) /Diff (M) L Mimet

Note that 7 is well-defined. Indeed, if f € Diff (M), then (M, g, ¢o) ~
(M, f*g,00 0 f*) = (M, f*g,¢0)-

Remark 3.13 It seems essentially nothing is known about the quotient of
the natural inclusion Diff,(M) C Diff,. (M), not even for K3 surfaces, i.e.
n=1.

Clearly, the image of n (and 77) can contain only those HK (M’, ¢, ) €
7" whose underlying real manifold M" is diffeomorphic to M. Let 7*(M)
and M (M) denote the union of all those connected components.

i) Tn general, 1 : Met™ (M) /Diff .(M) — Tt (M) is injective, but not
surjective.
The injectivity is clear. Let us explain why surjectivity fails in general. If
(M, g.¢) € Im(n) and ¢ € O(H*(M,Z),qu), then (M, g, 0 o)) € Im(n)
if and only if there exists f € Diff (M) with f* = ¢ but Diff(M) —
O(H?(M,Z), qur) is not necessarily surjective. E.g. for K3 surfaces the image
does not contain —id and, more precisely, O(H?(M,Z),U)/Diff (M) = Z/27Z
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(cf. 5.3). However in this case the situation is rather simple, as 7" consists
of two components, interchanged by id 2, and Met™¥ (A1) /Diff (M) is one
of them. For higher dimensional HK nothing is known about the image of
Diff (M) — O(H?(M,Z), qr)-

ii) The map 7 : Met™8 (1) /Diff (M) — Mt (M) is bijective.

Indeed, if (M, g,¢) € TF(M), then [(M,g,¢0)] = [(M,g,(pop " )p)] =
(o™ DM, g,9)] = [(M,g,0)] € MEYM). Thus, 77 is surjective. If
n(M,g) = 7(M,g"), then there exists ¢» € O(T') such that (M,g,po) ~
(M, g’ 1 o pg) and hence there exists f € Diff (M) with f*g = ¢’ (note that

for ba(M) = 6 one would have to argue that f can be chosen orientation-
preserving) and @o = Yogpgof*. Thus, [(M, g)] = [(M, ¢')] in Met™¥ (A1) /Diff (M)
and hence 7 is injective.

One last word concerning the stabilizer of the action of Diff (M). Clearly,
the stabilizer of a hyperkahler metric ¢ is the isometry group Isom(M, g)
of (M,g). This group is compact (cf. [9]). Hence the stabilizer of g €
MetHE (M) is a compact group. Moreover, Isom(M, g) N Diff (M) is finite.
Indeed, if f € Isom(M, g) then f maps any g-compatible complex structure
I to another g-compatible complex structure f*I. If in addition f* = id
on H*(M,R), then the map I — f*I must also be the identity. Hence f €
Aut(M, I) for any g-compatible complex structure I. Since HY((M,I),T) =
0, the latter group is discrete and, therefore, Aut(M, I)NIsom (M, g) is finite.
Hence, the action of Diff, (M) on Met ¥ (M) has finite stabilizer.

4 Period domains

The moduli spaces that have been introduced in the last section will be
studied by means of various period maps. In this section we define and
discuss the spaces in which these maps take their values, the period domains.

Let I be a lattice of signature (m,n). The standard example for I is the
K3 lattice 2(—Eg) @ 3U, where U denotes the hyperbolic plane (Z?%, (9})).
However, I might in general be non-unimodular. This will be of no impor-
tance in this section, as only the real vector space I'g := I' ® R is going to
be used. In fact, usually we will work with an arbitrary vector space V', but
I" will nevertheless occur in the notation. I hope this will not lead to any
confusion.
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4.1 Positive (oriented) subspaces

Let V be a real vector space that is endowed with a bilinear form ( , ) of
signature (m,n), e.g. V = I'g. We will also write 22 for (x, ). Fix k < m
and consider the space of all k-dimensional subspaces W C V such that (, )
restricted to W is positive definite. We will denote this space by Gr}y (V).
Clearly, Gr} (V') is an open non-empty subset of the Grassmannian Gr (V).

In order to describe Grj (V) as a homogeneous space we consider the
natural action of O(V) on Gr} (V) given by (p, W) — @(W). The stabilizer
of a point Wy € GrE (V) is O(Wp) x O(Wg"). Since the action is transitive,
one obtains the following description

Grp (V) = O(V)/owy) x O(Wah) = O ) /o(k) s O(m — k,n)

The second isomorphism depends on the choice of a basis of the spaces
Wy and WOL.

Next consider the space Gry°(V') of all oriented positive subspaces W C
V of dimension k. Clearly, the natural map Gry°(V) — Gri(V)isa 2 : 1
cover. Again, O(V) acts transitively on Gry°(V) and the stabilizer of an
oriented positive subspace Wy is SO(Wy) x O(W4H). Thus,

Gr5°(V) = O(V)/S0(Wy) x O(Wg-) 2 O0mn) /SO (k) x O(m — k, n)

4.2 Planes and complex lines

For k = 2 the space Gr5°(V') allows an alternative description. It turns out
that there is a natural bijection between this space and the space

Qr ={z|2*=0, (zx+72)% >0} c P(T¢),

where we use the C-linear extension of (, ). Note that the second condition
in the definition of Qr is well posed, i.e. independent of the representative
x € Tc of the line x € P(I'¢), as long as the first condition 2% = 0 is satisfied.
Clearly, Qr is an open subset of a non-singular quadric hypersurface in
P(Tc).

To any x € Qr one associates the plane W, := T'r N (zC @& zC) C I'g en-
dowed with the orientation given by (Re(x),Im(x)). Since zC & zC is invari-
ant under conjugation, this space is indeed a real plane. Moreover, W, =
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TrN(AzCOIEC) = W, and (Re(Az), Im(Az)) = (Re(z), Im(z)) _F};ﬂg) gg&g ),
where the matrix has positive determinant. Hence, the oriented plane W,
is well-defined, i.e. it only depends on = € P(I'c). It is positive, since
(Az 4+ A%)2 = M\(z +2)? > 0 for A # 0.

Conversely, if W € Gr5°(T'r), then choose a positively oriented orthonor-
mal basis wi,we € W and set x := wy + twy. Then W = W, and x? = 0,
(x4 )% = (2wy)? > 0. Moreover, z € P(I'c) does not depend on the choice
of the basis and any x € Qr can be written in this form.

Thus, one has a bijection

Qr = Gry°(T'r)

4.3 Planes and three-spaces

For our purpose the spaces Gry°(I'r), Gry°(Tr), and Gr}}°(T'r ® Ug) are the
most interesting ones. In the next two sections we will study how they are
related to each other. To this end let us first introduce the space

Gry(Tr) == {(P,w) | P € Gr}°(Tr) , w € PLcTIgr, w?>0}.

Clearly, this space projects naturally to Gr5°(T'r) by (P,w) +— P. The
fibre over the point P is the quadratic cone {w | w? > 0} C P+ C T.
If T has signature (3,b — 3), this cone consists of exactly two connected
components, which can be identified with each other by w +— —w. Thus, the
fibre of Gy (T'r) — Gry°(I'r) over P in this case is the disjoint union of
two copies of a connected cone, which will be called Cp.

In fact, Grgi(FR) — Grh°(T'g) is a trivial cover, i.e. Grgi(FR) splits into
two components. This can either be deduced from the fact that Grb°(I'g) =
O(3,b — 3)/(SO(2) x O(1,b — 3)) is simply connected (cf. Section 4.7) or
from the following argument: If we fix an oriented positive three-space F' €
Gri°(T'r), then the orthogonal projection P & Rw — F for any w € +Cx
must be an isomorphism, since F'* is negative. Thus, we can single out one
of the two connected components of £Cp by requiring that P @& Rw = F' is
compatible with the orientations on both spaces.

Mapping (P,w) to the oriented positive three-space F(P,w) := P ® wR
and the scalar w? € Rsq defines a map Grb5 (I'r) — Gry°(T'r) x Rsg. The
map is surjective and the fibre over a point (F, \) can be identified with the
set of all w € F with w? = X which is a two-dimensional sphere.
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Thus, one has the following diagram

0 2 o ~
Grg,l(FR) —> Gr}°(Tg) X Rso & (O(m’n)/SO(ZS) x O(m — 3,n)) x Rxo

Gr5°(Pr) —— O(m,1)/50(2) x O(m — 2,n)

Note that the two natural compositions S? C Grgf)l (I'r) — Gr5°(I'r) and
Cp C Gry(Tr) — Grj(T'r) x Rxg are both injective.

4.4 Three- and four-spaces

From now on we will assume that I' has signature (3,0 — 3). Furthermore,
let us fix a standard basis (w,w*) of U, i.e. w?> = w*? = 0 and (w,w*) = 1.
We will see that the space of four-spaces in I'g @ Ug relates naturally to the
space of three-spaces in I'g. Explicitly, we will show

Grgo(FR) X Rsg X I'r GTZO(FR D UR)

O(4,b = 2)/30(4) x O(b — 2)

o~
o~

The second isomorphism follows from Section 4.1. The first one is given
as follows.

¢:(F,a,B)—1l:=BR® F/,

where F' := {f — (f, B)w|f € F} and B’ := B+ (o — B*)w + w*. Clearly,
(f = (f,Byw,B") = (f — (f, Byw, B+ w*) = 0 and thus the decomposition
is orthogonal. Furthermore, (f — (f, B)w)? = f? > 0 for 0 # f € F and
B”? = B24+a—B? = a > 0. Hence, II is a positive four-space. Its orientation
is induced by the orientation of F' = F’ and the decomposition IT = B'R® F”.

In order to see that ¢ is bijective we study the inverse map ¢ : II —
(F, B, B), where F, B', and B are defined as follows: One first introduces
F' :=TINw'. This space is of dimension three, since otherwise II C w* =
I'r@wR and the latter space does not contain any positive four-space. Again
by the positivity of II one finds w ¢ F’ C II. Hence, F := w(F’') C Tg is
a positive three-space, where m : I'r @ Ur — I'g is the natural projection.
Furthermore, there exists a B’ € II such that IT = B'R® F” is an orthogonal
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splitting. As before B’ cannot be contained in w*. Thus, one can rescale B’
such that (B’,w) = 1. This determines B’ uniquely. Since B’ € II, one has
B > 0. The B-field is by definition B := m(B’). One easily verifies that 1)
and ¢ are indeed inverse to each other.

4.5 Pairs of planes

The last space we will discuss in this series of period domains is the space
of orthogonal oriented positive planes in I'g @ Uk, i.e.
GISE(PR D U]R) = {(Hl, HQ) ’ H,; € GI‘SO(FR D UR), H; 1 Hg}.

Using the same techniques as before this space can also be described as
an homogeneous space as follows

Cry5(Tr ©Ur) = O(Tr ®Ur)/SO(Hy) x SO(H,) x O((Hy & Ha)b)

04,5 =2)/30(2) x $0(2) x O(b — 2);

1R

for some chosen point (Hy, Ha) € Grys(Tr © Ur), respectively basis of
the spaces Hy, Ho, and (H; @ Ho)™ .
We will be interested in the natural projection

T Grgg(FR @® Ur) —» Gri)°(T'r @ Ugr), (Hy, H2) — Il := H, & Hy

and in the injection

v Grgi(FR) x I'r — Grgg(FR ® Ur)

which is compatible with Gry (I'r) — Gry°(T'g).

Let us first study the projection. Using the above description of both
spaces as homogeneous spaces this map corresponds to dividing by SO(4)/(SO(2) x
SO(2)). The fibre of 7 over II € Gr°(I'r ® Ug) is canonically isomorphic to
Gry°(IT) via (Hy, Hy) — Hy. The inverse image of H € Gry°(Il) is (H, H'),
where H1 gets its orientation from IT and the decomposition II = H @ H*.

Thus, one obtains the following description of the fibre

7 (IT) = Grh(IT) = 2 x §2
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The second isomorphism is derived as in Section 4.2 from
Grb°(Il) = {z € P(I¢) | 2> = 0} =2 P! x PL.

Note that (z + Z)? > 0 is automatically satisfied, for { , ) on II is positive
by assumption.

Let us now turn to the injection «y, which is defined as follows. We set
Y((P,w), B) = (H1, H) with

Hy:={x— (z,B)w | z € P}
and

Hy = (%(a — BHw +w* + B> R & (w— (w, B)w) R,

where as before (w,w*) is the standard basis of U and a = w?.

The isomorphism P = Hy, © — x — (z, B)w endows H; with an ori-
entation. A natural orientation of Hs is given by definition. Observe that
H; only depends on P and B, whereas Hy depends on w and B. One easily
verifies that the map -y is injective and that it commutes with the projections
to

GrgO(PR @O UR) X Ryg x I'g = GI‘EO(FR ® Ur).

Recall that the fibre of Gr}(Tr) x Tr — Gry°(Tr @ Ug) is S?, whereas
the fibre of 7 : Gr}%(Tr ® Ur) — Gr}°(Tr @ Ug) is 5 x S%. It can be
checked that the embedding v does not identify the fibre S? neither with
the diagonal nor with one of the two factors. In algebro-geometric terms
52 C 52 x S? is a hyperplane section of P! x P! with respect to the Segre
embedding in P3.

Remark 4.1 Note that the projection Gry(Tr) x T'r — Gry (T'r) —
Gry°(Tr) does not extend, at least not canonically, to a map Gry%5(T'r @
Ur) — Gr5°(T'r). Geometrically this will be interpreted by the fact that
not any point in the (2,2)-CFT moduli space of K3 surfaces canonically
defines a complex structure. More recently, it has become clear that gener-
alized K3 surfaces, a notion that relies on Hitchin’s generalized Calabi-Yau
structures [22], might be useful to give a geometric interpretation to every
N = (2,2)-SCFT (see [27])

We summarize the discussion of this paragraph in the following commu-
tative diagram
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2>< 2 o
Gr5% (T @ Ur) ——"> Gri°(Tg @ Ug)

-

Gry (Tr) x Tr =, Gri°(Tr) x Ryg x g

I'r lFR
s2

Qb (T) Grb®(Tg) x R

+cp

Gr3°(T'r)

4.6 Calculations in the Mukai lattice

We shall indicate how the formulae change if we pass to the Mukai bilinear
form. This will enable us to make the description of the various period spaces
and period maps compatible with conventions used elsewhere. We include
this discussion for completeness, but it is not necessary for the understanding
of the later sections.

Clearly the hyperbolic lattice U with the standard basis w, w™* is isomor-
phic to —U via w — —w,w* — w*. This extends to a lattice isomorphism

n:freU=Te (-U)=T.

For any oriented four-manifold M underlying a K3 surfaces we can identify
H*(M,Z) endowed with the standard intersection pairing with I' & U such
that w* = 1 € H'(M,Z), w = [pt] € HY(M,Z), and T = H?(M,Z). Then
I is naturally isomorphic to H*(M,Z) with the Mukai pairing (oo + ag +
o, Bo + B2 + Ba)p = —awfa — aufo + as B, where oy, 3 € H (M, Z).

The identification of ' @ U and T' with the cohomology of a K3 surface
induces a ring structure on both lattices, i.e. in both cases we define (Aw* +
x4+ pw)? == AN2w* + 2z + (2Ap + 22)w. Note that 1 does not respect these
ring structures.

Using the ring structure on I'y we can let act any element By € I'r on
I'r via its exponential exp(By) = w* + By + (BZ/2)w.

Lemma 4.2 For any By € I'y one has exp(By) € O(Tr).
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Proof. This results from the following straightforward calculation

(exp(Bo) - (" + + pw) .

2

B2 \?
_ (Aw*  (ABo+2) + (4 + (Bova) + A—0>w)
T

= 332—2)\u:()\w*+:r+uw)%.
O

Later we shall study the map ¢ p, associated to any By € I'r (see Section
6.2. By definition ¢p, € O(I'r ® Ur) acts on I'r & Ur by

B2
w— w, w*»—>Bo+w*—70w,

x — x — (Bp,x)w, forx € T'g.
Let us compare exp(By) with ¢p,,

Proposition 4.3 Under the isomorphism n : I'r ® Ug = fR the automor-
phism @p, corresponds to the action of exp(By), i.e. no pp, = exp(By) on.

Proof. By definition, exp(By) acts by

w—w, W (w +BO+7w)-w = By +w —1—710,
2

B
:1:»—>(w*—l—Bo+70w)':U:x—|—<Bo,x>w, for z € I'g,
which yields the assertion. O

The isomorphism 7 induces a natural isomorphism Grgg(FR ® Ur) =
Grgf’z(fR). In order, to describe the image n(Hy, Ho) we will use the iden-
tification Qp = Grgo(fR) established in Section 4.2. The positive plane
associated to an element 2 € I'c with [z] € Q; will be denoted by P, i.e.
P, is spanned by Re(z) and Im(x). Clearly, exp(B) - Py = Pexp(B)a-

Let (P,w) € Gry(I'r) and B € T'r. We denote (Hy, Hz) := v((P,w),0)
and (HP, HP) := v((P,w), B). Then a direct calculation shows ¢ g(H1, Hs) =
(HEP, HP) and therefore

Corollary 1 n(H{’, H) = exp(B) - n(Hy, Hy) = exp(B) - (Ps, Pexp(iv) =
(Pexp(B)oa Pexp(B—l—iw))-
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Proof. The only thing that needs a proof is n(Ha) = Pep(iw). But this
follow immediately from the definition of Ho. O

In particular, via 7 the image of v : Gry(I'r) X T'r — Gry5(T'r @ Ur)
can be identified with exp(I'r) - (n(’y(GrSﬁ(FR))))

4.7 Topology of period domains

Let us study some basic aspects of the topology of the period domains that
are of interest for us. Let I' be a lattice of signature (3,b — 3). We will
consider the spaces:

5°(Tr) = 0(,0-3)/30(2) x O(1,b — 3)
Gry” (FR ®Ur) = O(4,0-2)/30(4) x O(b — 2)

P(Tr) = O0(,0-3)/30(3) x O(b — 3)
Gr22(FR ®Ur) = O(4b-2)/30(2) x SO2) x O(b — 2)

For simplicity we will suppose that b > 3.

Lemma 4.4 The group O(k,¢) with k,¢ > 0 has exactly four connected
components.

Proof. Write O := O(k,¢). Then there are the following disjoint unions
0O=0"U0",0=0,U0_,and O = OfUOT UO; UOZ. Here, OF
are defined as follows: Write R¥+ = 1, @ WO with Wy C R a maximal
positive subspace, which is endowed with an orientation. Then let OT and
O~ (respectively, Ot and O_) be the subsets of all linear maps A € O such
that the orthogonal projection AW, — Wy (respectively, AW — Wyb)
is orientation preserving resp. orientation reversing. By definition Oi =
Ot N O, etc. For any Ag € Oi the map Oi — Oi, A — AAy defines a
homeomorphism. Thus, it suffices to show that Oi is connected. O

Note that OF (k,l) is the connected component of the identity. It will
thus also be denoted Oy (m,n).

Corollary 2 The space Gr5°(I'r) is connected, whereas the spaces Grgf’l (Tr),
Gry°(Tr), Gry°(Tr ® Ur), and Grys(Tr ®Ur) consist of two connected com-
ponents.
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Proof. Use the obvious fact that the inclusion SO(2) x O(1,b — 3) C
O(3,b—3) respects the decomposition into connected components, i.e. Oi(l, b—
3) € 0E(3,b —3). Thus, m(SO(2) x O(1,b —3)) = m(O(3,b — 3)). Sim-
ilarly for Gr°(I'g). Here O(3,b — 3) has four connected components, but
m0(SO(3) x O(b — 3)) = Z/2Z, i.e. the components O} do not intersect
the image of the inclusion. Hence, mo(Gry®(I'r)) = Z/2Z. The remaining
assertions are proved analogously. a

We are also interested in the fundamental groups of these spaces. In
order to compute those, we recall the following classical facts.

Proposition 4.5 One has m1(SO(2)) = Z, m1(SO(k)) = Z/2Z for k > 2,
and 71(Oo(k,¢)) = 11 (SO(k)) x 71 (SO(¥)).

Proof. The first assertion follows from SO(2) = S'. The universal cover
of SO(k) for k > 3 is the two-to-one cover Spin(k) — SO(k). The iso-
morphism in the last assertion is induced by the natural inclusion SO(k) x
SO(¢) — Oy(k, ). O

Corollary 3 Allthe Grassmanians Gr5°(I'g), Grgf)l (Tr), Gr5°(Tr), Gr}°(Tr®
Ur), and Grgg(FR@ Ur) are simply-connected, i.e. every connected compo-
nent is simply connected.

Proof. Since

Gry°(Ir) = O(3:6 = 3)/50(2) x O(1,b — 3) = Qo(3,0 =3)/50(2) x 0,(1,b — 3)-
we may use the exact sequence
71(SO(2)xO0o(1,0—-3)) = m1(06(3,b—3)) — m(Gr5°(Tr)) — mo( ) = mo( ).

The map a is compatible with the natural isomorphisms 71 (SO(2) x Og(1, b—
3)) 2 m(SO(2)) x m1(06(1,6—3)) = m1(SO(2)) x w1 (SO(1)) x 71 (SO(b—3)),
m1(06(3,0 — 3)) = m1(SO(3)) x w1 (SO(b — 3)) and the natural maps Z =
m1(SO(2)) x m(SO(1)) — 71 (SO(3)) = Z/27Z. Thus, a is surjective and
hence 7 (Gry°(T'r)) = 0. The other assertions are proved analogously. O

Remark 4.6 Eventually, we list the real dimensions of our period spaces,
which can easily be computed starting from Gri°(T'r) = Qr. We have
dim Gry°(T'r) = 2(b—2), dim Gr}) (Tg) = 3(b—2), dim Gr3°(T'r) = 3(b—3),
Gry°(Tr @ Ur) = 4(b — 2), and dim Gryy(T'r @ Ur) = 4(b — 1).
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4.8 Density results

Here we shall be interested in those points P € (Qr whose orthogonal com-
plement P+ C I'g contains integral elements o € T' of given length. For
simplicity we shall assume that I' is the K3 lattice 2(—Fg) @ 3U, but all we
will use is that I' is even of index (3,b — 3) and that any primitive isotropic
element of I' can be complemented to a sublattice of I' which is isomorphic
to the hyperbolic plane. First note the following easy fact.

Lemma 4.7 If0 # o € I'r then a’ N Qr is not empty.

Proof. Indeed, ot C T'p is a hyperplane containing at least two linearly
independent orthogonal positive vectors z,y. Thus, P := (x,y) € atNQr.o

The quadric in P(I'c) defined by the quadratic form ( , ) on I" will be
denoted Z, its real points form the set Zgr = P(I'g) N Z.

Proposition 4.8 Let 0 # o € I'. Then the set

U gle™ner)= |J g ner

geOo() geOo()

s dense in Qr.

Proof. We start out with the following observation: Let I' = IV ® U be an
orthogonal decomposition and let (v, v*) be a standard basis of U. For B € I/
with B? # 0 we define ¢ € O(T) by p(v) = v, ¢g(v*) = B+v* —B2?/2-v,
and pp(x) =z — (B,x)v for x € I". Tt is easy to see that indeed with this
definition ¢ € O(I"). (We shall study a similarly defined automorphism
vp € O('® U) in Section 6).

This automorphism has the remarkable property that for any y € I'r one
has

lim R [y] = [v] € P(Tw).

k—oo

In particular, we find that in the closure of the orbit O := O(T')-[a] C P(T'r)
there exists an isotropic vector, i.e. O N Zg # .

In order to prove the assertion of the proposition we have to show that
for any P € Qr there exists an automorphism g € O(I') such that g(«)
is arbitrarily close to Pt. Indeed, in this case we find a codimension two
subspace W C I'g close to Pt containing g(a) and, therefore, W+ € Qr is
close to P and orthogonal to g(a).
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Since Pt contains some isotropic vector, it suffices to show that any
vector [y] € Zgr C P(TR) is contained in O. As explained before, ON Zg # 0.
On the other hand, O N Zg is closed and O(T')-invariant. Thus, it suffices to
show that any O(I')-orbit O, := O(I") - [y] C Zg is dense. This is proved in
two steps.

i) The closure O, contains the subset {[x] € Z | z € I'}. Indeed, for
any x € I' primitive with 22 = 0 one finds an orthogonal decomposition
' =T"® U with z = v, where (v,v*) is a standard basis of the hyperbolic
plane U. If we choose B € I with B2 # 0, then limy,_.. p%[y] = [v] = [z],
as we have seen before. Hence, [z] € O,.

ii) The set {[z] € Z | = € T'} is dense in Z. Indeed, if we write I' =
IV @ U as before, then the dense open subset V C Zg of points of the form
[/ + Av + v*] with X € R, 2’ € T} is the affine quadric {(2/,\) | 2\ + 2% =
0} € Tr x R and thus is given as the graph of the rational polynomial
'y — R, 2’ — —2/2. Therefore, the rational points are dense in V.

Combining both steps yields the assertion. O

Corollary 4 For any m € Z the subset
{P € Qr | there exists a primitive o € I' N P+ with o? = 2m}
s dense in Qr.

Proof. In order to apply the proposition we only have to ensure that
there is a primitive element 0 # o € I' with a? = 2m. If (w,w*) is the
standard base of a copy of the hyperbolic plane U contained in I', we can
choose o = w + mw*. O

In fact, if aq,a9 € I' are primitive elements with a% = a% then there
exists an automorphism ¢ € O(T') with ¢(a1) = ag (cf. [29, Thm.2.4] or
Remark 7.4). Thus, the assertion of the corollary is essentially equivalent to
the proposition (see [1] page 111). Note that for general HKs we don’t know
which values of 2m can be realized.

As a further trivial consequence, one finds that the set of those P € Qr
such that P NT # 0 is dense in Qp. One can now go on and ask for those
P € Qr such that P+ NT has higher rank. Those with maximal rank, i.e.
tk(P+ NT) = rk(T') — 2, are called exceptional. An equivalent definition is

Definition 4.9 A period point P € Qr is exceptional if P C I'r is defined
over Q, i.e. P € Qr NP(Tg))-
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Clearly, P is exceptional if there exist linearly independent elements
ai, ..., apry—2 € I' such that P C oziL for all i. Note that if P € Qr is
exceptional, the orthogonal complement P~ always contains a lattice vector
x € T with 22 > 0 (use that ' has signature (3,b — 3)).

Next we will prove that also the exceptional points are dense in Qr. For
K3 surfaces one can add further restrictions.

Definition 4.10 Let I' be the K3 lattice. A period point P € Qr is called
exceptional Kummer if P C I'r is defined over Q and for all x € PNT one
has 2 =0 mod 4.

Proposition 4.11 Let I" be the K3 lattice. Then the set of exceptional
Kummer points P € Qr is a dense subset of Qr.

Proof. We first prove the following statement. Let L be an arbitrary
lattice. Then the set

{[z] | € L is primitive and 2 =0 mod 4} C P(Lg)

is empty or dense. Indeed, if [z] is contained in this set and y € L is
arbitrary, then [z + N - y| € P(Lgr) converges towards [y] for N — oc.
Moreover, (z + N -y)2 = 22 =0 mod 4 if N is even. If y € L is primitive
and y # x then there exist arbitrarily large even N such that x + N -y is
again primitive. Since the set of all [y] with y € L primitive is dense in
P(LR), this proves the assertion.

Now let P € Qr be spanned by orthogonal vectors y1,y2 € I'r. Then by
what was explained before we can find 21 € I' primitive with 22 =0 mod 4
such that [z1] is arbitrarily close to [y1] € P(I'g). Furthermore, choose
To € :171l C I' primitive and arbitrarily close to yo € yll with :L‘% =0 mod 4
and set P’ := (Zx1 @ Zx2)r. Such an element xs can be found, as :rlL c’rl
contains a copy of the hyperbolic plane U and thus an element whose square
is divisible by four, e.g. 2v+v*, where (v,v*) is a standard basis of U. Then
P’ is close to P and (axq + bzs)? = 2% + b%23 =0 mod 4. O

We leave it to the reader to modify the above proof to obtain

Corollary 5 Let I' be an arbitrary lattice of signature (3,b — 3). Then the
set of exceptional period points is dense in Qr. O
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5 Period maps

The aim of this section is to compare the various moduli spaces introduced
in Section 3 with the period domains of Section 4 via period maps PP, P,
pmet Pp2.2) and P,

5.1 Definition of the period maps

The period maps we are about to define will fit into the following two com-
mutative diagrams:

pepl . Trcpl —— Gr°(Tg) = Qr
P Tr GrSi(FR)
|+ |+
meet . Q}met S Grgo(FR) « R>0
and
p22) . ’]1_\(2’2) —_— Grg’ol (Tr) x T'pRC—— Grgg (Tr @ Ur)
iSQ lsQ %

D) . T4 — Gr}°(Tr @ Ug)

The latter should be compatible with the two diagrams

A — Gr%(Tx) x Tr Gr5(T'w)
7}(474) — 7}met GrZO(TR @ Ur) —> Grgo(PR) X Rxo

and the period maps P and P™et.

The definition of the maps P, P™met, PPl P(22) and PHY is straight-
forward. Let (X, o, ¢) = (M,g,1,¢) € Tr and B € H*(X,R) = H?>(M,R) a
B-field. By o we denote a generator of H?Y(X).
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Then we set:

PP(X,p) = [p(0)] € Qr C P(I'c)
= ¢(Re(0),Im(0)) € Gr3°(T'r)
P(X,0,0) = (PPYUX, ), )) S Grz’l( R)

PR (M, g,0) = (p(HY(M,qg)),q(M,qg)) € Gri°(Tr) x Rog
PEA(M,g,1,B,¢) = (P(M,g,1,¢),0(B)) € G}’ (Tx) x T
PUD(M,g,B,p) = (P™M,g,¢),0(B)) € Gri°(Tr) x Ro x Iz

=~ Gr})°(Tr @ Ug)

We leave it to the reader to verify that all period maps are O(I")-equivariant
and that one indeed obtains the above commutative diagrams.

Also note that there is a natural O(I' @ U)-action on the two period
domains Gry%(T'g @ Ug) and Gr}°(T'g © Ug), but the image of P32 (or its
closure) is not left invariant under this action.

5.2 Geometry and period maps

Without going too much into the details we collect in the following some
important results about period maps. In particular, we will translate geo-
metric results, like the Global Torelli Theorem into global properties of the
period maps.

Local Torelli. The map PP : ’]}Cpl — Qr s holomorphic and locally
(in T*') an isomorphism (cf. [6]).

Recall that ’Z'FC P has a natural complex structure, but that the underlying
topological space is not Hausdorff. On the other hand, Qr is an open subset
of a non-singular quadric in P(I'c) and, therefore, a nice complex manifold.

Of course, the Local Torelli Theorem in the above version immediately
carries over to the other period maps. Thus, P, P™¢t P22 and PAY are
all locally injective. Since the Teichmiiller spaces Tr, 7" 7}(2’2), and 744
are all Hausdorff, this shows that except P°P! all period maps define covering
maps on their open images.

Twistor lines. Under the period map PP the twistor line P' =
c(m=Y(M,g,¢)) C 'Z}Cpl (cf. Proposition 3.9) is identified with a quadric
in some linear subspace P? C P(I'c).
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Indeed, the P? is given as P(p(H2 (M, g)c)) C P(I'¢).

Surjectivity of the period map. The map PP : ’TFCpl — Qr maps
every connected component of TP onto Qr (cf. [24]).

Analogous statements for the other period maps do not hold. In these
cases the assertion has to be modified. To see this let us look at the fibres
of ITr — ’TFCp1 over (X, ). By definition of 7r this is the Kahler cone Kx
which, via the period map P, is identified with an open subcone of the
positive cone Cpcpl( X,0) which is just one of the two connected components

of the fibre of Gr} (I'r) — Qr over P®(X, ¢). For a very general marked
IHS (X, ¢) € TFCp1 the Kahler cone Kx is maximal, i.e. Kx = Cx. Thus,
for those points P maps the fibre of 7pr — ’]}Cpl bijectively onto one of
the connected components Cp or —Cp of the fibre of Gy (Tr) — Qr over
P = PP(X, ). For special marked IHS (X, ¢), which usually (e.g. for K3
surfaces) nevertheless form a dense subset of 777 pl, the Kéhler cone is strictly
smaller.

Density of the image. The image of every connected component of Tr
under the period map P is dense in the connected component of the period
domain GrSi(FR) containing it. Analogous statements hold true for P™et,

PE2)  and PEY.

Let us say a few words about how the density is proved and how the
boundary Gry (Tr) \ P(7r) can be interpreted.

Since P! is surjective, we may consider (X,¢) € T and study the
fibre of Grb% (P'r) — Gry°(Tr) = Qr over PP(X, ¢), which is £¢(Cx). The
+-sign distinguishes the two connected components of GrSi(FR). The image
of the fibre 7 — ’]}Cpl over (X, ) is the open subcone p(Kx) C ¢(Cx). We
will discuss its boundary and its complement: If @ € Cx is general, then
there exists (X', ¢') € ’TFCpl which cannot be separated from (X, ¢) such that
P(X,p) = P(X',¢) and p(a) € ¢'(Kx/) (see [20]). (Moreover, X and X’
are birational.) Thus, the disjoint union |J ¢(Kx) over all (X, ¢) in the same
connected component and with the same period P(X, ) € Qr is dense in

¢(Cx)-

For a point a@ € dp(Kx) there always exists a rational curve C' C X
with [, a = 0 (see [10]), i.e. under the degenerate Kahler structure o the
volume of the rational curve C shrinks to zero. Thus, points in the boundary
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of P(Kx) should be thought of as singular IHS/HK which are obtained by
contracting certain rational curves. Unfortunately, neither are we able to
make this statement more precise nor do we know that any point a € ¢(Cx)
is actually contained in the closure of some ¢'(Kx/), where (X', ¢') is as
above. However, for K3 surfaces the situation is much better understood

(ct. [28]).

Projective THS. The set of projective marked IHS forms a countable
dense union of hyperplane section of Qr. If Mlgroj C Mr denotes the set
of all Kdhler IHS for which the underlying IHS is projective, then /\/llgrOj —
MR s surjective.

In fact, due to a general projectivity criterion for surfaces and an analo-
gous result for IHS (cf. [20]) one knows that an IHS X is projective if and only
if there exists an integral (1, 1)-class o with ¢(«) > 0. Thus, (X, ¢) € Tlfpl is
projective if and only if PP (X, ) is contained in a hyperplane orthogonal
to some o € T’ with a? > 0. As we have seen before, the set of such periods
is dense in the period domain Qr. Since the fibre of 7p — 7" is identified
with a quadric curve P! € P(I'c) under the projection 7 — ’TFCpl and as
such is intersected non-trivially by every such hyperplane, the fibre contains
at least one Kéahler (X, «, ¢) with X projective. In other words, for any hy-
perkahler metric g on a manifold M at least one of the complex structures
A =al +bJ + cK defines a projective IHS. In fact, the set of projective IHS
is also dense among the (M, \).

Finiteness. The induced period maps

P Mr — om)\Grii(Tr)

ﬁmet . Mi_‘net N O(F) \ Grgo(PR) X R>O
=0\ 0B:=3)/50(3) x O(b — 3) X R0

are finite trivial covers of their images, i.e. every moduli space has only
finitely many connected components and each connected component is mapped
bijectively onto its image.

The same holds for the period map

PP MP - o)\ @r = om) \ 03,0 = 3)/50(2) x 0(1,b — 3)

except for non-Hausdorff points in the fibers.
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Note that e.g. 710 Pl might a priori have infinitely many components. That
this is no longer possible for the quotient M%pl = O(F)\’Z}Cpl is a consequence
of the finiteness result in [26, Thm. 4.3] which says that there are only finitely
many different deformation types of IHS with the same BB—form ¢gx. Since
Qr is simply connected and P°P! is surjective, the cover PP has to be trivial.
In fact, in order to make this precise one first should construct the ‘Hausdorff
reduction’ of ’TFCpl by identifying all points that cannot be separated from
each other. This Hausdorff space then is an honest étale cover of the simply
connected space Qr and, therefore, consists of several copies of Qr.

We leave it to the reader to deduce similar statements for the maps P (22
and P44,

Remark 5.1 This is essentially all that is known in the general case. For
K3 surfaces however the above results can be strengthened considerably
as follows. The Global Torelli for K3 surfaces shows that Tlfpl consists of
two connected components which are identified with each other by (X, ¢) —
(X, —¢) and which are not distinguished by P°P!. The two components are
separated by the map P : Tr — Gry9 (T'r), which is injective in the case of
K3 surfaces. Analogously, P™¢t, P22 and P*4 are all injective.

The density results of Section 4.8 together with the description of the
periods of our list of examples of K3 surfaces in Section 2 and the above
information about the period maps (i.e. the Global Torelli Theorem) yield:

Proposition 5.2 The following three sets are dense in the moduli space of
marked K3 surfaces: i) {(X, ) | X C P? is a quartic hypersurface},

ii) {(X,¢) | X is an elliptic K3 surface}, and

iii) {(X,¢) | X is a(n exceptional) Kummer surface}. O

5.3 The diffeomorphism group of a K3 surface

Proposition 5.3 Let X be a K3 surface. The image of the natural map
p : Diff(X) — O(H?(X,Z),U) is the subgroup O (H?(X,Z),U), which is of
index two.

Recall (cf. Section 4.7) that O™ is the group of all A € O that preserve
the orientation of positive three-space (but not necessarily of a negative 19-
space). The proposition is due to Borcea [11], who showed the inclusion
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O" C Im(p), and Donaldson [17], who showed equality. We only reproduce
Borcea’s argument here.

Proof. First note the following. If (X4, ;) is a connected path in Tlfpl,
then there exists a sequence of diffeomorphisms f; : Xo = X; such that
wo o f* = pt.

Let now ¢ be any marking of X and consider (X, ) € TFCpl. By T
we denote the connected component of ’TFCpl that contains this point. Pick
A € Ot (H%*(X,Z),U). Then A acts on TP and Qr by pAp~' and the
period map P! : ’Z’FCp1 — Qr is equivariant. Since the restriction of the
period map P! yields a surjective map 7y — Qr, there exists a marked K3
surface (X', ') with PPH(X' /) = APPY(X @) = PP(X, Ap). If X is a
general K3 surface such that Kx = Cx, then +¢' ' o (pA) : HX(X,Z) =
H?(X',7) is an isomorphism of periods mapping Kx to Kx. By the Global
Torelli Theorem there exists a (unique) isomorphism g : X’ = X such that
g = ¢ 1o (pA). By the remark above we also find a diffeomorphism
f X = X’ such that ¢ o f* = ¢/. Hence, po f*¢* = +(pA) and thus
(go f)* = £A is realized by a diffeomorphism of X. In fact, the sign must
be “47, as g*, f*, and A preserve the orientation of a positive three-space.

It remains to show that —id is not contained in the image and this was
done by Donaldson using zero-dimensional moduli spaces of stable bundles
on a double cover of the projective plane. O

Remark 5.4 In the proof above we used the assumption that n = 1 twice:
When we applied the Global Torelli Theorem and, of course, when using
Donaldson invariants. The surjectivity which is also crucial holds true also
for n > 1. Somehow, the use of the Global Torelli Theorem seems a little
strong, as we have no need to know that ¢* is induced by a biholomorphic
map, a diffeomorphism would be enough.

In [36] Namikawa constructs an example of two four-dimensional THS
X and X'’ together with an isomorphism of their periods which preserves
the Kahler cone, but such that X and X’ are not even birational. To be
more precise, he considers generalized Kummer varieties X = Ko(7") and
X' = Ko(T*) associated to a complex torus T' and its dual T*. As the
moduli space of complex tori is connected, one can endow X and X' with
markings ¢ respectively ¢’ such that (X, ¢) and (X', ¢’) are contained in
the same connected component 7y of ’TFCpl. His example shows that O™ (T)
does not preserve 7y, i.e. there exists A € O such that (X', A¢’) & Ty (with
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P(X',AY') = P(X,¢)). Indeed, after identifying non-separated points in
’Z}Cpl the period map PP : Tlfpl — Qr is a covering and thus, since Qr
is simply connected, every connected component 7j of TFCpl is generically
mapped one-to-one onto Qr.

5.4 (Derived) Global Torelli Theorem

Before discussing the action of O(I'® U) from the mirror symmetry point of
view we shall explain that a derived version of the Global Torelli Theorem
can be formulated by means of this action.

First, we reformulate the classical Global Torelli Theorem for K3 surfaces
as follows:

Theorem 5.5 Let X and X' be two K3 surfaces. Then X and X' are iso-
morphic if and only if their images PPY(X, @) and PP(X',¢') are contained
in the same O(T")-orbit in Q.

(Of course, the choice of ¢ and ¢’ does not matter.)

In order to formulate the derived version of this, which consists in weak-
ening the isomorphism of X and X’ to an equivalence of their derived cate-
gories, we need to complete the picture of the various period maps as follows.

The diagram in Section 5.1 can be enriched by adding a moduli space that
naturally contains the complex moduli space ’Z'lfpl and the complex period
domain Gr5°(I'r) such that the group O(I'@® U) acts naturally on the latter.
We introduce the commutative diagram:

Gr2°(T'g) x Tp—2> Gr2°(T'g ® Ug)

T |

(@W@xmgb&%m@%)

Here, 7 is the projection (Hy, Hz) — Hy and ¢ is given by 0 : (P, B) —
{z—(x, B)w | x € P}. This obviously yields the above commutative diagram.
Moreover, 7 is equivariant with respect to the natural O(I" @ U)-action on
both spaces. But note that ¢+ and £~ = 10& do not descend to Grb°(I'r & Ug).

Choosing a vanishing B-field for any marked K3 surface (X, ) yields a
map ’]ifpl — Grb°(Tr) 2, Gri° (g @ Ug).

Analogously to the discussion of the embedding v in Section 4.5, one
finds that the image of ¢ is not invariant under the O(I" @ U)-action, but
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it might of course happen that the image of a marked K3 surface (X, )
under some 1p € O(' ® U) \ O(T") is mapped to the period of another K3
surface (X', ¢'). At least for algebraic K3 surfaces, when this happens can
be explained in terms of derived categories. This is due to a result of Orlov
[38] which is based on [31].

Theorem 5.6 Two algebraic K3 surfaces X and X' have equivalent derived
categories
DP(Coh(X)) and DP(Coh(X"))

if and only if their images dP(X, ) and 6P(X',¢') are contained in the
same O(T @ U)-orbit in Gry°(Tr & Ug). ]

(Again, the choice of the markings ¢ and ¢’ is inessential.)

Remark 5.7 There is a conjecture that generalizes the above results to K3
surfaces with rational B-field B € H?(X,Q). The derived categories in this
case have to be replaced by twisted derived categories, where one derives the
abelian category of coherent sheaves over an Azumaya algebra (cf. [13]).

The following result due to Hosono, Lian, Oguiso, Yau [23] and indepen-
dently to Ploog [39] should be regarded as an analogue of the fact that the
image of Aut(X) — OT(H?(X,Z)) is the set of Hodge isometries. At the
same time it is ‘mirror’ to the result of Borcea discussed above.

Theorem 5.8 Let X be a projective K3 surface. Then the image of
Autequ(DP(Coh(X)) — O(H*(X,7Z))
contains the set of Hodge isometries contained in O,

Here the Hodge structure on H*(X,Z) is a weight-two Hodge structure given
by H?9(X) Cc H*(X,C). As had been pointed out by Szendréi in [42], mirror
symmetry suggests that the image should be exactly OT. This would be the
analogue of Donaldson’s result.
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6 Discrete group actions

All spaces considered in Section 4 are quotients either of O(I'r) or O(I'r &
Ur). So from a mathematical point of view it seems very natural to study the
action of the discrete groups O(I") respectively O(I'@ U) on these spaces. In
fact, in order to obtain moduli spaces of unmarked (complex) HK or (kdhler)
IHS with or without B-fields. one has to divide out by a smaller group. But
in [4] it is argued that dividing out ’1}(4’4) or 7}(2’2) by O(T'@U) yields the true
moduli space of CFTs on K3 surfaces. In order to recover the full symmetry
of the situation they proceed as follows:

i) Maximal discrete subgroups. Find a discrete group G that acts
on a certain moduli space of relevant theories and show that it is maximal
in the sense that any bigger group would no longer act properly discontinu-
ously. (Recall that the quotient of a properly discontinuous group action is
Hausdorft.)

ii) Geometric symmetries. Describe the part of G (the geometric
symmetries) that identifies geometrically identical theories and the part that
is responsible for trivial identifications (e.g. integral shifts of the B-field).

iii) Mirror symmetries. Show that G is generated by the symmetries
in ii) and a few others that are responsible for mirror symmetry phenomena.

6.1 Maximal discrete subgroups
We first recall the following facts:

e Let GG be a topological group which is Hausdorff and locally compact.
If K C GG is a compact subgroup then any other subgroup H acts properly
discontinuously from the left on the quotient space G/K if and only if H C G
is a discrete subgroup. (For the elementary proof see e.g. [46, Lemma 3.1.1].)
e Let L be a non-trivial definite even unimodular lattice and let ¢ > 3.
Then O(L @ U%?) C O(Lg ® Uﬂ?q) is a maximal discrete subgroup (cf. [2]).

The second result in particular applies to the K3 surface lattice I' =
2(—Eg) @ 3U and yields that O(I') € O(T'r) and O(I' ® U) C O(T'r & Ur)
are both maximal discrete subgroups.

The group O(T") acts on Grb°(I'r) and Gri°(T'r). As we have seen

Gr3°(Tr) = O(3,19) /30(2) x 0(1, 19) and Gry”(T'r) = O(3,19)/90(3) x 0(19)-
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In the second case we are in the above situation, i.e. the quotient is taken
with respect to the compact subgroup SO(3) x O(19). Hence, O(T") acts
properly discontinuously on Gri°(I'r) and there is no bigger subgroup of
O(T'r) than O(T") with the same property. However, the action of O(T") on
Grb°(T'r) is badly behaved, as the subgroup SO(2) x O(1,19) is not compact.
In fact, in the proof of Proposition 4.8 we have already seen that the action
of O(T") is not properly discontinuous.

We are more interested in the action of O(I' ® U) on Gr}°(T'r @ Ugr) =
0(4,20)/(SO(4) x O(20)). Again O(I'® U) is maximal discrete and SO(4) x
O(20) is compact. Hence, there is no bigger properly discontinuous sub-
group action on Gri’(T'r & Ur). Analogously, one finds that O(I' & U) is a
maximal discrete subgroup of O(I'r @ Ug) acting properly discontinuously
on GFSZ(FR D UR).

Presumably, all these arguments also apply to any HK manifold, but
details need to be checked. (Recall that (H%(X,Z),qx)) is not necessarily
unimodular in higher dimensions.)

6.2 Geometric symmetries

We will try to identify “geometric” symmetries and integral shifts of the
B-field inside O(I' @ U). To this end we use the identification

¢ : GrgO(FR) X RygxI'gp = GI‘ZO(PR ® Ur)

described in Section 4.4.

The natural inclusion O(I') C O(I' ® U) is compatible with this isomor-
phism, ie. if II = ¢(F, o, B) and ¢ € O(') C O(I' @ U), then ¢(II) =
d(p(F),a,p(B)). This is a straightforward calculation which we leave to
the reader. Clearly, O(T") acts naturally on all spaces 7, 7™, 7°P!, T22)
and 74 and the period maps are equivariant. Thus, O(T) is the subgroup
that identifies geometrically equivalent theories.

Next let By € I" and let pp, € O(I' ® U) be the automorphism w — w,
w* — By +w* — (Bg/2)w, and # € T — z — (Bp,z)w. One easily verifies
that this really defines an isometry. We claim that if Il = ¢(F, a, B), then
QOBO(H) = ¢(F, Q, B+ Bo).

In order to do this let us more generally consider an element ¢ € O(I'®U)
such that @(w) = w. For IT € Gr°(Tg @ Ug), let I := (IT). Then
F' =T Nnwt = p(I) Ne(w)t = p(IINwt) = ¢(F). Moreover, one has the
two orthogonal splittings IT = B'/R@ F” and I = o(B')R@p(F"), where B’ is
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determined by (B’,w) = 1. Since {p(B'),w) = (p(B'), p(w)) = (B',w) = 1,
one concludes B’ = ¢(B’). In particular, B2 = B'2. The B-field B is given
by B’ = aw +w* 4+ B. Hence, B' = aw + ¢(w*) 4+ ¢(B) and thus the B-field
determined by B’ is nothing but ¢(B).

All this applied to ¢ = ¢p, one finds that under the isomorphism
Gr°(Tr @ Ur) = Gr§°(I'r) x Rsg x I'g the integral B-shift by By that
maps (F,«a, B) to (F,a, B + By) corresponds to ¢p,.

We leave it to the reader to verify that also the O(T' @ U)-action on
Gry5(T'r © Ug) is well-behaved in the sense that O(I') C O(T' @ U) and the
maps pp, for By € T act on the subspace v(Gry (Tr) xT'r) C Gry%(Tr®UR)
in the natural way.

6.3 Mirror symmetries

The next result (due to C. T. C. Wall, [45]) explains which additional group
elements have to be added in order to pass from O(T") to O(T @ U).

Proposition 6.1 Let T' be a unimodular lattice of index (k, ) with k,{ > 2.
Then O(T @ U) is generated by the following three subgroups:

O(F)v O(U)a and {‘;OBO | By € F}'

|

Thus, the result applies to the K3 surface lattice 2(—FEg) @ 3U, but
presumably something similar can be said for the case of the lattice 2(—FEg)®
3U @ 2(n — 1)Z, which is realized by the Hilbert scheme of a K3 surface.

In [4] passing from O(T") to O(I'@ U) is motivated on the base of physical
insight. As usual in mathematical papers on mirror symmetry we will take
this for granted and rather study the effects of these additional symmetries in
geometrical terms. Thus, the rest of this paragraph is devoted to the study
a few special elements of O(I' @ U) that are not contained in the subgroup
generated by O(I") and {pp, | By € I'}. In particular, we will be interested
in their induced action on Grgf)l (T'r) x I'g.

So far we have argued that O(I' ® U) is a maximal discrete subgroup of
O(I'r @ Ur) that acts on the two period spaces that interest us: Grgg(FR @
Ug) and Gri°(I'r @ Ur). However, there seems to be a bigger group which
naturally and properly discontinuously acts on the space GrSZ(FR ® Ur)
(which thus cannot be realized as a subgroup of O(I'r & Ur)).
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Definition 6.2 The group O(T @ U) is the group acting on Gry5(Tr © Ur)
which is generated by O(T @ U) and the involution ¢ : (Hy, Hy) — (Hs, Hy).

Here H is the space H with the opposite orientation. Note that one could ac-
tually go further and consider the maps (Hy, Ho) +— (Hy, Ho) or (Hy, Ha) —
(Hy, H3). However, for the versions of mirror symmetry that will be dis-
cussed in these lectures ¢ will do.

Before turning to the mirror map that interests us most in Section 6.4
let us discuss a few more elementary cases:

“idy

Consider the automorphism 1y € O(I' @ U) that acts trivially on I" and as
—idon U.

Lemma 6.3 The automorphism g preserves the subspace Grgf)l (Tr) x T'r
and acts on it by
((va)ﬂB) = ((P7 —w), _B)'

Proof. If (Hy, Hy) = v((P,w), B), then by definition of 1)q:

vo(H1) ={x+ (z,B)w | x € P} = {z — (z,(—B))w | x € P}
and

(o — B?)(~w) —w* + B)R® (w + (w, B)w)R
1

N =

Yo(H2) = (

= —((a-(~BPw+w - BIR® (- (w, (-B)w)R

Thus, the sign of w has to be changed in order to get the correct orientation
1/}0(H 2). O

W — w*

Consider the automorphism ¢, € O(I' ® U) that acts trivially on I" and by
P1(w) = w*, Y1 (w*) =w on U.
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Lemma 6.4 The automorphism 1 preserves the subspace {((P,w),B) | B €
(P,w)*t, o # B?} of Gry (Tr) x T'r and acts on it by

2

((P,w),B) — ]

((P,w), B).

Proof. Indeed, by definition of 1 one has ¢1(H;) = Hy and

(i) = (jla- B+t B) R (- (o Bu)R

. 2 2 2
= (w +a—B2w+a—B2B>R@<7a—B2w>R

Then check that for @ := ﬁw and B := ﬁB one indeed has ﬁ =

L(@? - B?). O

It is interesting to observe that on the yet smaller subspace {((P,w),0)}
the automorphism v acts by (P,w) — %(P,w). In the geometric context
this will be interpreted as inversion of the volume or, in physical language,

T-duality.

Remark 6.5 Nahm and Wendland argue that w < w* occurs as an auto-
morphism of the orbifold (2,2)-SCFT associated to a Kummer surface. Thus,
it has to be added as a global symmetry to the subgroup (O(T'),{¢p | B €
I'}). Due to the result of Wall, one thus obtains the full O(T' @ U)-action on
GI"ZO(FR D UR).

Note that in the original argument Aspinwall and Morrison had used
another additional symmetry. Writing ' @ U = (—Es ® 2U) & (—Es @ 2U)
allows one to consider the interchange of the two summands (—FEg @ 2U) «
(—Eg®2U) as an element in O(I'@U). This additional automorphism, which
together with (O(T"), {¢p | B € T'}) also generates the whole O(T'@U)-action
on Gr°(Tr @ Ug), is realized as an automorphism of a certain Gepner model.
For the details of both approaches we have to refer to the original articles.

6.4 The mirror map U « U’

If the lattice can be written as I' = I & U’, where U’ is a copy of the
hyperbolic plane U, then by Wall’s result Proposition 6.1 the group O(T'@U)
is generated by O(T"), {¢p, | Bo € T'}, the involution ¢, and £ € O(I' ®



228 D. Huybrechts

U) which is the identity on I and switches U and U’. Here we use an
isomorphism U 2 U’ which we fix once and for all. We consider Grg’o1 (Tr) x
I'r as a subspace of GTSZ(FR @ Ug) via the injection +.

Neither ¢ nor £ leave the subspace Grb9 (I'r) x I'r invariant. Indeed, if
((P,w),B) then H; C 'r ®Rw and Hy ¢ I'r &Rw and therefore (Hy, Hy) =
t(Hy1, Hy) cannot be contained in the image of . Similarly, for a general
(Hy, Hs) the pair of planes (£(H1),&(Hz2)) will not satisfy £(H1) C I'r ® Rw.

Definition 6.6 ¢ =106 OT @ U).

By definition, £ acts naturally on Gry5(Tr @ Ug) and Gry°('r © Ur).
The action on the latter coincides with the action of £&. We will show that é
can be used to identify certain subspaces of Grb (I'r) x T'g, but the whole
Gry ) (T'r) x T'r will again not be invariant. Ma};be it is worth emphasizing
that £ is an involution. Indeed, ¢ commutes with the action of O('g & Ug)
and both transformations ¢ and & are of order two.

Note that different decompositions I' = T @ U’ yield different &, which
then relate different pairs of subspaces of Grgfjl (I'r) xI'r. The following easy
lemma shows that we dispose of such a decomposition whenever we find a
hyperbolic plane contained in T.

Lemma 6.7 If U’ is a hyperbolic plane contained in a lattice T', then ' =
U/J_ e U,.

Proof. Choose a basis (v,v*) of U’ that corresponds to the basis (w, w*)
of U under the identification U’ = U. Furthermore, let IV := U’ and let V
be the subspace of the Q-vector space I'g that is orthogonal to U(’@. Thus,
I'g =V & Up. Clearly, I C V and, conversely, for any v € V' there exists
A€ Q" with o € VNI C I". Hence, V =Tg. Let z € I' and write
x=y+ M+ pv*) withy € Vand A\, u € Q. Then (z,v), (x,v*) € Z implies
A\, i € Z and, therefore, y = x— (Av+puv*) €e TNV =T". Thus, ' =TV U'.0

For the rest of this section we fix the orthogonal splitting I' = I/ @ U’
together with an identification U’ = U. By pr : I'r — I'ywe denote the
orthogonal projection.

Proposition 6.8 Let ((P,w), B) € Grb(I'r) xI'r such that w, B € T ®Rv.

Then the &-mirror image ((P¥,w"), B ) = ¢((P,w), B)) is again contained
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in Gry ) (Cr) x Tr. It is explicitly given as

oV = m <pr(B +iw) — %(B + iw)?v + v*>
Vi = ot r(c) — (o, B)v
B +w T (Re(a),v> (p ( ) < 7B> )

Here, we have replaced P by the corresponding line [o] € Qr C P(I'c).
Furthermore, we have chosen o such that Im(c) is orthogonal to v.

Proof. By definition the positive plane P is contained in w®. Since the
intersection of w’ with I'y ® Rv and I'y @ Rv* have both only one positive
direction, P cannot be contained in either of them. Thus, we may choose
o such that v+ N P = Im(c)R and (Re(c),v) # 0. This justifies the above
choices. Also note that w¥ and BY do not change when o is changed by a
real scalar. The defining equations for BY + iw¥ and ¢V are spelled out as
follows

v, 1 1 +Z'(y+1)* 22}+B+i(()+v*
o (Re(o),v) < Z(B ) )
A m(o) — (Im(o),v")v — (Im(o), B)v
w . <Re(a),v) (I ( ) <I ( )7 > <I ( )a > )
v o1 e(o) — (Re(o),v)v* — (Re(o),v*)v — (Re(o), B)v

Let us now compute £(Hy, Hy). We denote y((oV,w"), BY) by (HY, HS),
where oV,w", and BY are as above.

The space Hy is spanned by the real and imaginary part of 6V —(c", BV)w.
A simple calculation yields

(07, B¥) = —(Re(0),v) " ({B,v") + i{w,v")) .
Thus, HY is spanned by

1
B+ v* + ~(w? — B2 = 2(B,v*))v + (B,v*)w

2
= %( 2 _ B +v* + (B — (B,v")v) + (B,v"w
_ ¢ <%(w2 _ BYw+ w4+ (B — (B,v*)) + (B,v*>v>

= ¢ G(uﬂ - B*)w +w* +B>
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and

w—(w,B+v")v+ (w,v")w
= (w—(w,v")v) + (w,v")w — (w, B)v
= ¢ (w—{(w,v")v+ (w,v")v — (w, BYw)
= ¢ (w—(w,B)w).

Hence, HY = £(H3). Similarly, one proves Hy = £(H;). First one computes

w? = (Re(o),v) %Im(0)?,
BY? = (Re(o),v) 2 (Re(a)2 - 2<Re(o’),v><Re(a),v*>)
(W', B") = —(Re(0),v)” ! (Im(0),v*),

where one uses (Im(c),v) = 0. Since Im(c)? = Re(c)?, this yields
w'? — BY? = 2(Re(0), v) " (Re(0), v*).

Hence, HY is spanned by

%(wﬁ — B"*)w+w* + BY
= (Re(0),v)"" (Re(0), v*)w + w*
+(Re(0),0) ™" (Re(0) — (Re(o), v)v* (Re(0), v*)v — (Re(c), B)v)

and

w' — (W', BY)w

= (Re(0),v) ! ((Im(c) — (Im(c),v*)v) — (Im(), B)v + (Im(c), v*)w)

Thus, £(HJ) is generated by Re(o) — (Re(o), B)w and Im(o) — (Im(o), B)w.
Hence, Hy = £(Hy). O

Examples 6.9 The proposition can be used to identify certain subspaces of
GrSﬁ(FR) x I'g via the mirror map &. We will present a few examples, which
will be interpreted geometrically later on. As the B-field from a geometric
point of view is not well-understood, we will be especially interested in those
points with vanishing B-field.
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i) Fix an orthogonal decomposition I'y = V @ V"V, such that both sub-
spaces V and V'V contain a positive line. The automorphism £ € O(I' @ U)
induces a bijection between the two subspaces:

{(P,w),B) | Bw €V, PC V’&UL} and {((P,w), B) | B,w € V¥, P C VaUL}.

Note that in this case the formulae for (¢V,w", BY) simplify slightly to:

o ol iw)?v+o* w wvzéma—ma v Y
o = (Re(a),v>( 2(B+ ) + +B+ )7 <RG(U),U>(I ( ) <I ( )7 >)7
and )

BY = W(Re(a) — (Re(0),v)v* — (Re(o),v*)v).

From here it is easy to verify that §~ maps these two subspaces into each
other. Note that BY + iw" is up to the scalar factor (Re(c),v)~! nothing
but the projection of o € V¥ & U to VY.

ii) It might be interesting to see what happens in the previous example if
we set the B-field zero. Under the assumption of i) the symmetry & induces
a bijection between the following two subspaces

{(Pw), B
and {((P,w),B

0) | weV, Re(o) € Ug, Im(o) € VV}
=0) |weV, Re(o) € Ug, Im(c) € V}
Indeed, Im(c") = (Re(0), v) 1 (—(B,w)v+w) and Re(c¥) = (Re(0),v) (3 (w?—
B?)v + v* + B). Thus, if B = 0 one has Im(c¥) = (Re(o),v) 'w and
Re(oV) = <Re(a),v>_1(“’;v +v*), and BY = 0. Conversely, if Re(cV) € Uy
then B = 0. Moreover, Im(c) € V implies w € V and w¥ € VV implies
Im(o) € VV. Eventually, BY = 0 yields Re(o) € Ug.

iii) In this example we will not need any further decomposition of I'j.
The automorphism & € O(I' @ U) induces an involution on the subspace

{(P,w),B) |w,BeTg®Rv} C GrSﬁ(I‘R).

This follows again easily from the explicit description of (oV,w", BY).

iv) Also in iii) one finds a smaller subset parametrizing only objects with
trivial B-field that is left invariant by £. Indeed, the subspace

{(P,w),0) | w e Ty, PNUg # 0}

is mapped onto itself under £. O
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Remark 6.10 If ((P,w), B) such that BY = 0 and ¢ € O(I"), then also
£((p(P), o(w)),¢(B)) has vanishing B-field. Geometrically this is used to
argue that if the mirror XV of X has vanishing B-field then the same holds
for the mirror of f*X under any diffeomorphism f of X with f*|y» = id.
The assertion is an immediate consequence of the explicit description of BY
given above (cf. [42]).

Note that € is by far the most interesting automorphism considered so
far, as it really mixes the ‘complex direction’ o with the ‘metric direction’
(w, B). However, at least for the case of the K3 lattice I' = 2(—Eg) @ 3U the
automorphisms & respectively {—idy, w < w*} together with {O(T"), ¢B,er}
generate both the same group, namely O(I' @ U). This is a consequence of
Proposition 6.1, where one uses §O(U)§ = O(U’) and thus O(U) C (£, 0(I)).
So in this sense, £ € O(I' @ U) as an automorphism of GrrS’O2 (I'r ® Ugr) is not
more or less interesting than those in 6.3 and 6.3, but for the latter ones the
interesting things happen outside the ‘geometric world’ of GI‘S?I (Tr) x I'r.

7 Geometric interpretation of mirror symmetry

7.1 Lattice polarized mirror symmetry

Let I" as before be the K3 lattice 2(—Eg) @ 3U and fix a sublattice N C I’
of signature (1,7).

Definition 7.1 An N-polarized marked K3 surface is a marked K38 surface
(X, ) such that N C ¢(Pic(X)).

Note that any N-polarized K3 surface is projective. If 7; lfpl is the moduli
space of marked K3 surfaces we denote by 7, ]f,pclp the subspace that consists
of N-polarized marked K3 surfaces. Analogously, one defines

2,2 2,2
T3P < 7™

as the subset of all marked Kéhler K3 surfaces with B-field (X,w, B, ¢) such
that N C Pic(X) and w, B € Nr. Here and in the following, we omit the
marking in the notation, i.e. the identification H?(X,Z) = T via ¢ will be
understood.

The condition N C Pic(X) is in fact equivalent to V' := Ng C Pic(X)g.
The latter can furthermore be rephrased as V C (H?%(X) @ H*?(X))*, i.e.
o€V
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By construction there exists a natural map
(2,2) cpl
Inér = Tyer

The fibre over (X, ¢) € T]f,pclr is isomorphic to Vg +i(Kx NVg) via (w, B) —
B +iw.

Using the period map, the space 7—1572&23 can be realized as a subspace of
Gry (Tgr) x T'r C Gry5(I'r @ Ur). Its closure 75\2,31 consists of all points

((P,w), B) € Gr}(T'r) x I'g such that P C V+ and w, B € V. Indeed, via

the period map ’TSC’QF) is identified with an open subset of {((P,w), B) | B,w €

V,P C V+} and the latter is irreducible.

Let us now assume that the orthogonal complement N+ C I' contains a
hyperbolic plane U’ ¢ N+. Then N+ = NV @ U’ by Lemma 6.7 for some
sublattice NV C I' of signature (1,18 —r). The real vector space Ny is

denoted by VV. As above one introduces 7, ]S,%,QC)F and T]f,%lcr.

Proposition 7.2 The mirror symmetry map EN associated to the splitting
I =T"® U’ induces a bijection

_(2’2) ~ _(2’2)
TNCF = £ NVCI

Proof. By the description of TS\%E)F as the set {((P,w),B) | B,w €
V,P C VL}, it suffices to show that the mirror map identifies the two sets
{(P,w),B) | Bjw e V,PCcV+}and {((P,w),B) | Bjw e V¥,P C (VV)1},
which has been observed already in the Examples in Section 6.4. O

) ~

Remark 7.3 i) In general, we cannot expect to have a bijection T]\(,2C’2 =~
T, ]\([2‘/2C)F Indeed, for a point in TJS,QCQF) that corresponds to a triple ((P,w), B)
the image ((PY,w"), B¥) = £((P,w), B) might admit a (—2)-class ¢ € (PV)+N
I’ with (¢,w") = 0. In fact, these two conditions on the (—2)-class ¢ translate
into the equations (¢ + (¢,v)B,w) = 0 and (¢ — {(¢,v)v*,Im(0)) = 0. To
exclude this possibility one would need to derive from this fact that there
exists a (—2)-class ¢ with (¢/,0) = 0 and (¢/,w) = 0 and this doesn’t seem
possible in general.

One should regard this phenomenon as a very fortunate fact. As points
in the boundary are interpreted as singular K3 surfaces, it enables us to
compare smooth K3 surfaces with singular ones. One should try to construct
examples of (singular) Kummer surfaces in this context.
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ii) Also note that if w € I', i.e. w corresponds to a line bundle, then w"
does not necessarily have the same property.

iii) We also remark that the lattices N and NV are rather unimportant in
all this. Indeed, what really matters are the two decompositions ' =T ® U’
and T =V @ V.

To conclude this section, we shall compare the above discussion with [16].
Let N C T and Nt = NV @ U’ be as before. Following [16] one defines

Q:= Ny @i(N§NC) and Dy := Qr NP(Ng).
Then by [16, Thm.4.2,Rem.4.5] the map

1
a:Q—>DN,z»—>[z—§z2-v+v*]

is an isomorphism. This map obviously coincides with (B + iw) — [0V] as
described in Proposition 6.8, since for B,w € Ng C I'y one has pr(B +iw) =
B +iw. Thus, the map « coincides with the map given by the isomorphism
753’\722F = 7535% To make this precise note that T]f,pclr = Dy via the period
map and that ((P,w), B) — B + iw defines a surjection Tg\szér —» Q. This
yields a commutative diagram

_(272) = _(272)
TNVCF TNCF

L

{ Dy = ng)clr

which emphasizes the fact that the mirror isomorphism identifies Kéahler
deformations with complex deformations.

Remark 7.4 i) We also mention the following result of Looijenga and Pe-
ters [29], which shows that lattices of small rank can always be realized. Let
I" be the K3 lattice and IV any even lattice of rank at most three. Then there
exists a primitive embedding N C I'. If the rank is smaller than three then
this primitive embedding is unique up to automorphisms of T, i.e. elements
of O(T"). An even more general version of this result can be found in [37].

ii) Moduli spaces of polarized K3 surfaces and their compactifications
have been treated in detail by Looijenga, Friedman, Scatonne and many
others (see [41]).
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7.2 Mirror symmetry by hyperkahler rotation

Let X be a K3 surface with Kéhler class wj. Assume that a decomposition
H?(X,7Z) =T =T"® U’ together with an isomorphism ¢ : U’ = U has been
fixed. As before, we denote by (v,v*) the basis of U’ that corresponds to
(w,w*).

Proposition 7.5 Let w; € I'y be a Kdhler class on X and assume that
or € H*Y(X) with 0161 = 2w? can be chosen such that Re(or) € U,
Im(o7) € T, and (Re(or),v) = 1. Then the &-mirror of (X,wr, B = 0) is
given by the formula

v 1 e(o w
7T Wl
wy o= mlm(w) and BY =0

Proof. Using Im(o) € I'y and the general formula given in the proof of
Proposition 6.8, we find that it is enough to prove Re(or) = (w?/2)v+v*, but
this follows immediately from the assumption Re(or) € U and Re(o)? =

2
w7, O

Note that, if we only know that Re(o;) € Ug, the metric, and hence
oy and wy, can be rescaled such that ((o7),v) = 1. But scaling the metric
changes the complex structure of the mirror. This will be important when
we discuss the large Kéahler and complex structure limits.

Corollary 6 If (X,wy) is a K3 surface as in the proposition then the mirror
K& surface XV is obtained by hyperkdhler rotation to —K.

Proof. Observe that Re(o;) = wy. Thus, 0¥ = (Re(oy),v) Hwy + iwy).
On the other hand, 0_g = wj + iw;. Hence, XV is given by the complex
structure — K. a

Y = (M,J) X = (M,I) XV = (M,-K)
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There is one tiny subtlety. If we compute also the mirror Kahler form
wY, we obtain —w_g. But this is of no importance, as we can always apply
the harmless global transformation —id € O(T").

Remark 7.6 Thus, in the very special case that H?(X,Z) = I" @ U’ such
that Re(or) € Uy and wr € T'y, mirror symmetry is given by hyperkéahler
rotation. However, the phenomenon seems rather accidental and one should
maybe not expect that there is is a deeper interplay between mirror sym-
metry and hyperkédhler rotation. E.g. one can check that the solution of
the Maurer-Cartan equation given by the Tian-Todorov coordinates is not
the one obtained from hyperkahler rotation and deforming the hyperkahler
structure.

7.3 Mirror symmetry for elliptic K3 surfaces

Here we will discuss one geometric instance where special K3 surfaces as
treated in the last section naturally occur.

Let 7 : Y — P! be an elliptic K3 surface with a section o9 C Y. The
cohomology class f of the fibre and [0] generate a sublattice U’ C H%(Y,Z).
It can be identified with the standard hyperbolic plane by choosing as a basis
v = f and v* = f + 0. Thus, we obtain a decomposition I := H?(Y,Z) =
I @ U’ together with an isomorphism & : U’ 2 U,.

Let us now study the action of §~ on K3 surfaces that are related to Y. If
we fix a HK-metric g on Y, then we may write Y = (M, J), where J is one of
the compatible complex structures {al+bJ+cK | a®+b*+c? = 1} associated
with g. A holomorphic two-form on Y can be given as 05 = wg + iwy. The
reason why the complex structure that defines Y is denoted J is that we will
actually not describe the mirror of Y, but rather of X := (M, I).

Clearly X inherits the torus fibration from Y which gives rise to a dif-
ferentiable map m: X — P!,

Lemma 7.7 The torus fibration ™ : X — P! is a SLAG fibration.

Proof. Indeed, since the holomorphic two-form ¢ ; vanishes on any holo-
morphic curve in Y, the form w; = Im(o;) vanishes in particular on every
fibre of X — P!, i.e. all fibres are Lagrangian. Moreover, since 07 = wj+iwg
and wix = 3(0; + &), we see that Im(og)|r-1) = 0 and Re(oy)[r-1¢) =
wJ|z—1(1)- Hence, the (smooth) fibres are special Lagrangians of phase 0. O
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Again as a consequence of the general formula in Proposition 6.8 one
computes the mirror of (X,w;) explicitly.

Proposition 7.8 The é—mirror of (X,wr) is the K3 surface XV given by the
period

A L P
7 TNl \ 27 T “1)
which is endowed with the Kahler class
1
v — I
vol(f) m(or),
where vol(f) = (wy, f) is the volume of the fibre of the elliptic fibration
Y — PL a

Of course, an explicit formula could also be given for the mirror of X
endowed with the Kéhler form w; and an auxiliary B-field. We leave this to
the reader.

Remark 7.9 A priori, the mirror K3 surface could be singular, i.e. there
could be a (—2)-class ¢ € I" such that (c,w") = (¢,0Y) = 0. For such a
class we would have (c,wr) = (¢,Im(oy)) = 0. Of course, if we also had
(c,wr) = 0, then already (X,w;) would be singular.

If in addition we choose wy = (/2 + 1)f + o¢ is a Kéhler class for
some « > 0, e.g. when Y has Picard number two, then Re(o) satisfies the
condition of Proposition 7.5, i.e. Re(0) € Ug Im(oy) € I'g, and (Re(o),v) =
1. Hence, in this case the mirror of X is given by the complex structure —K
and the fibration is still a SLAG fibration.

Remark 7.10 If we go back to the more general case, where w; on Y might
be arbitrary, then we still see that w¥, Im(cV) € (v,v*)*, i.e. at least coho-
mologically the classes f and o are still Lagrangian on the mirror, as in the

more special case above where XV was given by — K.

7.4 FM transformation and mirror symmetry

Here we shall explain how the mirror symmetry map £~ can be viewed as
the action of the FM-transformation on cohomology. Let us first recall the
setting of the previous section. Let 7 : Y — P! be an elliptic K3 surface with
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a section og. The cohomology class of the fibre will be denoted by f and the
complex structure by J, i.e. Y = (M, J). Assume that [w;] = (a/2+1)f+00
is a Kéahler class on Y. Then let X = (M,I), where I and K = IJ are
the other two compatible complex structures associated to the hyperkahler
metric underlying [w;]. Then 7 : X — P! is a SLAG fibration. Furthermore,
consider the dual elliptic fibration 7 : YV — P!. Since 7 : ¥ — P! has
a section, there is a canonical isomorphism Y = YV compatible with the
projection.

Let P =Y xp YV =Y Xp1 Y be the relative Poincaré sheaf and let
FM : H*(Y,Z) = H*(Y,Z) denote the cohomological Fourier-Mukai trans-
formation [ — ¢.(p*[.ch(P)). A standard calculation shows (cf. [12]):

Lemma 7.11 FM = ¢

Proof. For the Fourier-Mukai transform on the level of derived categories
one has FM(Oy) = Oyyny and FM(Oy,(—1)) = Oy. Since for the Mukai
vectors one has v(Of) = f, v(Oy(—1)) = 00, V(Opyns) = [pt] € HA(Y),
and v(Oy) = [pt]+[Y] € HY(Y)® H°(Y), passing to cohomology yields the
result. O

Thus, on a purely cohomological level, this fits nicely with the expec-
tation that SLAGs on X should correspond to holomorphic objects on the
mirror XV which happens to be (M, —K) as was explained before. Indeed,
the two SLAGs f and o9 on X are first hyperkahler rotated to holomor-
phic objects in Y, namely the holomorphic fibre respectively section of the
elliptic fibration Y — P!. The FM-transforms of those are k(og N 7 1(t))
respectively Oy . Although we still have to hyperkéahler rotate from YV =Y
to XV = (M, —K) the cycles k(coN71(t)) and Oy stay holomorphic. Thus,
the mirror symmetry map é , after interpreting it as Fourier-Mukai transform
on Y, maps SLAGs on X to holomorphic cycles on XV. So the picture is
roughly the following

X = (M)
HK—rotation
Y = (M,0) 222y = ()

lHK—rotation

XV = (M, -K)



Moduli Spaces of Hyperkdhler Manifolds and Mirror Symmetry 239

7.5 Large complex structure limit

Mirror symmetry for Calabi-Yau manifolds suggests that the moduli space
of complex structures on one Calabi-Yau manifold should be canonically iso-
morphic to the moduli space of Kahler structures on its dual. In fact, this
should literally only be true near certain limit points. The limit point for the
complex structure is called large complex structure limit and should corre-
spond via mirror symmetry to the large Kahler limit. Moreover, according to
the SYZ version of mirror symmetry, near the large complex structure limit
the Calabi-Yau manifold is a Lagrangian fibration and while approaching
the limit the Lagrangian fibres shrink to zero.

Let us consider a K3 surface X together with a sequence of Kéhler classes
wy such that the volume of X with respect to w; goes to infinity for ¢ — oco.
We will discuss in particular cases, what happens to the mirror X" of (X, w;).
In order to incorporate the SYZ picture we will later concentrate on mirror
symmetry for elliptic K3 surfaces.

There is a technical definition of the large complex structure limit due to
Morrison [30]. For a one-parameter family of K3 surfaces it goes as follows:

Definition 7.12 A family of K3 surfaces
XV — D*

over the punctured disc D* := {z | 0 < |z| < 1} is a large complex structure
limit if the monodromy operator T on H*(X",Z), where XV := X for some
t # 0, is mazimally unipotent, i.e. (T —1)2 # 0 but (T — 1)3 = 0, and
N :=1og(T) induces a filtration

Wo == Im(N?), Wi :=Im(N|yer(n2)), W2 :=Im(N), and W := ker(N?),
such that dim(Wp) = dim(W1) =1 and dim(Ws) = 2.

Geometrically such families arise as type III degenerations of K3 surfaces,
as studied by Kulikov (cf. [19]).

Remark 7.13 The weight filtration W, always satisfies Wy L W3 (To see
this one use ((T'—1)(a),b) = —(T'(a), (T —1)(b))). In particular, Wy = W
is spanned by an isotropic vector v € I'.

Conversely, any isotropic vector v € I' together with an additional B-
field By € '\ Zv defines a weight filtration Wy = Wy = (v), Wy = (v, By),
W3 = vt as above.
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Let us check that the mirror of a large Kéahler limit is a large complex
structure limit in the above sense. We fix a decomposition I' = IV ¢ U’ as
before. Now consider a K3 surface X with a family of Kahler structures
wt € F/]R

Recall that by Proposition 6.8 the period of the mirror X, of (X, wy) is
given by

0] = [pr(iwr) + (W?/2)v +v*] € P(Tc).

(For simplicity we assume B = 0.) For w? — oo the period point of X}
converges to [v]. The loop around the large Kéhler limit is given by sBg+iw;
with s € [0,1]. For By € I" the periods of the mirror for s = 0 and s = 1
are thus given by

iws + (W3 /2)v 4 v* resp. iw; — (wy, Bo)v + (wi/2)v 4+ v* + By — (B3 /2)v.
Thus, the induced monodromy is given by 7' € O(I") with
T(v) =v, T(v*) =v* + By — (B2/2)v, and T(z) = & — (By, z)v for z € T,

Note that this is an ‘internal B-shift’ by By with respect to the decomposition
I' =TV @ U’ of the type we have encountered already in the proof of Propo-
sition 4.8. Hence, T'— 1 maps v — 0, v* — By — (B3/2)v, z — —(x, Bo)v
for x € T and, therefore, Wy = W is spanned by v and W5 is spanned by v
and By.

This yields

Proposition 7.14 Let us consider the mirror map induced by the decompo-
sition T' = TV @ U'. For any choice of 0 # By € TV the mirror of the large
Kdhler limit (X,w; € Ty, B = 0) is a large complex structure limit. The
choice of By corresponds to choosing a component of the boundary divisor
around which the monodromy is considered. O

In [16] the relation between the choice of the decomposition I' = IV & U’ and
the large complex structure limit is expressed by: ‘the choice of the isotropic
vector is the analog of MS1’ (MS1: the choice of a boundary point with
maximally unipotent monodromy).

The SYZ conjecture can be incorporated into this picture without too
much trouble: Let XY — D* be the large complex structure limit obtained
as above endowed with the mirror Kahler structures w;. The space Wy is
spanned by v.



Moduli Spaces of Hyperkdhler Manifolds and Mirror Symmetry 241

Proposition 7.15 The mirror (XY,w}) of (X,wy) € Ty admits a SLAG
fibration XY — P! with fibre class v. The volume of the fibre converges to
zero fort — 0.

Proof. Recall that the holomorphic volume form o is always chosen such
that (Im(o),v) = 0. See the discussion at the beginning of the proof of
Proposition 6.8. Moreover, if an additional Kahler form w is chosen one
requires o A & = 2w?.

The class v is isotropic, as was remarked before. It thus satisfies a nec-
essary condition for a fibre class. Furthermore, using the formulae for the
mirror one finds that (w},v) = (Im(0}),v) = 0, where we use w; € I'y. Thus,
on the level of cohomology the class v is a SLAG.

Also note that (Re(o}),v) = (Re(oy),v) L. Although the complex struc-
ture of X does not change, we have to rescale ¢ in order to ensure that
06 = 2w?. The conditions on the choice of the real and imaginary part of oy
imply that (Re(o),v) — oco. Hence, (Re(o}),v) — 0. Therefore, the volume
of the SLAG fibre class v on &)Y approaches zero.

It thus remains to realize v geometrically. Here one uses hyperkahler
rotation as before. Indeed, rotating with respect to the Kéhler form w; one
finds a complex structure with respect to which v is of type (1,1) and can
thus be realized as the fibre class of an elliptic fibration (modulo the action
of the Weyl group). O

It is tempting to apply this discussion to the case of elliptic K3 surfaces
or to the case where mirror symmetry is described by hyperkéhler rota-
tion. However, it seems impossible to follow the mirror to the large complex
structure limit and at the same time to be able to obtain the mirror by
a hyperkahler rotation. This also supports the point of view expressed in
7.6, that mirror symmetry and hyperkéhler rotation are only related to each
other in a very restricted sense.

Let us recall the setting. We fix an elliptic K3 surface Y = (M, J) — P!
with a section oy and assume that the Kéhler form w is of the form (a/2+
1)f+0¢. The holomorphic two-form o ; on Y is chosen such that o ;657 = 2w?,.
In this case the mirror of X = (M, I) endowed with w; = Im(o ) is (M, —K).
In principal there are two ways one could try to combine the passage of the
mirror to the complex structure limit and the interpretation of the mirror
by hyperkéahler rotation. First, one could fix the complex structure I, i.e.
the K3 surface X = (M, I), and change the K&hler form wj.
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However, in this case we keep o;. Rescaling is not permitted if the
Kahler form on (M, J;) is supposed to be of the form (a/2+1)f +og. Thus,
(Re(og), f) = (wy,, f) = 1. Hence, the volume of the SLAG fibres in the
mirror does not converge to zero. This yields a contradiction.

The second possibility is to freeze Y = (M, J) and to change w; =
(a/2 +1)f + oo by considering (t2a/2 + 1) f + o with ¢t — oco. In this case,
we compute the mirror X} of Xy = (M, I;) endowed with twy, which stays
of type (1,1) with respect to the changing complex structure ;.

In this case, one finds that the complex structures —K; and I; converge.
But as before, the fibre volume (Re(oy,, f) = ((t?a/2+1)f + 0, f) does not
converge to zero.
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The large complex structure limit was studied by Gross and Wilson on a
much deeper level in [21]. They studied the corresponding sequence of Kéahler
metrics (or at least a very good approximation of those) and could indeed
show that the fibres of the elliptic fibration are shrunk to zero. Moreover,
they managed to describe the limit metric on the base sphere S? = P!,
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