
G. Cerati (FNAL) — with lots of input from V Hewes (UCincinnati)
Connecting the Dots
Oct. 10, 2023

A Multipurpose Graph Neural Network for Reconstruction 
in LArTPC Detectors

FERMILAB-SLIDES-23-324-CSAID

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.



2023/10/10

Introduction
• I am presenting work by the Exa.TrkX 

collaboration based on the MicroBooNE open 
samples
- https://microboone.fnal.gov/documents-publications/

public-datasets/ 
- we have a paper in preparation, stay tuned!

• This network architecture is developed to have 
broad applicability, without being tied to any 
particular detector geometry.
- This network was initially developed in the context of 

the DUNE Far Detector geometry for reconstructing 
high-multiplicity atmospheric and ντ interactions.

- Also being deployed on non-LArTPC detector 
technology!

- See NuML and pynuml packages
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credit: V Hewes

https://microboone.fnal.gov/documents-publications/public-datasets/
https://microboone.fnal.gov/documents-publications/public-datasets/
https://github.com/vhewes/numl
https://github.com/vhewes/pynuml
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MicroBooNE’s Liquid Argon Time Projection Chamber (LArTPC)
• Charged particles produced in neutrino 

interactions ionize the argon, ionization 
electrons drift in electric field towards 
anode planes 

• Sense wires detect the incoming charge, 
producing beautiful detector data images 

• Full detail of neutrino interaction with 
O(mm) spatial resolution and calorimetric 
information  

• Fast scintillation light detected by Optical 
system (PMT) for trigger & cosmic rejection
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JINST 12, P02017 (2017)

3 planes allow for 3D reco
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Main idea

• GNNs have been successfully used for tracking application at LHC, can they 
be used for LArTPC reconstruction?
- Eur.Phys.J.C 81 (2021) 10, 876 • e-Print: 2103.06995

• Detector hits can be connected in a graph
- Naturally sparse representation of the data
- Low-level information, close to native output of the detector
- Graphs can also connect hits from different planes, thus making the network “3D-aware”
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Inputs and Graph formation
• Main inputs to the GNN are the Hits
- features: wire, peak time, integral, RMS
- currently using Hits associated to the Pandora neutrino slice
• Within each plane hits are connected in a graph 

using Delaunay triangulation
- fully connected graph, both long and short distance edges, 

able to jump across unresponsive wire regions

• Hit associations to 3D SpacePoints (currently from 
the SP solver) are used to create “nexus” 
connections across graphs in each plane
- SpacePoints are not connected among themselves
- No input features for SpecePoints
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arXiv:2002.03005

wikipedia

https://arxiv.org/pdf/2002.03005.pdf
https://en.wikipedia.org/wiki/Delaunay_triangulation
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NuGraph2 Network Architecture: Overview
• Initial application for the GNN is semantic hit classification
- Categories based on the type of particle that produced the hit.

• NuGraph2's core convolution engine is a self-attention message-passing network 
utilizing a categorical embedding
- Each particle category is provided with a separate set of embedded features, which are 

convolved independently.
- Context information is exchanged between different particle types via a categorical cross-

attention mechanism.

• Each message-passing iteration consists of two phases, the planar step and the 
nexus step:
- Pass messages internally in each plane.
- Pass messages up to 3D nexus nodes to share context information.
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Message passing iteration through the graph

8

Input graph with node features, in each TPC plane
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Message passing iteration through the graph
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Node features convolved to obtain edge features
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Message passing iteration through the graph
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From edge features derive edge weights
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Message passing iteration through the graph
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Update node features using edge-weighted features from connected nodes
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Message passing iteration through the graph
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Propagate node features to 3D nexus nodes
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Message passing iteration through the graph
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 Convolve nexus node features to mix information between detector planes
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Message passing iteration through the graph

14

 Convolve nexus node features to mix information between detector planes
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Message passing iteration through the graph
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Propagate 3D nexus nodes features back down to 2D planar nodes
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Semantic hit classification
• Decoder trained to classify each neutrino-induced 

hit according to particle type

• Use five semantic categories:
- MIP: Minimum ionizing particles (muons, charged pions)
- HIP: Highly ionizing particles (protons)
- EM showers (primary electrons, photons)
- Michel electrons
- Diffuse activity (Compton scatters, neutrons)

• Performance metrics: 
- recall and precision: ~0.95
- consistency between planes around 98% 
• compared to ~70% without 3D nexus edges
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Filter hit classification

• Decoder trained to separate neutrino-induced 
from noise or cosmic-induced hits
- Pandora slicing tends to prioritize completeness over 

purity

• Performance metrics: 
- recall and precision: ~0.98
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Event display
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Event display

19



2023/10/10

Event display
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Event display
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Inference time
• Relatively small network:
- number of learnable parameters: ~410k
- max RSS memory on CPU: ~2.5 GB

• Out of the box inference time: 
- 0.12 s/evt on CPU
- 0.005 s/evt batched on GPU
- graph construction not included, but also fast

• Implications:
- can easily run on CPU as part of regular offline 

processing
- can run very fast for realtime applications on 

GPU, or other accelerators
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Vertex position classification
• Preliminary work demonstrates that our GNN is 

able to identify the neutrino interaction vertex 
position in 3D
- currently O(cm) level resolution in each coordinate

• Compared to current vertex reconstruction this 
version shows worse percentile a low ΔR, but 
better at larger ΔR
- worse at finding exact point, better at avoiding 

catastrophic errors

• Issues related to ground truth definition 
identified and being fixed, expect to achieve 
better results soon
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Summary and next steps

• NuGraph2 is a multi-purpose GNN architecture for reconstructing neutrino 
interactions in LArTPC
- Efficiently reject background detector hits.
- Classify detector hits according to particle type.
- Lightweight network, allowing fast inference on CPU and GPU.
- Preliminary results for vertexing are promising.

• Next steps:
- Immediate plans: paper, and inference in production is high priority! 
• Discussing ways to integrate in LArSoft through NuSonic (also for CPU)

- Developments: clustering, hierarchical graphs, inclusion of info from other detectors.
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https://larsoft.org/using-gpu-as-a-service-in-larsoft/

