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RESUMO 

Escrevemos na rede o modelo de Yang-Mills com supersimetria 

N=2 a duas dimensões fazendo uso do formalismo de Dirac-Kâhler em duas 

versões. Na primeira, discretizamios a hamiltoniana do modelo usando a 

2 
propriedade das supercangas, Q ~ H, com o tempo permanecendo continuo. 

Na segunda, conseguimos discretizar diretamente a lagrangeana fornecendo 

o modelo na rede espaço-temporal, obtendo-se duas lagrangeanas 

invariantes por transformações supersimétricas ligadas por uma reflexão 

temporal. 



ABSTRACT 

In this Work the Dirac-Kâhler formalism was used in order to 

put two-dimensional Yang-Mills model with supersymmetry, N=2 on the 

lattice in two versions. In the first one, the Hamiltonian of the model 

was discretized by the supercharges property ~ H, with the time 

remaining continuous. In the second one, we discretized the Lagrangian 

on the space-time lattice, getting two supersymmetric invaricint 

Lagrangian related to each other by time reflection transformation. 
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INTRODUÇãO 

A partir do trabalho de K. G. Wilson [1], a utilização de 

modelos na rede tem-se tornado frequente como mais uma alternativa no 

tratamento da teoria dos campos, um método de aproximação que tem dado 

bons resultados em algumas aplicações, citando como exemplos o estudo do 

confinamento dos quarks ou a determinação do espectro de massa dos 

hãdrons. Modelos na rede prestam-se ã aplicação do método de simulação 

numérica conhecido como Método de Monte Cario [2], muito utilizado a 

partir das facilidades oferecidas pelo advento dos modernos computadores 

eletrônicos. Neste contexto, trabalhos intensos foram desenvolvidos para 

a discretização de modelos no continuo já existentes, porém esbarrando 

em algumas dificuldades, como o problema da degenerescência da energia 

dos férmions quando se tenta discretizar campos fermiônicos a partir dos 

mesmos procedimentos usados para os campos bosônicos. 

0 formalismo das formas diferenciais de Dirac-Kãhler, 

principalmente a partir dos trabalhos desenvolvidos por Becker e Joos 

[3], tem-se mostrado uma ferramenta simples e eficiente para a 

transposição de modelos do continuo para a rede. Esta facilidade decorre 

da existência de um mapeamento completo entre o espaço das formas 

diferenciais, no contínuo, e o espaço das co-cadeias, na rede. 

Os campos de gauge, em particular o campo eletromagnético, 

foram os primeiros a serem representados no espaço das formas 

diferenciais, sendo a principal contribuição do formalismo de 

Dirac-Kãhler estender a representação por formas diferenciais para os 
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campos fermiônicos, fornecendo um método de discretização dos mesmos 

que, além de simples, elimina um dos seus principais problemas, que 

é a degenerescência da energia dos férmions na rede[4], 

A origem da degenerescência da energia dos férmions na rede 

está ligada à escolha inadequada das aproximações por diferenças finitas 

(na rede) para as derivadas (no continuo). Por exemplo, para uma rede 

espacial cúbica com espaçamento a. = J, escolhendo 

S f(x)  > f(x + a ) - f(x - a 
i i i i i 

resulta na relação de dispersão (tempo continuo) 

0)^ = 7' (1/J^) sen\ 1 + , - n/1 < k < n/1 
i i 

í 

que tende à expressão correta no continuo, a^  > 0 , 

2,2 2 
w = k + m 

i 

no entanto, na relação de dispersão acima, é fácil de se verificar que a 

energia é degenerada por substituições do tipo k.  ^ n/a ± k. no 

momento. 

No formalismo de Dirac-Kãhler, são introduzidos dois tipos de 

derivadas (diferenças finitas) na rede. 

A*=f(x +a)-f(x) 
i i i i 

e 
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A = f(x ) - f(x - a ) 
1 i i i 

a relação de dispersão resultante sendo 

<j? ~ Y, (4/J^) sen^(k i/2) + , - tt/í < k < u/1 
i ' ‘ 

que tem o limite correto no continuo e não apresenta degenerescência. 

Muitos modelos na rede foram recentemente desenvolvidos a 

partir deste formalismo, citando como exemplos, os trabalhos do grupo de 

Joos-Becker [3] e Zimerman-Aratyn [5], atuando o primeiro, em modelos 

com campos de gauge e o segundo, em modelos supersimmétricos, 

Para a discretização de modelos utilizando este formalismo 

diferencial, a primeira tarefa é a mudança da representação dos cajnpos 

do espaço das funções usual para o espaço das formas diferenciais, no 

continuo; a partir dai, faz-se a transposição do modelo para a rede. Nos 

modelos com supersimetria, há a dificuldade adicional em relação à 

expressão correta da interação supersimétrica, por ainda não se dispor 

de regras precisas para a construção de invariantes supersimétricas para 

campos no espaço das formas diferenciais. 

Neste trabalho, faz-se a discretização de um modelo de 

Yang-Mills (teoria de gauge não-abeliano) com supersimetria N=2, no 

espaço-tempo a duas dimensões (d=2). No capitulo 1, apresentamos o 

essencial do formalismo das formas diferenciais de Dirac-Kãhler, nas 

versões no continuo e na rede. No capitulo II, trabalha-se na obtenção 

do modelo supersimétrico N=2, d=2, através da redução dimensional, 

método utilizado por L. Brink et al [6]. 0 capitulo III é dedicado à 
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2 
discretização do modelo aproveitando a propriedade Q = H da álgebra 

supersimétrica; discretiza-se a carga, e consequentemente, a 

hamiltoniana do modelo. Este procedimento permite apenas a discretização 

da coordenada espacial, permanecendo o tempo continuo. No capítulo IV, 

constroe-se a lagrangeana para os campos na representação das formas 

diferenciais, com a consequente discretização da mesma numa rede 

espaço-temporal. 

Em relação às notações adotadas, utiliza-se a notação 

tensorial de Minkowski, espaço-tempo quadri-dimensional, na 

apresentação geral do formalismo, capítulos I e II, e espaço-tempo 

bi-dimensional nos demais capítulos, com as regras usuais dos índices 

vetoriais covariantes e contravariantes; o tensor métrico mantemos 

indefinido, explicitado quando necessário, podendo corresponder a uma 

métrica Euclidiana, necessária no tratamento do formalismo na rede. 
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CAPITULO I 

O FORMALISMO DE DIRAC-KAHLER 

O formalismo das formas diferenciais de Dirac-Kâhler é a 

principal ferramenta para o presente trabalho de discretização do modelo 

de Yang-Mills com supersimetria N=2 e dimensão d=2. 

É bem conhecida a representação dos campos vetoriais de gauge 

no espaço das formas diferenciais. No formalismo de Dirac-Kãhler, 

esta possibilidade é estendida para os campos spinoriais. 

Veremos, portanto, que existe uma equivalência entre o 

formalismo matemático usual e o das formas diferenciais de Dirac-Kãhler 

para a representação dos campos e das suas equações, em especial para os 

campos de Dirac. Esta verificação pode ser facilmente estendida para os 

campos escalares e os campos vetoriais, o que é suficiente para os 

propósitos deste trabalho. Como o formalismo de Dirac-Kâhler existe em 

versões no continuo e na rede, com regras de correspondência claras e 

bem definidas entre os elementos do continuo e da rede, temos o 

formalismo ideal para a construção de modelos na rede a partir de 

modelos conhecidos do continuo, principalmente porque o conhecido 

problema da degenerescência da energia dos fêrmions na rede não ocorre 

neste formalismo. 

A seguir, descreveremos suscintamente este formalismo, apenas 

o necessário para os propósitos de desenvolvimento deste trabalho; 

veremos inicial mente no continuo, e depois, de uma forma mais resumida, 

a versão na rede. 
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1.1 - FORMALISMO DE DIRAC-KÀHLER NO CONTÍNUO 

Neste formalismo, os campos, de uma forma geral, são 

representamos por formas diferenciais, compactamente escritos como 

0(x) y <p(x, H)dx^ 

H 

(p (X) dx 
H (1.1) 

Na notação multi-indices adotada, H = (p.p p) é o 12 p 

conjunto ordenado de Índices das coordenadas do espaço-tempo 

d-dimensional, p^<p^<...<p^ , e Osp<d . 

{dx^} = (1, dx^, dx 
Mg Mj Pg 

dx , dx A dx A...A dx , ... } 

é a base 

somatória 

do espaço das 

0 ■ 

formas diferenciais. cuja dimensão é dada pela 

Temos como componentes de uma forma diferencial, definida pela 

equação (1.1), uma função escalar, V^q(x) = (pix,(p), coeficiente da base 

0-forma (H={ }); uma função vetorial, <p (x) = (^(x,p), coeficiente da 
P 

base 1-forma (H={p}); um tensor antissimétrico de segunda ordem, 

<p (x) = <p(x,u p ), coeficiente da base 2-forma (H={p ,p }), 
12 

etc. . Veremos que os campos spinoriais podem ser representados como 

combinações destas diversas funções. 

Vamos, a seguir, definir algumas das operações básicas no 

espaço das formas diferenciais. 
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1.1.1 PRODUTO EXTERNO 

O produto externo (simbolizado pelo operador a ) é uma das 

principais operações, já usado na definição dos elementos da base, 

MM MM 
dx dx ^ = - dx dx ^ . (1.2) 

A operação produto externo dx^A atuando sobre um elemento de 

base p-forma arbitrária dx fica 

j M H dx A dx 
p dx' 

M.H 
M U H 

, se {p} n H = 0 

, caso contrário 
(1.3) 

A operação dx^ a transforma uma p-forma em (p+l)-forma. 

De uma maneira mais genérica, o produto exterior entre dois 

elementos de base arbitrários fica 

dx A dx = 

, H U K 
p dx , se H n K = 0 

K 

0 . caso contrário 
(1.4) 

0 simbolo p = (-1)*^ define o sinal do produto externo; 
H) K 

aqui, V é o número de pares ordenados (i,j) e HxK tal que i > j . As 

operações entre conjuntos são indicadas pela simbologia usual. 
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1.1.2 - OPERADOR DE CONTRAÇãO 

O operador de contração e -I é definido pela regra 

e -Idx^ = dx -Idx^ = ■ H\p 

0 

dx 
H\p 

, se P € H 

, caso contrário 
(1.5) 

0 operador de contração segue as propriedades 

e^-l {(j) + xp ) = e^-l(p + e^-lip 

e 

A 0 ) = (e^-l0)A0 +(í40)Ae^-l0 

(1.6) 

onde d representa um operador que atua sobre os elementos de base 

p-forma dx , H = {p^,p^ p } , invertendo o sinal quando p for 

impar, isto é, ^4dx^ = (-l)*^ dx^ ; tem a propriedade s4(0a0 } = dtpvsúip . 

1.1.3 - PRODUTO DE CLIFFORD 

0 produto de Clifford entre duas formas diferenciais pode ser 

definido através da combinação das operações básicas produto externo, 

equação (1.3) e contração, equação (1.5) , que atuam sobre os 

elementos da base. 

dx^vdx^ = dx^A dx” + e^-l dx” . (1.7) 
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Em particular, 

, u , V iiv .a , V 
dx vdx = g + dx A dx , 

onde é o tensor métrico de Minkownski. Esta relação mostra que o 

produto de Clifford define uma álgebra de Clifford, 

dx^vdx*^ + dx^^vdx^ = 2g^*^ . (1.8) 

n 
Ê a mesma álgebra das matrizes -y de Dirac sob a operação produto 

matricial, 

u r V 11 „ fjLv /, ^ ^ 
+71^= 2g^ (1.9) 

A partir destas observações, pode-se traçar uma equivalência 

entre o espaço das formas diferenciais definidas pelos elementos 

diferenciais dx^ (mais o produto de Clifford) e o espaço das matrizes 

definidas pelas matrizes 9'^ de Dirac (mais o produto matricial). 

Assim, é possivel o mapeamento 

M dx^ V (1.10) 

Neste contexto, define-se a função base 

T ^1 1 T T ^1 ^2 1 T T T ^2 ^3 
Z = 1 + r dx + 3-* 3'^ dx A dx + 3- 3^ 3- dx Adx a dx + 

", 2! 3! 

1 T T T T ^2 ^3 ^4 
+ -j— ? ^ dx Adx Adx Adx 4! u u p p 

1 2 3 4 
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que pode ser colocada na forma compacta 

H 

permitindo o mapeamento do espaço das formas diferenciais sobre o espaço 

de Clifford definido pelas matrizes de Dirac. Z é uma matriz, cujos 

elementos Z definem uma nova base do espaço das formas diferenciais, 
ab 

de modo que 

4>{x] = ^ ip(x,H)dx'^ = ^ 
ab 

I 
a , b 

a , b 

,(b) , ,T , H 
a H ba (1.12] 

OS coeficientes (p (x) = (p(x,H) e i//*’^'(x) relacionados por 
H ^ 

e 

(p (x) H ' Y. ba 
(1. 13.a) 

a , b 

tp (x) 
a 

= ) <p(x,H) (.z ) A l_^ H ab 
(1. 13.b] 

Se considerarmos os coeficientes 

da matriz i/<(x), as relações acima ficam 

\p como os elementos 
^ab 
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(1, 14. a) (p (x) = tr{ip{x) 
n ri 

e 

«//(x) 
-r ^ %<>'> >" 

H 

(1.14.b) 

Esta última equação é a equivalente matricial da forma 

diferencial definida pela equação (1.1). 

1.1.4 - OPERADOR ESTRELA DE HODGE. 

0 operador linear estrela de Rodge, * , atua sobre os 

H CH 
elementos da base dx transformando-os em dx , 

j H • dx ^ dx 
CH 

(1.15) 

CH indicando o conjunto complementar de H. Temos, como consequências 

imediatas, 

• * = 1 
p p p p 

1 2 3 4 
• 1 = dx A dx A dx A dx 

• dx 
. H P H H 1 1 J 2 , 3 , 4 

c dx A dx A dx 
3! P P p 

2 3^4 

1 2 
* dx A dx 

1 ^^2 ^ ^ 
-7^ c dx A dx 
2! p p 

3^4 

e, de forma geral, 
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<t> = (p V ê 

para 
M M M M 

g = dx dx dx ^A dx ^ 

(1.16) 

1.1.5 - OPERADORES DIFERENCIAIS 

A partir dos operadores definidos nas secções anteriores, que 

atuam sobre os elementos de base das formas diferenciais, mais os 

operadores usuais de derivação 9^ atuando sobre as funções <p(x,H), 

coeficientes das formas diferenciais, definimos os seguintes operadores 

diferenciais básicos: (i) a derivada exterior 

d = dx^A d (1.17) 

e (ii) a sua adjunta 

= -*d* = -e^-la (1.18) 

Devido à antissimetria do produto externo dx^ a dx*^ , temos 

as identidades 

d^ = 0 e = 0 (1. 19) 

A combinação (d - ô) define o operador diferencial de 

Dirac-Kãhler, 
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(1.20) d - ô = (dx^AÔ + ) = dx^vô 
/i M iJ. 

0 mapeamento (1.10) , 2r^ < > dx^v, permite identificar o 

mapeamento entre os operadores, 

(d -ô) « > (1.21) 

o que mostra a equivalência entre a equação de Dirac usual 

(Í2í^d - m )ip = 0 (1.22) 

e a equação de Dirac-Kãhler 

(d - ô + m)0 = 0 (1.23) 

o primeiro definido no espaço das matrizes e o segundo no espaço das 

formas diferendiais. Mais precisamente, do ponto de vista das relações 

(1.13) e (1.14) , a equação (1.23) é equivalente, num espaço 

quadri-dimensional, a quatro equações de Dirac, 

(iy^S - m)ip (x) = 0 (1.24) 

sendo 0**^^ , b variando de 1 a 4, matrizes coluna de quatro elementos 

0 (x) 

, (b) 
0 (x) 

1 

0'^) 
4 

(1.25; 
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0 índice inferior (a) de i//*^'(x) é o índice spinorial e o índice a 

superior (b) o índice de "flavor". 

A partir das equações (1.8), (1.19) e (1.20), podemos mostrar 

que o quadrado do operador de Dirac-Kâhler resulta no operador 

d’Alambertiano 

(d - ô)^ = - (dô + ôd) = a^a . (1.26) 
M 

Estas equações mostram a possibilidade de representar os 

campos spinoriais através de formas diferenciais, tendo como equação de 

movimento a equação de Dirac-Kãhler (1.23), assim como os campos 

escalares, a partir da equação (1.26). Os campos vetoriais de gauge 

foram os primeiros a serem representados por formas diferenciais [8]. 

1.1.6 - PRODUTO ESCALAR E CORRENTES. 

Dadas duas formas diferenciais arbitrárias 

e 

<^(x) y <pix, H)dx” 

H 

(1.27) 

Z(x) 
I 

Ç(x,H)dx” (1.28) 

define-se o produto escalar entre estas formas diferenciais como a 
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combinação invariante dos seus componentes, 

<p (x)Ç (x) 
n (1.29) 

que pode ser obtida formalmente a partir da operação 

(4>,Z) = i(l3<p V Z)Ag) 

r ,-0 1 ^12 
= [iPo € " 

, iJ- IJ- IJ- 1 4 M M M 
S ~~nT V S 3UUM 4!pppp^ ^1^2 3 1234 

(1.30) 

a ser usada como a definição do produto escalar. 0 produto escalar 

(0,Z) é uma 4-forma, se o espaço considerado for quadri-dimensional. 0 
O 

operador p atua sobre os elementos dx da base das formas diferenciais, 

invertendo a ordem dos termos 

, H , K. K H 
/3(dx vdx ) = (3dx vjBdx 

(1.31) 

PM MM ^2 ^1 
p(dx \ dx A. . . A dx ’’) = dx "^a. . . a dx a dx 

Além deste produto escalar (^,Z) , 4-forma, definem-se os 

produtos (0,Z) , que resultam em (d-p)-formas, onde d é a dimensão 
p 

do espaço. Por exemplo, temos o produto (d-l)-forma. 
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= e^-l (dx%i/), Z)^ = e^-l {0(dx%(^)vZ)Ag} 

= {[(p° ^ + (p ^° + <p^ ^ + <p ((I) + 

M M ^ '^i^2a . , 
+ <p Ç ) + 

au a 
r 2 

1 M M M 1 ^ >. 1 2^^3 
3! ^^afi ji n ^ 

1 2^3 

^1^2^3 1 a ^1 ^2 ^3 
+ í> Ç )} c dx Adx Adx au u u 3! UUU 

12 3 12 3 

(1.32) 

o produto (d-2)-forma 

M„ U 
(0,Z) = e -le -l(dx vdx ^vó,Z 

2 M (1.33) 

e, de forma geral, o produto (d-p)-forma 

M P 
(0,Z) = e -le -J. . . e -^(dx ..vdx v 0,Z ) 

p p p p < ^1 2 p 
(1.33) 

Definido o produto escalar, podemos construir a ação 

invariante na representação das formas diferenciais de Dirac-Kãhler, 

S = (0,(d-Ô)0) (1.34) 

0 produto (0,Z)^ é usado para definir a corrente. 

(1.35) 
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Como 

= ô(j^dx ) = -e^-l3 j = 5 j^(x) , (1.36.a) 
M" M’ M’ 

e também 

Ôj = -*d*j = -*d((/),Z)^ (1.36.b) 

pode-se mostrar que a equação (1.35) representa uma corrente conservada 

desde que os campos 0 e Z obedeçam à equação de Dirac-Kãhler, 

(d - ô + m)0 = 0 

e 

(d - ô + m)Z = 0 

pois 

d(0,Z) = ((d - ô + m)0,Z) + (0,(d - ô + m)Z) 1 o o 
(1.37) 

resultando na lei de conservação 

ô = 0 < > d(0,Z), = 0 
1 

(1.38) 
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1.2-0 FORMALISMO DE DIRAC-KÃHLER NA REDE 

Nesta secção faremos uma breve apresentação do formalismo de 

Dirac-Kâhler na rede. Será considerado o espaço-tempo euclidiano, 

quadri-dimensional. 

1.2.1 - Elementos básicos da rede 

Os elementos básicos da rede, , são : 

(i) Pontos, - um ponto x é definido através das suas 
i 

coordenadas, 

X = (x^) = (x^ x^) 

as coordenadas na rede sendo 1 (sem somatória), para n^ 

inteiro positivo ou negativo e 1 definindo o espaçamento entre os 

pontos vizinhos na rede na direção p. Numa rede cúbica, o espaçamento é 

o mesmo em todas as direções. Representamos um ponto qualquer x na 
i 

rede como 

°ê' = x = [x,0] , 0 éo conjunto vazio. 
i i i 

(ii) Links 

elementar orientado 

adjacentes x, e x^ + 

(linhas elementares), 
i 

numa certa direção p , 

1 , sendo representado por 

- um link é um vetor 

ligando dois pontos 
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é o índice do 

= [x , /i] 
i i 

como mostra a figura abaixo (nestas definições, 

espaço-tempo e i = 1, 2, 3, ... indica o i-ésimo ponto ou outro 

elemento da rede) : 

X +1 
i M 

(iii) Plaquetas (áreas elementares), - uma plaqueta é uma 

área elementar orientada, representada por 

í? = [x , p p ] 
i i 12 

contornados por quatro links definidos a partir dos vértices (pontos) 

X , X +J , X +J +J , X +J , como mostrada na representação 
i i ‘ ^2 ‘ ^2 

pictórica abaixo : 

X + i +i 
4. i 

iv) Cubos, b. - um cubo elementar, tridimensional (3-cubo), 

Ç = [x , p p p ] 
i 1 l'^2^3 
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é definido pelo elemento de volume orientado formado a partir dos oito 

pontos adjacentes que definem uma rede, como mostra a figura abaixo : 

X +J X +1 +1 
2 3 

X +1 +1 -^9 
i p p 

1 2 
X +1 +1 +1 

i P p p 
1 2 3 

X +1 

X +1 X +1 +1 
i p p 

1 2 

(v) Super-cubos ou p-cubos, '^1?. - um super-cubo ou p-cubo é a 

generalização natural do cubo tri-dimensional ou 3-cubo, sendo 

representado por 

P?? = [x.,p p . . .p ] 
i 1 1 3 p 

[x ,H ] 
i P 

(1.39) 

H representa o conjunto de p Índices ordenados. A combinação linear 
p 

destes elementos da rede definem as p-cadeias 

I 
i 

[x ,H ] 
i P 

e as cadeias 

ç = y Pç = y a(x ,H ) [x ,H ] , (1.40) 
L i P i P 

p i , P 
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onde a(x ,H ) são funções arbitrárias (reais ou complexos), 
i p 

Deste modo, os p-cubos ou p-cadeias são as cadeias 

elementares, elementos da base do espaço das cadeias. 

Dada a base do espaço das cadeias { [x,H] } , a sua base dual 

■( d ’ } , que define o espaço das co-cadeias, é definida como 

obedecendo às seguintes regras : 

d^ [x] = 
X 

d^’^ [X,r] = IS^ X y 

[x,pcr] = (õ ^ 5*^) X p cr cr p 

d^’*^ [x,H] = slJ , (1.41) X H 

supondo uma rede cúbica de espaçamento 1. Estas regras definem as 

integrações (somatórias) na rede. 

A base dual define o espaço das co-cadeias, uma co-cadeia 

geral representada por 

0 = ^ 9(x,H)d^’” . (1.42) 

X , H 

As co-cadeias são as equivalentes na rede das formas 

diferenciais, equação (1.1), e portanto são usadas para representar os 

campos fisicos na rede. 

0 formalismo de Dirac-Kâhler na rede comporta operadores e 

operações análogos aos usados no continuo, como estão bem explicitados 

nas referências indicadas. 
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1.2.2 - Equações de campo na rede 

A equação de Dirac-Kãhler na rede é dado por 

u u 
[A - V ) 4> = 0 (1.43) 

u u 
onde (p é a. co-cadeia definida pela equação (1.42) e A e V são os 

equivalentes na rede dos operadores diferenciais d e ô do continuo, 

A = A A (1.44: 

V = e^ J a" (1.4s; 

de modo que 

u 
(A 

u 
V) (p (d^^A-e^-IlA (p = V A (p (1.46) 

Nesta última equação, usamos o produto de Clifford, 

d^ V (p = d^ A 0 + e^ J <p (1.47) 

análogo à definição (1.20) do continuo, com a simbologia 

d^ = Y, ; d" = X: d 
H „ ,x,H 

(1.48) 
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0 produto externo é definido por 

d Ad =p ò d (1.49) 

e a operação de contração por 

f -I d = p , d ^ 
M, H\p (1.50) 

A partir destas definições, a equação de Dirac-Kãhler fica 

u u 
ÍA - V) ó = V <j> = 

(1.51) 

jX,H 
d ’ =0 

X , H 

Esta equação apresenta duas diferenças finitas, 

<pix) = <p(x + 1^) - <pU) (1.52.a) 
fl 

e 

Ap(p(x) = ip(x) - <p(x - , (1.52.b) 

que substituem as derivadas do continuo. 

É exatamente a presença destas diferenças finitas 

diferenciadas que elimina o problema da degenerescência da energia dos 

férmions na rede [4]. 

Para não alongar em demasia a exposição, não nos deteremos em 

apresentar outras operações definidas na rede, tais como produtos 
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escalares e a construção das correntes conservadas, feitas de maneira 

análoga às do continuo. 

1.2.3 - Campos de gauge na rede 

Nos modelos de Yang-Mills, os campos estão na representação 

adjunta. A transformação de gauge na rede de um campo arbitrário (p(x,H) 

é definida por [7] 

<p (x,H)  > <p’(x,H) = G(x) í/?(x,H) G (x+J (1.53) 

G(x) é a matriz de transformação do grupo de gauge, 

it w (x) 
G(x) = e (1.54) 

t^ são os geradores do grupo de simetria interna e 

1 = 1 — 1 + 1 + 1 
H n 11 H . . . II u u 12 3 1 ^2 3 

(2 é O espaçamento da rede na direção p). 

•f* 
Definimos o campo conjugado hermitiano <p (x,H) , cuja 

transformação de gauge deve ser 

^‘‘‘(x,H)  >(p’’'‘(x,H) = G(x+i ) /(x,H) G"\x) , (1.55) 

a fim de podermos construir a invariante de gauge 
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(x,H) (p{ x.H)| (1.56: 

0 campo de gauge na rede, UCx.p) , é uma função "link", com a 

transformação de gauge dada por 

U(x,p)  > U’(x,p) == G(x) U(x,p) G (x+i^) (1-57) 

de acordo com a transformação geral (1.53). No limite do continuo, 

relaciona-se com o campo de gauge usual A (x) através da expressão 
M 

(sem sematória em p) 

U(x,p) = exp [iJ g A (x)] ^ \ + il g k (x) . (1.58) 
^ [I \i l-i 

0 seu conjugado hermitiano U (x,p) transforma-se como 

u’’‘(x,p)  >U’(x,p) = G(x+J ) u’'‘(x,p) G"^(x) . (1.59) 

Como vimos, à derivada 5^ do continuo correspondem duas 

diferenças finitas, "por cima", A e "por baixo", A , definidas pelas p P 

equações (1.52). Deve corresponder, portanto, a duas derivadas 

covariantes, definidas por (ref). 

D (p(x,H) - U(x,p) (p(x+I ,H) - <p(x,H) U(x+J ,p) fJ- H (1.60.a) 

D (»(X, H) = ^(x,H) U’'‘(x+J -1 ,p) -u‘'‘(x-l^,p) <p(x-l ,H) 
n fi n U (1.60.b) 
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com as respectivas transformações de gauge 

D^(p(x,H)  > G(x) D^^^Cx.H) G ^x+J +i ) (1.61.a) 

e 

D (p(x,H)  > G(x) D ip(x,H) G'\x+1-1 ) . (l.Bl.b) 

Os conjugados hermitianos das derivadas covariantes são 

nt 
D ^(x,H) <p^{x+l ,H) u'*'(x,p) 

u 
u'*'(x+l ,p) (p"*"(x,H) 

e (1.62) 

D (p(x, H) 
M 

U(x+1 -J ,p) v^'*'(x,H) - ip^ {x-1 ,H) U(x-i ,p) 
Hfl P H 

com as transformações de gauge 

■it 
D <»(x, H) G(x+J +1 ) 

H p 

nt 
D (p(x, H) G ^x) 

(1.63) 

D 4>{x, H) 
M 

G(x+J 
H ■1 ) 

M 

-it 
D </)(x,H) 

l-í 
G ^(x) 
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0 tensor "eletromagnético" é construído aplicando a derivação 

covariante sobre o campo de gauge U (x), resultando 

^ (x) = D U(x,r; 
py p 

U(x,p)U(x+J ,y) - U(x,y)U(x+J ,p) 
p V 

(1.64] 

e o seu conjugado hermitiano 

(x] 
py 

D U(x,y) 
M 

u"**(x+J ,y)U^(x,p) - U^(x+J ,p)U^(x,y] 
p y 

(1.65] 

0 equivalente ao campo elétrico é 

E = 3 
1 l^g 12 

(1.66] 

E = - —^ T 
1 1 g 12 

Estes são alguns dos principais resultados do formalismo de 

Dirac-Kãhler necessários para o desenvolvimento do presente trabalho. 
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CAPÍTULO II 

CONSTRUÇãO DO MODELO DE YANG-MILLS COM SUPERSIMETRIA N=2, 

d=2 , POR REDUÇãO DIMENSIONAL 

Neste capítulo vamos obter a ação de Yang-Mills com 

supersimetria N = 2, a duas dimensões (d=2), utilizando o procedimento 

de L. Brink at al [6],a partir da redução dimensional de uma ação 

supersimétrica quadri-dimensionaI 

S = d^x 
J_ 
4 

i X D (2. i: 

Aqui, representa spinores de Majorana, sendo a o indice do grupo 

interno, não abeliano, SU(n), por exemplo. 0 campo de gauge é 

representado pelo vetor , que define a derivada covariante 

D A = D A^í^ = (a A^ - g ' U*" a'') Í® , (2.2) 
PM P bc p 

e o "tensor eletromagnético" 

F = F® í = (a u 
py nv ^ M 

a - g f® U*") í® 
y p bc p y (2.3) 

g é a constante de acoplamento, ^ constante de estrutura e t* 

os geradores do grupo. A álgebra de Lie do grupo é definida 

pelas relações de comutação 
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Ti® .„ab [ t , t ] = If (2.4) 

normalizados pela condição 

tr ( ) 1 _ab -pT  O (2.5) 

As matrizes de Dirac quadri-dimensionais serão representados por 

como na equação (2.1), reservando para o caso bi-dimensional. 

A ação (2.1) é invariante pelas seguintes transformações 

supersimétricas : 

õ U ia r A (2.6.a) 

ô = y a (2.6.b) 

onde a é um parâmetro de Grassmann. 

As matrizes de Dirac quadri-dimensionais 

bi-dimensionais ^ 

diretos ; 

relacionam-se através dos seguintes produtos 

r° = /®i. 

r o 

Tí 

0 

r = 9'^0icr^ = i 
0 

3 

0 
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r 
3 ®icr 

2 
3 

0 
(2.7) 

onde I é a matriz Identidade 2x2 e cr. são as matrizes de Pauli. As 
2 1 

u 
matrizes de Dirac bi-dimensionais j são definidas por 

o 
7 = 

1 0 1 

0 -1 

1 
Tf = 

r 0 1 

1 1 

3 o 1 
Tf = Tf Tf 

0 1 ) 

1 O 
(2.8) 

Representando o spinor de Majorana A como 

A = 

r "V 

(2.9) 

e impondo a condição de Majorana A - C A , para 

C = -i r° = —y ® cr = - C ® cr 
11 2 1 (2.10) 

( C é o operador de conjugação de carga), resulta na estrutura 

^ X 
A = (2.11) 

onde 

r' " A = X (2.12) 

30 



Nestas fórmulas, A representa um spinor de Majorana num espaço 

quadri-dimensional e % um spinor de Dirac num espaço bi-dimensional. 

Para o campo vetorial de gauge 

(x) = ( U^ U^, U^ ) 
fj. 0 12 3 

faremos a decomposição 

(x) = ( ) (2.13) 
p 0 1 ^ ^ 

e 

,^^(x) = U^(x) + i U^(x) . (2. 14) 

A partir destas redefinições dos campos, podemos 

decompor a ação (2.1) em função destes novos campos. Para a parte 

livre dos campos de gauge, temos 

(i) para p, v variando de 0 a 1 : 

1 a ^pva . 1 r-S 
— t r —> — X t t 
4 pr 4 pr 

(ii) para p=0, 1 ;r-2,3 ;p <—> v : 

1 . pií». 
4 pr —> 

1 
2 O 

1 
2 

(iii) e para p, v = 2, 3 : 

1 _a _pra 
T r i" 4 pr —> 

1 2,. ,b,*c.2 
5- g (f „ 0 ) d. abc 

31 



Para a parte spinorial, temos 

(i) para p variando de 0 a 1 : 

1 
2 

. . —a a_ a 
-> r D, y 

(ii) e para p variando de 2 a 3 : 

2 
A^r^D A^ 

abc 
—a 3~b ,c 
X Tí X <P 

. -^a 3 b , *c 
íx X X 4> 

Somando todos estes os termos, obtemos a ação (2.1) em função 

2 3 
dos novos campos (considerados como independentes de x e x ), 

S = d^x 
1 _a „pra , 1 p, *a p a .-a (1^ a 
—F F + = D ffi D ffi + 1 y y D y + 

4 py 2 p^ ^ " p'^ 

2 ® ^abc 
—a 3~b ,c . ~a 3 b ,*c 
X X X 4> - ÍX X X <P 

^ 1 2,_ ,b ,*c,,2 
+ õ g (f „ 0 ) abc :2.15) 

As transformações supersimétricas (2.6), em função destes novos campos, 

ficam como 

ô = i [ a - X^X^OL ] , (p = 0, 1) , 

Ô [ + iU^ ] = ô = - 2iã y^x^ 
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ô [ - iU^ ] = ô (p ^ = 2i<x 

ôA  > ô + igf , çiV*")cc - <p"z ã 
l-íí’ 2 3 

^ ^ K (/> ã . (2. 16) fiy 2 M 3 

A equação (2. 15) representa uma ação de Yang-Mills com 

supersimetria N=2 no espaço-tempo bi-dimensional. As cargas 

supersimétricas geradores das transformações (2.16) serão explicitadas 

3 
no próximo capitulo. A matriz x definida nas equações (2.8) é a 

5 5 correspondente bi-dimensional da matriz f (ou x , na notação usual) do 

espaço-tempo quadri-dimensional. 
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CAPÍTULO III 

DISCRETIZAÇãO DO MODELO PARA UMA REDE ESPACIAL, TEMPO CONTÍNUO 

MODELO KAMILTONIANO 

No capítulo anterior determinamos a ação para um modelo de 

Yang-Mills com supersimetria N=2 no espaço-tempo a duas dimensões. 

Pelas discussões anteriores, seria aparentemente simples a tarefa de 

transposição de um modelo para a rede, bastando transcrever o modelo na 

linguagem das formas diferenciais, e a partir daí fazer o mapeamento 

para a rede. No entanto, não se conhecem regras precisas para a 

construção da interação supersimétrica no formalismo das formas 

diferenciais, o que torna a tarefa não tão simples como aparenta. 

que relaciona as supercargas com a hamiltoniana para, a partir da 

discretização das supercargas, obter a hamiltoniana do modelo na rede. 

Esta discretização deve ser realizada a partir da representação das 

supercargas dentro do formalismo de Dirac-Kãhler. Neste procedimento, a 

discretização atinge apenas as coordenadas espaciais, permanecendo o 

tempo contínuo. 

spinoriais, e portanto a super-álgebra é definida através de relações de 

anti-comutação. Na equação acima, a, /3 = 1, 2 são indices spinoriais e 

Neste capítulo, vamos explorar a álgebra superimétrica. 

(3. 1) 

Os geradores supersimétricos (supercargas) são grandezas 

a, b 1,2 são índices de simetria interna. Neste modelo 
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5 3 
bi-dimensional, usaremos indist intamente Tf ou 9- . 

Uma redefinição adequada das supercargas permite definir uma 

sub-álgebra envolvendo apenas a hamiItoniana, na forma 

2 
Q = H . (3.2) 

Deste modo, tendo as supercargas, é sempre possivel obter a 

hamiItoniana do modelo. A partir das transformações supersimétricas, 

pode-se determinar as supercargas usando o teorema de Noether, 

aplicado sobre a ação inicial (2.15) do modelo. 0 sucesso do 

procedimento depende de conseguirmos escrever estas supercargas na 

linguagem das formas diferenciais de Dirac-Kãhler, inicialmente no 

continuo, e estabelecer as regras de transposição destas supercargas 

para a rede. A partir destes resultados, podemos obter a expressão da 

hamiItoniana, e consequentemente, da lagrangeana e as transformações 

supersimétricas na rede. 

3.1- MODELO KAMILTONlANO NO CONTÍNUO 

, ~ 11 1 22 , iiv Vamos usar a definição g =-l,g =1 e g =0 quando 

uv 
para o tensor métrico g do espaço-tempo de Minkowski 

bi-dimensional, a componente espacial indicada pelo indice 1 e a 

componente temporal pelo indice 2 . 

As duas matrizes de Dirac, para p = 1 ou 2, e o seu 

produto, = Z = Z -Z . são 
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0 -1 2 

0 

9'^ = i 0-^ 
0 i ■ 

1 0 J 

5 
IS 

2 1 
H H 

1 0 

0 -1 J 

(3.3) 

0 operador conjugação de carga C é definido por 

c = 
. 2 
lí' = 

' 0 

-1 

1 ■ 

0 
(3,4) 

A lagrangeana do modelo é definida pela ação (2.15), 

Ux) 
1 a „pra 
7T 1 *■ 4 pr 

+ 1 
2 

* 
D 0 + . —a II- a 

i;t y D z 
H" 

(3.5) 

2 ®-^abc 
—a 5~b,c .~a 5 b,*c 
X K X <P - ÍX X X <P 

^ 1 2,^ ,b,»c,2 
+ ^ g ií ^ <í> <l> ) X, abc 

invariante pelas transformações supersimétricas (2.16) , 

ô U = i 
M [ “ 

a —a “I 
X - X X ot J 

ô (p^ = - 2ia 

ô <p ^ = 2ia 
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(3.6) 

_ a - j. ^ f *c,. U„ ,a ~ 
s X = (°',„/ + õ gf . 0 0 )cx - rDó 2ía fil/ íi abc fi 5 

^ ~a / 1 ^ jb ,*c.~ ,*a 
^ ^ ^ - Õ gí^ , 0 0 )a + r D 0 9T a fj.u íL abc jj, 5 

Pelo teorema de Noether, a invariança da lagrangeana (3.5] 

cc 
pelas transformações (3.6) resulta nas correntes conservadas, , os 

geradores supersimétricos dados por 

q“ = dx J^(x) (3.7) 

A corrente de Noether é obtida como 

J (x) = 
M 

d £ ,   õ<p + Q 
d(â ^<p) ^ 

(3.8) 

onde n é uma função dos campos, cuja divergência é dado por 

d ^ Q ^ ô £ 
H F (3.9] 

S ^ é a variação funcional da lagrangeana, isto é 
F 

õ ^ = r((p’(x’) ,d’<p’(x’)) - £((p'(x').a’<p'(x’)) 
F P P 

Da variação funcional da lagrangeana (3.5) devido às 

transformações (3.6) resulta 

Q = ôU*'f - iô;^^ 3T / - [50^D 0*^ + Ô0*^D 0^ ] pr p ^ p p 
(3.10) 
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0 primeiro termo da corrente de Noether (3.8) resulta 

d £ ^ , 1 

did (p) 
M 

Ô4> = ^ [50 D 0 + 50 D 0 ] + 

. • a „a ,ra 
+ 1% ÔU (3.11) 

A soma destes termos, equações (3.10) e (3.11), resulta na 

corrente 

J (x) = i%^y - iôx^X 
fj. fj. fj. (3. 12) 

onde e 5%^ são as transformações supersimétricas definidas em 

(3.6) , de forma que a corrente acima assume a forma 

,p, . .-a p 
J^(x) = IX X 

^pl>a 1 ^ ,b,*c 
cr P gf 0 0 pi> ò abc a - X D 0 X a 

r s 

- ' „pra ^ \ ,b * 
-cx cr F^ + - gf é 4> pv 2 abc 

~ V * di 
+ ccx X D 0 5 V 

M a XX [3.13) 

As super-cargas estão relacionadas com a componente temporal da 

corrente. Temos 
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J,lx) = 1 i- * I if.,, - z^ 
‘n Y) é ^ a 
2 1 J 1 

+ i T ^ gf X “4>“4> '' — x'"D (i “ + X _ ’ '^2 12 2 ® abc ^2 ^ ^ ^12^ ^11' | 2 
r D 0 > a 
^1 r J 2 

'“. - - 2 Z,0 0 - Z^ D^í, - z, D_* 

‘“I { *2^12 - 5 e^.bc <*’’**' - >.^*} 
(3.14) 

Na expressão acima, podemos identificar os seguintes geradores 

supersimétricos ou super-cargas : 

Qi = ^ ^12 2 S^abc^l ^ ^ - ^2°2^ ■ ^2°1^ 
(3. 15.a) 

^2 = [ ^2 ^2 ^ 2 ®^abc^2 ^ ^ \ ’ 
(3.15.b) 

e seus complexos conjugados 

» 
Q = 1 

dx / - ;;j'^F^ - - 
\ 12 2 

r a,b *c *a a *a ai 
^ ^J> " 'X-^ r abc 1 2 2' 

(3.16. a) 

» 
Q„ = 

{ 

I a t—3 1 jj. J.® 
-I Zj - j * - Z, * Z, 0^* 

(3. 16.b) 

Utilizando as relações de comutação e de anticomutação a 

tempos iguais que definem a quantização canônica, 
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i ô(x-y) ô f:,(x) . u^(y) 

D^0^(x) , 4> ^(y) 

D^4> ^(x), <^^(y) 

D^0^(x) , </>^(y) 

B^4> ^(x) , (p ^(y) 

a b 

= - 2 i ô(x-y) 5^*^ , 

= - 2 i ô(x-y) , 

= 0 t 

= 0 , 

{4 } = ° ’ 

0 t (3. 17) 

obtemos as relações de anticomutação das supercargas, 

+ D 0*^ + 
21 21 1 r 

D 0^D 0*^ + 4Í7^D 7*^ 
2^ 2^ ^2 2^^2 

+ 

+ D^0^D^0 ^ + 2igf^ + X^^X^ P ^) + 1 1 abc 

1 2,. b,*Cv2 
- j g U ^ 4> <P ) 4 abc 

dx F^ F^ + D 0^D 0*^ + D 0^D 0*^ - 4i/^D 
21 21 1 1 2 2^ "^1 l'^! + 
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*a^ ,a „ ,a„ ,*a 

J g (f (p <t> ) 
4 abc 

Q,. Q, 
-a 7^ a ^ 

dx \ - 
^ *K K — . ^ / d D â Ov , C 

- gf é p D 0 
abc 

{<• o:}= 
dx 

* -. =. *K *=. K ^ , a ^ a D a bv . c 
- ZF,jDj0 - 2lg/^^^(j:,Zj t z^)0 » 

- gf J'^ 
abc 2 

{ Q^. Qj } I Qg- Q2 } 

* * 
Q,. Q, 

* * 
Q,. Q, M 0 (3. 18) 

Utilizando a lei de Gauss, que é a equação de movimento 

obtida pela variação da ação S = J" L(x)dx em relação à componente 

temporal do campo de gauge, isto é ôS/ôU^ - 0, 

= ?lü/ - I = 0 , 
Ô u 

^ (P * #1 Pi *b . r' ✓ a *b a *b-^ j^c 
V*= f:.d> •* i sry* 

ô u 
" D 0^% i gf ^y<P V " ^®^abc^^l^l " ^2^2 = 0 • 
21 1 Z aoc 

(3. 19) 
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as relações (3.18) ficam 

que podem ser resumidas como 

' ^(3 = 2 H ô a/3 

para a , ^ = 1, 2 . 

A hamiltoniana é dada por 

dx 
{ 

F® + D ^ + D 0^D õ ^ - 2ir 
21 21 1 1 2^ 2^ '^1 D 2 1'^ 

+ 2i;t + 2igf (;:t ^x + 
2 1^2 ^ abc^'^1 '^2 ^ 

a b 
^1^2 

*c 
0 ) + 

1 2,^ C.2 
j g (f é <p ) 
4 abc 

(3.20) 

(3.21) 

a + 
1 

(3.22) 
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e o momento por 

P = dx^ j . (3.23) 

a) 
Vamos definir as cargas (a = 1, 2 ) pela combinação das 

cargas e , 

+ íQJ'' ) e = ( Q<^> + íq'2' ) 

ou seja, 

Q = ( + íQ‘^’ ) a a (3.24) 

Para estas novas cargas, as relações de anticomutaç§,o (3. 18) ficam 

{ q“’ , q”’ } = { q|"’ . q;"’ } = h + p , 

{ 

(1) „(1) r,(2) ^(2) 
q;- , q;- } - {Qf'. Qf M H - p . 

(a) (b) 
' ^13 

= 0 . para a ^ h e a * j3, (3.24) 

que são exatamente as relações (3.1), 

Q^' , Q^’ } = 
.a b 

(3.26) 

Determinadas as cargas supersimétricas, vamos agora colocá-las 

43 



na notação das formas diferenciais. 

Vamos definir os campos spinoriais como 

i/»(x) = ^ i//(x,H) dx'’ 

(3.27) 

2 
f (x) - if (x)dx + if (x)dx 

O 1 2 
(x)dx^A dx^ 

12 

onde H é um conjunto ordenado de índices; f^(x), f^(x), f^Cx) e o 1 2 

(x) são variáveis reais de Grassmann, satisfazendo às relações de 
12 

anti-comutação em tempos iguais 

(3.28) 

sendo a e b índices de "flavor". 

A equação (3.27) tem a equivalente representação matricial 

de Dirac-Kãhler 

i//(x) j i//(x, H) Tí'" 

(3.29) 

2 
f^(x)I - if (x)3' + if (x)9r" 

o 1 2 
fjxh 

ou 

iP^ix) 
1 
2 

f^(x) + (x) 
o 12 

f^(x) - f^x) 
1 2 

r(x) + ru) ^ 
1 2 

f^(x) - ÍX) 
O 12 
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(3.30) 

's .3.(2)^ «L "V 
^ (x) ip (x) 1 1 

,a, (1) , a, ( 2) , ,, 
[ip Cx) iP ’ (x) J 

Podemos relacionar as componentes dos spinores i//(x) com 

componentes dos spinores x nosso modelo como 

, ^ f^(x) + f^^(x) f^(x) + f^(x) 

:k"(x) = + i 0";‘^’(x) = ^ + i  ?  
11^ o o 

f^(x) - (x) f^(x) - f^(x) 

;t"(x) = 0"’''’(x) + i ^";'^’(x) i ^^  5  2 2^ O o 

(3.31) 

0 campo escalar complexo podemos representar por 

(Píx) = ( S"(x) + iP^x))t^ = <^^x)t^ (3.32) 

onde S(x) e P(x) são coeficiente de uma zero forma. 

Os campos vetoriais de gauge tem a representação tradicional 

U(x) = (J^(x)t^dx^ (3.33) 

o tensor eletromagnético, para o caso não abeliano, definido por 

F(x) = (d + gUA) U(x) = P^^(x)t^dx^A dx*^ (3.34) 

onde usamos a diferenciação exterior covariante 

as 
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d + gU A = dx^ A D 
1^ 

Substituindo as definições (3.31) e (3.32) em (3.15) , as 

cargas supersimétricas ficam nas seguintes formas: 

Q. = j 
dx (/;-rxD^s%D_s-) 

+ )(D P%D P^) + i 
o 12 2 1 1 2 12 abc o 12 

a x-a x„b_c 

)(D + D S^) + (f^-f^)(D P%D P^) 
0 12 2 1 1 2 2 1 

Q. = 4 dx |-(f"-f!)F" - (f%f" )(D S"-D S") - gf )SV + 
I 1 2 12 o 12 2 1 abc o 12 

(f^+f^)(D P^-D P^) + i 
12 2 1 - gf , (F"-f")sV + O 12 12 abc 1 2 

(f%f^)(D S^-D S^) + (f%f^ )(D P^-D P^) 
12 2 1 o 12 2 1 

(3.35) 

que podem ser representadas na forma (3.24), 

Q = Q'^’+ i a a a 

para a = 1, 2 . Na representação matricial de Dirac-Kãhler, as cargas 

spinoriais ficam 
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Q 

Q 

Q 

(1) ^(2)^ 
1 

(2) (1) 
(3.36) 

onde 

= tr (Qt ) (3.37) 

Explicitamente, temos 

^ 1) „(2) 
q = tr(Q)= Q + Q 

O 1 íi 
dx -f^F^ - gf f^sV- + 

O 12 abc 1 12 

+ f^D D - f^D P^) 
21 12 2 o 1 

q^ = tr(Qr') = q|^’+ 
{ 

dx \ - gf f"sV- f"D + 
112 abc o o 2 

+ D - f^D + f^D P^) 
12 1 2 2 11 

. 2, p,(2) ^(1) 
q^ = tríQr )= Qj - Qg 

{ 
dx -{ f^F^ - gf sV+ D S® + 

2 12 abc 12 12 2 

f^D + f^D P^ - f^D P^) 
o 1 12 2 1 

, (3n ^(1) ^(2) q = triQTí )= dx F^ - gf f^sV+ f^D + 
' 12 12 ® abc 2 22 

- f^D S® - f^D P^ + D P^) 
11 o 2 12 1 (3.38) 
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satisfazendo às relações de anti comutação 

{q. .q.> = H 1 1 

° (3.39) 

Uti1izando 

(x) 
21 

D S^(x) 
2 

D P^(x) 
2 

as relações 

u"(y) 

sNy) 

P^y) 

de comutação (tempos iguais), 

= - i 5(x-y) , 

= - i ô(x-y) 5^*" , 

- - i ô(x-y) , 

(3.40) 

e as relações de anticomutação (3.28), podemos obter, de acordo com as 

equações (3.38) e as relações de anti-comutação (3.39) , a expressão da 

hamiItoniana. Obtemos várias expresões. 

Ho = = 2 
dx ÍBP^f + 

+ 2F DP- 2i(f D f + f D f ) + 2gf (D S )S P + 12 1 2 11 o 1 12 abc 2 

+ 2igf abc 1 12 o 2 11 o o 
+g^(f 

abc 

Hi = {qi-qi> = 2 
dx ^F^ f"* + (D S^)^+ (D S"')^+ (D P^f+ (D P^ + '1212 2 1 2 1^ 
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. 2F;^D,P- - 2i(f-D,f^ . * 2gf^__^(D^S-)sV . 

2igJ abc 1 12 o 2 11 o o +g\í , sV)^ abc 

Hg = K’%^ ' 2 
dx Íf* F" ♦ (D S‘P* (D S")^i- (D P*)®t (D p‘f t [12 12 2 1^ ^ 2 ' ^1^ 

2F"‘ d - 2i{f^D ) - 2gf (D S'‘)S°P'' + 
12 1 211 o 1 12^ ^ abc 2 ^ 

a^_b^c 

+ 2igf abc 1 12 o 2 11 o o +g^(f__sV)^j 
abc 

H3 = <S’S> = 2 
dx -{F^ + (D S^)^+ (D S^)^+ (D P^)^+ (D P^)^ + 

'12 12 2 1 2 1 

- 2F"‘ d P^ - 2i(f^D + f^D ) - 2gf (D s"')sV + 
12 1 211 o 1 12 ® abc 2 

+ 2igf abc 1 12 o 2 11 00 
+g\í sV)^ 

abc 

(3.41) 

Recorrendo à equação de movimento dos campos, especificamente 

a lei de Gauss, 

F^ D P^- gf (D S^)SV- iigf 
121 abc 2 2 abc 00 11 22 12 12 p'' = 0 

(3.42) 

é possível de se verificar que todas as expressões obtidas para a 

hamiltoniana, equações (4.41), são equivalentes. 
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para 

H = O H. = H3 = 

H = {^12^12 ^ (D^s")^ (D^P")^ (D^P")^ + 

2i(f^D^f^ . . igj 
abc 

2{f^f^ -f^f‘’)s'"+ 
1 12 o 2 

+ (fV^fV^-fV‘’-f^ f"* )P" 
00 11 22 12 12 +g^(/ ^ sV)^ abc (3.43) 

A lagrangeana correspondente é 

L = dx +- 
2 12 12 2 

(D^S'‘)^+ (D^S'‘)^+ (D^P^)^+ (D^P^)^ 

1 . 
+ ^i(f D f +F D f +f D f +f D f ) +2(f^D + f^D ) + 

2 o 2 o 121 222 12 2 12 ^211 o 1 12^^ 

- -igf abc 
(f^f^ f'" )p'" 112o2 2oo1122 12 12 

5 (-r.._sVf| abc (3.44) 

As super-cargas q. são geradores das seguintes transformações 

supersimétricas : 

(i) carga q : 

= "(O)""! 
U^(x) -if ix) 

o 
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[q ,U^(x)] = ô U^(x) = if^ (x) (definição) , 

[q ,S^(x)] = ô S^(x) = if^(x) 
O (o) 1 

[q ,P^x)] = S P^x) = ’ 
O (o) 12 

{q ,f^x)} = Ô, f^x) = -F^^(x) - DP^(x) 
0 O (o) o 12 1 

{q ,f^(x)} = ô f^(x) = -gf^ S^(x)P‘'(x) - D S^(x) 
1 (o) 1 bc 2 

{q .f^x)} = f^(x) = D S^(x) 
'o 2 (o) 2 1 

{q ,f^ (x)}= ô (x)= D P^(x) 
'•^o 12 (o) 12 2 

(ii) carga q^ 

[q^,U^(x)] = Ô^^^U^(x) = +if^(x) , 

[q^,U^(x)] = ~ (definição) , 

[q^,S^(x)] = Ô^^^S®(x) = if^(x) 

[q^,P"(x)] = Ô^^^P"(x) = if^(x) , 

{q ,f^(x)} = f^(x) = -gf^ S^(x)P''(x) - D S^(x) 
1 o (Do bc 2 

(3.45) 

51 



{q^.f^(x)} = = F^^(x) + D^P"(x) , 

{q ,f^(x)} = ô, f^(x)= -D P^(x) 
2 (1) 2 2 

{q (x)}= ô (x)= D S^(x) 
12 ^ (1) 12 1 

( i ii) carga q^ 

[q^,U^(x)] = Ô^^^U^(x) = if\U) , 

[q^,U^(x)] = ^ (definição) , 

[q^,S*(x)l = «,2,S*(x) = -Jf"^(x) . 

[q^.P°(x)] = ■5,2,P"(x) ' --if"(x) , 

{q^,f”(x)> = a,j,r(x) = - D/(x) , 

{q^.Çtx» = a,3/t(x) = D/(x) , 

<q^,Ax)) = 6,^,f“(x) = f;^(x) - D,P‘(X) , 

(q,.f:,(x)> - «,3,* -6F\.s‘(x)P«(x) . D^S-(X) 

(3. 46) 

(3.47) 
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(iv)carga 

[q ,U^x)] = ô, U^(x) = --í^Jx) 
*■3 1 (3) 1 12 

[q ,U^(x)] = ô U^(x) = (definição) , 
3 2 (3) 2 o 

[q^,S"(x)l = Ôj^jS"(x) = -if^Cx) 

[q ,P^X)] = P^X) = -if^x) ■•3 (3) o 

D S (x) 
1 

K.Qx» = = - K2^X> * 

{q f^(x)} = ô f (x) 
'■S’ 2 ^ (3) 2 

gf^ S^(x)P‘^(x) + D S^(x) 
bc 2 

A partir destes resultados para o continuo, 

para fazer a transposição do modelo para a rede. 

(3.48) 

estamos prontos 
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3.2 - MODELO KAMILTONIANO NA REDE 

Vamos considerar as supercargas no formalismo de Dirac-Kahler 

no continuo, equações (3.38), e proceder à sua discretização, usando 

como regra a substituição das variáveis e os operadores do continuo para 

os seus equivalentes na rede. Na rede, devemos acrescentar às cargas os 

respectivos conjugados hermitianos, como definidos no capitulo I, secção 

1.2, a fim de mantermos a invarisuiça de gauge. 

Obtemos, usando a definição (1.66) do "caimpo elétrico", as 

supercargas com os respectivos conjugados hermitianos. 

Q O 
X 

- f’’'(x)D S(x)U(x, 1) + y f'''(x)D'^S(x)u‘’’(x, 1) + 
12 i 2 1 

+ f ’*‘(x)D P(x)U(x, 1) 
12 2 

(3. 49. a) 

X 

f^(x)u‘'‘(x, l)(D^S(x))’'‘ + j f^(x)U(X, l)(D^S(x))‘’’ + 
1 

+ f (x)u‘’‘(x, 1)(D P(x))‘'‘ - yf (x)U(x, l)(D^P(x))'’‘ 
12 2 10 1 (3.49.b) 

1 

+ igf'*"(x) S(x),P(x) - f^(x)D S(x) + 
o o 2 
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, (3.50.a) + y /■*" (x)d'"s(x) - fJ(x)D P(x) + i f’*‘(x)D^P(x) 
1 12 l 22 J 1 1 

1 1 

‘•‘(x) + igf (x)[s‘*'(x),p’*‘(x)] - f (x)(D SCx))’*' + 
o o 2 

X 

+ if (x)(D^S(x))’*'- f (x)(D P(x))‘^+ (x)(D^P(x))‘^l , 
1 1 J 

(3,50.b) 

Q. = y"tr -|f^(x)E^ (x)U^(x, 1) + igf'J'^(x) 
2 1 12 

S(x),P(x) U(x,l) + 

+ f”''(x)DS(x)U(x,l) - yf’*'(x)D'^S(x)u'''(x,l) + 
12 2 i 0 1 

1 

+ f’*'(x)D P(x)U(x, 1) - y f’^(x)D'^P(x)u'''(x, 1) 
12 1^21 (3.51.a) 

q’*' = \ tr-lf (x)U(x, 1 )e'*"(x) + igf (x)u'*'(x,l) 
2/2 1 12 

(X), p"*" (X) 

+ f (x)u‘*‘(x, 1)(D S(x))’'' - y f (x)U(X, IKD^SÍX))''' + 
12 2 i 1 o 1 

+ f (x)u’^(x, 1)(D Píx))’*' - y f (x)U(x, 1)(D’"p(x))'*‘ 
1 2 X 2 1 1 

(3.51. b) 

Q = ) tr-i-f ■*‘(x)E (x) + ig/(x) ^3/12 1 2 
S(x),P(x) +f (x)D S(x) + 

2 2 

4 f’’’(x)D'^S(x) - /(xiDPCx) +4^''' (x)d'*'p(x) 
J 1 1 02 J 12 1 

1 1 
(3.52. a) 

= \ tr-|-f^^(x)E^(x) + igf^(x)[s'*"(x), p"*^(x)] +f^(x)(D^S(x))"*^ + 
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(3.52. b) i f (x)(D^S(x))'^- f (x)(D P(x))‘*‘+ 1 f (x)(D^P(x))’*‘ 
111 o2 1 12 1 

1 1 

Devido a nossa normalização da ação na rede, impomos 

seguintes relações de anticomutação e comutação (tempo continuo), 

f"‘’(x),/‘^"(y)l = 2Ô 
H ’ K J HK xy 

fn(x) . f,(y) 0, V H,K 

/(x) , /“^(y) 
H K 

= 0 , V H,K 

E'^^^x),U^‘^(y, j) 
1 

-2gl ô 
j ij xy 

E (x),U (y,j) 
1 

= 2gl 6 
j ij xy 

(D^S(x)f‘’, s‘''^'*(y) 
„.„ad bc 

-2lô ô ò 
X , y 

(D^S(x))‘*‘^‘’, S^^y) -2iô^'‘ô''''5 
X , y 

(D^P(x))^^ P’’‘'''^(y) 
X, y 

(D^P{x))■*‘^^ P^^y) 
„ . -ad-bc - 

-2lô ô ô 
X , y 

(3.53) 

onde H e K são os conjuntos de Índices ordenados. 

De maneira análoga ao contínuo, obtemos a hamiltoniana 

as 
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H, = è {Qo • q! } = I ‘4 5 
V ' 

"(X) . i D^S(x)(D^S(x)) + 

+ D^P(x)(D^P(x)) 
1 

1 
D^S(x)(D^S(x))‘*‘ + dJp(x)(D^P(x))'^ 

- i g j D^S(x)[s‘^(x),p’*‘(x)] + [S(x),P(x)](D^S(x))’*' \ + 

21 
1 *- 

d"p(x)e‘''(x)+E (x)(D>(x))‘* ^4^[f‘'‘(x)(D P(x))‘*‘f (x) + 
Z \ o 2 12 

- f^(x)(D S(x))^f (x) + igf’*^(x)[s’'*(x), P^(x)]f (x) o 2 1 o 1 
U (X,1) + 

ig/(x)[S(x),P(x)]-/(x)D^S(x) + f^^(x)D^P(x) f (x)U(x 
o -} 

+ (x) 2 12 
f (x)u''‘(x, l)s’’'(x)U(x, l)-s‘*‘(x)f (x) 

1 1 
-f^(x)[s(x)f (x) + 

1 [ 12 

- f (x)u’''(x, l)S(x)U(x, 1) + p’*'(x)f (x) - f (x)u’’'(x, l)p'*‘(x)U(x, 1) + 
12 1 1 

- f^(x)U (x,l)P(x)U(x,1) + P(x)f^(x) + f (x) S (x)f (x) + 
2 

- f (x)U(x, l)s‘'‘(x+J )u’'‘(x, 1) 
2 1 

+ f (x) 
i* 1* 

f (x)p"^(x) + 

- U(x, l)P^(x+J^)u’''(x, l)/(x) + U(x, l)S(x+J^)u''‘(x, l)/(x) + 

f’’‘(x)S(x) - U(x,l)P(x+J )u‘*‘(x, l)f‘*'(x) + P(x)f‘'‘(x) 
2 1 o o 

2Jl 1 1 
)u'*^(x, 1 )f^(x)U(x, l)U(x+i^, 1) - f^(x)f^(x)U(x, 1) + 

+ f‘‘‘(x)f (x)u‘''(x,l) - f‘'‘(x)U(x, l)f (x+i )u‘'‘(x+i ,l)u‘’‘(x,l) + 
2 1 2 111 

+ / (x+i )u’*'(x,l)f (x)U(x, l)U(x+J .1) - / (x)f (x)U(x,l) + 
12 1 o 1 12 o 
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+ /(x)/ (x)u'*'(x,l) - f’*'(x)U(x, l)f (x+1 , l)u'’'(x, 1) + 
o 12 o 12 1 1 

[S(x),P(x)][S(x),P(x)] (3.54) 

A lagrangeana correspondente é 

L„ ' Y!'' í 
V ^ 

t 1 
(x) + 2 D^S(x)(D^S(x))^ + D^P(x)(D^P(x))’'‘ 

21 
D*S{x)iB*Six)y + D>(x)(D''p(x))‘' 

1 1 11 

/(x)D f (x) +f‘'‘(x)D f (x) +/(x)D f (x) + f ‘*'(x)D f (x) 
o2o 1 21 2 22 12 2 12 

. { P(x, (D^P(x))’*'f^^(x) - (D^S(x))'*‘f^(x) + 

+ ig[s"*"(x), p'^(x)]f^(x) U (x,1) + igf''‘(x)[S(x) ,P(x)]f (x) + 
1 O 

f‘'‘(x)D S(x)f x) + / (x)D P(x)f (x) 
12o 12 2 o 

U(X, 1) }■ + 

{ 
® I P (X) 
2 12 

f (x)u‘*‘(x, l)s'*'(x)U(x. 1) - s‘*‘(x)f (x) 
1 1 

f (x) 
12 

u'*'(x, l)S(x)U(x, l)f^(x) - f|^(x)S(x) 

f 
f (x) 

o 
s‘*‘(x)f (x) - f (x)U(x, l)s‘*‘(x+J )u‘*‘(x,l) 2 2 1 

- f (x) o 
f'*‘(x)S{x) - U(x,l)S(x+J )u''‘(x, l)/(x) 

2 12 

+ I \ f^(x)[f^(x),P(x)] + f^(x)[f^(x),p‘''(x)] + /(x)P(x)f^(x) + 

+ 2f (x)u'*'(x, 1 )P(x)U(x, 1 )f'f(x) - f (x-J )P(x)f^(x-i ) + 1 11111 
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+ f (x) o 
f (x)P(x) - 2f (x)U(x, l)P(x+i )u’^(x,l) + P(x)f (x) 

O O I Q 

f (x) O 
f’*^(x)p’*'(x) + p’*"(x)f"''(x) - 2U(x, l)P*'"(x+J )u'''(x, l)f’''(x) 

® ^ 1 O 

^ ^ P'*'(x)f^(x)/(X) + 

+ P^(x-i )f (x-J jp^^íx) - 2u‘^(x,l)p’'‘(x)U(x,l)/(x)f (x) + 
1111 11 

+ f (x)/"*" (x)p'*"(x) + ix-1 )f ix-1 )p'*'(x) 1 + 
12 12 12 1 12 1 

- [S(x),P(x)][S(x),P(x)] (3.55) 

onde se usou a lei de Gauss 

- ig(D^S(x))'^[S(x),P(x)] + ^dJp(x)eV) + I |-/(x)[f^(x),P(x)] 

+ f^(x)[f (x),P(x)] + f^(x-J )f (x-1 lP(x) - f^(xlP(x)f (x) 
ò tí 1111 1 1 

+ f (x)/"*" (x)P(x) + f"*" (x-J )f (x-J )P(x) 1- = 0 
12 12 12 1 12 1 

- igD^S(x)[S^x),P^x)] + i (D^P(x))'^E^(x) + I |-f^(x)[f^x),P^x)] 

- f^(x)[p'''(x), f^(x)] + f|(x-j^)f^(x-i^)p'*'(x) - f^(x)p’*’(x)f Jx) 

+ f_(x)f^„(x)p'*^(x) + f'I'„(x-J^ )f_(x-J_ )P^(x) 1 = 0 . (3.56) 
12 12 12 1 12 

A lagrangeana (3.55) é invariante pelas seguintes 

transformações supersimétricas (tempo contínuo) : 
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IQ ,U(x,D] = ô U(x,l) = - 2if (x)U(x.l) , 

[q‘'‘.U(x,2)] = Ô U(x,2) = 2if (x)u‘*‘(x,l) , 
o o 12 

[q‘'‘,S(x)] = ô S(x) = 2if (x)u‘‘‘{x,1) , 
O O 1 

[q''',P(x)] = ô P(x) = - 2if_(x)u‘’‘(x, 1) , 
o o 12 

{q'*',/ (x)} = ô f (x) = 2 [-F^^(x) - i D P(x)]u‘'‘(x, 1) 
O O 0 0 12 il 1 

{Q ,f (x)} = ô f (x) = - 2 g[S(x),P(x)] + D S(x) yU(x, 1) , 
O 1 O 1 2 ' 

(x)} = ô f (x) = 2 y (D;"s(x))u'^(x, 1) , 
O 2 o 2 i 1 1 

(x)} = ô f (x) = 2 (D P(x))u‘*‘(x, 1) 
O 12 o 12 2 (3.57) 

Vamos calcular H de forma análoga à H : 
1 O 

H. ' í {q. . qI } = I 1 S 
V ^ 

t, , 1 
M * 2 D S(x)(D S(x)) 

2 2 

+ D P(x)(D P(x)) 
2 2 

1 

1 
D^S(x)(dJs(x))’*' + dJp(x)(D^P(x))'*‘ 

- i ig I D^SlxlíS^^lxl.P^^íx)] + [S(x),P(x)](D^S(x))'^| 

2Ji 
D^P(x)e’'"(x)+E (xlíD^^PÍx)) 
1111 2Ji 

f (x)(dV (x)/ 
1 1 O 

+ f ■^■(xKD^^f (x)) + f (x)(D/ (x))"^ + /(xIdVJx) 12 lo 1 12 1 12 
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+ I íf^(x)[S(x), f (x)]+ f (x)[s'*^(x), f^(x)] - f^(x)[s"''(x)f (x) 
e:L \ O 2 o 2 1 12 

f (x)s'*^(x+J )] + f (x)[ (x)S(x) - S(x+i )f^ (x) ] 
12 1 1 12 1 12 

+ f'*^(x)[f (x) P(x)] + f (x)[f'*'(x),P^(x)] + f^(x)[f (x)p"*"(x+J ) 
oo oo 11 1 

p"*"(x)f (x)] + f (x)[f"*^(x)P(x)- P(x+J )f'*"(x)] 
111 11 

- -|- [S(x),P(x)][S(x),P(x)] (3.58) 

que resulta na lagrangeana 

L. = I I I 
V 

t 1 
(X) - \ D S(x)(D S(x))’*' + D P(x)(D P(x))''" 

2 2 2 2 

1 

1 
D^S(x)(D^S(x))’*' + D^P(x)(D^P(x))'* 

f'*'(x)Df(x) + f"*"(x)Df(x) + f"*"(x)Df(x) 
o 2o 1 21 2 '22 

+ f (x)D f (x) 
12 2 12 2il 

(x) + f (xlCD^^f (x))’*' 
1 12 112 

+ f"*" (x)o'^f (x) + f (x)(D^f (x))'*' 
12 1 o 12 1 o 

I í/(x)[S(x),f (x)] + f (x)[f'J‘^(x)S(x) - S^{x+l)f1ix)] 
^ \ o 2 112 112 

+ f ix)[S^{x),f^{x)] - ix)[S^ ix)f (x) - f (x)S(x+J )] 
o 2 1 12 12 1 

- f -íf'*^(x)[f (x),P(x)] + f (x)[f^(x)P(x) - P{x+1 )f"*^(x)] 4loo 11 11 
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+ f (x)[f'*'(x),p'*^(x)] + f'*'(x)[f (x)p"*"(x+J ) - p"*^Cx)f (x)] 
o o 11 1 1 

- f'*^(x)[f (x),P (x)] - f (x)[f'*" (x)P(x) - P(x+J )f’*' (x)] 
22' 12 12 1 12 

- f (x)[f^(x),p"*^(x)] - (x)[f (x)P^(x+J ) - p'*'(x)f (x)]! 
2 2 X 2 X 2 X X 2 I 

- [S(x),P(x)][S(x),P(x)] I . (3.59) 

A lagrangeana acima é invariante pelas seguintes 

transformações supersimétricas (tempo continuo) 

[Qj,U(x, D] ô U(x,1) 
1 

2f (x) 
1 

[Q^,U(x,2)] Ô^U(x,2) 2if^(x) , 

[Q;,S(x)] ô S(x) 
1 = 2if (x) , 

[q;,p(x)] ô^P(x) 2if (x) , 
2 

{Q (x)} 1 o 
ô f (x) 

1 o 
2g[S(x),P(x)] - 2D^S(x) , 

{Q|,f^(x)} = ô^f^(x) = 2F^^(x) + 2Íd^P(x) , 

ô f (x) = - 2D P(x) , 
12 2 

<■^3'“» = = 2 1d;s(x) , (3.60) 

Utilizando as supercargas (3.52), obtemos 

H3 = í {“= ■ “ I 
tr D^S(x)(D^S(x)) 
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+ D^P(x)(D^P(x)) 
1 

1 *- 
D^S(x)(dJs(x)) + D^P(x)(D^P(x))’^ 

+ i ig I D^S(x)[s‘^(x),p’*'(x)] + [S(x),P(x)](D^S(x)/ 

2ii 
D^P(x)e’^(x)+E (x)(D^P(x)) 

1 1 11 
1 
^1 

f (x)(D‘'f (x))"^ 
12 1 o 

+ f ’*"(x)(D'^f (x)) + f (x)(D'^f (x))'*' + f'''(x)D'^f (x) 
12 lo 112 1 12 

+ f ■íf''^(x)[S^(x), f (x)]- f (x)[S(x), f"*^(x)] - f"*^(x)[S(x)f (x) 
2 o 2 o 2 1 12 

f (x)S(x+J )] + f (x)[ (x)S(x) - S(x+J (x)] 
12 1 1 12 1 12 

f^(x)[f (x),P(x)] - f (x)[f^(x),P^(x)] - (x)[f (x)P^(x+J ! 
2 2 ' 2 2 ' 12 12 1 

p'''(x)f (x)] - f (x)[/ (x)P(x) - P(x+i )/ (x)] 
12 12 12 1 12 

[S(x),P(x)][S(x),P(x)] (3.61) 

correspondendo à lagrangeana 

L3 = I I g 
V ^ 

t 1 
"(X) . 1 D^S(x)(D^S(x)) + D^P(x)(D^P(x)) 

1 
2J^ 

1 ‘- 
D^S(x)(D^S(x))^ + D^P(x)(D^P(x))’^ 

1 
2 

f'*‘(x)D f (x) + f’’’(x)D f (x) + f'''(x)D f (x) 
o 2o 121 222 

+ f (x)D f (x] 
12 2 12 2il 

f’*'(x)D^f (x) + f (x)(D‘'f (x))’*' 
1 12 112 

+ f"*" (x)D'*’f Cx) + f (x)(D^f (x))"*" 
12 1 o 12 1 o 
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I íf‘'‘(x)[s‘*‘(x),f (x)] + f (x)[f'*‘ (x)s‘'‘(x) - s‘*‘(x+i )/ (x)] 
^ ] O 2 112 1 12 

+ f'*'(x)[S(x), f'*'(x)] - f^(x)[S(x)f (x) - f (x)S(x+i )] 
O 2 1 12 12 1 

- f/f'*'(x)[f (x),P(x)] + f (x)[f"*"(x)P(x) - P(x+J )f^(x)] 
4loo 11 11 

+ f (x)[f'**(x),P^(x)] + f^(x)[f (x)P^(x+J ) - p"*"(x)f (x)] 
o o ' 11 1 1 

f2(x)[f^(x),P (x)] + f^^(x)[f^^(x)P(x) - P(x+J^ )f^^(x)] 

f^(x)[f^(x),p"*^(x)] - f^^(x)[f^^(x)p'*'(x+J ) - p'*'(x)f^^(x)]| 
12 12 12 

[S(x),P(x)][S(x),P(x)] (3.62) 

Esta lagrangeana é invariante pelas seguintes transformações 

supersimétricas ; 

[Q^,U(x,0)] ô^U(x,0) 2if^(x) , 

[Q3-S(x)] ô S(x) 
3 

2if^(x) 

[Q3,P(x)] Ô P(x) 
3 

= 2if (x) 

{Q3.f3(x)} 3 2 
2 [ig[S(x),P(x)] + D^S(x)] 

{Q3.f,3(x)> 2 [ - F^^(x) + (D^P(x))’^] , 

{Ql.f (x)} 3 o 
ô f (x) = - 2D P(x) 

3 o 2 

{Q^,f (x)} = Ô f (x) = - y D^S(x) , 
31 31 Jl 1 (3.63) 
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As várias expressões para a hamiItoniana e a lagrangeana na 

rede convergem todas ao limite correto no continuo. 

Aplicando o teorema de Noether na rede [7], podemos obter as 

correntes e as supercargas a partir das lagrangeanas determinadas. Temos 

o correto limite do continuo a nivel "árvore". 
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CAPÍTULO IV 

DISCRETIZAÇãO DO MODELO PARA UMA REDE ESPAÇO-TEMPORAL 

MODELO LAGRANGEANO 

No capítulo anterior foi feita a discretização espacial (tempo 

contínuo) do modelo, recorrendo à álgebra da supersimetria, que permite, 

através da discretização inicial das supercargas, obter a hamiltoniana 

2 
na rede usando as relações supersimétricas do tipo Q = H entre as 

supercargas e a hamiltoniana. 

Neste capítulo, vamos realizar a discretização do modelo para 

uma rede espaço-temporal, partindo da discretização da própria 

lagrangeana. Isto será feito construindo a lagrangeana a partir dos 

campos na representação das formas diferenciais, relativamente simples 

para a parte livre, porém com alguma dubiedade para os termos da 

interação supersimétrica, em função da multiplicidade na representação 

dos campos no formalismo das formas diferenciais de Dirac-Kãhler. 

No contínuo, a construção da lagrangeana na representação das 

formas diferenciais é relativamente simples, incluindo os termos da 

interação supersimétrica. No entanto, a representação dos campos 

spinoriais por formas diferenciais não é unívoca, e embora este fato não 

seja relevante no contínuo, acarreta algumas dificuldades na rede, 

principalmente em função das transformações de gauge, que na rede 

dependem da definição da natureza geométrica dos campos. 
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4. 1 - A LAGRANGEANA NA REPRESENTAÇãO DE DIRAC-KAHLER 

Consideremos ação (2.15) da secção anterior, 

S = d^x 1 1 a a *ã .—a a 
 7—F F*^ + - D <p D'^<p + 3^ D z + 

d abc 
—a 5~b .c . ~a 5 b,*c 
X r X <t> - ÍX X X <í> 

1 2.^ ,b,*Cv2 
+ P g (f ^ 0 0 ) eL abc 

(2.15) 

invariante pelas transformações supersimétricas (3.6). 

Vamos introduzir novos campos i// (x) relacionados com os 
i 

campos spinoriais x (x) através de 
1 

0 (X) + l// (x) 
% (x) = —  ?  e 3í.,(x) = 

0 (x) - 0 (x) 
1 2 

yT2 
(4.1) 

A ação anterior fica 

S = d^x 
1 —Ura 1 j3^Uj*a . ,a 

—F F + = D 0 D^0 + 10 0 + 4 pr 2 p -r o ^ 

2 ^^abc 
0^ ( 1+^^ )0^0^^ - Í0^ ( l-y^)0^0*'^ 

^ 1 2,. ,b,*c.,2 
+ õ g (f , 0 0 ) ó abc 

(4.2) 
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3-^ e 3"^ definidos por (3.3). 

Definimos os campos fermiônicos na representação das formas 

diferenciais como 

tpix) = (f (x) - (x) dx^A dx^) t‘ 
12 

(4.3.a) 

com o seu complexo conjugado 

<// (x) = (f ^x) - f ^(x) dx^A dx^) 
12 

(4.3.b) 

Na representação matricial de Dirac-Kãhler, temos 

r f (x)+f (x) 
o 12 

(t/»(x)) = (f^(x)+f^^(x)3-^) = 
f (x)-f (x) 

o 12 

(i// (x)) = (f (x)+f „(x)3'^) 
O 12 5 

* * 
f (x)+f (x) o 12 

f*(x)-f* (x) 
O 12 

(4.4: 

respectivamente. 

Vamos definir as relações entre os campos spinoriais (4.1) e 

os coeficientes das formas diferenciais por 

ip (x) = f (x) + f (x) 
1 o 12 
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0 campo escalar complexo 

</>(x) = S(x) + iP(x) 

pode ser representado pela forma diferencial 

0(x) = (S^(x) + P^(x)dx^A dx^)t^= <p^{x)t^ 

com o seu conjugado 

((pix))'^ = (S^(x) - P^(x)dx\ dx^)t^= ((p^ix))"^ 

Os campos de gauge tem a definição usual, equações 

(3.34), 

U(x) = U^(x)t^dx^ 
M' 

F(x) = (x)t^dx^Adx*^ (3 

(4.6. a) 

(4.6.b) 

(3.33) 

(3.33)’ 

.34)’ 

A lagrangeana, com os campos e os operadores diferenciais 



representação de Dirac-Kãhler, fica 

+ 

+ 

- I F^(x)v F^(x) + ^(d - ô ) 0^(x))v((d - ô )0^‘^(x)) + O u u u u 

ii//^(x)v(d-ô) V dx% \p'°{x) + 
u u ab 

ig2\/2~f {p ^(x)vdx^v (X)V0‘^(X)vdx^ + 
abc 

h g\f . 0'*'‘'(x)v0‘'(x))v(f 0''"‘^(x)v0®(x)) i , (4.7) abc ade 

onde é um operador projeção em zero forma, v denota o produto 

Clifford e 

(d - ô ) = (d - ô)ô + gf 
u u ab ab abc 

para 

U = U^t^dx^ e u'" = U*" dx^ . 

A partir daqui, vamos adotar a formulação Euclidiana do 

espaço-tempo, mais adequado para a discretização da coordenada temporal; 

usam-se as seguintes redefinições 
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•y = cr e = cr 
o 2 11 

f (x)  > if (x) 12 12 

d  > iô 
2 2 

F (x)  > íF (x) 
12 12 

U (x)   > iU (x) 
2 2 

(4.8) 

A densidade de lagrangeana fica 

£(x) = J F^ F^ + D + D^P^D + 
2 12 12 /i fl 

+ 2f (x) 
O 

D f^(x) - D (x) 
2 o 1 12 

+ 2f (x) 
12 D (x) + D f®(x) 

2 12 1 o 

+ ig2V2§ abc 
•a, , ..b, , *a, , ^b 

(f “(x)r(x)-f °(x)r (X))S"(X) + (f ®(x)f‘^(x) + 
o o 12 12 12 o 

+ (x))P'^(x) 
o 12 

+ 2g^(f S^(x)P'=(x))^ 
abc (4.9) 

Nas transformações supersimétricas (3.6) podemos impor as 

seguintes condições (caso I) : 

a = 
1 

a = 
2 

a = - a 

e+ 

e+ 
"2“ 

(4.10) 
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onde e e_ são parâmetros reais de Grassmann. As transformações 

supersimétricas ficam 

ô S^(x) = ie (x) 
+ +0 

ô P^(x) = ic (x) 
+ +12 

ô f (x) = ô f (x) = 0 
+ 0 +12 

ô f (x) = - ic [(D S (x)) - (D P^(x)) 
+ o +2 1 

ô f (x) = -i c 
+ 12 + (D^P (x)) + (D^S (x)) + 

+ — (x) + gV2 S^^íx) P^(x) ^12 bc 

ô U (x) - c V2f^(x) 
+ 2 +0 

ô U"‘(x) = - c f"* (x) 
+ 1 +12 (4.11) 

Podemos também impor as condições (caso II) : 

e (4.12) 
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As transformações supersimétricas ficam 

ôS^(x) =icf^(x) 

ô P"(x) = ic f (x) 
- 12 

ô f ^(X) = ô f (x) = 0 
- 12 

ô f®(x) = -íe [(D S^(x)) + (D P^x))] 
- o - 2 1 

õ f (x) = ic 
- 12 

- (D P“(x)) + (D S"(x)) + 
2 1 

+ F (x) + igv^f S (x) P (x) 
12 bc 

ô U (x) 
- 2 

i/2 e f ^(x) - o 

ôU^(x) = - V2 c f ^(x) 
+ 1 - 12 

(4.13) 

Podemos observar que as transformações supersimétricas 

(4.11) e (4.13) relacionam-se através de uma "reflexão do tempo", 

definida por 

f^(x) < > f*^(x) f,“(x) - -4 - f “(x) 
12 
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S^(x) ^ 4 S^(x) P^x) ^ 4 P^(x) 

U^(x) < > U^(x) 
M M 

As correntes de Noether ficam, para o caso I, 

J (x) 
2+ 

= 4i f^(x)D S^(x) + f® (x)D P^(x) + (x)D S^(x) + 
o 2 12 2 12 1 

- f^(x)D P®(x) - igV^f (x)s‘’(x)P''(x) + 
o 1 abc 12 

+ — (x)F^ (x) 
2^ 

J (x) 1+ 
4i -f (x)D S (x) + f (x)D P (x) + f (x)D S (x) + 

12 2 o 2 o 1 

- (x)D P^(x) - igi/2f f^(x)S^(x)P''(x) H 
12 1 abc o 

f^(x')F^ (x) 
2^ ° 

e para o caso II, 

J (x) 2- 
= 4i f ^(x)D S“(x) + f “(x)D P“(x) - f “(x)D S“(x) + 

o 2 12 2 12 1 

+ f*®(x)D P^(x) - igv^f f*^(x)s‘^(x)P^(x) + 
o 1 abc 12 

. 14) 
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— f ^(x)F^ (x) 
12 12 

2i/2 

J (x) = 4i 
1- 

f (x)D S (x] 
12 2 

f (x)D P“(x) + f “(x)D S (x) + 
o 2 o 1 

+ f^(x)DP^(x) + igVZf f ^(x)S*^(x)P'^(x) + 
12 1 abc 0 

+ — f*^(x)F^ (x) 
2V2 ° 

(4.15; 

4.2 - DISCRETIZAÇãO DA LAGRANGEANA 

A equação (4.7) é a lagrangeana do modelo usando a 

representação das formas diferenciais de Dirac-Kãhler no continuo, para 

os spinores definidos por formas diferenciais, equações (4.3). Como, 

no entanto, uma forma diferencial comporta um número maior de graus de 

liberdade (o dobro, no caso d-2) que o necessário para representar um 

spinor, há uma certa arbitrariedade na representação dos spinores por 

formas diferenciais. Embora isto não ofereça nenhuma ambiguidade no 

continuo, na rede a escolha da representação torna-se relevante devido 

às transformações de gauge, que dependem da natureza geométrica 

dos campos. Por exemplo, na lagrangeana (4.7), há duas possíveis 

* 
representações dos campos spinoriais i/((x) e \p (x) que resultam na 

mesma expressão final da lagrangeana. Estes campos aparecem em 

2 
combinações com vdx , que podem ter-se originado de operações 

2 * ^2 
envolvendo i//(x)vdx e i//(x) ou 0(x) e \p (x)vdx . 
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No primeiro caso, os campos spinoriais serão representados 

pelas co-cadeias 

i//(x) = f (x)d^’^ + f Cx)d^’^ 
o 12 

e (4.16) 

* ** X * X 12 
i/( (x) = f (x)d + f (x)d ’ 

O 12 

* 
Observe que nas representações acima, os campos i//(x) e ijj (x) não são 

complexos conjugados. As transformações de gauge são 

f (x)  > G(x)f(x)G^(x+J) 
o o 2 

f (x)  > G(x)f (x)G^(x+J ) 
12 12 1 

f (x)  > G(x)f (x)G Nx) O O 

f* (x)  4 G(x)f* (x)G'^(x+J +i ) . (4.17) 
12 12 12 

No segundo caso, os campos spinoriais serão representados 

pelas co-cadeias 

^(x) = f (x)d’' + f (x)d’'’^^ 
O 12 

e (4.18) 

i//*(x) = f (x)d^’^ + f (x)d^’^ 
O 12 

com as transformações de gauge 
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f (x)  > G(x)f (x)G ^(x) O O 

f (x) — > G(x)f (x)G ^(x+i +1 ) , 
12 12 12 

f (x)  > G(x)f (x)G ^(x+i ) 
o o 2 

f (x)  > G(x)f (x)G ^(x+J ) . (4.19) 
12 12 1 

2 
Para o campo escalar, a base da nossa escolha é 0vdx e 

representaremos pela co-cadeia 

0(x) = S(x)d^’^ + Píxld""’^ , (4.20) 

com as transformações de gauge 

S(x)  > G(x)S(x)G ^x +1 ) 
1 2 

e 

P(x)  ^ G(x)P(x)G"^(x+J^; 

(4.21) 

Os campos de gauge e o "tensor eletromagnético" na rede são 

definidos por (1.57) e (1.64). 

Inicialmente, concentraremos os nossos cálculos para a 

primeira escolha dos campos spinoriais. Vamos transcrever a densidade de 

lagrangeana (4.7) para a rede, usando os campos e o seus conjugados 

hermitianos para manter a invariança de gauge. 
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t (x) = Tr - ^  3^ (x) (x) + — 
2, , , ,2 12 12 ,2 

2g 1 
D^S(x)(D^S(x)) + 

+ D^P(x)(D^P(x)) D^S(x)(D*S(x))’*' + D>(x)(D'P(x))'*’ 

+ f (x) O 
i D'f (x) - y D f (x) 
1 2 o 1 1 12 ■ 2 1 

♦ t 
12 

y DV (x) + y DV (x) 
J 2 12 1 1 o ■2 1 

+ f (x) O I - I (Vl2^-^)' 
2 1 

+ f (x) 12 
2 1 

gV2 f (x) o 
f^(x-J )S(x-i ) - S(x)f^(x) + (x-i )P(x-J ) + 

o 2 2 o 12 1 1 

P(x)f (x) 
12 f (x) 12 

f (x)S(x+i ) - S(x)f (x+J ) + 
12 1 12 2 

f (x)P(x+J ) + P(x)f (x+i ) 
o 2 o 1 

f (x) O S (x-J )f (x-J ) + 
2 o 2 

f (x)s'''(x)+p'^(x-J )f (x-i )-f_(x)p’’‘(x) 
o 1 12 1 12 s’*’(x+i )/’*' (x) + 

1 12 

- f"*" (x+J )s"*^(x) - P^(x+J )f"*^(x) + f^(x+l )p"*^(x) 
12 2 2 o o 1 

+ 2g" S(x)P(x+i^)-P(x)S(x+J^) P’’‘(x+J )s'*‘(x)-s'*‘(x+i )p‘*‘(x) 
^ 1 

(4.22) 
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As transformações supersimétricas correspondentes a (4.10) 

na rede são 

ôS(x) =ief(x) , ôs'*"(x) = ÍEf'*^(x) 
+ +0 + +0 

ô P(x) = ie f (x) 
+ +12 

ô P^(x) = íe (x) 
+ +12 

ô f (x) = Õ f (x) = õ'^f (x) = ô f'*' (x) = 0 
+0 +12 +0 +12 

ô f (x) = - ic 
+ o 

D'S(x) D"P(x) 
2 1 

õ f (x) = 
+ o 

IC 
(D'S(x))'^ (D'P(x))'*‘' 

1 1 

ô f (x) = 
+ 12 

- lE 
d"p(x) D^S(x) 

- gv^ S(x)P(x+J ) - P(x)S(x+J ) 
^ 1 

f Jx) 
12 

gVZl 1 
^ 1 2 

ô f "*^(x) = -íe 
+ 12 + 

(d!p(x))^ (d"s(x))^ 

-T- 

gV2 p'*'(x+i )s'^(x) - s'*‘(x+J )p‘*‘(x) 
2 1 

(x) 
12 

ô U(x,2) = ic VZlf (x), + + 2 o 
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5 u’*'(x,2) = - íc V2I f^(x) 
+ + 2 o 

ô U(x,l) = - ie V2I f (x) , 
+ + 1 12 

ô u’''(x,l) = ie V2I f'*' (x) , (4.23) 
+ + 1 12 

Nas expressões (4.22) e (4.23), junto com os campos 

S(x) , P(x) , f (x) , f,.,(x) , f (x) , P,^(x) O 12 o 12 

foram introduzidos os campos conjugados 

4* •!• + *4* 4« *4* 
S (x) , P (x) , f (x) , f (x) , f (x) , f (x) 00 12 12 

cujas orientações na rede são opostas às dos campos originais; no limite 

do continuo estes campos coincidem entre si. 

A lagrangeana (4.22) não é invariante pelas transformações 

supersimétricas (4.23). Esta invariança é conseguida adicionando ã 

lagrangeana um termo extra , definindo uma lagrangeana total 

£] = . (4.24) 

0 termo extra tem a seguinte forma : 
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5 (x) 
= tr' 

1 1 
1 2 

p’*'(x+J )s’’'(x) - S^{x+1 )p‘''(x) 
1 1 

5 (x) 12 
1 1 

1 2 
P(x)S(x+i ) - S(x)P(x+J ] 

1 2 

D U(x+i ,2) 
1 1 

i 1 
1 2 

P(x+J )s’'‘(x+J ) -s’*'(x)P(x) 
2 1 

(D'U(x+i ,2)) 
1 1 

1 1 
1 2 

p'''(x)S(x) - S(x+J )p'*‘(x+J ) 
1 2 

(4.25) 

Podemos observar que este termo adicional se anula, £ = 0, no + 

limite do tempo continuo 0). 

A corrente de Noether na rede [7] é dado por 

5i?(x+e^) 

ôA <p(x) 
8(p 

i 
5^(x) 

ôh* <p{x) 
Mi 

òtp (x+e^) 
i 

(4.26) 

que para o caso considerado será representado por 

A = A"J + A~J 
P + 22+ 11+ 0 (4.27) 

forma 

Vamos escrever a componente temporal da corrente, J , na 
2+ 

J = 
2+ 

,(1) 
2+ 

+ J 
(2) 
2+ 

+ J (1) 
2+ 2+ (4.28) 

81 



onde 

(x) = Tr •] j 
2+ 11 

2 ^ 
(D‘S(x+i ))’’‘u'’‘(x,2)f (x)+(D^P(x))'''u(x,2)f (x+J ) 

2 2 0 212 2 

U (x+i^, 1) f (x+i )s’*'(x+J )U(x+J ,2)-s''*Cx)U(x,2)f (x+i ) 
12 2 1 1 12 2 

+ U(x+i , 1) 
2 

u'''(x+J ,2)f (x+J )p’''(x+J ) - p'*‘(x+J )U^(x,2)f (x) 
1 o 1 2 2 o 

f ^(x)f (x)f (x++J ) + f (x)f (x+J )f'^(x) 
12 o 12 2 0 0 2 0 , (4.29) 

-iJ^^^(x) = Tr 
2+ 

^ (x) 12 

gv^i i 1 2 

U(x,0)f (x+J ) + gi/2 
12 2 ^ f (x)D‘S(x+J )S (x) 

o 2 2 

(d"p(x))’^S(x) + p’*‘(x+J^)s’''(x)-S^(x+J jp‘‘'(x) U(x,2) f (x+J ) 12 2 

J r 
U (x+J^, 1) 

1* + 
Pix+ljS (x+J )f (x+J ) - S (x)f (x)P(x+J ) 

2 1 o 1 o 2 

+ (D^S(x))’’’s(x)f (x+J ) 12 2 (4.30) 

Escreveremos J como 
1 + 

J = 
1+ 1+ 1+ 1+ - J 

(2)t 
1 + (4.31) 
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onde 

= Tr 
1+ 1 

(D^P(x+i^ ))^u'*' (x, 1 )f^^(x)+(D^S(x))^U(x, 1 )f^(x+; 

2 
U'’’(x,l)f (x)(D‘S(x+i ))'*’ + p‘'‘(x)U(x, 1)D f (x+i ) 

12 2 1 2 o 1 

f ix+1 )f^ (x)f (x) - f"'^(x)f (x)f (x+i ] 
o 1 12 12 12 12 o 1 

(4.32) 

•ij'^’(x) = Tr 
1 + 

5 (x) 
 U(x, 1 )f (x+i ) + gV2 

O 1 
\gV21 1 

12 

-D P(x+i )P (x)f ^(x) 
1 1 12 

p'’'(x-i )s'‘‘(x) - s’'‘(x+i )p’’‘(x) 
o 1 

U(x.l)f (x+i ) 
o 1 

+ U (x+i , 1) 
2 

s'^(x)P(x) - P(x+i^)s’’‘(x+i^) f (x+i ) o 1 

+ U (x,l)P(x) S^(x-i +i )f (x-i +i ) -f (x+i )s’’'(x+i ) 2 1o 2 1 o 1 1 

(D''p(x))’’’p(x)f (x+i ) - P(x)’^f (x)D'S(x+i ) 
^2 ol 12 21 

(4.33) 

As partes 
j( i)t 

e 
j(2>t 

M* 
são obtidas pelas regras usuais de 

conugação hermitiana, 
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+ + t t 
(A A ... A ) = A . . . A A . 

12 n n 2 1 

Para o segundo caso, procederemos de forma análoga ao 

anterior. Neste caso, f(x) comporta-se como uma "função" ponto, S(x) e 
O 

* * 
f (x) como "função" link na direção temporal, P(x) e f (x) como 

o 12 

"função" link na direção espacial e como "função" plaqueta. As 

transformações de gauge estão definidas em (4.19) e (4.21). 

Teranscrevermos a lagrangeana (4.9) na rede como: 

£ (x) = Tr -     (x) 5 (x) + — 
2g^(J 1 f 

12 2 

D'S(x)(D S(x)) 
2 2 

+ D>(x)(D^P(x))’'' D^S(x)(D^S(x))'^ + D'P(x)(D‘P(x))‘'‘ 

+ f (x) O 
\ D'f*(x)+ y D‘f* (x) 
1 2 o 1 1 12 

2 1 
12 

1 + * 1 + ♦ 
4 D f (x)- y B f {x) 
1 2 12 1 1 o ■2 1 

+ f (x) O 
2 1 

+ f (x) 12 
1 4-* + 1+* + 
4 (D f (x)) - 4 (D> (x)V 1212 1 lo 

2 1 

gV2 
4* 

f (x) 
o 

/■^(x-J )S(x-J^) - S(x)f*‘*'(x) + (x-i )P(x-J o 2 2 o 12 1 1 

P(x)f*'’‘(x) 
12 

- f (x) 
12 

f (x)S(x+J ) - S(x)f (x+1 ] 
12 1 12 2 
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com 

f (x)p(x+j ) + p(x)f (x+i : 
o 2 o 1 - f (x) o 

s"*"(x-J )f ix-1 ] 
2 o 2 

f*(x)s’’'(x)+p'’'(x-J )f* (x-i )-f* (x)p’*‘(x) 
o 1 12 1 12 + f (x) 12 

s’’'(x+i )f*’’’(x) 
1 12 

♦ + + + *+ *+ 
- f (x+i )S (x) - P (x+i )f (x) + f (x+i )P (x) 

12 2 2 o o 1 

+ 2g^ S(x)P(x+i )-P(x)S(x+i ) 
2 1 

p’''(x+i )s’''(x)-s’''(x+i )p’*'(x) 
2 1 

as transformaçães supersimétricas 

ô_S(x) = ie f (x) , ô_s"*^(x) = ie f ^(x) 
- O “O 

(4.34) 

ô P(x) = ic f (x) 
- 12 

ôP^(x) = ie f^(x) 
- 12 

ô r(x) - O -IC p D'S(x) + ^ D'P^(x) 
2 1 

Ô f (x) = ic 
- 1 2 

-J D^P(x) + J D^S(x) ^-12 
(x) 

gVZl 1 
12 

+ gV2 S(x)P(x+i ) - P(x)S(x+i ' 
2 1 

ô f*(x) = ô f* (x) = ô f*‘*‘(x) = ô f*‘*'(x) = 0 
- o - 12 - o - 12 
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ô = 
- o 

- IC j (D^SÍx))’*' + i (DjP^íx))'^ 
2 ^ \ 

5 f (x) = ic 
- 12 

1 +1 + 
4 (d!p(x))^ + i (d;s(x))^ +   

2 " ^ ^ 

gi/2 P‘*'(x+i )s’’‘(x) - s‘*‘(x+i )p'*‘(x) 
2 1 

ô U(x,2) = ie gi/2J f (x) 
- - 2 O 

ôu'*'(x,2) =- ic gv^J f ”*^(x) - - 2 O 

5 U(x,l) = ic gv^j! f (x) 
- 1 12 

ô u"*^(x,l) = ic gV21 (4.35) 

A lagrangeana (4.33) não é invariante pelas transformações 

supersimétricas (4.34). Adicionaremos um termo extra , de forma que a 

lagrangeana total 

(4.36) 

seja invariante. 0 termo extra tem a seguinte forma : 

r = tr 
5 (x) ^ 12 

1 1 
1 2 

s"*" (x+1 ^) p"''(X)-p’*'(x+J ^) s”*" (X) 
1 1 

1 2 
P(x)S(x+J 
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S(x)P(x+i 
D"U{x+J ,2) 

1 1 + - 
i J 

1 2 
P(x+J )S^ix+l ) - s’*'(x)P(x) 

2 1 

(D'U(x+J ,2)) 
1 1 

1 1 
1 2 

p’*"(x)S(x) - S(x+i )p’’'(x+i ] 
1 2 

(4.37) 

Podemos observar que o termo adicional se anula, £ = 0, 

limite do tempo continuo {1^— 0). 

A corrente de Noether na rede é dado por 

A J + A J =0 
22- 11- 

(4.38) 

Vamos escrever a corrente J na forma 
2- 

2- 2- 2- 2- 2- 
(4.39) 

onde 

.lj'‘’(x) . Tr 
2 

(D S(x+J ))''‘u‘’‘(x,2)f*(x) +(D''p(x))‘''u(x,2)f* (x+J ) 22 o 2 12 2 

U (x+1 , 1) 
2 

S (x)U(x,2)f (x+i ) - f (x+i )S (x+J )U(x+J ,2) 
12 2 12 2 1 1 

- U(X+J ,1) 
2 

u''"(x+J ,2)f*(x+J )p’*'(x+J ) - p’''(x+J )u'*'(x,2)f*(x) 1 o 1 2 2 o 

(x)f (x)f (x++i ) + f (x+J )f "*"(x)f (x) 
12 o 12 2 0 2 0 O , (4.40) 

no 
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= Tr-I 
- 5 (x) 

gV2J 1 
1 2 

U(x,2)f ix+1 ) + gVZ 
12 2 ® 

f (x)D S(x+J )S (x) 
o 2 2 

(D^P(x)) S(x) + P'*'(x+i )s‘'‘(x)-s‘*‘(x+J )p’’‘(x) 
2 1 U(x,2) f (x+J ) 12 2 

U (x+i^, 1) P(x+i )s'*'(x+i )f*(x+J ) - s’*'(x)f*(x)P(x+J ) 
2 1 o 1 o 2 

+ (D'"s(x))’'*S(x)f* (x+J ) 
1 12 2 (4.41) 

Escreveremos J como 
1 + 

J = 
1- 1- 1- 1- 

- J 
(2)t 

(4.42) 

onde 

-ij|^^x) = Tr Jj 
1 ■- 

(D"P(x+J^))‘’‘u''‘(x, l)/^(x) +(D^S(x))‘^U(x, l)/(x+J^: 

2 
U‘‘‘(x,l)f* (x)(D'S(x+J ))’*' - p‘'‘(x)U(x, l)D'f*(x+J : 

12 2 1 2 o 1 

+ gV21 f (x+J )f '*'(x)f (x) - f '*'(x)f (x)f (x+J ) 
o 1 12 12 12 12 o 1 , (4.43) 

(1) I 
-iJ (x) = Tr-| U(x,l)f (x+J ) + gV2 

[gV21 1 ° ' 
1 2 

D"P(x+J )p‘'‘(x)f* (x) 
1 1 12 
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p’’"(x+J )s''‘(x) - s''‘(x+J )p'*'(x) 
2 1 u(x,i)f (x+j : 

o 1 

U ix+I , 1) 
2 

S (x)P(x) - P(x+J )S (x+J ) 
1 1 f (x+J : o 1 

- u'(x,l)P(x) s'’‘(x-J +J )f*(x-J +J ) - f*(x+J )s’’‘(x+J : 
21o21 ol 1 

(D^P(x))“''p(x)f*(x+J ) - Píx)"^/ (x)D‘S(x+J : 
2 o 1 12 2 1 (4.44) 

Podemos observar que a lagrangeana (4.22), as transformações 

supersimétricas (4.23), as correntes (4.27) e (4.30) do primeiro caso 

relacionam-se respectivamente com (4.33), (4.34), (4.38) e (4.41) por 

meio da "inversão temporal" definida pela seguintes transformações; 

f 
O f 

12 
« 

f 
12 

f 
o 

f 
12 <  

•t 
12 

S < > S P < > - P 

s < > s’*' , P < > - p’*' , (4.45) 

U(x,p) < > U(x,p) , u'*'(x,p) < > u'*'(x,p) 
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CONCLUSÕES 

Utilizamos o formalismo das formas diferenciais de 

Dirac-Kâhler para fazer a discretização do modelo de Yang-Mills com 

supersimetria N=2 no espaço tempo bi-dimensional. 0 formalismo de 

Dirac-Kâhler é um dos poucos, senão o único, que fornece um mecanismo 

completo para a discretização de modelos fisicos, tendo-se mostrado 

particularmente útil em modelos de gauge com supersimetria. A principal 

vantagem refere-se ao tratamento unificado dispensado aos campos 

bosônicos e fermiônicos, particularmente importante em relação aos 

campos fermiônicos, onde o tradicional problema de degenerescência da 

energia simplesmente não se manifesta. Dificuldades com os campos de 

gauge também foram vencidas, pelo menos para os modelos na representação 

adjunta, como é o caso tratado aqui. 

Em modelos de Yang-Mills com supersimetria, a principal 

dificuldade que resta para a discretização reside justamente na 

representação da parte da interação supersimétrica dentro do formalismo 

de Dirac-Kâhler, devido em parte à multiplicidade dos campos fermiônicos 

contidos numa forma diferencial. 

Uma maneira de contornar este problema, em modelos 

supersimétricos, é recorrer à própria álgebra supersimétrica, que 

relaciona as supercargas com a hamiItoniana, através das relações de 

anti-comutação. Consiste em discretizar inicialmente as supercargas, 

que são férmions, e portanto podem ser representados por formas 

diferenciais, e a partir da super-álgebra, construir a hamiItoniana. A 

desvantagem deste procedimento é que permite somente a discretização 

espacial do modelo, permanecendo o tempo continuo. Este procedimento de 
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discretização foi aplicado no presente modelo no capitulo III. 

0 modelo utilizado neste trabalho, por ser relativamente 

simples, devido à restrição ao caso bi-dimensional, permitiu um 

tratamento mais completo de discretização da própria lagrangeana, a 

multiplicidade, ou duplicidade, no nosso caso bi-dimensional, de 

representação dos férmions resultando em duas versões da lagrangeana na 

rede, ambas com o correto limite no continuo, e com as transformações 

entre os campos das duas versões bem definidas, relacionadas com 

inversão temporal. Com este trabalho, esperamos ter contribuído para uma 

melhor compreensão do formalismo de Dirac-Kãhler, principalmente em suas 

aplicações para a construção de modelos na rede, já suficientemente 

desenvolvidas para atacar casos mais complexos como os modelos com 

supersimetrias estendidas. 
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