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Abstract. The Eotvos experiment has been taken as basis for metric theories of gravity and
particularly for the general theory of relativity (GTR), which assumes that gravitational and
inertial masses are identical. We highlight the fact that, unlike the long lasting and reigning
belief, the setup by E6tvos experiments and its follow-ups serve to demonstrate no more than a
mere linear proportionality between said masses, and not ineludibly their exclusive equality. So
much so that, as one distinct framework, Yarman—Arik—Kholmetskii (YARK) gravitation
theory, where a purely metric approach is not aimed, makes the identity between inertial and
gravitational masses no longer imperative while still remaining in full conformance with the
result of the E6tvos experiment, as well as that of free fall experiments. It is further shown that
Eo6tvos experiment deprives us of any knowledge concerning the determination of the
proportionality coefficient coming into play. Henceforward, the E6tvos experiment and its
follow-ups cannot be taken as a rigorous foundation for GTR. In this respect, we suggest a
crucial test of the equality of gravitational and inertial masses via the comparison of the
oscillation periods of two pendulums with different arm lengths, where the deviation of the
predictions by GTR and by YARK theory represents a measurable value.

1. Introduction

It is known that the Einstein equivalence principle sets up an equality of gravitational and inertial
masses, and that this represents the necessary condition to describe gravity as the alteration of the
geometry of space-time. The identity of gravitational and inertial masses gave rise to the development
of purely metric theories of gravity, where general theory of relativity (GTR) is the most recognized
one (see, e.g. [1-4]). It is also widely accepted that the assumption about the equality of gravitational
and inertial masses had been confirmed in the famous experiments by E6tvos, as well as in various
modern experiments [5-7].

Besides, it is generally believed that non-metric theories of gravity — which, in general, do not
necessarily require the equality of gravitational and inertial masses (see e.g. [8]) — ought to fail in
providing a plausible description of gravitational phenomena.

These facts reinforced the strong belief that the experimental results ultimately reporting the
equality of gravitational and inertial masses are in full harmony with contemporary presentations about
gravity, and further experiments on this subject could rather be aimed for the search of a new kind of
interaction (such as modern free fall experiments [9-12]). It is important to stress that free fall
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experiments actually prove that the fall motion is independent of the mass of the object of concern, and
this does not necessarily mean that gravitational mass and inertial mass are identical. If ever they were,
the mass of the object would necessarily drop off of the equation of motion. At the same time, as we
will elaborate on below, these mass components may well be not equal to each other.

Thus, the fact that available experiments destined to show the identity of gravitational and inertial
masses do not demonstrate anything other than that there is a linear proportionality of these masses to
each other instead of their strict equality (section 2). The proportionality choice for the given masses
appears to be skipped, because GTR and the extended theories of gravity assume the coefficient of
proportionality K to be exactly equal to unity; whereas, any non-metric theories (where K, in general,
differs from unity) are blamed to be at odds with experimental facts.

This situation is drastically shaken with the development of Yarman-Arik-Kholmetskii (Y ARK)
gravitation theory, which implies neither a purely metric theory, nor a purely dynamical theory, but
rather combines the properties of both of them. At the moment, YARK remains the most successful
theory in the explanation of both the old and modern results in cosmology, including those of them,
which still did not find explanations under GTR. In addition, YARK represents the only alternative to
GTR, which provides its own successful explanation of the origin of the GW150914 and GW151226
signals beyond the mechanism involving gravitational waves [13].

We emphasize that the description of gravity in YARK theory beyond a purely metric approach
does not, in general, require the identity of gravitational and inertial masses; it is sufficient to stipulate
only the linear proportionality between these mass components (see section 3). What is more, YARK
theory provides an explicit expression for the coefficient of proportionality K between the gravitational
and inertial masses, which, however, cannot be measured in the known setups, including the
experiments by E6tvos. We further demonstrate that the null result of such experiments still admits the
dependence of K on the intensity of gravity and the velocity of the test mass. In particular, we show in
section 3 that, in YARK theory, the intensity of gravity affects the gravitational and inertial masses in
exactly the same extent, and does not alter the value of the coefficient K.

We show below that for a moving test mass, the gravitational mass is inversely proportional to the

Lorentz factor y = (l—vz/ c’ )_1/2, while the inertial mass is linearly proportional to y, and the

coefficient K is determined by the inverse of 7. We discuss the physical meaning of these results and

possible ways of their experimental verification. In section 4 we propose a new test for the
determination of the relationship between gravitational and inertial masses, which is based on the
comparison of the oscillation periods of two pendulums with different arm-lengths. The difference of
the given oscillation periods differ in GTR and in YARK at the value, which can be reliably measured
under modern developments in experimental techniques. Thus, the proposed experiment can be
considered as a qualitative new test of GTR. Finally, we conclude in section 5.

2. Relationship between gravitational and inertial masses via measurements

Measurements had been carried out since several centuries to check out the equality of gravitational
and inertial masses (e.g., [5-7,9-12]). The fact remains that stating the motion of an object is
independent of its proper mass, had been taken as a sound ground with regards to claiming the identity
of gravitational and inertial masses. However, as we will see below, even though the ratio of the
gravitational mass to the inertial mass of a given object can be different than unity; its proper mass still
drops off from its equation of motion.

In the present contribution we do not review the mentioned experiments, and address only a typical
and the most famous experiment on this subject performed by E6tvos [5].

The apparatus by Eotvos, features two test masses A and B fixed on the opposite sides of the arms
of a torsion balance. The masses A and B in both arms are subject to a gravitational pull directed
downward (the z axis) governed by Earth’s local acceleration of free fall g at the given location (see
Fig. 1). The related weights are denoted by mgsg and mgsrg, where mga and mgg are the respective
gravitational masses. Both masses are subject to a centrifugal push of accelerarion a on the surface of
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Earth due to its self-rotation directed outward (the y axis) at the given latitude on the plane parallel to
Earth’s equator. The related forces are denoted by m4a and mypa, where mi, and myp are the respective
inertial masses.

.
Figure 1 Forces acting on the masses A and B in the torsion balance by E6tvos [14]

Thus, the torque 7 experienced by the balance is given by the equation

-
My Myg | Mpg

T= mIAaxlAg( - -a. | - (1)
mBI mAI mB[

Hence, the condition of no torsion is to be written as the equality

m m
BG _ TPAG _ O , (2)
Mg, My

and, astoundingly enough, it has been believed that this condition can only hold in the case
myg=my, 3)

My = My, 4)

However, one can see that the result by E6tvos (no torsion) does not necessarily mean the equality of
the gravitational and inertial masses. Elementary mathematics already points to the general solution
about the plain linear proportionality of the given pair of masses; i.e.,

m; =Km, . (6))

Here K is some coefficient, which, by supposition, does not depend on mg and m; — and thus,
represents a function of motional characteristics of the object under consideration (as a minimum, on
its velocity) and the intensity of gravity at the location of apparatus. And there appears strictly no
evidence whatsoever that K can be taken as unity.

Applying now eq. (5) to the E6tvos experiment where my, = K m,, and m,, = K,m,,, we

obtain from eq. (1)
K,-K
T= m,AaxlAM. (6)
gKB _az
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For any observer moving with respect to the E6tvds apparatus, the motional characteristic of the
masses A and B (which rest with respect to each other) are the same. Besides, the intensity of gravity
at points A and B is also practically the same with a very high precision. Hence, we get K;= K3, so
that eq. (6) yields 7 =0, which is in full agreement with the measured results. However, this by no
means entails Ky = Kp= K= 1.

We emphasize that the possibility of K4 = Kz# 1 was well considered earlier by the scientific
commnunity. However, it was without verifiable foundation adopted that K must be a universal
constant; and the only possibility that would fullfill this anticipation must have been K = 1 [15]
according to purely metric gravitational theories; however, we again emphasize that the Eotvos
experiment does not constitute any proof of the equality K = 1.

As we will see below, in YARK theory (which happens to be, in fact, the first successful non-
metric theory of gravity) the parameter K is, in general, different than unity and depends on the
velocity of the object, which also well agrees with the result of the E6tvos experiment.

In section 3 we remind cornerstone features of YARK theory and clarify its physical meaning,
which is important for a better elucidation and discussion of the implications of the result of the
E6tvos experiment.

3. Gravitational and inertial masses in YARK gravitation theory
In our papers [16-19], we already presented an introduction to YARK theory, which is based on the
framework developed by Yarman [20-27] and advanced together with his colleagues [16-19,28-31].
For the sake of convenience, below we reproduce some important points of this theory by focusing our
attention on its physical meaning.

The root postulate of YARK theory states that the overall energy of the object with the proper
mass my initially measured at an infinitely far away distance from all other masses in the presence of
gravity acquires the form [22,23]

E =ymocz(l—EB/mocz), (7

where y is the Lorentz factor associated with the motion of the object, and Ep represents the “static

binding energy” defined by the work done to the object in order to bring it quasi-statically from
infinity to the given location.

For our immediate purpose, we reproduce the motional equation for a test object with the rest mass
m in the presence of immovable heavy host mass M (the one-body problem):

Mme “r d _a
— G# = E}/Omoe vy, (8)
0
or
Mr  dv
-G~ = o 9)
Vor dt

. d w
where we have taken into account that, for the one-body problem, ;(706 )= 0 due to the energy
t

conservation law. Here 7 is the distance between M and m, and y,, is measured by a local observer.

Eq. (9) indicates that the rest mass of the test particle drops off of the motional equation, so that
YARK theory is fully compatible with the weak equivalence principle (WEP). Even so, YARK theory
cannot be joined to metric theories, because the force of gravity remains “real” in any reference frame,
including the proper frame of a particle in a free fall [32]. In the vicinity of such a particle, the metric
tensor in its proper frame acquires the Minkowskian form; this result simply reflects the known
mathematical theorem stating that any symmetric tensor with constant coefficients (defined at the
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location of the particle) can be presented in a diagonal form via an appropriate transformation.
However, the latter theorem has different physical interpretations in metric theories and in YARK
respectively. Namely, according to the logic of any metric theory like GTR, the gravitational field,
which characterizes the deviation of space-time geometry from the Minkowskian one, totally
disappears in this frame along with the corresponding gravitational “force” and energy.

This GTR result concurrently signifies the impossibility to localize gravitational energy; which is
reflected in the known fact that, in any metric theory, this energy cannot be described via a true
energy-momentum tensor, but rather via a pseudo-tensor; where the latter obeys tensorial
transformations only under linear space-time transformations.

However, these results are inapplicable to YARK theory where the force of gravity is “real” to the
same extent as that of any other force in other areas of physics. And if it exists in one frame, it cannot
disappear in another frame; including the frame of the free fall of the test particle. In other words, the
particle continues to “sense” the gravitational field via the variation of its rest mass even in the state of
a free fall. From the viewpoint of a distant inertial observer, the frame of free fall moves with a non-
vanishing acceleration, and hence, the test object additionally experiences an action of a “fictitious”
force — which is, in effect, capable of exactly counterbalancing the gravitational force.

These results signify that YARK theory, in fact, successfully combines the properties of metric and
dynamical theories, and it is fully compatible with available observations in the limit of a weak
gravitational field (gravitational redshift, precession of the perihelion of Mercury [22,23,25],
gravitational lensing [34], Shapiro Delay [35,36]).

YARK theory also achieved considerable successes in the explanation of modern observations
where the weak relativistic limit is abandoned (e.g., derivation of the alternating sign for the
accelerated expansion of the Universe without the need to involve a notion of “dark energy”;
presentation of the Hubble constant in an analytical form; elimination of the “information paradox” for
black holes of the YARK type [19,37]). What is more, YARK theory remains the only alternative to
GTR, which provides its explanation of the GW150914 and GW151226 signals of LIGO beyond the
hypothesis about gravitational waves [13].

Besides these, we wish to spotlight two very recent experimental facts — the extra-energy shift
between emission and absorption resonant lines in a rotating system [38-41], and the practically null
bending of high-energy j-quanta under Earth’s gravity [42] — both of which have found a successful
explanation under YARK theory [16] while they still remain puzzling in GTR [32,43].

Finally, we stress that YARK theory of gravity is fully compatible with quantum mechanics [24].
Thus, YARK theory definitely reflects certain advantages along with combined metric and dynamical
approaches in comparison with a purely metric approach such as that found in GTR.

It is worth reiterating the fact that such a combination of both metric and dynamic traits does not
inevitably require the equality of gravitational and inertial masses, but only their linear
proportionality,with the coefficient K, being in general, different than unity.

Next, we address to eq. (8) and remind that its lhs represents the gravitational force acting on the
object, which should be sensitive to the gravitational mass of the particle mg. On the other hand, the
rhs of eq. (8) defines the total time derivative of the momentum of particle, which should include its
inertial mass m;.

At the same time, one can see that eq. (8) does not allow us to unambiguously establish a
relationship between gravitational and inertial masses. In this situation, we have to revert to reasonable
physical argumentations. In particular, in YARK theory, we can demand that for a particle at rest, both
mass components coincide with each other and equal to [21]

mg; =m, =mye “, (10)

which means that they both obey the original postulate of YARK theory (1).
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It is naturally to demand that the inertial mass of any object should be defined in such a way that
this mass component acquires its standard relativistic form in the absence of gravity. This yield just a
single definition of the inertial mass of a moving particle as

m; = yympe . (11)

This definition of inertial mass, taken jointly with the motional equations (8), still leaves a freedom
with regards to the setup of the gravitational mass; which, from a mathematical viewpoint, is restricted
only by the requirement to keep the equivalence of eqgs. (8) and (9). In particular, we can propose to
formally define the gravitational mass as

mg =y, mge ”, (12)
with the presentation of eq. (8) via the inertial and gravitational masses in the form

Mmg.r d
e =Dy, (13)
7 n+1r3 dt 170

0

-G

where 7 is a number to be fixed.

Then, one can scrutinize that the substitution of egs. (11) and (12) into eq. (13) indeed yields the
motional equation (9), which is free from any mass component.

Comparing eqs. (11) and (12), we see that the equality of m; and mg — as required by metric
theories of gravity — can, as a choice, indeed be mathematically stated at » = 1 when

mg =y me . (14)
Hence, under the definition (14), eq. (13) takes the form

Mm.r d
—GTiz—mlvo. (15)
VoV dt

Considering now the choice for a possible relationship between m; and mg in YARK theory, we are
not in the least restricted by the equality » = 1. Under these conditions, one can assume that a “true
relationship” between these mass components corresponds to the most compact form given by eq.
(13). One can see that this is achieved at the choice n = -1, where eq. (13) then acquires the simplest
Newtonian-like form

Mmgr _d s, (16)

-G
r dt

though its relativistic character is hidden in the definitions of n; and mg, i.e.
mg =mee ™ [y, m, =mye "y, . (17a,b)

One can see that the substitution of egs. (17a), (17b) into eq. (16) leaves unchanged the final
motional equation (9). Formally other choices for » are allowed, they seem not plausible or even
necessary. Further, it follows from egs. (17a), (17b) that the ratio of gravitational and inertial masses in
YARK theory becomes equal to
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— =K=——=1—-— (18)

Thus, for the experiment by Eotvos (as well as for any other similar experiment where the test
masses A and B are at rest with respect to each other); eq. (18) yields K4 = K3, which, according to eq.
(6), provides a vanishing torsion in the E6tvos balance.

But this, as we have elaborated previously, cannot be considered as a demonstration of K=1, and
the claim about the necessity of metric theories of gravity becomes groundless.

Given such circumstances, two crucial questions emerge:

- what is the physical meaning of the definitions (17a), (17b)?
- could we distinguish the assumed expressions for the gravitational mass in metric theories
(14) and in YARK theory (17a) in appropriate measurements?

In order to answer the first question, we remind the old problem of “harmony of phases” pointed
out by de Broglie [44]. It originates from two different definitions of frequency based on some
intrinsic periodic processes related to a uniform translational motion of a test particle with the rest
mass myo. The first kind of frequency emerges in the equality

myc® =hv,, (19)

which characterizes the frequency of the radiation with an energy equal to the rest energy of the
particle. Hence, for a moving particle, we have

ym,c’ =hv,, (20)
so that egs. (18), (19) provide the relationship
v, =y, 21)

On the other hand, due to the relativistic dilation of time, the frequency of any processes related to
a moving particle decreases by ytimes; i.e.

Ve =VolV- (22)
Thus, comparing eqs. (17a), (17b) with egs. (20) and (21), we get the relationships

myc* =hv,, mc’ =hv,;and (23)

K:mG/mI :vG/VI :1/);02,

Eq. (23) discloses the physical meaning of the relativistic behavior of gravitational and inertial
masses. Namely, we can suppose that an observer tracking the motion of the particle comes to
conclude that, via the gravitational mass, a particle “senses” the metric properties of space-time related
to the variation of its intrinsic frequency vs; whereas via the inertial mass, the particle “senses” its
dynamical properties characterized by the frequency v;.

One can add that the different dependence of gravitational and inertial masses on the factor y
according to egs. (17a), (17b) had been first suggested by Mie [45-47], when he sought a compatibility
between the STR and gravitation; though he could not capture the rest mass decreasing factor of ¢*
specific to YARK theory in egs. (17a), (17b) [48]. We can add that eq. (17a) signifies that the density
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of the gravitational mass of any object does not depend on its velocity insofar as the volume of this
object is reduced by y times. A reasonable explanation of this fact is given by Mie on the basis of the

Hamiltonian approach to the description of gravity [45-48]. After the development of GTR, this
approach was, in point of fact, denied. However, with the development of YARK theory, some of the
results of Mie could be topical again, along with the problem of seeking new approaches to measure
the actual relationship between gravitational and inertial masses.

We emphasize again that the assumed inequality of gravitational and inertial mass components
does not affect the motional equation (9) for the one-body problem. What is more, one can show (see,
e.g., [21]) that the motional equation (9) for the one-body problem in YARK theory could differ from
the corresponding motional equation for the one-body problem in GTR in the order ¢ and higher.

Therefore, a wide class of gravitational problems, which can be approximated by the one-body
problem in the case of a weak gravitational field (e.g., the precession of the perihelion of Mercury
[22]) has practically identical solutions in GTR and in YARK within the achieved measurement
precision. Nevertheless, the relative measurement error of the order (v/c)*, needed to distinguish the
predictions of YARK and GTR, can be achieved via appropriate tests where some effects of the
indicated order (v/c)?, being tiny for non-relativistic objects, have the property to be accumulated with
time via repeating measurements under identical conditions. For example, this can be made in
experiments with a pendulum, if one aims to measure its oscillation period in the gravitational field of
Earth. In the next section, we describe the essence of such an experiment and show that the difference
between the predictions of YARK theory and GTR can indeed be reliably measured on the basis of
high-quality pendulum systems with different arm lengths.

4. Proposal for a crucial test of GTR versus YARK theory: Comparing oscillations of pendulums
with different arm lengths

First we show that the motional equations for a pendulum oscillating in a gravitational field, derived in
GTR and in YARK theory correspondingly, differ from each other on the order of (v/c)?, where v is a
typical velocity of a suspended mass m of the pendulum. Below we derive the pendulum equations in
YARK and in GTR, assuming that the mass of the arm of the pendulum is negligible in comparison
with m, and the length of the arm is equal to L.

4.1. Pendulum equation in YARK theory
To proceed further, we introduce the angle € between the axis y and the pendulum arm. Then, we

consider the process where we move the pendulum mass quasistatically via pushing it along the
circumference of radius L from its original angular position @ to the final position @ + d@ Designating
the infinitely short path d/ = Ld@ of the pendulum mass, we obtain the variation of this mass dm due
to the YARK postulate (7) as

mgsin @ = dmc™ . (24)

Carrying out a corresponding integration between the angles 6, (the amplitude value) and &, we

obtain the rest mass of the pendulum as the function of 4:

sl cos f—cos 0 )} sk (cos O—cos 0, )}

m(6) = m(, )JT” = moe*“(%)e[? (25)

Next, we take into account that, due to the energy conservation law, the total mass of the pendulum
should remain constant, i.e.
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gL
B ——7(0056’—00590 ) 1
mye ()2, ~——— = constant . (26)
1-v/c

The pendulum equation of YARK theory is obtained via the differentiation of eq. (26):

—g—f(cosﬁ—cos 0y)

i“—2=o,or _gdisin0f1—v? e = 27)

dt J1-v*/c 1-v?/c?
Eq. (27) can be straightforwardly generalized to the vector form
. 7 21 1 dv .
—gsinf,/1-v /c 7 = ﬁz , which leads to
1-v/c

N Y L do
—gSIHH 1—V2/C2=W?. (28)

Further, we see that eq. (28) admits a presentation in the Newtonian-like form

. do
—mggsing =m L—- (29)
dt

along with the gravitational mass

m= moe’“’(‘g‘))(l—vz/czy/2 (30)
and the inertial mass

m, :moe’“(‘%)(l—vz/cz)_l/z, (31)
yielding the relationship

my =m1(1—v2/cz), (32)

which coincides with eq. (18) obtained above.
Substituting eq. (32) into eq. (29), and using the approximation of small oscillations (where
sin@=60), which is sufficient for the present analysis, we obtain

do g v_2
d’ L c’

8
=60=0. 33
I (33)

Here we omit the detailed solution of eq. (33), and present the final result

a)LZ\/gL/LL\ll_<VL2>/Cza (34)
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where <vL2> is some averaged velocity of the pendulum mass over the period of oscillation as

measured by the local observer. Therefore, the period of oscillation of the pendulum predicted in
YARK theory is equal to

(TL)YARKZ%ZZ”VgL/LL(1_<VL2>/02)1/2- (35)

4.2. Pendulum equation in GTR
In order to derive the motional equation of the pendulum in GTR, we shall start with the expression for
the energy of a test particle in the Schwarzschild metric [1], i.e.

Egp = y,myc*N1=2a, (36)
where the Lorentz factor as . is defined for the local observer, and the factor « is written for the
distant observer. Further, we take into account the fact that, during the oscillation of the pendulum, the
tension force of the pendulum arm is always orthogonal to the velocity of the pendulum mass, so that
this force does not do any work. Given these conditions, the energy (46) is conserved, and its time
differentiation yields
devL

a’a(l—sz/c) (1-2a)LL (37)

Defining the quantity C :(l—sz/ C2Xl—2a)_l, we notice that it remains constant due to the

constancy of the energy (36). In this case, eq. (37) becomes similar to the classical Newtonian
pendulum equation where the constant parameter C is introduced. Hence, the period of oscillation of

such a pendulum is equal to
T, =2mJL/Cg . (38)

We express the constant C via the amplitude angle of the pendulum’s oscillation &, when

o= 0{((90) =a,, and v, (6,)=0. Hence, C = (1 -2a, )_1 , and eq. (38) acquires the form

Ty =2m L/ g1 -2, . (39)

In order to compare the equation of YARK (35) with the equation of GTR (39), we have to express
the ratio L/g via the corresponding local values. In the adopted approximation of small amplitude of
pendulum oscillation, when the direction of its arm does not significantly deviate from the radial
direction, we obtain in the Schwarzschild metric

L=L,\1-2a,, tth/ 1-2a,, g :gL(l—ZaO)m. (40a,b,c)

Hence, substituting egs. (40a) and (40c) into eq. (39), we get

1 Za 1/2
Topp =27, | —2—0— 3/2 NI =2 . 41)

8L (1 2a,
Thus, the GTR oscillation period for the local observer is equal to

10
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(TL)GTR =& Tom =v1- 20T, = 27TVLL/gL \/1—20(0 ) (42)

which is the final GTR expression for a local observer.

4.3. Comparison of the periods of oscillation of two pendulums with different arm lengths
Comparing now eqgs. (35) and (42), we first estimate the corresponding numerical values for a

terrestrial experiment, with ¢, = GM/RC2 ~0.7-107"7, v, =1 m/s, and sz /c2 ~107". Therefore,

the latter ratio can be fully neglected, and the difference between the predictions of YARK theory and
GTR with respect to the oscillation period of the pendulum is equal to

(T)yiek = (T ) :2n\/L:L—2n\/L:L 1-2a, =2n\/£(1—,/1—2a0)z2na0\/£. (43)
g g g g

At L, ~1 m, and g, = 9.8 m/s’, we obtain

(TL )YARK - (TL )GTR ~1.5x107. (44)

While this value lies within modern measurement capabilities, it still seems impractical to provide the
corresponding accuracy of mechanical oscillations of any pendulum where the difference (44) can be
reliably detected.

In order to overcome the indicated difficulty, we suggest to use two pendulums with different arm
lengths, and to compare their oscillation periods.

Thus, for two pendulums with the length L, and L respectively, the difference of their periods of
oscillation in YARK is equal to (for brevity, we omit below the subscript “L”):

(AT, )y =27L [ —27\[1] g = 22:L] g Wk ~1); (45)

hereinafter we adopt L; > L, and designate the ratio L, /L =k >1.
The same expression in GTR reads as

(AT, )y = 270 L] g (W —INT= 22, ~ 2772 (Wi - 1)1 - ). (46)

Hence, the difference in the oscillation periods of the two pendulums with different arm lengths, as
predicted in YARK and in GTR, is equal to

(ATL )YARK - (ATL )GTR =27a, \/L/_g(\/z - 1)- (47)

During a chosen overall measurement time 7, this difference per unit cycle of oscillation
accumulates and increases by the number N of the pendulums’ total cycle of oscillations that take
place during 7 . Thus, the accumulated difference during the chosen time 7 will be equal to

AT = N2z 1] g Wk =1)~ (o) (T, ), ot LT WE -1)= 211/ ) (48)

where we have taken N = T/ (T 0) and used eq. (35), neglecting the term <vL2 > / c’.

YARK
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Thus, the suggested “differential” method for the measurement of the difference of the periods of
oscillations for two pendulums with different arm lengths yields the value (48), which can be
measured via fixing, for example, the time moments of the pendulums at which they cross the
minimum altitude during oscillation. For example, at 7 = 10* s (about 15 min), and k = 2, we get

AT =~ 2x107s, which represents a readily measurable value.

Another point is that the quality of both pendulums must be very high (ensuring absence of friction
in a high vacuum chamber, etc); however, this does not constitute a difficult problem with respect to
quotidian achievements in experimental technique.

5. Conclusion

The principal outcome of the present paper is the explicit demonstration of the fact that the experiment
by Eotvos, as well as other experiments aimed to check the identity between gravitational ms and
inertial m; masses, all were inconclusive. They serve no more than displaying just an ordinary linear
proportionality of the gravitational and inertial mass components to each other with some
proportionality constant K. Thus, to the contrary to the widespread claim about the equality of the
gravitational mass and inertial mass, which is strongly assumed in GTR and extended theories of
gravity, is deprived of any reliable experimental evidence.

We would like to accentuate the fact that, within purely metric, or metric-affine gravitational
theories, the coefficient K must be exactly equal to unity; this is the necessary condition to reduce
gravity to the geometry of space-time. And the Eotvos experiment aimed to prove it, does not
constitute, and in fact has never constituted, any rigorous proof of it.

By the same token, we underline the factuality that the E6tvos experiment and modern experiments
on the same subject [6,7,9-12] cannot by any means be cited to condemn theories like YARK, which
admits the inequality, yet linear proportionality, of gravitational and inertial masses.

With the ordinary linear proportionality condition of gravitation mass to inertial mass, YARK
theory perfectly obeys the null result of any E6tvos type experiment; all the more so since YARK fully
predicts the null result of it.

In these respects, we re-analyzed the problem of the determination of gravitational and inertial
masses in YARK theory of gravity, and found that the coefficient proportionality K between mg and m;
depends on the velocity of the object. We have demonstrated that the YARK motional equation of the

test particle in the presence of gravity acquires the most compact form at K =1/ }/2 (with y being the

Lorentz factor of that particle), along with the gravitational and inertial mass components defined via
eqs. (17a), (17b). At the same time, the assumed equalities (17a), (17b) were conjectured through an
inverse problem setup by Mie (except our exponential mass decreasing factors), who sought a full
compatibility between STR and any theory of gravitation more than a 100 years ago [46]. We pointed
out that Mie considered this, as an inverse problem unlike how it was done straightforwardly in
YARK, where we landed at the given equations based on the law of energy conservation postulated in
the form of eq. (7), and in full conformity with quantum mechanics and the WEP.

Furthermore, we advanced physical argumentations (e.g., the problem of the harmony of phases
disclosed by de Broglie) that the inequality of gravitational and inertial masses could be tested in
suitable quantum mechanical phenomena.

We brought up a crucial point, i.e. the indication of the possibility to test the equality (or
inequality) of gravitational and inertial masses via a macroscopic pendulum experiment. In effect, we
have found above that, for an ordinary pendulum with an arm length of about 1 m, the difference
between YARK theory and GTR predictions with respect to the oscillation period is equal to only a
few nanoseconds. However, it is difficult to believe that even high-quality pendulums could provide an
accuracy of their motion where any effect of the mentioned order of magnitude could be measured.
Under these conditions, we suggested a “differential” method where two high-quality pendulums are
initially set to oscillate parallel to each other, and we proposed to measure the difference in periods of
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time of the given oscillations; the difference evidently accumulates with time, making realistic the
determination of the given difference for high-quality pendulum systems.

In this respect, we remind that, historically, the experiments for the comparison of periods of
oscillations 7 of two pendulums had been already carried out since Newton’s time. However, as
elaborated above, the variable parameter throughout was the pendulum mass m, so that the revealed
independence of 7 on m can be considered as one more successful test of WEP and nothing more.

Now we suggest comparing two pendulums with different arm lengths. Thereby, in the present
contribution, next to our fundamental revelations with regards to the quandary about the identity of
gravitational and inertial masses, we have shown that the expected difference of the oscillation periods
of the given pendulums (48) can be reliably measured, and will represent a new crucial test of GTR
versus YARK theory.
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