
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Vigier

IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012051

IOP Publishing

doi:10.1088/1742-6596/1251/1/012051

1

 

 

 

 

The Eötvös experiment, GTR, and differing gravitational and 
inertial masses: Proposition for a crucial test of metric theories 
 

T. Yarman,1A.L. Kholmetskii,2,* C. Marchal,3 O. Yarman,4 and M. Arik5 

 
1 Okan University, Istanbul, Turkey 
2 Belarus State University, Minsk, Belarus  
3 ONERA (Organisation Nationale d’Etudes et de Recherches Aérospatiales), Paris, 
France 
4 Istanbul University, Istanbul, Turkey 
5 Bogazici University, Istanbul, Turkey 
 
Abstract. The Eötvös experiment has been taken as basis for metric theories of gravity and 
particularly for the general theory of relativity (GTR), which assumes that gravitational and 
inertial masses are identical. We highlight the fact that, unlike the long lasting and reigning 
belief, the setup by Eötvös experiments and its follow-ups serve to demonstrate no more than a 
mere linear proportionality between said masses, and not ineludibly their exclusive equality. So 
much so that, as one distinct framework, Yarman–Arik–Kholmetskii (YARK) gravitation 
theory, where a purely metric approach is not aimed, makes the identity between inertial and 
gravitational masses no longer imperative while still remaining in full conformance with the 
result of the Eötvös experiment, as well as that of free fall experiments. It is further shown that 
Eötvös experiment deprives us of any knowledge concerning the determination of the 
proportionality coefficient coming into play. Henceforward, the Eötvös experiment and its 
follow-ups cannot be taken as a rigorous foundation for GTR. In this respect, we suggest a 
crucial test of the equality of gravitational and inertial masses via the comparison of the 
oscillation periods of two pendulums with different arm lengths, where the deviation of the 
predictions by GTR and by YARK theory represents a measurable value. 

 
 
1. Introduction 
It is known that the Einstein equivalence principle sets up an equality of gravitational and inertial 
masses, and that this represents the necessary condition to describe gravity as the alteration of the 
geometry of space-time. The identity of gravitational and inertial masses gave rise to the development 
of purely metric theories of gravity, where general theory of relativity (GTR) is the most recognized 
one (see, e.g. [1-4]). It is also widely accepted that the assumption about the equality of gravitational 
and inertial masses had been confirmed in the famous experiments by Eötvös, as well as in various 
modern experiments [5-7].  
       Besides, it is generally believed that non-metric theories of gravity – which, in general, do not 
necessarily require the equality of gravitational and inertial masses (see e.g. [8]) – ought to fail in 
providing a plausible description of gravitational phenomena.  
      These facts reinforced the strong belief that the experimental results ultimately reporting the 
equality of gravitational and inertial masses are in full harmony with contemporary presentations about 
gravity, and further experiments on this subject could rather be aimed for the search of a new kind of 
interaction (such as modern free fall experiments [9-12]). It is important to stress that free fall 
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experiments actually prove that the fall motion is independent of the mass of the object of concern, and 
this does not necessarily mean that gravitational mass and inertial mass are identical. If ever they were, 
the mass of the object would necessarily drop off of the equation of motion. At the same time, as we 
will elaborate on below, these mass components may well be not equal to each other.  
      Thus, the fact that available experiments destined to show the identity of gravitational and inertial 
masses do not demonstrate anything other than that there is a linear proportionality of these masses to 
each other instead of their strict equality (section 2). The proportionality choice for the given masses 
appears to be skipped, because GTR and the extended theories of gravity assume the coefficient of 
proportionality K to be exactly equal to unity; whereas, any non-metric theories (where K, in general, 
differs from unity) are blamed to be at odds with experimental facts. 
      This situation is drastically shaken with the development of Yarman-Arik-Kholmetskii (YARK) 
gravitation theory, which implies neither a purely metric theory, nor a purely dynamical theory, but 
rather combines the properties of both of them. At the moment, YARK remains the most successful 
theory in the explanation of both the old and modern results in cosmology, including those of them, 
which still did not find explanations under GTR. In addition, YARK represents the only alternative to 
GTR, which provides its own successful explanation of the origin of the GW150914 and GW151226 
signals beyond the mechanism involving gravitational waves [13].  
      We emphasize that the description of gravity in YARK theory beyond a purely metric approach 
does not, in general, require the identity of gravitational and inertial masses; it is sufficient to stipulate 
only the linear proportionality between these mass components (see section 3). What is more, YARK 
theory provides an explicit expression for the coefficient of proportionality K between the gravitational 
and inertial masses, which, however, cannot be measured in the known setups, including the 
experiments by Eötvös. We further demonstrate that the null result of such experiments still admits the 
dependence of K on the intensity of gravity and the velocity of the test mass. In particular, we show in 
section 3 that, in YARK theory, the intensity of gravity affects the gravitational and inertial masses in 
exactly the same extent, and does not alter the value of the coefficient K.  
      We show below that for a moving test mass, the gravitational mass is inversely proportional to the 

Lorentz factor � � 2/1221
�

�� cv� , while the inertial mass is linearly proportional to � , and the 

coefficient K is determined by the inverse of 2� . We discuss the physical meaning of these results and 

possible ways of their experimental verification. In section 4 we propose a new test for the 
determination of the relationship between gravitational and inertial masses, which is based on the 
comparison of the oscillation periods of two pendulums with different arm-lengths. The difference of 
the given oscillation periods differ in GTR and in YARK at the value, which can be reliably measured 
under modern developments in experimental techniques. Thus, the proposed experiment can be 
considered as a qualitative new test of GTR. Finally, we conclude in section 5. 

 
2. Relationship between gravitational and inertial masses via measurements  
Measurements had been carried out since several centuries to check out the equality of gravitational 
and inertial masses (e.g., [5-7,9-12]). The fact remains that stating the motion of an object is 
independent of its proper mass, had been taken as a sound ground with regards to claiming the identity 
of gravitational and inertial masses. However, as we will see below, even though the ratio of the 
gravitational mass to the inertial mass of a given object can be different than unity; its proper mass still 
drops off from its equation of motion. 
      In the present contribution we do not review the mentioned experiments, and address only a typical 
and the most famous experiment on this subject performed by Eötvös [5].  
      The apparatus by Eötvös, features two test masses A and B fixed on the opposite sides of the arms 
of a torsion balance. The masses A and B in both arms are subject to a gravitational pull directed 
downward (the z axis) governed by Earth’s local acceleration of free fall g at the given location (see 
Fig. 1). The related weights are denoted by mGAg and mGBg, where mGA and mGB are the respective 
gravitational masses. Both masses are subject to a centrifugal push of accelerarion a on the surface of 
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Earth due to its self-rotation directed outward (the y axis) at the given latitude on the plane parallel to 
Earth’s equator. The related forces are denoted by mIAa and mIBa, where mIA and mIB are the respective 
inertial masses. 

 
Figure 1 Forces acting on the masses A and B in the torsion balance by Eötvös [14] 
 

      Thus, the torque � experienced by the balance is given by the equation 
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      Hence, the condition of no torsion is to be written as the equality 
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and, astoundingly enough, it has been believed that this condition can only hold in the case  
 
       AIAG mm � ,                                                                  (3) 

       BIBG mm �                              (4) 

 
However, one can see that the result by Eötvös (no torsion) does not necessarily mean the equality of 
the gravitational and inertial masses. Elementary mathematics already points to the general solution 
about the plain linear proportionality of the given pair of masses; i.e., 
 
       IG Kmm � .      (5) 

 
Here K is some coefficient, which, by supposition, does not depend on mG and mI – and thus, 
represents a function of motional characteristics of the object under consideration (as a minimum, on 
its velocity) and the intensity of gravity at the location of apparatus. And there appears strictly no 
evidence whatsoever that K can be taken as unity. 
      Applying now eq. (5) to the Eötvös experiment where IAAGA mKm �  and IBBGB mKm � , we 

obtain from eq. (1) 
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      For any observer moving with respect to the Eötvös apparatus, the motional characteristic of the 
masses A and B (which rest with respect to each other) are the same. Besides, the intensity of gravity 
at points A and B is also practically the same with a very high precision. Hence, we get KA = KB, so 
that eq. (6) yields 0�τ , which is in full agreement with the measured results. However, this by no 
means entails KA = KB = K = 1.  
      We emphasize that the possibility of KA = KB� 1 was well considered earlier by the scientific 
commnunity. However, it was without verifiable foundation adopted that K must be a universal 
constant; and the only possibility that would fullfill this anticipation must have been K = 1 [15] 
according to purely metric gravitational theories; however, we again emphasize that the Eötvös 
experiment does not constitute any proof of the equality K = 1. 
      As we will see below, in YARK theory (which happens to be, in fact, the first successful non-
metric theory of gravity) the parameter K is, in general, different than unity and depends on the 
velocity of the object, which also well agrees with the result of the Eötvös experiment.  
      In section 3 we remind cornerstone features of YARK theory and clarify its physical meaning, 
which is important for a better elucidation and discussion of the implications of the result of the 
Eötvös experiment.  
 
3. Gravitational and inertial masses in YARK gravitation theory 
In our papers [16-19], we already presented an introduction to YARK theory, which is based on the 
framework developed by Yarman [20-27] and advanced together with his colleagues [16-19,28-31]. 
For the sake of convenience, below we reproduce some important points of this theory by focusing our 
attention on its physical meaning. 
      The root postulate of YARK theory states that the overall energy of the object with the proper 
mass m0 initially measured at an infinitely far away distance from all other masses in the presence of 
gravity acquires the form [22,23] 
 

    � �2
0

2
0 1 cmEcγmE B�� ,     (7) 

 
where�  is the Lorentz factor associated with the motion of the object, and EB represents the “static 
binding energy” defined by the work done to the object in order to bring it quasi-statically from 
infinity to the given location. 
      For our immediate purpose, we reproduce the motional equation for a test object with the rest mass 
m in the presence of immovable heavy host mass M (the one-body problem): 
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where we have taken into account that, for the one-body problem, � � 00 ���� e
dt
d

 due to the energy 

conservation law. Here r is the distance between M and m, and 0�  is measured by a local observer. 

      Eq. (9) indicates that the rest mass of the test particle drops off of the motional equation, so that 
YARK theory is fully compatible with the weak equivalence principle (WEP). Even so, YARK theory 
cannot be joined to metric theories, because the force of gravity remains “real” in any reference frame, 
including the proper frame of a particle in a free fall [32]. In the vicinity of such a particle, the metric 
tensor in its proper frame acquires the Minkowskian form; this result simply reflects the known 
mathematical theorem stating that any symmetric tensor with constant coefficients (defined at the 
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location of the particle) can be presented in a diagonal form via an appropriate transformation. 
However, the latter theorem has different physical interpretations in metric theories and in YARK 
respectively. Namely, according to the logic of any metric theory like GTR, the gravitational field, 
which characterizes the deviation of space-time geometry from the Minkowskian one, totally 
disappears in this frame along with the corresponding gravitational “force” and energy.  
      This GTR result concurrently signifies the impossibility to localize gravitational energy; which is 
reflected in the known fact that, in any metric theory, this energy cannot be described via a true 
energy-momentum tensor, but rather via a pseudo-tensor; where the latter obeys tensorial 
transformations only under linear space-time transformations.  
      However, these results are inapplicable to YARK theory where the force of gravity is “real” to the 
same extent as that of any other force in other areas of physics. And if it exists in one frame, it cannot 
disappear in another frame; including the frame of the free fall of the test particle. In other words, the 
particle continues to “sense” the gravitational field via the variation of its rest mass even in the state of 
a free fall. From the viewpoint of a distant inertial observer, the frame of free fall moves with a non-
vanishing acceleration, and hence, the test object additionally experiences an action of a “fictitious” 
force – which is, in effect, capable of exactly counterbalancing the gravitational force.  
      These results signify that YARK theory, in fact, successfully combines the properties of metric and 
dynamical theories, and it is fully compatible with available observations in the limit of a weak 
gravitational field (gravitational redshift, precession of the perihelion of Mercury [22,23,25], 
gravitational lensing [34], Shapiro Delay [35,36]).  
      YARK theory also achieved considerable successes in the explanation of modern observations 
where the weak relativistic limit is abandoned (e.g., derivation of the alternating sign for the 
accelerated expansion of the Universe without the need to involve a notion of “dark energy”; 
presentation of the Hubble constant in an analytical form; elimination of the “information paradox” for 
black holes of the YARK type [19,37]). What is more, YARK theory remains the only alternative to 
GTR, which provides its explanation of the GW150914 and GW151226 signals of LIGO beyond the 
hypothesis about gravitational waves [13].  
      Besides these, we wish to spotlight two very recent experimental facts – the extra-energy shift 
between emission and absorption resonant lines in a rotating system [38-41], and the practically null 
bending of high-energy �-quanta under Earth’s gravity [42] – both of which have found a successful 
explanation under YARK theory [16] while they still remain puzzling in GTR [32,43]. 
      Finally, we stress that YARK theory of gravity is fully compatible with quantum mechanics [24]. 
Thus, YARK theory definitely reflects certain advantages along with combined metric and dynamical 
approaches in comparison with a purely metric approach such as that found in GTR.  
      It is worth reiterating the fact that such a combination of both metric and dynamic traits does not 
inevitably require the equality of gravitational and inertial masses, but only their linear 
proportionality,with the coefficient K, being in general, different than unity.  
      Next, we address to eq. (8) and remind that its lhs represents the gravitational force acting on the 
object, which should be sensitive to the gravitational mass of the particle mG. On the other hand, the 
rhs of eq. (8) defines the total time derivative of the momentum of particle, which should include its 
inertial mass mI. 
      At the same time, one can see that eq. (8) does not allow us to unambiguously establish a 
relationship between gravitational and inertial masses. In this situation, we have to revert to reasonable 
physical argumentations. In particular, in YARK theory, we can demand that for a particle at rest, both 
mass components coincide with each other and equal to [21] 
 

   ���� emmm IG 0 ,     (10) 

 
which means that they both obey the original postulate of YARK theory (1).  
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      It is naturally to demand that the inertial mass of any object should be defined in such a way that 
this mass component acquires its standard relativistic form in the absence of gravity. This yield just a 
single definition of the inertial mass of a moving particle as  
 

    �� �� emmI 00 .     (11) 

 
      This definition of inertial mass, taken jointly with the motional equations (8), still leaves a freedom 
with regards to the setup of the gravitational mass; which, from a mathematical viewpoint, is restricted 
only by the requirement to keep the equivalence of eqs. (8) and (9). In particular, we can propose to 
formally define the gravitational mass as 
 

  �� �� emm n
G 00 ,     (12) 

 
with the presentation of eq. (8) via the inertial and gravitational masses in the form 
 

          031
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G m
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,     (13) 

where n is a number to be fixed.  
      Then, one can scrutinize that the substitution of eqs. (11) and (12) into eq. (13) indeed yields the 
motional equation (9), which is free from any mass component. 
      Comparing eqs. (11) and (12), we see that the equality of mI and mG – as required by metric 
theories of gravity – can, as a choice, indeed be mathematically stated at n = 1 when 
 

    �� �� emmG 00 .     (14) 

 
Hence, under the definition (14), eq. (13) takes the form 
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.     (15) 

 
      Considering now the choice for a possible relationship between mI and mG in YARK theory, we are 
not in the least restricted by the equality n = 1. Under these conditions, one can assume that a “true 
relationship” between these mass components corresponds to the most compact form given by eq. 
(13). One can see that this is achieved at the choice n = -1, where eq. (13) then acquires the simplest 
Newtonian-like form  

         03
vr

I
G m

dt
d

r
MmG �� ,     (16) 

 
though its relativistic character is hidden in the definitions of mI and mG, i.e. 
 

  00 ���� emmG , 00 ���� emmI .              (17a,b) 

 
      One can see that the substitution of eqs. (17a), (17b) into eq. (16) leaves unchanged the final 
motional equation (9). Formally other choices for n are allowed, they seem not plausible or even 
necessary. Further, it follows from eqs. (17a), (17b) that the ratio of gravitational and inertial masses in 
YARK theory becomes equal to 



Vigier

IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012051

IOP Publishing

doi:10.1088/1742-6596/1251/1/012051

7

 

 

      
2

2

0
2

0

1
1

c
vK

m
m

I

G ����
�

.     (18) 

 
      Thus, for the experiment by Eötvös (as well as for any other similar experiment where the test 
masses A and B are at rest with respect to each other); eq. (18) yields KA = KB, which, according to eq. 
(6), provides a vanishing torsion in the Eötvös balance.  
      But this, as we have elaborated previously, cannot be considered as a demonstration of K=1, and 
the claim about the necessity of metric theories of gravity becomes groundless. 
      Given such circumstances, two crucial questions emerge:  

- what is the physical meaning of the definitions (17a), (17b)? 
- could we distinguish the assumed expressions for the gravitational mass in metric theories 

(14) and in YARK theory (17a) in appropriate measurements? 
      In order to answer the first question, we remind the old problem of “harmony of phases” pointed 
out by de Broglie [44]. It originates from two different definitions of frequency based on some 
intrinsic periodic processes related to a uniform translational motion of a test particle with the rest 
mass m0. The first kind of frequency emerges in the equality 
 

    0
2

0 �hcm � ,      (19) 

 
which characterizes the frequency of the radiation with an energy equal to the rest energy of the 
particle. Hence, for a moving particle, we have 
 

   Ihcm �� �2
0 ,     (20) 

 
so that eqs. (18), (19) provide the relationship 
 

      0��� �I .      (21) 

 
      On the other hand, due to the relativistic dilation of time, the frequency of any processes related to 
a moving particle decreases by � times; i.e. 
 

     ��� 0�G .      (22) 

 
      Thus, comparing eqs. (17a), (17b) with eqs. (20) and (21), we get the relationships 
 

    GG hcm ��2 , II hcm ��2 ; and    (23) 

    
2

01 γννmmK IGIG ��� . 

 
      Eq. (23) discloses the physical meaning of the relativistic behavior of gravitational and inertial 
masses. Namely, we can suppose that an observer tracking the motion of the particle comes to 
conclude that, via the gravitational mass, a particle “senses” the metric properties of space-time related 
to the variation of its intrinsic frequency �G; whereas via the inertial mass, the particle “senses” its 
dynamical properties characterized by the frequency �I. 
      One can add that the different dependence of gravitational and inertial masses on the factor � 
according to eqs. (17a), (17b) had been first suggested by Mie [45-47], when he sought a compatibility 
between the STR and gravitation; though he could not capture the rest mass decreasing factor of e-� 
specific to YARK theory in eqs. (17a), (17b) [48]. We can add that eq. (17a) signifies that the density 
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of the gravitational mass of any object does not depend on its velocity insofar as the volume of this 
object is reduced by�  times. A reasonable explanation of this fact is given by Mie on the basis of the 

Hamiltonian approach to the description of gravity [45-48]. After the development of GTR, this 
approach was, in point of fact, denied. However, with the development of YARK theory, some of the 
results of Mie could be topical again, along with the problem of seeking new approaches to measure 
the actual relationship between gravitational and inertial masses. 
      We emphasize again that the assumed inequality of gravitational and inertial mass components 
does not affect the motional equation (9) for the one-body problem. What is more, one can show (see, 
e.g., [21]) that the motional equation (9) for the one-body problem in YARK theory could differ from 
the corresponding motional equation for the one-body problem in GTR in the order c-2 and higher.  
      Therefore, a wide class of gravitational problems, which can be approximated by the one-body 
problem in the case of a weak gravitational field (e.g., the precession of the perihelion of Mercury 
[22]) has practically identical solutions in GTR and in YARK within the achieved measurement 
precision. Nevertheless, the relative measurement error of the order (v/c)2, needed to distinguish the 
predictions of YARK and GTR, can be achieved via appropriate tests where some effects of the 
indicated order (v/c)2, being tiny for non-relativistic objects, have the property to be accumulated with 
time via repeating measurements under identical conditions. For example, this can be made in 
experiments with a pendulum, if one aims to measure its oscillation period in the gravitational field of 
Earth. In the next section, we describe the essence of such an experiment and show that the difference 
between the predictions of YARK theory and GTR can indeed be reliably measured on the basis of 
high-quality pendulum systems with different arm lengths. 
 
4. Proposal for a crucial test of GTR versus YARK theory: Comparing oscillations of pendulums 
with different arm lengths 
First we show that the motional equations for a pendulum oscillating in a gravitational field, derived in 
GTR and in YARK theory correspondingly, differ from each other on the order of (v/c)2, where v is a 
typical velocity of a suspended mass m of the pendulum. Below we derive the pendulum equations in 
YARK and in GTR, assuming that the mass of the arm of the pendulum is negligible in comparison 
with m, and the length of the arm is equal to L.  
 
4.1. Pendulum equation in YARK theory 
To proceed further, we introduce the angle �  between the axis y and the pendulum arm. Then, we 

consider the process where we move the pendulum mass quasistatically via pushing it along the 

circumference of radius L from its original angular position�  to the final position d� ��  Designating 

the infinitely short path dl Ld��  of the pendulum mass, we obtain the variation of this mass dm due 

to the YARK postulate (7) as 

    .2 sin dmcmg �� .     (24) 

Carrying out a corresponding integration between the angles 0�  (the amplitude value) and � , we 

obtain the rest mass of the pendulum as the function of � :
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      Next, we take into account that, due to the energy conservation law, the total mass of the pendulum 
should remain constant, i.e. 
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The pendulum equation of YARK theory is obtained via the differentiation of eq. (26): 
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      Eq. (27) can be straightforwardly generalized to the vector form 
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       Further, we see that eq. (28) admits a presentation in the Newtonian-like form 
 

                                                                 
2

2

sin
dt

θdLmθgm IG ��                 (29) 

along with the gravitational mass 
 

                                                                � �� � 2/122
0 10 cvemmG �� � ��     (30) 

and the inertial mass 
 

                                                                � �� � 2/122
0 10

�� �� cvemmI
�� ,    (31) 

yielding the relationship  
 

       � �221 cvmm IG �� ,    (32) 

 
which coincides with eq. (18) obtained above.  
      Substituting eq. (32) into eq. (29), and using the approximation of small oscillations (where 
sin���), which is sufficient for the present analysis, we obtain 
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 Here we omit the detailed solution of eq. (33), and present the final result  
 

221 cvLg LLLL ��� ,    (34) 
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where 
2

Lv  is some averaged velocity of the pendulum mass over the period of oscillation as 

measured by the local observer. Therefore, the period of oscillation of the pendulum predicted in 
YARK theory is equal to 
 

       � � � � 2/1
2212

2 �
��� cvLgT LLLYARKL �

�
�

.   (35) 

 
4.2. Pendulum equation in GTR 
In order to derive the motional equation of the pendulum in GTR, we shall start with the expression for 
the energy of a test particle in the Schwarzschild metric [1], i.e. 
 

�� 212
0 �� cmE LGTR ,    (36)

 
where the Lorentz factor as �L is defined for the local observer, and the factor � is written for the 
distant observer. Further, we take into account the fact that, during the oscillation of the pendulum, the 
tension force of the pendulum arm is always orthogonal to the velocity of the pendulum mass, so that 
this force does not do any work. Given these conditions, the energy (46) is conserved, and its time 
differentiation yields  

      � �
2

22 )21(1
c
dvvcvd LL

L �� ��� .    (37) 

 

Defining the quantity � �� � 122 211 ���� �cvC L , we notice that it remains constant due to the 

constancy of the energy (36). In this case, eq. (37) becomes similar to the classical Newtonian 
pendulum equation where the constant parameter C is introduced. Hence, the period of oscillation of 
such a pendulum is equal to 

   CgL2πTGTR � .     (38) 

 
We express the constant C via the amplitude angle of the pendulum’s oscillation 0� when 

� �0 0 ,� � � �� �  and � �0 0.Lv � �  Hence, � � 1

021 ��� �C , and eq. (38) acquires the form 

 

021 ��� gL2πTGTR .    (39) 

       
      In order to compare the equation of YARK (35) with the equation of GTR (39), we have to express 
the ratio L/g via the corresponding local values. In the adopted approximation of small amplitude of 
pendulum oscillation, when the direction of its arm does not significantly deviate from the radial 
direction, we obtain in the Schwarzschild metric 
 

                                          021 αLL L �� , 021 αtt L �� , � � 23

021
/

L αgg �� .         (40a,b,c) 

 
      Hence, substituting eqs. (40a) and (40c) into eq. (39), we get 
 

� �
� � L

L
/

L

/
L

GTR g
Lπα

αg
αLπT 221

21

21
2 023

0

21

0 ��
�
�

� .  (41) 

      Thus, the GTR oscillation period for the local observer is equal to 
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        � � 0000 2121 �� ����� LLGTRGTRGTRL gL2πTTgT ,  (42) 

 
which is the final GTR expression for a local observer. 
 
4.3. Comparison of the periods of oscillation of two pendulums with different arm lengths 
Comparing now eqs. (35) and (42), we first estimate the corresponding numerical values for a 

terrestrial experiment, with 172
0 107.0 ���� RcGM� , 1Lv �  m/s, and 1722 10��cvL . Therefore, 

the latter ratio can be fully neglected, and the difference between the predictions of YARK theory and 
GTR with respect to the oscillation period of the pendulum is equal to 
 

      � � � � � �
L

L

L

L

L

L

L

L
GTRLYARKL g

Lπ
g
Lπ

g
Lπ

g
LπTT 000 221122122 ��� �������� . (43) 

At 1LL �  m, and gL = 9.8 m/s2, we obtain 

 

� � � � 9105.1 � �� GTRLYARKL TT .   (44) 

 
While this value lies within modern measurement capabilities, it still seems impractical to provide the 
corresponding accuracy of mechanical oscillations of any pendulum where the difference (44) can be 
reliably detected.  
      In order to overcome the indicated difficulty, we suggest to use two pendulums with different arm 
lengths, and to compare their oscillation periods.  
      Thus, for two pendulums with the length L1 and L respectively, the difference of their periods of 
oscillation in YARK is equal to (for brevity, we omit below the subscript “L”): 

 

� � � �1222 1 ����! kgLgLgLT YARKL ��� ;   (45) 

 
hereinafter we adopt L1 > L, and designate the ratio 11 "� kLL . 

      The same expression in GTR reads as 
 

� � � � � �� �00 1122112 ���� ������! kgLkgLT GTRL .  (46) 

 
Hence, the difference in the oscillation periods of the two pendulums with different arm lengths, as 
predicted in YARK and in GTR, is equal to 
 

� � � � � �12 0 ��!�! kgLTT GTRLYARKL �� .   (47) 

 
      During a chosen overall measurement time � , this difference per unit cycle of oscillation 
accumulates and increases by the number N of the pendulums’ total cycle of oscillations that take 
place during � . Thus, the accumulated difference during the chosen time � will be equal to 

 

     � � � �� � � � � �,111212 0000 kkgLTkgLNT YARK ������! �������  (48) 
 

where we have taken � �YARKTN 0��  and used eq. (35), neglecting the term 22 cvL . 
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      Thus, the suggested “differential” method for the measurement of the difference of the periods of 
oscillations for two pendulums with different arm lengths yields the value (48), which can be 
measured via fixing, for example, the time moments of the pendulums at which they cross the 
minimum altitude during oscillation. For example, at T = 103 s (about 15 min), and k = 2, we get 

72 10T �! �  s, which represents a readily measurable value. 
      Another point is that the quality of both pendulums must be very high (ensuring absence of friction 
in a high vacuum chamber, etc); however, this does not constitute a difficult problem with respect to 
quotidian achievements in experimental technique. 

  
5. Conclusion 
The principal outcome of the present paper is the explicit demonstration of the fact that the experiment 
by Eötvös, as well as other experiments aimed to check the identity between gravitational mG and 
inertial mI masses, all were inconclusive. They serve no more than displaying just an ordinary linear 
proportionality of the gravitational and inertial mass components to each other with some 
proportionality constant K. Thus, to the contrary to the widespread claim about the equality of the 
gravitational mass and inertial mass, which is strongly assumed in GTR and extended theories of 
gravity, is deprived of any reliable experimental evidence.  
      We would like to accentuate the fact that, within purely metric, or metric-affine gravitational 
theories, the coefficient K must be exactly equal to unity; this is the necessary condition to reduce 
gravity to the geometry of space-time. And the Eötvös experiment aimed to prove it, does not 
constitute, and in fact has never constituted, any rigorous proof of it.  
      By the same token, we underline the factuality that the Eötvös experiment and modern experiments 
on the same subject [6,7,9-12] cannot by any means be cited to condemn theories like YARK, which 
admits the inequality, yet linear proportionality, of gravitational and inertial masses.  
      With the ordinary linear proportionality condition of gravitation mass to inertial mass, YARK 
theory perfectly obeys the null result of any Eötvös type experiment; all the more so since YARK fully 
predicts the null result of it.  
      In these respects, we re-analyzed the problem of the determination of gravitational and inertial 
masses in YARK theory of gravity, and found that the coefficient proportionality K between mG and mI 
depends on the velocity of the object. We have demonstrated that the YARK motional equation of the 

test particle in the presence of gravity acquires the most compact form at 
21 ��K  (with �  being the 

Lorentz factor of that particle), along with the gravitational and inertial mass components defined via 
eqs. (17a), (17b). At the same time, the assumed equalities (17a), (17b) were conjectured through an 
inverse problem setup by Mie (except our exponential mass decreasing factors), who sought a full 
compatibility between STR and any theory of gravitation more than a 100 years ago [46]. We pointed 
out that Mie considered this, as an inverse problem unlike how it was done straightforwardly in 
YARK, where we landed at the given equations based on the law of energy conservation postulated in 
the form of eq. (7), and in full conformity with quantum mechanics and the WEP.  
      Furthermore, we advanced physical argumentations (e.g., the problem of the harmony of phases 
disclosed by de Broglie) that the inequality of gravitational and inertial masses could be tested in 
suitable quantum mechanical phenomena.  
      We brought up a crucial point, i.e. the indication of the possibility to test the equality (or 
inequality) of gravitational and inertial masses via a macroscopic pendulum experiment. In effect, we 
have found above that, for an ordinary pendulum with an arm length of about 1 m, the difference 
between YARK theory and GTR predictions with respect to the oscillation period is equal to only a 
few nanoseconds. However, it is difficult to believe that even high-quality pendulums could provide an 
accuracy of their motion where any effect of the mentioned order of magnitude could be measured. 
Under these conditions, we suggested a “differential” method where two high-quality pendulums are 
initially set to oscillate parallel to each other, and we proposed to measure the difference in periods of 
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time of the given oscillations; the difference evidently accumulates with time, making realistic the 
determination of the given difference for high-quality pendulum systems. 
      In this respect, we remind that, historically, the experiments for the comparison of periods of 
oscillations T of two pendulums had been already carried out since Newton’s time. However, as 
elaborated above, the variable parameter throughout was the pendulum mass m, so that the revealed 
independence of T on m can be considered as one more successful test of WEP and nothing more. 
      Now we suggest comparing two pendulums with different arm lengths. Thereby, in the present 
contribution, next to our fundamental revelations with regards to the quandary about the identity of 
gravitational and inertial masses, we have shown that the expected difference of the oscillation periods 
of the given pendulums (48) can be reliably measured, and will represent a new crucial test of GTR 
versus YARK theory. 
 
References 
[1] Weinberg S 1972 Gravitation and cosmology: principles and applications of the general theory 

of relativity Wiley, New York 
[2]      Will C M 2006 Living Rev. Relativity 9 
[3]      Rosen N 1973 Gen Relativity and Grav 4 435  
[4]      Brans C H and Dicke R H 1961 Phys Rev 124 925  
[5]      Eötvös R B  1906 Mathematische und Naturwissenschaftliche Berichte aus Ungarn 24  
[6]      Roll P G  Krotkov R  and Dicke R H  1964 Ann  Phys  26 442   
[7]      Braginski V B and Panov V I 1971 JETP 61 873   
[8]      Misner C W Thorne K S and Wheeler J A 1973 Gravitation W H Freeman and Co 
[9]      Nobili A M 2016 Phys Rev A93 023617  
[10]    Nobili A M 2016 Phys Rev D94 124047  
[11]    Nobili A M Pegna R Shao M et al 2014 Phys Rev D89 042005 
[12]    Nobili A M 2013 Am J Phys 81 527 
[13]    Yarman T Kholmetskii A L Yarman O Marchal C B and Arik M 2017 Can J Phys 95 963  
[14]    Berkeley Cosmology Group http://cosmology berkeley.edu/~miguel/GravityEtCetera/ 

GravityPages/EWTheory.html  
[15]    H C Ohanian 1976 Gravitation and SpaceTime W W  Norton  and Company Chapter 1   
[16]    Yarman T Kholmetskii A L and Arik M 2015 Eur Phys J Plus 130 191  
[17]    Yarman T Arik M Kholmetskii A L and Yarman O 2016 Can J Phys 94 271 
[18]    Arik M T Yarman T Kholmetskii A L and Yarman O 2016 Can J Phys 94 616 
[19]    Yarman T Kholmetskii A L Arik M and Yarman O 2016 Can J Phys 94 558  
[20]    Yarman T 2004 2004 Ann Fond de Broglie 29 3 
[21]    Yarman T 2006 Found Phys Lett 19 675  
[22]    Yarman T 2010 Int J Phys Sci 5 2679  
[23]    Yarman T 2011 Int J Phys Sci 6 2117  
[24] Yarman T 2010 The quantum mechanical framework behind the end results of the general 

theory of relativity: Matter is built on a matter architecture Nova Publishers New York  
[25]    Yarman T 2009 Int J Theor Phys 48 2235  
[26]    Yarman T 2013 Phys Essays 26 473  
[27]    Yarman T 2013 Phys Essays 27 104  
[28]    Yarman T and Kholmetskii A L 2013 Eur Phys J Plus 128 8  
[29]    Yarman T Arik M and Kholmetskii A L 2013 Eur Phys J Plus 128 134 
[30]    Sobczyk G and Yarman T 2008 Appl and Computat Math 7 255  
[31]    Yarman T Kholmetskii A L and Missevitch O V 2011 Int J Theor Phys 50 1407  
[32]    Yarman T Kholmetskii A L Yarman O and Arik M 2016 Ann Phys 374 247 
[33]    Landau L D and Lifshitz E M 1999 The Classical Theory of Fields Butterworth and Heinemann  
[34]    Yarman T Kholmetskii A L Arik M and Yarman O 2014 Phys Essays 27 558 
[35]    Shapiro I I Pettengill G H Ash M E et al 1968 Phys Rev Lett 20 1265 



Vigier

IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012051

IOP Publishing

doi:10.1088/1742-6596/1251/1/012051

14

 

 

[36]  Yarman T 2011 Superluminal Interaction as the Basis of Quantum Mechanics: A Whole New 
Unification of Micro and Macro Worlds LAP Lambert Academic Publishing 

[37]   Yarman T and Kholmetskii A L 2013 Eur Phys J Plus 128 8  
[38]   Kholmetskii A L Yarman T and Missevitch O V 2008 Phys Scr 77 035302  
[39]   Kholmetskii A L Yarman T Missevitch O V and Rogozev 2009 B I Phys Scr 79 065007  
[40]   Kholmetskii A L Yarman T Arik M and Missevitch O V 2015 AIP Conf Proc 1648 510011  
[41]  Yarman T Kholmetskii A L Arik M Akkuş B Öktem Y Susam L A and Missevitch O V 2016  

Can J Phys 94 780 
[42]   Gharibyan V http://arxiv org/pdf/1401 3720 pdf  
[43]   Kholmetskii A L Yarman T and Arik M 2015 Ann Phys 363 556 
[44]   de Broglie L 1925 Annales de Physique 10e Série Tome III  
[45]   Mie G 1912 Ann Phys 37 511 
[46]   Mie G 1912 Ann Phys 39 1  
[47]   Mie G 1913 Ann Phys 40 1  
[48]   Yarman T 2007 Balkan Physics Letters 15 22  


