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Abstract

In this thesis we first calculate the relation between QCD axion mass and decay constant at high
precision, employing effective chiral lagrangian techniques. In particular we include the O(αem) and
NNLO corrections in the chiral expansion, which amount to 0.65(21)% and -0.71(29)% respectively.
Both corrections are one order of magnitude smaller than the known NLO ones, confirming the very
good convergence of the chiral expansion and its reliability. Using the latest estimates for the light
quark masses, the current uncertainty is dominated by the one of the low-energy constant `7. When
combined with possible improvements on the light quark mass ratio and `7 from lattice QCD, the
axion mass could be determined with per-mille accuracy as a function of the its decay constant.

Second, with the goal of predicting the numerical value of the axion decay constant (and therefore
the axion mass) based on the axion DM relic abundance, we study the system of axion strings that
forms in the early Universe if the Peccei-Quinn symmetry is restored after inflation. Understanding the
dynamics of this system is a necessary condition for a reliable prediction of the axion DM abundance in
the post-inflationary scenario. Using numerical simulations, we establish the existence of an asymptotic
solution to which the system is attracted independently of the initial conditions. We study in detail the
properties of this solution, including the average number of strings per Hubble patch, the distribution
of loops and long strings, the way that different types of radiation are emitted, and the shape of the
spectrum of axions produced. We find clear evidence of logarithmic violations of the scaling properties
of the attractor solution. We also find that, while most of the axions are emitted with momenta of
order Hubble, most of the axion energy density is contained in axions with energy of order the string
core scale, at least in the parameter range available in the simulation. While such a spectrum would
lead to a negligible number density of relic axions from strings when extrapolated to the physical
parameter region, we show that the presence of small logarithmic corrections to the spectrum shape
could completely alter such a conclusion. A detailed understanding of the evolution of the axion
spectrum is therefore crucial for a reliable estimate of the relic axion abundance from strings.
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1 Introduction

With the discovery of the Higgs boson, the Standard Model (SM) of particle physics is in principle a
consistent quantum field theory up to energies much larger than the electroweak (EW) scale. While
the Higgs particle (or any other electroweak physics restoring perturbative unitarity) was a necessary
requirement for the theory to be self-consistent at energies of the order of the EW scale, there is
unfortunately no guarantee that new physics beyond the SM lies near the EW scale, nor at energy
scales that will ever be probed by collider experiments.

In the absence of a clear indication that traditional collider searches will able to advance our knowl-
edge towards a more fundamental theory of Nature, all the experimental observations and theoretical
puzzles that contradict the SM expectations must be scrutinized seriously. First of all, the SM coupled
to gravity cannot explain gravitational interactions at the quantum level, but unfortunately any effect
of a theory of quantum gravity is likely to appear at energies close to the Planck mass and therefore
not accessible with today’s experiments. On the other hand, the astrophysical and cosmological ob-
servation of dark matter (DM), the baryon-antibaryon asymmetry of the Universe and the naturalness
problem of some of the SM parameters could very well find an explanation by new physics lying at
energies small enough to be detectable in the near future. It is therefore motivated to examine in
detail the simplest models that can give a convincing answer to some (of all) of the mentioned issues,
in particular highlighting the most possible model-independent experimental signatures.

Most of the ideas for new physics try to explain the unexpected size of three SM parameters:
the cosmological constant, the Higgs mass and Strong-CP phase. While the first only arises when
gravity is included, the last two are related to the SM only and could in principle find a particle
physics explanation at low enough energies. The Higgs mass hierarchy is traditionally solved by new
physics at the TeV scale (e.g. supersymmetry, composite Higgs, extra-dimensions), whose generic
predictions start however to be in tension with the latest Run-2 LHC results. On the other hand, the
simplest and most robust solution to the smallness of the Strong-CP phase, the QCD axion [1–7], is
still largely unconstrained and is at the same time an excellent DM candidate [8–10]. Consequently,
a QCD axion that makes up the entire measured DM relic abundance is one of the best motivated
scenarios for physics beyond the SM. In addition, numerous experiments aimed at detecting axions
are currently running or in development. These will be sensitive to a substantial proportion of the
relevant parameter space, and, if an axion is discovered, they could measure its mass and couplings
precisely (see e.g. [11, 12]). Finally, the fact axion-like particles seem to be a ubiquitous feature of
String Theory compactifications [13] motivates even more the existence of this particle.

Since most of the axion experiments work on resonance, the possible discovery of the QCD axion
is strongly related to the numerical value of its mass ma. A solid theoretical prediction for ma is
therefore crucial to pin down the axion or to even possibly rule it out as a solution of the Strong CP
problem. The main goal of this work is to make a step towards this prediction on the basis of the
axion DM abundance produced in the early universe.

In the absence of significant sources of explicit breaking of the Peccei-Quinn (PQ) symmetry
that gives rise to the axion, the axion mass can be in principle determined at high precision as a
function of only one Lagrangian parameter, the axion decay constant fa, which dictates the scale
of spontaneous breaking of PQ. Since in the axion DM experiments the mass sensitivity is 10−6

(bounded by the velocity dispersion of the DM particles), in the case of a discovery ma will be known
with very high precision, which can be eventually translated into the same precision on fa only if
the relation between the two is known very well. When combined with measurements of the axion
couplings and possibly the information of the axion relic abundance, such precision could be used
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to learn about the dynamics of new physics at much higher scales, as well as physics of the early
universe including inflation, reheating and pre-BBN evolution. In chapter 2 we will therefore derive
the relation between ma and fa in the most precise way available to date, making use of effective
chiral perturbation theory techniques [14–16]. As we will see, next-to-next-to leading order (NNLO)
corrections in the chiral expansion and electromagnetic corrections are crucial to estimate the axion
mass with less than percent accuracy. Using the latest estimates for the light quark masses the current
uncertainty is dominated by the one of the low-energy constant `7 of the next-to-leading order (NLO)
chiral Lagrangian. When combined with possible improvements on the light quark mass ratio and `7
from lattice QCD, the computation will allow to determine the QCD axion mass as a function of fa
with per-mille accuracy.

A prediction for the actual numerical value of fa (and therefore of ma) could in principle come
from the production of axions in the early universe. As we will discuss in chapter 3, the dynamics by
which QCD axion DM is produced, and its final relic abundance, depends on the cosmological history
of the Universe (see e.g. [17, 18]). In particular, if the PQ symmetry was broken after inflation, the
axion field had initially random fluctuations over the present day observable Universe. Instead, if
the PQ symmetry was broken during inflation and never subsequently restored, the axion field was
initially homogeneous. In this case the axion relic abundance is incalculable because it depends on the
value of the axion field after inflation in our particular Hubble patch, which is however not known.1

In this work we will be interested in the class of models in which the PQ breaking happens after
inflation. This includes theories in which inflation happened at a scale above the axion decay constant
fa, and also those with inflation at a lower scale but which were reheated to a temperature above fa.
In this case, assuming a standard cosmological history, the relic abundance is calculable in terms of
the the axion decay constant fa due to the random initial conditions.2 As a result, there is in principle
a unique calculable prediction for the axion mass if it is to make up the complete DM density in such
models, which, as mentioned, would be extremely valuable for experimental axion searches.

However, as described in chapter 4, in this scenario the mechanisms by which DM axions are
produced are complex, and calculating the relic abundance is challenging [22–26]. The random initial
axion field after PQ symmetry breaking leads to the formation of axion strings [27–29]. These are
topologically stable field configurations that wind around the U(1) vacuum manifold of the broken PQ
symmetry as a loop in physical space is traveled. As we will discuss futher, interactions between strings
are thought to result in a scaling regime where the length of string per Hubble volume, measured in
Hubble lengths remains approximately of O(1) as the Universe expands [30–35]. To maintain such a
regime the string network must release energy. This dominantly happens through the production of
axions, which form a potentially significant fraction of the total relic abundance [36–43].

The string system persists until the temperature of the Universe drops to around the QCD scale,
when the axion mass turns on and becomes cosmologically relevant, leading to the formation of domain
walls, each one attached to strings. The subsequent dynamics depends on the anomaly coefficient
between QCD and the PQ symmetry, NW , which is equal to the number of minima that are generated
in the axion potential [23, 44]. NW = 1 corresponds to the scenario in which the domain walls are
automatically unstable and decay, destroying the string network and releasing further DM axions in
the process [23, 44, 45]. If NW > 1 the domain walls are generically stable, and the model is not
phenomenologically viable, unless further explicit breaking of the PQ symmetry is introduced [46–49]

1As we will discuss further in sec. 3, there is only an upper bound on the axion mass for which it can make up the
full relic abundance, coming from isocurvature constraints [19–21].

2As we will discuss later the relation between the relic abundance and the mass of the axion might be affected for
extreme choices of the model parameters.
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(which might reintroduce the strong CP problem) or the ZNW symmetry is gauged [50].
In this work we only consider the string network before the axion mass turns on. An understanding

of this stage of its evolution is crucial, both to calculate the relic abundance of axions produced at such
times and to set the appropriate initial conditions when analyzing the system once the axion mass
becomes relevant. The important properties of the network, which we aim to determine, include: the
average length of string per Hubble volume, and the way that this is distributed in loops of different
lengths; the rate of energy release into axions; and the spectrum of axions emitted. Due to the complex
evolution and interactions of the strings, and later the domain walls, an accurate analytic calculation
of the axion relic abundance appears hopeless in this scenario, and instead some form of numerical
simulation is required. The most direct approach, which we will follow, is to simulate a complete UV
theory that gives rise to the axion numerically on a discrete lattice [51].

As we will discuss at length in chapter 4, the main drawback of numerical simulations (as opposed to
analytic estimates) is the impossibility to investigate the physical parameter region. This is essentially
due to the huge hierarchy of scales in the system at the QCD crossover. On the one hand, strings have
a core with microscopic size, of the order of 1/mr, where mr is the mass of the heavy modes that UV
complete the axion theory (usually of order fa for O(1) parameters). On the other hand, the Hubble
horizon at the QCD crossover, which sets the average separation between strings, is a cosmological
distance of order H ∼ Λ2

QCD/MP . While the ratio between the two is mr/H ∼ 1030 in the physically
relevant region of parameter space, to avoid numerical artifacts simulations can only scan parameters
such that mr/H ∼ 103.

Making physically relevant predictions about the system at the time of QCD crossover therefore
requires that results from simulations are extrapolated over a vast difference in scale separations. What
makes such an extrapolation not obviously hopeless is the possible existence of an attractor in the
evolution, an understanding of which would allow a controlled extrapolation to be made. A key point of
this work is that this is an extremely delicate process. In particular, we stress that a careful analysis
of which features of the string network are being assumed to remain constant, or change, between
log(mr/H) = log(103) ∼ 6 and log(mr/H) = log(1030) ∼ 70 is required, and that naive extrapolations
can lead to misleading results. More specifically, the number density of axions produced by the string
network is very sensitive to the evolution of the axion energy density spectrum: as we will show,
axion relic abundance will be determined by the late-time behavior of this observable and a small
time-dependence in it could completely alter any result obtained in a small-scale simulation. It is also
likely that a time-dependence on the spectrum leads to a nontrivial dependence of the subsequent
string-domain wall dynamics on the numerical value of log(mr/H) at H = ma, which suggests that
small-scale simulations might not be able to capture it properly.

Turning to the structure of this thesis: In chapter 2 we will review the Strong CP problem and
the axion solution, and derive some low energy properties of this particle including its mass at high
precision. In chapter 3 we describe how DM axions are produced in the early universe, in particular
focusing on their non-thermal production through the misalignment mechanism. Chapter 4 is the
core of the thesis and will be devoted to the production of axions from strings. In this chapter we
will first give an overview of the dynamics of strings and domain walls in the early universe, and
then discuss the evolution of the axion string system based on results from numerical simulations,
including the possible extrapolation to the physical parameter region and possible predictions for the
relic abundance. We will finally conclude in Chapter 5.

In appendix A we report the formulas for the result of the axion mass with the explicit quark
mass dependence, suitable to be used in lattice simulation fits. In appendix B we give all the details
of the numerical extraction of the values of the low energy constants used in the results for the axion
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mass. Additional technical details about axion string simulations may be found in Appendix C, and
an extensive analysis of the systematic errors is given in Appendix D. In Appendix E we present a
detailed analysis of the distribution of energy into different components, in Appendix F we provide
further evidence for the existence of an attractor solution, and in Appendix G we give details of how
we fit the parameters of the string network. Finally, in Appendix H we analyze whether the properties
of the global strings that we simulate are converging to those of local strings.
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2 The QCD axion mass at high precision

In this chapter we will provide a basic introduction on the motivation and the physics underlying the
QCD axion, and describe its properties in the most possible model-independent way. In particular,
using effective chiral perturbation theory techniques, we will derive several low-energy properties of
this particle, including its potential and interactions with other light Standard Model fields. We will
then turn our focus to the axion mass and determine its relation with the decay constant in the most
precise way available to date, which takes into account NNLO corrections in the chiral expansion and
the effect of the electromagnetic interactions.

2.1 The Strong CP problem

In a modern perspective the SM is considered an effective field theory valid up to (possibly very)
high energies, and therefore at the renormalizable level its Lagrangian is expected to include all the
dimension four or less operators compatible with its gauge symmetries. In particular, the gluon
topological term

Lθ0 =
θ0

32π2
GaµνG̃

aµν , (1)

where θ0 is a dimensionless parameter, Gµν is the gluon field strength and G̃µν = 1
2εµνρσG

ρσ its dual,
is an allowed classically marginal operator. Although Lθ0 is gauge invariant, it breaks P and T (but
preserves C) because εµνρσ a pseudotensor, and so a θ0 6= 0 in eq. (1) would introduce extra (in
principle unsuppressed) CP violation to the SM [5].

While in pure Yang–Mills the coefficient θ0 parameterizes physically inequivalent theories, in the
presence of fermions charged under SU(3)c (like our quarks) θ0 is not physical because depends on
how the phase of those fermion fields is chosen. Indeed, the quark field redefinition qL → eiαqL (where
qL are all the 4×3 left-handed Weyl spinors QL, u

c
R, d

c
R) is abelian and chiral and therefore anomalous

under SU(3)c, and modifies the path integral measure proportionally to the gluon topological term as

[dq][dq]→ [dq][dq] exp

(
i

12α

32π2
GaµνG̃

aµν

)
, (2)

effectively shifting θ0 in eq. (1) as θ0 → θ0 + 12α. The field redefinition above leaves the rest of
the SM Lagrangian invariant, except for introducing a factor of e2iα into the quark Yukawa matrices
Yu, Yd which are the only non chiral-singlets3 of the SM. As a result, only the combination θ =
θ0 − arg(det(YuYd)) is independent of the phase choice and therefore physical. Note that this holds
only if all eigenvalues of Yu and Yd do not vanish4, like in the SM. In particular, by properly choosing
the phase α one can always assume (as we will do from now on) that all the contribution to θ comes
from θ0. Moreover θ and θ+ 2π are physically indistinguishable, because a 2π shift of θ can be always
reabsorbed by the redefinition q → eiαq of any of the quarks with α = −2π, which does not change
the Yukawa matrices.

The topological term in eq. (1) is actually a total derivative [52] because

GaµνG̃
aµν = εµνρσ∂µ

(
AaνG

a
ρσ −

1

3
fabcA

a
νA

b
ρA

c
σ

)
, (3)

3 Note that we cannot define a transformation law for the Higgs h so to leave both Yukawa terms Y iju u
c
R iQL jh

c +
Y ijd d

c
R iQL jh invariant under the chiral field redefinition, because hc = εh∗.

4If there were at least one vanishing eigenvalue, a redefinition with α = −θ0/2 for the linear combination of quarks
corresponding to the null eigenvalue would cancel θ0 while not changing the rest of the Lagrangian, making θ0 unphysical.
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where Aaµ is the gluon field, so it does not affect the classical equations of motion, whose solutions will
be θ-independent. Moreover, it does not contribute to any order in perturbation theory, because a total
derivative provides a Feynman rule proportional to the sum of the external momenta, whose insertion
in any diagram vanishes by momentum conservation. Nevertheless, several SM observables such as
the vacuum energy5, the electric dipole moment of the neutron, the pion mass and the proton-neutron
mass splitting have nontrivial θ-dependence. This dependence can be qualitatively understood as the
contribution to the SM path integral of gauge configurations with nonvanishing topological charge
Q = 1

32π2

∫
d4xGaµνG̃

aµν , even if the expansion series around such solutions of the equations of motion
are nonperturbative and badly divergent, and so in general not well defined.

As an example, we discuss the dependence on θ of the vacuum energy of QCD, E(θ), defined as

e−V4E(θ) =

∫
[dφ]e−S[φ]−i θ

32π2

∫
GaµνG̃

a
µν , (4)

where V4 is the Euclidean 4-voulme and S[φ] is the Euclidean QCD action at θ = 0 and the functional
integration is over all the fields φ. First, E(θ) is periodic of period 2π, E(θ) = E(θ + 2π), and is
symmetric under θ → −θ as can be seen by redefining the fields to their CP conjugates φ→ φCP and
using [dφ] = [dφCP ] and S[φ] = S[φCP ] for QCD6. Moreover, θ = 0 is the absolute minimum of E(θ)
because

e−V4E(θ) = |e−V4E(θ)| ≤
∫

[dφ]
∣∣∣e−S[φ]−i θ

32π2

∫
GaµνG̃

a
µν

∣∣∣ =

∫
[dφ]e−S[φ] = e−V4E(0), (5)

where we used the Schwartz inequality. This implies E(θ) ≥ E(0), which also means that the parity
symmetry θ → −θ is not spontaneously broken (result known as Vafa-Witten theorem [53]).

To know the exact functional form of E(θ) and show that it is indeed non-trivally E(θ) 6= 0,
one would need to systematically evaluate the integral in eq. (4). In QCD this integral might be
estimated through saddle point approximations around solutions of the classical equations of motion
with finite action, including those with nonvanishing topological charge Q, called instantons [54, 55].
The finiteness of the action requires these solutions to be pure gauge at infinity, i.e. Aµ → iU †∂µU
for |x|2 → ∞ for some U(x̂) ∈ SU(3)c, and therefore they are identified by maps U : S3 → SU(3),
where the generic direction in Euclidean space is an element x̂ ∈ S3. Maps of this kind that can
be continuously deformed into each other (therefore leaving the action finite) fall into equivalence
classes labeled by an integer k ∈ Z (because the homotopy group π3(SU(3)) = Z), and the topological
invariant associated to each equivalence class of U(x̂) is the topological charge itself [56], Q = k, which
is so an integer 7. The classical Euclidean action can be written as

1

4g2
s

∫
GaµνG

a
µν =

1

8g2
s

∫ (
Gaµν ∓ G̃aµν

)2
± 8π2

g2
s

Q , (6)

and, in the class of functions with fixed positive (negative) Q, the minimum of the action is obtained

for (anti)self-dual field configurations Gaµν = ±G̃aµν and is 8π2

g2
s
|Q|. Note that fields satisfying the

(anti)self-duality condition are automatically solutions of the classical equations of motion because

5The vacuum energy is a physical observable only when the theory is coupled to gravity.
6Actually the full SM Lagrangian (and possibly new physics beyond the SM) is not invariant under CP due to the

CKM phase, so SSM [φ] 6= SSM [φCP ], but the breaking of CP is small enough that the result holds to high precision.
7Indeed, although Q seems to depend on Aµ in the whole space, since GµνG̃µν is a total derivative Q can be written

as a surface integral at spatial infinity and so it depends only on Aµ at |x|2 →∞, i.e. on U(x̂).
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DµG
a
µν = ±DµG̃

a
µν = 0 thanks to the Bianchi identity, and are called k-instantons A

(k)
µ if Q = k. In

particular, single instanton solutions A
(1)
µ can be found by integrating the equation Gaµν = G̃aµν with

the condition Q = 1 and there is an infinite number of them depending on 5 parameters, the position
xµ0 and the size ρ, because of the translational and scale invariance of the classical action.

The path integral in eq. (4) is then written as the sum of saddle points around A
(k)
µ . From eq. (6)

the leading order contribution of A
(±k)
µ is given by exp(−8π2

g2
s
|k| − i|k|θ) + c.c, and for gs small enough

the contributions from higher and higher instantons are more and more suppressed and the leading
dependence on θ is provided by k = ±1, on which we will focus. One can show that calculating the

Jacobian of the fluctuations around the saddles A
(±1)
µ leads to [54]

e−V4E(θ) ⊃
∫
dρ

ρ5
A(gs)e

− 8π2

g2s (1/ρ)
−iθ

+ c.c. , (7)

where A(gs) ∝ g−8
s , and the integration in dρ as well as the factor ρ−5 come from the integration

over the zero modes of the kinetic operator and can be intuitively understood by the fact that one
has to integrate over all gauge field configurations (so over all ρ’s) and by dimensional analysis. The
function gs(µ) is the one-loop running coupling and in eq. (7) is evaluated at µ = 1/ρ, which is intu-
itive because 1/ρ is the characteristic energy scale of the instanton. As mentioned, the introduction of
fermion fields with nonvanishing Yukawa (or nonvanishing mass) makes the coefficient of the topolog-
ical term depend on their phase, and the phase-independent combination that must enter in eq. (7) is
exp(−iθ0) det(ρMf ), where Mf = vYu,d is the (in general complex) fermion mass matrix and ρ appears
for dimensional reasons. With a field redefinition we can make det(ρMf ) real and substitute θ0 with
θ, so that the only phase in eq. (7) comes from e−iθ. In the end, the dependence on ρ and θ in the
integrand on eq. (7) is

1

ρ5
e
− 8π2

g2s (1/ρ) det(ρMf ) cos θ = detMf (ΛQCD)
11
3
N− 2

3
Nf ρ

11
3
N+ 1

3
Nf−5 cos θ , (8)

where we used the one-loop running gs(µ) = 8π2

β0 log(µ/ΛQCD) with β0 = 11N/3 − 2Nf/3, being N = 3

for QCD and Nf the number of light quarks. The integral
∫
dρ ρ6+Nf/3 is infrared divergent and

dominated by larger and larger instanton sizes, in particular by sizes ρ & Λ−1
QCD for which the coupling

exp(−8π2/g2
s(1/ρ)) = (ρΛQCD)β0 is in the nonperturbative regime8. The result is that the saddle point

approximation about instanton solutions is not under control and cannot be systematically evaluated,
and in the following we will indeed show that in the special case of QCD with light quarks the actual
form of E(θ) is different from the simple cos θ, as instead eq. (8) would suggest. In any case, this
discussion shows that instanton configurations, though incalculable, are likely to contribute to the
path integral and give rise to a non-trivial dependence on θ to the vacuum energy.

Since E(θ) = E(−θ), any effect of θ appears in the vacuum energy at leading order at least through
θ2 and rapidly disappears for θ � 1. The effect of a non-zero θ-parameter is most visible in parity-odd
observables, like the electric dipole moment (EDM) of the neutron dn, which provides the strongest
bound on θ to date. The neutron EDM represents the effective coupling between the neutron n and
the photon Fµν due to the different distribution of positive and negative electric charges inside the
neutron and is formally defined as the effective operator dn nγ

µνγ5nFµν . Since it is odd under parity,

8An infrared cut-off to the ρ integral would make the integral converge. As we will discuss in sec. 2.5, this cut-off
could be provided by the inverse temperature if we consider the finite-temperature version of the theory, or by the
vacuum expectation value of an Higgs field if the gauge group is Higgsed [54].
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its coefficient dn will get quantum-mechanically a non-trivial dependence on θ. This can be very
roughly estimated as [57,58]

dn ∼ e|θ|
m2
π

m3
n

∼ 10−2|θ| e ·GeV−1 , (9)

where mn and mπ are the neutron and pion masses. Eq. (9) holds because the dependence on θ should
disappear if any of the quark Yukawa (or masses) vanishes, and this requires dn ∝Mq ∝ m2

π, or if the
electric change e vanishes. The additional powers of mn can be understood by dimensional analysis
and considering that mn ∼ GeV is the only other scale in the problem. The most recent experimental
bound [59] on |dn| < 3.6 · 10−26 e · cm = 1.8 · 10−12 e ·GeV−1 constrains θ to be very tiny:

θ . 10−10 . (10)

According to the ’t Hooft naturalness criterion, a dimensionless parameter like θ can be very small if a
symmetry is restored when the parameter is set to zero (because in this case the quantum corrections
are proportional to the parameter itself). This would be true in QCD alone, since in that case CP
(and P ) would be recovered. However, CP is already broken in the full SM by the CKM phase and
is not restored in the limit θ → 0, which does not guarantee the naturalness of this parameter9.

Moreover, θ is the sum of two contributions, one of which comes from Yukwava matrices that are
known to have an O(1) CP violating phase, and so the natural expectation is θ ∼ O(1), or just a bit
smaller not to change significantly nuclear physics10. The question why θ is instead so small is the
‘Strong CP problem’.

2.2 The Peccei-Quinn solution

Among the various solutions of the Strong CP problem proposed so far, the so-called Peccei-Quinn (PQ)
solution [1] is arguably the most robust and model independent, because it only relies on the require-
ment of a new U(1) global symmetry with a chiral anomaly under SU(3)c and on the low energy
properties of QCD - in particular on its vacuum structure.

The basic idea is that θ-angle is unphysical if there exists a global and continuous transformation,
parameterized by a parameter α, that leaves the UV theory is invariant up to a shift of the gluon
topological term αGaµνG̃

a
µν . The easiest way to realize this setup is to introduce a U(1)PQ global sym-

metry acting on the fields as φ→ φα under which the UV action is invariant, SUV [φα] = SUV [φ], but
anomalous under SU(3)c, so that the path integral measure changes as [dφα] = [dφ] exp(iαGaµνG̃

aµν).
Unfortunately, such a global symmetry is not present in the SM (not even at the renormalizable

level). Indeed the U(3)5 global flavor symmetry acting on the SM Weyl spinors QL, u
c
R, d

c
R, lL, eR

which the SM enjoys in the limit of vanishing Yukawa Yu = Yd = Ye = 0 is explicitly broken by Yu and
Yd (and Ye) into the baryon number and the individual lepton numbers, U(1)B ×U(1)Li , all of which
are not anomalous under SU(3)c. If one of the quark Yukawa’s vanished (for instance the up-quark
Yukawa), however, the residual symmetry group would be enhanced to U(1)B ×U(1)Li ×U ′(1) where

9This implies that, even if θ is set to zero, it will be generated in the effective action proportionally to the CKM
phase (which means θ runs with the energy scale). However, it has been shown [60,61] that the radiative corrections to θ
are extremely suppressed, at least 6 orders of magnitude below the bound in eq. (10). As a result, θ might be considered
technically natural for all practical purposes in the SM. Note however that new CP violating physics could in general
produce radiatively a θ angle bigger than 10−10, and a tuning will be necessary.

10Anthropic arguments might be invoked to explain why θ has to be be slightly smaller than O(1), θ ∼ 10−2, but
they are not enough to explain the huge suppression in eq. (10).
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U ′(1) is the (anomalous) chiral phase redefinition of the quark with vanishing Yukawa, and it would
be possible to identify U ′(1) with U(1)PQ.

As a consequence, the PQ solution requires new physics beyond the SM. Whatever this new physics
is, the ’t Hooft anomaly matching condition [62] gives us an handle on how the low energy theory
should look like. Indeed, for consistency of the theory, if there is an anomalous global symmetry in the
UV, the low energy theory - even when the gauge group confines - should include massless fermions
with suitable quantum numbers to reproduce the same anomaly coefficient (in the case of U(1)PQ they
should be colored). Moreover, if the symmetry with the global anomaly is spontaneously broken, the
Nambu-Golstone boson (NGB) associated to the breaking can play the role of the massless fermions
which are therefore not necessary11. Since massless colored fermions are actually experimentally
excluded, the only option is that U(1)PQ is spontaneously broken and in the low energy theory its
NGB, called (QCD) axion a(x), reproduces the anomaly by transforming nonlinearly under PQ as
a→ a+ αfa and coupling to the gluon topological term as

αs
8π

a

fa
GaµνG̃

aµν , (11)

where αs = g2
s/4π and we used canonically normalized kinetic terms for the gauge field. The axion

decay constant fa is defined by eq. (11) and is in general related to the scale of spontaneous breaking
of U(1)PQ. The rest of the low energy Lagrangian is invariant under the shift a→ a+αfa in order to
reproduce the anomaly in the UV. Note that the axion could be part of a fundamental scalar or, in
theories where the PQ symmetry only acts on fundamental fermions, a composite state made of those
fermions12 [63,64]. Moreover, since the coupling in eq. (11) breaks the shift symmetry, a mass for the
axion will be generated proportionally to f−1

a by quantum corrections, and the axion will be a pseudo
NGB (pNGB).

At energies below the scale of PQ breaking, the SM+axion effective Lagrangian will be [65]

LIR = Lθ=0
SM + θ

αs
8π
GaµνG̃

aµν +
1

2
(∂µa)2 +

αs
8π

a

fa
GaµνG̃

aµν + · · · , (12)

where the dots represent additional terms that do not break the shift symmetry (and proportional to
inverse powers of fa). While the coupling to gluon eq. (12) is model independent and can be argued on
the basis of anomaly matching only, the rest of the low energy Lagrangian depends on the particular
model under consideration. Couplings that can appear at order f−1

a in the left hand side (l.h.s.) of (12)
include

g0
aγγ

4
aFµνF̃

µν +
∂µa

2fa

∑
i

c0
i f iγ

µγ5fi, (13)

where g0
aγγ ∝ f−1

a represents the coupling to photons13 and the second term is the coupling to the
fermion axial current, where fi could be either a quark or a lepton. Note that in general there could be

11This is what actually happens in QCD for the axial symmetry spontaneously broken by the quark condensate and
anomalous under U(1)em, whose anomaly is reproduced at energies lower than ΛQCD by the coupling of the π0 through
the Wess-Zumino-Witten term.

12This last case is indeed what happens for the π0 in QCD.
13More precisely, at energies just below the PQ breaking scale the relevant coupling is with the SU(2)L × U(1)Y

gauge bosons. All these couplings do not break the shift symmetry because the terms θWWµνW̃
µν and θBBµνB̃

µν can
be always redefined away in the SM by doing a baryon number transformation, which leaves the SM lagrangian invariant
and is anomalous under SU(2)L ×U(1)Y since left and right-handed quarks have different quantum numbers under this
group.
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an explicit non-derivative coupling of the axion to quarks in the quark mass matrix qeicqγ5a/faMqq, but
it can be rotated away through the field redefinition q → e−(cq/2)iγ5a/faq that will change the axion-
gluon coupling (due to the anomaly) and the axion-quark couplings (due to the quark kinetic term).
In particular, fa will be defined by eq. (11) in the frame where cq = 0. Although the coefficients g0

aγγ

and c0
i in eq. (13) are model dependent, their value is important experimentally because they allow to

probe and possibly detect the QCD axion. Note moreover that all axion couplings are proportional
to inverse powers of fa, so the axion rapidly becomes invisible if fa � vEW .

Astrophysical observations based the neutrino emission from the supernova 1987A give a lower
bound on fa & 108 GeV [66]. On the other hand, an upper bound to fa . 2 × 1017 GeV comes
from black hole superradiance [13, 67]. Current direct experimental bounds on fa from the ADMX
experiment (which relies on the axion being DM) exclude a region of fa around 1012 GeV for large
enough couplings to photons [68]. Within the quoted bounds fa can be thought as a free parameter,
but, as we will see chapters 3 and 4, fa will be bounded from above by DM overproduction depending
on the cosmological scenario.

As an example, the KSVZ [4,5] and DFSZ [6,7] models are the two simplest UV-complete models
implementing the PQ solution.

• In the KSVZ model the anomalous U(1)PQ is obtained by introducing N new quarks charged
under SU(3)c and an additional complex scalar field Φ, acquiring an expectation value v and
giving a mass of the same order to the new quarks. At low energies, the axion is the angular
part of Φ and its decay constant is fa = v/N , while the couplings in eq. (13) are g0

aγγ = E
N

αem
2πfa

where E = 2 Tr[QPQQ
2
em] (often called anomaly coefficient), being QPQ and Qem the charge

matrices of the new fermions under U(1)PQ and U(1)em, and c0
i = 0 because the SM quarks are

not charged under PQ.

• In the DFSZ model the scalar sector of the SM is enlarged with a 2HDM and an additional
complex scalar field, which allows the anomalous U(1)PQ to be generated by the SM fermions
themselves and to be spontaneously broken at fa � vEW to escape observational bounds14. The
axion will be a linear combination of the phase of the scalar fields and g0

aγγ has the same form
as in the previous model but with E/N = 8/3. The coupling to SM fermions is non-vanishing
and given by c0

u = 1
3 cos2 β and c0

d = c0
e = 1

3 sin2 β for up, down and electron, where tanβ is the
ratio between the two Higgs vevs.

In the following we will take a model-independent approach in the study of the axion properties
at low energies, and parameterize our ignorance about the UV physics via the coefficients in eq. (13).

Note that the axion effective potential V (a) at the lowest order in f−1
a , given by eiV4V (a) =∫

[dφ 6= a]ei
∫
d4xLIR(φ) with a = const, is instead model independent, since a = const in LIR of

eqs. (12) and (13) leaves only the term that does not break the shift symmetry, i.e. axion-gluon
coupling. Moreover, given that θ can be removed via the field redefinition a → a − θfa, from the
definition of vacuum energy E(θ) in eq. (4) written in Minkowski coordinates it is easy to see that the
axion potential coincides with the vacuum energy, V (a) = E(a/fa). This in turn shows that V (a) is
an even function with period 2πfa and minimized at a = 0, solving the Strong CP problem (this is of
course a consequence of the initial requirement of PQ invariance up to the gluon topological term).

14Adding only the 2HDM would still be enough to obtain an anomalous U(1)PQ, but fa would be of the order of
vEW , as originally observed in [2, 3, 69].
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2.3 The QCD axion at low energies

As reviewed in the previous section, in the absence of massless colored fermions all PQ models should
have an axion in their low energy spectrum, and at energies below the PQ breaking scale the effective
Lagrangian will be given by eqs. (12) and (13). Studying the properties of this particle at energies
below the QCD scale, in particular its mass and couplings with light SM fields, might seem challenging
since QCD runs into strong coupling, and non-perturbative methods might be required to understand
the effect of the axion-gluon interaction in eq. (12). As we will see, fortunately, the possibility of phase
redefining the axion-gluon coupling into the quark mass matrix will allow us to embed the axion in
the low-energy theory of QCD - the chiral Lagrangian. The axion properties can be then inferred at
high precision in terms of the low energy parameters of the chiral Lagrangian itself, which are actually
known from experiments involving QCD states only or from lattice QCD. In this section we will derive
the axion-pion effective action, and from it the axion low-energy properties.

Without loss of generality, the axion+SM Lagrangian at energies just above the QCD confinement
scale can be written as [65,97]

LQCD =
1

2
(∂µa)2 + qiγµDµq − (qLMaqR + h.c.) +

∂µa

2fa

∑
i

ciqiγ
µγ5qi +

1

4
gaγγaFµνF̃

µν + . . . , (14)

where we defined Ma = e
iQa

a
2faMqe

iQa
a

2fa with Mq = diag(mu,md, . . . ) the quark mass matrix for
Nf = 2, 3 flavors and Qa an arbitrary Nf × Nf matrix with unit trace Tr[Qa] ≡ 〈Qa〉 = 1, taken
to be diagonal for simplicity. Moreover, ci = c0

i − (Qa)ii or in matrix form c = c0 − Qa and gaγγ =
g0
aγγ − αem

2πfa
6〈QaQ2

em〉, where Qem = diag (2/3,−1/3, . . . ) is the matrix of quark charges.
The Lagrangian in eq. (14) is straightforwardly obtained from eqs. (12) and (13) by performing

the field redefinitions a→ a− θfa and q → e
iγ5Qa

a
2fa q. The former, being a symmetry, eliminates the

θ-term from the Lagrangian, while the latter, as mentioned below eq. (13), eliminates the axion-gluon
coupling while introducing a non-derivative coupling of the axion to quarks (as well as modifying g0

aγγ

because the field redefinition is in general anomalous under U(1)em). The dots in eq. (14) are terms not
dependent on axion and quark fields and include higher dimensional operators obtained integrating
out the Higgs sector of the SM and heavy quarks, while Dµ = Dg

µ − ieAµQem is the SU(3)c ×U(1)em

gauge covariant derivative.
Below the QCD scale the relevant degrees of freedom are the pions (and kaons), which are the

pNGBs of the global SU(Nf )L × SU(Nf )R flavor symmetry qL → LqL and qR → RqR that the
Lagrangian in eq. (14) enjoys in the limit of vanishing quark masses and electric change (and ci = 0).
This symmetry is spontaneously broken (by the quark condensate) to its diagonal subgroup, and the
CCWZ coset construction [70,71] can be employed to build the effective Lagrangian for the Goldstone
modes. These are embedded into the matrix U = eiΠ/F , where F is a constant (conventionally called
F0 for Nf = 3) and Π parameterizes the coset as

ΠNf=2 =

(
π0

√
2π+

√
2π− −π0

)
, ΠNf=3 =

 π0 + η/
√

3
√

2π+
√

2K+
√

2π− −π0 + η/
√

3
√

2K0

√
2K−

√
2K

0 −2η/
√

3

 , (15)

and transform under the full group as U → LUR†. In the presence of nonvanishing Ma and Qem, the
global symmetry is formally recovered if Ma and Qem are treated as external sources that transform as
spurions under the full symmetry group. In particular, writing the term eAµqγ

µQemq in the covariant
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derivative of eq. (14) as AµqLγ
µQLqL +AµqRγ

µQRqR (we will set QL = QR = eQem eventually), the
symmetry is restored for ci = 0 if

Ma → LMaR
† , QL → LQLL

† , QR → RQRR
† . (16)

Moreover, in the presence of nonzero ci, the axial current can be embedded into the quark covariant
derivative as

D̂µq = (Dµ + iγ5αµ)q , with αµ =
∂µa

2fa
diag(cu, cd, . . . ) =

∂µa

2fa
c , (17)

and the symmetry is restored if the global SU(Nf )L × SU(Nf )R transformation is promoted to local
and the axial current αµ transforms as a spurion as

αµ → LαµL
† + i∂µLL

†

αµ → RαµR
† − i∂µRR† .

(18)

As a result, the generating functional

Z[Ma, QL, QR, αµ] =

∫
[dq][dq][dG]ei

∫
d4xLQCD (19)

is invariant under the local transformations in eqs. (16) and (18). Crucially, the same functional can
be rewritten as a path integral over the pions Π of the axion-pion effective Lagrangian LEFT, i.e.
Z[Ma, QL, QR, αµ] =

∫
[dΠ] exp (i

∫
LEFT), and the symmetries in eqs. (16) and (18) will therefore

strongly constrain the form of LEFT. In writing the functional Z we are regarding the axion as a
non-dynamical external field, and LEFT will therefore not take into account the effect of axion loops.
However, since every axion interaction is proportional to f−1

a , diagrams containing these loops are
suppressed by two additional powers of fa with respect to the the same diagrams without axion
loops and they are not relevant when working at the lowest order in f−1

a for the observable under
consideration. In any case, next to leading order corrections in f−1

a would be affected by the higher
dimensional operators in the dots of eq. (14).
LEFT will be the most general Lorentz-invariant Lagrangian constructed out of U and the external

sources, and invariant under the local symmetry group. If we are interested to low enough energies
and the external sources are small, it makes sense to expand LEFT in powers of derivatives of U
and of external sources. This expansion defines the chiaral Lagrangian, and its coefficients are called
low-energy constants (LECs) and can be fitted from experimental data (or lattice QCD). The order
of the expansion is conventionally classified by powers of the momentum p: in particular ∂µ carries
one power of momentum, and it has been shown (see e.g. [15, 112, 113]) that a consistent expansion
requires Ma to be considered of O(p2), and QL,R and αµ of O(p). When QL,R = eQem appear, it is
sometimes conventional to quote O(e) instead of O(p).

Due to Lorentz invariance the first non-trivial term in LEFT is of O(p2) and reads [14–16,112,113]

Lp2 =
F 2

4

[〈
DµU

†DµU
〉

+ 2B
〈
U †Ma +M †aU

〉
+ ZF 2

〈
QRUQLU

†
〉]

, (20)

where F is the same constant that appears in U = eiΠ/F to have canonically normalized kinetic terms,
and B and Z are two additional LECs (conventionally called B0 and Z0 for Nf = 3). The derivative
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in eq. (20) is defined by DµU = ∂µU − i {αµ, U} and is covariant thanks to eq. (18). Note that LEFT

contains also the axion kinetic term and the coupling to photons of eq. (14) that just drop out of Z.
The first term in Lp2 includes the pion derivative self-interactions and the axion-pion derivative

interactions. On the other hand, the axion and axion-pion nonderivative interactions are all encoded
in the second term that depends only on the quark masses, thanks to the fact that we could fully
reabsorb the nonderivative axion coupling into the quark mass term only. In particular, the axion-pion
potential, including axion and pion masses, is contained in this second term. Finally, the last term
when evaluated for QL = QR = eQem provides an electromagnetic splitting between the masses of π±

and π0 by contributing to the π± potential, but does not affect the axion and π0 potentials because
they are neutral under U(1)em. However, as we will see, higher orders in e2 will affect also these
neutral particles.

2.3.1 The axion potential

By expanding the Lagrangian in eq. (20) it is straightforward to calculate the pion and axion potentials
at the lowest order in the chiral expansion. As noted in [65], there is in general a mass mixing between
axion and π0 because

Lp2 ⊃ −
a

2fa
BF Re 〈Π {Qa,Mq}〉 , (21)

which can be avoided at tree level by choosing Qa = M−1
q /〈M−1

q 〉 = (mu + md)
−1 diag(md,mu), as

we will do from now on. We will express the results in terms of the physical pion masses and decay
constant fπ, this last one defined by 〈0|aµ(0)|π(p)〉 = i

√
2pµfπ in pure QCD, i.e. at αem = e2/(4π) = 0,

being aµ(x) an axial external current and π = π±, π0. They are given in terms of the LECs by

m2
π0 = B(mu +md) ,

m2
π± = B(mu +md) + 2Ze2F 2 ,

fπ± = fπ0 = F ,

(22)

and at this order the decay constants of all pions coincide, fπ± = fπ0 = fπ. The axion-neutral pion
potential around the vev 〈π±〉 = 0 (this must vanish because U(1)em is not spontaneously broken) is

V (a, π0) = −m2
π0f

2
π

√
1− 4mumd

(md +mu)2 sin2

(
a

2fa

)
cos

(
π0

fπ
− φa

)
(23)

with

tanφa =
mu −md

mu +md
tan

(
a

2fa

)
. (24)

This shows that π0 gets the nontrivial vev 〈π0〉 = fπφa, and it can be integrated out leading to the
axion potential [72]

V (a) = −m2
π0f

2
π

√
1− 4mumd

(md +mu)2 sin2

(
a

2fa

)
. (25)

As expected, V (a) = E(a/fa) is an even and periodic function with minimum at zero, but the
dependence on a and on the quark masses is different from the simple detMq and cos (a/fa) estimated
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in the instanton calculation in eq. (8). Indeed, the dependence is nonanalytic in the quark masses
(though in both cases disappears when at least one mass vanishes) and the potential contains higher
harmonics. Contrary to the instanton calculation, the chiral expansion can be systematically evaluated
and is under control: two flavor chiral perturbation theory converges very fast since the expansion
parameter mu/ms ∼ 5% is small, and indeed it was shown in [97] that the NLO corrections (which
are of O(p4)) to eq. (25) are only few percent.

2.3.2 Axion-pion interactions

From the first and second term of eq. (20) one can also extract the axion-pion derivative and non-
derivative interactions, which determine for example the rate of the process ππ → πa, in principle
contributing to production of thermal axions15 in the early universe. These interactions have been
determined for the first time in ref. [73] for hadronic axions, for which the model dependent coefficients
c0
i vanish. The leading interactions are proportional to f−1

a and do not get any contribution from the
nonderivative term of eq. (20), because〈

e
i a
2fa

QaMqe
i a
2fa

Qae−i
Π
F + h.c.

〉
⊃ −2

a

fa

〈
MqQaΠ

3
〉

(26)

vanishes since MqQa ∝ 1 and 〈Π2n+1〉 = 0. The derivative interactions are

Caπ
∂µa

fafπ

(
∂µπ+π−π0 + ∂µπ−π+π0 − 2π+π−∂

µπ0

)
, (27)

where

Caπ =
cd − cu

3
=
c0
d − c0

u

3
+

1− z
3(1 + z)

. (28)

Being derivative, these interactions are model dependent, but are proportional only to the traceless
part of c = diag(cu, cd, . . . ) because〈

DµU
†DµU

〉
⊃ 2Re

〈
−i∂µU †{c, U}

〉 ∂µa
2fa

(29)

vanishes if c ∝ 1, since U †∂µU can be written in terms of commutators of Π and so is traceless. As
shown in [74, 75] and reviewed in [97], only the singlet part of the quark axial current acquires an

anomalous dimension. This means that only the singlet combination of coefficients cΣ = 1
Nf

∑Nf
i=1 ci

runs with the energy scale, while the Nf − 1 independent combinations ci − cΣ, i.e. the traceless part
of c, do not run. In particular, the coefficients c0

u and c0
d in Caπ in eq. (28) can be calculated at an

arbitrary energy scale (e.g. at fa where they are generated).

2.4 Topological Susceptibility of QCD and Axion Mass

As mentioned at the end of sec. 2.2, at leading order in f−1
a the axion potential V (a) coincides with

the vacuum energy E(a/fa). Therefore at this order the axion mass can be related to the topological
susceptibility of QCD χtop by m2

a = χtop/f
2
a , where χtop is defined as χtop = d2Z(θ)/dθ2|θ=0 being

15As we will see in sec. 3.1, however, the thermal abundance of QCD axions through this process is important only
for relatively small values of fa . 106 GeV, ruled out by astrophysical observations.
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Z(θ) the vacuum generating functional in eq. (4). Corrections to the relation m2
a = χtop/f

2
a are of

order m2
π/f

2
a and negligible for fa & 108 GeV, so from now on we will often trade m2

a for χtop. In this
section we will evaluate this observable to percent accuracy, in particular taking into account O(p6)
corrections in the chiral expansion and the effect of nonvanishing electric charge at the first nontrivial
order, O(e2p2). We will often omit technical details in the derivations, which are similar to those in
the previous sections but applied to O(p4) and O(p6) Lagrangians.

From the potential in eq. (25) we can get the leading order axion mass, derived for the first time
in ref. [3],

(m2
a)

LO =
χLO

top

f2
a

=
z

(1 + z)2

m2
π0f

2
π

f2
a

≈
[
5.7µeV

1012 GeV

fa

]2

(30)

where z = mu/md ∼ 0.47, and we used the values of mπ0 and fπ in tab. 6 in app. B. Eq. (30) shows that
for the values of fa & 108 GeV allowed by astrophysical constraints the axion is a very light particle
(even lighter that neutrinos), and therefore including it in the effective theory of QCD together with
the pions is self-consistent. The NLO correction to eq. (30) comes from the O(p4) Lagrangian of [15]
and one-loop diagrams constructed from L2. The calculation is simple and has been performed in [97],
and leads to

χNLO
top = χLO

top [1 + δ1] ,

δ1 = 2
m2
π0

f2
π

[
hr1 − hr3 − `r4 − (1− 2∆2)`7

]
, ∆ ≡ 1− z

1 + z
. (31)

The parameter ∆ vanishes for equal quark masses and thus measures the amount of strong isospin
breaking. The constants `ri and hri are the renormalized O(p4) LECs of [15] and depend on the renor-
malization group (RG) scale µ of the chiral Lagrangian and mπ0 and fπ0 = fπ± = fπ are the physical
pion mass and decay constant (which include NLO corrections). In particular, the combinations `r7
and hr1 − hr3 − `r4 are separately scale invariant. Moreover, at this order there is no contribution from
loop diagrams after expressing the overall factor m2

π0f
2
π in eq. (30) in terms of NLO quantities.

A numerical estimate of m2
a requires a precise determination of the light quark mass ratio z and

the O(p4) LECs. For z the latest lattice estimates are z = 0.485(20) [99] with three dynamical quarks
and z = 0.513(31) [100] and z = 0.453(16) [101], with four dynamical quarks. By combining them
with the older z = 0.470(56) [102] (also with four dynamical quarks), we get the following improved
estimate

z =

(
mu

md

)MS

(2 GeV) = 0.472(11) . (32)

We should warn the reader that here the error has been computed by simply propagating the uncer-
tainties quoted by each collaboration, since a proper combination is not yet available. In the remainder
we will use the value in eq. (32) as reference, however we will always report separately the uncertainty
originating from z and the total one so that it can easily be rescaled if needed.

For the LECs appearing in eq. (31) we use the values

hr1 − hr3 − `r4 = −0.0049(12) , `7 = 0.0065(38) . (33)

The first combination is computed using the matching of the 2- and 3- flavor LECs (in particular to
Lr8) as described in ref. [97] and using the latest FLAG estimate Lr8 = 0.00055(15) [103], while the
second value is taken from the direct lattice simulation of ref. [104]. These values give

δ1 = −0.042(13) , (34)
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where the error is dominated by the one from `7. Combining everything together we get the values
for the topological susceptibility and the axion mass at NLO

χ
1/4
top = 75.46(29) MeV , ma = 5.69(2)z(4)`ri µeV

1012 GeV

fa
. (35)

The dominant error comes from the one of the NLO LECs, in particular `7, which also controls the
strong isospin breaking effect in the pion mass splitting, indeed poorly known. An improvement on
this quantity would directly translate into an equivalent improvement in our knowledge of χtop and
thus ma. Conversely, improvements in the direct computation of χtop on the lattice could be used to
better determine both z and `7.

A natural question to ask is how much an advance in our knowledge of the light quark masses
and the NLO LECs can increase the precision of χtop, before other unknown corrections need to be
considered. Among the latter, the most relevant are the NNLO corrections of the chiral expansion and
O(αem) electromagnetic (EM) corrections. The firsts do not only determine the ultimate precision
reachable with eq. (31) but also measure the convergence and reliability of the chiral expansion. Of
course the size of the NNLO corrections is only relevant in the chiral expansion approach and does
not represent a source of uncertainty for lattice simulations16, which contain the full non-perturbative
result. The EM corrections, on the other hand, are common to both approaches and so far have never
been considered. As we will show in the next section, their size is smaller with the choice made in
eq. (30) of using the value of the neutral pion mass in the LO formula. Even with this choice, however,
the value of the EM corrections is just below the size of the present uncertainties for χtop, which means
that further improvements cannot ignore them.

2.4.1 QED corrections

While the QCD axion has a vanishing electric charge, its mass can receive O(αem) corrections from
several sources. Indeed, the leading order formula (30) involves a number of quantities that can
introduce potentially large EM corrections depending on the way they are defined and extracted by
experiments.

• The pion masses for the neutral and the charged states are degenerate at leading order, but
differ at higher orders due to isospin and EM effects. The latter largely dominate this difference,
which amounts to mπ+ −mπ0 = 4.5936(5) MeV, i.e. around 4% of the total mass. The main
effect comes from the charged pion mass (see eq. (22)), whose corrections are O(e2), while those
in the neutral pion mass start at O(e2p2). Therefore, depending on which pion mass is used in
eq. (30), the axion mass can vary by 4%, which is more than the quoted uncertainties of the
previous section. The expectation that the neutral pion mass should be used to minimize EM
effects is the correct one. Indeed the pion mass entering in the leading order formula can be
understood as arising from the mixing between the axion and the neutral pion state.

• In QCD the pion decay constant fπ is not unambiguously defined when EM interactions are
turned on. In chiral perturbation theory, on the other hand, αem can be controlled analytically
and it is possible to define fπ unambiguously. The best determination of fπ at the moment comes
from (radiative) leptonic pion decays π+ → µνµ(γ) where both experimental and theoretical

16On the other hand, lattice simulations have to face a number of systematic uncertainties which are not present in
the chiral expansion such as finite volume, finite lattice spacing effects, explicit chiral symmetry breaking, etc., some of
which require delicate and careful analyses.
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uncertainties are small [96]. As we will discuss in more detail below, the EM corrections to
Γπ+→µν(γ) are dominated by a calculable short distance contribution. The long distance hadronic
contribution (which is of the same order of the EM corrections we want to compute for the
axion mass) is subleading but dominates the current error of fπ. Given the importance of such
corrections for our computation, we revisit their estimate and analyze their interplay with the
genuine corrections to the axion mass. An alternative determination of fπ could be obtained from
the neutral pion decay π0 → γγ, however both the theoretical and experimental uncertainties
are not competitive with the charged pion channel [96].

• While the light quark mass ratio z = mu/md at leading order is renormalization group (RG)
invariant with respect to QCD corrections, it is not with respect to the QED ones [105]. This
introduces an O(αem) ambiguity in the tree-level formula of the axion mass that should be
removed by the sub-leading EM corrections:

∂ log z

∂ logµ
=

6αem

4π

[(
2

3

)2

−
(
−1

3

)2
]

=
αem

2π
(36)

A change of O(1) in the renormalization scale introduces a shift of O(10−3) in z that can be
taken as a lower bound to the order of magnitude of the expected EM corrections to the axion
mass.

We start by reporting the result for the computation of the leading EM corrections to the topo-
logical susceptibility, which begin at O(e2p2) in the chiral expansion once the leading order term is
written in terms of the physical17 neutral pion mass mπ0 (including EM corrections) and the physical
charged pion decay constant fπ+ (defined in pure QCD, i.e. at αem = 0):

χtop =
z

(1 + z)2
m2
π0f

2
π+ [1 + δe + . . . ] , (37)

δe = e2

[
20

9
(kr1 + kr2)− 4kr3 + 2kr4 +

8

3
∆ kr7 −

Z

4π2

(
1 + log

(
m2
π

µ2

))]
, (38)

where dots in eq. (37) represent the non-EM corrections discussed previously and in the next section,
the coefficients kri are the Nf = 2 EM low-energy constants from [106], and the dependence on the
RG scale µ cancels against that from the kri coefficients. As anticipated before, once the LO formula
is written in terms of m2

π0 , the EM corrections start at O(e2p2) (the δe term). In particular the EM
pion mass splitting effects parametrized by (see eq. (22))

Z =
m2
π+ −m2

π0

2e2f2
π+

+ · · · ' 0.81 . (39)

are loop suppressed. Although the value for the couplings kri is not known directly, it can been
inferred, as in [107], using their relation to the Nf = 3 constants Kr

i , which have been estimated in
refs. [108,109] using various techniques including sum rules and vector meson dominance. The values
for the kri we use are taken from [107] (with Kr

9 from [109]) and reported in tab. 1. Because of the
model dependence of such estimates we decided to assign a conservative 100% uncertainty to each

17Whenever mπ appears in the following formulas, it can be equivalently understood as mπ0 or mπ+ because the
difference will be accounted by higher orders in either e2 or p2. For the numerical estimates we used mπ = mπ0 .
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kr1 kr2 kr3 kr4 kr7
8.4 3.4 2.7 1.4 2.2 ×10−3

Table 1: Numerical values of the Nf = 2 EM LECs kri at the scale µ = 770 MeV extracted using
their relation to Kr

i . To the kri it is assigned a conservative 100% uncertainty.

LEC, i.e. we use the mentioned values as an order of magnitude estimate of their size. Substituting
the numerical values we find

δe = 0.0065(21) . (40)

While we have assigned 100% uncertainties to the LECs kri , the uncertainty on δe only amounts to
30% because the dominant contribution comes from the last term in eq. (38).

As discussed before, the QED RG scale dependence from the quark mass ratio z in the leading
order formula (30) must be reabsorbed by O(αem) corrections. Indeed the EM LECs kr5,7 have the

non-trivial UV-scale µ dependence18:

µ
∂

∂µ
kr5 = −3

5

1

(4π)2
, µ

∂

∂µ
kr7 = −3

4

1

(4π)2
. (41)

It is easy to check that the variation of kr7 reabsorbs the dependence induced by the variation of z in
the leading order formula (in the Nf = 3 case the RG scale dependence is reabsorbed by Kr

9). In fact,
the light quark mass ratio z and the constants kr5,7 cannot be determined independently and only the
RG invariant combination enters physical quantities. The numerical value of kr7 in tab. 1 is of the
same order of the scale dependence in eq. (41), which therefore dominates its determination. In any
case, the current uncertainties on the quark mass ratio z are still bigger than the effects from the scale
dependence in z, and therefore bigger than the effects from kr7.

To complete the computation of χtop we need the value of the pion decay constant fπ+ at αem = 0.
Currently the best determination comes from the charged pion leptonic decay, which according to
the PDG [96] provides fπ+ = 92.28(9). This estimate however involves EM corrections of the same
order of δe, so that a consistent calculation of χtop within the chiral expansion should consider the
two sources of EM corrections together. In more details fπ+ is related to the EM inclusive pion decay
rate via

Γπ+→µν(γ) =
G2
F |Vud|2mπ+m2

µf
2
π+

4π

(
1−

m2
µ

m2
π+

)2 [
1 + δloc

Γ + δhad
Γ

]
(42)

where the δΓ terms computed in [110] are the O(αem) corrections, which we split into two terms: the
local contribution δloc

Γ and the IR one δhad
Γ , which parametrizes the hadronic form factors and depends

on the chiral LECs. Explicitly they read:

δloc
Γ =

αem

π

[
log

(
m2
Z

m2
ρ

)
+ F

(
m2
µ

m2
π+

)
−
m2
µ

m2
ρ

(
c2 log

(
m2
ρ

m2
µ

)
+ c3 + c4

)
+
m2
π+

m2
ρ

c2t log

(
m2
ρ

m2
µ

)]
,

δhad
Γ = e2

[
8

3
(Kr

1 +Kr
2) +

20

9
(Kr

5 +Kr
6)− 4

3
Xr

1 − 4(Xr
2 −Xr

3)− X̃r,eff
6

+
1

(4π)2

(
2− 3Z − Z log

(
m2
K

µ2

)
+ (3− 2Z) log

(
m2
π

µ2

))]
,

18This can be derived by computing the operators generated in the chiral Lagrangian by an RG transformation of the
quark mass matrix in terms of the EM charge spurions QL,R.
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c2 c3 c4 c2t

5.2 −10.5 1.69 0

Kr
1 Kr

2 Kr
3 Kr

4 Kr
5 Kr

6 Kr
9 Kr

10 Xr
1 Xr

2 Xr
3 X̃r,eff

6

−2.7 0.7 2.7 1.4 12 2.8 −1.3 4 −3.7 3.6 5 13 ×10−3

Table 2: Top: Numerical values of the ci constants appearing in δloc
Γ from [110]. Bottom: Numerical

values of the Nf = 3 radiative and leptonic LECs from [108, 109, 111] at the scale µ = 770 MeV. All
constants are assigned a conservative 100% uncertainty.

F (x) ≡ 3

2
log x+

13− 19x

8(1− x)
− 8− 5x

4(1− x)2
x log x−

(
2 +

1 + x

1− x
log x

)
log(1− x)− 2

1 + x

1− x
Li2(1− x) .

(43)

The constants ci have been estimated in a model dependent way in ref. [110], and for this reason we
assign a conservative 100% uncertainty to them. The corresponding numerical values from [110] are
reported in tab. 2. The constants Kr

i and Xr
i are the Nf = 3 radiative and leptonic LECs respectively,

defined in refs. [112,113] (except for X̃r,eff
6 defined in ref. [111]). We use the values estimated in ref. [108]

for Kr
1,...,6, in ref. [109] for Kr

9,10, and in ref. [111] for Xr
i , which we report in tab. 2 and to which we

associate conservatively a 100% uncertainty.19

Numerically the size of the EM corrections to Γπ+→µν(γ) amounts to

δloc
Γ + δhad

Γ = 0.0177(38) , (44)

very close to the PDG estimate (0.0176(21)) but with larger error (here we have been more conser-
vative). Note that, although the uncertainties of all LECs have been taken O(1), the result has a
20% accuracy, since the first term in δloc

Γ largely dominates over all the others. Combining eqs. (42)
and (44) we get fπ+ = 92.26(18).

Since some of the LECs appearing in δhad
Γ are common with some of those appearing in δe, the

topological susceptibility χtop should be written directly in terms of the Γπ+→µν(γ) rather than fπ+ ,
i.e.

χtop =
z

(1 + z)2
m2
π0

Γπ+→µν(γ)

G2
F |Vud|2mπ+m2

µ

4π

(
1− m2

µ

m2
π+

)2

[
1 + δe − δloc

Γ − δhad
Γ + . . .

]
. (45)

The combination δe − δhad
Γ can be written either all entirely in terms of Nf = 3 LECs, or in a hybrid

way in terms of Nf = 2 kri and Nf = 3 Xr
i (because the Nf = 2 leptonic LECs are not available):

δe − δhad
Γ = e2

2kr4 − 4kr3 +
8

3
∆ kr7 − 4kr9 +

4

3
Xr

1 + 4(Xr
2 −Xr

3) + X̃r,eff
6 −

2(1 + Z) + (3 + 2Z) log m2
π

µ2

(4π)2


= e2

[
2Kr

4 − 4Kr
3 +

8

3
∆(Kr

9 +Kr
10) +

4

3
Xr

1 + 4(Xr
2 −Xr

3) + X̃r,eff
6

− 1

(4π)2

(
2(1 + Z + ∆Z) + (3 + 2Z) log

m2
π

µ2 + 2∆Z log
m2
K

µ2

)]
. (46)

19The various estimates of the Kr
i in refs. [108,109] and references therein are not always compatible with each other,

hence our conservative choice for the error, which is supposed to take those model-dependent deviations into account.
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Figure 1: One-particle-irreducible diagrams for the axion and pion 2-point functions at NNLO.

In this way we get
δe − δhad

Γ − δloc
Γ = 0.024(6) , (47)

which in combination with eq. (45) can be used to evaluate the EM contribution to χtop.
The direct extraction of fπ+ from lattice QCD simulations is not competitive with the estimate

above. However, recently the EM corrections to Γπ+→µν(γ) have been computed in a preliminary study
on the lattice [114], giving

δloc
Γ + δhad

Γ = 0.0169(15) , (48)

which is in very good agreement with eq. (44). Accidentally this value is very close to the PDG one,
both in size and uncertainty. Eq. (48) implies fπ+ = 92.30(7). Given the compatibility of the chiral
and the lattice results, and the fact that the latter has better precision and less model dependence,
we will use eq. (40) and this lattice estimation for fπ+ , bearing in mind that numerically this choice
is also equivalent to using the PDG determination.

2.4.2 NNLO corrections

Given the smallness of the expansion parameter, the Nf = 2 chiral expansion is expected to converge
very fast and the NNLO corrections to be only a few percent with respect to the NLO ones. Neverthe-
less, depending on the magnitude of the low-energy coefficients, they might be competitive with the
EM corrections discussed in the previous section. Their estimation is therefore essential for a precise
calculation of χtop.

The NNLO corrections to the topological susceptibility receive contributions from the diagrams in
fig. 1, which correspond to: 1) the two-loop diagrams constructed from O(p2) vertices, 2) the one-loop
diagrams generated by O(p4) vertices and 3) the tree-level graphs from the O(p6) Lagrangian.20 At
αem = 0, the full NNLO result is

χNNLO
top =

z

(1 + z)2
m2
π0f

2
π+ [1 + δ1 + δ2] , (49)

δ2 =
m4
π

f4
π

32(cr6 + 2cr19) +
2`3 + 4`4 + 3 log m2

π

µ2 − 2

4(4π)4
log

m2
π

µ2 +
3`7
8π2

log
m2
π

µ2

+
hr1 − hr3 − `r4 − `7

8π2
`3 −

1

(4π)4

(
`
2
4 − `3`4 +

25

16

)
+

(
32 (cr9 − 6cr10 − 4 (cr11 + cr17 + cr18)− 6cr19)− 7`7

8π2
log

m2
π

µ2

20Note that even with a quark field redefinition that avoids the tree-level mixing between the axion and the neutral
pion, i.e. Qa = M−1

q /〈M−1
q 〉 this mixing arises at one loop, producing effects at NNLO in χtop.
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106cr6 106cr7 106cr8 106cr9 106cr10 106cr11 106cr17 106cr18 106cr19

1.0(3.8) −2.2(2.0) 2.1(1.1) −0.3(1.2) −1.0(1.1) −0.1(0.7) 6.4(3.8) −2.2(5.9) −0.1(9.5)

Table 3: Numerical values of the Nf = 2 LECs in δ2 at the scale µ = 770 MeV extracted by
combining the lattice results of [104] and the matching with the Nf = 3 LECs of [121] (see app. B for
more details).

+8(hr1 − hr3 − `r4)`7 − 12`27 +
2`3 + 2`4 − 1

8π2
`7

)
∆2 + 20`27 ∆4

]
, (50)

with δ1 given in eq. (31), `i defined in [15] and the cri being the O(p6) Nf = 2 LECs introduced
in [116, 117]. Note that the charged and neutral pion decay constants (defined, as mentioned, at
αem = 0) differ only at two loops due to isospin breaking effects, so fπ in δ1 and δ2 can be understood
either as fπ+ or fπ0 , being the difference accounted by O(p8) terms. The scale dependence of the

combinations of cri in eq. (50) is fully reabsorbed by the log m2
π

µ2 and log2 m2
π

µ2 terms, and since hr1−hr3−`r4,

`7 and `3,4 are scale invariant, the scale dependence of δ2 cancels separately in each line of eq. (50).
While the numerical value of most of the O(p4) LECs is reasonably well known, the determination

of the cri is in much worse shape. In fact, only few combinations of cri can be extracted directly because
there are not enough experimental observables to fit all the Nf = 2 Lagrangian parameters.21 Recent
partially-quenched lattice QCD simulations [104] provided results for some of the combinations of cri
appearing in eq. (50). For the remaining ones we matched the relevant combinations to the Nf = 3
LECs, for which some estimates exist [121] (taken with a conservative 100% error). In this way we
have been able to extract an order of magnitude estimate for all the cri appearing in eq. (50), which
we report in tab. 3 (see app. B for more details).

The LECs in tab. 3 and eq. (33), combined with the values `3 = 2.81(49) and `4 = 4.02(25)
from [104], lead to the following numerical result for the NNLO corrections:

δ2 = −0.0071(01)z(23)`ri (19)cri = −0.0071(29) . (51)

While the uncertainty from z is very small, those from `ri (of which `7 provides the largest contribution)
and cri have similar size. Notice that although the relative uncertainties of the cri are large, they only
have a milder impact on the final uncertainty of δ2, because numerically δ2 receives bigger contributions
from the O(p4) LECs and the non-local contributions. Moreover, the isospin-breaking terms in δ2 (the
last two lines in eq. (50)), which are suppressed by powers of ∆2 ≈ 0.1, contribute less than 20% to
the final result and are within the uncertainty of δ2. As a consequence, the precision on the LECs is
still not enough for the result to be sensitive to isospin breaking corrections. Finally notice that δ2 is
numerically of the same order of the EM corrections in eq. (40), but with opposite sign. Therefore,
both have to be considered for a sub-percent estimate of χtop.

21In fact, of the cri that appear in eq. (50), only cr6 has been extracted semi-directly from experiments, in particular
from the pion scalar form factor [118], with some phenomenological modeling. As explained in app. B, since on its
numerical value there is still disagreement [118–120], we will not use it in our analysis.
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2.4.3 Final Results and Axion Mass

We can now combine the analysis of the previous sections and estimate of the topological susceptibility
to O(p6, e2p2). The final result reads

χtop =
z

(1 + z)2
m2
π0f

2
π+ [1 + δ1 + δ2 + δe] , (52)

where the O(p4) contribution δ1 is given in eq. (31), the O(p6) contribution δ2 in eq. (50) and the
O(e2p2) contribution δe in eq. (38). For completeness, in app. A we also report χtop expressed in terms
of quark masses and bare chiral Lagrangian parameters.

Substituting our numerical estimates, the final results for the topological susceptibility and the
axion mass read

χ
1/4
top = 75.44(34) MeV , ma = 5.691(51)µeV

1012 GeV

fa
. (53)

Notice how these values almost coincide with the NLO ones in eq. (35), since both NNLO and EM
corrections are comparable but smaller than the present uncertainties of the NLO estimate, and,
having opposite sign, they tend to cancel each other. This result confirms the reliability of the NLO
estimate in [97]. It is instructive to deconstruct the contributions at each order with the various
uncertainties: for the axion mass case they read

ma =
[
5.815(22)z(04)fπ︸ ︷︷ ︸

LO

−0.121(38)`ri︸ ︷︷ ︸
NLO

−0.022(07)`ri (05)cri︸ ︷︷ ︸
NNLO

+0.019(06)kri︸ ︷︷ ︸
EM

]
µeV

1012 GeV

fa
, (54)

where the reported uncertainties on each contributions come from those of z, from the EM corrections
in the extraction of fπ+ , and from those of the various LECs in the NLO (`ri and hri ), in the NNLO
(cri ) and in the EM (kri ) chiral Lagrangians.

Several comments are in order. First notice how, while NLO corrections are almost two orders
of magnitude smaller than the LO result, NNLO are barely one order of magnitude below the NLO
ones. On one side this means that the chiral expansion is nicely converging and, given the current
uncertainties on z and the LECs, the NLO result is enough. On the other side, the size of the NNLO
corrections is such that they cannot be ignored in future improvements of ma.

EM corrections are of similar size, slightly less than 0.5% and within present uncertainties. The
numerical estimate of the EM corrections has been carried out using the lattice QCD results for fπ+

extracted from eqs. (42) and (48) with δe in eq. (40), since these values are more model-independent.22

However, one could have also used eqs. (45) and (47) obtaining essentially the same central value
although with an error twice as large. As for NNLO corrections, they must be considered should the
uncertainties coming from z and the NLO LECs decrease. As commented before, the size of these
corrections also represents the ultimate precision that can be reached in lattice estimates which do
not include EM corrections.

We conclude by noticing that, if the uncertainties in mu/md and the NLO LECs (in particular `7)
are reduced by a factor of few (which is not unreasonable) these results could be used to determine

the axion mass (and χ
1/4
top) with per-mille accuracy.

22A very similar result would follow using the PDG value for fπ+ , which, as mentioned, is very close to the lattice
estimate both in size and error.
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2.5 Topological Susceptibility and Axion Mass at finite temperature

As we will see in sec. 3.2, the cosmological evolution of the axion field depends on how the axion poten-
tial (in particular its mass) behaves at finite temperature, which is determined by finite-temperature
QCD properties. We can separate the study of the temperature dependence in three regimes, and
only on two of them we will have analytical control.

For T � ΛQCD the finite temperature effects are expected to be exponentially suppressed by

Boltzmann factors e−m
2
π/T

2
due to the mass gap of QCD. Even if QCD is nonperturbative in this

regime, finite-temperature chiral perturbation theory may be used to study effects at small enough T .
Indeed it has been shown in ref. [97] that if T < mπ the whole potential is extremely close to its zero
temperature form in eq. (25) and for T ∼ 150 MeV the potential is O(1) different (but in this regime
the chiral expansion breaks down and might be not reliable).

For T ∼ ΛQCD, more precisely at T = Tc ∼ 160 MeV, QCD undergoes a phase transition (actually
thought to be a crossover) where the density of quark condensates 〈qq〉 could be considered the order
parameter. The density of condensates diminishes fast as the temperature increases and the only way
to understand the behavior of physical observables like χtop is to use non-perturbative methods, e.g.
lattice QCD [76,77].

For T � ΛQCD, QCD becomes perturbative and the saddle point approximation of the path
integral in eq. (4) (which defines the axion potential and χtop) about instanton configurations should
be in principle under control and can be systematically evaluated. Indeed, one can show that at finite
temperature the one-loop approximation around k = ±1 in eq. (7) gets modified by the introduction

of the term −2π2

g2
s
m2
d(T )ρ2 (among others) in the exponential [78], where md(T ) = 1

3g
2
sT

2(3 + Nf/2)

is the Debye mass of the gluon. This term can be interpreted as an effective mass for the gluon
arising from its interactions with the charged thermal plasma of unconfined quarks, and acts as an
exponential cut-off for the integration over ρ in eq. (7) at values ρ ∼ (πT )−1, making the integral
converge. Note that large size instantons are screened and only those with ρ smaller than (πT )−1

(for which the coupling gs(1/ρ ∼ πT ) is perturbative if T is large enough) contribute. Moreover, at
large enough temperatures it is indeed meaningful to consider the contribution to the path integral
only from k = ±1 instantons as in eq. (7), since the saddles around instantons with higher and higher
k are more and more suppressed by the exponential exp(−8π2|k|2/g2

s), where gs will be the coupling
gs(πT ) because of similar temperature cutoffs. Higher loop corrections around k = ±1 instantons will
be instead only suppressed by powers of g2

s(πT ).
Restricting to the semiclassical approximation around k = ±1 and performing the integral in

eqs. (7) and (8), we get

E(θ, T ) ∝ −detMf (ΛQCD)4−Nf
(

ΛQCD
T

)7+ 1
3
Nf

cos θ . (55)

The result is that at large enough temperatures (e.g. at 1 GeV when Nf = 3) the topological
susceptibility (and so m2

a) decreases as ∼ T−8, while the only harmonic present in the potential is
cos θ. As the temperature gets closer to ΛQCD, higher order corrections in the perturbative expansion
around k = ±1 and – later because of the exponential suppression – saddles around higher order
instantons will become relevant, changing in principle the dependence on T in eq. (55) and switching
on higher harmonics cos(kθ), until when the saddle point approximation breaks down completely23.

23Note that also the dependence on the quark masses will have to change from detMq to that of eq. (23), which is
non-analytic.
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Since the first nontrivial correction to eq. (55) has not been yet computed, it is not known at which
temperature the validity of eq. (55) stops. However, lattice QCD simulations seem to suggest that the
dependence on T−8 (and the single harmonic cos θ) holds up to very small temperatures, just above
the phase transition, although the overall size of χtop is not yet well reproduced by the simulations
(see [90,91] for pure Yang Mills and [92–95] for QCD).

For the estimates in the following chapter we will assume the simplified functional form

χtop(T ) = m2
a(T )f2

a =

{
χtop(0) if T < ΛQCD

χtop(0)
(

ΛQCD
T

)α
if T > ΛQCD

(56)

where χtop(0) is the zero temperature value discussed in the previous section and α ∼ 8, which will
capture the main effects, but we will still leave the power α to be a free parameter.
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3 QCD axion dark matter

Having introduced a new light particle such as the QCD axion in the theory, we need to study
its cosmological implications and in particular how much energy density in the form of this field is
left today in the Universe. We will consider the minimal scenario where the QCD axion (and the
inflation) are the only relevant particles beyond the SM, and possible new physics that UV completes
the axion theory does not change significantly the cosmology. In this way we can extrapolate the SM
cosmology up to sufficiently high temperatures; in particular the Universe is radiation dominated up
to temperatures larger than ΛQCD. In this context the only free Lagrangian parameter will be the
axion decay constant fa.

We will show in this chapter that, depending on the hierarchy between fa and the scale of inflation,
there is a large window of values of fa such that the QCD axion relic density is in the form of pressure-
less matter. Moreover, a contribution to the relic energy density in this field will be unavoidable for all
values of fa. While one might naively guess that a population of relic axions is still relativistic today
(because they are extremely light) and so behaves as radiation, we will show that the mechanism by
which they are produced automatically guarantees that they are nonrelativistic.

Note that the axion is very weakly coupled to all SM particles and very hard to detect because its
couplings are suppressed by powers of fa. In particular, its main decay channel is to photons, and its

decay rate Γaγγ = m3
a

4π (
gaγγ

4 )2 is dictated by the coupling (see eq. (14) and below)

gaγγ =
αem

8π

[
E

N
− 2

3

mu + 4md

mu +md

]
(57)

where the second term in the bracket24 is about −2. Taking E/N of order 1, the lifetime is τ = Γ−1
aγγ ≈

1018τu(fa/109 GeV)5 where τu is the age of the Universe, and therefore the axion is absolutely stable
on cosmological scales. Given all these properties, axions are naturally excellent candidates to make
up a part or all of the cold dark matter (CDM) of our Universe.

Axions are produced in the early universe in at least two ways. As we will see, there is a contribution
of (warm) thermal axions which turns out to be suppressed in the region fa & 108 GeV that is not ruled
out by astrophysical constraints. On the other hand, nonrelativistic axions are produced non-thermally
(and automatically) through the so-called misalignment mechanism, which will be our focus.

3.1 Thermal QCD axions

If the interaction rate Γ = 〈nσv〉 of the QCD axion with the SM thermal bath has ever been bigger than
the Hubble parameter H, axions would have been in thermal equilibrium with the SM and possibly
produced by thermal freeze-out (see [79–81]). In the following we will estimate the relic abundance of
axions from this process and understand whether they are possibly still relativistic today.

As explained in sec. 2.5, at high enough temperatures axions are massless (so relativistic) and
their number density is n = ζ(3)T 3/π2 and v ∼ 1. The cross section σ of axions with the SM
particles depends on the temperature, and in general also on the model. We consider only the model-
independent coupling to gluons, which at temperatures larger than ΛQCD mediates at tree level the
process gg → ag whose cross section is σ ∼ (αs8π

1
fa
× gs)2 ∼ 10−5f−2

a (the first factor comes from the
axion-gluon trilinear vertex, the second from an additional trilinear QCD vertex). At temperatures
of order ΛQCD, the relevant coupling is to pions (see eq. (27)) and the relevant process is ππ → πa,

24A NLO computation [97] gives −1.92(4) for the second term in the bracket.
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whose cross section is σ ∼ 1
4π ( E

fπfa
)2 ∼ 1

4π
1
f2
a

and we neglected the model dependent coefficients c0
i . In

total, the interaction rate is Γ ∼ 10−5T 3/f2
a for T � ΛQCD and Γ ∼ 10−2T 3/f2

a for T ∼ ΛQCD.
In radiation domination the Hubble parameter is H2 = (π2/90)g(T )T 4/M2

P where g(T ) is the
effective number of relativistic degrees of freedom at the temperature T .

• In the regime T � ΛQCD the condition Γ > H translates into T & f2
a/(1013 GeV) where we

used g(T ) ∼ 100 since we are assuming only SM degrees of freedom. At temperatures below the
bound above, axions decouple from the thermal bath and evolve as free particles. Depending on
fa and on whether the Universe has even been hot enough axions were therefore in equilibrium
with the plasma.

• For T ∼ ΛQCD the equilibrium condition is T & f2
a/(1016 GeV), which is satisfied only for

fa . 107 GeV, i.e. in the parameter region excluded by astrophysical bounds. We are therefore
interested in the previous case only.

In the first case axions will decouple at a temperature Td bigger than ΛQCD at which g(Td) ∼
100. The temperature of these axions today is Ta = Td(s0/sd)

1/3 where s is the entropy density
and we used s ∝ T−3 for decoupled species (like axions). Therefore Ta = T0(g(T0)/g(Td))

1/3 since
s = (2π2/45)g(T )T 3 where g(T0) = 43/11 and T0 = 2·10−4 eV is the temperature of the CMB photons
today, and so ma < Ta if fa & 1011 GeV(g(Td)/100)1/3. The result is that for values of fa lower than
1011 GeV these axions are nonrelativistic today.

The relic abundance Ωth
a = ρa/ρc of thermal axions is

Ωth
a =

man
0
a

ργ/Ωγ
= Ωγ

ma
ζ(3)
π2 T

3
a

2× π2

30T
4
0

= Ωγ
ma

T0

15ζ(3)

π4

g(T0)

g(Td)
= 10−8

(
100

g(Td)

)(
1012 GeV

fa

)
(58)

where we assumed that the comoving number density of axions is conserved from the freeze-out
time (also when they turn nonrelativistic). From the previous equation we see that for fa & 108

GeV the thermal relic density is negligible compared to the energy density in dark matter Ωdm ∼ 0.24
measured today. However this thermal population of axions might still leave an imprint as a component
of relativistic energy density at the time of the CMB decoupling, usually measured as the effective
number of neutrinos ∆Neff . While the bounds on ∆Neff are still large, these might tighten in the near
future and further constrain this scenario (see e.g. [82]).

3.2 Misalignment QCD axions

The relic energy density of any scalar field with a nontrivial potential (such as the QCD axion) gets
a contribution via the misalignment mechanism, which is based on the fact that the initial value of
the field in the early universe is not in general aligned with the minimum of the potential [8–10] (see
e.g. [17, 18] for reviews). Depending on the initial field value and the Universe evolution, the field
will start oscillating around its minimum and the energy stored in these oscillations will in principle
contribute to the energy budget of our Universe today (and possibly behave as pressureless matter).

In this section we will assume that the axion field a(t, ~x) is spatially homogeneous at the beginning
of its evolution. This is always the case unless inflation happens at a scale HI bigger than fa or the
reheating temperature TR if bigger than fa, so that quantum fluctuations during inflation or finite
temperature effects do not have the chance of restoring the PQ symmetric phase in any region of the
universe. Indeed, in this case due to the exponential expansion of the Universe during inflation, the
axion field will reach at the end of inflation a constant value over distances of order eNH−1

I , where
N & 60 is the number of e-foldings, which is much larger than the Hubble distance. We will discuss
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in the next chapter the more complicated case where either HI or TR are bigger than fa, in which the
PQ is restored after inflation (and then broken again).

The equations of motion for the axion will then be

ä+ 3Hȧ+
∂V (a, t)

∂a
= 0 , (59)

where H = Ṙ/R = 1/2t is the Hubble parameter in radiation domination25, R(t) ∝
√
t is the

scale factor and H2 = (π2/90)g(T )T 4/M2
P . The dependence of the potential on time comes from its

dependence on temperature in eqs. (55) and (56). Moreover, if the initial condition a(t0) at the time
t = t0 is sufficiently near the minimum of the potential, we can approximate ∂aV (a, t) with m2

a(t)a.
Eq. (59) corresponds to an harmonic oscillator with a friction term decreasing in time. At early

times the Hubble friction dominates, H � ma(t), the last term in eq. (59) is negligible and the solution
is a(t) = a(t0) where t0 is the initial time (for all ȧ(t0)), i.e. the axion stays frozen at its initial value.
At times where H ∼ ma(t) the axion starts feeling the potential and moves away from a(t0). Finally,
at late times H � ma(t) and eq. (59) is an underdamped harmonic oscillator with frequency ma(t),
and a(t) will oscillate around the minimum a = 0 with an amplitude decreasing less and less since
Hubble decreases.

In the limit H � ma(t) and ṁa(t) � m2
a(t) which is verified at sufficiently late times (when

ma(t) is practically constant), the energy density of the field averaged over one oscillation period
behaves like pressureless matter and the comoving number density of nonrelativistic quanta is con-
served in time. Indeed, in the limit above the solution of eq. (59) is approximated by a(t) =
A(t) cos(

∫ t
ma(t

′)dt′) where A(t) ∝ R(t)−3/2 varies in time much slower than than ma. It follows
that 〈ȧ2(t)〉 = 〈m2

a(t)a
2(t)〉

[
1 +O(H2/m2

a)
]

where 〈·〉 is the average over one oscillation. The energy
density ρa = T00 and the pressure Pa = −T i

0 of the field are

ρa =
1

2
ȧ2 +

1

2
m2
aa

2 , Pa =
1

2
ȧ2 − 1

2
m2
aa

2 (60)

and so 〈ρa〉 = 〈m2
aa

2〉
[
1 +O(H2/m2

a)
]

and 〈Pa〉/〈ρa〉 = O(H2/m2
a), which in the small H/ma limit is

the equation of state of a pressure-less fluid. Moreover, using the fact that 〈H〉 = H and 〈ṁa/ma〉 =
ṁa/ma up to O(H2/m2

a) corrections we get 〈ρ̇〉 = 〈ρ〉(ṁa/ma − 3Ṙ/R). Integrating this equation in
time, it is easy to see that the average number density na = 〈ρ〉/E (E = ma because only the zero
mode with momentum k = 0 is excited) satisfies

na =
〈ρ〉
ma
∝ R−3 . (61)

The result is that the axion energy density redshifts as matter (as soon as ma becomes constant) and
the comoving number density naR

3 is conserved. An homogeneous axion field oscillating in time is
interpreted as a collection of axions at rest, whose energy density indeed behaves as in eq. (61). The
energy stored in these oscillations will last until today (though redshifted) and will make up at least
a part the CDM we observe.

To compute the number density of axions leftover today we would need to solve numerically eq. (59)
with the proper time-dependence of the potential. However, we can get a rough analytic estimate by
assuming that the late time solution (therefore the conservation of the number density) holds from

25We are assuming radiation domination up to the time of reheating, but what matters for the final abundance is up
to temperatures just above T∗ defined in eq. (62), when the axion starts oscillating.
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the time t∗ at which the axion starts oscillating26, roughly set by ma(t∗) = H(t∗). Given the mass
dependence on temperature in eq. (56) with χtop(0) ≈ Λ2

QCD, the corresponding temperature is

T∗
ΛQCD

=

[
MP

fa

3
√

10

π
√
g(T∗)

] 2
4+α

, (62)

and g(T ) ∼ 60 at T = 1 GeV (but it depends on the exact value of T especially near the QCD phase
transition). From eq. (62), T∗ depends on fa and is generally bigger than ΛQCD unless fa is very close
to MP , and the smaller is α the bigger is the separation between T∗ and ΛQCD. Note moreover that
eq. (62) is not a good approximation if T∗ ∼ ΛQCD because the single power-law in the temperature-
dependence of ma in principle breaks down; however, the fact that T∗ is parametrically above ΛQCD
makes eq. (62) self-consistent. In addition, the poor knowledge of the temperature dependence of ma

around the QCD crossover does not affect the conservation of the axion number density, that holds
as soon as H � ma(t) and ṁa(t)� m2

a(t), and so it is somewhat unimportant if fa is small enough.
Similarly to eq. (58), using the conservation of the comoving entropy and number densities from

t∗ to today, the contribution to the energy density from these axions is

Ωmis
a =

man
0
a

ργ/Ωγ
= Ωγ

ma

T0

86

33

n∗a
s∗

(63)

where T0 is the temperature of the CMB photons. We have n∗a = 1
m∗a
〈m∗a2a2(t∗)〉 = 1

2H(t∗)θ
2
0f

2
a , where

we used a(t0) = a(t∗) and we parameterized a(t0) = θ0fa with |θ0| ≤ π for periodicity. Expressing
H(t∗) and s∗ in terms of T∗ and using the explicit form of T∗ we get finally

Ωmis
a = 0.1kα

(
θ0

2.15

)2( fa
1012 GeV

)1+ 1
2+α/2

(
60

g(T∗)

) 1
2
− 1

4+α

, (64)

where we omitted O(1) factors, that include the uncertainty from the transient period when ma ∼ H,
and kα ranges from 3 to 5 for α from 3 to 8.

Therefore, misalignment axions could explain the whole CDM abundance if θ0 is of O(1) and
fa ∼ 1012 GeV. However, the value of fa such that the QCD axion makes up the whole relic density is
not uniquely determined, since is a function on the (unknown) initial misalignment angle θ0, which in
principle depends on the specific Hubble patch in the Universe. In particular, the correct relic abun-
dance can be obtained also for larger values of fa as long as27 θ0 is smaller than 1. As a consequence,
this scenario does not provide the axion relic density only in terms of Lagrangian parameters (i.e. of
fa), and so it is not predictive.

In this discussion we neglected the inharmonicities of the axion potential. These are however im-
portant if |θ0| ∼ π, because they delay the oscillations and therefore produce a bigger DM abundance,
and a self-consistent analysis should take them into account.

Note that in writing eq. (59) we omitted the interactions with all SM particles. This is justified
because they are suppressed by powers of fa. In this regard, as discussed in [83], we are allowed to
treat misalignment axions separately from the thermal bath because their thermalization rate is very

26This is a good approximation because both ma and H change power-like with time, so the transient period where
ma and H are comparable is very short, which suggests that it does not have a big impact in the estimate.

27The determination of the relic abundance becomes a cosmographical question and anthropic arguments could be
invoked to explain why θ0 � 1 is acceptable in the Hubble patch where we live. Note that even if θ0 was known, there
would still be a milder uncertainty coming from α and g(T∗), which is however small is T∗ � ΛqCD.
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small. We are also neglecting the interactions with possible new particles that UV complete the axion
theory at the scale fa because they are heavy enough (with respect to Hubble) not to be produced,
at least at the time when the axion starts oscillating.

Moreover, θ0 cannot be chosen arbitrarily close to zero or to π in this scenario because of quantum
fluctuations during inflation. Indeed, any massless scalar field fluctuates during inflation with a vari-
ance of HI/(2π), which means that the minimum displacement of a(t0) from any point (in particular
from a(t0) = 0 and a(t0) = π) is bounded by HI/(2π). As a consequence, it must be |θ0| ≥ HI/(2πfa)
and similarly |π − θ0| ≥ HI/(2πfa), which excludes high scale inflation models if θ0 is tuned near 0
or π.

More importantly, the quantum fluctuations of the axion during inflation provide isocurvature
perturbation in the CMB spectrum [85], which actually give the strongest upper bound on HI for a
fixed value of fa. The quantum fluctuations imprinted to the axion are isocurvature because they do
not change the total energy density of the Universe during inflation, being the axion negligible in the
energy budget during inflation. On the other hand, these perturbations produce spatial anisotropies of
the axion field at distances & H−1

I , and therefore different patches of the Universe will have different
of the axion number densities when the axion starts oscillating. In particular, the modes of order
Hubble at recombination will provide anisotropies in the axion dark matter densities at the time of
the CMB decoupling, which are in addition to those coming from the initial quantum fluctuations of
the inflaton (or equivalently of the metric). These additional anisotropies in turn leave a measurable
imprint in the temperature fluctuation of the CMB spectrum usually denoted by (δT/T )iso, on which
there is a limit αiso = (δT/T )iso/(δT/T )tot < 0.02 [84]. One can compute (δT/T )iso as a function of
HI and fa using δa ∼ HI/(2π) and (δT/T )2

tot ∼ 10−9, and find that the Hubble parameter for which
the amount of isocurvature fluctuations matches αiso is [85, 86]

H iso
I = 108 GeV

(
αiso
0.02

0.24

Ωmis
a

fa
1012 GeV

) 1
2

, (65)

where dropped the dependence of the axion DM relic density on α (the dependence on α is anyway
mild). This means that HI < H iso

I if the value of αiso is an upper bound. If axions make up the
whole relic density, high scale inflationary models are therefore exclude in this scenario. Note that
one can require Ωmis

a to be smaller than the observed DM abundance to relax this bound. However,
there is always a lower bound on the abundance produced via the misalignment mechanism because,
as discussed, θ0 ≥ HI/(2πfa).
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4 Axions from Strings

In the previous chapter we studied the production of axion dark matter in the cosmological scenario
where both HI and TR are smaller than fa, in which case the axion field a(t, ~x) could be considered
constant in every Hubble patch (up to small anisotropies due to the quantum fluctuation of the axion
and the inflaton during inflation). If instead TR > fa, the PQ symmetric phase is generically restored
in the Universe after inflation by finite temperature effects (and then broken again when T drops below
fa). As we will discuss further below, this means that the axion field had random fluctuations over
the observable horizon. Similarly, if HI > fa, quantum fluctuations during inflation are big enough
not to be neglected anymore. In this scenario one needs to analyze the evolution of the spatially
inhomogeneous axion field, in particular of all Fourier modes. While this might be doable at least in
the regime where the axion potential is negligible (or linear) because in this case all the modes are
decoupled, being the axion a NGB the field a(t, ~x) takes values on a circle and topologically nontrivial
configurations, called axion strings [22–29], are allowed and generically present. As we will see, a
self-consistent treatment of these configurations in a field theory framework requires to study at the
same time the axion field and the UV degrees of freedom that resolve the singularities associated to
the center of the strings. The result is that the equations of motion one needs to solve are highly
nonlinear, and analytical methods are unfortunately not applicable anymore.

In this chapter we will first give an overview on the dynamics of axions strings and domain walls
in the early universe. While some of the features we will describe are only qualitative (mainly due to
disagreements in the literature), the overall picture is accepted. We will then analyze the dynamics of
axion strings numerically, and discuss the implications for the axion DM abundance.

4.1 Formation and dynamics of strings and domain walls

Except in particular cases, see e.g. symmetry non-restoration at finite temperature [87, 88], at high
enough temperature a spontaneously broken U(1) symmetry such as the PQ symmetry is restored [89].
The prototypical example of this phenomenon is the theory of a complex scalar field φ with a mexican-
hat-like potential V (φ) = λ

4 (|φ|2 − v2)2. At finite temperature the potential gets (among others) the

contribution m2
T |φ|2 = λ

6T
2|φ|2, interpreted as a thermal mass for φ. Therefore, at finite temperature

the vev 〈φ〉T depends on T and, if T >
√

3v, 〈φ〉T = 0, which means that the U(1) symmetry
of the complex scalar field is restored. At T ≤

√
3v the vev 〈φ〉T becomes non-zero and a phase

transition (with order parameter 〈φ〉T itself) happens. While at temperatures bigger than the critical
temperature the relevant degrees of freedom are the real and imaginary parts of φ, after the phase
transition the angular and radial parts of φ become the mass eigenstates. In particular, since different
Hubble patches of the Universe are causally disconnected, at the time of the phase transition the
angular mode will be in principle generated with different values in different patches. These patches
subsequently reenter the horizon and so, after a few Hubble times from the phase transition, the angular
mode (which has no potential) will have random fluctuations within every Hubble patch [27,28]. This
prototypical example applies to the case of axion theories if the angular mode is identified with the
axion and the radial part with some of the UV degrees of freedom of the fundamental theory. Note
that neglecting the axion potential is a good approximation at high temperatures, in particular at
T ∼ fa � ΛQCD.

Since the axion is a NGB, it appears in the fundamental theory as a periodic variable with period
v, which is a model-dependent parameter, in the previous case being for instance the period of the
angular variable of the PQ field φ. In general v = NW fa differs from fa by an integer factor NW (for
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Figure 2: A generic axion string configuration in the early universe. Around the string the axion
(normalized to v) wraps the fundamental domain [0, 2π] once.

KSVZ-like models [4,5], NW = N is the number of fermions charged under PQ). Given its periodicity
and the random fluctuations described above, there will be loops in coordinate space around which the
axion wraps nontrivially the domain [0, 2πv]. By continuity in at least one point somewhere inside the
loop the axion field assumes all the values between 0 and 2πv, i.e. it is singular (see fig. 2). Applying
the same argument to the whole space, it is easy to see that there must be a line of points, called
axion string, where the axion is singular and around which it shifts of 2πv. While in the NGB theory
alone the energy density of this configuration is UV divergent due to the singularity, when considering
the heavy degrees of freedom that complete the axion theory this UV divergence is cut-off by their
mass mr, of the order of fa for O(1) parameters. In the case of a a single complex scalar field with
a mexican-hat potential, as detailed in the next section, typical solutions of the equations of motion
have the radial mode (whose mass is mr) at the maximum the potential for a distance m−1

r , called
string core, and at the minimum of the potential at spatial infinity.

The properties of the axion strings are critically affected by the fact that they come from a global
(as opposed to local) U(1) symmetry. As we will see in the next section, this means that the energy
per unit length, called string tension µ, of an isolated string gets a contribution from the core where
the radial is on the top of the potential, but also a logarithmic infrared divergence28. In the early
Universe the divergence is cut-off by the distance to a string of opposite orientation, or for a small
loop its diameter, both of which are typically of order of the Hubble length H−1, which means that
at a first approximation µ ∼ πf2

a log mr
H , see e.g. [22]. Although single string configurations are stable,

when taken together strings can interact between each other, for e.g. forming loops that subsequently
shrink. The result of this process is the reduction of the total string length and the conversion of
the energy stored in the strings into primarily axion radiation (the only light degree of freedom) with
momentum of order the Hubble horizon.

As we will discuss in much more detail, after being formed at the PQ phase transition (or due to

28The reason of this divergence is the same as for a charged wire in electrodynamics and is related to the nonvanishing
gradient of the axion field at arbitrary distances from the center of the string.
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Figure 3: Domain wall configurations with NW = 1. Domain walls (in red) are attached to strings
and in O(1) Hubble times the full system shrinks into axion radiation.

inflationary quantum fluctuations if HI > fa) a string network is thought to enter a scaling regime
[30–35] where there is approximately a constant number of strings per Hubble volume. To maintain
such a regime the string network must constantly release energy in radiation. After the axion gets a
mass at the QCD crossover, this radiation will mostly become nonrelativistic, and is interpreted as
axion particles that make up a part of the CDM relic abundance we observe today.

The scaling regime lasts until Hubble and the axion mass become comparable, at which time the
axion mass becomes cosmologically relevant and cannot be neglected anymore in the evolution of the
system, see eq. (59). As discussed in the previous chapter, at this time the temperature of the Universe
T∗ in eq. (62) is about ΛQCD, and log(mr/H) & 70 if mr ∼ fa and given H ∼ Λ2

QCD/MP and the
lower bound on fa from astrophysics. At this time the axion potential term leads to the formation of
a system of domain walls attached to strings [23,44]. Indeed, the spatial points where the axion field
assumes the value (2n+1)πv/NW , with n = 0, . . . , NW −1 integer, form 2-dimensional surfaces where
the axion on the top of its QCD potential (see fig. (3)), called domain walls.29 Given that ma is the
characteristic scale of the potential, the regions with distance . m−1

a from the points (2n+ 1)πv/NW

have more potential energy density w.r.t. the rest of the space, which means that domain walls have
a thickness of order m−1

a . While at T = T∗ the thickness is comparable to Hubble by definition
of T∗, it rapidly decreases with time (but still remaining much bigger than the string cores). The
energy stored in the domain walls is usually measures in terms of their tension (energy per unit area),
which for the case of the QCD axion (with cosine potential) is σ = 8maf

2
a , while σ ∼ 9maf

2
a for the

zero-temperature potential [97].
IfNW = 1 each string is attached to just one domain wall centered in a = πfa, and the configuration

of strings and domain walls is automatically unstable. Indeed, since the system evolves to minimize
the domain wall (and string) tension, the domain wall pulls the strings together as in fig. 3, which
therefore annihilate in O(1) Hubble times. The energy stored in strings and domain walls is emitted in
additional radiation. On the other hand, if NW > 1 the system is topologically stable because on each

29Formally speaking, a domain wall is a solution ϕ(x) of the field equations that interpolates between two vacua ϕ0

and ϕ1, i.e. ϕ(x0) = ϕ0 and ϕ(x1) = ϕ1 for some x0 and x1. Since ϕ0 and ϕ1 are minima, between x0 and x1 there will
be a region (a ‘wall’) where the field is at a maximum and therefore where some potential energy is stored. In the case
under consideration, for NW = 1 the vacua are a = 0 and a = 2πfa, which correspond to the same point in field space,
so x0 and x1 can be the same spatial point, as indeed happens by definition for axion strings, see fig. (3). For NW > 1
instead domain walls interpolate between different vacua.
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Figure 4: Evolution of string and domain walls in the scenario NW = 1.

string end NW > 1 domain walls, each of which tends to pull the string in a different direction resulting
in an equilibrium. Therefore strings and domain walls do not annihilate and, as the Universe expands,
more and more domain walls will reenter the horizon, eventually dominating the energy density of
the Universe. Thus, this scenario is ruled out unless one introduces additional breaking of the PQ
symmetry (that might reintroduce the Strong CP problem). This would remove the degeneracy of the
NW vacua that the axion scans in a loop around the string, and make the pull from the tension of one
domain wall win over the others. In the following we will consider NW = 1 so that the PQ breaking
scale v = fa, however, since we will focus on the early evolution of the string network, the general
case can be recovered by simply replacing fa with v = NW fa.

Summarizing, a network of axion strings is formed when T ∼ fa as a result of the thermal PQ phase
transition or if H ∼ fa from inflationary quantum fluctuations (see fig. (4)). At this time log(mr/H)
ranges from ∼ 15 in the first case to ∼ 1 in the second. Soon after its formation, the network enters a
scaling regime until the axion mass is comparable to Hubble (at about the QCD crossover), at which
time log(mr/H) ∼ 70 and domain walls form and annihilate the system of strings and domain walls.
During the whole process, in particular during the scaling regime and at the time of the domain wall
annihilation, energy is converted from strings and domain walls to axion radiation. After the QCD
crossover the axion gets a mass and most of the radiation becomes nonrelativistic. The comoving
number density of axions is conserved, and the coherent axion field behaves as cold DM.

Soon after the domain walls form, their thickness becomes small compared to Hubble and therefore
in most of the volume of the Universe there will be no domain walls (or strings). Historically, this has
motivated to treat separately the axion field away from string and domain walls, which is expected
to relax to the minimum through the misalignment mechanism. In particular, due to the presence of
strings the axion field will scan all the values in the fundamental domain [−πfa, πfa], and contrary to
the discussion of sec. 3.2 there is no free parameter in the initial conditions to adjust. A rough estimate
of the contribution to the relic abundance might be calculated considering the field to be homogeneous
(even if it is not) and using eq. (64), with θ2

0 given by the average of θ2 in the interval [−π, π], i.e.
1

2π

∫ π
−π θ

2 = π2/3, which is θ ≈ 2.15 when considering also the inharmonicities of the potential. As

as result, all the values of fa bigger than 1012 GeV are excluded in this scenario otherwise Ωmis
a |θ0=θ

would be bigger than the measured dark matter energy density.
In this estimate we neglected strings and domain walls, which however store a relevant part of the

energy density of the field (e.g. the energy density in the gradient). In particular, the evolution of the
string network during the scaling regime and the subsequent decay of the string-domain wall network
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is expected to inject additional energy in the form of radiation. Moreover, these waves are expected
to have momentum of order the Hubble horizon at T∗ and therefore will become non-relativistic soon
after the QCD crossover, because of the increase of the axion mass. While the radiation emitted by
strings during the scaling regime might be treated separately, as soon as the domain walls form there
is no clear distinction between axions produced from the misalignment and from the string-domain
wall network. The naive expectation is that the abundance is at least Ωmis

a |θ0=θ, but it is most likely
much more because of the contribution from topological defects.

While this scenario has no free parameters in the initial conditions and therefore Ωa should be
only a function of fa (up to the milder dependence on α and g(T∗)), computing the abundance is
challenging. In principle one has to solve (e.g. numerically) the full equations of motion for the
inhomogeneous axion field, including a possible UV completion that resolves the core. In practice,
however, the huge scale separation log(mr/H) ∼ 70 in the physically relevant regime presents an
immediate problem in attempting to study the system using numerical simulations. To resolve the
dynamics of the strings, a 2-dimensional slice of the lattice perpendicular to a string must contain at
least a few grid points inside the string core, and to capture the interactions and dynamics of strings a
few Hubble volumes must be simulated (we show this by analyzing the systematic errors in simulations
in Appendix D). Given the computational power available, the largest grids that can be simulated
have N3 ∼ 10003 lattice points. Consequently, the maximum scale separations that can be directly
studied correspond to log (mr/H) ∼ 6. In this system, the tension of strings, and their couplings30

to axion radiation and heavy degrees of freedom, are far from the physically relevant values. Indeed,
even if these could be adjusted to the physical values by modifying the UV theory this would not
be sufficient. For example, the properties of the string network depend on whether collapsing string
loops rebound and oscillate many times before disappearing, and if strings that approach each other
recombine. In order to accurately capture such dynamics, processes on all scales between Hubble and
the string core size must be resolved.

In the next sections we consider the simplest UV completion of the QCD axion theory and study the
string network before the axion mass turns on. An understanding of this stage of its evolution is crucial,
both to calculate the relic abundance of axions produced at such times and to set the appropriate initial
conditions when analysing the system once the axion mass becomes relevant. In particular, we will
calculate the number density na of axion waves produced by strings during the scaling regime, which
will be relativistic because at those times the axion is massless. As a reference, we will directly compare

na with the misalignment number density defined by convention as nmis
a = 2n∗|θ0=θ = H(t∗)θ

2
f2
a ,

where n∗ is the number density in eq. (63) at the time instant t = t∗ when the axion mass becomes
cosmologically relevant. In the following analysis, a possible prediction for the DM relic density from
strings will then implicitly assume that all the axions produced during the scaling regime (as we will
see, only the last instants will matter) will become nonrelativistic at t∗ with the same number density31

na, which is therefore conserved.

30The large scale separation between mr and H also suppresses the coupling between strings and axions by the same
logarithmic factor [38], and is expected to render emission of heavy modes associated to the theory’s UV completion
irrelevant.

31While this is true (up to O(1) transient factors) if axions are free and have momentum of order Hubble, there
might be nontrivial effects coming from the fact that the axion potential is bounded from above and from the possible
interaction of these waves with domain walls.
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4.2 Axion Strings and Simulations

We consider a complex scalar field φ taken to have the U(1)PQ invariant Lagrangian

L = |∂µφ|2 − V (φ) , with V (φ) =
m2
r

2f2
a

(
|φ|2 − f2

a

2

)2

, (66)

in a spatially flat Friedmann-Robertson-Walker background. The metric is ds2 = dt2 −R2(t)dx2, and
the Universe is assumed to expand as in radiation domination, so the scale factor R(t) ∝ t1/2, and the
Hubble parameter H ≡ Ṙ/R = 1/(2t).

The potential V (φ) leads to φ getting a U(1)PQ breaking vacuum expectation value (VEV) |〈φ〉|2 =
f2
a/2. We decompose

φ(x) =
r(x) + fa√

2
e
i
a(x)
fa , (67)

into the radial field r(x), which has a mass mr, and the axion field a(x), which has a period 2πfa. Since
we focus on the properties of the system at temperatures above the QCD crossover, the PQ breaking
axion potential generated by QCD can be neglected and the axion is massless (at lower temperatures
this must be added to eq. (66)).

The average Hamiltonian density ρtot = 〈T00〉 of the complex field φ is

ρtot =
〈
|φ̇|2 + |∇φ|2 + V (φ)

〉
, (68)

where φ̇ = dφ/dt, ∇ is the gradient with respect to the physical spatial coordinates R(t)x, and
〈A〉 ≡ limV→∞

1
V

∫
V d

3x A is the spatial average of A. After decomposing φ as in eq. (67),

ρtot =

〈
1

2
ȧ2 +

1

2
|∇a|2

〉
+

〈
1

2
ṙ2 +

1

2
|∇r|2 + V (r)

〉
+

〈(
r2

2f2
a

+
r

fa

)(
ȧ2 + |∇a|2

)〉
,

(69)

where V (r) = m2
r

8f2
a
r2 (r + 2fa)

2. The terms on the first line of eq. (69) correspond to the kinetic and

potential parts of the axion and radial modes’ energies, and the term on the last line is the interaction
energy between the two. In the small field limit |r| /fa → 0, the Hamiltonian can be approximated as
the sum of that from decoupled axions and radial modes (i.e. by the first line of eq. (69)). However,
away from this limit interaction terms between the two fields are not negligible and make the axion-
radial system strongly coupled.

Note that the field’s equation of motion

φ̈+ 3Hφ̇−∇2φ+ φ
m2
r

f2
a

(
|φ|2 − f2

a

2

)
= 0 , (70)

does not depend on the ratio mr/fa directly. Indeed the dependence on the two scales fa and mr can
be reabsorbed by rescaling respectively the field φ → φfa and the space-time coordinates t → t/mr

and x → x/mr. Therefore, up to a trivial field rescaling, the physics is only sensitive to the ratio
mr/H = 2mrt.

The equations of motion in eq. (70) admit solitonic string-like solutions. As mentioned in the
previous section, these are topologically non-trivial configurations that contain loops in space where
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the axion field a wraps the fundamental domain [0, 2πfa] non-trivially. The prototype of such solutions
is a static, infinite, string lying along the z-axis. In cylindrical coordinates (ρ, θ, z) this is given by

φ(x) =
fa√

2
g(mrρ)eiθ , (71)

where g is a profile function that satisfies g(ρ) = Cρ+O(ρ3) for ρ→ 0 and g(ρ) = 1−ρ−2 +O(ρ−4) for
ρ→∞. The string core is defined as the region in which φ is close to the maximum of its potential,
i.e. when r/fa ∼ −1, which corresponds to points at a distance less than m−1

r away from the centre of
the string ρ = 0. In this part of space the axion-radial mode system is strongly coupled, and all of the
terms in eq. (69) contribute to the string energy density. However, for a single string configuration
the axion energy density diverges logarithmically for ρ → ∞ due to the angular gradient 1

2〈|∇a|
2〉.

Consequently, the total string energy is dominantly in this component, and is mostly stored away from
the string core. In the early Universe this leads to the string tension

µ ∼ πf2
a log

(
η
mr

H

)
, (72)

where η is a O(1) numerical factor that takes into account the average curvature of the string system.
To analyze the dynamics of the string system in the early Universe, we numerically integrate the

equations of motion, eq. (70), in 3+1 dimensions. Starting from suitable initial conditions, for example
φ random with sufficiently large fluctuations, axion strings automatically form and evolve. In doing
so, we are assuming that solutions of classical equations of motion capture the physics of strings and
axion radiation. This is justified because strings are themselves intrinsically classical and the relevant
part of the axion radiation has large occupation number.

The complex scalar φ is discretized on a lattice with approximately N3 = 12503 grid points, and
evolved in fixed steps of conformal time τ ∼

√
t. The simulation is carried out with periodic boundary

conditions, and in comoving coordinates x, so that the comoving distance between grid points remains
constant and the physical distance between grid points grows ∼

√
t. Further details of the algorithm

used are given in Appendix C. As the system is evolved forward, the number of Hubble lengths
contained in the box side decreases ∼ 1/

√
t and the number of lattice points inside a string core also

decreases ∼ 1/
√
t, as shown in Figure 5. The maximum accessible scale separation corresponds to an

upper bound on the final time that can be simulated. Other possible sources of numerical uncertainty
include the time step used in the simulation and the way that the contribution of the string energy is
excluded from the calculation of the energy in free axions, and a full analysis is given in Appendix D.

The simulations that we carry out with mr/H ∼ 1 can be interpreted in terms of a theory with
mr ≈ fa at a time when H ≈ fa, however this is not a physically relevant part of parameter space.
First, for such models the scale separation simulated is far from that at the time of the QCD crossover,
when the majority of axions produced by the string network are emitted. Additionally, this regime
does not correspond to a system that is realizable even at early times: when H ∼ fa, the temperature
of the Universe is T ∼

√
faMPl, where MPl is the Planck mass, and a physical theory will be in the

unbroken, PQ symmetric, phase. However, by studying the potential eq. (66) without including finite
temperature effects, we can use the results obtained to extrapolate the properties of the string system
to low temperatures, when such corrections are actually negligible. In particular, at the time of the
QCD crossover T ∼ GeV and finite temperature corrections to the potential of the radial scalar are
irrelevant.

Alternatively, simulations at a scale separation mr/H ∼ 1 can be interpreted as studying a model
with mr � fa at a time when the Hubble parameter is H � fa. Axion theories with a light radial
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Figure 5: An illustration of how the size of a string core, shaded red, and a Hubble volume, shaded
blue, evolve relative to the lattice points in our simulations, where N is the number of lattice points in
a spatial dimension. Requiring that the simulation contains at least a few Hubble volumes and that
a string core contains at least ∼ 1 lattice point constrains the maximum scale separation that can be
studied.

mode are less commonly considered, but in this case the simulations are directly analyzing a physically
realizable point in parameter space. In particular, taking mr ∼ 10−18 GeV, the Hubble parameter
is that at the time of the QCD crossover (although such a light scalar is excluded by fifth-force
experiments).32 Meanwhile, theories in an intermediate regime, with a radial degree of freedom that
has a mass 10 keV . mr . fa, are not experimentally excluded by evolution of stars and fifth-force
experiments. These correspond to scale separations at the time of the QCD crossover that are larger
than can be reached with simulations, so that extrapolation is still required, but which are smaller
than if mr ≈ fa.

The Lagrangian in eq. (66) includes only one heavy scalar degree of freedom, and it is clearly not
the most generic that can arise in UV-complete axion theories. However, when H � mr the dynamics
of axion strings and radiation are expected to be largely independent of which massive degrees of
freedom are included, since these only get excited when strings interact over distances of order m−1

r ,
e.g. when loops shrink or long strings intersect. The energy of a global string configuration remains
logarithmically divergent in more complicated theories, since this comes from the axion angular gra-
dient, which is always present. In principle one could also include interactions with other fields that φ
is coupled to — e.g. SM fields — in eq. (66), but away from the string cores the couplings of axions to
these are suppressed by powers of fa, and are negligible. Meanwhile the radial mode can have order 1
couplings to SM fields, however it is expected to decouple from the dynamics of the strings and axions
at large scale separations. At early times, when the temperature is high, interactions of strings with
the visible sector thermal plasma could modify their dynamics [134], however these effects will also be
negligible at temperatures around the QCD crossover.

As well as the physical system, the literature has often used a deformed theory in which the mass

32In such models the PQ phase transition still happens at T ∼ fa, and finite temperature corrections to the potential
of the radial mode are not important, provided that it is weakly coupled to states in the thermal bath.
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of the radial mode in eq. (66) is replaced with a time dependent one

mr (t) = mi
R(ti)

R(t)
= mi

√
ti
t
, (73)

where mi is the mass of the radial mode at the initial time ti. This is equivalent to a theory with a
quartic coupling λ ∼ m2

r(t)/f
2
a that decreases with time, and is known as the fat string scenario. The

size of the string cores increases as m−1
r (t) ∼ t1/2, and the number of lattice points inside a string

core remains constant throughout a simulation. The maximum scale separation that can be simulated
is unchanged compared to the physical potential, however the time taken to reach a particular scale
separation (starting from H ∼ mr) is increased, and simulations can be run for longer before arriving
at the upper bound. As a result, energy left over from the initial conditions is redshifted more, and
there is more time available for properties of the string system to reach their asymptotic behavior
(there are additional benefits that will be seen in Section 4.4). Despite these advantages, we stress
that by making the potential time dependent the equations of motion of the system are changed by
an order 1 amount. Consequently, although the dynamics of axion strings might remain qualitatively
similar to those of the physical Lagrangian this is not guaranteed, and the numerical values of the
parameters of the scaling solution are not expected to be the same in the two cases. We perform
simulations using both techniques and discuss their advantages and disadvantages.

In both the fat string and the physical scenarios, the axions produced in the simulations are
massless, and their energy densities redshift as ∼ 1/R (t)4. Meanwhile, the radial modes produced are
highly non-relativistic. In simulations with the physical Lagrangian their energy density redshifts as
∼ 1/R (t)3. In simulations of the fat string Lagrangian the scalar mass decreases with time, and the
energy density of these states redshifts as ∼ 1/R (t)4, the same as axions.

4.3 The Scaling Solution

It has long been claimed that a system of axion strings is driven towards a particular solution, which
is independent of its initial conditions [27–29]. Indeed, this feature is crucial for making predictions
about the properties of the string system at late times, and in particular of the axion relic abundance
from strings, that do not depend on the dynamics of the system at early times, which are model
dependent.

The existence of such an attractor solution is simple to motivate qualitatively. Strings can lose
the energy stored in their length by radiating axions and radial modes. Therefore bends in strings
with curvature larger than the Hubble scale tend to straighten, and closed string loops smaller than
the horizon are expected to disappear, emitting radiation. Additionally, long strings (or equivalently
string loops larger than the horizon) can interact when they enter each other’s horizon through a
process called recombination: when strings cross they can recombine into a new configuration with
a lower tension, and similarly a region of high curvature in a long string can split off forming an
isolated loop. The net effect is a reduction of the total string length and the production of smaller
loops, string segments with larger curvatures, and radiation. The rate at which such processes occur
depends on the density of strings within the horizon. Below some critical density recombination is
inefficient. In this case, the number of strings in each Hubble patch increases as the Universe expands
and new strings enter the horizon. On the other hand, above a critical density recombination becomes
efficient, reducing the number of strings within the horizon. As a result, the density of strings is
pushed towards a particular (not necessarily time independent) value. Other statistical properties of
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the network, such as the distribution of the string density in loops of different length, are expected to
converge similarly to a common behavior.

We define the average number of strings per Hubble patch ξ(t) as

ξ(t) ≡ lim
L→∞

`tot(L) t2

L3
, (74)

where `tot(L) is the total length stored in strings in a volume L3. Hence the energy density of strings
is

ρs(t) = ξ(t)
µeff(t)

t2
, (75)

where, given eq. (72), the effective string tension µeff(t) is expected to be

µeff(t) = γ(t)µ0 log

(
mr η(t)

H
√
ξ(t)

)
, (76)

with µ0 = πf2
a , and γ(t) the effective boost factor associated to the kinetic energy of the string

configuration, which, as we will see, is O(1). The factor mr/(H
√
ξ) is anticipated to capture the

main time dependence of µeff(t) since the logarithm is cut-off by the average distance between strings
(∝ t/

√
ξ). The remaining time dependence is encoded in the factor η(t), which takes into account

the non-trivial shape of the strings and is expected either to be constant or to have at most a very
mild time dependence. Indeed, it will be a non-trivial check of the string network’s properties that
the energy density in strings extracted from the simulations is well reproduced by eqs. (75) and (76).

The existence of the scaling law (75) with constant ξ(t) = ξ0 can easily be understood for local
strings. For these the string tension is localized on the core and is constant µeff(t) = µ. Neglecting
the core size the problem only has one scale, H = 1/2t, which completely fixes the scaling law for the
energy density ρs(t) = ξ0µ/t

2. The presence of a single scale suggests that during the scaling regime
all the properties of the string configuration should be scale invariant.

On the other hand, for the global case several properties of the strings, including their tension
and their coupling to axions [38], depend logarithmically on the core size mr, therefore logarithmic
corrections to the scaling law can be expected. To account for these effects we leave an explicit time
dependence both in ξ(t) and in η(t), besides the one contained in mr/H inside µeff(t).

In the rest of the section we will establish the existence of the (approximate) scaling solution for
axion string networks, and study its properties in detail. In particular we will present results from
numerical simulations demonstrating the presence of the attractor, its independence from the initial
conditions, the behavior of the parameter ξ(t), and the distribution of loops and long strings during
the scaling regime.

4.3.1 The Attractive Solution

The existence of the attractor can be tested by studying if different statistical properties of the
string network converge to the same values independently of the initial conditions of the field. As a
representative example, here we focus on the evolution of the average number of strings per Hubble
patch ξ(t). In Appendix F we present additional results showing that the number density, the total
and the instantaneous spectrum of axions emitted from the string network also clearly converge,
regardless of the initial conditions. The convergence is particularly evident in the instantaneous
emission spectrum, which depends only on the string configuration at a particular moment and has
no memory of earlier times.
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Figure 6: The evolution of the average number of strings per Hubble patch ξ(t) as a function of
time (here represented by Hubble) using the fat string trick (for which mr ∝ t−1/2, left) and for the
physical case (mr = const, right) for different initial conditions. Each curve corresponds to the average
of many simulations with the same initial value of ξ. The position of the coloured dots indicates the
initial time and the value of ξ for each simulation set. The number of simulations has been taken large
enough that the statistical uncertainties are smaller than the thickness of the curves.

We set the initial conditions in two different ways. In the first, we just generate sets of random
fields. In the second, we construct initial conditions with a fixed number of strings by evolving random
configurations until the total string length in the box reaches a required value, and then we reset the
clock rescaling Hubble (more details about the procedure can be found in Appendix C). Besides
allowing us to start simulations with a predetermined density of strings, the second method produces
initial field configurations that have less primordial background radiation (although this would redshift
away anyway) and more suitable for a cleaner study of the instantaneous spectrum. In Appendix F
we show that the properties and evolution of the string network are independent of the way in which
the initial conditions are set.

In Figure 6 we show the evolution of ξ with time in simulations, starting from initial conditions
with different numbers of strings using the second method described above. ξ has been computed
at different time shots from its definition eq. (74), using the algorithm described in Appendix C. As
discussed in Section 4.2, it takes a longer time to get to the same value of log(mr/H) in the fat string
scenario than for the physical theory. As a result the attractor regime is reached at smaller values
of the log in the fat string case (here and in the rest of the paper we sometimes use the short-hand
notation “log” to refer to log(mr/H)).

In both the fat string and the physical models, the convergence towards a common value of ξ is
manifest. In the fat string case, the initial values of ξ span more than three orders of magnitude and,
by the end of the simulations, they lead to the same value of ξ to within 10%. For the physical case the
convergence is a little slower but it is still clear. In simulations starting at H = mr it is not possible
to initially have more than one string per Hubble patch. As a result, to achieve initial conditions with
a clear overdensity of strings we started such simulations later, when H < mr. The corresponding
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Figure 7: The growth of ξ(t) with time (log(mr/H)) for different initial conditions using the fat string
trick (left) and in the physical case (right). The black curves correspond to the initial conditions that
are the closest to the attractor solution.

data in the Figure 6 have the initial points (the coloured dots) at larger values of log(mr/H).
The network of global strings was first studied using field theoretic computer simulations in [41,42],

and more recently over a longer time range in [135]. Ref. [136,138] showed evidence for the existence an
attractor for the fat string system, respectively in two and three dimensions. Our simulations have a
similar time range and constitute an independent check of the convergence of ξ in the fat string system
starting from a wide range of initial conditions, and a demonstration of the attractor’s existence for
the physical case. Further, in Appendix F, we show that other properties of the network, including
the spectrum of axions emitted, also converge.

4.3.2 Scaling Violation

Having shown that the attractor solution exists, we now turn to study its properties. One prominent
feature is that, although different boundary conditions converge to a common value of ξ, this value
does not seem to be constant in time. To see the change more clearly, in Figure 7 we show the plots
of Figure 6 on a linear scale. A growth of ξ linear in log(mr/H) is evident both for the fat string and
for the physical cases. The fact that simulations with an overdensity of strings first rapidly evolve
to smaller values of ξ, converging to the attractor, and then start increasing again is particularly
convincing. This strongly indicates that the growth is an intrinsic property of the scaling solution,
rather than the sign that the attractor has not yet been reached.

The behavior shown in Figure 7 is compatible with the asymptotic form

ξ(t) = α log
(mr

H

)
+ β . (77)

In particular, at late times β is subleading, and the value of ξ(t) is dominated by the logarithmic term.
From Figure 7 it can be seen that the coefficient α is universal, independent of the initial conditions.
Indeed, the derivatives t ξ′(t) = ∂ξ/∂[log(mr/H)] of the curves tend towards a common value α more
rapidly than ξ itself.
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We can use the convergence of the slopes to a constant value to select the optimal initial conditions,
i.e. those for which the scaling regime is reached the earliest. The corresponding lines are those
plotted in solid black in Figure 7, and curves starting from different boundary conditions reach the
same constant slope at later times. Considering only simulations that reach the scaling regime (i.e.
those that show a sufficiently large region of constant slope) we extract estimates for α

αfat = 0.22(2) , αphys = 0.15(5) . (78)

Here the errors clearly have no statistical significance, but rather they represent our educated, conser-
vative, guesses about the uncertainty. Plots showing the behavior of the slope for different boundary
conditions, and more details about the fit, can be found in the Appendices F and G. We do not report
the values of β, since the uncertainty on these from different initial conditions is larger, and they are
irrelevant for the physically interesting values of the log.

As mentioned, a logarithmic violation of the scaling behavior is not completely unexpected, since
several properties of the string network, including the string tension and coupling to axions, have a
similar dependence. If such behavior is maintained at later times, as seems plausible, the average
number of strings per Hubble patch will grow substantially for values of the log relevant to the QCD
axion. For example, if mr ∼ fa eq. (78) would imply ξ = 10.5±3.5 at the physically relevant separation,
log(mr/H) ≈ 70. This value is an order of magnitude larger than that found in refs. [41,42,135] from
numerical simulations on smaller grids, and the value that is usually assumed in rough estimates of
the axion abundance produced by strings. Meanwhile, the extrapolated value of ξ that we obtain is
only a factor of 2 larger than that recently obtained in ref. [136], which used the fat string trick and
a different UV completion of the core. We stress that although the fat string system shows the same
qualitative linear growth with the log as physical strings, the numerical parameters are somewhat
different in the two cases. This is not surprising, and in extrapolating to the physical scale separation
it is important to study the physical system, not just the fat string case.

The logarithmic enhancement in ξ was first observed and studied in the 2+1 dimensional simula-
tions of ref. [137], but it was missed in the 3+1 dimensional ones of ref. [41, 42, 135], perhaps due to
the use of smaller grids (which limited the time range of their simulations) and the choice of overdense
initial conditions. Indeed, the combination of these two factors can produce a fake plateau at the
intermediate values of the logs that were analysed (see e.g. the top curve of the right hand plot in
Figure 7).

Conversely, the later simulations of the fat string case in ref. [138], made on larger grids, also observe
a logarithmic increase, in agreement with our results. Finally, in the recent analysis of ref. [136], which
use fat strings and a different UV completion of the core to partly include the effects of a large scale
separation, the value of ξ increases with the log. The growth rate is not clear and the authors suggest
that part of it may be due to spurious H/mr effects. However, the results of this reference for purely
global strings are in agreement with our numerical fit, and correspond to initially overdense networks.

We will resist the temptation to interpret the log-increase of ξ(t) in terms of the reduction of
the string-axion coupling or the increase of the string tension. In fact a similar growth also seems
to be present for local strings, and can be seen in Figure 3 of ref. [136] and is hidden in Figure 7 of
ref. [139].33 Neglecting gravity, the only way that local strings can maintain a scaling regime is through
the production of heavy modes associated to the core scale. The latter then cannot be neglected and
its presence allows for a violation of the scaling law ρs = ξ0µ/t

2 argued before. As we will discuss

33We have carried out preliminary simulations of local strings to study this effect, and these appear to confirm such
a growth.
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Figure 8: The fraction of the total string length ξ`/ξ∞ that is contained in loops smaller than ` for
different time shots.

below, the way that global strings lose energy is not so different from the one above, which might
explain the similarity in the way that the scaling is violated.

4.3.3 Long vs Short: the scale-invariant distribution of loops

In order to further characterize the attractor solution, and to better understand its properties, we also
study how the total string length per Hubble patch ξ is distributed over different loop sizes. If we call
dn`/d` the loop number density, i.e. the number of loops per unit volume and per unit of loop length,
then the quantity

ξ` ≡ t2
∫ `

0
d`′ `′

dn`′

d`′
, (79)

represents the contribution to ξ from loops of size smaller than ` and, in particular, ξ∞ = ξ.
We have performed a large number of simulations using the fat string trick to acquire enough

statistics to study ξ` as a function of time and loop size `. The initial conditions were fixed as for the
thick line in Figure 7 left, so that the system started close to the scaling solution.

The results for the ratio ξl/ξ∞, which gives the percentage of string length contained in loops of
size smaller than l, are plotted in Figure 8, and reveal several features of the string network. Most
of the string length, more than 80%, is contained in loops much larger than Hubble, of order of the
full box size (in fact it seems that most of the string length is contained in a single loop wrapped
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around the simulation box multiple times). This leads to the abrupt increase in the right part of the
plot, which saturates ξ` to its asymptotic value ξ. Less than 20% of the total contribution to ξ is
contained in loops of size of order H−1 and smaller, which results in the appearance of the plateau
with ξ`/ξ∞ ≈ 0.2 at H` � 1.34 On the left of the plot the UV cut-off corresponding to the smallest
possible loops, of order the core size, is also visible. As the Universe expands the physical size of the
simulation box in units of Hubble shrinks, and as a result ξ` saturates its asymptotic value ξ at smaller
and smaller values of H`. At the same time, the value of mr/H grows so the UV cut-off moves to the
left.

The lines in Figure 8 corresponding to different times approximately overlap for values of ` suf-
ficiently far from the UV and IR cutoffs. Therefore, since ξ∞ grows logarithmically with time, the
corresponding growth in ξ` is homogeneous in `. This signals that the logarithmic increase of ξ is
equally distributed over all scales, and that the ratio between long and short strings stays constant in
time (see also Figure 21 in Appendix D). The fact that ξ`/ξ∞ remains constant in time for ` . 10π/H
also shows that the number of loops of a particular length per Hubble patch does not change, apart
from this logarithmic increase. As loops shrink and disappear (or recombine with other strings) they
are replaced at the same rate by larger loops themselves shrinking, or by new loops being produced
from interactions of long strings, which is an indication that the attractor solution has been reached.
When, at the final times, the Hubble scale becomes of order of the box size there is no longer a sharp
distinction between long and short strings.

Another feature of the loop distribution is evident from the plot: for loop lengths smaller than
Hubble ξ` ∝ ` (the dashed line in the plot), so dξ`/d` ∝ `dn`/d` = const. This means that the number
of loops in each logarithmic interval of length is constant, over almost two orders of magnitude.
Equivalently, the 10% of the full string length contained in sub-Hubble loops is equally distributed
over all loop sizes on a linear scale. This approximate power law seems to become a better fit as time
progresses, suggesting that it is an intrinsic property of the attractor solution, and further confirming
that the attractor regime has been reached within the time range of the simulation.35

Our analysis suggests that, in the infinite volume limit, the distribution of string length in the
attractor solution is of the form depicted in Figure 9. Roughly 80% of the string length per Hubble
patch is contained in long strings (infinite string loops), while the remaining 20% is distributed in
loops ranging from the core to the Hubble size, with equal numbers of loops in each decade of length.
The total string length grows logarithmically according to eq. (77) with the relative 4:1 ratio fixed.

In the literature the parameter ξ is sometimes defined restricting to long strings only. However,
the loop distribution that we observe implies that the two definitions only differ by 20%, and more
importantly the factor of proportionality is constant in time.

Since we do not directly use the quantitative behavior of ξ` in our subsequent estimates of the final
axion abundance, we have only performed this analysis in the fat string case. The similarity in the
behavior of all of the other properties studied suggests that the picture for the physical case should
be qualitatively similar.

4.4 The Spectrum

We now discuss how the string network radiates energy, and study in detail how the energy in the
system is split among the different components (strings, axions, radial modes), and the way that the

34The fact that only approximately 10% of the string length is contained in sub-Hubble loops was mentioned in [136],
which matches our more detailed analysis.

35At late times a similar power law behavior is also present in field theoretic simulations of local strings, see ref. [140].
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Figure 9: A cartoon of the distribution of string loops, dξ`/d`, in the scaling regime. A constant
fraction of the total length is in sub-Horizon loops, with equal numbers of loops in each logarithmic
interval down to the scale of the string cores.

energy in axions is distributed in modes of different frequencies. We then analyze the evolution of
the axion number density, and the extrapolations of this to the physically relevant point. However,
before turning to the results of our simulations, we first establish the physically relevant quantities
and describe how these affect the axion relic abundance.

The conservation of energy implies that, in order to maintain the scaling regime, the string network
must constantly lose energy into radiation. This is because, in the absence of interactions, the number
of strings per Hubble patch would increase fast as more strings re-enter the horizon. To keep ξ
approximately constant, the excess string length must be destroyed, emitting energy.

The rate at which the system of interacting strings releases energy can be calculated by comparing
the energy density in the scaling regime (parameterized by eq. (75)), to that of a “free” network of
strings. By free we mean that long strings remain essentially at fixed comoving coordinates, so that
ξ(t) ∝ R2(t) ∝ t. The energy density of such a system is

ρfree
s (t) ∝ µ(t)

R2(t)
∝ γ

f
(t)

log (mr d(t))

t
, (80)

where µ(t) = γ
f
(t)πf2

a log(mr d(t)) is the tension of free strings with the corresponding γ-factor, and

d(t) ∝ 1/R(t) ∝ 1/
√
t parametrizes the average distance between strings.

We consider a network of free strings that has the same string configuration as the interacting
system with energy ρs(t) given by eq. (75) at a time t0. The energy of such a system is

ρfree
s (t) =

ξ(t0)µ(t)

t0t
, (81)

with µ(t0) = µeff(t0), so that this matches that of the interacting network at t = t0. The string energy
density of the interacting system in the scaling regime decreases faster than ρfree

s , and the difference
corresponds to energy that is released. The rate Γ at which the interacting network emits energy into
radiation is therefore given by

Γ =
[
ρ̇free
s (t0)− ρ̇s(t0)

]
t0=t

= ρs

[
2H − ξ̇

ξ
− µ0

µeff

(
H +

η̇

η
− 1

2

ξ̇

ξ

)
+

∆γ̇

γ

]
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Γ
log�1−→ 2Hρs =

ξ(t)µeff(t)

t3
. (82)

where ∆γ = γ
f
− γ is expected to have only a mild dependence on time, as we will see below. The

last limit holds at late times when the log is sufficiently large, as is the case in the physically relevant
regime.36

The rate of energy loss from strings can be split into two contributions Γ = Γa+Γr, corresponding
to the rate of energy transfer to axions and radial modes respectively. The corresponding continuity
equations for the axion and radial energy densities are then

ρ̇a + 4Hρa = Γa + . . . ,

ρ̇r + zHρr = Γr + . . . , (83)

where z is a factor ranging from 3 (for non-relativistic radial modes) to 4 (for relativistic radial modes,
and in the fat string case), and the dots represent subleading contributions from energy transfer via
axion-radial mode interactions.

At sufficiently late times in the scaling system’s evolution, most of the energy released by the
string network is expected to go into axions, since radial modes are heavy relative to Hubble and
harder to excite. The energy density in axions is therefore mostly fixed by conservation of energy. In
contrast, the number of axions produced depends on the energy spectrum with which they are emitted
by the string network.37 Indeed it is the nature of the axion spectrum that is the source of the largest
uncertainty in the relic abundance of axions produced from strings, and this has been the subject of
disagreement for many years [25,39,43,134]. Before reporting the arguments underlying the different
possibilities, we first review how the axion number density depends on the properties of the spectrum.

Since strings typically have curvature of order Hubble, the natural expectation — always assumed
in the literature, but never confirmed in simulations — is that the spectrum of axions emitted at each
instant is peaked at momenta of order the Hubble parameter at that time. Meanwhile production
of modes with momentum below Hubble or above the string core scale is expected to be strongly
suppressed. Between these scales an approximate power law is usually assumed, which determines
the hardness of the spectrum. If the spectrum is soft, meaning that it is sharply peaked in the IR
scale (around Hubble in this case), a relatively large number of axions will be released to account for
the total energy lost by strings. If the spectrum is harder, with a larger UV tail, fewer axions will
be produced, although each will be more energetic. The expectation that the attractor solution is
approximately scale invariant corresponds to a prediction that the location of the spectrum’s peak
relative to Hubble, and the power law fall off, are constant up to possible logarithmic corrections.

From eq. (83), if we neglect the energy emitted in radial modes (and axion-radial interactions),
which as we will see is a small fraction, we have that

1

R4(t)

∂

∂t

(
R4(t)ρa(t)

)
= Γa(t) ≈ Γ(t) , (84)

36To derive Γ we used eq. (80) although this only applies for long strings. Free sub-Hubble loops are expected to
redshift as non-relativistic matter, however since as we saw in the previous section, they represent only a small fraction
of the total energy density of strings the corresponding correction to Γ is small. Similarly the kinetic energy represented
by the γ-coefficients would also redshift differently. We have absorbed this effect into the time dependence of the boost
factors, which is expected to disappear at late time.

37Regardless of their initial energy, cosmic expansion will redshift the momenta of the emitted axions so that most of
them are non-relativistic soon after the QCD crossover. Consequently, the spectrum affects the subsequent phenomenol-
ogy and the final relic abundance only through its impact on the axion number density at that time.
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and therefore the energy density in axions at a time t, when they are still massless is

ρa(t) =

∫ t

dt′
(
R(t′)

R(t)

)4

Γ(t′)
log�1−→ ξ(t)µeff(t)

3t2
log
(mr

H

)
, (85)

that is, integral of the energy emitted at each previous instant, appropriately redshifted (and we
omitted the initial time in the integral since it is dominated by late times).

We also introduce the differential energy transfer rate

∂Γ

∂k
[k, t] : Γ(t) =

∫
dk

∂Γ

∂k
[k, t] , (86)

which depends only on the axion momenta k, the time, and the core size mr. It is convenient to
further split this up as

∂Γ

∂k
[k, t] =

Γ(t)

H(t)
F

[
k

H
,
mr

H

]
,

∫
dxF [x, y] = 1 , (87)

where the function F (x, y) fully characterises the shape of the spectrum (through the variable x), and
its time dependence (through the variable y). Combining eqs. (85), (86) and (87) we get a formula
for the axion spectral energy density

∂ρa
∂k

[k, t] =

∫ t

dt′
Γ′

H ′

(
R′

R

)3

F

[
k′

H ′
,
m′r
H ′

]
, (88)

where primed quantities are computed at the time t′, the redshifted momentum is defined as k′ =
kR/R′, and we have left a possible time dependence in the core mass scale mr to include the fat string
case. Eq. (88) is just the time integral of the instantaneous spectra appropriately redshifted, and the
change in power of the redshift factors compared to eq. (85) is due to the extra power of k in the
differential spectrum.

The total number density of axions is therefore given by

na(t) =

∫
dk

k

∂ρa
∂k

=

∫ t

dt′
Γ′

H ′

(
R′

R

)3 ∫ dx

x
F

[
x,
m′r
H ′

]
. (89)

To see how the number density depends on the shape of the spectrum we consider an analytic form
that reproduces the theoretical expectation:

F [x, y] =


1
x0

(
x0
x

)q q−1

1−
(
x0
y

)q−1 x0 < x < y

0 x < x0 ∨ x > y ,
(90)

i.e. a single power law 1/kq with an IR cutoff at k = x0H and a UV one at k = yH ≈ mr (the extra
factors are required to have the right normalisation). Substituting this into eq. (89) and taking the
large time limit, which corresponds to keeping the leading log contributions, we get

na(t) ≈
8Hξ(t)µeff(t)

x0

1− q−1

1− (2q − 1)e(1−q) log(mr/Hx0)
. (91)

Given the large size of the log, the last factor strongly depends on whether the power q is larger, equal,
or less than 1 (see Figure 10). In fact we can rewrite the expression above as
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Figure 10: The dependence of the axion number density, relative to its value in the limit q → ∞,
f(q) ≡ na/(8Hξµeff/x0) on the power q of the spectrum of axions emitted by the string network, at
the physically relevant scale separation log (mr/H) ≈ 70.

na(t) ≈
8Hξ(t)µeff(t)

x0
×



1− 1/q q > 1

1

log
(
mr
Hx0

) q = 1

1−q
q(2q−1)

[
Hx0
mr

]1−q
1
2 < q < 1 ,

(92)

in which the last factor varies from O(1) for q > 1 to O(10−2) for q = 1, and is exponentially small
(in terms of the log) for q < 1.

The dependence of the axion number density on q can be easily understood in terms of our previous
qualitative discussion. For q > 1 the spectrum is soft, most of the energy is emitted with momenta of
order Hubble, and the final number density is of order the total energy density contained in strings,
H2ξµeff , divided by the average axion momentum O(H). For q = 1 energy is equally distributed in
logarithmic intervals of momentum. Therefore, although most of the axions are still emitted with
momenta of order H, the total number of axions emitted is smaller by a factor of the log. For q < 1
the spectrum is UV dominated, and the majority of the energy is distributed to axions with large
momentum so that the axion number density is power suppressed by the UV scale.

The different behavior of the number density for different choices of q can be linked to the change
in the average momentum of the axions in the spectrum. If we define the inverse average momentum
as

〈k−1〉 =
1

ρa

∫
dρa
dk

dk

k
, (93)

the number and energy densities are related via na = 〈k−1〉ρa. Depending on whether q is larger or
smaller than unity the average momentum is parametrically of order H or mr respectively.

The huge ratio of scales mr/H in the physically relevant part of parameter space results in an
enormous range of possible values of na. It is therefore clear that understanding the spectrum is of
paramount importance if results obtained at the values of the log accessible in the simulations are
to be extrapolated to the physical values. In particular, even a small change in the behavior of the
spectrum could change the extrapolated value of the relic abundance by many orders of magnitude.

We can now identify the main source of disagreement in the literature. Refs. [25, 26, 39, 40] claim
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that at late times, when the scale separation is large, the coupling of strings to axions is small and the
rate that axions are emitted is suppressed, and as a result the dynamics of axion strings are close to
those of local strings. If this is the case, the expectation based on the Nambu–Goto effective theory is
that loops will oscillate many time before emitting their energy, producing a spectrum that is sharply
peaked at small frequencies, of order their initial size, i.e. Hubble. Consequently, they predict that
q > 1, and that the number density of axions produced by strings in the scaling regime will dominate
over the contribution from misalignment, here taken as a reference value nmis

a = θ2
0Hf

2
a , with θ2

0 ≈ 5.38

Setting µeff = πf2
a log following the theoretical expectation in eq. (76), log ≈ 70 and x0 ≈ 10 we get

nq>1
a

nmis
a

≈ 8π

θ2
0x0

ξ log ∼ 30ξ , (94)

which ranges from 30 to 300 depending if ξ is taken to be close to 1 or 10.
Conversely, refs. [134, 141] claim that string loops do not oscillate, but instead efficiently shrink

emitting all of their energy at once and producing a spectrum with q = 1. In this case the number
density from strings is suppressed

nq=1
a

nmis
a

≈ 8π

θ2
0x0

ξ ∼ 0.5 ξ , (95)

and can even be subleading with respect to that from misalignment if ξ is taken to be 1.
In the rest of this section we present a detailed analysis of the spectrum obtained from simulations

with the aim of understanding which of these possibilities is more likely. We therefore postpone further
discussion to the end of the section, when we compare our findings with the existing literature.

To analyze the spectrum emitted by the scaling solution we fixed the initial conditions in simula-
tions to be as close to the attractor as possible, corresponding to the black curves in Figure 7. This
isolates the radiation emitted in the scaling regime as much as possible, and reduces contamination
from pre-existing radiation. In Appendix F we show that, starting with different initial conditions, the
spectrum and number density converge to those of the scaling solution, so that the results we obtain
do not depend on this convenient choice.

4.4.1 Energy Budget

In analysing the distribution of energy in the scaling solution, and the rate at which axions are
produced by strings, it is useful to organise the total energy density stored in the complex scalar field
into three components, namely

ρtot = ρs + ρa + ρr . (96)

Here ρtot = 〈T00〉 is the total energy density of the scalar field as given by the average Hamiltonian
density eq. (68); ρs is the contribution contained in strings; ρa is the energy density in axion particles;
and ρr is that in radial modes. At early times axions, strings, and radial modes are strongly coupled
to each other so this separation is ill-defined, but at later times the individual components decouple
and the separation becomes meaningful. In the scaling regime, the theoretical expectation is that
when the energy density in strings is parameterized as in eq. (76), η(t) will be of order 1 and vary
only slowly with time.

The way that we actually compute the various components in eq. (96) is as follows: The axion
energy density is calculated from the spatial average of ȧ2 away from the core of the strings (close

38In this expression for nmis
a , H is the Hubble parameter when the axion mass becomes cosmologically relevant, which

is around the time of the QCD crossover although the exact value depends on fa.
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to the string cores, the motion of strings gives a significant contribution to ȧ2). By using 2〈12 ȧ
2〉

rather than 〈12 ȧ
2 + 1

2 |∇a|
2〉 we avoid the part of the energy that corresponds to the strings’ tension,

which is mostly contained in |∇a|2. We have checked that our results for ρa redshift as expected
(i.e. as relativistic matter) and that they are robust against different types of string-core masking
(more details about our procedure for screening strings and the consistency tests can be found in
Appendix D). The radial energy density is computed by averaging the part of the Hamiltonian density
that involves only the radial mode, i.e. 〈12 ṙ

2+ 1
2 |∇r|

2+V (r)〉, again away from the string cores. Finally
ρs is simply extracted from the difference ρs = ρtot − ρa − ρr, which avoids double-counting energy
contributions in the other components. The string energy density defined in this way includes the
energy density stored in the axion-radial interactions, corresponding to the terms (r/fa+r2/2f2

a )(∂a)2

in the Hamiltonian (second line of eq. (69)), only part of which (that in regions close to string cores)
genuinely contributes to the string energy. The remainder corresponds to interaction energy between
axion and radial modes. Such interactions could in principle trigger parametric resonance and have
a substantial effect, however we have checked that they only give negligible oscillating corrections to
the energy densities in our simulations.39

We can compare ρs extracted in this way to the prediction obtained using the theoretical expecta-
tion for the string tension, based on the typical separation between strings, and the measured values
of ξ(t). In particular, we compute the effective tension µeff = ρs(t)t

2/ξ(t) from the definition eq. (75),
using ξ(t) and ρs(t) from the simulation. This can be compared to the theoretically expected form

µth = µ0 log

(
mr ηc

H
√
ξ

)
, (97)

which is obtained by replacing, in eq. (76), γ(t) with 1 and η(t) with ηc = 1/
√

4π as a reference (we
choose 1/

√
4π somewhat arbitrarily based on the average distance between strings if they were all

parallel, but any roughly similar value would also be theoretically reasonable).
In Figure 11, we plot the ratio µeff/µth as a function of time, for the fat string and the physical

cases. The closeness of µth and µeff over the entire time range that the system is in the scaling regime
is highly non-trivial. These quantities could have differed by orders of magnitude, or had different time
dependences, but instead the naive theoretical prediction reproduces the results from the simulation
to within 20% throughout. As well as showing that our method of computing ρs is meaningful, it is a
strong sign that eq. (75) with µeff replaced by the theoretical expectation eq. (97) correctly captures
the dynamics of the string system. This includes the logarithmic growth of both ξ (t) and the string
tension due to the increasing scale separation, as well as the variation of ρs compared to ρa and ρr with
time. The closeness of µth and µeff also shows that relativistic effects are not large. This is expected
on the basis that the energy density is dominated by long strings, whose motion is damped by the
Hubble expansion; indeed γc > 1 would increase the ratio µeff/µth which is instead smaller than (and
close to) unity.40

The small difference between µeff and µth is not worrisome. In fact we do not have a reliable way
to compute η analytically since its value is determined by the loop distribution and the shape of the
strings, which can also depend on time. Further, the parametrization µ = µ0 log (mrη/H

√
ξ) with an

IR cutoff ∼ mr/H
√
ξ and constant η applies only to long strings (for loops with radius smaller than

Hubble, which make up less than 10% of ξ, the tension is expected to be cutoff at smaller values). A

39The axion-radial interaction terms are small because |r|/fa � 1 away from string cores, and the amplitude of radial
waves is rapidly decreased by redshifting.

40The analysis in the fat strings case of refs. [136,138] indeed finds values for the γ factors close to 1.
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Figure 11: The closeness of µeff = t2ρs(t)/ (ξ(t)) to the theoretical prediction µth, defined in eq. (97),
(plotted in terms of the ratio of these two quantities) is a non-trivial check that our procedure to
extract the string energy density ρs is reliable. More importantly, it shows that the relation eq. (75)
can be used to predict the energy in the string network for a given string density and time, by replacing
µeff by µth, and that the theoretically predicted logarithmic growth in the string tension is seen in
simulations.

simple modification of η can fix the ratio µeff/µth = 1 at all times, however for the moment we are
not interested in such a detailed understanding of µeff , and we content ourselves with the degree of
agreement obtained in Figure 11.

Turning to consider the energy in axions and radial modes, in Figure 12 we show the proportion
of the total energy that is in the three components of eq. (96) as a function of time, in the fat string
and the physical cases. We plot this only for times corresponding to the range log(mr/H) = 3.5 ÷ 6
for the fat string case, and log(mr/H) = 4 ÷ 6 for the physical one. Data at later time may not be
safe from finite volume effects (see Appendix D) while data at earlier times is not representative of
the scaling regime since there is not yet a sufficient hierarchy between Hubble and the core scale to
consider these decoupled (as will be clear when we analyze the axion spectrum, shortly).

First, we note that in the fat string case all three components redshift as 1/t2, up to logarithmic
corrections. Therefore the time dependence in Figure 12 is only a result of the increase in energy in
strings (due to the factor ξ(t)µeff(t) growing) and energy transfer from strings to axions and radial
modes. Indeed, using eqs. (82) and (85) these two effects combined predict that ρa/ρs ∝ log(mr/H),
which explains the relative change in ρa and ρs. The proportion of energy in radial modes appears to
be approximately constant in time, accounting for around 13% of the energy budget.

The situation is less clear for the physical case. The radial mode now redshifts as non-relativistic
matter 1/t3/2, slower than the other components. If we use again eqs. (83) and (82), and assume
constant energy transfer rates Γi, then ρr/ρa ∝ t1/2/(ξ(t)µeff(t) log(mr/H)). Therefore, if the rates
remain constant until late times, energy in radial modes will eventually dominate that in axions.
However, over the time range plotted in Figure 12 this expression predicts that ρr/ρa remains ap-
proximately constant, which matches our results from simulations. The fact that the string energy
density is not decreasing with respect to that in axions, as happens in the fat string case, may be an
indication that larger scale separations are required for the asymptotic behavior Γ ∝ ξ(t)µeff(t)/t3 in
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Figure 12: The fraction of the total energy density in free axions, radial modes and strings, as a
function of time using the fat string trick (left) and in the physical case (right). The string contribution
ρs(t) is extracted from the difference ρs = ρtot − ρa − ρr as explained in the text.

eq. (82) to be reached in the physical case, or due to the shorter time that simulations can be run
compared to the fat string scenario.

Perhaps more revealing are the rates at which energy is transferred into axions and radial modes.
In Figure 13 we show the time dependence of the ratio ra = Γa/Γ in the simulations, which we
compute from eq. (83) by taking derivatives of the energy densities calculated as above (setting z = 3
in the physical case, z = 4 in the fat string one, and neglecting the dots, i.e. including possible energy
transfer between axions and radial modes in Γa). It seems that in both cases the fraction of energy
that is transferred to axions is roughly constant, and the value in the fat string scenario is compatible
with the approximately constant proportion of the total energy that is in radial modes, plotted in
Figure 12. As discussed, in the physical case a constant energy transfer will eventually lead to radial
modes dominating the total energy density, but is compatible with the results in Figure 12 for the
time range that we can simulate.

Similarly to the fraction of the total energy in strings ρs/ρtot, the constant value of ra in the
physical case might only be a transient effect. In fact we expect that the rate of energy transfer from
radial modes to axions will increase if the abundance of radial modes grows, so that at sufficiently
late times the dominant net effect of energy loss from the string network should be the production of
axions. Because of this, any interpretation of the fractional rate ra computed from simulations in the
physical case should be taken with a grain of salt.

To summarize, in both the fat string and the physical cases we find that most of the energy
radiated by strings in the scaling regime goes into axions, and these give the largest contribution
to the energy density at late times. Meanwhile, the string energy density is well reproduced by the
ansatz from the scaling solution, with the theoretically expected string tension and the values of ξ(t)
measured in simulations. There is a non-negligible component of the energy density in radial modes,
and an approximately constant proportion of the energy emitted by strings goes into such states.
This surprising result clashes with the expectation that heavy modes decouple from the evolution of
macroscopic soft objects, and that their production is suppressed. We will see that this phenomenon
has a close analogue in the rate at which high momentum axions are emitted.

55



fat

physical

3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.2

0.4

0.6

0.8

1.0

log(mr/H)

ra

Figure 13: The fraction of the instantaneous energy density emitted by strings that is converted into
axions (as opposed to radial modes) ra = Γa/Γ as a function of time, for the fat string and the physical
simulations. At late times more than 70% (80%) of the energy released from the string network in the
scaling regime goes into axions in the physical (fat string) case. The rest of the energy goes into the
production of massive radial mode states.

4.4.2 Axion Spectrum

We finally arrive at our analysis of the spectrum of axions emitted, the shape of which has a dramatic
effect on the axion relic density, as previously discussed.

In Figure 14 we show the differential energy density ∂ρa/∂k at different time shots, for both the
fat string and the physical cases. The spectrum is such that

∫
dk ∂ρa/∂k = ρa, and it has been

computed from the Fourier transform of ȧ, with the strings appropriately masked out, as explained in
Appendix E. We plot the spectrum as a function of k/H to highlight that it remains peaked around
momenta of order Hubble as this decreases, and we divide it by the factor Hf2

a to remove the main
time dependence (see eq. (85)).

The spectra have a number of relevant features. We start with the fat string case, for which the
core scale mr evolves in exactly the same way as physical momenta redshift. As a result, radiation
produced by the cores with k ∼ mr remains at k ∼ mr at all later times, and contributes to the
same part of the differential spectrum regardless of when it was originally produced. Similarly, since
the simulations begin with H ∼ mr, the typical momentum of pre-existing radiation from the initial
conditions is k ∼ mr and states from these early times will subsequently remain at ∼ mr. Therefore
the part of the spectrum sufficiently below mr is entirely from genuine radiation produced by strings,
and is independent of the physics of their cores.

Figure 14 clearly shows that the spectrum is peaked in the IR at around the Hubble scale, in
particular at k/H ∼ 5÷ 10 for all values of the log larger than 3. There is another small peak in the
UV, which is exactly at k = mr/2, the typical frequency of parametric resonance. These modes could
be produced by the string core itself, or by the conversion of non-relativistic radial modes into axions.
The position of this peak at a particular time identifies the part of the spectrum that is sensitive to
core scale (i.e. UV) physics. For times corresponding to log(mr/H) . 3 the peaks in the UV and the
IR cannot be distinguished, and it is only for log(mr/H) & 3.5 that there starts to be enough of a
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Figure 14: The axion energy density spectrum ∂ρa/∂k as a function of the ratio of the physical
momentum k to the Hubble parameter. The results are shown for different times (i.e. different values
of log(mr/H)) for a string system in the scaling regime, in the fat string (left) and the physical (right)
scenarios. In both cases the spectrum is dominated by a broad peak at around k/H = 10, and
emission at lower momenta is suppressed. As a reference, for each time shot we also show the value
of k corresponding to the core (k = mr/2), above which there is very little emission, as expected.

hierarchy to justify considering the IR dynamics as decoupled from the core scale physics. For this
reason we do not consider smaller values of the log in our analyses involving the spectrum.

At late times the size of the simulated box, L(t), starts cutting off the low momentum part of
the spectrum, as can be seen from the interruption of the spectrum at the minimum non-trivial
k = 2π/L(t) in the final shots. Subsequently this would start altering the IR peak, so we only analyse
the spectrum until log(mr/H) = 6 when this effect is still harmless (a more detailed study of the
various systematics can be found in Appendix D).

As expected, the spectrum is power suppressed for momenta smaller than the IR peak or larger
than the UV peak — long wavelength modes are inhibited by the horizon, while the high energy ones
are suppressed by decoupling. In particular, the spectrum seems to fall as ∼ k3 in the far IR, and
as ∼ 1/k2 in the far UV. The region of physical interest is in between the two peaks. The spectrum
reaches a stable form towards the end of the simulation, and in the last Hubble e-folding (i.e. for logs
in the interval 5 to 6) its shape remains very similar, modulo the shift of the UV peak. However,
even though ∂ρa/∂k is largest in the IR, its area is dominantly in the UV, since the slope between the
two peaks is less steep than 1/k. This can be seen more clearly by plotting ∂ρa/∂ log k on a log scale
(shown in Figure 31 in Appendix G). We conclude that although most of the axions produced by the
evolution of the string network at late times are soft, the majority of the energy density is contained
in UV axions with energy of order the inverse core size.

The situation for the physical case seems similar, although the uncertainties are larger. In fact it
is in studying the spectrum that the advantages of the fat string trick are most pronounced. In the
physical case, axions produced at early times with momentum of order the core-scale redshift with
respect to mr, which is constant. This means that, although the distance between the IR peak and
mr/2 at late times is the same as in the fat string case (for the same value of log(mr/H)), the spectrum
is contaminated by core-scale radiation produced earlier and redshifted down to k ∼

√
Hmr/2. This

effectively halves the region of the spectrum that is free from UV dependent contributions. Indeed
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the spectrum shows that the IR and the UV dynamics are not decoupled before logs of order 4.5 or
5, and for this reason we do not consider quantities that rely on the spectrum at times corresponding
to log < 4.5. Similarly, the UV peak is now replaced by a broader feature, caused by the convolution
of core-scale radiation emitted at different times and redshifted by different amounts.

Because of these disadvantages, extracting the shape of the spectrum between the peaks is more
challenging in the physical case. The rest of the spectrum shows similar features to the fat string case,
with a strong suppression of modes below k ∼ (5÷ 10)H and above k = mr/2 (for the UV modes,
this time with a stronger suppression, ∼ 1/k3 instead of ∼ 1/k2). As for the fat string case, the IR
peak seems to dominate the spectrum, especially at late times, while the area is still dominated by
the UV region. Therefore, most of the axions produced by the evolution of the string network at late
times are again soft, but most of the energy density is in UV axions. However, we stress that the
results in the physical case are less clear and should be interpreted with caution.

To the best of our knowledge, the only other serious attempt to extract the axion spectrum in the
scaling regime was in ref. [135], based on results of simulations carried out on a somewhat smaller
grid than ours. In that paper the authors observe an exponential suppression of the spectrum at large
momenta, which they interpreted as indicating a strongly IR peaked distribution. However, the range
of momenta that shows such behavior seems to lie above the scale of the core, mr/2. Unfortunately,
the region at smaller momenta has been very poorly binned, so that little information on the actual
behavior of the spectrum in this region is available.

4.4.3 Instantaneous Emission

In addition to the overall spectrum, the shape of the instantaneous axion spectrum, i.e. the function
F (x, y) in eq. (87), is crucial for understanding the properties of the emitted axions, and in particular
for inferring the evolution of the axion number density at later times.

We compute F from the spectrum by inverting eq. (88), namely

F

[
k

H
,
mr

H

]
=

A

R3

∂

∂t

(
R3∂ρa

∂k

)
, (98)

where the factor A = H/Γ is fixed by requiring that F is normalised to 1. To evaluate the derivative
numerically we took the difference of R3∂ρa/∂k between two subsequent time shots (separated by
∆log = 1/4). The results are shown in Figure 15. Since interactions with radial modes induce small
oscillations in time with frequency ∼ mr of the axion energy density (see Appendix E.1) the procedure
to extract F is subject to fluctuations at frequencies near the core, as evident in the plots (as explained
in Appendix E.1 this effect is more pronounced for physical strings than for fat ones).

For the fat string case we plot F at three time shots, i.e. at three values of the log. At all of these
times F has an IR peak at momentum around the Hubble scale (and suppressed emission at lower
momenta), and a UV peak at the scale of the string cores. In particular, the IR peak is located around
k/H ≈ 5 and extends to k/H ≈ 10, while the UV peak is at k ∼ mr/2. As a result, the ratio between
the maximum and the minimum momenta between which the instantaneous spectrum can show a
power law behavior is bounded by kmax/kmin . mr/40H . N/120, where N is the number of points
in the spatial grid of the simulations (assuming a lattice spacing a = m−1

r and that the simulations
are stopped when the box size L = 3/H, and also requiring k/H > 20 to be safely away from the IR
peak). For our simulations this means that kmax/kmin ∼ 10.

Although the separation of the UV and IR peaks is not yet large for log = 4, at values above 5
an intermediate momentum range can be clearly identified in which the differential spectrum shows a
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Figure 15: The shape of the spectrum of axions emitted instantaneously by the string network
F (k/H, y) for the fat string (left) and the physical (right) cases, for different scale separations, i.e.
different values of y = mr/H.

definite power law behavior. In this region the instantaneous spectrum of axion emitted is compatible
with a behavior 1/kq with q ≈ 0.7÷ 0.8. More details about how we extract q, and further plots, can
be found in Appendix G. Consistent with our analysis of the convoluted spectrum, this value means
that most of the energy released by the string network goes into high energy axions, although most
of the axions are soft.

We also note the constant form of F at different times (over a range in which H changes by 2
orders of magnitude) is another demonstration of the scaling behavior of the system. In particular, the
IR and UV peaks remain their expected positions, and the intermediate power law with q ≈ 0.75(5)
is constant with time to within the uncertainty. Although there is no noticeable change in q in the
interval of logs between 5 and 6, the uncertainty is relatively large. Consequently, we cannot exclude
the possibility that, as for ξ, a logarithmic scaling violation occurs. This could lead to, for example,
a behavior q ∼ 0.7 + ε log(mr/H) for some small constant ε. In Appendix F we also show that F
is independent of the string systems initial conditions, confirming that we are indeed analyzing the
properties of the attractor solution.

As expected, the analysis of the physical case is more difficult. UV modes pollute the convoluted
spectrum well below the scale mr, so useful results only start appearing at late times. Because of
this, in Figure 15 we only show F for the last time shot at log = 6. Although there are still large
fluctuations due to higher frequency modes, an approximate power law can be recognized at this time,
with a value of q that is again smaller than 1 and which appears to be similar to in the fat string
scenario.

The form of the instantaneous emission found above clashes with either of the theoretical expec-
tations discussed in eqs. (94) and (95), which predicted q ≥ 1. Similarly to the radial modes, axions
with momentum of order the string core scale have not decoupled from the dynamics of strings at
the final times log(mr/H) . 6, despite the relatively large hierarchy mr/H ∼ 500. To investigate
this surprising result further, in Appendix H we study the dynamics of the collapse of a single axion
string loop. In particular we analyze whether this is converging to the prediction for a Nambu–Goto
string in the limit that its initial radius is large compared to its core size. We find that the radius
of the axion string loop as a function of time during its initial collapse does indeed get closer to the
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Figure 16: The axion number density, normalised by Hf2
a , as a function of time for the fat string

and the physical cases.

cosine prediction (and is extremely close to the prediction based on the effective theory of global
strings coupled to radiation in the limit of large scale separation [38]). At the scale separations that
can be simulated (log(mr/R0) . 5 where R0 is the initial loop radius) the loop does not rebound
significantly, as opposed to the case where log(mrR0) � 1 in which the loop is expected to rebound
many times according to arguments based on the use of the Nambu–Goto string action [35]. On the
other hand, whether the loop bounces also depends on its dynamics at small radius, a regime in which
the Nambu–Goto approximation is not valid. Since it is at such times that energetic modes are more
efficiently produced, this result is consistent with our observation that the spectrum also deviates from
the expectation based on a loop oscillating many times.

4.4.4 Number density

We are now ready to consider the axion number density. We evaluate this in simulations using the
differential spectrum ∂ρa/∂k at different time shots, and eq. (89). The results for na, normalised
with the factor Hf2

a , as a function of time are shown in Figure 16 for the fat string and the physical
scenarios. In both cases na/H increases logarithmically over the time range plotted, although the
values and the slopes are different. Therefore, similarly to the fit of ξ(t), our first conclusion is that
at the quantitative level the fat string system differs from the physical theory, although they seem to
have the same qualitative features.

As we have stressed, the values of the log that can be analyzed with numerical simulations are
nowhere near large enough to reach the physically relevant region of parameter space. Consequently,
na must be extrapolated to extract predictions, and the way that this is carried out has a dramatic
impact on the results obtained. Such an extrapolation is a viable possibility because we have shown
the existence of an attractor solution, and we have found that the energy of the string network is
accurately reproduced by eq. (75) with the theoretical prediction for µeff , eq. (97). Additionally, given
our results for ξ(t) it is plausible that the fit in eqs. (77) and (78) can be extended all the way to
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the physical scale separation. The remaining component needed in order to predict the axion relic
abundance is an understanding of the form of the instantaneous emission spectrum at late times.

As usual we will discuss the fat string case before moving to the physical one. From Figure 16 it
is tempting to extrapolate na/

(
Hf2

a

)
linearly in the log, however this procedure is too naive. From

eq. (92), a linear behavior is expected only for very large logs and even then only if the power law of the
instantaneous emission spectrum is q = 1 (and ξ(t) also increases linearly with the log). This is not the
case in simulations since, as we saw in the previous section, q ∼ 0.75 and the logs are not large enough
to neglect 1/ log corrections in eqs. (82) and (89). We conclude that the linear behavior observed is
most likely a transient effect. Indeed, should the power q remain constant below 1 the number density
would start decreasing exponentially with the log at late times (from eq. (92)). Meanwhile, if q grows
to be significantly larger than 1 the number density will increase as the log squared.

The different behaviors at large values of the log are shown in Figure 17, assuming that ξ continues
to increase logarithmically. It is clear that a naive linear extrapolation leads to significantly different
results compared to if q is assumed to remain constant at 0.75. Since we are not able to reliably study
the behavior of q with time, we cannot exclude the possibility that a small scaling violation results in
q growing to 1 or even larger values, and we also show the axion number densities at large values of
the log in these cases. It can be seen that if such a change does occur, the large log behavior of na is
completely different to both the linear extrapolation and the q = 0.75 possibilities, leading to much
larger number densities. The extrapolations in Figure 17 have been obtained from eq. (89) using a
form for F fitted from the results shown in Figure 15 with q modified between the IR and UV peaks,
although the results are not very sensitive to the exact shape of F away from the power law region
(more details on the form of F used are given in Appendix G).

For the physical case there is even more uncertainty in the value of q, and consequently on the
late time number density. In Figure 17 (right) we plot the extrapolated number density for different
values of q, together with the naive linear extrapolation and the available values from the simulation.
As a comparison the reference number density from misalignment (nmis

a = θ2
0Hf

2
a with θ0 = 2.2) is

also shown. Similarly to the fat string case, if q = 1 then na/
(
Hf2

a

)
increases proportionally to the

log, if q � 1 it grows with log squared (again assuming that ξ continues to increase logarithmically),
while if q < 1 it is exponentially suppressed in terms of the log.

It follows that if the spectrum remains UV dominated with small q (i.e. with q . 0.85) for large
values of the log, the number of axions produced from strings during the scaling regime is negligible.
However, if q increases at larger log, the axions produced by strings can easily match or dominate
those from misalignment. Indeed, even a very mild log dependence of the power q, for example of
the form q = 0.7 + 0.01 log(mr/H), too small to be excluded by our simulations, would be enough to
make the final abundance at log = 70 more than 2 orders of magnitude larger than the misalignment
contribution.

As discussed in Section 4.2, the results of simulations only depend on the ratio mr/H, and can
be interpreted either in terms of a theory with mr ∼ fa at an early time when H ∼ fa, or a theory
with a much smaller mr � fa at a later time H � fa. Fixing the Hubble scale to its value when the
axion mass becomes relevant H ≈ ma ∼ Λ2

QCD/MPl, the values of na calculated in our simulations can
therefore be used to extract the physically relevant axion number density for theories with extremely
small values of mr (as would occur in a UV completion with a complex scalar field that had a tiny
quartic coupling). However, constraints from observations of the evolution of stars and fifth force
experiments require that mr & keV in viable theories, corresponding to rather large values of the
log (∼ 23 for the reference value of fa = 1011 GeV), which is still beyond the reach of simulations.
Due to this phenomenological requirement, we only begin the extrapolations in Figure 17 at this
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Figure 17: Possible extrapolations of the axion number density to large values of the log with different
assumptions about the late time behavior of the power q of the instantaneous emission spectrum. For
the fat string case (left) we compare a naive linear extrapolation of na to that assuming q = 0.75
remains constant. We also show the late time number densities if q changes to 1, 2, or ∞ at an
intermediate value of the log. For the physical case (right) we only show extrapolations in the range
log & 23 ÷ 70, corresponding roughly to the values of mr in the range keV÷1011GeV, which are not
excluded by fifth force experiments and star cooling bounds. In addition to constant values q = 0.75,
1, 2 and ∞, we plot the effect of a small logarithmic scaling violation q = 0.75 + 0.01 log (mr/H).

scale separation. Meanwhile, the typical axion models with mr ∼ fa correspond to logs ≈ 70 at the
physically relevant time as usual, at the right hand boundary of the plot.

The main message from this section is that an understanding of the late time evolution of the
properties of the string network is of paramount importance for a correct extrapolation of the axion
abundance to the physically relevant parameter range. If only small-log data are available, very precise
computations of the spectrum and its time dependence will be necessary, or if theoretical arguments
that q → ∞ in the limit of large scale separation are believed, a prediction for the relic abundance
can already be made. In contrast, a naive extrapolation of the axion number density (such as the
linear-log one plotted above) could easily give results that are off by several orders of magnitude.

Our final results for the axion number density calculated in simulations are not in disagreement
with those obtained by other groups. Despite this, the conclusions that have been reached in the
previous literature about the abundance at the physically relevant scale separations are incompatible
with each other, primarily due to the different ansatz used in extrapolating. In particular:

• Refs. [25,26,39,40] assume that q > 1 based on arguments related to the evolution and emissivity
of effective Nambu–Goto strings, which are expected to reproduce the dynamics of global strings
at large logs. Assuming ξ = O(10) they conclude that strings should produce a large number
of axions. Our result would only be compatible with this estimate if the power q of the axion
spectrum increases at large scale separation, however we are not aware of any reliable evidence
that this is indeed the case beyond the Nambu–Goto approximation. In fact, as mentioned,
energetic modes are expected to be efficiently produced from collapsing loops when their radius
is comparable to the string thickness (or by long strings that are similarly close together), and

62



in this regime the Nambu–Goto effective description is not valid.

• Refs. [134, 141] on the contrary assume that q = 1, supported by computations of the axion
spectrum produced by collapsing loops at values of the log . 5. Using ξ = O(1) they conclude
that the abundance of axions produced by strings is not larger than that from misalignment.
While the value of ξ assumed is compatible with those measured in our simulations, the time
evolution of ξ that we observe suggests that larger values need to be used in the physical regime.
Additionally, the study of the spectrum from collapsing loops is not sufficient to infer the spec-
trum emitted by the full string network in the scaling regime. Instead, this is the result of a
combination of spectra produced by loops and long strings, and therefore also depends strongly
on the distribution and the evolution of the latter. While the value of q observed in our simula-
tion is not far from 1, we have no evidence to support an expectation of an asymptotic value of
q = 1 at large logs.

• Refs. [135] performed similar simulations of global strings to those that we have carried out.
They find a value of ξ ≈ 1, in the same approximate range as that obtained in our simulations,
but they did not observe any linear increase with the log (probably for the reasons discussed
in Section 4.3.2). For the reasons discussed in Section 4.4.2, they inferred a very IR dominated
spectrum and conclude that strings would efficiently produce a large axion number density,
even though their ξ is lower than our extrapolated value. This example shows how a different
interpretation of the spectrum can lead to a completely different conclusion, despite the fact that
the spectrum measured in the simulation for small logs might be qualitatively in agreement. At
small logs, a very detailed study of the spectrum is mandatory to reliably extrapolate the number
density to the physical point.

• Finally in refs. [136, 142] a different UV completion of the string cores was introduced in order
to simulate fat strings with a large effective tension µeff ∼ 70µ0, despite the actual core size
remaining bounded by the lattice spacing size log(mr/H) ∼ 6. While this trick is claimed
to remove the need for a large extrapolation connected to the string tension and the effective
axion-string coupling, the one associated to the decoupling of the radial modes of the string
core remains. The results in ref. [136, 142] confirm the non-trivial dependence of ξ on the logs,
although the actual functional dependence is not clear from the analysis. The authors did not
present explicit results for the spectrum. The final number density of axions observed, which
also includes the contribution from the domain walls and the destruction of the string network
owing to the axion mass, turns out to be smaller than that from misalignment. This result seems
to be compatible with an underproduction of axions from strings, associated to a spectrum with
q < 1, in agreement with our results if we assume that q remains below 1 at larger logs.

However, note that in this case the spectrum (and the way that strings sustain the scaling regime)
is dominated by core scale physics. This makes the extrapolation of the string core size from
log(mr/H) ∼ 6 to log(mr/H) ∼ 70, as subtle as in the normal case. In fact we cannot exclude the
possibility that at larger logs (i.e. relatively thinner strings) the production of energetic modes
gets suppressed and q increases. The extrapolation of log(mr/H) to the physically relevant
values made in ref. [142] is therefore just as sensitive to the uncertainties discussed as it is in
conventional simulations. A high precision study of the spectrum is therefore required to identify
the correct extrapolation.
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5 Conclusions

In this thesis we have studied two important ingredients for a theoretical prediction of the QCD axion
mass based on the production of DM in the early universe.

First, in chapter 2 we calculated the relation between axion mass and decay constant at high
precision, making use of chiral perturbation theory techniques. The result in eqs. (53) and (54) shows
that the chiral expansion is converging very well and that the NNLO corrections (of the same orders of
the EM ones) are one order of magnitude below the NLO contributions. While the current uncertainty
is of the order of the percent and dominated by the one on the low energy constant `7, an improvement
in `7 and in the ratio mu/md from lattice QCD studies would improve our estimate up to the per
mille level.

After reviewing in chapter 3 the production of axion DM via the misalignment mechanism, in
chapter 4 we studied the cosmological scenario where the PQ symmetry is restored after inflation. In
this scenario the axion DM abundance can be in principle calculated only as a function of fa (and
so of ma via eq. (53)), which would give a unique prediction for the axion mass if the QCD axion is
to make up the entire DM energy density. Unfortunately, studying the dynamics of the axion field is
challenging because of the presence of strings and domain walls.

Using numerical simulations, we have shown that the string network approaches an attractor
solution that is independent of its initial conditions, and which is approximately scale invariant. We
have also seen that this solution has a number of interesting properties:

• The string length per Hubble patch ξ(t), defined by eq. (74), increases logarithmically with the
ratio of the Hubble parameter and the string core size, with best fit parameters given in eqs. (77)
and (78).

• At any time more than 80% of the string length is contained in long strings and the rest is in
loops of size Hubble and smaller, which follow a scale invariant distribution. While such loops
shrink and disappear they are replaced, at the same rate, by loops produced from longer strings.

• The energy density of the string network is determined by eq. (75) with — nontrivially — an
effective string tension µeff that is close to the theoretical expectation eq. (97). This means that
to a good approximation, the energy density of the string network in the scaling regime at a
particular time can be determined solely from the density of strings ξ(t).

• Over the scale separations that can be simulated, a substantial proportion of the energy emitted
by the string network goes into heavy radial modes. Contrary to expectations, the radial modes
have therefore not decoupled from the string dynamics by the end of the simulations, despite
the relatively large scale separations mr/H ∼ 500 reached at these times.

• The instantaneous spectrum of energy emitted into axions, plotted in Figure 15 in terms of F
defined in eq. (87), has the theoretically expected shape with a peak at momentum around the
Hubble scale. At higher momenta it follows a power law until the string core scale above which
emission is suppressed. The during the whole simulation the slope q of the power is such that the
majority of energy emitted by strings goes into high momentum axions for the scale separations
that we can study (although a greater number of low momentum axions are produced). However,
uncertainties are still large enough that a small time dependence of q could change completely
the behavior of the spectrum in the physically relevant parameter region.
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• In simulations with physical strings, the instantaneous emission spectrum of the scaling solution
can only be evaluated close to the end of the simulation because the residual energy from the
initial conditions has less time to redshift. The result obtained matches the conclusions drawn
from our analysis of the overall spectrum. The fat string model ameliorates these problems, and
for this system we see that F remains similar at different times. Although the slope of the power
law shows no sign of changing as the scale separation increases, the uncertainty is substantial
and scaling violations also here are not excluded.

Since the scale separations that can be simulated are far from the physically relevant values,
extrapolation over a vast distance is necessary if predictions relevant to the relic abundance of the
QCD axion are to be made. Given our results, it is plausible that ξ continues to grow logarithmically
(although we cannot exclude the possibility that it eventually saturates). Such an increase would
enhance the number of axions emitted by a factor ∼ 10. Having tested that the energy density in
strings is well matched by eq. (76) with the theoretical expectation for the string tension, the remaining
ingredient necessary for a precise prediction of the relic abundance is the instantaneous axion emission
spectrum at large scale separations, in particular the power q in F . While q < 1 at the scale separations
that we can study, there is space within the current uncertainty for a small logarithmic correction that
would result in it increasing to ≥ 1 in the physically relevant part of parameter space. On the other
hand, if q < 1 persists at large scale separations then the number of axions produced by strings is
presumably sensitive to the UV completion of the theory, as a significant proportion of the energy is
going into exciting heavy modes, although in this case the number density is suppressed relative to
that from misalignment.

To determine whether q has a scale dependence, it is of paramount importance to carry out simu-
lations at larger scale separations. Indeed, even with a relatively modest increase in range, evidence
for a change in q might be seen, which would allow an extrapolation.41 Improvement could come
from different directions. One possibility is to simply perform simulations on larger high performance
computing clusters, after implementing more efficient parallelization than we have in our present work.
A more involved possibility would be to develop an adaptive mesh algorithm, in which the scalar field
is simulated on a grid with finer mesh spacing in regions of space where this is required, close to the
cores of strings. The mesh must be updated as the strings move, which requires a more sophisticated
algorithm, however this approach has proved beneficial in simulations of, for example, astrophysi-
cal black hole mergers [144]. It may also be interesting to further study the dynamics of individual
strings, or small numbers of strings, which could give an indication of the behavior of the full network.
A qualitatively different approach would be to develop a numerical simulation in which the strings
themselves were treated as the fundamental degrees of freedom, with parameterized dynamics and
interactions. Such an effective theory style simulation could allow much larger scale separations to be
studied. In [145] this idea was used to numerically simulate “strings” in 2 dimensions, although the
extension to three dimensions is challenging, and a careful analysis would be necessary to ensure that
the full dynamics of the underlying theory is capture.

A full calculation of the relic abundance must also include the axions produced when axion mass
turns on, at which time domain walls form and the string network is destroyed. As mentioned at
the beginning of chapter 4, after the axion mass becomes cosmologically relevant, when ma ∼ H, it

41Encouraging preliminary results on this are already available but will be omitted, and left for a future publica-
tion [143]. In particular, logarithmic violations in the spectrum index are actually present and about one order of
magnitude bigger than those shown in fig. 17, and point towards an IR dominated spectrum. A log dependence can be
also found in other observables that might be related to the spectrum shape, such as the percentage of energy emitted
in axions vs radial modes, the number of bounces and Lorentz factors of circular and noncircular string loops.
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continues to increase fast, and quickly H � ma � fa. As a result, this system has three widely
separated scales, and is even harder to numerically simulate than the string network alone.

It is however reasonable (but not guaranteed) that the effect of the axions emitted during the
scaling regime can be treated separately if they do not interact significantly with the domain walls.
If this assumption is verified, evolving a system of axion waves through the QCD crossover with the
spectrum extrapolated at log = 70 would be feasible and possibly lead to a solid lower bound for the
relic abundance, and so for the axion mass. In any case, even if the complicated nonlinear dynamics
does not allow for the separate treatment of the axions produced from strings, the results of this thesis
will be still necessary to set the initial conditions of the string system at the domain-wall epoch.
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A Results in terms of the quark masses

We provide here the results for pion mass, pion decay constant and topological susceptibility in both
Nf = 2 and Nf = 3 chiral perturbation theory (in this last case in the unbroken isospin limit mu = md)
in terms of the bare chiral Lagrangian parameters and quark masses. These are intermediate results
used to obtain the formulas in the main sections and the matching of app. B.

A.1 Two-flavor results

We start with the neutral pion mass mπ0 , calculated at O(p6, p2e2), and the charged pion decay
constant fπ+ , defined at αem = 0 and calculated at O(p6). These have been calculated in the unbroken
isospin limit in [106,124–127], and read:

m2
π0 = M2

[
1 + δM1 + δM2 + δMe

]
, (99)

fπ+ = F
[
1 + δF1 + δF2

]
, (100)

where M2 ≡ B(mu +md), B and F are the LECs of the leading order Nf = 2 Lagrangian [15], and

δM1 =
M2

F 2

[
(2`r3 + (1/2)κλM )− (2`7)∆2

]
, (101)

δF1 =
M2

F 2
[`r4 − κλM ] , (102)

δMe = e2

[
−20

9

(
kr1 + kr2 −

9

10
(2kr3 − kr4)− kr5 − kr6 −

1

5
(1− 3∆)kr7

)
+ 2κZ (1 + λM )

]
, (103)

where κ ≡ (4π)−2 and λM ≡ log M2

µ2 . The O(p6) contributions are

δM2 =
M4

F 4

{
− 16 (2cr6 + cr7 + 2cr8 + cr9 − 3cr10 − 2 (3cr11 + cr17 + 2cr18)) (104)

+ (`r1 + 2`r2 + `r3)κ+
163

96
κ2 +

[
−(14`r1 + 8`r2 + 3`r3)κ− 49

12
κ2

]
λM +

17

8
κ2λ2

M

+
[
16 (−cr7 + cr9 + 3cr10 + 2cr11) + κ(1 + 5λM )`7

]
∆2

}
,

δF2 =
M4

F 4

{
8 (cr7 + 2cr8 + cr9) + (−(1/2) `r1 − `r2 − 2`r3) κ− 13

192
κ2 (105)

+

[
(7`r1 + 4`r2 − 2`r3 − (1/2) `r4)κ+

23

12
κ2

]
λM −

5

4
κ2λ2

M

+
[
8 (cr7 − cr9) + κ (1 + λM )`7

]
∆2

}
.

At the same order, the topological susceptibility reads

χtop =
z

(1 + z)2
M2F 2 [1 + δχ1 + δχ2 + δχe ] , (106)
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where the NLO correction have been first computed in ref. [128]

δχ1 =
M2

F 2

[
2 (hr1 − hr3 − `7 + `r3)− (3/2)κλM + (2`7) ∆2

]
, (107)

while the EM and the NNLO corrections read

δχe = e2

[
20

9
(kr5 + kr6) +

4

9
(1 + 3∆) kr7 − 2κZ (1 + λM )

]
, (108)

δχ2 =
M4

F 4

{
16 (3cr10 + 6cr11 + 2cr17 + 4 (cr18 + cr19))− 3κ`r3 + 3κ [−(1/4)κ− 3`r3 + 2`7]λM (109)

− 9

8
κ2λ2

M +
[
−48cr10 − 32 (cr11 + cr17 + 2 (cr18 + cr19)) + κ (1− 7λM ) `r7 − 4`7

2
]

∆2 + 4∆4`27

}
.

It is a nontrivial consistency check that the dependence on the scale µ cancels separately in any of
the previous equations. Moreover, the QED running of the quark masses is compensated by the shift
of kri as explained in section 2.4.1, in such a way that both mπ0 and χtop are independent of the QED
RG scale µ. Inverting eqs. (99-100) for M and F and plugging the result into eq. (106), we obtain
the topological susceptibility χtop expressed as a function of the physical π0 mass and fπ+ only, as in
eq. (52).

A.2 Three-flavor results

In the unbroken isospin limit mu = md ≡ m and at αem = 0, the pion mass and decay constant at
NNLO in Nf = 3 chiral perturbation theory are

m2
π = M2

0

[
1 + εM1 + εM2

]
, (110)

fπ = F0

[
1 + εF1 + εF2

]
, (111)

where M2
0 ≡ 2B0m, B0 and F0 are the LECs of the leading order Nf = 3 Lagrangian of [16] and

εM1 = − B0ms

F 2
0

{
2

[
κλη

9
+ 8 (Lr4 − 2Lr6)

]
+

[
κ

(
λη
9
− λ0

)
+ 16 (2Lr4 + Lr5 − 4Lr6 − 2Lr8)

]
w

}
, (112)

εF1 = − B0ms

F 2
0

{[
κλK

2
− 8Lr4

]
+

[
κ

(
2λ0 +

λK
2

)
− 8 (2Lr4 + Lr5)

]
w

}
(113)

Here ms is the strange quark mass, w ≡ m/ms, M
2
K ≡ B0(m+ms) and M2

η ≡ (4/3)M2
K−(1/3)M2

0

are the tree-level kaon and eta masses, λP ≡ log
M2
P

µ2 for P = 0,K, η, and Lri are the NLO LECs of the

Nf = 3 chiral Lagrangian of [16]. The terms εM2 and εF2 are O(p6) and depend on the LECs of the
Nf = 3 NNLO Lagrangian, Cri . Both εM2 and εF2 involve the calculation of a two-mass scale sunset
integral at non-zero external momentum, and therefore do not admit a closed analytic expression
(see [123], where a two-integral representation is provided). However, by employing the analytic form
of the two-mass scale sunset integral at vanishing external momentum [123, 129] and the recursion
relations for sunset integrals [130–132], εM2 and εF2 can be expanded in power series of m. Such an
expansion has been calculated for the first time in [130] for εM2 and [122] for εF2 up to O(m3) and
O(m2) respectively and is sufficient for the matching of the Nf = 2 and Nf = 3 LECs discussed in
app. B. Since the result of εM2 and εF2 turns out to be quite involved, we will avoid reporting here the
explicit expressions, for which we refer to [122,130].
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Finally, the topological susceptibility at αem = 0 (first computed to O(p4) in [128]) reads

χtop =
mumd

mu +md + mumd
ms

B0F
2
0 [1 + εχ1 + εχ2 ] +O(p8) , (114)

where in the unbroken isospin limit mu = md ≡ m:

εχ1 =
B0ms

F 2
0 (1 + w/2)

{[
−κ
(

2λη
9

+ λK

)
+ 32Lr6

]
+

[
−κ
(
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+ 3λ0 + 2λK

)
+ 16 (5Lr6 + 9Lr7 + 3Lr8)

]
w

+

[
−κ
(

2λη
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+ λK

)
+ 32Lr6

]
w2

}
, (115)

εχ2 =
B2

0m
2
s

F 4
0 (1 + w/2)

[
εχ2,C + εχ2,log× log + εχ2,log + εχ2,log×L + εχ2,L + εχ2,L×L + εχ2,finite

]
. (116)

The result of εχ2 has been conveniently organized into different contributions: εχ2,C are terms containing

the LECs Cri , εχ2,log and εχ2,log× log are terms respectively linear and quadratic in the chiral logs λ0,K,η

(but without Lri ), ε
χ
2,L and εχ2,L×L are terms linear and quadratic in Lri (but independent of chiral logs),

and εχ2,log×L contains products of chiral logs and LECs. Finally, εχ2,finite is the remaining constant piece

and is automatically scale independent. In particular:

εχ2,C = 8 {8 [Cr20 + 3Cr21] + 4 [3Cr19 + 7Cr20 + 27Cr21 + 2Cr31 + Cr94 + 6 (Cr32 + Cr33)]w+ (117)

4 [6Cr19 + Cr94 + 4 (4Cr20 + 9Cr21 + Cr31 + 3 (Cr32 + Cr33))]w2 + [8Cr20 + 48Cr21 + Cr94]w3
}
,

εχ2,log × log =
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2 + w
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+
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,

εχ2,log = − κ2

3

{
2

3

[
10λη

9
+ λK
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+
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[
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3
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]
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[
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9
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35λK
3

]
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+2

[
8λη
27
− λ0 +

2λK
3

]
w3

}
,

εχ2,log ×L =
8κ

2 + w

{[
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9
(3Lr4 + Lr5 − 6Lr6 + 3Lr7 − Lr8)λη + 2 (8Lr4 + 3Lr5 − 16Lr6 − 6Lr8)λK

]
(120)

+
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9
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+

[(
2Lr4 +

4

9
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)
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}
,
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, (122)

εχ2,finite = κ2
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+
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In this last equation we defined

G(x) ≡ 1

σ

[
4Li2

(
σ − 1

σ + 1

)
+ log2

(
1− σ
1 + σ

)
+
π2

3

]
, σ =

√
1− 4

x
, (124)

which arises in the evaluation of a two-mass scale sunset integral at vanishing external momentum [122].

B Extraction of the NNLO LECs and input parameters

As mentioned in sec. 2.4.2, the O(p6) LECs cri of the Nf = 2 chiral Lagrangian [116,117] are still poorly
known from experimental data (see [121] for a review). To estimate the value of the cri ’s appearing
in eq. (50), we combined the results from recent lattice QCD simulations [104] with the information
from the matching of pion mass, decay constant and topological susceptibility for Nf = 2 and Nf = 3
chiral perturbation theory of app. A and the estimates for the Nf = 3 LECs Cri provided in [121].

• The SU(2) partially quenched simulation of ref. [104] provide fits of 8 combinations of SU(2)
LECs. In this analysis we consider the 450 MeV cut-fit for such combinations, reported in the
last column of tab. 6 of [104]. While this estimate is less conservative than the one extracted
from the 370 MeV cut-fit, the two are compatible for all reported combinations of LECs. In
tab. 4 we quote the results expressed in terms of cri using the relations between SU(N) and
SU(2) LECs of [116].

• Ref. [121] provides estimates of 34 combinations of O(p6) three-flavor LECs, Cri . The information
of Cri can be translated into a value for three combinations of cri by equating in the large ms/m
limit (and for αem = 0 and m ≡ mu = md) the Nf = 2 and Nf = 3 formulas for the pion
mass in eqs. (99) and (110), the pion decay constant in eqs. (100) and (111) and the topological
susceptibility in eqs. (106) and (114). Such a matching leads respectively to the three following
relations:

2cr6 + cr7 + 2cr8 + cr9 − 3cr10 − 2 (3cr11 + cr17 + 2cr18) = (125)
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cr6 − cr17 −5.33(77) · 10−6

2cr6 − 12cr10 + 18cr11 − cr18 14.5(3.9) · 10−6

cr7 −3.9(2.3) · 10−6

cr8 0.0(1.8) · 10−6

2cr7 + 4cr8 6.2(3.2) · 10−6

cr9 −0.2(1.2) · 10−6

cr10 −1.0(1.1) · 10−6

19cr11 − 12cr10 10.1(3.1) · 10−6

Table 4: Numerical values of the combinations of SU(2) LECs at the scale µ = 770 MeV extracted
from the 450 MeV cut-fit of the partially quenched simulations in [121] (tab. 6).
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(
4

3

)
− 7π2 − 2275

9

]
.

The notation in eqs. (125-127) is as in app. A.2 (except that m/m2
π, fπ and M2

K,η in λK,η are
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Lr1 Lr2 Lr3 Lr4 Lr5 Lr6 Lr7 Lr8
0.5(2) 0.8(3) −3.1(1.0) 0.09(34) 1.19(40) 0.16(20) −0.34(11) 0.55(18) ×10−3

Cr12 Cr13 Cr14 Cr15 Cr16 Cr17 Cr19 Cr20 Cr21 Cr31 Cr32 Cr33

−2.8 1.5 −1.0 −3.0 3.2 −1.0 −4.0 1.0 −0.48 2.0 1.7 0.82 ×10−6

Table 5: Numerical value of the NLO and NNLO couplings Lri and Cri at the scale µ = 770 MeV.
We associated 100% uncertainty to the Cri .

computed at mu = md = m = 0), and the contributions on the r.h.s. have been ordered as in
eq. (116). The numerical value of the NLO couplings Lri is reported in tab. 5: in particular, Lr4, L

r
5

and Lr6 are taken from lattice QCD studies [103], while the others from ref. [121]. Moreover, to
all Lri a 30% intrinsic uncertainty from higher order 3-flavor corrections has been added (this
is not present for 2-flavor where higher order corrections are much smaller). The value of the
NNLO couplings Cri appearing in the r.h.s. of eqs. (125-127) taken from tab. 4 of ref. [121] is
also reported in tab. 5. Since ref. [121] did not provide uncertainties for the Cri coefficients we
assume that they reproduce at least the right orders of magnitude and conservatively assign to
them a 100% uncertainty.

Eqs. (125-127) then lead to:

2cr6 + cr7 + 2cr8 + cr9 − 3cr10 − 2 (3cr11 + cr17 + 2cr18) =− 3.5(22.0) · 10−6 ,

cr7 + 2cr8 + cr9 = 4.7(9.2) · 10−6 , (128)

3cr10 + 6cr11 + 2cr17 + 4cr18 + 4cr19 = 0.3(25.5) · 10−6 .

The final value of the 9 couplings cri in tab. 3 has been extracted by combining the lattice results
in tab. 4 with the 2-3 flavor matching result in eq. (128) through a χ2 fit, whose quality (χ2 ∼ 3) turns
out to be good. In principle, an estimate of cr6 could be directly extracted from the pion scalar form
factor, as in ref. [121] where cr6 ≈ −1.9 × 10−5. However, since there is still a factor ∼ 3 uncertainty
on how to theoretically model this last quantity [118–120], we chose not to use this estimate of cr6 in
our numerical analysis. In any case, the NNLO corrections to χtop in eq. (50) taking into account also
cr6 = −1.9(1.9) × 10−5 result in δ2 = −0.006(3), still compatible with eq. (51), but with an overall
lower quality fit of the cri .

Finally, for convenience in tab. 6 we summarize the values of the parameters used in this work,
which should be considered together with the LECs in tabs. 1, 2, 3 and 5. When uncertainties are not
quoted it means that their effect was negligible and they have not been used.

C Details of the Simulation

C.1 Evolution of the Field Equations

For the purpose of implementing numerical simulations, it is convenient to rewrite the equations of
motion, given in eqs. (70) and (73), in terms of the rescaled field ψ = R(t)φ/fa, and the conformal
time τ , which is defined as

τ(t) =

∫ t

0

dt′

R(t′)
∝ t1/2 . (129)
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z 0.472(11) eq. (32) w−1 27 [103]

fπ 92.3 [96] `3 2.81(49) [104]

mπ0 134.98 [96] `4 4.02(25) [104]

mπ+ 139.57 [96] hr1 − hr3 − `r4 -0.0049(12) eq. (33)

mK 495 [96] `7 0.0065(38) [104]

mρ 775 [96] α−1
em 137 [96]

mµ 105.658 [96] Γπ+→µν(γ) 2.5281 · 10−14 [96]

GF 1.16638 · 10−11 [96] Vud 0.9742 [96]

Table 6: Numerical input values used in the computations. Dimensionful quantities are given in
MeV.

The time-dependent mass in the fat string scenario, eq. (73), is mr(τ) = (τi/τ)mi, where τi ≡ τ(ti) is
the time at which mr = mi. In this way, the equations of motion simplify to

ψ′′ −∇2
xψ + u(τ)ψ

(
|ψ|2 − R2

2

)
= 0 , (130)

where ψ′ and ∇xψ are derivatives with respect to the dimensionless time and distance variables mrτ
and mrx respectively (or miτ and mix for the fat string case). In the physical scenario u(τ) = 1,
while in the fat string case u(τ) = τi/τ .

We then solve eq. (130) numerically on a cubic lattice with periodic boundary conditions.42 Space
is discretised in a box of comoving side length Lc containing N3 = 12503 uniformly distributed grid
points, where the upper value of N is limited by our memory budget. Consequently the space-step
between grid points in comoving coordinates is ac = Lc/N , which is constant in time. It is again
convenient to work in terms of the dimensionless comoving space-step mrac in the physical case, and
miac for the fat string system.

The physical length of the box is L(t) = LcR(t) and the physical space-step between grid points
a(t) = L/N = acR(t) grows ∼ t1/2. In the physical string scenario, the string core size m−1

r is constant,
and therefore the number of grid points in a core (mra(t))−1 ∼ 1/t1/2 decreases. Meanwhile, in the
fat string scenario the string core size increases ∼ t1/2, and as a result the number of grid points in a
string core (mr(t)a(t))−1 = (miac)

−1 is constant. When considering systematic errors from the space
steps in the fat string system we use the notation mr(t)a(t) for the size of the space step due to its
direct physical interpretation (although this is entirely equivalent to miac).

The equations of motion are discretised following a standard central-difference Leapfrog algorithm
for wave-like PDEs (see e.g. [146]). The system is evolved in fixed steps of conformal time aτ , and we
work in terms of the dimensionless time-step mraτ in the physical case, and miaτ in the fat string case.
The derivatives are expanded to fourth order in the space-step and second order in the time-step.43

In Appendix D we extensively study the systematics from the discretisation of space and time, as well
as from finite volume effects.

As discussed in Section 4.3, we set the initial conditions in two ways, the second of which is used
to produce a cleaner initial configuration with a fixed number of strings per Hubble volume.

(a) Random initial conditions: φ and φ̇ are both generated through the anti-Fourier transform of

42We parallelize the algorithm to step forward in time, and run on a cluster with 2× 24-cores.
43The fourth order discretisation of space is probably not required, since additional tests show using a (less precise)

second order discretisation does not lead to significant differences in the results, at least for the string length.
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Fourier coefficients φ̃(~k) and
˜̇
φ(~k), randomly chosen in the interval [− fa√

2
, fa√

2
] for |~k| ≤ kmax and

zero for |~k| > kmax for a fixed choice of kmax ∈ [0,mr] in each set of simulations. Larger values
of kmax lead to initial fluctuations with smaller wavelength, of order 2π/kmax, and more initial
strings. As a result, the initial string density is controlled by the parameter kmax/mr. Even
though this method produces configurations in which the axion field winds the fundamental
domain [0, 2πfa] nontrivially, it does not lead to a clean string configuration at the initial time,
because |φ| does not typically resemble the profile function of string-like solutions. Instead, the
system takes some time to relax to a string network solution and in doing so releases a large
quantity of energy, which produces extra contamination to the axion spectrum measured at
later times. To solve this issue, we employ the method below that also allows us to construct
axion field configurations with a predetermined string length, or equivalently with predetermined
initial ξ.

(b) Fixed string number: This approach simply consists of evolving a field configuration produced
by method (a) with kmax = mr until the required string length inside the box is obtained, and
then using that configuration as initial condition for the actual simulation, with a different initial
value of the Hubble parameter. Since this involves resetting the Hubble parameter, the strings
produced do not in general have the right core-size, but we have checked that they quickly relax
to their expected thickness long before the scaling regime is reached.

C.2 String Identification and String Length

To identify strings and measure their length, we first identify grid points that are likely to be close
to a string core. We have carried this out in two ways, and have verified that the results obtained
are extremely similar. In our main approach, we flag points such that, as a loop that surrounds
it is travelled, there is at least one change in the axion field ∆a between consecutive lattice points
encountered that satisfy |∆a| /fa > π/2. In particular, the loop is taken to be a square of side length
2 grid points. In order to capture strings with all possible orientations, at each point in the grid we
consider loops in three orthogonal planes, and we flag a point if a loop in any of these satisfies the
condition. We have checked that the results obtained are extremely similar for any reasonable choice
of the threshold value for the change between adjacent grid points.

Having identified points close to the string core, we then combine these into strings. In particular,
we cluster together flagged points that are adjacent in the x-y plane into an individual string point
located at the mean of the flagged points. If such a cluster has a non-zero overlap with a cluster at the
next level up or down in the z direction, these are connected into a string segment. As expected, the
reconstructed strings form loops, and the length of each individual loop (which is required to analyse
the loop distribution) as well as the total string length is recorded.

We have validated our string identification algorithm by comparing to the results obtained following
the procedure adopted in [135]. In this, a lattice plaquette is identified as containing a string if the
minimum axion field range that includes the field values on the four surrounding vertices satisfies
|∆a|/fa > π. It can be seen that this leads to the correct results for the prototype string solution,
and indeed for any string solution for which the 2π field change incurred in traversing an enclosing
path is distributed sufficiently homogeneously around the loop.
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Figure 18: Left: The continuum extrapolation of ξ(t) in the step-size, mra→ 0. The values obtained
with mra = 1.33 appear to have already converged to the continuum limit, typically with better than
percent level accuracy. Right: Results for ξ(t) for different choices of the step-size mra, normalised
to the same quantities calculated with the finest lattice spacing mra = 0.67. The other unphysical
parameters are fixed to aτ/ac = 1/3 and HfLf = 2.

D Analysis of Systematic Errors

To check that our results are free from numerical artifacts, we study how the key observables depend
on the unphysical parameters in our simulations. Of particular importance are: (1) the lattice spacing
a, (2) the time spacing aτ , (3) the number of Hubble patches HL contained in the box, and (4) the
way that the string cores are screened when evaluating the axion spectrum and energy. In this section
we study the first three of these, postponing (4) until Section E. The results that we present here are
all obtained from the fat string scenario, however we have tested that the conclusions we reach are
also valid for the physical case.

D.1 Lattice Spacing

We study the dependence of ξ(t) and of the axion spectrum on the discretisation parameter mra to
find the largest value compatible with the continuum limit mra = 0. As mentioned, mra is constant
and is equal to the number of grid points per string core at all times in fat string simulations (in
contrast, for the physical system the number of points per string core decreases with time, and this
source of systematic errors only becomes relevant towards the end of simulations). If mra � 1, the
number of gridpoints per string core is much smaller than 1 and the evolution of strings is not correctly
captured. Conversely, making the space-step unnecessarily small would restrict the maximum scale
separations that could be analysed.

We have performed sets of simulations averaging over 20 samples, keeping all parameters fixed
except mra, with identical initial conditions.

In Figure 18 we plot the continuum extrapolation for ξ and its dependence on log(mr/H) for the
different values of the space-step, normalised to those from the finest lattice spacing tested (mra =
0.67). For all mra ≤ 1.33, ξ(t) differs from the most precise result by less than 1%. However, for
larger values of mra, it is systematically larger, especially at later times. In the main text, for our
results of ξ(t) and the loop distribution in the fat string scenario, we used the rather conservative
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Figure 19: Axion spectrum at log(mr/Hf ) = 6 for different choices of the step-size mra, normalised
to the same quantities calculated with the finest lattice spacing mra = 0.67. The other unphysical
parameters are fixed to aτ/ac = 1/3 and HfLf = 2.

choice mra = 1.33. In the physical scenario the number of grid points inside a string core decreases
as the simulation progresses. We use parameters such that, at the final time, we match the resolution
in the fat string case mra = 1.33 (which means that at early times there are many more grid points
inside a string core).

In Figure 19 we plot the axion spectrum at the time log(mr/H) = 6, for different space steps,
again normalised to the results with mra = 0.67. This is slightly more sensitive to the value of mra
than ξ(t) is, and we see that discretisation effects increase the production of UV states, reducing the
energy emitted in the form of low momentum axions. In particular, only simulations with mra ≤ 1
seem to have converged to within few percent of the continuum limit, while mra = 1.33 and 1.6 result
in a spectrum that is systematically smaller in the IR. In the main text we have chosen mra = 1 in our
analysis of the spectrum in the fat string system; this value is sufficiently small that we are confident
that the UV dominated spectrum obtained is not an artifact of the finite space-step. Similarly, in the
physical case we use parameters such that mra = 1 when the final time shot used in calculating the
spectrum is taken.

D.2 Time Spacing

We study the dependence of our results on the time-step similarly. Given the form of eq. (130), the
general theory of numerical solutions of PDEs tells us that the relevant quantity to which miaτ should
be compared is the comoving space-step miac [146].44 Consequently, we perform sets of simulations
that differ only in the value of aτ/ac, averaging over 10 samples. In Figure D.2 we plot the results
for ξ(t) and the spectrum. For all values of aτ/ac, ξ(t) is within 0.5% of the continuum limit, but for
aτ/ac ≤ 1/3 the difference is less that 0.1%. The spectrum is also affected at less than percent level
for aτ/ac < 1/3, and we use aτ/ac = 1/3 for our simulations in the main text in both the fat string
and the physical scenarios.

44The Courant condition for the stability of the finite-difference algorithm sets an upper bound on the ratio aτ/ac < 1
for the algorithm to converge, but further analysis is still required to quantify the systematic uncertainty.
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Figure 20: Results for ξ(t) (left) and the axion spectrum at log(mr/Hf ) = 6 (right), for different
choices of the time-step aτ . This is measured relative to the comoving space-step ac, which is fixed
to miac = mra = 0.67, and the final box size is fixed to HfLf = 2. The results are normalized to the
shortest time step tested: aτ/ac = 1/6.

D.3 Finite Volume

Finite volume effects are a particularly delicate issue. These are controlled by the parameter HL,
which counts the number of Hubble lengths per box side length, with the physical limit for a spatially
flat Universe corresponding to (HL)−1 → 0.

Since HL decreases over the course of a simulation, we want to determine the smallest value that
it can take at the final time, HfLf , such that the results obtained match those in the physical limit.
Although we use periodic boundary conditions, if HfLf > 2 every point is causally disconnected from
itself from the beginning to the end of the simulations. Nevertheless, even choosing HfLf > 2, finite
volume effects might still affect some observables such as the loop distribution (see Section 4.3.3).

We performed a set of simulations keeping the values of all the parameters except for HfLf fixed
(all ending at a final scale separation log(mr/Hf ) = 6). In Figure 21 we show the convergence of ξ to
the infinite volume limit for HL > 2 for different values of log(mr/H) and as a function of log(mr/H)
(where we indicate with vertical lines the times at which HL = 2 for each simulation). Finite volume
effects do not affect ξ while HL > 2, and they remain small even slightly later. However, for HL . 1
they result in a dramatic change, since the the whole network is in causal contact and starts to be
destroyed.

We also study how the loop distribution is affected by finite volume effects. In Figure 22 we show
the ratio ξ`/ξ∞, defined in Section 4.3.3, for different values of `, for a set of simulations with HfLf = 2
and log(mr/Hf ) = 6.7. Vertical lines correspond to the times at which HL = 5, 4, 3. As mentioned
in Section 4.3.3, the constant value of ξ`/ξ∞ in time is a strong indication that the system is in the
scaling regime. However, the finite box size limits the maximum loop radius that can be contained.
As a result, finite volume effects lead to ξ`/ξ∞ growing at late times once larger loops are no longer
possible, and the larger ` is the earlier this occurs. For our analysis of ξ and the loop distribution we
have chosen HfLf = 2 for both the fat string and the physical systems. This is rather conservative for
ξ, but slightly sub-optimal for the study of the distribution of relatively long loops with `H/π & 1/2
(although earlier time shots are also plotted in Figure 8, so the effect of the finite volume is clear).

In Figure 23 (left) we plot the axion spectrum at log(mr/Hf ) = 6 for simulations with different
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Figure 21: Left: The extrapolation of ξ(t) to the infinite box size limit, (HL)−1 → 0. The value
(HL)−1 = 1/2 seems to have already converged, with better than percent level accuracy at most
times. Right: ξ(t) calculated in simulations with different box sizes (measured by HfLf ); vertical
lines indicate the times at which HL = 2 in each simulation.

values of HfLf . The peak at the Hubble scale is well reproduced for HfLf ≥ 2, even if its position
is dangerously close to the IR cut-off (indeed, both are of order Hubble). On the other hand, for
HfLf . 1, not only is the Hubble peak not present, but there is also a significant overproduction of
UV modes, related to the shrinking of a significant fraction of the string network, which towards the
end of the simulation is made up of loops with radius smaller than the Hubble distance.

In Figure 23 (right) we plot the axion number density na as a function of log(mr/H) for simulations
with different values of HfLf ; with vertical lines corresponding to times at which HL = 3 for each
simulation. na has been normalised to the values obtained in the simulation with HfLf = 4, which is
the least affected by finite volume effects. The number density seems to be slightly more sensitive to
the finite box size than ξ. While HL > 3 the effect on na is less than one percent, for HL < 3 finite
volume effects result in a systematic underestimation of a few percent. This is reasonable, since na is
strongly dependent on the IR of the axion spectrum, which is the part most sensitive to finite volume
effects. For this reason in the main text we chose HfLf = 3 when studying both the spectrum and
the number density, for the fat string and also the physical system.

We have also studied the dependence on HfLf of the effective string tension µeff . This depends
on the distribution of string length in loops of different shapes and sizes, since e.g. the logarithmic
divergence in the string tension is expected to be cut off at a smaller scale for small loops than long
strings. Consequently, µeff could in principle be sensitive to finite volume effects. However, we do not
observe any change in the string tension for HfLf ≥ 2.

E String Screening, Energies and the Axion Spectrum

E.1 Components of the energy

In this section we discuss in more detail the way that the total energy density of the system ρtot

splits into the contributions defined in eq. (69), and demonstrate that our method of screening the
strings when extracting the energy in free axions and radial modes is consistent and does not introduce
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Figure 22: ξ`/ξ∞ for the set of simulations with HfLf = 2, for different values of `. The shaded bands
represent statistical errors in the average over different simulations. The other parameters are fixed
as mra = 1.33 and aτ/ac = 1/3.

systematic errors. We also study the energy contributions in the absence of strings, and the effect of
the interaction term between axion and radial modes. Finally, we describe the algorithm that we use
to calculate the axion spectrum.

As summarised in Section 4.4.1, the total energy density is written as the sum ρtot = ρs + ρa + ρr.
The energy density in free axions ρa has been calculated as the spatial average ρa = 〈ȧ2〉 far away from
string cores, and in these regions axion and radial modes are to a good approximation decoupled at
sufficiently late times. Similarly, the radial energy density is computed from ρr = 〈12 ṙ

2+ 1
2 |∇r|

2+V (r)〉,
again away from the string cores. We define the parameter ds such that the minimum distance from
the strings’ centre of the regions that are included in the average is dsm

−1
r , so that, at all times, ds is

the screening distance in units of the core size for both the fat string and physical scenarios.
There is actually an alternative approach to calculating the energy density of axions, which does

not require screening. This consists of including the interaction terms in the axion energy density, i.e.
evaluating 〈(1 + r/fa)

2ȧ2〉 over the whole space. On the string centre the factor (1 + r/fa)
2 vanishes,

and the contribution from the core regions is thus suppressed. Calculated in this way, the axion energy
density will include the contribution from the axion-radial interaction energy. When we discuss the
energy contributions to ρtot, we will show that energy densities in axions calculated in both ways, i.e.
with 〈ȧ2〉 screened and with 〈(1 + r/fa)

2ȧ2〉, are in close agreement.
In Figure 24 we plot the ratio of different components of the energy density to ρtot as a function of

mrt/2π for a single simulation of the fat string system carried out on a small grid, with a space-step
mra = 1. The goal here is not to understand how energies behave in the scaling regime (which has not
been reached in the simulation analysed here), but rather to check that our approach to calculating the
energy in axion and radial modes is consistent. All of the energy contributions plotted are calculated
as the spatial average over regions a distance of at least ds = 1 away from string centres, except for
1
2〈(1 + r/fa)

2ȧ2〉, which is averaged over the whole space. The simulation has been run until the box
only contains 1/8 of a Hubble volume, i.e. HfLf = 1/2. As a result the entire system is in causal
contact, and all the strings are destroyed at about mrt/2π ≈ 19, before the end of the simulation.

Many key features concerning the way that the total energy is split up can be understood from
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Figure 23: The spectrum at log(mr/H) = 6 (left) and axion number density (normalised to the
number density calculated in a simulation with the largest box size tested: HfLf = 4) as a function
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bars represent statistical errors in the average over different samples.

Figure 24. First, the kinetic part 1
2〈ȧ

2〉 of the axion energy outside the string cores is systematically

smaller than the gradient part 1
2〈|∇a|

2〉 outside the string cores while strings are present. This is
expected since the former only gets contributions from free axions (in the approximation that the
motions of strings does not have a significant effect on ȧ far from string cores), while the latter
contains energy from both axion waves and a large fraction of the tension of strings. However,
once the string network starts shrinking 1

2〈|∇a|
2〉 decreases, and both 1

2〈ȧ
2〉 and the radial energy

〈12 ṙ
2 + 1

2 |∇r|
2 + V (r)〉 increase. This indicates that as the strings are destroyed the energy stored in

their tension is transferred to free axion and radial modes.
As expected for free classical waves, after the network shrinks the axion energy 〈12 ȧ

2 + 1
2 |∇a|

2〉 is
repeatedly interchanged between its kinetic and gradient parts, which on average are equal. Similarly,
the total energy in radial modes 〈12 ṙ

2 + 1
2 |∇r|

2 +V (r)〉 behaves as expected (for free states with a mass

decreasing adiabatically in time, due to the fat string trick), with 〈12 ṙ
2〉 and the sum 〈12 |∇r|

2 + V (r)〉
giving equal contributions. After the string network disappears, the ratios of axion and radial energy
to the total energy stay approximately constant. This is a sign that axions and radial models (as well
as the total energy) redshift at the same rate, i.e. as massless radiation, or equivalently as massive
radiation with a mass decreasing with time as ∼ 1/R(t).

The two ways of computing the axion energy density: evaluating 〈ȧ2〉 outside strings or 〈(1 +
r/fa)

2ȧ2〉 over the whole space, are compatible within few percent while strings are present. The
small discrepancy arises because the factor (1 + r/fa) is not exactly a step function at the edge of the
string cores. As we will see in the calculation of the spectrum, the difference is stored in UV axion
modes (as expected) and therefore do not affect the calculated axion number density. Once the strings
disappear the two measurements of the energy density give almost identical results since the difference
is due to the non-vanishing interaction energy 1

2(r2/f2
a + 2r/fa)ȧ

2, which goes to zero as the Universe
expands.

The sum 〈12 ȧ
2 + 1

2 |∇a|
2 + 1

2 ṙ
2 + 1

2 |∇r|
2 + V (r)〉 converges to the total energy ρtot only once all

the strings have been destroyed. Prior to this, a significant proportion of the energy is stored in string
cores, and this is largest at small values of the log. The difference corresponds to part of the string
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Figure 24: Different contributions to the total energy density ρtot, each one normalised to ρtot, as
a function of time for fat string system. All contributions are calculated as the spatial average at a
distance ds = 1 from the strings’ center, except for 1

2〈(1+r/fa)
2ȧ2〉, which is calculated over the whole

space. The string network begins to be destroyed by the finite box size at mrt/2π ∼ 19, corresponding
to the purple line going to 1.

energy, with the remainder coming from the difference 〈12 |∇a|
2 − 1

2 ȧ
2〉 away from the string cores.

The small mismatch between 〈12 ȧ
2 + 1

2 |∇a|
2 + 1

2 ṙ
2 + 1

2 |∇r|
2 +V (r)〉 and ρtot in the absence of strings

is due to the non-vanishing axion-radial interaction energy, which however decreases as the Universe
expands.

We also note that the energy densities in axions and radial modes have small oscillations with
frequency O(mr). The amplitude of the oscillations decreases with time due to redshifting, and as
a result for a fixed value of the log they are larger in the physical case compared to the fat string
scenario. Calculating the instantaneous axion emission spectrum involves taking the difference between
the axion spectra (appropriately redshifted) at two times, which are separated by more than m−1

r .
Consequently, the result obtained for momenta around mr is sensitive to the phase of the oscillations
at the two times. This is the origin of the fluctuations of the instantaneous spectrum in Figure 15,
which as expected are more significant in the physical case. To reduce this effect in the physical
case we averaged over simulations starting at slightly different times, with relative differences of order
2π/mr.
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Figure 25: The spectrum calculated with method (1), described in the text, for different screening
distances ds, normalised to the spectrum calculated with method (2).

E.2 The Axion Spectrum

We now describe the details of the calculation of the differential axion spectrum ∂ρa/∂k. In the
absence of strings, the axion energy density ρa = 〈ȧ2〉 is

ρa =
1

L3

∫
d3xp ȧ

2(xp) =
1

L3

∫
d3k

(2π)3
|˜̇a(k)|2 , (131)

where xp = R(t)x are physical coordinates, and ˜̇a(k) is the Fourier transform of ȧ(xp). The axion
spectrum ∂ρa/∂|k| is defined by

∫
d|k| ∂ρa/∂|k| = ρa, and is therefore given by

∂ρa
∂|k|

=
|k|2

(2πL)3

∫
dΩk|˜̇a(k)|2 . (132)

In the following, as in the main text, we use the notation ∂ρa/∂k ≡ ∂ρa/∂|k|.
In performing the integral

∫
dΩk in eq. (132), which converts the three-dimensional spectrum to

the one-dimensional spectrum, the three-dimensional momenta ~k ≡ 2π~n
L with |~n| ≤ N

2 and |~n| ∈]
m− 1

2 ,m+ 1
2

]
, m ∈ N, are grouped into the same one-dimensional momentum bin labeled 2πm

L .

Momenta with N
2 < |~n| <

√
3N2 have not been included since they lie far above the string core scale

and do not matter for either the spectrum or the number density.
In the presence of strings, eqs. (131) and (132) are no longer valid because of the contribution

of the string cores to ȧ(xp) and so to ˜̇a(k). We adopted two methods to mask strings out of the
calculation of ∂ρa/∂k:

1. The first is the Pseudo Power Spectrum Estimator (PPSE) introduced in the analysis of cosmic
microwave background data [147], and first used in the context of cosmic strings in ref. [135].
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Figure 26: Convergence of ξ(t) to the attractor solution starting from random initial conditions with
different values of kmax/mr, between 1/2 and 1/50, for the fat string (left) and physical (right)
scenarios.

This method involves calculating the spectrum ∂ρa/∂k after removing the regions of space that
are less than dsm

−1
r from the strings’ center. Briefly, it is based on eq. (132) with ˜̇a(k) taken to be

the Fourier transform of θ(xp)ȧ(xp), where θ(xp) = 1 for xp a distance of more than dsm
−1
r from

the strings’ center, and θ(xp) = 0 otherwise. ∂ρa/∂k is then appropriately corrected to account
for the bias introduced by the window function θ(xp) (more details may be found in [147]).

2. The second approach takes advantage of the automatic screening of string cores provided by the
factor (1 + r/fa), and consists of using eq (132) with ˜̇a(k) taken to be the Fourier transform of
(1 + r(xp)/fa)ȧ(xp). This is similar to the previous method, except that the string cores do not
have to be identified, and the degree of masking varies smoothly as the core is approached.

We have tested that the computation of the axion spectrum ∂ρa/∂k is independent of the method
used, and in particular we studied the dependence of the first method on the screening distance ds. In
Figure 25 we plot the ratio of spectra at log = 6 computed using the two methods for different values
of the screening parameter ds, including the case ds = 0, where the strings are not screened. We see
that the difference between the spectrum from method 1 with ds = 1 and the one from method 2 is
5% at k = mr/2 and rapidly decreases for smaller momenta. This is expected since, given the form of
the string profile function for the radial mode, method 2 is roughly equivalent to masking distances
up to m−1

r . Meanwhile, increasing ds suppresses the spectrum at momenta of order 2π/(dsm
−1
r ), but

leaves IR momenta unchanged. Again this is not surprising, since masking distances of order dsm
−1
r

only loses information about momenta larger than 2π/(dsm
−1
r ). The spectrum for ds = 0, which is

affected by the presence of strings, is much more UV dominated than the others, but at momenta
lower than mr/2 still does not differ by more than 10%.

In the main text we calculated ρa and ∂ρa/∂k using method 1 with ds = 1. The resulting systematic
uncertainty from the masking algorithm at k ∼ mr/4 is less than 1%, while for k ∼ mr/2 it can be
estimated to be of order 5 ÷ 10%. As explained in Appendix F, we extract the power law of the
spectrum between the IR and the UV peaks, q, by considering momenta smaller than mr/6. As a
result the systematic uncertainty on q introduced by the masking procedure is negligible. The fact
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Figure 27: Convergence to the attractor for ξ(t) (left) and na (right) for fat strings. Denser initial
conditions are represented by thicker lines, and the results in both cases are obtained from the same
sets of initial conditions, with fixed string densities.

that ρa and ∂ρa/∂k are stable under the change of algorithm, and that ρa redshifts as radiation, gives
us further confidence that, even in presence of strings, our results only include free axion modes, as
required.

F Convergence from Different Initial Conditions

In Section 4.3.1 we demonstrated the existence of the attractor solution by considering the convergence
of the string density ξ(t), starting from initial conditions with fixed values of ξ. Here we present further
evidence for the attractor solution. First, rather than fixing initial conditions with a predetermined
initial string density by the method (b) described in Section 4.3.1 and C.1, we use random initial
conditions given by the method (a) varying the maximum coefficients kmax/mr. Second, we show how
other key properties of the string network, in particular the axion spectrum and axion number density,
also converge to the same late time values starting with different string densities.

In Figure 26 we plot ξ(t) starting from random field initial conditions for different choices of
kmax/mr at the initial time Hi = mr. Although the results obtained are slightly less regular than
those starting with fixed numbers of strings, shown in Figure 7, the convergence to the attractor, and
the logarithmic increase, is clear.

To analyse the convergence of other properties of the string network, we present results starting
from fixed string number densities, which lead to the values of ξ(t) plotted in Figure 27 (left). We
have also confirmed that the quantities that we study converge to the same attractor solution starting
from random initial conditions. In Figure 27 (right) we show the results for the axion number density
obtained from the same set of simulations as ξ(t) in the left panel.

Notice that while at log = 3 the values for ξ and na are spread respectively by a factor of 3 and
15, at log = 6 the spread reduces to around 10%.

The convergence of the axion spectrum ∂ρa/∂k to the attractor, shown in Figure 28 (left), is also
revealing. At log(mr/H) = 3, the axion spectrum is highly suppressed in simulations with a lower
initial string density than in the others. However, by log(mr/H) = 6 the spectra are very similar.
This is especially the case for the modes around Hubble, which have nearly the same amplitude for all
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Figure 28: The convergence of the total axion spectrum (left) and the instantaneous emission spec-
trum (right), starting from the same set of initial conditions as Figure 27, in the fat string system.
Simulations with more strings initially are represented by thicker lines, and spectra at the same time
instant are represented by the same colour.

initial conditions. More dramatically, the instantaneous emission shown in Figure 28 (right) converges
extremely fast at late times. This is because, unlike the overall spectrum, it only depends on the
properties of the network at a fixed time instant, which are practically the same for all initial conditions
by the end of the simulations. We see that underdense networks tend to have more instantaneous
emission in the IR at early times, which is expected since at these times the typical distance between
strings is larger in this case.

Taken all together, our results provide convincing evidence that the properties of the string scaling
solution at late enough times are sufficiently insensitive to the initial conditions chosen.

G Extraction of the Scaling Parameters

In this appendix we describe how we extract the slope α in the fit of ξ(t), eq. (78), and the power law
q of the instantaneous spectrum, and estimate the associated uncertainties. We also describe how we
obtain the extrapolations of the number density in Figure 17.

Given the convergence shown in Figure 7, initial conditions that result in a constant value of
dξ/d log(mr/H) ≡ dξ/d log for the longest time correspond to string networks that are the closest
to the scaling regime. Therefore, we estimate α by calculating dξ/d log for initial conditions with
different fixed initial string densities, and then restrict to those such that dξ/d log is approximately
constant at late times.45 The constant common value that dξ/d log reaches in such simulations is a
good estimate of α, and the spread indicates the uncertainty.

In Figure 29 we plot dξ/d log for different initial string densities, for both the fat string and the
physical case. Slopes of different simulations tend to converge asymptotically at to a common constant
value. This is evident in the fat case, for which the constant approached is dξ/d log = 0.22 ± 0.02,
where the error has been estimated from the spread of the results from simulations that have constant

45Since the derivative dξ/d log is more sensitive to local fluctuation we smooth it by convoluting with a Gaussian g(x)
with σ = 1/4, i.e.

∫
dy g(x− y)dξ(y)/d log.
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Figure 29: The derivative dξ/d log(mr/H) for different initial conditions. The black curves are approx-
imately constant for the largest amount of time and therefore the closest to scaling, and their spread
is used to estimate the error on α. Blue dashed lines represent the estimate of α, and are plotted at
times when the system is reasonably close to scaling. Error bands represent statistical errors in the
average over different samples.

dξ/d log for log(mr/H) & 4 (plotted in black). In the physical case, the scaling regime is reached at
larger values of the log and dξ/d log is changing over most of the simulated range. As a result, the
uncertainty on dξ/d log = 0.15 ± 0.05, estimated as the spread of dξ/d log over the simulations for
which dξ/d log is constant for log(mr/H) & 5, is larger.

We now turn to the extraction of the power law of the spectrum q. For this purpose, we consider
simulations starting from the initial conditions that lead to string networks that are the closest to
scaling (corresponding to results for ξ(t) plotted in black in Figure 7).46 As shown in Figure 15,
for log(mr/H) & 5 the instantaneous emission spectrum, parametrized by F (k/H,mr/H), has an
approximate power law behavior 1/kq for momenta that are large enough with respect to the peak at
around the Hubble scale (at k/H ∼ 5÷ 10) and are small compared to the UV cutoff at k = mr/2.

The fact that q is less than 1 can be more clearly seen from Figure 30, in which we plot xF (x, y).
In these plots q < 1 corresponds to the increase between the IR and UV peaks, which is evident both
in the fat string and physical cases. Moreover, most of the area under the curves in Figure 30 is
at UV momenta k ∼ mr/2, which shows that the energy density is dominantly emitted in the form
of very high momentum axions, although the axion number density is dominated by low momentum
states since q > 0. In Figure 31 we plot the total energy spectrum of Figure 14 on a log scale, i.e.
∂ρa/∂ log k. The positive gradients show that the energy density in axions is dominated by UV modes
at all times, for both the fat string and the physical case.

Due to the challenges in the physical case, discussed in Section 4.4.3, we only attempt a detailed
analysis of q in the fat string scenario. To do this, we consider F at late times, log(mr/H) & 5,
and focus on the region with momenta a factor of 3 larger than the Hubble peak and a factor of 3
smaller than the core peak, i.e. 30H . k . mr/6, which is sufficiently uncontaminated by the cutoffs.

46As shown in Appendix F, the results obtained starting from different initial conditions are very similar, well within
the uncertainties on q that we quote.
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Figure 30: Plot of xF (x, y) with x = k/H for the fat string (left) and the physical (right) cases,
for different values of y = mr/H. The growth of xF (x, y) for x between the IR and UV cutoffs
corresponds to a UV dominated spectrum, i.e. q < 1.
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Figure 31: The axion energy density spectrum ∂ρa/∂ log k for the fat string (left) and the physical
(right) cases (the data is the same as in Figure 14 but represented on a log scale).

The power q is then given by −d logF (x, y)/d log(x).47 In Figure 32 we plot d logF (x, y)/d log(x) for
different values of y = mr/H, corresponding to values of log(mr/H) > 5. The sections of the curves
plotted in black indicate momenta in the range 30H < k < mr/6, which are safe from contamination
from the IR and UV peaks.

d logF/d log(x) crosses zero at about k ∼ 5H, signalling the position of the Hubble scale peak, and
it is smaller than −1 at large momenta, meaning that after the UV cutoff the instantaneous spectrum
falls off steeply. Moreover, in the intermediate region of interest −d logF/d log(x) changes slowly as a
function of momentum and across different time shots, ranging from about 0.7 to 0.8. We note that in
this range −d logF/d log(x) (and therefore q) shows a tendency to increase at later times. However,
given the present uncertainties this apparent change is not significant enough to draw any conclusion,
in particular we are not able to assess whether it is due to a residual contamination from the nearby
UV peak or it constitutes a genuine feature of the spectrum (similar analysis with larger grids and

47Because the derivative d logF (x, y)/d log(x) is subject to more fluctuations we smooth it by convoluting with a
Gaussian g(x) with σ = 1/6, i.e. we consider

∫
d log(z) g(log(x)− log(z)) d logF (z, y)/d log(z).
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Figure 32: The value of d logF (x, y)/d log x as a function of the rescaled momentum x = k/H, for
different time shots, i.e. different values of y = mr/H, for the fat string system in the scaling regime.
The black sections corresponds to momenta 30H < k < mr/6, which are sufficiently far from the
IR and UV peaks to be uncontaminated by effects at these scales. The roughly constant values in
these regions correspond to the value of −q in the approximate power law, and the blue dashed lines
represent our estimated range for this.

more statistics could be beneficial to understand this point). In the regime 5 . log(mr/H) . 6, we
therefore estimate q = 0.75±0.05, where the uncertainly mostly comes from d logF/d log(x) not being
constant over the momentum range of interest.

In order to extrapolate the axion number density with different power laws, we used an analytic
form of F (x, y) that closely matches the three approximate power laws visible in Figure 15,

F (x, y) = N

(
x
x1

)q1 [
1 + θ(x− x2)

((
x2
x

)q2−q − 1
)]

(
x
x1

)q1+q
+ 1

∝


xq1 x� x1

1
xq x1 � x� x2

1
xq2 x > x2 ,

(133)

where θ(x) is the step function. In this expression x1 and x2 are the positions of the IR and UV
cutoffs in units of Hubble, q1, q2 are the powers that suppress the spectrum in the IR and in the UV
respectively, and q is the power between the two cutoffs. The normalization N is required so that∫
F (x, y)dx = 1. A reasonable fit for the 5 free parameters is x1 ∼ 3, x2 = y/2 and q = 0.7 ÷ 0.8,

q1 ∼ 3, q2 ∼ 2 in the fat string case, and similarly in the physical case except that q2 ∼ 3. The
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extrapolations in Figure 17 are carried out by keeping all parameters fixed except for q. What matters
most for the final extrapolation is the parameter q, which regulates the hardness of the spectrum,
while the remaining parameters only lead to changes of order 1.

H Comparison with EFT Estimates

As mentioned in Section 4.4, the dynamics of global string loops can be equivalently described by an
effective theory where the fundamental degrees of freedom are the string and the axion radiation [38],
with an interaction governed by the Kalb–Ramond action [148]. This theory is valid in the regime
where the string and the emitted radiation (with frequency ω ∼ 1/R) are not strongly coupled, which
corresponds to log(mrR) � 1, where R is the loop radius (as shown in [38], the effective coupling of
the emitted axion radiation to the string is proportional to 1/ log(mrR)). As a result, for loops with a
large hierarchy between the radius and the core size, the emitted axion radiation should approximate
the one predicted by the Nambu–Goto effective theory. Indeed, using such a theory it was shown [38]
that a circular loop starting at rest with log(mrR0) = 100 follows the cosine time-law for the Nambu–
Goto strings with percent precision, at least for values of the loop radius such that log(mrR) � 1,
where the theory is applicable.

We show now that the evolution of circular loops provided by the solutions of the field equations
matches the one predicted by the effective theory of strings, for the values of log(mrR0) reachable in
our field theoretic simulations. We solve eq. (70) in Minkowski space, i.e. with a time independent
scale factor, H = 0, and initial conditions φ(x) and φ̇(x) that approximately resemble a static circular
loop with initial radius R0.48 In Fig. 33 we plot the time-law for the loop radius R(t) normalized to
the initial radius R0 for log(mrR0) = 4 and 5. We also plot the prediction given by the effective theory
for log(mrR0) = 5 and the free Nambu–Goto time law, RNG(t) = R0 cos(t/R0). The result of the
simulation for log(mrR0) = 5 matches very well the EFT prediction where this is valid. Moreover, as
log(mrR0) increases, the circular loop time law gets closer to the free Nambu–Goto prediction, indeed
indicating that at large log(mrR0) global string dynamics converge to that of free Nambu–Goto strings.

Although the convergence R(t)→ RNG(t) is good when the loop radius is sufficiently larger than
the core size m−1

r , i.e. for log(mrR) � 1, there is a substantial deviation when the string becomes
strongly coupled, log(mrR) . 2, which prevents the loop from bouncing many times. This however
is not in conflict with the EFT prediction, which correctly reproduces the right time law before the
loops collapses even for log(mrR0) as small as 5.

Given the limitations in performing direct field theoretic simulations at much larger values of
log(mrR0) we cannot test whether the EFT expectation that loops will bounce many times (thus
emitting an IR dominated spectrum) is correctly reproduced or whether core effects when the loops
shrink keep inhibiting the rebounce.

48More precisely, φ̇(x) = 0, while φ(x) is chosen to be cylindrically symmetric around the z-axis and in the y = 0
plane is given by the field generated by the superposition of two point like charges with charge ±1 in the position
(±R0/2, 0, 0). The field generated by a point-like charge ±1 in the origin is provided by eq. (71) (with phase e±iθ resp.)
and the superposition of fields is defined by their product.
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Figure 33: Circular loop radius time-law R(t), normalised to the initial radius R0. Green and orange
dashed lines correspond to the solution of the field equations for log(mrR0) = 4, 5. The solid blue
line is the effective field theory prediction for log(mrR0) = 5 and the solid black line is the free
Nambu–Goto solution RNG(t) = R0 cos(t/R0).
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