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Abstract

Can we detect primordial gravitational waves (i.e. tensor perturbations)? If so, what will

they teach us about the early universe? These two questions are central to this two part

thesis.

First, in chapters 2 and 3, we compute the gravitational wave spectrum produced by

inflation. We argue that if inflation is correct, then the scalar spectral index ns should satisfy

ns � 0.98; and if ns satisfies 0.95 � ns � 0.98, then the tensor-to-scalar ratio r should

satisfy r � 0.01. This means that, if inflation is correct, then primordial gravitational

waves are likely to be detectable. We compute in detail the “tensor transfer function”

Tt(k, τ) which relates the tensor power spectrum at two different times τ1 and τ2, and

the “tensor extrapolation function” Et(k, k∗) which relates the primordial tensor power

spectrum at two different wavenumbers k and k∗. By analyzing these two expressions, we

show that inflationary gravitational waves should yield crucial clues about inflation itself,

and about the “primordial dark age” between the end of inflation and the start of big bang

nucleosynthesis (BBN).

Second, in chapters 4 and 5, we compute the gravitational wave spectrum produced by

the cyclic model. We examine a surprising duality relating expanding and contracting cos-

mological models that generate the same spectrum of gauge-invariant Newtonian potential

fluctuations. This means that, if the cyclic model is correct, then it cannot be distinguished

from inflation by observing primordial scalar perturbations alone. Fortunately, gravitational

waves may be used to cleanly discriminate between the inflationary and cyclic scenarios: we

show that BBN constrains the gravitational wave spectrum generated by the cyclic model to
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be so suppressed that it cannot be detected by any known experiment. Thus, the detection

of a primordial gravitational wave signal would rule out the cyclic model.
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Chapter 1

Introduction

The universe today is a (glorious) mess: a complicated and random assortment of planets,

stars, galaxies, clusters of galaxies, voids of empty space, and other structures — all inter-

acting among themselves, and with other poorly-understood physical components that we

label “dark matter” and “dark energy.” By contrast, the early universe was a much sim-

pler place — an extremely homogeneous and isotropic soup of particles, in which physical

quantities such as the temperature and density were nearly identical from one place to the

next, at a given time. This is seen most dramatically in the cosmic microwave background

(CMB) radiation, which is observed by microwave telescopes today to have an almost per-

fectly thermal blackbody spectrum, with almost exactly the same temperature in every

direction on the sky. The CMB provides a snapshot of the universe in its infancy, just a few

hundred thousand years after the Big Bang, so it should be interpreted as a direct window

onto the homogeneous and isotropic conditions at that time.

Although the early universe was nearly homogeneous, it was not perfectly homogeneous.

Instead, physical quantities like the density and temperature differed from one location to

the next by roughly one part in 10,000. The statistical properties of these tiny cosmological

perturbations encode crucial information about the physical conditions immediately after

the Big Bang. In a general sense, this thesis — and much of modern cosmology — is about

how to decode this information, and determine what generated the primordial perturbations
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in the first place.

The perturbations in the early universe come in three basic types: scalar, vector, and

tensor [9]. The scalar perturbations (e.g. perturbations in the energy density and the

three-dimensional Ricci curvature) are easiest to measure, and we already have detailed

information about them — for example, from measurements of the tiny fluctuations in the

CMB radiation from point to point on the sky. Primordial vector perturbations may or

may not play a significant role in cosmic history, but we will not consider them any further

here.

Instead, this thesis will focus mainly on primordial tensor perturbations — specifically,

primordial gravitational waves. Although primordial tensor perturbations have not yet been

observed, their existence is predicted by some of the simplest and most compelling models of

the early universe (as discussed below). For this reason, a variety of experiments (in various

stages of development) are hoping to detect them — either indirectly through their imprint

in the polarization of the CMB [19], or directly using satellite laser interferometry [129, 87].

In this thesis, we will examine the prospects for observing primordial gravitational waves,

and explore the wealth of new information that they can provide about the early universe

if we can detect them.

In chapter 2, we consider inflation — the idea that a burst of accelerated expansion

shortly after the Big Bang drove the early universe toward a state of extreme homogene-

ity, isotropy, and spatial-flatness, and also generated the tiny perturbations in the early

universe by stretching quantum fluctuations to cosmological distances. In order to test

inflation convincingly, we need a clear idea of its predictions. For starters, it is well known

that the simplest inflationary models produce a spatially-flat universe and primordial scalar

perturbations that are adiabatic, gaussian, nearly scale invariant, and correlated over dis-

tances much larger than the instantaneous Hubble length in the early universe. It is also

well known that theorists can dream up (and have dreamed up) more baroque inflationary

models that can violate any and all of these predictions. Ultimately, though, observations

have thus far ruled in favor of the simplest models: every prediction mentioned above has
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received striking experimental confirmation, especially over the past several years (see e.g.

[153] and references therein). It is tempting to see a lesson here: Even though we do not

yet know the correct model of inflation, the fact that theorists can dream up inflationary

models that predict anything and everything does not mean that all of these predictions are

on an equal footing. The predictions of those inflationary models favored by Occam’s razor

— the simplest and most powerfully predictive models, whose successes outnumber their

arbitrary tunings and unnecessarily baroque features — should be taken more seriously.

Unnecessarily baroque features come in many varieties, and one of the goals of chapter 2

is to suggest a simple, general, model-independent, and robust technique for counting such

features. We then use this technique to consider two important issues that have not yet

been settled by observations — namely the values of two CMB observables: the primordial

tensor-to-scalar ratio r, and the primordial scalar spectral index ns. We will argue that

inflation makes predictions for these two quantities, analogous to the predictions discussed

above. That is, while it is possible to find inflationary models corresponding to any point in

the (ns, r) plane, the inflationary models that should be taken most seriously (as discussed

above) lie in a much more restricted region of the (ns, r) plane. This region makes two

predictions. First, ns should satisfy ns � 0.98. (Note that this prediction, first made

in July 2005 [25], is in good agreement with the WMAP 3-year result ns = 0.951+0.015
−0.019

which appeared several months later in March 2006 [153].) Second, if ns lies in the range

0.95 � ns � 0.98, then r should satisfy r � 10−2. This is encouraging, since it means

that the tensor perturbations generated by inflation are likely to be detectable — both by

future CMB polarization experiments such as the proposed CMBPOL satellite mission [19],

and by future space-based laser-interferometer (LI) experiments such as the proposed BBO

satellite mission [129].

Having argued in chapter 2 that inflationary gravitational waves should be detectable,

we turn in chapter 3 to a discussion of what these gravitational waves can teach us about

the early universe if we detect them. Most importantly, we will stress that we can ob-

tain significantly more information about the early universe by combining CMB and LI
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experiments than we can obtain from either type of experiment on its own. Considered

separately, CMB and LI detections of the primordial tensor power spectrum each measure

just one (very important) number: the energy density during inflation (∼ 60 and ∼ 20

e-folds before the end of inflation, respectively). And since these are difficult experiments

that only measure a single number, we would be justified in worrying that any claimed

detection of the inflationary gravitational wave signal was actually either (a) a detection of

a gravitational wave signal of non-inflationary origin, or (b) an unexpected foreground or

noise source masquerading as a gravitational wave signal.

Now consider CMB and LI experiments in combination. If we measure the inflationary

tensor amplitude on CMB scales, then — as we shall explain in chapter 3 — by com-

bining this with information about the scalar spectrum on CMB scales, we can obtain a

rather precise prediction for the gravitational wave amplitude on LI scales. By checking

this prediction, an LI experiment can then: (a) provide much greater certainty that the

signal observed on CMB and LI scales is really the gravitational wave signal from inflation;

(b) check the inflationary consistency relations, which were what allowed us to predict the

gravitational-wave amplitude on LI scales in the first place; and (c) measure “exotic” de-

viations in the tensor transfer function on LI scales, imprinted by the physical conditions

when LI scales re-entered the Hubble horizon shortly after inflation, while the temperature

(T ∼ 104 GeV) was still well above the electroweak phase transition in the early universe.

In chapter 4, we discuss a surprising duality [95, 24] relating different cosmological

models that generate precisely the same spectrum of scalar perturbations, as measured by

the gauge-invariant Newtonian potential Φ. When the parameter ε = 3
2 (1 + w) is time-

independent, the duality is simple to state: the fluctuations Φ generated in an expanding

model characterized by ε precisely match the fluctuations Φ̂ generated in a contracting

model characterized by ε̂ = 1/ε, so that every expanding model is paired with a contracting

model, and vice versa. A tantalizing puzzle is to find a full generalization of this result

that encorporates models with time-varying ε, and yet retains the elegance of the ε → 1/ε

prescription. We present some evidence that this may be possible, and some initial steps
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toward this goal.

This duality is promoted from a theoretical curiosity to an issue of physical significance

by virtue of its relationship to the cyclic model — a surprisingly economical idea for re-

producing the successes of the standard inflationary cosmology, while radically altering the

conceptual framework and sequence of events (see [159, 158, 58]). According to the cyclic

model, each complete cycle of cosmic evolution includes a collision between two orbifold

planes along an extra dimension, corresponding (from a four-dimensional viewpoint) to the

Big Bang which begins the standard cosmological picture. Although the background geom-

etry and the evolution of cosmological perturbations both naively become singular at this

collision, the cyclic model assumes (for reasons explained in [91, 170, 163, 164, 59]) that a

fully quantum-gravitational treatment resolves them in such a way that: (a) the orbifold

planes pass smoothly through each other — or, equivalently, bounce off each other — so

that cosmological evolution continues; and (b) perturbations generated before the bounce

continue smoothly after the bounce in a way that is captured approximately (on long wave-

lengths and from the four-dimensional perspective) by matching Φ across the bounce. If

these two assumptions are correct, then cyclic cosmology would be indistinguishable from

inflationary cosmology on the basis of primordial scalar perturbations alone, as a special

case of the duality discussed above. But note that the two cyclic-model assumptions are

still controversial, and it will be interesting to see how this controversy resolves itself as

theorists obtain better control of the physics near the bounce.

It would be even better to resolve this controversy observationally, and the cleanest

resolution would come from the observation of a primordial gravitational wave signal. In

chapter 5, we compute the complete present-day gravitational wave spectrum predicted

by the cyclic model (from CMB scales down to microscopic scales), as a function of the

parameters characterizing the scalar field potential in the cyclic model. The gravitational

wave energy spectrum is very “blue” (i.e. it is a rapidly rising function of frequency), so

almost all of its energy density is concentrated in its high-frequency tip. As a result, the

strongest observational upper bound on the spectrum comes from the requirement that the
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successful predictions of primordial big-bang nucleosynthesis not be spoiled by the extra

energy density coming from gravitational waves. This upper bound then implies a very

clean (if somewhat disappointing) result: the cyclic model gravitational-wave spectrum is

simply too low — by orders of magnitude — to be detected by any known gravitational

wave experiment, in any frequency band. Thus, the detection of a primordial gravitational

wave signal in any frequency band would rule out the cyclic model.



Chapter 2

Observable predictions from

inflation

2.1 Introduction

This chapter is based in part on the paper [25], a collaboration with Paul Steinhardt and Neil

Turok. I have decided to reprint this paper verbatim in section 2.2 of this chapter (whereas

the rest of the thesis is largely original, or rewritten relative to my original publications).

The reason is that our paper [25] was intended to argue for a set of definite, fixed, and

testable inflationary predictions — in contrast to the amorphous moving target that seems

to be presented by the inflationary literature as a whole. In order for these tests to be

meaningful, it is critical that the assertions in [25] be clearly recognized as pre-dictions rather

than post-dictions. This is an especially important concern in light of the fact that, in the

year between the completion of [25] (in July 2005) and the writing of this chapter (in July

2006), there have been important experimental developments, notably the WMAP three-

year data release [153] in March 2006. Rather than muddying the waters by modifying or

updating our paper [25] in the present chapter, I have decided instead to include it unaltered

in section 2.2. Then, in section 2.3, I discuss the implications of various developments that

have occured since the completion of [25], including the WMAP three-year data release,

7
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and add a few additional comments.

2.2 Inflationary predictions for scalar and tensor fluctuations

reconsidered

Abstract: We reconsider the predictions of inflation for the spectral index
of scalar (energy density) fluctuations (ns) and the tensor/scalar ratio (r) using
a discrete, model-independent measure of the degree of fine-tuning required to
obtain a given combination of (ns, r). We find that, except for cases with
numerous unnecessary degrees of fine-tuning, ns is less than 0.98, measurably
different from exact Harrison-Zel’dovich. Furthermore, if ns � 0.95, in accord
with current measurements, the tensor/scalar ratio satisfies r � 10−2, a range
that should be detectable in proposed cosmic microwave background polarization
experiments and direct gravitational wave searches.

Inflation predicts nearly scale-invariant spectra of primordial scalar (energy density) and

tensor (gravitational wave) perturbations. What has been less clear is the precise prediction

for the scalar spectral index ns and the tensor/scalar ratio r. In particular, is ns likely to be

distinguishable from pure Harrison-Zel’dovich (ns = 1)? And is r likely to be large enough

for the tensor perturbations to be detected (r � 10−2)? One approach for addressing these

questions is anecdotal experience based on explicitly constructing inflaton potentials V (φ)

with different combinations of (ns, r). A more recent approach is to use the inflationary flow

equations to compute ns and r for random choices of the “Hubble” slow-roll parameters

[55, 76, 98, 128], and plot the results as a dot-plot in the (ns, r) plane. One problem

with these methods is that the sampling does not incorporate a weight based on physical

plausibility, so it does not provide a well-motivated measure of the relative likelihood across

the (ns, r)-plane. It is as if all inflaton potentials are created equal. Another problem in

many of these studies is that only some of the minimal requirements for a successful inflaton

potential are considered. It is simply assumed that the rest can be satisfied without reducing

the attractiveness of the model. Yet, this assumption is often invalid in practice.

In this Letter, we attempt to rectify this situation by considering the complete set of

inflationary conditions and introducing a discrete counting scheme for assessing the degrees
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of fine-tuning required to obtain a given combination of ns and r. (An alternative ap-

proach is based on Bayesian model selection [166].) We find (see Fig. 1) that models with

blue or slightly red tilts (ns > 0.98) require significantly more degrees of fine-tuning than

models with ns < 0.98. This concurs with the intuitive impression obtained by trying to

construct potentials by hand. More importantly, the procedure reveals valuable additional

information: (1) a significant gap exists between the inflationary prediction for ns and pure

Harrison-Zel’dovich (ns = 1), a difference that near-future measurements should be able to

resolve; and (2) if ns � 0.95, as current measurements suggest, r exceeds 10−2, so tensor

fluctuations should be observable in proposed cosmic microwave background (CMB) po-

larization and gravitational wave interferometer experiments. (Interestingly, independent

approaches based on physical field-theoretic arguments have reached similar conclusions

[36, 20].)

As we have emphasized, it is important to consider all the conditions necessary for

inflation when assessing the degrees of fine-tuning, namely:

1. as φ evolves over some range ∆φ, the universe undergoes at least N > 60 e folds of

inflation in order to become homogeneous, isotropic, spatially flat, and monopole-free;

2. after the field evolves past this range, inflation must halt and the universe must reheat

without spoiling the large-scale homogeneity and isotropy;

3. the energy density (scalar) perturbations, which we assume are generated by the

quantum fluctuations of the inflaton field, must have amplitude ∼ 10−5 on scales that

left the horizon ≈ 60 e folds1 before the end of inflation, to agree with observations;

4. after inflation, the field must evolve smoothly (i.e., without generating unacceptable

inhomogeneities) to an analytic minimum with V ≈ 0;

5. if the minimum is metastable, then it must be long-lived and V must be bounded

below.
1Although the text states N0 ≈ 60, we compute the precise value of N0 model by model in our analysis.

Also, we assume instantaneous reheating, but it is straightforward to show that assuming a low reheat
temperature (or preheating) does not change our conclusions.



10

The analyticity condition is to avoid physically questionable terms of the form |φ| or φα

where α is non-integer. Many analyses consider only the first three conditions, but we find

that the fourth condition, which is equally essential, imposes a non-linear constraint on V

that can significantly affect the degree of fine-tuning required to obtain a given (ns, r). (We

have stated the conditions above as if the inflaton potential is a function of a single field φ;

the generalization to multiple fields is straightforward.)

To quantify the degree of fine-tuning, we count the number of unnecessary features

introduced during the last 60 e folds of inflation to achieve a given (ns, r). To pose the

conditions in a physically motivated and model-independent way, we use the standard slow-

roll parameters:

ε ≡ (3/2)(1 + w) ≈ (1/2)d ln V/dN (2.1)

η ≡ (1/2)d ln (V ′)2/dN, (2.2)

where N is the number of e folds remaining before inflation ends and a prime indicates

d/dφ for an inflaton field φ canonically normalized in Einstein frame. The parameters ε and

η have a physical interpretation: they represent respectively the fractional rate of change

of the Hubble parameter (∝ V
1
2 ) and the force on the scalar field (∝ V ′) per inflationary

e fold. In all inflationary models, ε and η must increase from small values (� 1/60) when

N ≈ 60 to values of order unity at the end of inflation (N = 0).

For minimally tuned models, the simplest being a monomial potential V = αφn with

integer n and a single adjustable coefficient α, both ε(N) and η(N), as well as all of their

derivatives (e.g., dmη/dNm) are monotonic and have no zeroes during the last 60 e folds.

The range of (ns, r) associated with these models lies in the shaded region marked “0” in

Fig. 1, which has ns < 0.98 and r > 10−2. To move further outside this range requires that

more zeroes of η and its derivatives occur in the last 60 e folds. The zeroes are independent

in the sense that they can be added one at a time by successively adjusting parameters, as

shown in Fig. 1.
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Our key point is this: As exemplified by the minimally tuned models, no zeroes whatso-

ever are required during the last 60 e folds to satisfy the five inflationary conditions. Hence,

each zero added to the last 60 e folds can be properly construed as representing an extra

degree of fine-tuning beyond what is necessary – an extra acceleration, jerk or higher order-

shift in the equation of state (for ε) or the force (for η) artificially introduced at nearly the

exact moment when the modes currently observed in the cosmic microwave background are

exiting the horizon during inflation.

More specifically, the number of zeroes is a conservative (lower bound) measure of how

many derivatives of ε(N) and η(N) must be finely adjusted to achieve a given (ns, r).

This can be seen by constructing the Taylor expansion about N0 ≈ 60 and comparing

the higher-order terms to the lower order ones at, say, N = 10. As the number of zeroes

increases, more higher-order terms contribute non-negligibly before inflation ends, revealing

the delicate toggling of the equation of state and the force V ′ during the last 60 e folds.

Proceeding deeper into the gray region in Fig. 1 (many tunings), the terms in the Taylor

series grow until the series is no longer absolutely convergent.

Therefore, we propose to quantify the fine-tuning by introducing the integers Zε,η which

measure the number of zeroes that ε and η and their derivatives undergo within the last

60 e folds of inflation. Fig. 1 is based on zeroes of η; a similar result occurs for ε. We find

that these metrics are robust methods for dividing models into those that are simple (few

zeroes) and those that are highly tuned (many zeroes). (N.B. The point of our metric is not

to rank a model with Zη = 20 over a model with Zη = 1000; the significance of a difference

in Zη when Zη is large for both models is unclear. Rather, Zη is designed to show that both

models are vastly more finely adjusted than models with Zη = 0 or 1.)

Fig. 1 summarizes our analysis for quartic polynomial potentials V (φ) that satisfy the

five inflationary conditions. The simplest models, the monomial potentials, are represented

by a sequence of discrete white circles. Next, we consider more general polynomials com-

bining terms of different order. The cases in which the coefficients all have the same sign

lie on the boundary of the shaded region marked “0”, along the curve connecting the white
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Figure 2.1: Predictions for tensor/scalar ratio r versus spectral tilt ns for minimal tuning
(Zη = 0) and for different degrees of extra fine-tuning (Zη ≥ 1). The small white circles
correspond to monomial potentials (from right to left: quadratic, cubic, quartic). The thick
curve enclosing all models with zero or one extra degree of fine-tuning has ns < 0.98 and
r > 10−2; hatched portion has Zη = 0 or 1 but is only accessible for polynomials of degree
greater than four (Zorder ≥ 1). Nine or more extra degrees of fine-tuning are required to
obtain ns close to 1 or small r (gray).
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circles. All of these models are minimally tuned (Zη = 0) and have ns < 0.97 and r > 10%.

A special case occurs among models with only one degree of fine-tuning Zη = 1: namely,

models tuned so that the 60 e-fold mark lies very near a maximum of the potential. Simple

examples include the Mexican hat potential, V (φ) = V0 − 1
2m2φ2 + λφ4 and the axion

potential, V (φ) = V0( 1 + cos(φ/f)). If φ at the 60 e-fold mark lies close to the maximum,

then η has a zero since the force must have a maximum in these potentials. Although this

kind of zero is unnecessary for inflation, it can occur naturally if the action is invariant

under certain symmetries, as illustrated by the two examples above. Hence, we include this

region within our thick black curve in Fig. 1. As the parameters of V are further adjusted

so that φ lies very close to the maximum at the 60 e-fold mark, the allowed range in the

(ns, r) plane expands to fill out the shaded region marked “1.”

Everywhere else in the (ns, r) plane is reached by adding sequentially more zeroes of η

and its derivatives within the last 60 e folds. Increasing the zeroes introduces one or more

special features in V (extrema, inflection points, . . .), progressively flattens the potential in

the vicinity of the feature, and finely tunes φ at the 60 e-fold mark to lie closer and closer to

it. Unlike the first (Zη = 1) case of tuning discussed above, there is no symmetry principle

that dictates any of these additional tunings. Yet, as Fig. 1 shows, many such tunings are

necessary to reach low values of r or high values of ns.

Although Fig. 1 is based on quartic (renormalizable) polynomial potentials, a similar

plot can be constructed for polynomials of arbitrary order. For polynomials of any order,

there is always a wide range of parameters for which Zη = 0 or 1, ns � 0.98 and r � 10−2.

With higher-order polynomials, it is possible to insert more bumps and jerks into the final

60 e folds, even though this is not required for inflation. Introducing them for the purpose

of enabling anomalous values of ns and r should be included in assessing the degrees of

fine-tuning. Just as the zeroes are independent and can be added one by one, the space

of polynomial functions can be extended order by order. Hence, we suggest amending

the degrees of tuning to be Zη + Zorder, where Zorder is the difference between the actual

polynomial order and four. One regime that now becomes accessible with Zη = 0 or 1 is
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the hatched region in Fig. 1; ns � 0.98 and/or r � 10−2 (for ns � 0.95) still require many

degrees of fine-tuning.

Models with more than one field can be treated in a similar way provided the path(s)

describing the last 60 e folds of inflation and the passage to the potential minimum can

be described by the classical equations of motion for the fields. We shall call these “de-

terministic.” The above analysis may simply be applied to each path individually. As

before, each path with many zeroes is related to paths with Zη = 0 or 1 by a continuous

fine-tuning of parameters. In some special models (like the hybrid model in [109]), the

path is non-deterministic. Instead, the classical evolution reaches a critical point in the

potential where quantum diffusion is needed to reach the end of inflation, as in the case

V = V0 + 1
2m2

φφ2 − 1
2m2

ψψ2 + 1
2γφ2ψ2 + . . . (which has a critical point at γφ2

c = m2
ψ and

ψ = 0). There is effectively a discontinuous jump in ε and η at the critical point, and there

is not a unique procedure to relate these cases to models with Zη = 0 or 1. As a result,

counting zeroes may not be an appropriate way to judge them. We note that these cases

include examples with ns � 0.98 and r � 10−2; however, compared to the Zη = 0 models

in Fig. 1, one must add at least one extra field, an exponentially large mass hierarchy be-

tween mφ and mψ, and, for some (ns, r), another hierarchy between the three dimensionless

quartic couplings and/or one or more higher-order couplings [14].

Our conclusion that gravitational waves should be detectable runs contrary to some

claims in the literature. A common but flawed argument has been that the amplitude

of the tensor power spectrum is highly uncertain because it is proportional to the fourth

power of the inflationary energy scale M∗, whose value is poorly determined. In actuality,

although gravitational waves will allow us to determine M∗, their detectability only depends

on the tensor/scalar ratio, r, which does not depend on M∗ at all [157]. (r ≈ 16ε, so it only

depends on the equation of state during inflation.)

A second argument by Lyth [112] and others makes the claim that r must be small in any

theory which includes quantum gravity effects. They point out that the slow-roll equations

imply the relation ∆φ = (mP l/8
√

π)
∫

r1/2dN , where mP l = 1.2 × 1019 GeV is the Planck
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mass. From this relation, if r � .05, then ∆φ/mP l should exceed unity over the final 60 e

folds of inflation. Lyth argues that once gravitational effects are included: (a) the effective

potential V can only be reliably calculated over a domain ∆φ < mP l; and (b) inflation is

likely to occur only over a range ∆φ < mP l. These two claims are disputed in [36, 20], and

several inflationary models [97, 47, 53, 88, 89, 7] provide explicit counter-examples. These

models have ∆φ/mP l > 1 and gravitational corrections are under control. They give values

of ns and r consistent with Fig. 1 and with current data.

Our analysis shows that forcing ∆φ/mP l to be less than unity and maintaining a small

number of zeroes requires ns � 0.95, past the left boundary of Fig. 1 and outside the range

favored by current data. To obtain r < 10−3 and a small number of zeroes requires much

smaller ns. The only alternatives for obtaining small r are to introduce many zeroes or

to turn to non-deterministic models. The latter, as we have noted, typically require extra

fields and tunings compared to deterministic models with Zη = 0 or 1.

The primordial spectrum of gravitational waves in Fig. 1 is related to the observable

spectrum today (τ0) by a “transfer function” Tt(k, τ0) [22]:

Ωgw(k, τ0) ≡
1

ρcr

dρgw

d ln k
=

1
12

k2

a2
0H

2
0

Tt(k, τ0)∆2
t (k), (2.3)

where ∆2
t (k) is the primordial tensor power spectrum, ρgw is the gravitational-wave energy

density, ρcr is the critical density, and Ωgw(k, τ0) is the ratio of the gravitational wave energy

density in a log-interval about k to the critical density. We have used an analytic expres-

sion for the transfer function derived in [22] which improves on the accuracy of previous

calculations [169, 168] (but see also [148, 11]). The transfer function includes the redshift-

suppression after horizon re-entry; the imprint of horizon re-entry itself; the possibility

of dark energy with equation-of-state w(z); the damping due to free-streaming relativistic

particles (e.g., neutrinos) in the early universe [179]; and several early-universe effects that

were not considered in previous treatments.

Fig. 2 shows the inflationary predictions for Ωgw as a function of frequency f compared

to present and future observations, assuming current limits, from [140], on non-inflationary

parameters. (For a related figure with the observations shown in more detail, see Fig. 2 in
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[148].) The thick solid curve in Fig. 2 represents the lower bound among all models with

minimal tuning (Zη = 0) or one extra degree of fine-tuning (Zη = 1). The thick dotted

curve is the lower bound predicted for the entire range of models in Fig. 1; for quartic

potentials, at least nine extra degrees of fine-tuning are required to go below it. Also notice

the kinks near f ∼ 10−11 Hz, caused by the onset of neutrino free-streaming, as reflected in

the tensor transfer function. Most importantly, the entire range of models discussed here

should be accessible to future CMB polarization experiments [32, 173, 19] and space-based

gravitational wave detectors, like the Big Bang Observer (BBO) [129, 171].

Hence, we find that, contrary to some suggestions in the literature, all inflationary

models are not created equal. The goals of inflation do not require going beyond models

with minimal or near-minimal tuning (Zη ≤ 1). (For skeptical readers who may demur

from this conclusion, we pose a challenge: construct a deterministic, complete inflationary

model forced by fundamental physics into a parameter region with Zη 
 1.) Furthermore,

the minimal and near-minimal models are the most powerfully predictive in the sense that

they require the fewest tunings and make the highest number of successful predictions.

Based on this analysis, both a red tilt with ns < 0.98 and cosmic gravitational waves with

r � 10−2 are expected and should be detected if inflation is right. A similar analysis should

be applied to cyclic models [159, 158], which must satisfy some conditions analogous to the

inflationary conditions (and some not), to determine if the same range of ns is favored.

We thank L. Page and D. Spergel for discussions that inspired this project, and D. Bau-

mann for many insightful comments. This work was supported in part by US Department

of Energy grant DE-FG02-91ER40671.

2.3 Additional remarks

In this section, we will discuss several relevant issues that were not included in [25], either

because they arose after the completion of [25], or else due to space constraints.

Let us first discuss some of the implications of the three-year WMAP data set, which

was released in March 2006 (in between the completion of our paper [25] in July 2005, and
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the writing of this chapter in July 2006).

When the WMAP three-year data set (alone) is fit by the minimal set of six cosmological

parameters (Ωmh2, Ωbh
2, h, τ , ns, σ8), the marginalized value of the primordial scalar tilt

(ns = 0.951+0.015
−0.019) is less than unity by roughly three sigma [153]. This appears to be the

first significant evidence that the primordial scalar power spectrum is “red” (ns < 1), in

agreement with the predictions of [25]. Indeed, the WMAP data is consistent with (and

even appears to provide marginal evidence for) the stronger prediction ns < 0.98 from [25].

How seriously should we take the ns < 1 result based on the three-year WMAP data set?

First, it has been correctly noted [153] that if we include a seventh fitting parameter (the

tensor-to-scalar ratio r), then the marginalized value of ns increases, seemingly decreasing

the significance of the ns < 1 result. But one should not attach any importance to this

phenomenon for the following reason. The tensor-to-scalar ratio r does not improve the fit

to the three-year WMAP data set — it only contributes an extra degeneracy in parameter

space, indicating that this parameter is simply too unconstrained by the current data to

contribute any real information to the parameter estimations. Instead, including r in the

analysis actually contributes a systematic bias that spuriously increases the marginalized

value of ns. This is easily understood: there is a well known degeneracy in the {ns, r} plane

(in the direction of increasing ns and increasing r), so that when we include r as a seventh

fitting parameter, we drive up the marginalized value of ns — not because of any constraint

on r coming from the data, but rather because we only marginalize over r ≥ 0. But there

have been two other challenges to the significance of the ns < 1 result that are worth

noting. The first challenge [79] argues that a more careful treatment of the power coming

from unresolved microwave point sources in the WMAP data reduces the significance of

the ns < 1 result from ∼ 3 sigma to ∼ 2 sigma. The second challenge [127] argues for

using the Bayesian evidence to determine wheter ns < 1 is favored over ns = 1. Based on

the three-year WMAP data alone, they argue that the Bayesian evidence for ns < 1 in the

6-parameter fit is not sufficient to favor it over a five-parameter fit with ns = 1. But the

Bayesian evidence for ns < 1 does become significant when other complementary data sets
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are also included in the analysis. Taken together, these various analyses seem to suggest

that the significance of the ns < 1 result should be currently regarded as marginal, but

non-negligible — somewhere in the 2 to 3 sigma range.

Let us add a few words about hybrid inflation and brane inflation. In [25] we note that,

since our arguments only apply to inflationary models in which the vacuum expectation

value of the inflaton field rolls classically to the bottom of its potential well, they do not

apply hybrid inflation models in which the inflaton field makes a quantum jump to the

bottom of its potential well after rolling past a critical point on its potential. Until relatively

recently, most hybrid inflation models in the literature (those based on traditional field

theory) predicted a significantly “blue” scalar spectral tilt (ns > 1) — and, as we have

seen, such models are now significantly disfavored by the third-year WMAP data. More

recently, there has been much discussion in the literature of various brane inflation models in

string theory (of both hybrid [80] and non-hybrid [51] type) which appear to predict ns < 1.

In these models, one must stabilize various moduli (notably the overall volume modulus),

and the stabilization mechanisms generate important mass terms (as well as higher self-

coupings) in the inflaton potential. If one neglects these stabilization-induced terms in the

inflaton potential, then these brane inflation models seem to predict ns ≈ 0.97 and negligibly

small r. As a result, brane inflation has been widely advertised by some as an example of

a well-motivated model that agrees with the current data, yet predicts undetectably small

r. But this is wrong — or at least premature. Indeed, recent work [15, 13] treating this

issue more carefully has shown that one gets completely incorrect answers by neglecting the

stabilization-induced corrections to the inflaton potential. Indeed, properly including these

corrections generally yields a potential that is much less flat (and hence produces a much

larger r). A computation of the brane-inflation potential, including all known corrections,

can be done for a tractable subset of these brane inflation models, and we eagerly anticipate

more realistic predictions for ns and r from these models [13].

Based on the arguments in [25], the three-year WMAP data set should be regarded as

providing encouragement for future attempts to detect the inflationary gravitational-wave
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spectrum in the following sense. The measured range for the spectral tilt (ns = 0.951+0.015
−0.019)

agrees surprisingly well with the range predicted by the arguments in [25]. But these same

arguments also imply that, if ns = 0.951+0.015
−0.019, then then r should be � 10−2 (see Figure

2.1), so the primordial tensor spectrum should be detectable by future CMB and laser-

interferometer satellite experiments.

The range r � 10−2, suggested by our analysis, corresponds to a rather high energy

scale M∗ ∼ 1016 GeV for inflation [105]. Here M∗ denotes the fourth root of the energy

density as CMB scales leave the horizon during inflation. But it is worth mentioning that

there are at least two possible clues about how this this energy scale might fit with our

other ideas about physics beyond the standard model. The first point is that the scale of

inflation might be related to the physics of grand unification, since it is well known that

the three standard-model gauge couplings roughly unify at an energy ∼ 1016 GeV [67].

Indeed, in the minimal supersymmetric extension of the standard model, they precisely

unify (to within current experimental/theoretical uncertainties) at 2 × 1016 GeV [48]. A

second (closely related) point is that the energy scale of inflation might be connected to the

physics that generates neutrino mass. The left-handed neutrinos in the standard model are

observed to have masses mν ∼ 0.1 eV. Currently, the leading theoretical explanation for

these tiny masses is the “see-saw mechanism” [118, 185, 66, 68], according to which a heavy

right-handed neutrino N gives the ordinary left-handed neutrino ν a see-saw mass mν ∼
Λ2

EW /Λseesaw, where ΛEW is an electroweak scale, and Λseesaw is the see-saw scale. If we

take a characteristic value ΛEW ∼ 103 GeV for the electroweak scale, then we automatically

obtain Λseesaw ∼ 1016 GeV for the see-saw scale. Alternatively, it may be more correct [29]

to take ΛEW ∼ 174 GeV, corresponding to the vacuum expectation value of the Higgs, in

which case we infer Λseesaw ∼ 3×1014 GeV. At first sight, this scale might seem low (relative

to 1016 GeV); but we should keep in mind that the inflationary energy scale M∗ is generally

distinct from the inflaton mass m: for example in V = 1
2m2φ2 inflation, the energy scale is

M∗ ≈ 1016 GeV, but the inflaton mass is m ≈ 2×1013 GeV. In fact, it is interesting to note

that this value for m agrees rather well with the second (lower) estimate for Λseesaw given
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above, especially considering the relatively large uncertainty in this estimate. Indeed, this

fact was noticed, and used to build a rather economical model of inflaton in [124].

In this chapter we have argued that the gravitational waves from inflation are likely

to have a detectably large amplitude. In the next chapter, we will explore what these

gravitational waves can teach us about the early universe if we successfully measure them.



Chapter 3

What can inflationary gravitational

waves teach us?

This chapter is based on work done in collaboration with Paul Steinhardt, part of which

has already appeared as [22].

3.1 Introduction

Inflation [74, 107, 4] generates tensor perturbations (gravitational waves) with a nearly

scale-invariant primordial power spectrum [70, 155]. This spectrum extends across a broad

range of scales, from laboratory to cosmological wavelengths, and there are two differ-

ent approaches to detecting it. First, we can look for a gravitational-wave imprint in the

cosmic microwave background (CMB) anisotropy — either in the temperature anisotropy

[138, 49, 137, 60, 1, 154] or, more promisingly, in the “B-mode” polarization anisotropy

[133, 84, 85, 143, 186]. This CMB approach is being actively pursued by a diverse com-

munity of experimental groups [19]. Second, we can use space-based laser-interferometer

(LI) experiments to search for inflationary gravitational waves directly [168, 148, 139]. This

direct-detection approach has received increased attention over the past few years, since it

has been realized that space-based laser interferometers operating in the frequency range

22
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0.1 Hz < f < 1 Hz might realistically achieve the sensitivity and foreground subtraction

necessary to reach the inflationary signal [129]. In particular, two satellite LI missions have

been proposed — NASA’s “Big Bang Observer” (BBO) [129] and the Japanese “Deci-hertz

Interferometer Gravitational Wave Observatory” (DECIGO) [146, 87] — and are currently

being investigated [171, 42, 145, 101, 39], although they would not fly for at least another

decade or two.

The goal of this chapter is to elucidate the relationship between these two different

techniques — the CMB approach and the LI approach. Most importantly, we will show

that by combining CMB and LI experiments, we have the realistic opportunity to learn

things about the extremely early universe that are qualitatively different from anything

that can be learned by either approach on its own — or by any other known technique, for

that matter.

Let us start with a brief overview of the ideas fleshed out in this chapter. Inflation

generates a primordial tensor power spectrum ∆2
t (k, τi). Here k is a comoving wavenumber;

and τi refers to some very early time, shortly after the end of inflation, when all wavenum-

bers of interest are still outside the Hubble horizon. (Note that we do not need a more

precise definition of τi, since ∆2
t (k, τ) is almost perfectly time-independent while k is out-

side the horizon.) CMB and LI experiments probe the primordial tensor spectrum in two

widely separated wavebands: CMB experiments probe a narrow band near the comoving

wavenumber kCMB = 0.002Mpc−1, while LI experiments probe a narrow band near the

much higher comoving wavenumber kLI = 2 × 1014 Mpc−1 = 1017kCMB. To clarify the

relationship between these two measurements, it is convenient to introduce the function

Et(k, k∗), which we will call the “tensor extrapolation function.” It is defined through the

equation

∆2
t (k, τi) = Et(k, k∗)∆2

t (k∗, τi) (3.1)

and relates the primordial tensor spectrum evaluated at a general wavenumber k to the

primordial tensor spectrum evaluated at a reference wavenumber k∗.

Of course, neither LI nor CMB experiments directly measure the spectrum at τ = τi.
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Instead, CMB experiments measure ∆2
t (k, τCMB) at the later time τCMB of hydrogen recom-

bination, several hundred thousand years after the big bang; and LI experiments measure

∆2
t (k, τ0) at the present time τ0. To connect the primordial power spectrum ∆2

t (k, τi) to

the spectrum ∆2
t (k, τ) measured at some later time τ , we must propagate forward in time

using the tensor transfer function Tt(k, τ), defined through the equation

∆2
t (k, τ) = Tt(k, τ)∆2

t (k, τi). (3.2)

In other words, the transfer function Tt(k, τ) propagates the spectrum in τ (with k held

fixed), while the extrapolation function Et(k, k∗) propagates the spectrum in k (with τ = τi

held fixed). Combining equations (3.1) and (3.2), we obtain

∆2
t (k, τ) = Tt(k, τ)Et(k, k∗)∆2

t (k∗, τi). (3.3)

Thus, if CMB measurements manage to infer the primordial tensor power spectrum at the

reference wavenumber k∗, then (3.3) tells us how to infer the tensor power spectrum at a

different wavenumber k and a later time τ . In the remainder of this chapter, we unpack this

equation: section 2 derives and examines the extrapolation function Et, section 3 derives

and examines the transfer function Tt, and section 4 explores the science possibilities and

opportunities that arise from combining CMB and LI experiments.

Now let us highlight the key ideas in each section. In section 2, we write the tensor

extrapolation function Et(k, k∗) as an infinite product Et(k, k∗) =
∏∞

m=1 Am where the

individual factors Am rapidly approach unity as m increases, and the product rapidly con-

verges. Then we use the hierarchy of inflationary “consistency relations” to determine the

factors Am, order by order, in terms of CMB observables. Thus, if we measure r with the

CMB, then we can determine the leading-order contribution to A1; and if we also measure

ns with the CMB, then we can also determine the next-to-leading order (NLO) contribu-

tion to A1 and the leading-order contribution to A2; and if we also measure (or sufficiently

tightly constrain) dns/d ln k, then we can also determine the NLO contributions to A2 and

the leading-order contributions to A3; and so forth. This means that, if we can measure two

observables {r, ns} on CMB scales, then we can replace the exact extrapolation function
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Et(k, k∗) by an approximate (second-order) extrapolation function E
(2)
t (k, k∗) that only de-

pends on these two observables. And if we can measure (or sufficiently constrain) three

observables {r, ns, dns/d ln k} on CMB scales, then we can replace the exact extrapolation

function Et(k, k∗) by an approximate (3rd-order) extrapolation function E
(3)
t (k, k∗) that

only depends on these three observables. Having obtained these approximate extrapolation

functions, we must then consider the two types of extrapolation uncertainty that arise. The

first type comes from replacing the exact extrapolation function (Et) by the approximate

extrapolation function (E(2)
t or E

(3)
t ). The second type is induced by the error bars on the

CMB observables {r, ns, dns/d ln k} themselves. We study how both types of extrapolation

uncertainty depend on the measured values of the CMB observables and their corresponding

error bars.

We think that the following point is rather important from a conceptual standpoint.

Note that we have used the tensor extraplation function to “repackage” the hierarchy of

inflationary consistency relations into a form where they relate measurements made at two

different wavenumbers. Previously authors have considered the potential relevance and

testability of the first consistency relation; but have disregarded the higher consistency

relations as impractical and untestable. For example, Cortes and Liddle [40] have given

the most lucid discussion of the hierarchy of inflationary consistency relations, and yet they

discount their discussion as “an academic one, as there is little prospect of testing any of

these relations beyond the first, and even it is likely to prove challenging.” And, indeed,

if one only thinks about experiments that probe a relatively narrow band of wavenumbers,

then the higher consistency relations are irrelevant. But since we are interested in combining

CMB and LI experiments, which are widely separated in wavenumber, we will see that the

higher consistency relations play a non-negligible role.

The key point in section 3 has to do with an important difference between the tensor

transfer function on CMB scales (k ∼ k∗) and LI scales (k ∼ 1017k∗). To see the difference,

let us start by considering a wavenumber k that re-enters the horizon at time τk after

inflation. At some later time τ̂ after horizon re-entry, how does Tt(k, τ̂ ) depend on the
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physical conditions at earlier times τ < τ̂? In other words, what does the transfer function

at time τ̂ remember about the past history of the universe? The answer is that Tt(k, τ̂ ) is

completely insensitive to the physical conditions before horizon re-entry (τi < τ < τk), but

quite sensitive to the physical conditions after horizon re-entry (τk < τ < τ̂) and especially

during horizon re-entry (τ ≈ τk). This means that, since CMB experiments probe long-

wavelength modes that re-enter the horizon well after big-bang nucleosynthesis (BBN), the

corresponding transfer function is insensitive to the physical conditions prior to BBN. As

a result, Tt(k, τ) on CMB scales is well understood: it does not depend on the details of

uncertain high-energy phenomena such as the decay of the inflaton and the “reheating” of

the universe after inflation; it has recently received detailed analytical treatment in [11] and

[181]; and it can be reliably computed by numerical codes such as CMBFAST [142, 187]

and CAMB [104].

By contrast, LI experiments probe short-wavelength modes that re-enter the horizon

much earlier than CMB modes. For example, BBO is designed to probe gravitational waves

that oscillate with frequencies between 0.1 and 1 Hz today. These modes re-enter the horizon

extremely early in cosmic history, when the universe is at a temperature TBBO ∼ 104 TeV

— long before the electroweak phase transition (which is expected to take place around T ∼
300 GeV). Note that TBBO is about four orders of magnitude above the electroweak scale,

which marks the current frontier in high-energy physics, and the threshold above which our

knowledge of both fundamental physics and cosmology becomes highly speculative. This

means that, in contrast to the transfer function on CMB scales, the transfer function on LI

scales at late times should be expected to retain memory of a highly uncertain epoch in the

early universe (when the temperature was in the range 1 TeV � T � 104 TeV).

Thus, in order to properly interpret LI measurements of the inflationary gravitational

wave spectrum, we must analyze the various early-universe phenomena that can imprint

themselves in the tensor transfer function on LI scales. This job is made much easier by the

fact that gravitational waves are extremely linear (i.e. h � 1), and couple to all different

types of matter in a universal way. We identify a number of relevant early-universe phe-
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nomena, and derive a new and improved tensor transfer function designed to incorporate

their effects. Some of these effects can be quite significant and, given our state of ignorance

about physics above T ∼ 1 TeV, it would be dangerous to ignore them! It is worth em-

phasizing two other technical but important points about our new transfer function. First,

since we formulate it in terms of redshift z rather than cosmic time t or conformal time τ ,

it is easy to incorporate non-standard background equation-of-state parameters w(z) (for

example due to dark energy at late times, or various possible violations of w = 1/3 during

the radiation era); and also easy to avoid the spurious suppression or enhancement factors

that have arisen in some previous derivations (for example, from the incorrect treatment of

the transition from matter domination to dark-energy domination). Second, our transfer

function includes an important overall suppression factor of 1/2 that has been neglected in

previous transfer functions. The factor of 1/2 arises because, at fixed time τ0, the transfer

function on LI scales is a rapidly oscillating function of k, proportional to sin2(kτ0). Since

the frequency difference between neighboring peaks in this oscillation (∆f ∼ 10−17Hz) is

much too small to be observed by any known technique [6], we must replace the sin2(kτ0)

factor by its wavenumber-averaged value 1/2.

The key point in section 4 is that, by combining CMB and LI experiments, we can test

an important null hypothesis — namely, the joint hypothesis that:

• (a) the correct extrapolation function is the fiducial one derived in section 2 from the

inflationary consistency relations; and

• (b) the correct transfer function on LI scales is the fiducial one produced by the stan-

dard model of particle physics, with no additional corrections coming from “exotic”

high-energy effects.

If we assume this null hypothesis, then we can use the fiducial extrapolation function and

the fiducial transfer function to convert the CMB observables {r, ns, dns/d ln k} (and their

corresponding uncertainties) into a predicted range for the gravitational-wave amplitude

on LI scales. We show that if the CMB observables and their corresponding experimental



28

uncertainties turn out to lie in a certain range (that is experimentally allowed [153], realistic

[173], and even likely [25]), then a futuristic (but realistic) LI experiment like the “standard”

BBO mission proposal being considered by NASA could perform a high-significance test of

whether or not the gravitational wave amplitude lies within the predicted range on LI

scales. On one hand, if the amplitude is found to lie outside the range predicted by the

null hypothesis, it would indicate either (a) the existence of significant “exotic” high-energy

effects in the tensor transfer function, or (b) the violation of the inflationary consistency

relations. Either interpretation would provide an interesting clue about exotic high-energy

physics, but it might require complementary theoretical or experimental progress to sort

out which interpretation was correct. On the other hand, if the amplitude is indeed found

to lie within the range predicted by the null hypothesis, this would provide strong support

for the inflationary consistency conditions, and arguably clinch the case for inflation.

Previously, two strategies for testing the consistency condition have been discussed in

the literature: one strategy uses the CMB alone [150], while the other uses CMB and LI

experiments together [149]. Unfortunately, as [149] correctly concludes, neither of these two

strategies is feasible — that is, neither can successfully test the consistency relation, even

with the most optimistic assumptions for the future CMBPOL and BBO satellite missions.

In particular, see [149] — especially section 3 and the right-hand panel in Figure 2 of that

paper. (Ignore the dotted curve in that figure, since it corresponds to an unrealistic LI

experiment.)

As we explain in section 4, our strategy of

• (a) using the extrapolation function to repackage the hierarchy of inflationary consis-

tency relations, and

• (b) combining CMB and LI experiments to test the validity of the extrapolation

function, and hence the validity of the inflationary consistency relations,

is completely distinct from the previous two strategies [150, 149], both logically and prac-

tically, even if it shares superficial similarities with them. We will argue that our strategy
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is more feasible than the previous two proposals — not because we make more optimistic

assumptions about future CMB and LI experiments, but rather because we are propos-

ing a new approach. Briefly, the relationship between the three strategies may be roughly

summarized as follows:

• Song & Knox [150] suggest comparing the ratio r on CMB scales to the tensor tilt nt on

CMB scales, in order to test the first consistency relation r = −8nt. Unfortunately,

CMB experiments will only probe the inflationary tensor spectrum over a narrow

waveband, so they will yield a very poor constraint on the local tensor tilt nt on CMB

scales.

• Smith, Peiris and Cooray [149] suggest comparing the ratio r on CMB scales to the

tensor tilt nt on LI scales, in order to test the first consistency relation r = −8nt.

Unfortunately — as with the CMB — LI experiments will only probe the inflationary

tensor spectrum over a narrow waveband, so they will yield a very poor constraint on

the local tensor tilt nt on LI scales (see [145]). Another difficulty is that the equation

r = −8nt is only appropriate when r and nt are measured at the same wavenumber.

• We suggest comparing the ratio r on CMB scales to the band-averaged tensor am-

plitude on LI scales. In other words, instead of attempting to measure nt locally on

either CMB or LI scales, we (roughly speaking) probe the “effective” tensor tilt by

measuring the overall drop in tensor amplitude between two different wavenumbers —

thus taking advantage of the long lever arm provided by the wide separation between

CMB and LI scales. To interpret our test more precisely, we should not think about

it in terms of the usual consistency relation, r = −8nt, since this is only appropriate

for comparing two measurements at the same wavenumber; instead we must recast

the usual consistency relations in the tensor extrapolation function, which provides

the proper formalism for comparing measurements at two different wavenumbers.

Simply put, our approach is more feasible because CMB and LI experiments both measure

the local tensor amplitude much better than the local tensor slope. Furthermore our strategy
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is designed to take advantage of the large separation between CMB and LI scales, while

this large separation works to the disadvantage of the second strategy [149].

3.2 The tensor extrapolation function Et(k, k∗)

In this section we introduce the tensor extrapolation function, and note how it conveniently

repackages the hierarchy of slow-roll consistency equations. We use the tensor extrapolation

function to predict (immediately after the end of inflation, before any wavenumbers of

interest have re-entered the horizon) the primordial tensor amplitude and its uncertainty

on LI scales, as a function of the CMB observables {r, ns, dns/d ln k} and their respective

uncertainties.

In what follows, ∆2
s(k, τi) is the primordial scalar power spectrum, ∆2

t (k, τi) is the

primordial tensor power spectrum, and we define the tensor-to-scalar ratio

r(k) ≡ ∆2
t (k, τi)

∆2
s(k, τi)

(r̃ ≡ 1
8
r). (3.4)

Note that the tensor-to-scalar ratio r agrees with the WMAP conventions, and we have also

defined the “reduced” tensor-to-scalar ratio r̃ for later convenience, since it significantly

simplifies a number of the formulae below. It will also be very convenient to define the

scalar parameters α
(m)
s and the tensor parameters α

(m)
t :

α(m)
s (k) ≡ dm[ln ∆2

s(k, τi)]
d[ln k]m

, (3.5a)

α
(m)
t (k) ≡ dm[ln ∆2

t (k, τi)]
d[ln k]m

, (3.5b)

Note that α
(1)
s is just the ordinary scalar tilt (ns − 1); and α

(1)
t is the ordinary tensor tilt

nt; and α
(2)
s is the running of the scalar tilt; and α

(2)
t is the running of the tensor tilt; and

α
(3)
s is the running-of-the-running of the scalar tilt; and α

(3)
t is the running-of-the-running

of the tensor tilt; and so forth. In terms of these parameters, we can Taylor expand the
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primordial scalar and tensor spectra as follows:

ln[∆2
s(k, τi)] = ln[∆2

s(k∗, τi)] +
∞∑

m=1

α
(m)
s (k∗)
m!

(
ln

k

k∗

)m

, (3.6a)

ln[∆2
t (k, τi)] = ln[∆2

t (k∗, τi)] +
∞∑

m=1

α
(m)
t (k∗)
m!

(
ln

k

k∗

)m

. (3.6b)

Then, by exponentiating (3.6) we obtain

∆2
s(k, τi) = Es(k, k∗)∆2

s(k∗, τi), (3.7a)

∆2
t (k, τi) = Et(k, k∗)∆2

t (k∗, τi), (3.7b)

where we will call

Es(k, k∗) =
∞∏

m=1

exp

[
α

(m)
s (k∗)
m!

Km

]
(3.8a)

the “scalar extrapolation function,” and

Et(k, k∗) =
∞∏

m=1

exp

[
α

(m)
t (k∗)
m!

Km

]
(3.8b)

the “tensor extrapolation function,” and for later convenience we have used the notation

K ≡ ln
k

k∗
. (3.9)

For reference, note that there is a separation K ≈ 36 between the wavenumber k = 2 ×
1014 Mpc−1 (which corresponds to a present-day frequency f ≈ 0.3 Hz in the middle of

the BBO frequency band) and the wavenumber k∗ = 0.05 Mpc−1, (which is a common

reference wavenumber at which parameters are evaluated in combined CMB/large-scale-

structure measurements, e.g. [140, 141]).

Now we want to use the hierarchy of inflationary consistency relations to put the tensor

extrapolation function in a more useful form. For a lucid discussion of the hierarchy of

consistency relations, see the recent paper by Cortes and Liddle [40]. Here we add a simple

but important interpretational point: By making use of the first n consistency relations, we

can always recast the nth consistency relation as an expression for the nth tensor parameter

α
(n)
t in terms of the scalar parameters α

(i)
s as well as the tensor-to-scalar ratio r [or, equiva-

lently, the “reduced” tensor-to-scalar ratio r̃ defined in equation (3.4)]. In particular, if we
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want to infer the nth tensor parameter α
(m)
t at leading order in the slow-roll approximation,

it is enough to know r along with the first n−1 scalar parameters α
(1)
s , . . . , α

(n−1)
s ; and if we

want to infer the NLO contribution to the nth tensor parameter α
(n)
t , it is enough to know

r along with the first n scalar parameters α
(1)
s , . . . , α

(n)
s ; and so forth. Let us present the

most direct and elegant route to deriving the consistency relations in precisely this form.

We start by writing the first consistency equation as

α
(1)
t = −r̃ + r̃

[
α(1)

s +
1
2
r̃
]

(3.10)

(see e.g. [40] for a derivation). The right-hand side of (3.10) is valid up to next-to-leading

order (NLO) in the slow-roll approximation: the leading order term is −r̃ and the NLO

terms are inside the square brackets. Now it is easy to iteratively derive the subsequent

consistency relations in the hierarchy. First note that the exact relations

dr̃

d ln k
= r̃(α(1)

t − α(1)
s ) (3.11a)

dα
(m)
s

d ln k
= α(m+1)

s (3.11b)

dα
(m)
t

d ln k
= α

(m+1)
t (3.11c)

follow immediately from the definitions (3.4) and (3.5) of r, α
(m)
s , and α

(m)
t . Thus, to derive

the nth consistency relation, we can first use the relations (3.11) to take d/d ln k of the

(n−1)th consistency relation, and then use the first consistency relation (3.10) to eliminate

α
(1)
t from the right-hand side of the resulting equation. By following this procedure, we

will obtain a version of the nth consistency relation that is valid up to the same order as

the first consistency relation. [In other words, since the first relation (3.10) was valid up to

NLO, then the nth relation will be as well.] For example, the next few consistency relations
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in the hierarchy are

α
(2)
t = r̃

(
α(1)

s + r̃
)

+ r̃

[
α(2)

s − α(1)
s

2 − 3α(1)
s r̃ − 3

2
r̃2

]
, (3.12a)

α
(3)
t = r̃

(
α(2)

s − α(1)
s

2 − 3α(1)
s r̃ − 2r̃2

)
+ (3.12b)

+r̃

[
α(3)

s −α(2)
s (3α(1)

s +4r̃)+α(1)
s

3+8α(1)
s

2r̃+13α(1)
s r̃2+

11
2

r̃3

]
,

α
(4)
t = r̃

(
α(3)

s − α(2)
s (3α(1)

s + 4r̃) + α(1)
s

3 + 7α(1)
s

2r̃ + 12α(1)
s r̃2 + 6r̃3

)
+ (3.12c)

+r̃

[
α(4)

s − α(3)
s (4α(1)

s + 5r̃) + α(2)
s (6α(1)

s
2 + 28α(1)

s r̃ +
43
2

r̃2)

−3α(2)
s

2 − α(1)
s

4 − 18α(1)
s

3r̃ − 123
2

α(1)
s

2r̃2 − 70α(1)
s r̃3 − 25r̃4

]
,

where, as before, the NLO terms are inside the square brackets. Note that these results

illustrate the structure pointed out above: If we want to compute α
(n)
t at leading order, it

is enough to know r as well as the first n − 1 scalar parameters α
(1)
s , . . . , α

(n−1)
s . And if we

also also know α
(n)
s , then we can also infer the NLO contribution to α

(n)
t .

In particular, this means that the CMB observables {r, ns} are enough to determine the

leading-order and NLO terms in α
(1)
t ; and the leading-order terms in α

(2)
t . Futhermore, if we

can put sufficiently tight constraints on dns/d ln k (where “sufficiently” is clarified below),

then we can also determine the NLO contribution to α
(2)
t , and the leading-order contribution

to α
(3)
t . Based on this observation, let us approximate the primordial tensor power ∆2

t (k, τi)

on LI scales as follows. First, if dns/d ln k is insufficiently tightly constrained, then we will

use the expression

∆2
t (k, τi) ≈ E

(2)
t (k, k∗)∆2

t (k∗, τi), (3.13)

where

E
(2)
t (k, k∗) = exp

[α(1)
t (k∗)
1!

K
]
exp
[α(2)

t (k∗)
2!

K2
]

(3.14)

is the second-order approximation of the extrapolation function, with α
(1)
t given by Eq.

(3.10), and α
(2)
t given by the leading-order terms on the right-hand side of Eq. (3.12a).

On the other hand, if dns/d ln k is sufficiently tightly constrained, then we will use the

expression

∆2
t (k, τi) ≈ E

(3)
t (k, k∗)∆2

t (k∗, τi), (3.15)
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where

E
(3)
t (k, k∗) = exp

[α(1)
t (k∗)
1!

K
]
exp
[α(2)

t (k∗)
2!

K2
]
exp
[α(3)

t (k∗)
3!

K3
]

(3.16)

is the third-order approximation of the extrapolation function, with α
(1)
t given by Eq. (3.10),

α
(2)
t given by Eq. (3.12a), and α

(3)
t given by the leading-order terms on the right-hand side

of Eq. (3.12b). Note that the 2nd-order extrapolation function E
(2)
t only depends on the

CMB observables {r, ns}, while the 3rd-order extrapolation function E
(3)
t only depends on

the CMB observables {r, ns, dns/d ln k}. Thus, we have obtained a prediction for the am-

plitude of the primordial power spectrum at wavenumber k as a function of the observables

{r, ns, dns/d ln k} at reference wavenumber k∗.

We must now analyze the two qualitatively different uncertainties in this prediction.

The first uncertainty comes from replacing the exact extrapolation function Et(k, k∗) —

either with the second-order approximation E
(2)
t (k, k∗) on the right-hand side of (3.13),

or with the third-order approximation E
(3)
t (k, k∗) on the right-hand side of (3.15). The

second uncertainty comes from the fact that we cannot plug in exact values for the CMB

observables on the right-hand side of (3.13) or (3.15), since these CMB observables will have

non-vanishing error bars themselves. Let us consider these two issues in turn.

To get a sense of the first type of uncertainty, it is instructive to look at a few examples.

The four panels in Figure 3.1 correspond to four different inflationary potentials. In each

panel, the solid black curve corresponds to the actual primordial tensor power spectrum

produced by the corresponding potential; the dashed horizontal curve comes from using the

0th-order approximation for the tensor extrapolation function Et ≈ E
(0)
t = 1; the green

curve comes from using the 1st-order approximation Et ≈ E
(1)
t which retains the first factor

in the product (3.8b); the blue curve comes from the 2nd-order approximation Et ≈ E
(2)
t

which retains the first two factors in the product (3.8b); and the red curve comes from

the 3rd-order approximation Et ≈ E
(3)
t which retains the first three factors in the product

(3.8b). The basic point is clear from the figure: the second- and third-order extrapolation

functions, E
(2)
t and E

(3)
t , continue to give good approximations to the actual primordial

tensor spectrum on LI scales (10−1 Hz < f < 100 Hz). Looking at the individual panels in
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Figure 3.1: The four panels correspond to the four inflationary potentials described in the
text. In each panel, the solid black curve shows the primordial tensor power spectrum
produced by that potential. The dashed, green, blue, and red curves show the approxi-
mate primordial tensor power spectra obtained by using the 0th, 1st, 2nd, and 3rd order
approximations, respectively, for the primordial tensor extrapolation function.
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more detail:

• Panel (a) corresponds to the quartic potential well V (φ) = 1
4!λφ4, which produces the

CMB observables (evaluated at the pivot wavenumber k = 0.05 Mpc−1) r ≈ 0.27,

ns − 1 ≈ −0.05, and |dns/d ln k| < 10−3. If we focus on the present-day frequency

f = 3 Hz, in the middle of the BBO band, the zeroth-, first-, second-, and third-order

extrapolation functions overestimate the primordial tensor power spectrum by factors

of 6.70, 1.98, 1.36, and 1.17, respectively.

• Panel (b) corresponds to the quadratic potential well V (φ) = 1
2m2φ2 [108], which

produces the CMB observables r ≈ 0.14, ns − 1 ≈ −0.034, and |dns/d ln k| < 10−3.

At f = 3 Hz, the zeroth-, first-, second-, and third-order extrapolation functions

overestimate the primordial tensor power spectrum by factors of 2.65, 1.42, 1.17, and

1.08, respectively.

• Panel (c) corresponds to the simplest spontaneous symmetry breaking potential V (φ) =

V0[1 − (φ/µ)2]2 = V0 − m2φ2 + λφ4. After matching the observed scalar amplitude,

the potential still has one free parameter, which we choose so that ns − 1 = −0.04,

which then fixes r ≈ 0.046 and |dns/d ln k| < 10−3. At f = 3 Hz, the zeroth-, first-,

second-, and third-order extrapolation functions overestimate the primordial tensor

power spectrum by factors of 1.58, 1.29, 1.14, and 1.07, respectively.

• Panel (d) corresponds to the axion-like cosine potential V = V0[1 + cos(φ/µ)], often

called “natural inflation” [2, 61]. Again, after matching the observed scalar amplitude,

we have an additional free parameter. This time we choose it so that ns − 1 = −0.05,

which fixes the other CMB observables to be r ≈ 0.033 and |dns/d ln k| < 10−3.

At f = 3 Hz, the zeroth-, first-, second-, and third-order extrapolation functions

overestimate the primordial tensor power spectrum by factors of 1.53, 1.32, 1.17, and

1.08, respectively.

Let us make three comments. The first comment is that, as one can see from Figure

3.1, the extremely shallow slope of the primordial tensor power spectrum is ultimately the
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reason that E
(2)
t and E

(3)
t continue to agree well with Et, all the way from CMB to LI

scales scales. (Note that, in the figure, the vertical axis covers only 1.5 orders of magnitude,

while the horizontal axis covers 23 orders of magnitude!) But this flatness is a very generic

property of the inflationary tensor spectrum on scales that leave the horizon deep in the

inflationary regime (since ε � 1 in this regime, and so the corresponding tensor slope is

nt ≈ −2ε � 1). Futhermore, Smith, Kamionkowski, and Cooray have shown [148] that

if the tensor amplitude is anywhere close to being large enough to be detectable, then

both CMB and BBO scales must have left the horizon deep in the inflationary regime

(N ≈ 60 and N ≈ 20 e-folds before the end of inflation, respectively). Thus, if we manage

to detect r on CMB scales, then we can assume that the tensor spectrum has a shallow

slope, all the way from CMB to LI scales, and should be well approximated by E
(2)
t or E

(3)
t

on these scales. The second comment is that, since all of the tensor parameters α
(m)
t are

proportional to r, models with larger r also have larger (although still very small) tensor

tilt nt, tensor running dnt/d ln k, and so on. Thus, we should expect the approximate

extrapolation function at a given order to be less accurate for models with larger r; and

this expectation is roughly born out (at each order: zeroth, first, second, and third) in the

examples that we have tried, including the four examples shown in Figure 3.1. In particular,

since λφ4 produces roughly the largest tensor-to-scalar ratio (r ≈ 0.3) allowed by current

observational constraints, we can use the corresponding extrapolation errors for this model

to conservatively estimate that, for models with r � 0.3, the second-order and third-order

extrapolation functions, E
(2)
t and E

(3)
t , should be accurate on BBO scales to within factors

of ∼ 1.4 and ∼ 1.2, respectively. Furthermore, these extrapolation uncertainties decrease

as we tighten the upper bound on r. For example, if r � 0.15, then E
(2)
t and E

(3)
t should

be accurate on BBO scales to within factors of ∼ 1.2 and ∼ 1.1, respectively. The third

comment is that, although all current lines of evidence (including the observational upper

limits on the magnitudes of r, ns − 1 and dns/d ln k) indicate that the inflaton potential

V (φ) is a slowly varying function of the inflaton field φ, it is nevertheless possible to imagine

inserting a sharp feature, like a kink or step, in the inflaton potential betweeen N ≈ 60
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and N ≈ 20 e-folds before the end of inflation, in such a way that this feature doesn’t

halt inflation, and is invisible to CMB and other large-scale structure experiments. In

such a case, our approximate extrapolation functions, E
(2)
t and E

(3)
t , based on information

gathered on CMB scales, could provide a poor approximation on LI scales. We will ignore

this unnecessarily baroque possibility here. One might say that the absence of such a kink

is another part of the null hypothesis that we are hoping to test.

Before moving on to discuss the second type of extrapolation uncertainty, let us mention

that it is, in fact, possible to replace E
(2)
t and E

(3)
t with improved extrapolation functions

Ê
(2)
t and Ê

(3)
t , respectively, that also just depend on the CMB observables {r, ns} and

{r, ns, dns/d ln k}, respectively. We use the extrapolation functions E
(2)
t and E

(3)
t in this

chapter since the improved extrapolation functions Ê
(2)
t and Ê

(3)
t are still work in progress.

Nevertheless, we mention them here to clarify that the extrapolation errors estimated in the

previous paragraph should not be regarded as final irreducible uncertainties. Note that the

possibility of significantly improving on the extrapolation functions E
(2)
t and E

(3)
t is strongly

hinted at by the fact that every approximate spectrum shown in every panel of Figure 3.1

systematically overestimates the actual spectrum. The basic idea behind the relationship

between the “ordinary” second-order extrapolation function E
(2)
t and the “improved” ex-

trapolation function Ê
(2)
t is that, even if we can only measure the CMB observables {r, ns},

and hence can only determine the first two tensor parameters {α(1)
t , α

(2)
t }, we can neverthe-

less use the hierarchy of inflationary consistency relations to partially determine each of the

higher-order tensor parameters {α(3)
t , α

(4)
t , . . .}. The part of α

(m)
t that we can determine this

way may be called the “reduced” tensor parameter α̃
(m)
t . We obtain the improved extrap-

olation function Ê
(2)
t by replacing the higher tensor parameters {α(3)

t , α
(4)
t , . . .} in the full

extrapolation function (3.8b) by their “reduced” counterparts {α̃(3)
t , α̃

(4)
t , . . .} — instead of

setting these higher tensor parameters to zero, as we do in defining E
(2)
t . The relationship

between the ordinary third-order extrapolation function E
(3)
t and the improved third-order

extrapolation function Ê
(3)
t is similar. For the present chapter, though, it is sufficient to

use the ordinary extrapolation functions E
(2)
t and E

(3)
t , and leave further improvements to
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future work.

To estimate the second type of uncertainty, note that the amplitude of the primordial

tensor power spectrum ∆2
t (k, τi) is proportional to r(k∗)Et(k, k∗), so we can estimate its

fractional uncertainty on LI scales through the equation

δ[∆2
t (k, τi)]

∆2
t (k, τi)

≈ δ[r(k∗)E
(3)
t (k, k∗)]

r(k∗)E
(3)
t (k, k∗)

. (3.17)

To examine this situation, let us first suppose that (by combining future CMB and other

large-scale-structure experiments) we can measure each of the CMB observables {r, ns, dns/d ln k}
with the realistically-achivable one-sigma error bars ±0.005. What would be the induced

uncertainty on LI scales?

• As a first example, suppose that on CMB scales we measure r ≈ 0.27, (ns−1) ≈ −0.05,

and dns/d ln k ≈ 0, corresponding to model (a) in Figure 3.1. Then, on LI scales, the

uncertainty in r induces a very small “error factor” (∼ 1.005); the uncertainty in

ns induces a modest error factor (∼ 1.11); and the uncertainty in dns/d ln k induces

a large error factor (∼ 4). Note that when we refer to an “error factor” of 1.2,

say, we mean that, at one-sigma, our prediction for ∆2
t (k, τi) on BBO scales can

be pushed up or down by a factor of 1.2. Note that error factors (or, equivalently,

logarithmic error bars) are more appropriate than linear error bars here because the

dominant uncertainty on LI scales is induced by the CMB uncertainties appearing in

the exponent of the tensor extrapolation function.

• As a second example, suppose that on CMB scales we measure r ≈ 0.14, (ns −
1) ≈ −0.034, and dns/d ln k ≈ 0, corresponding to model (b) in Figure 3.1. Then,

on LI scales, the uncertainty in r again induces a small error factor (∼ 1.015); the

uncertainty in ns again induces a modest error factor (∼ 1.07); and the uncertainty

in dns/d ln k again induces a large error factor (∼ 2).

• As a third example, suppose that on CMB scales we measure r ≈ 0.046, (ns − 1) ≈
−0.04, and dns/d ln k ≈ 0, corresponding to model (c) in Figure 3.1. Now, on LI scales,

the situation is different: the uncertainty in r induces a modest error factor (∼ 1.07);
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the uncertainty in ns induces a small error factor (∼ 1.035); and the uncertainty in

dns/d ln k now contributes a significantly smaller error factor (∼ 1.27).

• As a final example, suppose that on CMB scales we measure r ≈ 0.033, (ns − 1) ≈
−0.05, and dns/d ln k ≈ 0, corresponding to model (d) in Figure 3.1. Then, on LI

scales, the uncertainty in r induces a modest error factor (∼ 1.10); the uncertainty in

ns induces a small error factor (∼ 1.03); and the uncertainty in dns/d ln k induces a

modest error factor (∼ 1.18).

Again, let us make three comments. The first comment is that the extrapolation error

factor induced by each CMB observable will obviously increase or decrease as the error

bar on that CMB observable increases or decreases. In the above calculations, we have

assumed error bars of ±0.005 on each of the CMB observables {r, ns, dns/d ln k}. These

are realistic goals — but it may be possible to do even better. Indeed, there have even

been a number of parameter-forecast papers in the literature (see [86, 151]) suggesting that

the CMBPOL satellite — especially in combination with other complementary large-scale-

structure measurements — might be able to achieve error bars that are significantly smaller

than the ones we have assumed here, and this would decrease the extrapolation uncertainties

accordingly. The second comment is that the relative sizes of the various extrapolation

uncertainties can depend rather sensitively on the values of the CMB observables themselves.

In particular, for large r, the uncertainty induced by r is insignificant, the uncertainty

induced by ns is modest, and the uncertainty induced by dns/d ln k is large. On the other

hand, for small r (r � 0.05, say), the uncertainty induced by r can be more important

than the uncertainty induced by ns (which can become quite small), and the uncertainty

induced by dns/d ln k is much reduced. The third comment is that the uncertainty induced

by dns/d ln k can be so large (especially for large values of r) that we would have esimated

a smaller uncertainty by simply neglecting dns/d ln k altogether and using the 2nd-order

extrapolation function E
(2)
t instead of the 3rd-order extrapolation function E

(3)
t . This is

simply telling us that we should, indeed, work with E
(2)
t instead of E

(3)
t in these cases,

since the running dns/d ln k is not well enough constrained to provide additional useful
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information in approximating the extrapolation function.

Although the extrapolation uncertainty induced by the error bar on each CMB ob-

servable may be most directly and accurately obtained by simply substituting the CMB

observables (best ± uncertainty) into the approximate extrapolation function E
(3)
t , as we

have done above, it is also useful to derive simple approximate expressions so we can see

at a glance how the fractional uncertainty in the primordial tensor power spectrum on

LI scales depends on the CMB observables and their uncertainties. Starting from Eq.

(3.17), we can approximate the fractional uncertainties {δr, δ1, δ2} induced by the observ-

ables {r, α(1)
s , α

(2)
s }, respectively, as

δr ≈ ∂[r(k∗)E
(3)
t (k, k∗)]

∂[r(k∗)]
δr(k∗)

r(k∗)E
(3)
t (k, k∗)

, (3.18a)

δ1 ≈ ∂[r(k∗)E
(3)
t (k, k∗)]

∂[α(1)
s (k∗)]

δα
(1)
s (k∗)

r(k∗)E
(3)
t (k, k∗)

, (3.18b)

δ2 ≈ ∂[r(k∗)E
(3)
t (k, k∗)]

∂[α(2)
s (k∗)]

δα
(2)
s (k∗)

r(k∗)E
(3)
t (k, k∗)

, (3.18c)

and then use the leading-order terms on the right-hand side of Eqs. (3.10,3.12a, 3.12b) to

rewrite these as

δr = δr
[1
r
−
(1

8

)
K +

(α
(1)
s

16
+

r

64

)
K2 + (3.19a)

+
(α

(2)
s

48
− α

(1)
s

2

48
− α

(1)
s r

64
− r2

512

)
K3
]
,

δ1 = δα(1)
s

[( r

16

)
K2 −

(α
(1)
s r

24
+

r2

128

)
K3
]
, (3.19b)

δ2 = δα(2)
s

[( r

48

)
K3
]
. (3.19c)

One can check that these formulae agree very well with the induced error factors computed

above directly from the 3rd-order extrapolation function E
(3)
t (except, of course, when δ2

grows to order unity). To get numbers out of these formulae, it is useful to recall that

CMB/large-scale-structure scales and LI scales are separated by roughly K ≈ 36.
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3.3 The tensor transfer function Tt(k, τ)

In this section we derive a general expression for the gravitational-wave transfer function —

applicable to those modes that have re-entered the horizon after inflation and, in particular,

to those modes probed by laser-interferometer (LI) gravitational-wave experiments. We pay

special attention to early-universe effects (from the “primordial dark age” between the end

of inflation and the time of big bang nucleosynthesis) that may imprint themselves in the

transfer function on LI scales.

The gravitational wave spectrum generated by inflation carries important information

about the conditions during inflation. But the spectrum also receives corrections, both

large and small, from the subsequent evolution and matter content of the universe after

inflation. In this section, we identify various post-inflationary physical effects which modify

the gravitational-wave background (GWB), and show how they may be encoded in the

gravitational-wave transfer function that relates the primordial tensor power spectrum to

the gravitational-wave spectrum at a later point in cosmic history. It is necessary to properly

understand and disentangle the post-inflationary effects in order to optimally extract the

inflationary information in the GWB. But these modifications are also interesting in their

own right, since they offer a rare window onto the physical properties of the high-energy

universe during the “primordial dark age” between the end of inflation and the electroweak

phase transition.

The same features that make the inflationary GWB difficult to detect — namely its

small amplitude and gravitational-strength coupling to matter — also make it a clean

cosmological probe. First, because of their tiny amplitude, the gravitational waves obey

linear equations of motion, so that their evolution may be predicted analytically with high

precision. (By contrast, density perturbations grow after horizon entry, and perturbations

shorter than ∼ 10 Mpc have already grown non-linear; so it is impossible to study their

evolution analytically, and even numerical analysis is challenging.) Second, because of their

ultra-weak interactions with matter, the gravitational waves have been free streaming since

the end of inflation — in contrast to neutrinos (which began streaming roughly a second
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later) and photons (which began streaming several hundred thousand years later). The

gravitational waves carry unsullied information from the early universe, and subsequent

modifications of the gravitational-wave spectrum are not washed out by thermal effects

(since the gravitons are thermally decoupled).

The gravitational-wave spectrum near a given wavenumber k is primarily sensitive to

two “moments” in cosmic history: (1) the moment when that mode “left the horizon” (i.e.,

became longer than the instantaneous Hubble radius during inflation), and (2) the moment

when the mode “re-entered the horizon” (i.e., became shorter than the instantaneous Hub-

ble radius once again, after the end of inflation). The first moment imprints information

about inflation itself, while the second moment imprints information about post-inflationary

conditions. The CMB is sensitive to long-wavelength modes that re-entered at relatively

low temperatures (well after BBN), corresponding to relatively well-understood physics. By

contrast, laser interferometers are sensitive to shorter wavelengths that entered the horizon

at high temperatures (T ∼ 107 GeV), well above the electroweak phase transition. The

physical conditions at such high energies, which are considerably beyond the reach of par-

ticle accelerators, are a mystery, so that any information about this epoch from the GWB

would be very valuable.

The outline of this section is as follows. In subsection 3.3.1, we review the basics

of inflationary gravitational waves. We take special care to clearly establish our conven-

tions, and to point out where conventions diverge and become confused in the literature.

In subsection 3.3.2 we present our approach to computing the gravitational-wave transfer

function by separating it into three factors: Tt = C1C2C3. Each factor has a distinct phys-

ical meaning, and we will include several effects that were absent in previous calculations

[148, 169, 11, 125, 126].

It is worth noting that various papers in the literature use the phrases “gravitational-

wave transfer function” and “tensor transfer function” to mean various slightly different

things. For example, whereas some authors use these phrases to refer to the factor that

propagates tensor fluctuations hk(τ) forward in time, we use it to refer to the factor that
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propagates the tensor power spectrum ∆2
t (k, τ) forward in time. For three definitions that

are slightly different from (and more CMB specific than) ours, see [181, 11, 169]. Thus,

we should clarify that the tensor transfer function computed in this chapter may be more

specifically described as the “tensor-power-spectrum transfer function,” and is defined in a

simple way by the equations (3.49) and (3.50). From now on, when we refer to the transfer

function, this is the object we shall mean.

In subsection 3.3.3 we derive the first factor, which accounts for the redshift-suppression

of the gravitational-wave amplitude after horizon re-entry. Among other things, this factor

accomodates a dark energy component with a time-varying equation-of-state parameter

w(z). In subsection 3.3.4 we compute the second factor, which captures the behavior of the

background equation-of-state parameter w near the time of horizon re-entry. In subsection

3.3.5 we compute the third factor, which accounts for the damping of tensor modes due

to tensor anisotropic stress from free-streaming relativistic particles in the early universe.

This damping effect was recently pointed out by Weinberg [179], and the damping on CMB

scales due to free-streaming neutrinos has been studied in [179, 134, 11, 46]. In this chapter,

we point out that it is also necessary to consider this damping effect on laser-interferometer

scales, which re-enter the horizon when free-streaming particles were an unknown fraction

Ωfree of the background energy density. We present accurate expressions for the damping

effect as a function of Ωfree. We also observe that Weinberg’s analysis, which originally

focused on a single fermionic particle (the neutrino), extends in a simple way to the more

general case of a mixture of free-streaming bosons and fermions with different temperatures

and decoupling times.

In subsection 3.3.6 we identify six physical effects which can modify the relic GWB

by causing the equation-of-state parameter w to deviate from its standard value (w =

1/3) during the radiation-dominated epoch. Furthermore, although it is often treated as

a stationary random process, the inflationary GWB is actually highly non-stationary (as

emphasized by Grishchuk [71, 72]; also see [3, 132, 6]). Thus, our transfer function keeps

track of the coherent phase information that it contains, and we emphasize a related factor-
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of-2 suppression of the transfer function that has been neglected in previous treatments (see

the discussion in subsection 3.3.2).

3.3.1 Tensor perturbations: fundamentals and conventions

In this subsection, we derive some basic facts about inflationary gravitational waves. These

derivations are not new, but are intended to make our discussion of the transfer func-

tion more pedagogical and self-contained. They also establish our conventions explicitly,

and provide a brief guide to conventions used by other authors. Such a guide is neces-

sary since there are many slightly different conventions floating around in the inflationary

gravitational-wave literature and, as a result, erroneous factors of 2 and π are ubiquitous.

We have been careful to highlight each spot where convention choices crop up, and to state

which convention we have chosen.

Tensor perturbations in a spatially-flat Friedmann-Robertson-Walker (FRW) universe

are described by the line element

ds2 = a2[−dτ2 + (δij + hij)dxidxj], (3.20)

where τ is the conformal time, xi are comoving spatial coordinates, and hij is the gauge-

invariant tensor metric perturbation. Note that, although our definition of hij is perhaps the

most common (see e.g. [179, 123, 114]), some authors define the tensor perturbation with an

extra factor of 2 (see e.g. [9, 99]) so that the spatial metric is written δij +2hij . Throughout

this subsection, if a term contains a repeated index, that index should be summed: from 1

to 3 for latin indices and from 0 to 3 for greek indices. The perturbation hij is symmetric

(hij =hji), traceless (hii =0), and transverse (hij,j =0), and therefore contains 6−1−3=2

independent modes (corresponding to the “+” and “×” gravitational-wave polarizations).

One can think of hij(τ,x) as a quantum field in an unperturbed FRW background metric

ḡµν = diag{−a2, a2, a2, a2}. At quadratic order in hij (which is adequate, since hij is tiny),

tensor perturbations are governed by the action (see e.g. [123, 114])

S =
∫

dτdx
√−ḡ

[−ḡµν

64πG
∂µhij∂νhij +

1
2
Πijhij

]
. (3.21)
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where ḡµν and ḡ are the inverse and determinant of ḡµν , respectively, and G is Newton’s

constant. The tensor part of the anisotropic stress

Πij = T i
j − pδi

j (p = unperturbed pressure) (3.22)

satisfies Πii = 0 and ∂iΠij = 0, and couples to hij like an external source in (3.21). By

varying hij in (3.21), we obtain the equation of motion

h′′
ij + 2

a′(τ)
a(τ)

h′
ij −∇2hij = 16πGa2(τ)Πij(τ,x), (3.23)

where a prime ( ′ ) indicates a conformal time derivative d/dτ . Next, it is convenient to

Fourier transform as follows:

hij(τ,x) =
∑

r

√
16πG

∫
dk

(2π)3/2
εr
ij(k)hr

k(τ)eikx, (3.24a)

Πij(τ,x) =
∑

r

√
16πG

∫
dk

(2π)3/2
εr
ij(k)Πr

k(τ)eikx, (3.24b)

where r =(“+” or “×”) labels the polarization state, and the polarization tensors are sym-

metric [εr
ij(k) = εr

ji(k)], traceless [εr
ii(k) = 0], and transverse [kiε

r
ij(k) = 0]. We also choose

a circular-polarization basis in which εr
ij(k) = (εr

ij(-k))∗, and normalize the polarization

basis as follows: ∑
i,j

εr
ij(k)(εs

ij(k))∗ = 2δrs. (3.25)

Although our normalization convention (3.25) is the most standard one, other conventions

— i.e. different numerical constants on the right-hand side of (3.25) — exist in the literature.

Substituting (3.24) into (3.21) then yields

S =
∑

r

∫
dτdk

a2

2

[
hr
k
′hr

-k
′−k2hr

khr
-k+32πGa2Πr

khr
-k

]
. (3.26)

Now we can canonically quantize by promoting hr
k and its conjugate momentum

πr
k(τ) = a2(τ)hr

-k
′(τ) (3.27)

to operators, ĥr
k and π̂r

k, satisfying the equal-time commutation relations[
ĥr
k(τ), π̂s

k′(τ)
]

= iδrsδ(3)(k− k′), (3.28a)[
ĥr
k(τ), ĥs

k′(τ)
]

= [π̂r
k(τ), π̂s

k′(τ)] = 0. (3.28b)
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Since ĥij(τ,x) is hermitian, its fourier components satisfy ĥr
k = ĥr†

-k , and we write them as

ĥr
k(τ) = hk(τ)âr

k + h∗
k(τ)âr†

-k , (3.29)

where the creation and annihilation operators, âr†
k and âr

k, satisfy standard commutation

relations

[
âr
k, âs†

k′

]
= δrsδ(3)(k − k′), (3.30a)[

âr
k, âs

k′
]

=
[
âr†
k , âs†

k′

]
= 0, (3.30b)

while the (c-number) mode functions hk(τ) and h∗
k(τ) are linearly-independent solutions of

the fourier-transformed equation of motion

h′′
k + 2

a′(τ)
a(τ)

h′
k + k2hk = 16πGa2(τ)Πk(τ). (3.31)

Eq. (3.29) makes use of the fact that, by isotropy, the mode functions hk(τ) will depend on

the time (τ) and the wavenumber (k = |k|), but not on the direction (k̂) or the polarization

(r). Note that consistency between the two sets of commutation relations, (3.28) and (3.30),

requires that the mode functions satisfy the Wronskian normalization condition

hk(τ)h∗
k
′(τ) − h∗

k(τ)h′
k(τ) =

i

a2(τ)
(3.32)

in the past. In particular, the standard initial condition for the mode function in the far

past (when the mode k was still far inside the horizon during inflation):

hk(τ) → exp(−ikτ)
a(τ)

√
2k

(as τ → −∞), (3.33)

satisfies (3.32) — but it is not the unique initial condition which does so. This is a mani-

festation of the well known vacuum ambiguity that is responsible for particle production in

cosmological spacetimes (see [17]).

Now that we have discussed the quantization of tensor perturbations, let us turn to the

three different spectra that are commonly used to describe the stochastic GWB: the tensor

power spectrum ∆2
t (k, τ), the chirp amplitude hc(k, τ), and the energy spectrum Ωgw(k, τ).
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In the early universe, the GWB is usually characterized by the tensor power spectrum

∆2
t (k, τ). With the formalism developed thus far, one can check that

〈0|ĥij(τ,x)ĥij(τ,x)|0〉=
∫ ∞

0
64πG

k3

2π2
|hk(τ)|2 dk

k
, (3.34)

so that the tensor power spectrum is given by

∆2
t (k, τ) ≡ d〈0|ĥ2

ij |0〉
d ln k

= 64πG
k3

2π2
|hk(τ)|2 . (3.35)

Note that our definition (3.35) agrees with the WMAP convention (see [128]) — this will be

clearer when we present the approximate slow-roll form of the spectrum below. Although

the WMAP convention seems to be becoming the standard one, several other definitions

of the tensor power spectrum exist in the literature, and differ from (3.35) by an overall

numerical constant. Also, since (3.35) defines the tensor power spectrum in terms of the

full tensor perturbation hij , the normalization of the power spectrum is independent of the

normalization (3.25) of the polarization basis. By contrast, some authors define the tensor

power spectrum in terms of the polarization components of hij , so that the normalization

of the spectrum is linked to the convention-dependent coefficient on the right-hand side of

(3.25).

The present-day GWB is usually characterized either by its chirp amplitude hc(k, τ), or

by its energy spectrum Ωgw(k, τ). First, the chirp amplitude represents the rms dimension-

less strain (∼ δL/L in a gravitational wave antenna) per logarithmic wavenumber interval

(or logarithmic frequency interval), and is related to the tensor power spectrum as follows:

hc(k, τ) =
√

∆2
t (k, τ)/2 (see [161] for more details). The energy spectrum

Ωgw(k, τ) ≡ 1
ρcrit(τ)

d〈0|ρ̂gw(τ)|0〉
d ln k

(3.36)

represents the gravitational-wave energy density (ρgw) per logarithmic wavenumber interval,

in units of the “critical density”

ρcrit(τ) =
3H2(τ)
8πG

. (3.37)

To compute Ωgw(k, τ), we can again think of the tensor perturbation hij as a field in an

unperturbed FRW background metric ḡµν , and then use its action (3.21) to compute its
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stress-energy tensor

Tαβ = −2
δL

δḡαβ
+ ḡαβL, (3.38)

where L is the Lagrangian function in (3.21) — see, for example, Ch. 21.3 in [119]. In

particular, the gravitational-wave energy density (ignoring the anisotropic stress coupling)

is

ρgw = −T 0
0 =

1
64πG

(h′
ij)

2 + (�∇hij)2

a2
, (3.39)

which has vacuum expectation value

〈0|ρgw|0〉 =
∫ ∞

0

k3

2π2

|h′
k|2 + k2 |hk|2

a2

dk

k
, (3.40)

so that the energy spectrum is given by

Ωgw(k, τ) =
8πG

3H2(τ)
k3

2π2

|h′
k(τ)|2 + k2 |hk(τ)|2

a2(τ)
. (3.41)

We have shown how each of the three spectra (∆2
t , hc, and Ωgw) may be written in terms

of the mode functions hk(τ). Also note that, once the mode k re-enters the horizon after

inflation, the corresponding mode function obeys |h′
k(τ)|2 = k2|hk(τ)|2, as explained in the

next section, so that the three spectra may be related to one another in a simple way:

Ωgw(k, τ) =
1
12

k2∆2
t (k, τ)

a2(τ)H2(τ)
=

1
6

k2h2
c(k, τ)

a2(τ)H2(τ)
. (3.42)

Next, let us “derive” the slow-roll expression for the primordial tensor power spectrum.

As long as k remains inside the Hubble horizon (k 
 aH) during inflation, the mode function

h
(in)
k (τ) is given by (3.33); and once k is outside the horizon (k � aH), the mode function

h
(out)
k is independent of τ . Then, by simply matching |h(in)

k | to |h(out)
k | at the moment of

horizon-exit (k = aH), one finds h
(out)
k = 1/(a∗

√
2k), where an asterisk (∗) denotes that

a quantity is evaluated at horizon-exit (k = a∗H∗). Thus, the primordial tensor power

spectrum is given by

∆2
t (k) ≡ 64πG

k3

2π2

∣∣∣h(out)
k

∣∣∣2 ≈ 8
(

H∗
2πMpl

)2

, (3.43)

where, in this equation (and in the remainder of this section) “≡” denotes a definition,

“≈” indicates that the slow-roll approximation has been used, and Mpl = (8πG)−1/2 is the
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“reduced Planck mass.” Note that the primordial power spectrum is time-independent,

since (by definition) it is evaluated when the mode k is far outside the horizon. Although

our derivation of (3.43) may seem crude, it is well known that (3.43) provides a very good

approximation to the inflationary tensor spectrum. We will not reproduce it here, but a

closely analogous derivation leads to the slow-roll expression for the primordial scalar power

spectrum:

∆2
s(k) ≈ 1

2ε∗

(
H∗

2πMpl

)2

. (3.44)

It is also useful to define the tensor/scalar ratio

r(k) ≡ ∆2
t (k)/∆2

s(k) ≈ 16ε∗, (3.45)

along with the scalar and tensor spectral indices

ns(k) − 1 ≡ d ln ∆2
s

d ln k
≈ −6ε∗ + 2η∗, (3.46a)

nt(k) ≡ d ln ∆2
t

d ln k
≈ −2ε∗. (3.46b)

In the slow-roll formulae above, we have introduced the usual “potential” slow roll param-

eters

ε ≡ 1
2
M2

pl

(
V ′(φ)
V (φ)

)2

, η ≡ M2
pl

V ′′(φ)
V (φ)

, (3.47)

where V (φ) is the inflaton potential. Note that Eqs. (3.45) and (3.46b) together imply the

well known consistency relation for inflation

r = −8nt. (3.48)

3.3.2 Organizing the calculation

Since cosmological tensor perturbations are tiny, they are well described by linear perturba-

tion theory, so that each fourier mode evolves independently. Thus, we see from Eq. (3.35)

that the primordial tensor power spectrum — defined at some conformal time τi shortly

after the end of inflation, when all modes of interest have already left the horizon, but
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have not yet re-entered — is related to the tensor power spectrum at a later time τ by a

multiplicative transfer function

∆2
t (k, τ) = Tt(k, τ)∆2

t (k, τi), (3.49)

where

Tt(k, τ) =
∣∣∣∣ hk(τ)
hk(τi)

∣∣∣∣2 . (3.50)

Note that we will not necessarily want to evaluate Tt(k, τ) at the present time (τ = τ0),

since different experiments probe the gravitational-wave spectrum at different redshifts. For

example, while laser interferometers measure Tt today, CMB experiments measure it near

the redshift of recombination. As long as a mode remains outside the horizon (k�aH), the

corresponding perturbation does not vary with time [hk(τ) = hk(τi)], so that the transfer

function is very well approximated by Tt(k, τ) = 1. (For a general proof, even in the presence

of anisotropic stress, see the appendix in [179].) Thus, the rest of this section will focus on

Tt(k, τ) for modes that have already re-entered the horizon prior to time τ .

It is very convenient to split the transfer function (3.50) into three factors as follows:

Tt(k, τ) =

∣∣∣∣∣ h̄k(τ)
hk(τi)

h̃k(τ)
h̄k(τ)

hk(τ)

h̃k(τ)

∣∣∣∣∣
2

= C1C2C3. (3.51)

Here hk(τ), h̃k(τ) and h̄k(τ) represent three different solutions of the tensor mode equation

(3.31). In particular, hk(τ) is the true (exact) solution of (3.31); h̃k(τ) is an approximate so-

lution obtained by ignoring the tensor anisotropic stress Πk on the right-hand-side of (3.31);

and h̄k(τ) is an even cruder approximation obtained by first ignoring Πk and then using the

“thin-horizon” approximation, described in subsection 3.3.3, to solve (3.31). [Briefly, the

thin-horizon approximation treats horizon re-entry as a “sudden” or instantaneous event.

In this approximation, h̄k(τ) is frozen outside the Hubble horizon, redshifts as 1/a(τ) inside

the Hubble horizon, and has a sharp transition between these two behaviors at the moment

when the mode re-enters the Hubble horizon (k = aH).]

These three factors each represent a different physical effect. The first factor,

C1 =
∣∣∣∣ h̄k(τ)
hk(τi)

∣∣∣∣2 , (3.52)
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represents the redshift-suppression of the gravitational-wave amplitude after the mode k

re-enters the horizon. The second factor,

C2 =

∣∣∣∣∣ h̃k(τ)
h̄k(τ)

∣∣∣∣∣
2

, (3.53)

captures the behavior of the background equation-of-state parameter w(τ) = p(τ)/ρ(τ)

around the time of horizon re-entry. The third factor,

C3 =

∣∣∣∣∣hk(τ)

h̃k(τ)

∣∣∣∣∣
2

, (3.54)

measures the damping of the gravitational-wave spectrum due to tensor anisotropic stress.

Note that C1 by itself is � 1 and provides a rough approximation to the full transfer

function Tt. The other two factors, C2 and C3, are typically of order unity, and are primarily

sensitive to the physical conditions near the time that the mode k re-entered the Hubble

horizon. In subsections 3.3.3, 3.3.4, and 3.3.5, we derive expressions for C1, C2 and C3,

respectively, and flesh out the physical interpretations given above. In subsection 3.3.6,

we discuss various physical effects that cause deviations δw from the usual equation-of-

state parameter (w = 1/3) in the early universe, and explain how these effects modify the

gravitational-wave transfer function.

3.3.3 The redshift-suppression factor, C1

The mode function hk(τ) behaves simply in two regimes: far outside the horizon (k � aH),

and far inside the horizon (k 
 aH). Far outside, hk(τ) is τ -independent (as we have seen).

Far inside, after horizon re-entry, hk(τ) oscillates with a decaying envelope

hk(τ) =
Ak

a(τ)
cos[k(τ − τk) + φk], (3.55)

as we shall see in the next two subsections, where Ak and φk are constants representing

the amplitude and phase shift of the oscillation, and τk is the conformal time at horizon

re-entry (k = aH). These two simple regimes are separated by an intermediate period

(horizon-crossing) when k ∼ aH.
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In the thin-horizon approximation, we neglect this intermediate regime. That is, we as-

sume that h̄k(τ) = hk(τi) when k < aH; and that h̄k(τ) is given by Eq. (3.55) for k > aH;

and that the outside amplitude is connected to the inside envelope via the matching condi-

tion hk(τi) = Ak/a(τk). Ignoring the phase shift φk, which is really an asymptotic quantity,

this matching condition simply imposes continuity of the inside and outside amplitudes at

k = aH. Combining the matching condition with Eq. (3.52), we see that

C1 =
(

1 + z

1 + zk

)2

cos2[k(τ − τk) + φk], (3.56)

where 1 + z = a0/a(τ) is the redshift at which the spectrum is to be probed, and 1 + zk =

a0/ak is the redshift at which the mode re-entered the Hubble horizon (k = aH).

The relic GWB from inflation is often treated as a “quasi-stationary” process (which

means that its statistical properties only vary on cosmological time scales — much longer

than the timescales in a terrestrial experiment). But the cos2[. . .] factor in Eq. (3.56) implies

that the background is actually highly non-stationary — its power spectrum oscillates as

a function of both wavenumber k and time τ . This cos2[. . .] factor represents a genuine

feature, and is not a spurious byproduct of our thin-horizon approximation. Physically (as

observed in [71, 72]) the inflationary GWB consists of gravitational standing waves with

random spatial phases, and coherent temporal phases. All modes �k at fixed wavenumber

k = |�k| re-enter the Hubble horizon simultaneously, and subsequently oscillate in phase

with one another — even until the present day. Classically, the modes are synchronized by

inflation; quantum mechanically, they are squeezed [71, 72]. Thus, at a fixed wavenumber,

Tt(k, τ) is sinusoidal in τ , with oscillation frequency k, and a phase shift φk (computed in the

next subsection). Alternatively, at fixed time, Tt(k, τ) oscillates rapidly in wavenumber. For

the direct detection experiments we are considering, which cannot resolve these oscillations,

the factor cos2[. . .] should be averaged, and replaced by 1/2 in Eq. (3.56).

In the remainder of this subsection, we derive an accurate expression for (1 + zk), the

horizon-crossing redshift. To start, let us write the background energy density ρ as a sum of

several components. The ith component has energy density ρi, pressure pi, equation-of-state
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parameter wi ≡ pi/ρi, and obeys a continuity equation

dρi

ρi

= 3[1 + wi(z)]
dz

1 + z
. (3.57)

Integrating this equation yields

ρi(z)/ρ(0)
i = (1 + z)3exp

[
3
∫ z

0

wi(z̃)
1 + z̃

dz̃

]
, (3.58)

where ρ
(0)
i is the present value. Then the Friedmann equation

H2(z) =
8πG

3

∑
i

ρi(z) (3.59)

may be rewritten as

a2H2

a2
0H

2
0

=
∑

i

Ω(0)
i (1 + z)exp

[
3
∫ z

0

wi(z̃)
1 + z̃

dz̃

]
, (3.60)

where H0 is the present Hubble rate, and the density parameter Ω(0)
i ≡ ρ

(0)
i /ρ

(0)
cr represents

the ith component’s present energy density in units of the present critical density ρ
(0)
cr =

3H2
0/8πG. Hence zk is obtained by solving the equation

(k/k0)
2 = F (zk) (3.61)

where

F (zk) =
∑

i

Ω(0)
i (1 + zk)exp

[
3
∫ zk

0

wi(z)
1 + z

dz

]
, (3.62)

and k0 = a0H0 = h × 3.24 × 10−18 Hz is today’s horizon wavenumber.

Before solving this equation properly, let us pause to extract a few familiar approximate

scalings from our formalism. Since the primordial inflationary power spectrum ∆2
t (k, τi) is

roughly scale invariant [∝ (k/k0)
0], the current power spectrum ∆2

t (k, τ0) is roughly ∝ C1,

and hence ∝ (1 + zk)
−2. From Eq. (3.42) we have hc(k, τ0) ∝ (1 + zk)

−1 and Ωgw(k, τ0) ∝
(k/k0)2(1 + zk)

−2. For modes that re-enter the horizon during radiation domination, when

the wr = 1/3 term dominates the sum (3.62), we solve (3.61) to find (1 + zk) ∝ (k/k0),

which implies the approximate scalings hc(k, τ0) ∝ (k/k0)−1 and Ωgw(k, τ0) ∝ (k/k0)0. For

modes that re-enter during matter domination, when the wm = 0 term dominates the sum
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(3.62), we find (1 + zk) ∝ (k/k0)2, which implies that hc(k, τ0) and Ωgw(k, τ0) are both

∝ (k/k0)
−2 in this regime.

For a more proper analysis, consider a universe with 4 components: matter (wm = 0),

curvature (wK = −1/3), dark energy (wde(z)), and radiation (wr(z) = 1/3 + δwr(z)). Note

that, although one often assumes wr = 1/3 during radiation domination, we have allowed

for corrections δwr(z) due to early-universe effects discussed in subsection 3.3.6. Then we

can write

F (z) = F̂ (z) + δF (z), (3.63)

where

F̂ (z) = Ω(0)
r (1 + z)2 + Ω(0)

m (1 + z) + Ω(0)
K , (3.64)

and

δF (z) = Ω(0)
de (1+z)exp

[
3
∫ z

0
dz̃

wde(z̃)
1+z̃

]
+ Ω(0)

r (1+z)2
{
exp
[
3
∫ z

0
dz̃

δwr(z̃)
1+z̃

]
−1
}

. (3.65)

Here F̂ represents a universe with spatial curvature, matter, and “standard” (wr = 1/3)

radiation; and δF contains the modifications due to dark energy (wde) and equation-of-state

corrections (δwr).

If we neglect these modifications [by setting Ω(0)
de = 0 = δwr(z) so that δF = 0], Eq.

(3.61) has the exact solution

1 + ẑk ≡ 1 + zeq

2

−1 +

√√√√1 +
4[(k/k0)2 − Ω(0)

K ]

(1 + zeq)Ω
(0)
m

 , (3.66)

where 1+ zeq ≡ Ω(0)
m /Ω(0)

r is the redshift of matter-radiation equality. Then, including both

modifications, the solution becomes

(1 + zk) = (1 + ẑk) + δzk (3.67)

where ẑk is defined by Eq. (3.66) and

δzk =
F ′(ẑk)
F ′′(ẑk)

[
−1 +

√
1 − 2

F ′′(ẑk)δF (ẑk)
[F ′(ẑk)]2

]
, (3.68)
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This solution is obtained by Taylor expanding F (zk) around ẑk (to 2nd order in δzk =

zk − ẑk), and then solving the equation F (zk) = F̂ (ẑk) for δzk. It is extremely accurate for

a wide range of Ω(0)
de , wde(z), and δwr(z). Indeed, the simpler 1st-order expression

δzk = −δF (ẑk)
F ′(ẑk)

(3.69)

is often sufficiently accurate.

3.3.4 The horizon-crossing factor, C2

In the previous subsection, we treated horizon re-entry as a sudden event that occurs when

k = aH. In reality, the “outside” behavior (hk = constant) only holds when k � aH, and

the “inside” behavior (hk ∝ a−1cos[kτ + phase]) only holds when k 
 aH. In between,

when k ∼ aH, neither behavior holds — i.e., the horizon has a non-zero “thickness.”

The behavior of the background equation-of-state w(τ) = p(τ)/ρ(τ) during the period of

horizon re-entry is imprinted in the factor C2. For example, let us compute C2 for a mode k

that re-enters the Hubble horizon when w(τ) is varying slowly relative to the instantaneous

Hubble rate. Then we can write

a = a0(τ/τ0)
α with α =

2
1 + 3w

, (3.70)

so that the equation of motion for h̃k

h̃′′
k + 2(a′/a)h̃′

k + k2h̃k = 0 (3.71)

has the solution

h̃k(τ) = hk(τi)Γ(α + 1/2)[kτ/2]1/2−αJα−1/2(kτ), (3.72)

where we have used kτi�1 and h̃′
k(τi)=0. (Early in the radiation era, the relevant modes

were far outside the horizon, and the corresponding mode functions were τ -independent.)

We have neglected the spatial curvature, K, because the two conditions K � a2
0H

2
0 (cur-

rent observations indicate that the spatial curvature is small) and k > a0H0 (we are only

interested in modes that are already inside the horizon) imply that K produces a negligible

correction to the equation of motion for hk.
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Once the modes are well inside the horizon (kτ 
 1), we can use the asymptotic Bessel

formula

Jα−1/2(kτ) →
√

2
πkτ

cos(kτ − απ/2) (3.73)

to find
h̃2

k(τ)
h2

k(τi)
=

Γ2(α + 1/2)
π

[kτ/2]−2αcos2(kτ − απ/2). (3.74)

On the other hand, since a mode k re-enters the horizon (k = aH = a′/a) at time τk = α/k,

we can rewrite Eq. (3.56) for C1 as

C1 = [τ/τk]2αcos2[k(τ − τk) + φk], (3.75a)

= [kτ/α]−2αcos2(kτ − α + φk). (3.75b)

Comparing Eqs. (3.52), (3.53), (3.74) and (3.75b), we see that the phase shift φk in Eq.

(3.56) is given by

φk = [1 − π/2]α, (3.76)

and that C2 is given by

C2(k) =
Γ2(α + 1/2)

π
[2/α]2α, (3.77)

where α should be evaluated at horizon re-entry (k = aH). In particular, note that

w = 0 ⇒ C2(k) = 9
16 and φk = 2 − π,

w = 1
3 ⇒ C2(k) = 1 and φk = 1 − π/2.

(3.78)

3.3.5 The anisotropic-stress damping factor, C3

In this subsection, we will include the effects of the anisotropic stress term Πk on the right-

hand side of the tensor mode equation (3.31). A non-negligible tensor anisotropic stress Πk

is most naturally generated by relativistic particles free-streaming along geodesics that are

perturbed by the presence of tensor metric perturbations hk. In this situation, Weinberg

[179] has recently shown that the tensor mode equation (3.31) may be rewritten as a fairly

simple integro-differential equation for hk — see Eq. (18) in [179].

Let us focus on a particularly interesting case: a radiation-dominated universe in which

the free-streaming particles constitute a nearly-constant fraction Ωfree of the background
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(critical) energy density. (Physically, if the free-streaming particles are stable, or long-lived

relative to the instantaneous Hubble time at re-entry, then Ωfree will indeed be nearly-

constant, as required.) In this case, following an approach that is essentially identical to

the one outlined in [46], we write the solution in the form

hk(τ) = hk(τi)
∞∑

n=0

anjn(kτ), (3.79)

where jn(kτ) are spherical Bessel functions, and find the first five non-vanishing coefficients

to be given by

a0 = 1, (3.80a)

a2 =
10f

(15 + 4f)
, (3.80b)

a4 =
18f(3f + 5)

(15 + 4f)(50 + 4f)
, (3.80c)

a6 =
130
7 f(14f2 + 92f + 35)

(15 + 4f)(50 + 4f)(105 + 4f)
, (3.80d)

a8 =
85
343f(4802f3+78266f2+161525f−29400)
(15 + 4f)(50 + 4f)(105 + 4f)(180 + 4f)

. (3.80e)

a0 = 1, (3.81a)

a2 =
10Ωfree

(15 + 4Ωfree)
, (3.81b)

a4 =
18Ωfree(3Ωfree + 5)

(15 + 4Ωfree)(50 + 4Ωfree)
, (3.81c)

a6 =
130
7 Ωfree(14Ω2

free + 92Ωfree + 35)
(15 + 4Ωfree)(50 + 4Ωfree)(105 + 4Ωfree)

, (3.81d)

a8 =
85
343Ωfree(4802Ω3

free+78266Ω2
free+161525Ωfree−29400)

(15 + 4Ωfree)(50 + 4Ωfree)(105 + 4Ωfree)(180 + 4Ωfree)
. (3.81e)

The odd coefficients all vanish: a2n+1 = 0. Keeping these first five non-vanishing terms

yields a solution for hk(τ) that is accurate to within 0.1% for all values 0<Ωfree <1. Next,

as observed in [46], we can use the asymptotic expression

j2n(kτ) → (−1)n
sin(kτ)

kτ
as kτ → ∞, (3.82)

along with the Ωfree = 0 solution h̃k(τ) = hk(τi)j0(kτ) to infer that the tensor anisotropic

stress Πk induces no additional phase shift in hk, so that our earlier expression (3.76) for
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φk is unchanged. (See [11] for a complementary explanation of this null result, based on

causality.) In this way, one also sees that Πk damps the tensor power spectrum by the

asymptotic factor

C3 = |A|2, (3.83)

where

A =
∞∑

n=0

(−1)na2n. (3.84)

For example, keeping the first 4 terms in this sum, we find an approximate expression for

A:
−10

7 (98Ω3
free − 589Ω2

free + 9380Ωfree − 55125)
(15 + 4Ωfree)(50 + 4Ωfree)(105 + 4Ωfree)

, (3.85)

which is accurate to within 1% for all values 0< Ωfree < 1. If we keep the first 5 terms in

the sum, we find an even better approximation for A:

15(14406Ω4
free−55770Ω3

free+3152975Ω2
free−48118000Ωfree+324135000)

343(15 + 4Ωfree)(50 + 4Ωfree)(105 + 4Ωfree)(180 + 4Ωfree)
(3.86)

which is accurate to within 0.1% for all values 0<Ωfree <1. These calculations improve on

the accuracy of previous calculations [11, 134].

The exact dependence of C3 on Ωfree is shown in Fig. 3.2. Note that, as Ωfree varies

between 0 and 1, the damping factor C3 varies between 1.0 and 0.35. In particular, if

we substitute Ωfree = 0.4052, corresponding to 3 standard neutrino species,the damping

factor 0.80313 agrees with the results of numerical integrations [179, 134]. When the modes

probed by the CMB re-enter the horizon, the temperature is relatively low (corresponding

to atomic-physics energies), so we are fairly confident that neutrinos are the only free-

streaming relativistic particles. But when the modes probed by laser interferometers re-

enter the horizon, the temperature is much higher (above the electroweak phase transition,

T ∼ 107 GeV), so that the physics (and, in particular, the instantaneous free-streaming

fraction Ωfree) is much more uncertain. Thus, laser interferometers offer the possibility of

learning about the free-streaming fraction Ωfree in the very early universe at temperatures

between the inflationary and electroweak symmetry breaking scales.
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Figure 3.2: C3 is the transfer function factor that accounts for the damping of the tensor
power spectrum due to tensor anisotropic stress. The factor depends on the fraction Ωfree

of the background (critical) energy density contained in free-streaming relativistic particles.
The figure plots this dependence for 0 < Ωfree < 1.

Finally, although Weinberg and subsequent authors have concentrated on the tensor

anisotropic stress due to a single fermionic species (the neutrino), it is straightforward to

generalize the analysis to include a combination of species which (i) may each decouple

at a different time and temperature, and (ii) may be an arbitrary mixture of bosons and

fermions. We find that, as long as all of these free-streaming species decouple well before

the modes of interest re-enter the horizon, then all of the results presented in this section

are completely unchanged. In other words, in order to determine the behavior of the tensor

mode function, one only needs to know one number — the total fraction Ωfree of the

critical density contained in free-streaming particles — even if the particles are a mixture

of fermionic and bosonic species with different temperatures and decoupling times.

3.3.6 Equation-of-state corrections, δwr

In this subsection, we consider various physical effects that cause the equation of state

wr(z) to deviate from 1/3 during the radiation-dominated epoch, and the corresponding

modifications that these effects induce in the GWB transfer function. Some of these effects
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have been discussed previously by Seto and Yokoyama [147]. The deviations

δwr(z) = wr(z) − 1/3 (3.87)

primarily modify the transfer function through the redshift factor (1 + zk) that appears in

C1 [see Eqs. (3.68) and (3.69)]; through the horizon-crossing factor C2(k) [see Eq. (3.77)];

and through the phase shift φk [see Eq. (3.76)]. We consider here six physical effects which

can produce these kinds of modifications of the transfer function.

First, deviations can be caused by mass thresholds in the early universe. Suppose that

all particle species are described by equilibrium distribution functions. Then we can write

ρ and p as

ρ =
1

2π2

∑
i

giT
4
i

∫ ∞

xi

(u2 − x2
i )

1/2

exp[u − yi] ± 1
u2du, (3.88a)

p =
1

6π2

∑
i

giT
4
i

∫ ∞

xi

(u2 − x2
i )

3/2

exp[u − yi] ± 1
du, (3.88b)

where the ith species (with mass mi, and gi internal degrees of freedom) is described by

temperature Ti and chemical potential µi, and we have defined the dimensionless quantities

xi ≡ mi/Ti and yi ≡ µi/Ti [100]. In the denominator, the + and − signs are for fermions

and bosons, respectively. Then the deviation δwr is given by the exact expression

δwr =
∑

i

δw(i)
r (3.89)

where

δw(i)
r = − 5

π4

gi

g∗ρ

T 4
i

T 4
f(xi, yi) (3.90)

represents the contribution from the ith species,

g∗ρ ≡
∑

i

gi

T 4
i

T 4

15
π4

∫ ∞

xi

(u2 − x2
i )

1/2u2

exp[u − yi] ± 1
du (3.91)

represents the effective number of relativistic degrees of freedom, T is conventionally chosen

to be the photon temperature, and we have defined the function

f(x, y) ≡ x2

∫ ∞

x

(u2 − x2)1/2

exp[u − y] ± 1
du. (3.92)
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For fixed yi, note that f(xi, yi) vanishes as xi goes to 0 or ∞; and in between it has a

fairly broad peak, with a maximum located at xpeak
i , and a peak value fpeak

i = f(xpeak
i , yi).

In particular, when yi = 0, then the ordered pair (xpeak
i , fpeak

i ) is (2.303, 1.196) for bosons

and (2.454, 1.125) for fermions. This makes sense: we expect δw
(i)
r to vanish when xi � 1

(since the species is relativistic) and when xi 
 1 (since the species is non-relativistic, and

makes a negligible contribution to the energy density). In between, when xi ∼ xi,peak, the

ith species is cold enough to exhibit non-relativistic behavior, yet hot enough to contribute

non-negligibly to the energy density.

Using the above equations, we can compute δwr(z) once we know Ti(z) and µi(z). But

let us estimate the size of the effect. As a species becomes non-relativistic, it produces a

maximum equation-of-state deviation

δw(i)
r = −5fpeak

i

π4

gi

g∗ρ

T 4
i

T 4
(3.93)

in the background equation of state. Furthermore, if Ns different species (with the same

temperature and similar masses) become non-relativistic at the same time, then (roughly

speaking) the effect is multiplied by Ns (since their δw
(i)
r ’s add). Ultimately, the fractional

correction δwr/wr is model-dependent, but it can conceivably be as large as a few percent.

Second, deviations can be produced by a trace anomaly in the early universe. During

the radiation-dominated epoch, the universe is dominated by highly relativistic particles

whose masses may be neglected. Thus, each species is governed by a classical action that

is conformally invariant at the classical level, leading to the usual conclusion that the

stress-energy tensor is traceless and wr = 1/3. But conformal invariance is broken at the

quantum level by interactions among the particles, so that T µ
µ �= 0. For example, for a

quark-gluon plasma governed by SU(Nc) gauge theory, with Nf flavors, and gauge-coupling

g, the equation of state correction is given (up to O(g5) corrections) by [81, 43]

δwr =
5

18π2

g4

(4π)2
(Nc + 5

4Nf )(2
3Nf − 11

3 Nc)

2 + 7
2 [NcNf/(N2

c − 1)]
. (3.94)

Note that this effect can be non-negligible: for large gauge groups (i.e. large Nc) in the early

universe (prior to the electroweak phase transition), the equation of state wr may easily be
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reduced from 1/3 by several percent, or more.

Third, deviations can be produced if the early universe behaves like a slightly imper-

fect fluid. The stress-energy tensor for an imperfect fluid contains (in addition to the usual

perfect-fluid terms) three extra terms whose coefficients (χ, η, and ζ) represent heat conduc-

tion, shear viscosity, and bulk viscosity (see Weinberg [176], Ch. 2.11). Of these dissipative

effects, only the bulk viscosity term

∆T µν = −ζ(gµν + UµUν)Uλ
;λ (3.95)

can contribute to the background evolution in an FRW universe (see Weinberg [176], Chs.

15.10-15.11). This term modifies the continuity equation

ρ̇ = −3H(ρ + p) + 9ζH2 = −3Hρ
[
1 + w − 8πGζ

H

]
(3.96)

so that, as far as gravitational waves are concerned, the effective equation is corrected by

δwr = −8πGζ

H
. (3.97)

Whereas the three effects discussed thus far produce small corrections to the equation

of state, it is worth mentioning three other effects that can produce much larger deviations.

The first example is a massive particle species that decouples from the thermal plasma

before its abundance becomes negligible. Since its energy density falls as a−3 (more slowly

than the radiation density, which falls as a−4), it can come to dominate the energy density of

the universe before it decays (if its lifetime τdecay is sufficiently long). In this case, w drops

to zero when the particle becomes dominant, and rises back to w = 1/3 over a timescale

given by the decay lifetime τdecay. Second, extra-dimensional physics typically modifies the

effective 4-dimensional Friedmann equation. Such modifications which, from the standpoint

of the GWB, can in some cases look like corrections to the effective radiation equation of

state, are primarily constrained by the requirement that the Friedmann equation becomes

sufficiently similar to the ordinary 4-dimensional Friedmann equation (with ordinary mat-

ter) by the time of BBN. Third, due to the weak coupling of the inflaton, the temperature

at the start of the radiation dominated epoch (the reheat temperature) can be much lower
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than the energy scale at the end of inflation. In this case, laser interferometer scales might

actually re-enter the horizon during the reheating epoch (before the start of radiation dom-

ination), when the equation of state was probably quite different from w = 1/3. The actual

equation-of-state depends on the details of the reheating process, but a commonly-discussed

value is w = 0, or some value in the range 0 < w < 1/3 [131]. If w = 0 during reheating,

the corresponding modification of the GWB might be similar to the modification due to the

long-lived massive relic discussed above.

Note that the first of these six processes can be expressed as a modification of g∗, and the

effects on the transfer function can be computed using the methods discussed in Ref. [148].

However, the other five cannot.

3.3.7 Transfer function summary

Fig. 3.3 illustrates some of the transfer-function effects discussed in this section. In this fig-

ure, the solid black curve represents the present-day energy spectrum, Ωgw(f, τ0), generated

by a particular inflationary model — namely, a quadratic potential V (φ) = (1/2)m2φ2. The

red dotted curve illustrates the damping due to tensor anisotropic stress from free-streaming

neutrinos. We have assumed that the free-streaming fraction is Ωfree = 0.4052, which is the

Ωfree value for three standard neutrino species which decouple around the time of BBN.

The green dot-dashed curve represents the damping due to tensor anisotropic stress from

various particle species (X particles) which begin free-streaming before the scales detected

by BBO/DECIGO re-enter the horizon and then decay after the scales re-enter, but prior to

the electroweak phase transition. As an example, we have assumed that the free-streaming

fraction is Ωfree = 0.5. Finally, the blue dashed curve represents damping due to a trace

anomaly that is present above the electroweak scale. For illustration, we have assumed

that this anomaly, through Eq. (3.94), reduces the equation of state from wr = 1/3 by

δwr = −0.02. This reduction may be achieved by various combinations of the number of

colors Nc, the number of flavors Nf , and the gauge coupling g; but the point is that we

have not chosen an unreasonable large value for δwr, given the large gauge groups that are



65

10 -14

10 -15

10 -16

10 -15 10 510 010 -510 -10

   BBN (1 MeV)

ELECTROWEAK (300 GeV)

BBO/DECIGO
  (107 GeV)

CMB

Neutrino damping
X-particle damping
Trace anomaly damping

f  (Hz)

Ωgw(f )

109 GeV

REHEATING EFFECTS?

Figure 3.3: The black solid curve represents the present-day gravitational-wave energy
spectrum, Ωgw(f, τ0), for the inflationary model V (φ) = (1/2)m2φ2. The red dotted curve
shows the damping effect due to (three ordinary massless species of) free-streaming neutri-
nos. The green dot-dashed curve shows the damping effect which arises if free-streaming
particles make up fifty percent of the background energy density at the time τBBO when the
modes probed by BBO/DECIGO re-enter the horizon. As shown in the figure, the particles
begin free-streaming sometime before τBBO, and decay sometime after τBBO, but prior to
electroweak symmetry breaking. Finally, the blue dashed curve shows the effect of a confor-
mal anomaly in the early universe that slightly reduces the equation of state from w = 0.33
to w = 0.31 above the electroweak phase transition. The spectrum will also be modified
on comoving scales that re-enter the horizon during the reheating epoch after inflation; but
the range of scales affected by reheating is unknown. Finally, note that the correlated BBO
interferometer proposal claims a sensitivity that extends beyond the bottom of the figure
(down to roughly Ωgw ∼ 10−17) in the frequency range from 10−1 Hz to 100 Hz.
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often theorized to be present at high energies.

The key point conveyed by Fig. 3.3 is that there are a variety of plausible post-inflationary

effects that can produce rather large modifications of the gravitational-wave spectrum on

laser-interferometer scales, without modifying the spectrum on CMB scales. This is tanta-

lizing, since the modifications on laser-interferometer scales reflect the primordial dark age

between the end of inflation and the electroweak phase transition, at energies beyond the

reach of terrestrial particle accelerators.

3.4 Discussion

In this section, we will explore various issues and opportunities that arise from combining

a CMB experiment like CMBPOL and a laser-interferometer experiment like BBO. We will

argue that, if gravitational waves are detected in the CMB, then the science case for a laser-

interferometer satellite mission like BBO becomes strong, since it is then likely to yield (in

combination with the CMB) qualitatively new information about the very early universe

that cannot be obtained by other known techniques.

This section has two parts. In the first part, we will consider the scientific possibilities

that arise from combining CMBPOL and BBO, assuming we can accurately compute the

tensor transfer function on BBO scales — i.e. assuming that we can neglect as “exotic” the

various high-energy effects discussed in the previous section that can leave an imprint in

the tensor transfer function on LI scales at late times. Then, in the second part, we will

consider the implications of these uncertainties in the transfer function.

To be concrete, let us imagine a future CMB experiment (which we will call CMBPOL)

that can achieve one-sigma error bars of δns = 0.005 for the scalar spectral tilt and

δr = 0.005 for the tensor-to-scalar ratio (so that, roughly speaking, it can detect r = 0.01

at 95% confidence). Let us also imagine a future LI experiment that can reach the BBO

projections [129] for both experimental sensitivity and astrophysical foreground subtrac-

tion. In fact, the BBO mission proposal comes in three different increasingly sensitive (and

increasingly expensive) flavors — “BBO-lite,” “BBO-standard,” and “BBO-grand.” These



67

three versions would detect a stochastic gravitational-wave background with signal-to-noise

ratio (SNR) [145]

SNR = 0.103
(

Ωgw

10−16

)(
Tobs

10yr

)1/2

(BBO − lite), (3.98a)

SNR = 25.12
(

Ωgw

10−16

)(
Tobs

10yr

)1/2

(BBO − standard), (3.98b)

SNR = 251.2
(

Ωgw

10−16

)(
Tobs

10yr

)1/2

(BBO − grand), (3.98c)

where Ωgw is the amplitude of the gravitational-wave energy spectrum (from inflation) in

the frequency band 0.1 Hz < f < 1 Hz. Unfortunately, the cheapest version, BBO-lite, is

simply not sensitive enough to detect the inflationary gravitational wave background, so we

will focus on BBO-standard, and assume that the observation period is Tobs = 5yr. With

these basic parameters in mind, let us consider the science that these experiments can be

expected to accomplish.

The first important (although rather pedestrian) motivation for BBO-standard is that it

can provide a cross-check on any claimed gravitational-wave detection in the CMB. After all,

CMBPOL and BBO-standard are both expected to be difficult experiments. If we only had

one experiment or the other, we might worry that any claimed detection of gravitational-

waves (especially at low significance) was really a systematic error — an unexpected or

exceptionally difficult foreground or noise source that is not treated correctly in the analysis.

But, as we have seen in section 2, once we manage to detect a gravitational-wave signal in the

CMB, we can immediately obtain a rough estimate for the amplitude of the gravitational-

wave spectrum on LI scales. And if BBO measures the amplitude, and confirms this rough

expectation, we will be much more confident that both experiments are actually seeing the

primordial signal from inflation.

The second motivation for BBO-standard is that, in combination with CMBPOL, it can

demonstrate at high significance that nt is non-zero and negative, thus providing qualitative

confirmation of the first inflationary consistency relation. (Recall that the first inflationary

consistency relation, nt = −r/8, implies that if the tensor amplitude is non-negligible, then

the tensor tilt should also be non-negligible and negative.) To see that this is true, let us
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return to the four examples studied in section 2.

• If the inflaton potential is V (φ) = 1
4!λφ4 — a model that is still in agreement, at

least marginally, with the current WMAP data [153] — then CMBPOL will measure

r = 0.268 ± 0.005 at k∗. If the primordial tensor power spectrum were perfectly scale

invariant, this would imply Ωgw = (23.5± 0.44)× 10−16 on BBO scales. But, instead,

BBO-standard will measure Ωgw = (3.51 ± 0.06) × 10−16, where the error bar here

is determined by the formula (3.98b) for the signal-to-noise ratio for BBO-standard.

In other words, the observed value will be below the scale-invariant prediction by

45-sigma! — a very strong demonstration that the primordial tensor power spectrum

has a non-vanishing negative tilt nt.

• If the inflaton potential is V (φ) = 1
2m2φ2 — a model in good agreement with current

WMAP data — then CMBPOL will measure r = 0.138±0.005 at k∗. If the primordial

tensor power spectrum were perfectly scale invariant, this would imply Ωgw = (12.1±
0.44)×10−16 on BBO scales. But, instead, BBO-standard will measure Ωgw = (4.56±
0.06) × 10−16. The observed value will thus be below the scale-invariant value by

more 17-sigma — again, a strong demonstration that the tensor spectrum has a non-

vanishing negative tilt.

• If the inflaton potential is of the symmetry-breaking form V (φ) = V0[1 − (φ/µ)2]2 =

V0 − m2φ2 + λφ4, with ns = 0.96 — another model in good agreement with the

current WMAP data — then CMBPOL will measure r = 0.046 ± 0.005 at k∗. If

the primordial tensor power spectrum were perfectly scale invariant, this would imply

Ωgw = (3.99±0.44)×10−16 on BBO scales. But, instead, BBO-standard will measure

Ωgw = (2.52±0.06)×10−16 . The observed value will thus be below the scale-invariant

value by 3.3-sigma. Although much less strong than the previous two examples, this

would still constitute moderately significant evidence that the tensor spectrum has a

non-vanishing negative tilt.

• If the inflaton potential is of the axion-like cosine (or “natural inflation”) form V (φ) =
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V0[1 + cos(φ/µ)] with ns = 0.95 — yet another model in good agreement with the

current WMAP data — then CMBPOL will measure r = 0.033 ± 0.005 at k = k∗.

If the primordial tensor power spectrum were perfectly scale invariant, this would

imply Ωgw = (2.92±0.44)×10−16 on BBO scales. But, instead, BBO-standard would

measure Ωgw = (1.91 ± 0.06) × 10−16. The observed value would thus be below the

scale-invariant value by only about 2.3-sigma, corresponding to marginal (but not

really significant) evidence for a negative tensor tilt.

Note that these examples illustrate the easily-understood point that, when r on CMB scales

is larger, the combination of CMBPOL and BBO-standard is able to show nt < 0 with

much higher significance. In particular, if r � 0.05 on CMB scales, then the combination of

BBO-standard and CMBPOL (with the experimental parameters described above) should

be able to demonstrate convincingly that the tensor tilt nt is non-zero and negative, in

agreement with the first inflationary consistency relation. This would be a major scientific

achievement — analogous to, but independent from, the demonstration that the scalar tilt

ns − 1 is non-zero and negative (which is another inflationary prediction that has recently

been confirmed, at marginal significance, by WMAP [153]). On the other hand, if r � 0.05

on CMB scales, then the combination of BBO-standard and CMBPOL described above

would only be expected to provide marginal or insignificant evidence for nt < 0. Notice,

though, that this conclusion is ultimately determined by the size of the CMB error bar δr.

Thus, if it is possible to make the CMBPOL one-sigma error bar significantly smaller than

δr = 0.005, then it will also be possible to demonstrate non-vanishing negative tensor tilt

even when r is significantly smaller than r ≈ 0.05 on CMB scales.

The third motivation for BBO-standard is that, in combination with CMBPOL, it can

check at high significance whether or not the the gravitational-wave signal on BBO scales

agrees with the quantitative prediction of the inflationary consistency relations. To see

this, let us return to our four examples. Suppose that CMBPOL measures {ns − 1 =

−0.05 ± 0.005, r = 0.268 ± 0.005}, or {ns − 1 = −0.034 ± 0.005, r = 0.138 ± 0.005}, or

{ns − 1 = −0.04 ± 0.005, r = 0.046 ± 0.005}, or {ns − 1 = −0.05 ± 0.005, r = 0.033 ±
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0.005}, corresponding to the predictions of our four inflaton potentials. Then, using the

extrapolation function E
(2)
t from section 2 (which ultimately is derived from the inflationary

consistency relations), we would estimate Ωgw on BBO scales to be ≈ 4.8 × 10−16, or

≈ 5.3 × 10−16, or ≈ 2.9 × 10−16, or ≈ 2.2 × 10−16, respectively, where the first prediction

is uncertain up to a factor of ∼ 1.5, while the subsequent predictions are uncertain up to a

factor of ∼ 1.3. (Here we have included both types of extrapolation uncertainty discussed

in section 2 and, as discussed above, neglected any uncertainties coming from high-energy

effects in the tensor transfer function.) If Ωgw turns out to lie in the predicted range, then

BBO-standard will detect it with high signal-to-noise ratio (SNR ≈ 85, or ≈ 94, or ≈ 51,

or ≈ 39, respectively), in support of the consistency relations. On the other hand, BBO-

standard could clearly reject the consistency relation by finding that Ωgw lies either above

or below the predicted value by a factor significantly larger than the uncertainty factor.

(Note that, if we take the SNR = 3 as the detection threshhold, then BBO-standard can

detect Ωgw smaller than the prediction of the consistency relations by up to a factor of ≈ 27,

or ≈ 29, or ≈ 16, or ≈ 12, respectively.) This shows that if r is sufficiently large on CMB

scales, then by combining CMBPOL and BBO-standard, we can check at high significance

whether or not Ωgw lies in the range predicted by the inflationary consistency relations on

BBO scales. And, as pointed out above, if Ωgw turns out to lie in this range, it will be

distinguishable from the “trivial” prediction of a purely scale-invariant primordial tensor

power spectrum. Taken together, this means that CMBPOL and BBO-standard offer the

possibility of subjecting the inflationary consistency relations to a highly non-trivial test.

Also, note that most of the extrapolation uncertainty in the cases considered above is of

the “first type” (in the terminology of section 2). As mentioned in section 2, it seems that

it will be possible to further reduce this first type of extrapolation uncertainty by deriving

an improved extrapolation function, and this would make for an even sharper test of the

consistency relations — but this is still work in progress.

Thus far in this section, we have neglected uncertainties coming from the imprint of

high-energy (early-universe) physics in the transfer function at late times. Let us now
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consider the implications of the additional uncertainties for our interpretation of the ex-

periments. Assuming the null hypothesis described in the introduction of this chapter (a

fiducial “standard” tensor transfer function plus a standard extrapolation function derived

from the inflationary consistency relations in section 2) we have argued that we can convert

CMB observations of r and ns (and perhaps dns/d ln k) into a predicted range for Ωgw on

BBO scales. And we have also seen that if r is large enough to be detected by CMBPOL,

then the null-hypothesis prediction for Ωgw is large enough to be detected by BBO-standard.

Now let us consider four possible outcomes of the BBO-standard experiment, and discuss

their likely interpretations (including the uncertainties in the tensor transfer function).

First, suppose that BBO-standard detects Ωgw in the expected range. It would be most

natural to interpret this as evidence in favor of the inflationary consistency relations and the

fiducial tensor transfer function. Or, more correctly, it would suggest upper bounds on the

size of any violations of the consistency relations, or on the size of any high-energy effects

modifying the tensor transfer function on BBO scales. Of course, it is theoretically possible

that large violations of the consistency relations and large effects in the transfer function

happen to cancel to give the same answer as the null prediction, but this interpretation

would be less plausible.

Second, suppose that BBO detects the gravitational-wave amplitude significantly below

its expected value. Then the interpretation is less straighforward. On the one hand, we could

interpret the suppression as being due to transfer-function effects, such as those discussed

in the previous section. This interpretation would be interesting, since it would imply

a rare opportunity to measure physical properties of the early universe, at temperatures

above the electroweak scale, when the relevant modes re-entered the horizon. On the other

hand, we could interpret the suppression to mean that inflation is more complicated than we

expected: perhaps there is a feature in the inflaton potential which suppresses the primordial

tensor spectrum on small scales relative to our expectations, or perhaps the consistency

relations are violated. Additional information would be necessary to distinguish these two

possibilities. But, in any case, this scenario clearly corresponds to a qualitatively new clue
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about the early universe – even if it is one that cannot be uniquely interpreted on its own.

Third, suppose that BBO detects the gravitational-wave amplitude significantly above

its expected value. At this point it is worth noting that virtually all of the transfer-function

effects mentioned in section 3.3.2 (including tensor anisotropic stress, the late decay of a

massive relic species, bulk viscosity, a conformal anomaly, or standard reheating with w ≤
1/3) suppress the gravitational-wave spectrum on BBO scales. If we want to use the transfer

function to enhance the spectrum on laser-interferometer scales, we must invoke an even

more exotic effect, such as a reheating epoch with a anomalously low reheat temperature

and an unusual equation of state (w > 1/3), or perhaps some sort of extra-dimensional

physics in the early universe. But perhaps a more plausible explanation for a higher-than-

expected gravitational-wave signal is that we are detecting gravitational waves produced

after inflation, rather than the inflationary background itself. One possible post-inflationary

source would be cosmic strings of some sort. Another source would be bubble collisions after

a first order phase transition — perhaps the electroweak phase transition. But note that a

first-order electroweak phase transition is already ruled out in the standard model, and close

to being ruled out in the MSSM, from experimental bounds on the Higgs mass. Yet another

possible source would be gravitational waves produced during preheating after inflation

[90, 52] — but note that for the inflationary and preheating models studied thusfar, the

gravitational waves from preheating are at higher frequencies, and do not fall into the BBO

waveband.

Fourth, suppose that BBO detects nothing at all (after a detection of r > 0.01 by

CMBPOL). This would most likely indicate a fundamental problem with inflation itself,

since an period of accelerating expansion produces a broad and nearly-flat spectrum of

primordial tensor perturbations quite generically (regardless of the particular model that

drives inflation, and regardless of whether the consistency relations are quantitatively sat-

isfied). One way out of this conclusion would be to invoke an extreme suppression effect in

the transfer function on BBO scales — e.g. due to a reheating epoch with equation of state

w = 0 and a reheat temperature well below 107 GeV. In this case, determining which inter-
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pretation is correct would require more information — perhaps by digging deeper, with more

sensitive experiments on BBO scales, or perhaps from some complementary experimental

technique.

Finally, we should keep in mind that certain observations could give us even more

information than we have assumed above, and could thereby break some of the interpre-

tational degeneracies discussed in the preceding few paragraphs. For example, note that

the quadratic potential well V (φ) = 1
2m2φ2 + . . ., in addition to being one of the simplest

models of inflation, is also the generic form of an inflaton potential near the bottom of its

potential well. Thus, if CMBPOL measured ns −1 = −0.034±0.005 and r = 0.138±0.005,

in perfect agreement with the predictions of V (φ) = 1
2m2φ2 inflation, it would be very

tempting to interpret this to mean that, during the final 60 e-folds, φ is close enough to its

potential minimum that V (φ) may be approximated by 1
2m2φ2. In this case, we wouldn’t

need to use the extrapolation function, since we could compute the primordial tensor power

spectrum directly from the potential. Then, since there would be virtually no extrapolation

uncertainty, if Ωgw was below its expected value on BBO scales, we could interpret this as

telling us direct information about the tensor transfer function, and hence about the early

universe at T ∼ 104 TeV.



Chapter 4

An expansion/contraction duality

in ordinary FRW cosmology

This chapter is based in part on the paper [24], a collaboration with Paul Steinhardt and

Neil Turok. I would like to thank Alexei Starobinsky for pointing out helpful references.

4.1 Introduction

In inflationary cosmology [74, 107, 4], a nearly scale-invariant spectrum of gauge-invariant

Newtonian potential perturbations is produced as comoving scales leave the Hubble horizon

during an early burst of accelerated expansion [122, 73, 75, 156, 10]. In cyclic cosmology

[93, 91, 159, 158], the same spectrum of Newtonian potential perturbations is produced as

comoving scales leave the Hubble horizon during a period of slow decelerated contraction

[94, 163, 164]. This agreement between two physically dissimilar models is unexpected,

but not coincidental. As we shall show, the relationship between inflation and the cyclic

model may be viewed as a special case of a surprisingly simple and general duality between

expanding and contracting cosmologies.

A Friedmann-Robertson-Walker (FRW) universe with a single scalar field φ and poten-

tial V (φ) is a simple yet important system. In particular, it is the canonical 4d effective

74
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theory used to model the production of density perturbations in both inflationary and cyclic

cosmology. Recent results hint at a connection between two apparently unrelated regimes

of this model: (i) expanding, in the ε → 0 limit, and (ii) contracting, in the ε → ∞ limit.

Here ε ≡ 3(1 + w)/2, where w ≡ p/ρ denotes the ratio of pressure to energy density. These

two regimes, (i) and (ii), both generate a nearly scale invariant power spectrum of fluctua-

tions for the gauge invariant Newtonian potential Φ [69, 130] in the long wavelength limit.

Furthermore, the slight tilt n
(i)
s of the long-wavelength Φ-spectrum produced by a model in

regime (i) is equal to the slight tilt n
(ii)
s produced by a model in regime (ii), provided the

corresponding ε-parameters satisfy the simple relation ε(i) = 1/ε(ii) [95].

The relationship noted in [69, 95] between expanding ε � 1 models and contracting

ε 
 1 models, turns out to be a special case of a general and exact duality relating expanding

and contracting models with identical perturbation spectra. In this chapter, we derive this

duality, initially focusing on the case where ε (or w) is nearly constant. Later, we discuss

how the duality may be generalized to include backgrounds with time-dependent ε. When

ε is constant, or varies sufficiently slowly, the duality is simple: an expanding universe

characterized by ε produces exactly the same scalar perturbations as a contracting universe

characterized by ε̂ = 1/ε. This duality applies in arbitrary spacetime dimension (not just

3+1); it applies for all w (not just the w → −1 and w → ∞ limits discussed in [69, 95]);

it applies to all wavelengths (not just the long-wavelength limit); it applies to both the

dominant scalar perturbation mode and a subdominant remainder (which are related to

the growing and decaying modes, respectively).

This duality is of general theoretical interest since it provides a new relationship between

expanding and contracting universes, and exposes an unexpected symmetry of cosmological

perturbation theory. It is also relevant to cosmological models, like the ekpyrotic and cyclic

[93, 91, 159, 158] scenarios, in which perturbations produced during a period of contraction

are proposed to propagate through a bounce into a subsequent expanding phase. These

models require that the growing-mode long-wavelength perturbation spectrum is preserved

across the bounce. This has been a controversial matter. At first, some authors argued
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that growing-mode perturbations produced in a contracting phase must match to pure

decaying-mode perturbations, and vice versa, as one follows them across a bounce into an

expanding phase [26, 116, 117, 115]. At heart, this conclusion followed from an assumption

that the bounce corresponds to a comoving or constant-energy-density slice across which

the curvature perturbation is conserved. The curvature perturbation is blue and decaying

before the bounce and, under this assumption, would be blue and growing after the bounce.

This situation, which applies to some non-singular bouncing models discussed in [33, 65],

is grossly inconsistent with observations. However, recent calculations [163, 164, 12] indi-

cate that comoving or constant-energy-density slices are inappropriate for matching if the

bounce event corresponds to a collision between orbifold planes along an extra spatial di-

mension, as in the ekpyrotic and cyclic models, because the collision is not synchronous on

comoving slices. When the matching is performed on the appropriate collision-synchronous

slices instead, the curvature perturbation is not conserved across the bounce but, instead,

matches to a linear combination of the incoming (blue) curvature perturbation and the

nearly scale-invariant Newtonian potential fluctuation. At long wavelengths, the nearly

scale-invariant Newtonian potential contribution dominates. Hence, the shape of the cur-

vature perturbation spectrum in the expanding phase (as measured by fluctuations in the

cosmic microwave background, for example) is simply equal to the shape of the Newtonian

potential spectrum in the contracting phase analyzed in this chapter. Other aspects of the

cyclic and ekpyrotic models have been criticized [82, 83] (see [92] for replies), and some have

argued that a bounce is impossible altogether [77, 110, 111, 113]. While the consistency

of a bounce remains to be proven, recent work has shown that the traditional hazard of

chaotic mixmaster behavior is strongly suppressed in the contracting phase of the cyclic

model [59, 183]. The metric perturbations exhibit ultralocal behavior in which anisotropies

remain small, right up to a few Planck times before the bounce. In this situation, causality

suggests that the bounce should not disturb correlations on macroscopic scales over which

there can be no communication in this finite time interval. Under these conditions, works

by several groups [163, 164, 12, 50, 41, 34] suggest that perturbations generated during
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the contracting phase may pass into the expanding phase. The subject continues to be an

area of active research. If the latter suggestions are made rigorous, it would give added

significance to the results presented herein.

Other dualities have been identified in the literature [175, 155, 28, 172, 167, 144, 37, 38,

106, 27, 30, 31] that relate cosmological solutions and perturbations. See Section 4.6 for

a comparison. The duality presented here has the distinctive property that it relates two

solutions that are stable under perturbations. Hence, both solutions can plausibly play a

role in realistic cosmological models.

The layout of this chapter is as follows. In section 4.2, we highlight a few points about the

background (unperturbed) model: a spatially-flat FRW model with scalar field φ, potential

V (φ), and constant ε. In section 4.3, we highlight relevant aspects of scalar perturbation

theory, before deriving exact solutions for Mukhanov’s u and v variables. We note that u

is invariant under ε → 1/ε. This invariance is independent of our vacuum choice for the

fluctuations, and provides our first glimpse of the duality. In section 4.4 we use u and v

to separate scalar perturbations into pieces that are dominant and subdominant at long

wavelengths, and show that each piece is independently invariant under ε → 1/ε. We show

how the dominant and subdominant pieces relate to the scalar perturbation growing and

decaying modes. In section 4.5 we consider tensor perturbations. In section 4.6, we contrast

our duality with other kinds of cosmological dualities that have been studied in the literature

[175, 155, 28, 172, 167, 144, 37, 38, 106, 27, 30, 31]. In section 4.7, we interpret the duality

geometrically, as a relation between the scale factor and the Hubble parameter. In section

4.8, we generalize the duality to encompass spacetimes with d dimensions. We also briefly

discuss the generalization for FRW models with arbitrary spatial curvature (K = −1, 0,+1).

In section 4.9, we discuss the generalization to include situations where ε is time-dependent.

This last issue is an intruiging puzzle that is not yet fully solved, although we describe several

partial solutions. These partial solutions are again surprisingly simple, leading us to hope

that they may be clues along the path to a more general formulation of the duality that

retains the elegance of the ε → 1/ε prescription.
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4.2 Background model

A spatially-flat Friedmann-Robertson-Walker (FRW) universe with scalar field φ and po-

tential V (φ) is described by the metric

ds2 = a(τ)2
[−dτ2 + d�x 2

]
. (4.1)

The unperturbed scalar field φ0(τ) and scale factor a(τ) obey the Friedmann equations

6(a′ 2/a4) = 2ρ (4.2a)

6(a′′/a3) = ρ − 3p (4.2b)

where we have chosen units such that c = � = 8πG = 1, a prime ( ′ ) denotes a conformal

time derivative d/dτ , and the energy density and pressure are given by

ρ = (1/2)a−2φ′ 2
0 + V (φ0) (4.3a)

p = (1/2)a−2φ′ 2
0 − V (φ0). (4.3b)

Instead of the usual variable w ≡ p/ρ, it will be more convenient to use

ε ≡ 3(1 + w)/2. (4.4)

to parameterize the equation of state. Equations (4.2,4.3) imply −1 ≤ w < ∞ (or equiv-

alently 0 ≤ ε < ∞). If w is near −1, then ε � 1 is the usual slow-roll parameter; but we

make no slow-roll approximation in this chapter, and ε may be arbitrarily large.

From now on, we shall assume that ε is constant, not equal to unity. (The self-dual

case ε = 1 possesses special behavior which we shall not study here.) Then the solution of

equations (4.2,4.3) is:

a(τ) = |τ |1/(ε−1) (4.5a)

φ0(τ) = ±(2ε)1/2

ε − 1
ln|τ | (4.5b)

V (φ) =
3 − ε

(ε − 1)2
exp
[
∓(2ε)1/2φ

]
(4.5c)
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where, to fix integration constants we have, without loss of generality, chosen the origin of

conformal time so that a(0) = 0, normalized the scale factor so that a(1) = 1, and redefined

φ0 → φ0+constant so that φ0(1) = 0.

This solution separates into 4 cases:

• (a) expanding, 0 ≤ ε < 1, −∞ < τ < 0;

• (b) expanding, 1 < ε < ∞, 0 < τ < ∞;

• (c) contracting, 0 ≤ ε < 1, 0 < τ < ∞;

• (d) contracting, 1 < ε < ∞, −∞ < τ < 0.

The Penrose diagrams for these 4 possibilities are shown in Figure 4.1. Case (b) corresponds

to an ordinary expanding FRW model with matter or radiation domination, ε = 3/2 or 2,

respectively. We are interested in the two cases, (a) and (d), in which τ runs from −∞ → 0

since, in these two cases, comoving length scales start inside the Hubble horizon at early

times, and end outside the horizon at late times. Since we wish to study the amplification

of perturbations as modes leave the horizon, these are the two relevant cases. Thus, we will

always assume ε < 1 ⇔ expanding and ε > 1 ⇔ contracting. The duality discussed below

pairs solutions of type (a) with solutions of type (d). Figure (4.1) emphasizes that (a) and

(d) have similar causal structure, but different singularities.

4.3 Scalar perturbations

In this section, we introduce relevant aspects of gauge-invariant scalar perturbation theory

in 4 dimensions, and catch our first glimpse of the duality discussed in section 4.4. For

a thorough introduction to gauge-invariant perturbations [9], see [99] and [123]. We work

in Fourier space throughout, so every perturbation variable carries an implicit subscript �k

which, for brevity, is not shown explicitly. Write the perturbed metric

ds2/a2 = −(1 + 2AY )dτ2 − 2BYidτdxi

+ [(1 + 2HLY )δij + 2HT Yij] dxidxj (4.6a)
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Big Bang
Big Bang

Big Crunch
Big Crunch

(a) (b)

(c) (d)

Figure 4.1: Penrose diagrams for spatially-flat FRW universes with: (a) 0 < ε < 1, expand-
ing; (b) 1 < ε < ∞, expanding; (c) 0 < ε < 1, contracting; (d) 1 < ε < ∞, contracting. The
left edge of each diagram is the world line of a comoving observer at the origin; curved lines
represent other comoving world lines and spatial hypersurfaces. The Hubble horizon is a
curve connecting the 90o vertex to the lightlike boundary, but the precise curve depends on
ε. For illustration, we have shown the horizon for ε = 0 in (a, c) and for ε = 2 in (b, d).
In this chapter, we focus on cases (a) and (d), in which comoving scales exit the Hubble
horizon.
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and perturbed scalar field

φ = φ0(τ) + δφ(τ)Y (4.6b)

where Y (�x), Yi(�x), and Yij(�x) are scalar harmonics (see Appendix C in [99]). The corre-

sponding perturbations of the Einstein tensor and energy-momentum tensor (see Appen-

dices D and F in [99]) are related to one another through the perturbed Einstein equations,

δGµ
ν = δT µ

ν .

It is well known that scalar perturbations in a spatially-flat FRW universe with scalar

field φ and potential V (φ) are completely characterized by a single gauge-invariant variable.

But the choice of this variable is neither unique nor standard; two of the most familiar

options are the “Newtonian potential,” Φ, and the “curvature perturbation,” ζ.

The gauge-invariant Newtonian potential Φ is most easily understood in “Newtonian

gauge” (B = HT = 0), where it is related to the metric perturbations in a simple way:

Φ = A = −HL. It obeys the equation of motion

Φ′′ + 2
[
a′

a
− φ′′

0

φ′
0

]
Φ′ +

[
k2 + 2H′ − 2Hφ′′

0

φ′
0

]
Φ = 0 (4.7)

where k = |�k| is the magnitude of the (comoving) Fourier 3-vector. On the other hand,

the gauge-invariant perturbation variable ζ is most easily understood in “comoving gauge”

(HT = δT 0
i = 0), where it represents the curvature perturbation on spatial-hypersurfaces,

and is related to the spatial metric perturbation in a simple way: ζ = −HL. The condition

δT 0
i = 0 also implies that δφ = 0 in this gauge. ζ obeys the equation of motion

ζ ′′ + 2(z′/z)ζ ′ + k2ζ = 0 (4.8)

where z ≡ a2φ′
0/a

′. Φ and ζ are related to each other by

ζ = Φ +
1
ε

[
(a/a′)Φ′ + Φ

]
(4.9a)

Φ = −ε(a′/a)k−2ζ ′ . (4.9b)

Note that our definitions for Φ and ζ agree with those in [123]. But beware: in [99], the

gauge-invariant Newtonian potential is denoted Ψ, while Φ denotes a different (though

closely related) variable.
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It is convenient to introduce new variables, u and v [120, 121, 123], by multiplying Φ

and ζ by k-independent functions of τ :

u ≡ (a/φ′
0)Φ v ≡ zζ. (4.10)

Note that u and v have the same k-dependence as Φ and ζ, respectively, and may serve as

surrogates for Φ and ζ. If we also define background quantities, θ and z:

θ ≡ 1/z ≡ a′

a2φ′
0

, (4.11)

then u and v obey simple equations of motion

u′′ + (k2 − θ′′/θ)u = 0 (4.12a)

v′′ + (k2 − z′′/z)v = 0 (4.12b)

and are related to each other by

kv = 2k[u′ + (z′/z)u] (4.13a)

−ku =
1
2k

[v′ + (θ′/θ)v]. (4.13b)

We must choose a vacuum state for the fluctuations, which corresponds to specifying

appropriate boundary conditions for u and v (see Ch.3 in Birrel&Davies [17]). The standard

choice is the Minkowski vacuum of a comoving observer in the far past (when all comoving

scales were far inside the Hubble horizon), corresponding to the boundary conditions

u → i(2k)−3/2e−ikτ (4.14a)

v → (2k)−1/2e−ikτ (4.14b)

as τ → −∞. Using (4.13), it is easy to check that these two boundary conditions are

equivalent.

When ε is time-independent, we can use (4.5) to find

θ′′/θ =
ε

(ε − 1)2τ2
(4.15a)

z′′/z =
2 − ε

(ε − 1)2τ2
(4.15b)
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Then we may solve (4.12) to obtain

u(x) = x1/2
[
A(1)H(1)

α (x) + A(2)H(2)
α (x)

]
(4.16a)

v(x) = x1/2
[
B(1)H

(1)
β (x) + B(2)H

(2)
β (x)

]
(4.16b)

where x ≡ k|τ | is a dimensionless time variable, A(1,2) and B(1,2) are constants, H
(1,2)
ρ (x)

are Hankel functions, and we have defined

α ≡ √
(θ′′/θ)τ2 + 1/4 =

1
2

∣∣∣∣ε + 1
ε − 1

∣∣∣∣ (4.17a)

β ≡ √
(z′′/z)τ2 + 1/4 =

1
2

∣∣∣∣ε − 3
ε − 1

∣∣∣∣ (4.17b)

In the far past (x → ∞) we use the asymptotic Hankel expression,

H(1,2)
s (x) →

√
2
πx

exp
[
± i
(
x − s π

2
− π

4

)]
(4.18)

so the boundary conditions (4.14) imply

u =
P1

2k
(πx/4k)1/2H(1)

α (x) (4.19a)

v = P2 (πx/4k)1/2H
(1)
β (x) (4.19b)

where

P1 = exp[i(2α + 3)π/4] (4.20a)

P2 = exp[i(2β + 1)π/4] (4.20b)

are k-independent complex phase factors.

Note from (4.15a) that the equation of motion for u, (4.12a), is invariant under ε → 1/ε,

while the boundary condition, (4.14a), is independent of ε. As a result, our expressions

(4.72a) for α and (4.19a) for u are invariant under ε → 1/ε. This is our first glimpse of the

duality discussed below.

We stress that this result does not depend on the particular vacuum choice (4.14a). Any

boundary condition that is independent of ε (or, more generally, invariant under ε → 1/ε)

will work. And it is natural to expect the boundary condition to be independent of ε, since

it is imposed in the far past, when comoving scales are far inside the Hubble horizon.
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4.4 Dominant and subdominant modes

In this section, we show that u and v can be decomposed into pieces that are dominant

and subdominant at long wavelengths such that each is invariant under the transformation

ε → 1/ε. The dominant and subdominant parts are closely related to growing and decaying

modes over the range of w relevant to cosmological model-building, as we explain below.

For this analysis, it is convenient to scale u and v by appropriate powers of |τ |, so that

they only depend on k and τ through the dimensionless combination x = k|τ |. Thus, using

(4.19a, 4.19b), define

ū ≡ |τ |−3/2u =
P1

2x
(π/4)1/2H(1)

α (x) (4.21a)

v̄ ≡ |τ |−1/2v = P2 (π/4)1/2H
(1)
β (x). (4.21b)

Note that ū and v̄ have the same k-dependence as u and v, respectively, or Φ and ζ,

respectively, and may be used in place of these more standard variables.

To make the meaning of “dominant” and “subdominant” precise, consider two linearly

independent functions f1(x) and f2(x). If limx→0 f2(x)/f1(x) exists, then f1(x) and f2(x)

can be related by a linear transformation to two new functions, fdom(x) and fsub(x), satis-

fying

lim
x→0

fsub(x)/fdom(x) = 0. (4.22)

So the subdominant piece, fsub(x), becomes negligible relative to the dominant piece,

fdom(x), for small x (i.e. far outside the horizon). The condition (4.22) uniquely determines

the subdominant piece (up to an overall normalization constant) to be

fsub(x) = f2(x) −
[
lim
y→0

f2(y)
f1(y)

]
f1(x), (4.23)

but does not uniquely fix the dominant piece. Rather, fdom(x) may be any linear com-

bination of f1(x) and f2(x) that is linearly independent of fsub(x). We can now choose

f1(x) = ū(x) and f2(x) = v̄(x), and find the corresponding dominant and subdominant

functions.
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Let us first calculate fsub(x). To compute limx→0 f2(x)/f1(x), we use the Hankel identity

H(1)
s (x) → −i[Γ(s)/π](x/2)−s as x → 0, (4.24)

where s > 0 and Γ(s) is the Euler gamma function. Then from (4.21a,4.21b) we find

lim
x→0

f2(x)
f1(x)

=

 (P2/P1)4α 0 ≤ ε < 1

0 1 < ε < ∞
(4.25)

where we have used the fact that α + 1 = β when ε < 1, while α + 1 > β when ε > 1. Now,

substituting (4.21a), (4.21b) and (4.25) into (4.23), using the Hankel identities

H
(1)
s−1(x) + H

(1)
s+1(x) = 2s

x H
(1)
s (x) (4.26a)

H
(1)
−s (x) = eiπsH

(1)
s (x), (4.26b)

and paying careful attention to absolute value signs, we find

fsub(x) = P3(π/4)1/2H(1)
γ (x), (4.27)

where we have defined

γ ≡ |α − 1|, (4.28)

and P3 = exp[i(2γ + 1)π/4] is a k-independent complex phase factor.

Now let us turn to fdom(x). The fact that limx→0 fsub(x)/v̄(x) = 0 when ε < 1 shows

that the dominant mode contributes to v̄ in an expanding universe. Since fsub(x) = v̄(x)

when ε > 1, v̄ is purely subdominant (i.e. contains no dominant-mode contribution) in a

contracting universe. By contrast, ū and fs(x) are always linearly independent, and hence

limx→0 fsub(x)/ū(x) = 0 for all ε. Thus, we can use the freedom in defining fdom to choose

fdom(x) = ū(x) =
P1

2x
(π/4)1/2H(1)

α (x) (4.29)

for the dominant piece.

Notice that the expressions (4.27) for fsub(x) and (4.29) for fdom(x) are both invariant

under ε → 1/ε, because α is invariant. Thus, we see that the subdominant mode automati-

cally possesses this symmetry, since fsub(x) is uniquely determined (up to a normalization
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factor) by the condition (4.22). Furthermore, we have shown that we can choose a linear

combination of ū(x) and v̄(x) such that fdom(x) displays the same symmetry. (If we had

made the wrong choice for fdom(x), then the exact ε → 1/ε symmetry of the dominant

mode would be hidden, and would only re-appear in the long-wavelength limit.)

In the x → 0 limit, define dominant and subdominant scalar spectral indices, ndom and

nsub, which satisfy

x3|fdom|2 ∝ xndom−1 (4.30a)

x3| fsub |2 ∝ xnsub−1 (4.30b)

Using (4.27) and (4.29), along with the Hankel identity (4.24), we find

ndom − 1 = 1 − 2α = 1 −
∣∣∣ε + 1
ε − 1

∣∣∣ (4.31a)

nsub − 1 = 3 − 2γ = 3 −
∣∣∣∣∣∣∣ε + 1

ε − 1

∣∣∣− 2
∣∣∣∣ (4.31b)

These spectral indices are plotted in Fig. 4.2a (as a function of w), and in Fig. 4.2b (as

a function of ε). Again, notice that ndom and nsub are both invariant under ε → 1/ε. This

symmetry is manifest in Fig. 4.2b.

Since ε lies in the range 0 ≤ ε < ∞, this duality formally pairs every expanding (ε < 1)

universe with a contracting (ε̂ > 1) universe, and vice versa. However, the background

solution (4.5) is only stable against small perturbations in two cases: (i) expanding with ε <

1 or (ii) contracting with ε > 3 [69, 59]. Thus, an expanding model and its contracting dual

are both stable when ε < 1/3 (w < −7/9) and ε̂ > 3 (ŵ > 1). Also note, in agreement with

[69], that there are only two limits in which an approximately scale-invariant (ngrow−1 ≈ 0)

spectrum of scalar perturbations is produced: (i) when ε → 0 (w → −1), corresponding to

the inflationary regime and (ii) when ε → ∞ (w → ∞) corresponding to the cyclic/ekpyrotic

regime.

The dominant and subdominant pieces, fdom(x) and fsub(x) are related to the growing

and decaying modes of ū and v̄, which may simply be obtained by replacing the Hankel
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Figure 4.2: The dominant and subdominant scalar spectral indices (a) as a function of w
and (b) as a function of lnε. Note especially the symmetry of (b).
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functions in (4.21a,4.21b) with the corresponding Neumann functions or Bessel functions:

ūgrow ∝ x−1Yα(x) ūdecay ∝ x−1Jα(x) (4.32a)

v̄grow ∝ Yβ(x) v̄decay ∝ Jβ(x). (4.32b)

We may define growing-mode and decaying-mode spectral indices for ū and v̄, just as we

did for fsub and fdom in (4.30). Now restrict attention to the ranges ε < 1/3 and ε̂ > 3

(i.e. the range over which the duality pairs stable expanding models to stable contracting

models). Then, using (4.32) along with the (4.24), we find

• The growing-mode and decaying-mode spectral indices associated with ū are simply

equal to ndom and nsub, respectively.

• The growing-mode spectral index associated with v̄ is equal to ndom in an expanding

(ε < 1/3) universe, but is equal to nsub in a contracting (ε̂ > 3) universe.

4.5 Tensor perturbations

Tensor perturbations are much simpler than scalar perturbations. The perturbed metric is

ds2/a2 = −dτ2 + [δij + 2hT Y
(2)
ij ]dxidxj (4.33)

where Y
(2)
ij is a tensor harmonic (see Appendix C in [99]). The tensor perturbation hT is

gauge-invariant and obeys

h′′
T + 2(a′/a)h′

T + k2hT = 0. (4.34)

It is useful to define a new variable fT ≡ ahT which obeys

f ′′
T + (k2 − a′′/a)fT = 0. (4.35)

Again, the standard vacuum choice is the Minkowski vacuum of a comoving observer in the

far past, corresponding to the boundary condition

fT → (2k)−1/2e−ikτ as τ → −∞. (4.36)
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We can now solve for fT , just as in the scalar case. But it is simpler to notice that (4.5) and

(4.11) imply z(τ) ∝ a(τ), and hence z′′/z = a′′/a when ε is constant. Thus, since v and fT

obey identical equations of motion (compare (4.12b) with (5.9)) and boundary conditions

(compare (4.14b) with (4.36)), we find

fT = v = P2(πx/4k)1/2H
(1)
β (x). (4.37)

The tensor spectral index is defined in the long-wavelength limit by k3|fT |2 ∝ knT .

Using (4.24) and (4.37) we find

nT = 3 − 2β = 3 −
∣∣∣∣ε − 3
ε − 1

∣∣∣∣ . (4.38)

Note, in particular, that this expression is not invariant under ε → 1/ε. An expanding

universe with equation of state ε produces a tensor spectrum which is much redder than

the tensor spectrum produced in a contracting universe with ε̂ = 1/ε: nT ≤ n̂T − 2.

4.6 Other dualities

It is interesting to contrast our duality with other cosmological dualities that have been

discussed in the literature.

One duality, due to Wands [175] (see also [155]), pairs models that share the same “v”

perturbations. By contrast, our duality pairs models that share the same “u” perturbations.

(Note: the variable called “u” in [175] is called “v” in the present chapter, in agreement with

Mukhanov’s convention [120, 121, 123].) Thus, whereas our duality connects expanding

and contracting models through the substitution ε → ε̂ = 1/ε (which leaves θ′′/θ, and

hence u, invariant), Wands’ duality instead uses the substitution ε → ε̂ = (2ε − 3)/(ε − 2)

(which leaves z′′/z, and hence v, invariant). For example, his duality pairs an expanding

inflationary solution (ε = 0, w = −1) with a contracting dustlike solution (ε̂ = 3/2, ŵ = 0).

Another difference between our duality and Wands’ stems from the fact that v is purely

subdominant (i.e. contains no dominant-mode contribution) in a contracting universe (see

section 4.4). Thus, whereas our duality maps the expanding-phase dominant mode to



90

the contracting-phase dominant mode, and the expanding-phase subdominant mode to the

contracting-phase subdominant mode, Wands’ duality instead associates the expanding-

phase dominant mode with the contracting-phase subdominant mode.

A second interesting duality, discussed by Brustein et al. [28], applies to a broad class

of cosmological perturbations. Associated with each type of perturbation is a “pump”—a

particular function of the background fields. The Hamiltonian governing a given pertur-

bation is invariant under a transformation that swaps the perturbation with its conjugate

momentum, and simultaneously inverts the appropriate pump function [28]. It is instructive

to apply this duality to the u and v variables considered in the present chapter. In this

case, the Brustein et al. duality associates an expanding solution characterized by θ (or ε)

to a contracting universe characterized by θ̂ = 1/θ = z (or ε̂ = 2 − ε). The transformation

ε → ε̂ = 2 − ε effectively swaps the variables u and v

u → û = (i/2k)v (4.39a)

v → v̂ = (2k/i)u (4.39b)

as may be verified from (4.19a,4.19b).

Recall that ε lies in the range 0 ≤ ε < ∞. Thus, our duality formally pairs every

expanding (0 ≤ ε < 1) solution with a contracting (1 < ε̂ < ∞) solution, and vice versa.

By contrast, Wands’ duality relates every expanding solution to a contracting solution with

1 < ε̂ ≤ 3/2; but contracting solutions with ε̂ > 3/2 have no expanding dual. Similarly,

Brustein et al.’s duality pairs every expanding solution with a contracting solution in the

range 1 < ε̂ ≤ 2; but contracting solutions with ε̂ > 2 have no expanding dual.

The constant-ε background solutions (4.5) are only practically useful if they are dynam-

ically stable. Recall that the contracting solutions are stable if and only if ε > 3 (w > 1)

[69, 59]. Thus, Wands’ and Brustein et al.’s dualities relate every expanding solution to an

unstable contracting solution. By contrast, our duality relates stable expanding solutions

with 0 ≤ ε < 1/3 (−1 ≤ w < −7/9) to stable contracting solutions with 3 < ε̂ < ∞
(1 < ŵ < ∞). In terms of the spectral index, this means that ns > 0 may be produced

either by a stable expanding phase or by a stable contracting phase (provided that cos-
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Transformation of Range Maps stable
background perturbations of ε to stable? Ref.
ε → 1/ε u → u [0,∞) Yes, if ns > 0 -
ε → 2ε−3

ε−2 v → v [0, 3/2] never [175, 155]
ε → 2 − ε u ↔ (i/2k)v [0, 2] never [28]

Table 4.1: Comparison of the duality presented here with those presented by Wands [175,
155] and by Brustein et al. [28]. The first two columns show how the background and
perturbation variables transform under each duality. The third column shows the range
of ε to which the duality applies. The fourth column indicates the condition under which
an expanding background solution and its contracting dual are both stable under small
perturbations.

mological models exist in which the Newtonian potential perturbations produced during

the contracting phase successfully propagate into the expanding phase, as discussed in the

introduction). In the real universe, the condition ns > 0 is satisfied (experiments favor

ns ≈ 1), so that our duality is of practical relevance in cosmological model building. Some

properties of the three different duality relations are summarized in Table I.

Finally, a number of authors have discussed cosmological symmetries of the low-energy

string effective action. If one neglects all fields in this action besides the dilaton and the

metric, then there is a well–known “scale–factor duality” [172, 167, 144]: starting with any

cosmological solution, one can use this duality to generate new solutions. If, in addition to

the dilaton, one includes other fields (axions, moduli,. . . ), then the cosmological solutions

may display more general dualities, and the resulting perturbation spectra may be invariant

under these dualities [37, 38, 106, 27, 30, 31]. But note that these symmetries typically relate

different solutions of a single effective action. By contrast, the dualities in Table I relate two

different cosmological background solutions corresponding to two different Lagrangians: an

expanding universe, with potential V (φ), is dual to a contracting universe, with a different

potential V̂ (φ).
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4.7 Geometric interpretation

Using the background solutions (4.5), we may think of the duality as relating two different

scale factors, a(τ) and â(τ), or two different scalar potentials, V (φ) and V̂ (φ). Alternatively,

recall that a ∝ |t|1/ε and H−1 ≡ a2/a′ ∝ t, where t is the proper time of a comoving observer

and H−1 is the “Hubble scale.” Thus, two dual universes are related by

d lnH/d lna = d lnâ/d lnĤ. (4.40)

So the duality effectively swaps the scale factor with the Hubble scale, and simultane-

ously swaps expansion and contraction. For example, in the ε → 0 (w → −1) limit, the

scale factor grows rapidly while the Hubble length grows slowly; whereas in the ε → ∞
(w → ∞) limit, the Hubble length shrinks rapidly while the scale factor shrinks slowly. Ex-

panding models in which modes exit the horizon most rapidly (w → −1) and most slowly

(w → −1/3), are associated with contracting models in which modes exit most rapidly

(w → ∞) and most slowly (w → −1/3), respectively.

4.8 Generalization to arbitrary spacetime dimension

Thus far, we have discussed the ε → 1/ε duality in the restricted situation that seems likely

to be of greatest physical interest: a background FRW universe with 3 + 1 dimensions,

vanishing spatial curvature, and constant or slowly-varying ε. It is also interesting to see

how it generalizes when each of these restrictions is removed.

In this section, we generalize the discussion from 4 spacetime dimensions to d spacetime

dimensions, with d ≥ 4, while continuing to assume that ε is constant or slowly varying. At

the end of the section, we briefly discuss the generalization to FRW models with arbitrary

spatial curvature: open (K = −1), closed (K = +1), or flat (K = 0).

Gauge-invariant cosmological perturbation theory for FRW models with d spacetime

dimensions and arbitrary spatial curvature K is treated thoroughly in [99] (see especially

the appendices therein).
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The background metric (4.1) obeys the Friedmann equations

(d − 1)(d − 2)a′ 2/a4 = 2ρ (4.41a)

(d − 1)(d − 2) a′′/a3 = (5 − d)ρ + (1 − d)p (4.41b)

where ρ and p are given by (4.3). Instead of w ≡ p/ρ, parameterize the equation of state

with

ε ≡ (2d − 5) + (d − 1)w
d − 2

. (4.42)

From eqs. (4.3, 4.41) we find −1 ≤ w < ∞ or d−4
d−2 ≤ ε < ∞. For constant ε, the solution of

(4.3, 4.41) is

a(τ) = |τ |2/[(d−2)(ε−1)] (4.43a)

φ0(τ) = ± 1
ε − 1

√
2
(

ε − d − 4
d − 2

)
ln|τ | (4.43b)

V (φ) =
3 − ε

(ε − 1)2
exp

[
∓
√

2
(

ε − d − 4
d − 2

)
φ

]
(4.43c)

where we have chosen a(0) = 0, a(1) = 1 and φ0(1) = 0.

As shown in [99], perturbations in d spacetime dimensions may be decomposed into

scalars, vectors and tensors, just as in 4 dimensions, and gauge-invariant variables may

be defined. In particular, we can again introduce scalar perturbations through equations

(4.6a, 4.6b), and describe these perturbations with a single gauge-invariant variable. The

gauge-invariant Newtonian potential, Φ, is most easily understood in “Newtonian gauge”

(B = HL = 0), where it is related to the metric perturbations in a simple way: Φ = A =

−(d−3)HL. The gauge-invariant variable ζ is most easily understood in “comoving gauge”

(HT = δT 0
i = 0), where it is related to the spatial metric perturbation in a simple way:

ζ = −HL. Note also that δφ = 0 in this gauge. If we take the d-dimensional definitions of

u, v, θ and z to be:

u ≡ 1
2

(
d − 2
d − 3

)
a(d−2)/2

φ′
0

Φ v ≡ zζ (4.44)

θ ≡ 1/z ≡ a′

ad/2φ′
0

, (4.45)
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then sections 4.3 and 4.4 immediately generalize to d dimensions. Indeed, it is straightfor-

ward to show that equations (4.12) through (4.29) all remain true in d dimensions, provided

we take ε, u, v, θ, and z to be given by their d-dimensional definitions (4.42), (4.44) and

(4.45).

In particular, this means that the duality extends to d-dimensions: u, fgrow and fdecay are

all invariant under ε → 1/ε. The duality pairs expanding solutions in the range d−4
d−2 ≤ ε < 1

with contracting solutions in the range 1 < ε < ∞. This means that in d = 4, ε lies in the

range 0 ≤ ε < ∞, so that every expanding model has a contracting dual, and vice versa;

whereas in d > 4, the total range of ε is somewhat smaller, so that every expanding model

has a contracting dual, but contracting models with ε > d−2
d−4 have no expanding dual.

In the x → 0 limit in d dimensions, define the growing and decaying spectral indices

xd−1|fgrow|2 ∝ xngrow−1 (4.46a)

xd−1|fdecay|2 ∝ xndecay−1. (4.46b)

Then, using (4.72a), (4.24), (4.27), (4.28) and (4.29) we find

ngrow − 1 = d − 3 −
∣∣∣ε + 1
ε − 1

∣∣∣ (4.47a)

ndecay − 1 = d − 1 −
∣∣∣∣∣∣∣ε + 1

ε − 1

∣∣∣− 2
∣∣∣∣ (4.47b)

with ε given by (4.42). Note that these expressions are invariant under ε → 1/ε.

As shown in [99], we may again introduce tensor perturbations through eq. (4.33). Now

define the gauge-invariant variable fT ≡ a(d−2)/2hT which obeys

f ′′
T + [k2 − (a(d−2)/2)′′/a(d−2)/2]fT = 0 (4.48)

along with the boundary condition (4.36). Using (4.36), (4.43) and (4.48) we find that

solution for fT is still given by (4.37) in d dimensions. In the k → 0 limit, define the tensor

spectral index kd−1|f |2 ∝ knT . Then, using (4.24) and (4.37) we find

nT = d − 1 −
∣∣∣∣ε − 3
ε − 1

∣∣∣∣ (4.49)
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with ε given by (4.42). Note that this expression is not invariant under ε → 1/ε. Thus, the

situation in d spacetime dimensions is the same as it was in 4 spacetime dimensions: the

scalar perturbations are invariant under ε → 1/ε (in the sense we have explained), but the

tensor perturbations are not. This completes the generalization to d spacetime dimensions.

Before ending this section, let us very briefly discuss how the duality generalizes in FRW

models with arbitrary spatial curvature (K = −1, 0,+1). Although this generalization may

be purely academic, we hope that — along with the rest of this section — it may provide

some clues for solving the more physically-relevant puzzle of how to recast the duality

in a more general form that makes its physical origin more transparent and accomodates

time-varying ε. This subject is the focus of the next section.

To understand the generalization to arbitrary K, first note that when K = 0 the duality

is actually slightly more general than we have emphasized up to this point: the perturbation

u(k, τ) produced by an expanding universe characterized by ε actually matches the pertur-

bation û(k/c, cτ) produced by a contracting universe characterized by ε̂ = 1/ε. Here c is an

arbitrary constant, which ultimately arises from the well-known fact that the normalization

of the scale factor a(τ) is arbitrary in a spatially-flat (K = 0) universe. When K �= 0, it

turns out [21] that the duality generalizes as follows. The perturbation u(k, y) produced by

an expanding universe characterized by ε matches the perturbation û(k̂, ŷ) produced by a

contracting universe characterized by ε̂ = 1/ε, provided k and k̂ are related by

1
(ε−1)2

[
(2k)2

(d−2)2
+K(ε−2)2+4K

ε−3
d−2

]
=

1
(ε̂−1)2

[
(2k̂)2

(d−2)2
+K(ε̂−2)2+4K

ε̂−3
d−2

]
. (4.50)

Here ε is given by (4.42), and we have defined the time coordinate y ≡ |τ/q|, where q =

2
(d−2)(ε−1) . Since K is non-zero, the normalization of the scale factor a(τ) is no longer

arbitrary. This is why there is no longer an arbitrary constant c in the duality, and instead

there is a fixed relationship between {k, y} and {k̂, ŷ}.
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4.9 Generalization to time-varying ε

In the previous section, we have seen that the duality easily generalizes to FRW models with

arbitrary spacetime dimension d, as long as ε is constant or slowly-varying. Now we would

like to generalize to the situation where ε is time-varying: given an expanding (inflationary)

background solution with ε = ε(τ), what other background solutions produce the same

spectrum of u perturbations? Preferably, we would like to find an answer to this question

that retains the simplicity and elegance of the ε → 1/ε prescription. We do not yet have

the final answer to this intriguing challenge, but we will describe a few interesting partial

answers, with the hope that they will provide clues to uncovering the full story.

We have seen that u satisfies the equation of motion (4.12a) and the boundary condition

(4.14a), where

θ2 =
a−da′ 2

(d − 2)[2(a′/a)2 − a′′/a]
. (4.51)

Note that we have used Eqs. (4.3), (4.41) and (4.45) to rewrite θ(τ) purely in terms of a(τ)

and its derivatives.

Two models, with scale factors a(τ) and â(τ), will share the same u(k, τ) provided

θ̂′′/θ̂ = θ′′/θ. (4.52)

It is useful to note that the differential condition (4.52) is equivalent to the integral condition

1 =
(

A1 + A2

∫ τ dτ

θ2

)(
Â2 + Â2

∫ τ dτ

θ̂2

)
(4.53)

for arbitary constants A1, A2, Â1 and Â2.

If we are given a fiducial background solution with scale factor a(τ), then we can use

(4.51) to compute θ(τ). Next we can solve (4.52) to find a 2-parameter family of solutions:

θ̂ = θ(τ)
[
B1 + B2

∫ τ dτ ′

θ2(τ ′)

]
. (4.54)

And finally, for each function θ̂(τ) in this 2-parameter family, we can solve (4.51) to find

a 2-parameter family of solutions for â(τ). By this counting, we find that each fiducial

background solution a(τ) should give rise to a 4-parameter family of background solutions
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â(τ) that generate the same u(k, τ). It is easy to see, though, that one of these 4 parameters

is unphysical — it corresponds to the freedom to rescale the spatial coordinates, and hence

a(τ), by an arbitary constant. Thus, we expect to find a 3-parameter family of genuinely

distinct solutions â(τ).

In some sense, then, these expressions — (4.51) together with (4.52) or (4.53) — provide

an answer to the question of how the duality generalizes when ε = ε(τ) is time-varying. But

it would certainly be nicer to recast this generalization in a simpler, more explicit, and

hopefully more elegant form — something closer in spirit to ε → 1/ε. One way to achieve

this goal would be to solve the equations (4.51) and (4.52) directly. At first glance, this

seems like it would be very difficult since, for a given fiducial background solution a(τ),

these equations together constitute a fourth-order nonlinear differential equation for â(τ).

Surprisingly, though, it turns out to be possible to completely solve the problem in full

generality in 2 + 1 dimensions, and at least partially solve it in 3 + 1 dimensions. And,

what’s more, the solutions turn out to again be surprisingly simple and elegant, just as we

had hoped! This hints that in 3 + 1 dimensions, an elegant and fully-general solution — a

proper generalization of the ε → 1/ε duality — may still be lurking.

Let us therefore sketch the general solution in 2+1 dimensions, and the partial solution

in 3+1 dimensions, in the hopes that these may provide clues to finding the general solution

in 3 + 1 dimensions.

4.9.1 2 + 1 dimensions

In 2 + 1 spacetime dimensions (d = 3), we can evaluate the integrals in (4.53) to obtain

1 =
(

A1 +
A2

H(τ)

)(
Â1 +

Â2

Ĥ(τ)

)
(4.55)

where H(τ) = a′/a2 is the Hubble parameter. Rearranging, we find that the condition

θ̂′′/θ̂ = θ′′/θ is equivalent, in 2+1 dimensions, to the condition that

Ĥ(τ) =
B1H(τ) + B2

B3H(τ) + B4
. (4.56)
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for arbitrary constants B1, B2, B3 and B4. This is a complete and elegant description of

the set fo transformations that leave u(k, τ) invariant in 2 + 1 dimensions. Before moving

on, let us use this transformation to infer a few other interesting results.

We can integrate (4.56) to find

â(τ) = −
[∫ τ B1H(τ ′) + B2

B3H(τ ′) + B4
dτ ′
]−1

. (4.57)

Alternatively, by differentiating (4.56) we obtain

Ĥ ′ =
(B1B4 − B2B3)H ′

(B3H + B4)2
. (4.58)

It is easy to show that our single scalar field system must satisfy the condition H ′(τ) ≤ 0

(because it satisfies the weak energy condition). But, assuming a(τ) satisfies the condition

H ′(τ) ≤ 0, then â(τ) will also satisfy the corresponding condition Ĥ ′(τ) ≤ 0 if and only if

B1B4 − B2B3 > 0. Furthermore, note that the transformation law (4.56) is invariant if we

rescale all the Bi’s by an arbitrary constant: Bi → CBi. Thus, we can always take the Bi’s

to satisfy

B1B4 − B2B3 = 1. (4.59)

Now, instead of thinking of the right-hand-side of (4.56) as a fraction, think of the

numerator and denominator as the components of a 2-component vector. Then we can

think of the transformation (4.56) as a linear transformation:

Ĥ =

 B1 B2

B3 B4

 H

1

 . (4.60)

This is a good way to think about it since, as one can check, successive transformations

of the form (4.56) simply compose under ordinary matrix multiplication. In combination

with (4.59), this shows that the group of transformations of H(τ) leaving u invariant is just

SL(2,R).

Next, let us characterize the set of transformations that leave both u(k, τ) and v(k, τ)

simultaneously invariant. First recall that v may be obtained from u via the equation

(4.13a)

v = 2[u′ − (θ′/θ)u]. (4.61)
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After the transformation (4.56), we have

v̂ = 2[û′ − (θ̂′/θ̂)û]. (4.62)

Now, using û = u and θ = H(−H ′)−1/2, which implies

θ̂′

θ̂
=

θ′

θ
− B2H

′

H(B1H + B2)
, (4.63)

we find

v̂ = v +
2B2H

′

H(B1H + B2)
u. (4.64)

So there are two cases in which v̂ = v: a general case and a special case. The general case

is B2 = 0. That is, the transformations (4.56) that leave both u and v invariant form the

lower-triangular subgroup of SL(2,R). The special case is H ′(τ) = 0, corresponding to

pure deSitter. The transformation (4.56) is degenerate in this case, and just maps deSitter

solutions to other deSitter solutions.

Finally, let us consider “dominant” and “subdominant” scalar perturbations (see section

4.4). When ε was nearly constant, we showed that the dominant and subdominant modes

were both invariant under the transformation ε → 1/ε. Let us now show that, in 2 +

1 dimensions, the dominant and subdominant modes are both invariant under the full

set of transformations (4.56), even for arbitrary time-dependent ε(τ). First construct the

subdominant mode from u and v:

fsub(x) = v −
[
lim
k→0

v

u

]
u (4.65)

where the limit is taken holding τ fixed. Thus, under the transformation (4.56), this becomes

f̂sub(x) = v̂ −
[
lim
k→0

v̂

û

]
û. (4.66)

Then, using û = u and equation (4.64) for v̂, we immediately find

f̂sub(x) = fsub(x). (4.67)

Now, assuming u and fsub are linearly independent, we can choose fdom = u. So both

fsub(x) (automatically) and fdom(x) (by choice) are both invariant under the full SL(2,R)

symmetry represented by the transformations (4.56).



100

4.9.2 3 + 1 dimensions

Note that in 3 + 1 spacetime dimensions (d = 4), we can rewrite θ′′/θ as

θ′′

θ
= g +

(g−1/2)′′

(g−1/2)
, (4.68)

where

g ≡ (1/a)′′

(1/a)
. (4.69)

Thus, if two background solutions a(τ) and â(τ) generate functions g(τ) and ĝ(τ) such that

g(τ) = ĝ(τ), then it follows from (4.68) that θ′′/θ = θ̂′′/θ̂. But, given a fiducial background

solution a(τ), the family of background solutions â(τ) that generate the same g(τ) is simply

given by

â(τ) = a(τ)
[
C1 + C2

∫ τ

a2(τ ′)dτ ′
]−1

. (4.70)

Thus, we have found a partial solution to the full problem: we expect a 4-parameter family

of solutions â(τ) that generate the same u(k, τ), and we have found a 2-parameter sub-

family. One of the parameters (in the full 4-parameter family, and also in our 2-parameter

subfamily) corresponds to an unphysical rescaling of the spatial coordinates and the scale

factor, as discussed above. So it is more correct to say that we have found a 1-parameter

subfamily of the full 3-parameter family of physically-distinct background solutions a(τ)

that generate the same u(k, τ) in 3 + 1 dimensions.

It is interesting to explore this 1-parameter subfamily in a particular example. Let

the fiducial background solution be a(τ) = |τ |p (often called power-law inflation). Until

now, power-law inflation has been the only example in the literature of a model where one

can solve exactly for both the background evolution, as well as the evolution of the scalar

and tensor perturbations. It has therefore provided an important cross-check for numerical

calculations and analytic approximations (notably the slow-roll approximation). We will

now show that, by applying the techniques discussed above, we obtain a new family of

background solutions — a generalization of power-law inflation — in which it is possible

to solve exactly for both the background evolution as well as the evolution of the scalar

and tensor perturbations. Considering their generality, these solutions are actually rather
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simple, and we hope that they may be useful in some of the contexts where the exact

solutions provided by power law inflation have been useful in the past.

To solve for the background evolution in this example, we first use Eq. (4.70) to obtain

a family of scale factors a(τ). We then use the Friedmann equations (4.2) to solve for the

corresponding scalar field evolution φ(τ), and the scalar field potential V (φ).

a(τ) = a0

(
r+TL

+
/2+ r−TL

−
/2

)−1

(4.71a)

φ(τ) = −L lnT (4.71b)

V (φ) = V0

[
r2
+
L

+
(L

+
+1)eφL

−
/L+ 4r+r−L

+
L

−
eφ/L+ r2

−L
−
(L

−
+1)eφL

+
/L

]
. (4.71c)

Here a0, τ0, r+ and r− denote arbitrary constants and for brevity we have used the notation

T ≡ |τ/τ0| and defined the constants

α ≡ 1
2

∣∣∣∣1 + ε

1 − ε

∣∣∣∣ (4.72a)

L
± ≡ 1 ± 2α (4.72b)

L ≡
√

−L+L−/2 (4.72c)

V0 ≡ 1
2a2

0τ
2
0

. (4.72d)

For reference, here are several useful background quantities that are directly obtained from
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the background solutions (4.71)

θ =
T 1/2

2a0L

[
g+(τ) + g−(τ)

]
(4.73a)

z =
2a0L

T 1/2

[
g+(τ) + g−(τ)

]−1 (4.73b)

a′

a
=

−1
2τ

[
r+L

+
Tα + r−L

−
T−α

r+Tα + r−T−α

]
(4.73c)

θ′

θ
=

+1
2τ

[
L

+
g+(τ) + L

−
g−(τ)

g+(τ) + g−(τ)

]
(4.73d)

z′

z
=

−1
2τ

[
L

+
g+(τ) + L

−
g−(τ)

g+(τ) + g−(τ)

]
(4.73e)

a′′

a
=

r2
+
L

+
(L

+
+2)T 2α+ 6r+r−L

+
L

−
+ r2

−L
−
(L

−
+2)T−2α

4τ2(r−Tα + r−T−α)2
(4.73f)

θ′′

θ
= −L

+
L

−

4τ2
(4.73g)

z′′

z
=

L
+
(L

+
+2)g2

+
(τ)+ 6L

+
L

−
g+(τ)g−(τ)+ L

−
(L

−
+2)g2

−(τ)
4τ2[g+(τ) + g−(τ)]2

(4.73h)

where we have defined

g±(τ) ≡ r±L
±
T±α. (4.74)

Next, we can substitute these background quantities into the equation of motions of

motion — (4.12a) for the scalar perturbation variable u, (4.12b) for the scalar perturbation

variable v, and (5.9) for the tensor perturbation variable fT — and thus find the general

solutions

u =
∑

n=1,2

An(k)x1/2H(n)
α (x) (4.75a)

v =
∑

n=1,2

Bn(k)x1/2

[
g+(τ)H(n)

α+1(x) − g−(τ)H(n)
α−1(x)

g+(τ) + g−(τ)

]
(4.75b)

fT =
∑

n=1,2

Cn(k)x1/2

[
r+TαH

(n)
α+1(x) − r−T−αH

(n)
α−1(x)

r+Tα + r−T−α

]
(4.75c)

where A1(k), A2(k), B1(k), B2(k), C1(k), and C2(k) are (possibly k-dependent) constants.

To determine these constants, we can impose the boundary conditions — (4.14a) for u,
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(4.14b) for v, and (4.36) for fT — to obtain

u =
P
2k

(πx

4k

)1/2
H(1)

α (x), (4.76a)

v = P
(πx

4k

)1/2
[

g+(τ)H(1)
α+1(x) − g−(τ)H(1)

α−1(x)
g+(τ) + g−(τ)

]
, (4.76b)

fT = P
(πx

4k

)1/2
[

r+TαH
(1)
α+1(x) − r−T−αH

(1)
α−1(x)

r+Tα + r−T−α

]
, (4.76c)

where we have defined the complex phase

P ≡ exp[i(2α + 3)π/4]. (4.77)

In particular, notice that the u solution is completely independent of the parameters r+ and

r− , and is further invariant under the transformation ε → 1/ε. In other words, regardless

of the choice of r+ and r− , the solution (4.19a) for u(k, τ) is precisely the one that would be

produced by a simple power-law inflation model characterized by equation of state ε. By

contrast, the v and fT solutions depend explicitly on r+ and r− and are not invariant under

the transformation ε → 1/ε.

4.10 Discussion

Beyond its inherent theoretical interest, our duality may be observationally relevant if (as

discussed in section 4.1) long-wavelength correlations produced during a contracting phase

successfully propagate into a subsequent expanding phase. This suggests a fundamental

degeneracy: an ideal measurement of the “primordial” scalar perturbation spectrum may

be unable to determine whether the perturbations were generated by an expanding phase

or by its contracting dual. Luckily, as shown in section 4.5, tensor perturbations break

this degeneracy: a contracting model produces a much bluer tensor spectrum than its

expanding dual. In particular, a detection of tensors in the cosmic microwave background

would indicate that these perturbations were generated in an expanding phase, since the

dual contracting phase would produce an undetectably small tensor spectrum on these

cosmological length scales [93, 23].



104

We have explained how the duality works in a broad range of contexts, but a number of

interesting questions remain. What, if anything, is one to make of the geometrical aspects

of the duality, discussed in section 4.7? What is the best way to formulate and understand

the duality physically, and what is its general form? In particular, is there a simple and

general rule relating models, even when ε is time-dependent, that retains the elegance of

the ε → 1/ε prescription? There are hints that the answer may be “yes,” and the previous

section discusses several ideas along this line. We have studied the duality in the context

of a simple model — an FRW spacetime containing a single scalar field φ with potential

V (φ) and a canonical kinetic term; but what happens in more complicated models? And

we have used linear perturbation theory; but what happens in the nonlinear regime?



Chapter 5

The gravitational wave spectrum

from the cyclic model

This last chapter is based on work done in collaboration with Paul Steinhardt and Neil

Turok. Apart from fairly minor updates and modifications, it originally appeared as [23]. I

thank Andrew Tolley and Justin Khoury for helpful conversations.

5.1 Introduction

The recently-proposed cyclic model[159, 158] differs radically from standard inflationary

cosmology [74, 107, 4], while retaining the inflationary predictions of homogeneity, flatness,

and nearly scale-invariant density perturbations. It has been suggested that the cosmic

gravitational wave background provides the best experimental means for distinguishing the

two models. Inflation predicts a nearly scale-invariant (slightly red) spectrum of primordial

tensor perturbations, whereas the cyclic model predicts a blue spectrum [93]. The difference

arises because inflation involves an early phase of hyper-rapid cosmic acceleration, whereas

the cyclic model does not.

In this chapter, we compute the gravitational wave spectrum for cyclic models to obtain

both the normalization and spectral shape as a function of model parameters, improving

105
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V(φ)

φ1

2

3

4 5
6φend

Vend

Figure 5.1: Schematic of cyclic potential with numbers representing the stages described in
the text. To the left of φend, where the scalar kinetic energy dominates, we approximate V
with a Heaviside function, jumping to zero as shown by the dashed line.

upon earlier heuristic estimates. We make the assumption that perturbations pass smoothly

through the bounce, as discussed in the previous chapter. Under this assumption, we

find that the spectrum is strongly blue. The amplitude is too small to be observed by

currently proposed detectors on all scales. Hence, the discovery of a stochastic background

of gravitational waves would be evidence in favor of inflation, and would rule out the cyclic

model.

Readers unfamiliar with the cyclic model may consult [160] for an informal tour, and

[96] for a recent analysis of phenomenological constraints. Cyclic cosmology draws strongly

on earlier ideas associated with the “ekpyrotic universe” scenario [93, 91, 94]. Briefly, the

scenario can be described in terms of the periodic collision of orbifold planes moving in

an extra spatial dimension, or, equivalently, in terms of a four-dimensional theory with

an evolving (modulus) field φ rolling back and forth in an effective potential V (φ). The
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potential (Fig. 1) is small and positive for large φ, falling steeply negative at intermediate

φ, and increasing again for negative φ.

Each cycle consists of the following stages: (1) φ large and decreasing: the universe

expands at an accelerated rate as V (φ) > 0 acts as dark energy; (2) φ intermediate and

decreasing: the universe is dominated by a combination of scalar kinetic and potential

energy, leading to slow contraction and to the generation of fluctuations; (3) φ negative and

decreasing (beginning at conformal time τend < 0): the generation of fluctuations ends, φ

rolls past φend so that the string coupling vanishes as φ runs off to −∞ and, in the four-

dimensional description, the universe contracts rapidly, dominated by scalar field kinetic

energy, to the bounce (τ = 0) at which matter and radiation are generated; (4) φ increasing

from minus infinity: the universe remains dominated by scalar field kinetic energy, which

decreases rapidly compared to the radiation energy; (5) φ large and increasing (beginning

at τr > 0): the scalar field kinetic energy red-shifts to a negligible value and the universe

begins the radiation dominated expanding phase; (6) φ large and nearly stationary: the

universe undergoes the transitions to matter and dark energy domination, and the cycle

begins anew.

5.2 Background evolution

During stage 2 (φ > φend), the potential V (φ) must be exponentially steep to produce

acceptable scalar perturbations. But when V (φ) ceases to be exponentially steep (stage 3,

φ < φend), the potential energy becomes negligible compared to the kinetic energy, which

blue shifts and dominates the universe. Since φ acts like a free scalar field in this regime, we

may simplify calculations by setting V (φ) to zero without any loss of generality, as discussed

in [159, 96]. We therefore model the potential as:

V (φ) = V0(1 − e−cφ/Mpl)Θ(φ − φend) (5.1)

where Mpl is the reduced Planck mass and the Heaviside step function Θ(φ − φend) sets

V (φ) to zero when φ < φend. Choosing c = 10 for example results in a scalar spectral index
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ns = .96 which is compatible with current constraints.

Our calculation begins in the “ekpyrotic phase,” stage (2), with the Einstein-frame scale

factor contracting:

a(τ) = aend

(
τ − τek

τend − τek

)α

, τ < τend , (5.2)

where α ≡ 2/(c2 − 2) � 1 and τek ≡ (1 − 2α)τend, being the conformal time the potential

would have diverged to minus infinity had the exponential form continued. At τ = τend,

the ekpyrotic phase ends and the “contracting kinetic phase,” stage (3), begins:

a(τ) =
( − τ

(1 + χ)τr

)1/2

, τend < τ < 0 . (5.3)

At τ = 0, the universe bounces and the “expanding kinetic phase,” stage (4), begins:

a(τ) =
(

τ

τr

)1/2

, 0 < τ < τr . (5.4)

Radiation is produced at the bounce, but is less than the scalar kinetic energy until, at τ =

τr, the expanding kinetic phase ends, and standard radiation-dominated, matter-dominated,

and dark-energy-dominated epochs ensue. The transition times, τr and τend, are given by

τr = (
√

2Hr)−1, τend = − τr/Γ, (5.5)

and

Γ ≡
∣∣∣∣ τr

τend

∣∣∣∣ =
[

1
1 + χ

(
2α

1 − 2α

)(
Vend

H2
r M2

pl

)]1/3

, (5.6)

where Hr ≡ H(τr) is the Hubble constant at τr, Vend = −V (φend) is the depth of the

potential at its minimum, and χ � 1 is a small positive constant that measures the amount

of radiation created at the bounce. Note that a(τ) and a′(τ) are both continuous at the

transition time τ = τend, and we have chosen to normalize a(τ) to unity at the start of

radiation domination (a(τr) = 1).

5.3 Primordial strain spectrum, ∆h(k, τr).

A quasi-stationary stochastic background of gravitational waves is characterized by the

quantity ∆h(k, τ), the rms dimensionless strain per unit logarithmic wavenumber at time
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τ . Accounting for both polarizations, it is given by ∆h(k, τ) = k3/2|hk(τ)|/π, where the

Fourier amplitude hk(τ) satisfies

h′′
k + 2

a′

a
h′

k + k2hk = 0 . (5.7)

In the cyclic model, all modes inside the horizon today exited the horizon during the con-

tracting phase, and re-entered during the expanding phase. Early in the ekpyrotic phase

(that is, in stage (2), with τ →−∞), these modes were far inside the Hubble volume, which

had been smoothed, flattened and cleaned of debris by the dark energy epoch, stage (1).

All modes of interest are therefore expected to be in their usual Minkowski vacuum at the

start of stage (2), implying the boundary condition

hk(τ) → e−ikτ

a(τ)Mpl

√
2k

as τ → −∞. (5.8)

To solve equation (5.7), it is useful to define fk(τ) ≡ a(τ)hk(τ) and rewrite (5.7) as

(fk)′′ + (k2 − a′′

a
)fk = 0 . (5.9)

During the ekpyrotic phase, a(τ) is given by (5.2), and the general solution of (5.9) is

fk(τ) =
√

y
(
A1(k)H(1)

n (y) + A2(k)H(2)
n (y)

)
, (5.10)

where A1,2(k) are arbitrary constants, n ≡ 1
2 −α, y ≡ −k(τ−τek), and H

(1,2)
n are the Hankel

functions. Asymptotically, H
(1,2)
n (y) →

√
2

πy e±iy, so (5.8,5.10) imply

A1(k) =
1
2

√
π

k
, A2(k) = 0, (5.11)

where we have dropped a physically irrelevant phase. In the contracting kinetic phase, stage

(4), a(τ) is given by (5.3), and the general solution of (5.9) is

fk(τ)=
√−kτ

(
B1(k)H(1)

0 (−kτ)+B2(k)H(2)
0 (−kτ)

)
(5.12)

where B1,2(k) are arbitrary constants. Then, continuity of hk and h′
k at τ = τend implies

B1,2(k) = ∓ iπ

4

√
πα

2k
xe

[
H

(2,1)
1 (xe)H(1)

n (2αxe)+

+H
(2,1)
0 (xe)H

(1)
n−1(2αxe)

]
(5.13)
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where xe ≡ k|τend|. Finally, in the expanding kinetic phase, a(τ) is given by (5.4), and the

general solution of (5.9) is

fk(τ) =
√

kτ
(
C1(k)H(1)

0 (kτ) + C2(k)H(2)
0 (kτ)

)
. (5.14)

From (5.7), each gravity wave polarization acts just like a massless scalar, and QFT for a

massless scalar in the contracting/expanding Milne geometry near the cyclic model’s bounce

has already been treated by Tolley et al in [163, 164]. (Our problem is even simpler: tensor

perturbations are gauge-invariant.) They find a unique sensible matching condition. One

can think of continuing the fields from the contracting Milne wedge to the expanding one

through the Minkowski space in which they are both naturally embedded. Equivalently,

one may analytically continue the positive (negative) frequency parts of hk ≡ fk/a around

the origin in the lower (upper) half of the complex τ -plane, so H
(1,2)
0 (−kτ)→−H

(2,1)
0 (kτ).

[163, 164] This yields

C1,2(k) = −
√

1 + χ B2,1(k) . (5.15)

The pre-factor arises because a(τ) differs by a factor of
√

1 + χ between the kinetic con-

tracting and expanding phases; see Eqs. (5.3) and (5.4). Combining our results, we arrive at

the “primordial” dimensionless strain spectrum at the beginning of the radiation dominated

epoch:

∆h(k, τr) = (k2/πMpl)
√

2(1 + χ )τr∣∣∣B2(k)H(1)
0 (xr) + B1(k)H(2)

0 (xr)
∣∣∣

where xr ≡ kτr and k < kend. For k > kend, the spectrum is cut off because these modes

are not amplified and, instead, Eq. (5.16) converges to the result for a static Minkowski

background.

5.4 Present-day strain spectrum, ∆h(k, τ0).

To convert from the primordial spectrum to the present-day spectrum ∆h(k, τ0) ≡ Th(k)∆h(k, τr)

we need to know the transfer function, Th(k). To approximate Th(k), note that ∆h(k, τ)

is roughly time-independent outside the horizon, and decays as a−1 once a mode re-enters
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the horizon. Therefore, the transfer function is ∼ 1/(1 + zr) for modes already inside the

horizon at the onset of radiation domination τr, and ∼ 1/(1+ zk) for modes that entered at

red shift zk between τr and τ0. Using the fact that H ∝ a−2 during radiation domination

and H ∝ a−3/2 during matter domination (neglecting the change in g∗) we find

T (k) ≈
(

k0

k

)2 [
1 +

k

keq
+

k2

keqkr

]
(5.16)

where k0 ≡ a0H0, keq ≡ aeqHeq, kr ≡ arHr, and kend ≡ aend|Hend| denote the modes on the

horizon today (τ0), at matter-radiation equality (τeq), at the start of radiation domination

(τr), and at the end of the ekpyrotic phase (τend), respectively.

The gravitational wave spectrum can be divided into three regimes. There is a low

frequency (LF) regime corresponding to long wavelength modes that re-enter after matter-

radiation equality (k < keq), and a medium frequency (MF) regime consisting of modes

which re-enter between equality and the onset of radiation domination (keq < k < kr). (We

ignore the recent dark energy dominated phase, which has negligible effect.) The spectrum

for these two regimes is:

∆h ≈ Γ
1
2 k2

0

πMplHα
r

 k−1+α (LF )

kα/keq (MF )
(5.17)

Finally, modes which exit the horizon during the ekpyrotic phase (before τend), and re-enter

during the expanding kinetic phase (after the bound but before τr) result in a high frequency

(HF) band (kr < k < kend):

∆h≈
(√

2
π

)3
2(ΓHr)

1
2
−αk2

0

Mplkeqkr

∣∣∣cos(kτr−π

4

)∣∣∣k 1
2
+α (HF ) (5.18)

In this expression, we can replace the oscillatory factor cos(. . .) factor by its averaged

value, because it is such a rapidly oscillating function of k that these oscillations cannot

be observed by any known experiment [6]. The HF band runs over a range kend/kr = Γ,

and this quantity is strongly constrained by the requirement that the scalar field cross the

negative region of the potential before radiation domination begins, which requires that [96]

Hr � V
1
2

end

MP l

(
V0

Vend

)q
3
2
/c

, (5.19)
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k-2+ (nT/2)

k-1+(nT/2)

k-1+α

inflation

cyclic

kα
k
(1

/2)+
α

log k

log ∆h

Figure 5.2: A schematic comparison of the dimensionless strain observed today ∆h(k, τ0),
as predicted by inflation and the cyclic model. Here nT is the inflationary tensor spectral
index (a small negative number), and α � 1 in the cyclic model is a small positive number.
kr denotes the mode on the horizon at the start of radiation domination.
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where V0 is today’s value of the dark energy density. This equation, combined with (5.6),

gives a lower bound on Γ, Γ � (Vend/V0)
√

2/3c2 . For example, for Vend around the GUT

scale and c = 10, we find Γ ≥ 108. Fig. 5.2 schematically depicts ∆h(k, τ0) in the cyclic

scenario and compares it to the inflationary spectrum. [168]

Another useful quantity is Ωgw(k, τ0), the gravitational wave energy per unit logarithmic

wavenumber, in units of the critical density [161, 168]

Ωgw(k, τ0) ≡ k

ρcr

dρgw

dk
=

1
6

(
k

k0

)2

∆h(k, τ0)2 . (5.20)

In the cyclic model, Ωgw(k, τ0) is very blue, with nearly all the gravitational wave energy

concentrated at the high-frequency end of the distribution.

5.5 Observational constraints and detectability.

The strongest observational constraint on the gravitational spectrum in the cyclic model

comes from the requirement that the successful predictions of big bang nucleosynthesis

(BBN) not be affected, which requires∫ kend

kBBN

Ωgw(k, τ0)
dk

k
� 0.1

1 + zeq
. (5.21)

From the above equations, (5.18) and (5.20), and using 1 + zeq ≈ k2
eq/k

2
0 , and Tr ∼ H

1
2
r M

1
2
P l

for the temperature at radiation domination, we obtain a total Ω in gravitational waves of

∼ (2αVend/TrM
3
P l)

4
3 [36π3(1 + zeq)]−1. From (5.21), this implies

Tr � α

20
VendM

−3
P l , (5.22)

where, for simplicity, we have ignored the factors which depends on the number of thermal

degrees of freedom, and further weaken this bound.

The other observational constraints are much weaker. [5, 162] From the CMB anisotropy,

one infers ∆h(f ∼ 10−18Hz) � 10−6; from precision pulsar timing, ∆h(f ∼ 10−8Hz) �

10−14. Optimistic goals for the future laser-interferometer gravitational wave experiments

LISA, advanced LIGO, and BBO are strain sensitivities of ∆h(f ∼ 10−4Hz) ∼ 10−20.5,
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∆h(f ∼ 102Hz) ∼ 10−24, and ∆h(f ∼ 1 Hz) ∼ 10−26.5 [129], respectively. Fig. 3 shows

results for values of Tr and Vend consistent with all constraints on the cyclic model [96].

Even if the parameters are chosen to saturate the BBN constraint, the spectrum is still

orders of magnitude below the sensitivity of anticipated instruments. Hence, the detection

of a scale-invariant, stochastic gravitational wave imprint in the CMB polarization would

be consistent with inflation and rule out the cyclic model.
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Figure 5.3: The present-day dimensionless strain, ∆h(k, τ0), predicted by the cyclic model
with Tr = 107 GeV and V

1/4
end = 1014 GeV. These parameters yield a gravity wave density

four orders of magnitude below the BBN bound. Some observational bounds and (opti-
mistic) future strain sensitivities are indicated.
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