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Abstract

In this work we use the AdS/CFT correspondence to study properties of strongly coupled
matter in the presence of fundamental matter fields. The AdS/CFT correspondence relates
string theories living in a geometry that is asymptotically AdS5×S5 with gauge theories living
on the boundary of AdS5 which is four-dimensional Minkowski space. When one side is weakly
coupled the other side is strongly coupled and vice versa, and therefore we can study properties
of strongly coupled field theories by studying classical supergravity. We use two models, the
Karch-Katz model based on a D3-D7-brane system and the Sakai-Sugimoto model based on a
D4-D8-brane system.

Within the model by Karch and Katz we compute the energy spectrum of heavy-light
mesons in an N = 2 super Yang-Mills theory which on the gravity side corresponds to the
fluctuation modes of a string stretching between two flavor branes. In the heavy quark limit,
similar to QCD, we find that the excitation energies are independent of the heavy quark
mass. We also find degeneracies in the spectrum which can be removed upon breaking su-
persymmetry. We consider two supersymmetry breaking scenarios. In one we tilt one of the
fundamental branes leading to the emergence of hyperfine splitting, in the other we apply an
external magnetic field leading to the Zeeman effect.

In the Sakai-Sugimoto model, which, in a certain limit, is dual to large Nc QCD, we study
the effect of large magnetic fields on chiral matter. First, we discuss the proper implementation
of the covariant anomaly and calculate chiral currents in the confined and deconfined phase. We
introduce axial/vector chemical potentials in the system, where in the presence of a magnetic
field a vector/axial current is induced. This is of relevance in the interior of compact stars and
in non-central heavy-ion collisions where in both systems large magnetic fields are present.
In heavy-ion collisions an imbalance in left and right-handed fermions may lead to a vector
current parallel to the magnetic field, termed the chiral magnetic effect. After implementing
the correct covariant anomaly we find an axial current in accordance with previous studies
and a vanishing vector current, in apparent contrast to previous weak-coupling calculations.
Second, we construct a charged and a neutral pion condensate and investigate their properties
in an external magnetic field. In the case of a neutral pion condensate, a magnetic field
is found to induce nonzero gradients of the Goldstone boson fields corresponding to meson
supercurrents. A charged pion condensate, on the other hand, acts as a superconducter and
expels the magnetic field due to the Meissner effect. Upon comparing the free energies of the
two phases we find a critical magnetic field where a first order phase transition between the
charged pion phase and the neutral pion phase occurs.
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Zusammenfassung

In dieser Arbeit verwenden wir die AdS/CFT Korrespondenz um Eigenschaften von stark
gekoppelter Materie in der Gegenwart von fundamentalen Materiefeldern zu untersuchen. Die
AdS/CFT Korrespondenz verbindet Stringtheorien, welche in einem Raum leben, der asymp-
totisch die Geometrie von AdS5×S5 hat, mit Eichtheorien am Rand des AdS5 Raumes, welcher
ein vier-dimensionaler Minkowski Raum ist. Wenn die Stringtheorie stark gekoppelt ist, ist
die Feldtheorie schwach gekoppelt und umgekehrt. Deshalb können wir mittels klassischer Su-
pergravitation stark gekoppelte Feldtheorien untersuchen. Wir verwenden zwei Modelle, das
Karch-Katz Modell, welches auf einem D3-D7-Branen-System basiert, und das Sakai-Sugimoto
Modell, welches aus einem D4-D8-Branen-System besteht.

Unter Verwendung des Karch-Katz Modells berechnen wir das Energiespektrum von Meso-
nen, die aus einem schweren und einem leichten Quark bestehen, in einer N = 2 Super-
Yang-Mills Theorie. Auf der Gravitationsseite entspricht das Energiespektrum der Mesonen
den Fluktuationsmoden von Strings, die zwischen zwei Flavor-Branen hängen. Im Limes für
schwere Quarks finden wir Anregungsenergien, ähnlich wie in QCD, die unabhängig von der
Masse des schweren Quarks sind. Wir finden auch Entartungen im Energiespektrum, die durch
Brechen der Supersymmetrie aufgelöst werden. Wir brechen Supersymmetrie mit zwei ver-
schiedenen Mechanismen. Einerseits verdrehen wir eine der fundamentalen Branen, woraus
eine hyperfeine Struktur im Spektrum resultiert. Andererseits setzen wir ein externes Mag-
netfeld ein, das den Zeeman-Effekt zur Folge hat.

Im Sakai-Sugimoto Modell, das in einem bestimmten Limes dual zu QCD mit vielen Farb-
ladungen ist, untersuchen wir den Effekt großer Magnetfelder auf chirale Materie. Zuerst disku-
tieren wir, wie die korrekte kovariante Anomalie im Modell implementiert wird und berechnen
chirale Ströme in der gebundenen und ungebundenen Phase. Wir führen axiale/vektorielle
chemische Potentiale ein, wobei in der Gegenwart eines Magnetfeldes vektorielle/axiale Ströme
induziert werden. Dies ist im Inneren von kompakten Sternen und in nicht zentralen Schw-
erionen Kollisionen von Bedeutung, wo in beiden Systemen große Magnetfelder auftreten.
In Schwerionen-Kollisionen kann ein Ungleichgewicht von links-und rechts-händigen Fermio-
nen zu einem Vektorstrom führen, der sogenannte Chirale Magnetische Effekt. Nach der
Berücksichtigung der korrekten kovarianten Anomalie finden wir einen axialen Strom, der mit
vorhergehenden Studien übereinstimmt und einen verschwindenden Vektorstrom, im Wider-
spruch zu vorhergehenden Studien mittels schwacher Kopplung.

Danach konstruieren wir geladene und neutrale Pion-Kondensate und untersuchen deren
Eigenschaften in der Gegenwart eines externen magnetischen Feldes. Einerseits finden wir im
Fall des neutralen Pion-Kondensates, dass das Magnetfeld einen nicht verschwindenden Gra-
dienten der Goldstone Bosonen induziert, welcher einem Superstrom von Mesonen entspricht.
Andererseits verhält sich das geladene Pion-Kondensat wie ein Supraleiter und verdrängt das
Magnetfeld aufgrund des Meissner-Effekts. Durch Vergleich der freien Energien der beiden
Phasen finden wir ein kritisches Magnetfeld, bei dem ein Phasenübergang erster Ordnung
zwischen geladener und neutraler Pion Phase auftritt.
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Chapter 1

Introduction

1.1 Motivation

The ultimate goal in theoretical high energy physics is a theory that unifies the four known
fundamental forces into a single theory on the quantum level.

Electromagnetism, the weak nuclear force, and the strong nuclear force have been combined
into a single quantum field theory, called the standard model [1, 2, 3]. How to quantize gravity
is still a big mystery, and one promising candidate for a quantum theory of gravity is string
theory.

Quantum electrodynamics is very well understood and as of yet the most accurate theory
that has ever been constructed. The weak force, responsible for the β-decay, is fairly well
understood but still a few puzzles remain, like the existence of the Higgs particle. Quan-
tum chromodynamics (QCD), the theory that describes the strong nuclear force, is not fully
explored. QCD describes the interactions between quarks and gluons which form hadrons
(baryons and mesons). It is a non-Abelian gauge theory with gauge group SU(3). The quarks
transform in the fundamental representation and the gluons in the adjoint representation of
the gauge group.

QCD is asymptotically free [4, 5]. This means that the effective coupling between the
quarks and gluons decreases as the energy increases. The coupling constant is not a parameter
of the theory but a function of energy scale. At sufficiently large momentum transfer QCD
becomes a system of weakly interacting quarks and gluons and one can use perturbation theory.
Perturbation theory relies on a valid expansion parameter. One assumes that the theory is
almost free and observables are computed in a term by term expansion in the coupling constant.
At low energies QCD becomes strongly coupled and it is not easy to perform calculations.
The energy scale that separates the strongly coupled regime from the weakly coupled regime
is ΛQCD ≈ 200 MeV, where the coupling constant is of order one. Let us have a look at
the QCD phase diagram shown in Figure 1.1 in the plane of quark chemical potential µ and
temperature T.

Above the deconfinment phase transition the ground state is the so called quark gluon
plasma (QGP), where the fundamental degrees of freedom are the quarks and gluons. It is
believed that the QGP existed until 10−5 seconds after the big bang. At very high temper-
atures, several times above the deconfinement temperature, the QCD coupling constant is
perturbatively small and (hard thermal loop) perturbation theory can be applied to study
QCD thermodynamics. For example the pressure of the QGP has been calculated to high
order in the coupling constant [6, 7]. Before the experiments at the Relativistic Heavy Ion
Collider (RHIC) in Brookhaven National Laboratory, where QGP was created, it was widely
believed that the QGP is weakly coupled, even at moderately small temperatures, about twice
the deconfinement temperature. However, it turned out the QGP rather behaves as a strongly
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Figure 1.1: Conjectured phase diagram of QCD in the plane for quark chemical potential
µ and temperature T. For asymptotically high chemical potentials and low temperature the
ground state is the color-flavor-locked (CFL) phase. Going to lower chemical potentials one
enters an unknown region, such as in neutron stars, which might consist of superfluid nuclear
matter or deconfined quark matter or mixture of both. At high temperatures and low density
the ground state is the quark-gluon-plasma (QGP) phase, probed in heavy-ion collisions.

coupled liquid than a weakly interacting gas of quarks and gluons.
Another region of interest where QCD becomes weakly coupled is for comparably cold

and dense matter (T � µ � ΛQCD), which is called quark matter. For asymptotically high
densities the ground state of QCD is the highly symmetric color-flavor locked (CFL) phase
[8, 9]. The CFL phase is a superfluid and an electromagnetic insulator and chiral symmetry is
broken. To go to more realistic densities, such as in neutron stars, first principle calculations are
no longer possible, and extrapolation methods must be used and it is not clear how trustworthy
they are.

Inside the hadronic phase, where quarks and gluons are confined, it is possible to use
effective theories such as heavy quark effective theory or chiral perturbation theory. Effective
field theories use the fact that physics at different energy scales are separated. Effective theories
are approximate theories below some characteristic energy scale, e.g., ΛQCD, while ignoring
the degrees of freedom at higher energies. They only take into account the relevant degrees of
freedom while the others are integrated out from the action. See Refs. [10, 11] for reviews on
effective field theories.

One example of such an effective theory is chiral perturbation theory (ChPT), which is
the low energy realization of QCD in the light quark sector. Due to confinement in QCD
the relevant degrees of freedom at low energies are not quarks and gluons but hadrons, and a
description in terms of hadrons seems more adequate. At very low energies the hadronic spec-
trum only contains an octet of very light pseudo-Goldstone bosons (π, η, K) whose interactions
can be understood with global symmetry considerations. ChPT has been very successful in
calculating meson decay constants, quark mass ratios, etc., but also has its limitations and is
not a theory built from the fundamental degrees of freedom, namely the quarks and gluons.

Another prominent effective theory is the heavy quark effective theory (HQET). Instead
of the chiral symmetry for massless quarks one uses the heavy quark symmetry for infinitely
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heavy quarks. In HQET one exploits the fact that in a system with one infinitely heavy quark,
the light degrees of freedom cannot resolve the spin and flavor of the heavy quark. This heavy
quark symmetry leads to simplifications and an effective action can be constructed. We will
say more about HQET in Section 3.1.

Clearly some nonperturbative methods are needed to explore QCD at strong coupling from
the fundamental degrees of freedom, with the most prominent one being lattice gauge theory
(see e.g. the textbooks [12, 13]). In lattice gauge theory spacetime is discretized on a lattice and
Wick-rotated to Euclidean space. It has been very successful in calculating hadron spectra
and properties of states in thermal equilibrium such as the pressure of the QGP. However,
lattice gauge theory faces conceptual problems for calculating out of equilibrium states, that
is time dependent quantities such as transport coefficients, and for physics including chemical
potentials. The reason for the conceptual problems originates from the use of the Euclidean
space. By including a chemical potential the action is no longer real, making standard Monte
Carlo methods unreliable. The same problem appears by studying time dependent dynamics,
where analytic continuation to Minkowski space is necessary and the action becomes imaginary
again. This is the famous sign problem of lattice QCD.

So there is still a big area of the QCD phase diagram where the above methods can not be
applied and new tools are needed to gain a better understanding of the properties of QCD.

In 1997, with the discovery of the anti-de Sitter/conformal field theory (AdS/CFT ) corre-
spondence from string theory a new way for studying strongly coupled gauge theory became
available. The original AdS/CFT correspondence states that type IIB string theory living on
a background that is asymptotically AdS5 × S5 is dual to N = 4 supersymmetric Yang-Mills
(SYM) theory living on the conformal boundary of AdS5 which is four dimensional Minkowski
space [14]. AdS spaces are negatively curved spacetimes, or in other words, solutions to the
Einstein equation with negative cosmological constant. We will review AdS spaces and N = 4
SYM theory in Sections 2.1 and 2.2. By duality we mean that the two theories describe exactly
the same physics, but when one side is weakly coupled the other side is strongly coupled and
vice versa.

In the discovery of the AdS/CFT correspondence D-branes were the crucial ingredient.
Dp-branes are nonperturbative p+1 dimensional massive objects in string theory where open
strings can end. One can think of them as hyperplanes embedded in spacetime. The discovery
of the correspondence is based on the low energy limit of D-branes in two different regimes.
Roughly speaking the argument goes as follows. Let us consider a stack of Nc D3-branes.
Since Dp-branes are massive objects they can curve spacetime and the parameter measuring
the effect of Dp-branes on the geometry is given by gsNc, where gs is the string coupling
constant. For gsNc � 1 spacetime is nearly flat and for gsNc � 1 we have a highly curved
spacetime. In the low energy limit for gsNc � 1 the physics of the bulk and the stack of
D3-branes decouples and one is left with N = 4 SYM theory living on the brane and a theory
of closed strings on flat space. Taking the low energy limit in the highly curved regime, again
one ends up with two decoupled theories. This time with a theory of closed strings on flat
space and type IIB string theory on AdS5 × S5. This led to the conjecture that, since in both
regimes one has closed strings on flat space, N = 4 super Yang-Mills theory is equivalent to
type IIB string theory on AdS5 × S5.

In order to connect the two theories one needs a dictionary that relates the field theory
with the string theory. A key relation is

L4

l4s
= 4πgsNc , 2πgs = g2

YM

where ls is the string length, Nc the number of colors, L the curvature radius of AdS5 space and
the S5 and gYM the Yang-Mills coupling constant. The above entry from the dictionary tells
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us the following. If the curvature radius is larger then the string length L/ls � 1, where string
theory is approximated by classical supergravity, then the field theory is strongly coupled
because g2

YMNc � 1, showing us the nature of the duality between weakly and strongly
coupled theories. Therefore we can calculate properties of strongly coupled gauge theories
by considering classical supergravity. We will repeat in detail Maldacena’s argument of the
correspondence in Section 2.7.

However, the correspondence has not been proven and remains a conjecture, but it has
passed many nontrivial tests, e.g., the sets of fields living on the gravitational side has been
matched with the set of field operators.

One might ask what this has to do with QCD. After all, N = 4 SYM theory is a super-
symmetric conformal theory with no running of the coupling constant. Firstly, it is helpful
to have a new tool to calculate properties of a strongly coupled gauge theory, which might
also result in a better understanding of other theories, like statements about universalities
[15]. Secondly, it turns out that some theories have a conformal window. For example, at
high enough temperatures lattice calculations suggest that the QGP becomes conformal [16],
and the AdS/CFT correspondence turned out to be amazingly useful to study its properties
such as the ratio of shear viscosity over entropy density [17], where the AdS/CFT calculation
is surprisingly close to the measured result. (See Ref. [18] for a nice review on QGP and
AdS/CFT .) Or the duality can be used to study certain condensed matter systems which are
strongly coupled and conformal at the critical point [19].

After the original correspondence was discovered the more general conjecture was made
that every non-Abelian gauge theory has a dual string theory which now goes under the
name gauge/gravity duality [20]. And indeed, more dualities have been found [21, 22]. The
gauge/gravity duality is an example of the holographic principle [23, 24, 25], which states that
a theory of quantum gravity in some region of spacetime can be represented by a theory that
lives on the boundary of this region. The holographic principle is motivated by black hole
physics where the entropy of a black hole is proportional to the area of the horizon and not to
its volume and is similar to optics, where a three dimensional image can be recorded onto a two
dimensional plate. The AdS/CFT correspondence is a concrete example of the holographic
principle in the sense that the SYM theory, which captures all the physics of the interior of
the ten-dimensional spacetime, provides a holographic description of the gravitational world.

Of course, the ultimate goal is to find the gravitational dual to QCD. There are two ap-
proaches to reach this goal. The so called ”bottom up ” approach, where one starts with the
gauge theory and constructs the holographic dual, like in [26, 27, 28]. Or the ”top down” ap-
proach, where the starting point is a consistent theory of quantum gravity, like string theory,
and one aims to derive a geometry which is dual to QCD in some limit [29].

One step towards more realistic holographic models was the inclusions of so called probe
branes [30]. By adding a new type of branes one introduces new degrees of freedom to the
system, namely fields transforming in the fundamental representation of the gauge group which
are interpreted as quarks. With this setup it is possible to study the dynamics of quarks and
to construct chiral condensates, mesons, and to investigate their properties like their energy
spectrum. This will be the main theme of this thesis. We study properties of strongly coupled
matter from holography in the presence of fundamental fields from different perspectives. We
will use two models in the spirit of the top down approach: the Karch-Katz setup [30] and the
Sakai-Sugimoto model [29].

Clearly, the discovery of the AdS/CFT correspondence is one of the milestones in theo-
retical physics and changed our view on fundamental theories and raises many deep questions
about quantum gravity and gauge theories. In this thesis we will not try to tackle this funda-
mental question but rather use the gauge/gravity duality as a tool to learn something about

12



QCD by asking the right questions in theories where the gravitational dual is known.

1.2 Outline

This thesis is organized as follows. We will give a detailed introduction into the AdS/CFT
correspondence in Chapter 2. We start by reviewing the necessary ingredients in order to
understand the correspondence. We begin with the properties of AdS spaces and N = 4 SYM
theory. After introducing the physics of D-branes we will give Maldacena’s derivation of the
AdS/CFT correspondence [14] and then explain how to compute correlation functions of the
gauge theory using the correspondence. We end this chapter by explaining how fundamental
degrees of freedom can be introduced in the gravity picture.

In Chapter 3 we use a setup by Karch and Katz [30] and construct heavy-light mesons
by placing probe D7 branes in a D3 brane background. The heavy-light mesons are strings
stretching between the probe branes. We then study the energy spectrum of our heavy-light
mesons in different scenarios. First we study the spectrum of supersymmetric mesons and
then we investigate the effect of supersymmetry breaking on the spectrum by tilting one of
the branes and by applying an external magnetic field. These results were first presented in
[31, 32].

In Chapter 4 we give an introduction to the second holographic model we will use in the last
two chapters: The Sakai-Sugimoto model [29], which is based on probe D8 branes embedded
in a D4 background geometry.

In Chapter 5 we study holographic chiral currents in the confined and deconfined phase.
We start with a discussion of the proper implementation of the ”consistent” and ”covariant”
anomaly into the model and derive the general form of the currents. We then discuss the am-
biguity of the currents, defined on the one hand via the general definition from the AdS/CFT
correpondence, and on the other hand from the thermodynamic potentials. We calculate the
axial and vector current in both phases which might be of relevance in compact stars and
heavy-ion collisions (like the chiral magnetic effect). This chapter is based on [33].

Finally, in Chapter 6 we use the Sakai-Sugimoto model to investigate chirally broken phases
in an external magnetic field at finite isospin and baryon chemical potentials. We construct two
phases, a neutral pion condensate and a charged pion condensate. We find that a magnetic field
induces nonzero gradients of the Goldstone boson fields corresponding to meson supercurrents.
The charged pion condensate, on the other hand, expels the magnetic field due to the Meissner
effect. Finally we compare the Gibbs free energies of the two phases and give the resulting
phase diagram. This chapter is based on [34].

13



Chapter 2

The AdS/CFT correspondence

In this chapter we will review the necessary ingredients for understanding the duality between
string theories and gauge theories. We will start with the properties of anti-de Sitter (AdS)
spaces, followed by a summary of SU(Nc) N = 4 Super Yang Mills theory. In Section 2.6 we
will introduce the physics of D-branes and then, in Section 2.7, we will repeat Maldacena’s
beautiful argument [14] that relates string theory on AdS5×S5 to N = 4 SYM theory living on
the boundary of AdS5. Section 2.8 explains how one can calculate correlation functions from
supergravity using the correspondence. Finally, in Section 4.1.2 we show how fundamental
degrees of freedom can be added to the system via probe branes.
For more information on the subjects presented in this introduction, see the AdS/CFT reviews
[35, 36, 37] and the string theory textbooks [38, 39, 40] and references therein.

2.1 Anti-de Sitter space

The properties of Anti-de Sitter spacetimes are essential for the AdS/CFT correspondence.
Therefore we will take our time to review this geometry in detail. Before studying the structure
of AdS space let us study the conformal structure1 of flat spacetime [41] because the identi-
fication of the isometry of group of AdSp+2 with the conformal symmetry of flat Minkowski
space R1,p will be important for the AdS/CFT correspondence.

2.1.1 Conformal structure of flat space

We start with two-dimensional Minkowski space R1,1 because it is easier to visualize, but all
arguments hold for higher dimensions as well. The metric is given by

ds2 = −dt2 + dx2 , (−∞ < t, x <∞). (2.1)

Performing a coordinate transformation

tanu± = t± x , u± =
τ ± θ

2
, (2.2)

we can write the metric as

ds2 =
1

4 cos2 u+ cos2 u−
(−dτ2 + dθ2). (2.3)

In this way we can map Minkowski space into a compact region, |u±| < π/2. Since the causal
structure does not change by a conformal transformation

gµν → g′µν(x′) = Ω(x)gµν(x) , (2.4)

1After reading the following it should be clear what we mean by conformal structure.
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τ

θ−π π

t = const.x = const.

θ(π) = θ(−π)

Figure 2.1: Left: Penrose diagram for R1,1. Right: By identifying θ = −π with θ = π R1,1

can be embedded in a cylinder.

we can multiply the above metric by 4 cos2 u+ cos2 u− to obtain

ds′2 = −dτ2 + dθ2. (2.5)

The new coordinates are well defined at the asymptotic region of flat space and a spacetime
is called asymptotically flat if it has the same boundary structure as flat space after conformal
compactification. Conformal compactifications are very useful for studying the causal structure
of spacetimes. Since the causal structure does not change under conformal transformations
we speak of the conformal structure of a spacetime at infinity. The Penrose diagram of two
dimensional Minkowski space is given in Figure 2.1. It is a square, where the two corners at
(τ, θ) = (0,±π) correspond to the spatial infinities at x = ±∞. We can embed the rectangular
image of R1,1 in a cylinder R× S1 by identifying the two corners as shown in Figure 2.1. The
dark blue region is conformal to the whole of Minkowski spacetime.
The Einstein static universe in two dimensions with topology R1×S1 can be represented as a
cylinder embedded in three-dimensional Minkowski space.
It is possible to analytically continue (2.5) to the entire cylinder. This means that Minkowski
space can be conformally mapped into the Einstein static universe. The generalization to
(p+1)-dimensional Minkowski space is straightforward. After a series of coordinate changes
and conformal rescaling, the metric for R1,p can be written as

ds2 = −dτ2 + dθ2 + sin2 θdΩ2
p−1. (2.6)

with 0 6 θ 6 π. This time the Penrose diagram is a triangle because of the different interval
for the θ coordinate but can be analytically continued outside the triangle and the maximally
extended space has again the topology of the Einstein static universe R× Sp.
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Figure 2.2: AdSp+1 realized as a hyperbolic space embedded in R2,p+1

2.1.2 Geometry of anti-de Sitter space

Anti-the Sitter space is an extension of hyperbolic space with a time direction. It is a solution
to the Einstein equations

Rµν −
1
2
Rgµν = 8πGΛgµν , (2.7)

with a negative cosmological constant Λ, or in other words it is a maximally symmetric neg-
atively curved spacetime with constant curvature. A sphere on the contrary is a maximally
symmetric positively curved spacetime. AdSp+2 space can be represented as the hyperboloid

(
X0
)2 +

(
Xp+2

)2 − p+1∑
i=1

(
Xi
)2 = L2, (2.8)

embedded in a flat p+ 3 dimensional space with the metric

ds2 = −dX2
0 − dX2

p+2 +
p+1∑
i=1

(
dXi

)2
, (2.9)

where L is the curvature radius of AdSp+2. Its symmetry group is SO(2, p+ 1).
The algebraic constraint equation (2.8) can be solved by setting

X0 = L cosh ρ cos τ , Xp+2 = L cosh ρ sin τ , (2.10)

Xi = L sinh ρ Ωi

(
i = 1, ..., p+ 1,

p+1∑
i=1

Ω2
i = 1

)
, (2.11)

where the Ωi are the standard coordinates of a p-dimensional sphere. Substituting this
parametrization into (2.9) we obtain the AdSp+2 metric as

ds2 = L2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

p

)
. (2.12)

By taking ρ ∈ (0,∞) and τ ∈ [0, 2π] we can cover the whole hyperboloid (Fig. 2.2) once
and therefore the coordinates ρ, τ,Ωi are called global coordinates. Near ρ = 0 the metric
behaves as ds2 ' L2(−dτ2 + dρ2 + ρ2dΩ2), showing that the hyperboloid has the topology of
S1 × Rp+1, with S1 representing closed timelike curves in the τ direction. This is not what
we want because in a universe with closed timelike curves one could travel for a while and get
back before one’s departure. To obtain a causal space-time we have to take the universal cover
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Figure 2.3: AdS3 can be conformally mapped into one half of the Einstein static universe
R× S2. The conformal boundary is the surface R× S1.

of the S1. Practically this means we can simply unwrap the circle by taking −∞ < τ < ∞
and there are no closed timelike curves anymore.

Let us now study the conformal structure of AdSp+2. The most convenient way to do so
is by introducing a new coordinate θ, related to ρ by tan θ = sinh ρ, (0 ≤ θ < π/2), which
brings the endpoints of the ρ coordinate to finite values. Then, the metric (2.12) takes the
form

ds2 =
L2

cos2 θ

(
−dτ2 + dθ2 + sin2 θdΩ2

p

)
, (2.13)

where 0 ≤ θ ≤ π/2 for all dimensions except for 2 (where −π/2 ≤ θ ≤ π/2). Note that there
is a second order pole at θ = π/2. This is where the boundary of AdS is located. Because
of this second order pole the bulk metric does not yield a metric at the boundary, it yields
a conformal structure instead [42]. In order to analyze this conformal structure we make a
conformal transformation by multiplying the metric with L−2 cos2 θ to obtain

ds̃2 = −dτ2 + dθ2 + sin2 θdΩ2
p . (2.14)

This allows us to understand the Penrose diagram of AdS. The equator at θ = π/2 is a bound-
ary of the space with the topology of Sp. The Penrose diagram of AdSp+2 is a solid cylinder
whose boundary has the topology of Sp × R where R corresponds to the time direction. We
show this for AdS3 in Figure 2.3.
Now comes the crucial point. We observe that the boundary of the conformally compacti-
fied AdSp+2 is identical to the conformal compactifaction of the (p+1)-dimensional Minkowski
space. This will be important later because the field theory will be defined on that bound-
ary. Also note that the metric (2.14) is the same as for the Einstein static universe (2.6)
with dimension lower by one, with the only difference that the coordinate θ takes values in
0 ≤ θ < π/2, rather than 0 ≤ θ < π. Namely, AdS can be conformally mapped into one half
of the Einstein static universe. In general, if a spacetime can be conformally compactified into
a region which has the same boundary structure as one half of the Einstein static universe,
the spacetime is called asymptotically AdS.

In addition to the global parametrization there is another set of coordinates, called the Poincaré
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z = 0

θ = −π
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z > 0

z < 0

z < 0
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z =∞

boundary

z = const ho
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n

horizon
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π

2

Figure 2.4: Left: Penrose diagram for AdS2. Global AdS can be conformally mapped into
the strip between θ = −π/2 and θ = π/2. The triangular region is the Penrose diagram for
the Poincaré coordinates. Right: Boundary regions of AdS3 in the Poincaré patch. The blue
shaded area in the interior of the cylinder corresponds to the region covered by the Poincaré
coordinates and is bounded by two lightlike hyperplanes. By crossing these hyperplanes one
reaches the other Poincaré patch. The boundary of the cylinder is the conformal region of
AdS3 covered by Minkowski space.

coordinates (z, t, ~x), where 0 < z, ~x ∈ Rp+1, which we will use later. It is defined as

X0 =
1
2z
(
L2 + z2 − t2 + ~x2

)
, Xp+2 =

Lt

z
(2.15)

Xp+1 =
1
2z
(
L2 − z2 + t2 − ~x2

)
, Xi =

Lxi

z
(i = 1, ..., p). (2.16)

In these coordinates the the AdSp+2 metric takes the form

ds2 =
L2

z2

(
−dt2 + dz2 + d~x2

)
. (2.17)

In these coordinates the space is essentially (p+1) dimensional flat space with an extra warped
dimension, z, which is the radial coordinate of AdS. The boundary of the AdS space is located
at z = 0 and there is a horizon at z = ∞ since gtt → 0, called the Poincaré horizon. The
horizon has zero area because gxixi → 0 as z → ∞, but has finite area in global coordinates.
For a complete list of mappings between global and Poincaré coordinates see Ref. [43]. These
coordinates only cover one half of the hyperboloid (2.8) for z > 0. By crossing the horizon
one reaches the other Poincaré patch, covering the other half of the hyperboloid z < 0. The
coordinate singularity at z = 0 does not belong to the AdS space but is part of its boundary.
In Figure 2.4 we show the Penrose diagram in Poincaré coordinates for AdS2, which is the
triangular region and its embedding into the Einstein static universe for AdS3. The conformal
compactification of global AdS2 is the infinite strip between θ = −π/2 and θ = π/2. The
Poincaré patch is often very useful for calculations and we will use it in Chapter 3.
Performing the coordinate transformation u = L2/z the metric (2.17) can be written as

ds2 = L2

[
du2

u2
+ u2(−dt2 + d~x2)

]
, (2.18)
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where now the boundary is located at u = ∞. We will encounter this form of the metric in
Section 2.7 when we look at the near horizon geometry of extremal D3-branes.
Sometimes we will also use the Euclidean version of AdSp+2 space, given by

ds2 =
L2

z2

(
dz2 +

p+1∑
i=1

dx2
i

)
, (2.19)

which has the topology of a (p+2)-dimensional disk. To close this section we want to point
out a peculiar property of AdS space. A light ray can reach the boundary located at infinity
in a finite amount of time. This is possible because AdS space acts as a gravitational potential
well.

2.2 Supersymmetry

In flat four dimensional space-time R1,3 the Poincaré algebra is the Lie algebra of the symme-
try group of Minkowski space and is generated by translations and Lorentz transformations
SO(1, 3), with generators Pµ and Lµν respectively. In the 60’s people were asking if it is pos-
sible to combine the Poincaré symmetry and the internal symmetries of particle physics, such
as the U(1) of electromagnetism or the SU(3) of QCD into a larger group? At first the answer
turned out to be no, due to the famous Coleman-Mandula theorem [44], which says that if the
Poincaré and internal symmetries were to combine, the S matrices for all processes would be
zero and hence only trivial theories could be constructed. However, this theorem only holds
if the final algebra is a Lie algebra but one can evade the theorem by generalizing the notion
of a Lie algebra to a graded Lie algebra. A graded Lie algebra is an algebra that has some
generators Qiα that satisfy an anticommuting law instead of a commuting law, namely

{Qiα, Qjβ} = other generator. (2.20)

Then it is possible to combine Poincaré with internal symmetries. The anticommuting sym-
metry generators Qiα, called supercharges, are spinors

i = 1, ...,N
{
Qiα α = 1, 2 left Weyl spinor
Q̄α̇i = (Qiα)† right Weyl spinor.

(2.21)

Here, N is the number of independent supersymmetries of the algebra. Weyl spinors have two
components, thus the total number of real supercharges is 2×2×N . When acting with Qiα on
a boson field we will get a spinor field. Therefore Qiα gives a symmetry between bosons and
fermions called supersymmetry (susy). (A standard textbook on supersymmetry is [45].)

The supercharges transform as Weyl spinors of SO(1, 3) and commute with translations.
The remaining susy structure relations are

{Qiα, Q̄β̇j} = 2σµ
αβ̇
Pµδ

j
i , {Qiα, Qjβ} = 2εαβZij , (2.22)

where Zij are bosonic symmetry generators, called central charges and σµ are the 2 × 2
Pauli matrices together with σ0 = 12×2. The supersymmetry algebra possesses a group of
automorphisms, rotations of supercharges into one another, forming a group U(N )R, called
the R-symmetry group. The supercharges act as raising and lowering operators for helicity.
Theories with one supercharge are called simple susy theories and with N > 1 are called
extended supersymmetric theories.
If the central charge of a theory is nonzero then there are massive particle representations.
There are many different supersymmetric theories. In the next section we will review the
properties of a very special supersymmetric theory, namely supersymmetric Yang-Mills theory
with four supercharges.
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2.3 Supersymmetric Yang-Mills theory

It is possible to extend four dimensional Yang-Mills (YM) theory and make it supersymmet-
ric. Actually there are different supersymmetric Yang-Mills (SYM) theories, depending on the
number of supercharges. The maximally supersymmetric gauge theory is N = 4 supersym-
metric Yang-Mills theory (N = 4 SYM) with 16 real supercharges. The Lagrangian for N = 4
SYM is unique and is determined completely by demanding gauge invariance and supersym-
metry. The field content of N = 4 SYM is a vector Aµ, six scalars φI (I = 1, ..., 6) and four
Majorana fermions λα,i, λα̇,̄i, where the α, α̇ are four-dimensional chiral and anti-chiral spinor
indices respectively and i = 1, ..., 4 is an index in the 4 representation of the SU(4) and ī in the
4̄. The scalars transform in the 6 representation. Due to supersymmetry all fields transform in
the same representation, the adjoint representation, and must have the same mass. To ensure
gauge invariance the gauge field has to be massless, hence the scalars and fermions are also
massless. Schematically the Lagrangian can be written as [46, 36]

LN=4 = Tr
[

1
g2
F 2 + θF F̃ + (Dφ)2 + λ̄ 6Dλ+ g λ[φ, λ] + g λ̄[Φ, λ̄] + g2[φI , φJ ]2

]
, (2.23)

with two parameters, the coupling constant g and the θ angle.
Classically the N = 4 SYM is scale invariant. In a relativistic field theory, scale invari-

ance and Poincaré invariance combine into a larger conformal symmetry, forming the group
SO(2, 4). Combining supersymmetry and conformal invariance produces an even larger sym-
metry, the superconformal symmetry given by the supergroup SU(2, 2|4). Remarkably, N = 4
SYM theory remains scale invariant even quantum mechanically. Moreover the theory is renor-
malizable and the β-function vanishes identically.

By definition, the conformal group is the subgroup of coordinate transformation that leaves
the metric invariant up to a scale change

gµν → g′µν(x′) = Ω(x)gµν(x). (2.24)

These are the coordinate transformations that preserve the angles between two vectors. The
conformal group consists of the following transformations:

• Translations: xµ → xµ + aµ

• Lorentz transformations: xµ → Λµνxν

• Scale transformations: xµ → λxµ

• Special conformal transformations: xµ → xµ+bµx2

1+2bµxµ+b2x2

The first two are the transformations of the Poincaré group. The third is a scale transformation,
and the fourth is a combination of an inversion and a translation.

Together with the R-symmetry of the supercharges, which locally is the SU(4)R subgroup of
the U(4)R and isomorphic to SO(6), the bosonic symmetry group of N = 4 SYM is SO(4, 2)×
SO(6).

2.4 Large N field theories

One of the first hints that gauge theories have some stringy features appeared in the investiga-
tion of SU(N) gauge theories in the large N limit. In theories like QCD the coupling constant
at low energy is not a good expansion parameter because the coupling constant becomes en-
ergy dependent (dimensional transmutation) and the theory is strongly coupled below some
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characteristic energy scale. In 1974 ’t Hooft [47] suggested one should generalize QCD from
three colors and an SU(3) gauge theory to N colors and an SU(N) gauge theory. The hope was
that the theory can be solved in the large N limit and has some similarities with real QCD. So
far QCD hasn’t been solved in the large N limit but it proved very useful to gain insight into
renormalizable theories with spontaneous symmetry breaking and asymptotic freedom. Some
toy models with these properties, like the Gross-Neveu model [48], can be solved exactly in
the large N limit.

Let us have a look at SU(N) Yang Mills theory and estimate the behavior of correlation
functions in the large N limit. The β-function equation for this theory is given by

µ
∂gYM
∂µ

= −11
3
N
g3
YM

16π2
+O(g5

YM ), (2.25)

where gYM is the Yang-Mills coupling constant and µ is some energy scale. Clearly, this
equation has no sensible large N limit. To get a sensible large N limit we define a new coupling
constant λ = g2

YMN and keep λ fixed as N → ∞. This is known as the ’t Hooft limit. The
Lagrangian is given by

S =
1

4g2
YM

∫
d4xTr

(
F 2
µν

)
, Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (Aµ)ij = Aaµ(T a)ij , (2.26)

where (T a)ij are the generators of the SU(N) gauge group. We may now estimate the behavior
of the correlation function in the ’t Hooft limit. To keep track of the color indices in the
Feynman diagrams one can think of the gluon as a quark- antiquark combination, (Aµ)ij ∼ qiq̄j .
In this so called ”double-line notation” each of the two indices i, j is given their own line with
an arrow, the direction of the arrow distinguishing quark from antiquark. For simplicity let
us consider vacuum to vacuum graphs, graphs with no external lines (every index line must
close) and count the powers of λ and N. Each interaction vertex has a factor of N/λ and each
propagator has a factor of λ/N , since a vertex is a term in the Lagrangian and the propagator
is the inverse of the quadratic parts in the Lagrangian. Every closed loop gives a factor of N ,
because we have to sum over all possible configurations.

∼ Nc∼ 1
g2

Y M

∼ 1
g2

Y M
∼ g2

Y M
i
j

Wednesday, February 9, 2011

Figure 2.5: Feynman rules for SU(N) gauge theory in the double line notation

There are planar and non-planar diagrams. Non-planar diagrams can not be drawn on a plane
without lines crossing like the last diagram in Figure 2.6.

We can also compactify space by adding a point at infinity. Then each diagram corresponds
to a compact, closed oriented surface. In such a diagram we can view the propagators (double
lines) as forming the edges (E) and the loops as faces (F ) in a simplicial decomposition (e.g.
a triangulation) of a surface. A diagram with V vertices, E propagators and F loops is
proportional to(

λ

N

)prop−vert
NF = NV−E+FλE−V = NχλE−V = N2−2gλE−V , (2.27)
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where χ = 2 − 2g is a topological invariant known as the Euler number and g is the number
of handles. We see that planar diagrams are proportional to N2 and non-planar ones are
suppressed by additional factors of 1/N2. The important point now is that non planar diagrams
can be made planar by drawing them on a surface of higher genus, like a torus, as shown in
Figure 2.6. Therefore Feynman diagrams are organized by their topology and the sum over

Figure 2.6: Counting factors of gYM and Nc for planar and non planar diagrams. Planar
diagrams are proportional to N2

c and can be drawn on a sphere. Non planar diagrams can not
be drawn on a plane without lines crossing but can be drawn as planar ones on surfaces of
higher genus, like the torus. Non planar diagrams are suppressed by a factor of N−2

c .

connected vacuum-to-vacuum amplitudes can be written at large N as

lnZ =
∞∑
g=0

N2−2g
∞∑
i=0

cg,iλ
i =

∞∑
g=0

N2−2gfg(λ), (2.28)

where cg,i are numerical coefficients depending on the detailed evaluation of each Feynman
graph and fg is some polynomial in λ. This indicates that there is some dual relationship
between Feynman diagrams of an SU(N) gauge theory and two dimensional surfaces.

One can also include quarks, ore more generally matter in the fundamental representation.
Quarks have Nc degrees of freedom. In a theory with Nf flavors the contribution of a single
quark loop to the vacuum amplitude is proportional to lnZ ∼ NfNc in contrast to N2

c as in
(2.28). Thus, in the large Nc limit quark loops are suppressed by powers of Nf/Nc. Classifying
quark loops by their topologies of two-dimensional surfaces as for gluons one has to include
surfaces with boundaries, each boundary corresponding to a quark loop.

In the next section we will show an intriguing relation between the organization of Feynman
diagrams by their topology and perturbative string theory.
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2.5 String theory

String theory is one attempt to unify QFT with a quantum theory of gravity. In string theory
the fundamental objects are not pointlike particles but rather one-dimensional extended objects
called strings. Strings are very small objects with one dimensionful fundamental parameter,
the string length ls, which is taken to be the order of the Planck length. Every string comes
with an energy per unit length, the string tension

T =
1

2πα′
≡ 1

2πl2s
, (2.29)

which sets the characteristic length scale ls of the theory. α′ is the so called Regge slope2. There
are two kinds of strings, open and closed strings. Strings live in a higher dimensional space-
time given by the metric Gµν . As time passes by a string will sweep out a two-dimensional
surface, called the string world-sheet. The action for such a string, the Nambu-Goto action,
is just the area of the string world-sheet which we extremize to get the string equations of
motion.

Suppose ξα = (τ, σ) are the coordinates on the world-sheet and Xµ(ξα) are the coordinates
of the string describing its embedding in space-time. Then Gµν induces a metric on the world-
sheet:

ds2 = GµνdX
µdXν = Gµν

∂Xµ

∂ξα
∂Xν

∂ξβ
dξαdξβ = hαβdξ

αdξβ, (2.30)

where the induced metric is
hαβ = Gµν

∂Xµ

∂ξα
∂Xν

∂ξβ
. (2.31)

This metric can be used to calculate the surface area swept out by the string. The action,
invariant under general world-sheet and target-space coordinate transformations and proposed
by Nambu and Goto is given by

SNG = −T
∫
d2ξ
√
−dethαβ = −T

∫
d2ξ

√
(Ẋ ·X ′)2 − (Ẋ2)(X ′2), (2.32)

where X · Y = GµνX
µY ν and ∂σX = X ′ and ∂τX = Ẋ.

In order to solve the equation of motion we have to implement boundary conditions de-
pending on the type of string we are studying. For a closed string the world-sheet is a tube
and we impose the periodicity condition

Xµ(σ + 2π) = Xµ(σ). (2.33)

For open strings the world-sheet is a strip and we can use two kinds of boundary conditions:

Neumann :
δL
δX ′µ

∣∣∣
σ=0,π

= 0, Dirichlet :
δL
δẊµ

∣∣∣
σ=0,π

= 0. (2.34)

Neumann conditions imply that no momentum flows off the endpoints of the string, whereas
Dirichlet boundary conditions fix the endpoints of the string. It is also possible to impose linear
combinations of the two boundary conditions. We will encounter this situation in Section 3.7.1.

Quantizing the string imposes restrictions on the dimensionality in which the string can prop-
agate. It turns out that for the bosonic string a consistent string theory only exists in 26
dimensions. Otherwise one would have negative norm states. Physically, the vibrational

2The name comes from the early stages of string theory, where string theory was an attempt to describe
hadron resonances with a spin mass relation described by Regge trajectories J = m2α′ + β0
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modes of the string correspond to different states in the spectrum. On distances larger than
the string length these modes appear as particles of different mass and spin. In analyzing
the string spectrum one finds massive and massless modes. Among the massless states there
is a spin-1 particle in the open string sector, the photon, and a spin-2 particle in the closed
string sector, the graviton. The graviton describes fluctuations of spacetime and although we
started with a fixed metric, we have a graviton in the spectrum indicating that the background
geometry is dynamical. This is why string theory is a theory of quantum gravity.

The problem with bosonic string theory is that it is inconsistent. The spectrum contains a
tachyon, that is a state whose mass squared is negative and it only contains bosons. Realistic
string theories must also contain fermions. To get fermions one introduces new anticommuting
dynamical world-sheet variables Ψµ

α(τ, σ) with α = 1, 2, which behave as spacetime fermions.
Then it is possible to construct a consistent string theory action that is invariant under su-
persymmetry transformations. This theory is called superstring theory and the absence of
negative norm states requires the spacetime to be 10-dimensional. By including fermions the
tachyon disappears from the spectrum. In addition to the graviton the massless spectrum
now contains fermions, antisymmetric tensor fields generalizing the photon and two scalars.
One of these scalars is the dilaton φ which plays an important role. It determines the string
self-interaction gs ∼ eφ.

There are five known superstring theories. In this work we will use two of them, type
IIA and type IIB superstring theories, which include spacetime fermions of opposite and even
chirality respectively.

Figure 2.7: Perturbative string theory diagram for the interaction of three closed strings and
its sum over topologies.

We also want to comment on perturbative string theory and point out a very important
connection between the perturbative expansion of string theory and gauge theory in the ’t
Hooft limit. Strings interact with a coupling strength gs which is the probability for a string
to split into two strings or for two strings to join, see Figure 2.7. Remarkably string theory
dynamically determines its own coupling strength. In perturbative string theory interactions
are represented by diagrams similar to Feynman diagrams in field theory. The difference is that
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instead of point particles interacting at vertices, strings sweep out two dimensional Riemann
surfaces which are arranged according to their topology. Such surfaces are characterized by a
topological invariant, called Euler number χ = 2− 2g − b, where g is the genus of a Riemann
surface (=number of handles) and b is the number of boundaries. E.g. the Euler number of
a sphere is χ = 2 (g = 0, b = 0), of a disk is χ = 1 (g = 0, b = 1) and of a torus is χ = 0
(g = 1, b = 0). It turns out that string diagrams are weighted by a factor of g−χs . For gs � 1
a sphere with χ = 2 will dominate the expansion, followed by the torus. If we include open
strings the sub-leading term will be from the disk. The vacuum to vacuum amplitude in closed
string theory can be written as

A =
∞∑
g=0

g2g−2
s Fg(α′), (2.35)

where Fg(α′) is the contribution of two-dimensional surfaces with g holes. Identifying gs with
1/N we see that string diagrams and Feynman diagrams (2.28) have the same form of the
expansion, if the string tension is given as some function of the ’t Hooft coupling λ. If we also
want to make the connection to quark loops we have to include open strings, where boundaries
of the worldsheet correspond to worldlines of the open strings. The first contribution to the
vacuum amplitude (2.35) from open strings will be from the disk, scaling like A ∼ gs. This is
the same scaling behavior as we found for a single quark loop in the large Nc expansion.

This connection, due to ’t Hooft, is one of the strongest motivations for believing that string
theories and gauge theories are related and that this relation is more visible in the large N limit.

2.6 D-branes

D-branes were the essential ingredient in the discovery of the AdS/CFT correspondence and
we will review their most important properties here. D-branes can be viewed from two per-
spectives:

• As a semiclassical solution of supergravity, which is the low energy limit of string theory.

• As hyperplanes in the full string theory where open strings can end.

We start with the supergravity description. In the low energy limit string theory admits
classical solutions corresponding to extended black holes. Such solutions are called p-branes,
where p stands for the number of spatial dimensions. The supergravity action is given by

Sp =
1

2κ10

∫
d10x
√−g

[
e−2Φ

(
R+ 4(∇Φ)2

)
− 2

2(p+ 2)!
F 2
p+2

]
, (2.36)

where R is the Ricci scalar, Φ is the dilaton and Fp+2 = dCp+1 is the field strength of the
(p+1)-form potential. For type IIB p is odd and for type IIA p is even. The Cp+1 form poten-
tial is called Ramond-Ramond (R-R) form and is a fully antisymmetric (p+1)-index tensor. In
superstring theory p-branes exhibit an important feature. They carry conserved charges, the
RR-charges, which ensure the stability of the D-branes and act as a source for the R-R form
fields. In Appendix B we write down the equations of motion and discuss their solutions in
detail. In a nutshell, we start from the supergravity action and look for a black hole solution
carrying electric charge with respect to the R-R form Cp+1. In order to find a solution to
the equations of motion we assume that the metric is spherically symmetric in the transverse
(10-p) directions with the R-R source at the origin. In addition we also impose the Dirac
quantization condition on the R-R charge. There is a special solution, where the mass of the
p-brane equals its charge, called extremal p-brane with the line-element given in (B.14). An
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extremal p-brane is a BPS object (see B.13) and is the ground state of a p-brane. It turns out
that extremal p-branes are D-branes.

From the full string theory perspective, Dirichlet branes, in short D-branes, are dynamical
fundamental objects in superstring theory. By definition a Dp-brane is a p+1 dimensional
hyperplane on which open strings must end. By the worldsheet duality 3 , this means that a
D-brane is also a source for closed strings. Closed strings propagate in the bulk of spacetime,
but sense the hyperplane through the usual open-closed interaction. This is a consistent string
theory, provided p is even in the IIA theory or odd in the IIB theory. D-branes carry conserved
charges, called Ramond-Ramond (R-R) charges [49], which ensure their stability. In particular
they act as the fundamental source for a R-R (p+1)-form field. To specify a D-brane one needs
as many conditions as there are spatial coordinates normal to the brane. A string that ends
on a D-brane has Dirichlet boundary conditions in the directions normal to the brane and
Neumann boundary conditions in the tangential directions. This means that the endpoints of
a string can move freely along the world-volume of a D-brane. Since D-branes are dynamical
objects we need to construct a world-volume action to describe their dynamics. The basic idea
is that that the modes of the open string with its endpoints attached to the D-brane can be
described by fields that are restricted to the world-volume of the brane. At low energies, low
compared to the string scale, only the massless open string modes need to be considered and
we can construct an effective action.

D-branes support scalar and gauge fields. To see this one has to quantize the open string in
the presence of a D-brane, determine the open string states and investigate how they transform
under Lorentz transformations. It turns out that a Dp-brane has a gauge field living on its
world-volume and a massless scalar for each normal direction.

To see how the scalars arise, let us consider a drumhead, positioned in the x-y plane, that
can fluctuate in the z direction. We would write down a ”scalar field” z(t, y, x) to describe
these fluctuations. A D-brane is just like a drumhead.

Like a string, a D-brane is embedded in some background geometry with coordinates Xµ

and metric Gµν . The map Xµ(ξα), where ξα, α = 0, 1, ..., p are the coordinates on the brane,
specifies the embedding of the brane. p of these functions describe the fluctuations along
the brane, while 9 − p describe fluctuations orthogonal to the brane which are fluctuations
of scalar fields. The scalars parametrize the transverse position of the D-brane in the target
space. In other words, D-branes have a tension and part of its action is the (p+1)-dimensional
worldvolume, which it wants to minimize. This is the generalization of the Nambu-Goto action
(2.32) to p+1 dimensions.

The gauge field arises in the following way. A string with both endpoints on a brane can
minimize its length and shrink to a point giving massless degrees of freedom which is a U(1)
gauge field living on the D-brane. For a U(1) field strength Fµν the dynamics of the brane is
given by the Dirac- Born-Infeld (DBI) action

SDBI = −Tp
∫
dp+1ξe−Φ

√
−det(hαβ) + 2πα′Fαβ, (2.37)

where Tp is the D-brane tension, Φ is the dilaton and hαβ is the induced metric like in (2.31).
The dilaton dependence arises because the DBI action is an open string tree level action. In
terms of fundamental parameters the D-brane tension is given by [49]

Tp =
√
π

κ10(2πls)p−3
=

1

(2π)pgsl
p+1
s

. (2.38)

3An example of the worldsheet-duality is the equivalence of a closed string exchange between two D-branes
and the vacuum loop of an open string with one end on each D-brane.
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However, this is not the whole story. We still have to include the background fields, namely the
antisymmetric NS-NS tensor Bµν and the R-R (p+1) form Cp+1. The NS-NS tensor ensures
gauge invariance of the DBI part. The R-R form couples to the brane through a Chern-Simons
(CS) term. The whole action is known to leading order in gs and is given by [39]

SDp = SDBI + SCS = Tp

∫
dp+1ξe−Φ

√
−det(hαβ) + Fαβ + iTp

∫ (
C eFαβ

)
p+1

. (2.39)

Here Fαβ = 2πα′Fαβ +Bαβ.

So far we have only considered a single brane. If we consider N parallel coincident D-branes
the gauge symmetry is enhanced to a non-Abelian U(N) gauge theory. Note that a U(N)
gauge theory can always be decomposed into a U(1)× SU(N), where the U(1) part describes
the center of mass motion of the stack of D-branes. When we are interested only in the mo-
tion relative to the stack we will ignore the overall U(1) and refer to the gauge group of the
worldvolume theory as SU(N). The worldvolume theory for N coincident D-branes is the
SU(N) SYM theory with 16 supercharges. In order to find a precise relation between the
string coupling gs and the Yang-Mills coupling gYM we expand the action (2.37) for small field
strengths and its derivatives (small compared to the string coupling), and add a trace over the
gauge indices. The action becomes

SDBI = −Tp
∫
dp+1ξ

√
dethαβ tr

[
1 + (2πα′)2FαβF

αβ +O
(
α′4F 4

)]
. (2.40)

The first term is the worldvolume and the second term is the Lagrangian for SU(N) Yang
Mills theory 1/(4g2

YM )trF 2 if we identify

g2
YM =

2
(2πl2s)2Tp

= 2(2πls)p−4lsgs, (2.41)

where we used α′ = l2s and (2.38). The additional factor of two comes from the normalization
of the nonabelian generators,

Fαβ = F aαβT
a , [T a, T b] =

δab

2
, (2.42)

which we use throughout this work.
Now consider the case where we have two stacks of D-branes separated by some distance,

with the number of branes for each stack given by N1 and N2. Then we will have strings
with both endpoints attached to the same stack, giving each stack a gauge theory with gauge
groups U(N1) and U(N2). In addition there are open strings stretching between the two
stacks. The endpoints of the string will act as point charges, i.e., as sources in the fundamental
representation of U(N1) and U(N2). In this case the string cannot shrink to zero length and
the point charges acquire a mass given by the length of the string times its tension. So in
addition to the massless fields transforming in the adjoint representation we also have massive
excitations transforming in the fundamental representation. These massive excitations are
vector fields. This is the D-brane description of the Higgs mechanism.

2.7 The correspondence

Now we have all the necessary tools at hand to follow Maldacena’s beautiful argument on how
gauge theories are related to string theories. In Section 2.6 we have seen that D branes can be
described in terms of open strings or closed strings. Now we will investigate both descriptions
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N = 4 SY
M

free supergravity

Figure 2.8: Open string description of D3-branes. In the low energy limit N = 4 SYM
living on the stack of D3-branes and closed strings living in ten-dimensional Minkowski space
decouple.

for D3-branes in the low energy limit.

Let us start with type IIB string theory in flat, ten-dimensional Minkowski space and con-
sider a stack of N parallel D3 branes. They are (3+1)-dimensional hyperplanes, embedded in
the higher dimensional space, and are located at some point of the transverse six-dimensional
space. The theory contains two kinds of excitations: open strings and closed strings. In the
low energy description, at energies below the string scale 1/ls, the open degrees of freedom are
described by N = 4, U(N) super Yang Mills theory, whereas the low energy description of the
closed string excitations is given by type IIB supergravity. Note that in the low energy regime
only massless string states can be excited and we can write an effective Lagrangian describing
their interaction schematically as

S = Sbulk + Sbrane + Sint. (2.43)

Sbulk is the ten dimensional supergravity action, Sbrane is the action that describes open string
states on the (3+1) dimensional brane worldvolume, and contains N = 4 super-Yang-Mills
theory. Sint describes the interaction between the open and closed strings.

We can expand the bulk part in powers of the gravitational constant κ by making an ansatz
of the form gµν = ηµν + κhµν . Schematically we have

Sbulk ∼
1

2κ2

∫
d10x
√
gR+ ... ∼

∫
d10x

[
(∂h)2 + κh(∂h)2 + ...

]
, (2.44)

where the dots indicate other bulk fields. Since all the interaction terms of the closed string
modes come with positive powers of the gravitational constant κ, these interactions become
weaker at low energies. Similarly, expanding the interaction term gives

Sint ∼
∫
d4x
√
gTr[F 2] + ... ∼ κ

∫
d4xhµνTr

[
Fµν − δµνF 2

]
+ ... (2.45)

To obtain the low energy limit we may take all energies to be small or equivalently keep the
energy fixed and send the characteristic scale of the theory ls → 0, keeping all the dimension-
less parameters fixed. In this limit the coupling κ ∼ gsα′ → 0, and all interaction terms vanish
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as well as the higher derivative terms in Sbrane and Sbulk. So we are left with two decoupled
theories: N = 4 super-Yang-Mills theory living on the brane and free supergravity in the bulk
as indicated in Figure 2.8.

Now let us consider the same system from a different point of view. D-branes are massive
charged objects and act as a source for the supergravity fields. The extremal D3-brane solu-
tion of type IIB supergravity is given by (B.14)

ds2 = H−1/2(u) (ηµνdxµdxν) +H1/2(u)
(
du2 + u2dΩ2

5

)
, (2.46)

H(u) = 1 +
L4

u4
, L4 = 4πgsl4sN .

To understand this geometry better we will take two limits. Suppose we are far away from
the stack of branes, u2 � L2. Then the harmonic function H(u) → 1 and we are left with
10-dimensional Minkowski space. On the other hand, if we are close to the D3-branes, u� L,
we can approximate H(u) ∼ L4/u4 and the geometry becomes

ds2 =
u2

L2
(ηµνdxµdxν) +

L2

u2

(
du2 + u2dΩ2

5

)
, (2.47)

which is the geometry of AdS5 × S5 in Poincaré coordinates (2.18).
Roughly speaking the geometry is divided into three parts as shown in Figure 2.9. The

asymptotic region, which is flat Minkowski space, the near horizon region which is AdS5×S5,
and the interpolating region called the throat. The throat acts as a gravitational potential
well. Since the metric component gtt is not constant the energy measured at infinity will be

E∞ = H−1/4Eu, (2.48)

due to the red shift. This means that the same object brought closer and closer to u = 0 would
appear to have lower and lower energy for an observer at infinity.

Now we want to ask the following question: What low energy physics will we observe in the
asymptotic flat region? From the point of view of an observer at infinity there are two types
of low energy excitations. In the asymptotic region we can have massless large wavelength
excitations, which is just free supergravity in flat space. Or we can have any kind of exci-
tations that approach the near horizon region around u = 0, which will be highly redshifted
and appear as low energy excitations for an observer at infinity. Therefore we have to take
the full string theory in the near horizon region into account. In the low energy limit these
two excitations decouple from each other. As we bring the excitations closer and closer to the
horizon they find it harder and harder to escape to the asymptotic region due the gravitational
potential well they have to climb. We end up with two sets of noninteracting modes. On the
one hand we have free type IIB supergravity in the asymptotic region and on the other hand
we have type IIB string theory on AdS5 × S5 in the near horizon region.

We investigated the low energy description of D-branes from two perspectives. From the field
theory point of view (open strings) and from the supergravity point of view (closed strings). In
both descriptions we end up with two decoupled theories in the low energy limit. In both cases
one of the decoupled system is free supergravity in flat space. Maldacena then conjectured
that the two other theories have to be equivalent, namely N = 4 super Yang-Mills theory in
3+1 dimensions is the same as type IIB superstring theory on AdS5 × S5.

An important question is how to relate field theory parameters to string theory parameters and
when do we have a reliable description of these theories? From the section about D-branes we
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Figure 2.9: Closed string description of D-branes. In the low energy we have again two
decoupled theories. On the one hand we have type II B string theory living on AdS5 × S5 far
down the throat. And on the other hand we have low energy closed strings on 10-dimensional
Minkowski space in the asymptotic region.

know that the YM coupling is related to the string coupling via g2
YM = 4πgs and the number

of colors N of the gauge theory appears as as the four form flux in the string theory as

1
2κ10

∫
F5 = T3N. (2.49)

The characteristic parameters, gYM and Nc, of the gauge theory are all dimensionless. On the
string theory side we have an additional dimensionful parameter, the string length ls, which
sets all the scales. Actually only the ratio of the radius of curvature L and the string length
ls is a parameter, since only relative scales are meaningful and thus ls will disappear from any
physical quantity we will compute. So let us check when we trust our solution (2.46) which
was derived from classical supergravity, the low energy limit of string theory. On the one
hand we have classical supergravity if the radius of curvature is bigger than the string length,
L4/l4s � 1. On the other hand we understand string theory best in the perturbative regime,
when gs � 1. The relation between these parameters is (2.46)

L4

l4s
= 4πgsN = g2

YMN = λ, (2.50)

telling us that in the perturbative regime, if N is finite, we would have L4/l4s � 1, exactly the
opposite what we want to have. To satisfy both criteria at once we have to take N → ∞ as
we take gs → 0 in such a way that 4πgsN remains finite and then take L4/l4s � 1.

On the field theory side this ”double” limit corresponds to the ’t Hooft limit: first let
gYM → 0 and Nc → ∞ with λ fixed and then take λ → ∞. This shows us that when one
side is weakly coupled the other side is strongly coupled and vice versa. We can now state the
correspondence: type IIB supergravity on AdS5 × S5 is dual to N = 4 SYM theory at large
’t Hooft coupling. This is the ”weak” form of the correspondence. In its strongest form the
statement of the conjecture is that the duality between type IIB string theory and N = 4 SYM
is valid in general for all values of N and λ. The strongest form can not be tested because
we don’t know how to quantize string theory on a curved background with R-R fields. The
AdS/CFT correspondence has not been proven and remains a conjecture but has passed many
nontrivial tests. Especially in its weakest form the correspondence is almost guaranteed to
hold due to the large amount of symmetries. The simplest test is to check if the symmetries
on both sides are the same. As we have seen in Section 2.3 the symmetry group of N = 4
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SYM is SO(4, 2)×SO(6). On the gravity side we have an SO(6) symmetry which rotates the
S5 and a SO(2, 4) symmetry which is the isometry group AdS5. We see that the symmetries
on both sides match. A more complicated test involves the matching of special correlation
functions, which are related to anomalies and do not depend on the ’t Hooft coupling λ [50, 51].

With the correspondence we now have a tool at hand where we can compute properties of
a strongly coupled gauge theory by solving classical supergravity. However, so far we have not
specified how the two theories can be matched to each other.

2.8 The heart of the correspondence

In the previous section we set up the AdS/CFT correspondence but so far we do not have
a precise description how the two theories can be matched to each other. Now let us discuss
how computations on the string theory side can be related to those one would like to do on
the gauge theory side. This was first worked out in Refs. [52, 53] where it was shown that the
two sides of the correspondence can be related via

Zstring = exp
[
SSugra

(
φ(~x, z)|z=0 = z4−∆φ0(~x)

) ]
+ ... =

〈
exp

R
d4xφ0(~x) O(~x)

〉
CFT

, (2.51)

where the dots indicate string corrections to the supergravity action. This formula says that
the supergravity field φ(~x) with a certain boundary behavior evaluated at the boundary acts
as a source for a field theory operator O or in other words, for each field in the 5 dimensional
bulk, we have a corresponding operator in the dual field theory.

Correlation functions on the gauge theory side now follow simply by computing repeated
derivatives with respect to the sources

δnZstring
δφ0(~x1)...δφ0(~xn)

= 〈TO(~x1)...O(~xn)〉 . (2.52)

Here we just want to state the most important points. In general the recipe for calculating
correlation functions goes as follows. First, determine which field φ is dual to the operator O.
This can be very hard but usually the dimension and symmetries of the operator are enough to
identify the dual field. For example, the graviton is associated with the stress tensor operator.
Then solve the supergravity equations for the field φ and use this solution to calculate the
on-shell action. Plugging this action into (2.51) and taking the variational derivatives with
respect to the leading asymptotic value φ0 leads to the correlation function. In Appendix A
we show in detail how this is done for a massive scalar field in (d+1)-dimensional AdS space.
Here we want to investigate the physics behind the asymptotic solution more closely.

The general classical solution for a massive scalar in AdSd+1 near the boundary, z = 0,
behaves as

φ(z, ~x) = z4−∆
(
φ0(~x) +O(z2)

)
+ z∆

(
A(~x) +O(z2)

)
, (2.53)

where ∆ is one of the roots of

∆(∆− d) = m, ∆± =
d

2
±
√
d2

4
+m2. (2.54)

Here φ0 is a prescribed source function and is called the non-normalizable mode and A(~x)
describes a physical fluctuation as we will now show and is called the normalizable mode.

As in Appendix A.2 we begin with the usual case ∆ = ∆+. The form of A(~x) can be read
off from the subleading term in (A.25) and is given by

A(~x) = π−
d
2

Γ(∆)
Γ
(
∆− d

2

) ∫ dd~x′
φ0(~x′)
|~x− ~x′|2∆

, (2.55)
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where ∆ is the conformal dimension of the operator O. Comparing (2.55) with the one point
function in (A.28) it turns out that A(~x) is related to the expectation value of the operator
O(~x) [54]. The precise relation is

A(~x) =
1

2∆− d〈O(~x)〉. (2.56)

From the point of view of the d-dimensional CFT, (2∆ − d)A(~x) is the variable conjugate to
φ0(~x). In other words, the prescribed boundary field φ0(~x) acts as a source for the expectation
value of the operator O given by the subleading term in the expansion (2.53).

We considered the bigger of the two roots in (2.54) which certainly seems like the right
choice for positive m2 because then the φ0 term in (2.53) dominates over the A term. However,
Breitenlohner and Freedman showed [55] that in the mass range

− d2

4
< m2 < −d

2

4
+ 1 (2.57)

both roots of (2.54) can be chosen. This means that a single classical AdS supergravity action
(A.18) can give rise to two different quantum field theories on AdS space, depending on the
choice of boundary conditions. According to the AdS/CFT correspondence, the two theories
correspond to two different conformal field theories on the boundary, one with an operator of
conformal dimension ∆− and one with an operator of conformal dimension ∆+. In order to go
to the ∆− theory, it is clear from (2.53) that we have to interchange φ0(~x) and (2∆− d)A(~x).
Therefore the two theories are not independent of each other, in fact they are related to
each other by a canonical transformation that interchanges the roles of φ0(~x) and A(~x). We
conclude that the generator of connected correlators of the ∆− theory is obtained by Legendre
transforming the generator of the of connected correlators of the ∆+ theory.

2.9 Adding flavor

So far we only have a dual gravity theory for N = 4 SYM theory with all the fields being
massless and transforming in the adjoint representation. In QCD however only the gluons
transform in the adjoint representation, but the quarks transform in the fundamental repre-
sentation and are massive. To come closer to QCD we want to introduce additional fields that
transform in the fundamental representation, i.e., flavor fields. On the field theory side this
can be achieved by adding, e.g., a N = 2 hypermultiplet. On the gravity side one needs to
add more degrees of freedom by adding additional D-branes to the system [30]. In this section
we will explain the holographic setup in order to introduce fundamental degrees of freedom.

Let us start with a stack of Nc D3-branes. We know that the open string description leads
to a SU(Nc) gauge theory with all fields transforming in the adjoint representation and being
massless. In order to introduce fields in the fundamental representation, e.g., flavor fields, we
need to add the open string sector. This can be done by placing a new type of Nf coincident
D-branes (where Nf is the number of the new D-branes) to the D3 system . These new branes
are called flavor branes. Strings between the D3’s and the new branes have only one end on
the stack of D3-branes and hence generate matter in the fundamental representation.

If the new D-branes can be separated from the D3-branes in some direction transverse to
both branes then the fundamental fields acquire a mass. Strings with both endpoints on the
flavor branes are in the adjoint of the U(Nf ) flavor symmetry of the quarks and hence describe
mesonic degrees of freedom. In string theory this states describe fluctuations of the brane in
the background geometry.

32



So what kind of branes should we add? The system has to be stable and therefore some
supersymmetry should be preserved. The amount of supersymmetries preserved by a D-
brane in some background are those generated by Killing spinors that satisfy the κ-symmetry
condition [56],

Γε = ε (2.58)

where ε is a Killing spinor of the background and Γ’s are curved space Γ matrices. First one
has to write down the Killing spinors for a given background and then find out how many of
them satisfy (2.58). A D-brane preserves as many supersymmetries as there are solutions to
(2.58). We will comment more on supersymmetry in Section 3.3.

The analysis of intersecting D-branes shows that half of the supersymmetries will be pre-
served if we have four or eight directions in which one stack is extending and the other is not
[39]. In addition we require that the new branes share all the coordinates of the D3-branes
so that the endpoint of the string can propagate in all directions of the worldvolume of the
D3-brane. The only possible choice left is to add Nf D7-branes to the system in the following
way

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

D3 x x x x
D7 x x x x x x x x

(2.59)

Here an x denotes the directions in which the branes are extending. We see that the D7-branes
share all of the D3-brane’s directions and also extend in four more directions orthogonal to the
D3-branes. The X8, X9 directions are orthogonal to both stacks of D-branes. If we separate
the D7-branes from the D3-branes in the X8, X9 directions by some distance d the field in the
fundamental representation will acquire a mass mq = d/(2πα′).

To summarize, we have constructed a system where the 3-3 strings correspond to fields
transforming in the adjoint representation of SU(Nc). The endpoints of the 3-7 strings on
the D3-branes behave as point charges in the fundamental representation of SU(Nc) and the
7-7 strings describe mesonic degrees of freedom transforming in the adjoint representation of
SU(Nf ).

Adding D7-branes breaks the SO(6) to SO(4) × SO(2), where the SO(4) rotates in the
X4, X5, X5, X7, while the SO(2) group acts on X8, X9. When the D7-branes are separated
from the D3-branes in the X8, X9 directions the SO(2) will be broken. These symmetries are
also realized in the dual field theory.

The field theory dual corresponding to this brane set-up is the usual N = 4 Super Yang-
Mills theory coupled to Nf N = 2 hypermultiplets transforming in the fundamental repre-
sentation of the gauge group. The hypermultiplet consists of two complex scalars Φi and two
Weyl fermions Ψi of opposite chirality. In analogy with QCD we refer to the hypermultiplet
fermions as quarks. The Lagrangian is that of N = 4 SYM (2.23) plus terms that account for
the hypermultiplet fields. Very schematically the Lagrangian looks as follows

LN=2 = LN=4 + Ψ†(D2 +M2)Ψ + Ψ̄( 6D +M)Ψ + g
(

Ψ̄λΦ + Ψ̄φΨ +MΦ†φΦ
)

(2.60)

+ g2Φ†φφΦ .

The breaking of the SO(6) on the gravity side is realized as a breaking of the R-symmetry
on the field theory side to SO(4)R×SO(2)R. The global SO(4)R ∼ SU(2)Φ×SU(2)R consists
of theN = 2 R-symmetry and the SU(2)Φ that rotates the scalars in the adjoint hypermultiplet
as a doublet.
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The SO(2)R ∼ U(1)R symmetry acts as a chiral symmetry and is similar to the axial sym-
metry in QCD. The U(1)R is explicitly broken by a quark mass, like in QCD where a finite
quark mass breaks the axial symmetry. However, in the D3-D7 system one cannot introduce
chiral quarks. In Section (4) we will introduce the Sakai-Sugimoto model which is also capable
of describing definite chirality of fields in the fundamental representation.

We know that D-branes are massive charged objects and therefore curve space-time. If we
add new branes to the system they will have an effect on the structure of space-time. How-
ever, if we take Nf � Nc we can neglect the backreaction of the flavor branes on the geometry.
This is know as the probe brane approximation. This means that we can place a D7-brane
into the geometry produced by the D3-branes without deforming it. The dynamics of the
probe D7-branes is governed by the DBI action (2.37). For Nf D7-branes the action is just
Nf copies of the action of a single D7-brane. In field theory quantities the action scales like
NfNcλ. This is a factor of Nc smaller compared to the supergravity action, justifying our
neglect of the backreaction on the geometry.

Now we want to show how to find the embedding of a single static D7-brane (vanishing
Fµν) in a sample calculation. Let us write the AdS5 × S5 metric in the following form

ds2 =
u2

L2
ηijdx

idxj +
L2

u2
(dρ2 + ρ2dΩ2

3 + dy2
5 + dy2

6), (2.61)

with ρ2 = y2
1 + ... + y2

4, u2 = ρ2 + y2
5 + y2

6. The D7-brane can fluctuate in the directions
orthogonal to its worldvolume, y5, y6. For simplicity we set y6 = 0. We work in a gauge where
y5 depends on the worldsheet coordinate ρ. Then the action for a static D7-brane is given by

SD7 = T7

∫
d8ξ
√

1 + y′25 , (2.62)

where y′5 = ∂ρy5. The ground state configuration of the D7-brane corresponds to a solution to
the equation of motion

∂ρ

(
ρ3 y′5√
1 + y′5

)
= 0. (2.63)

Clearly, y′5(ρ) = 0 is a solution, so a constant y5(ρ) is a solution. The embedding of the D7-
brane is given by y(ρ) = d, for any constant d. This means that we can choose the position
of the brane by hand, and therefore we can also choose the mass of the hypermultiplet, since
m = d

2πα′ . In general, the asymptotic solution (ρ → ∞) to the equation of motion has the
form

y5(ρ) = d+
c

ρ2
+ ..., (2.64)

where d is related to the quark mass as discussed above and c describes the degree of bending
of the D7-brane. From the holographic dictionary we know that the leading term in the above
expansion acts as a source for an operator in the subleading term. The parameter c must
correspond to an operator with mass dimension three since ρ carries energy dimension. We
conclude that c corresponds to the quark condensate 〈ψ̄ψ〉 ∝ c. In the case of a static D7-brane
with no gauge field turned on, solutions with non-zero values of c are not regular in AdS space
and these solutions are excluded. However, when a magnetic field is included a condensate
can form, even for zero quark masses [57]. This effect is known as magnetic catalysis.

A few comments about conformal symmetry are in order. The induced metric on the D7-
brane is

ds2 =
ρ2 + d2

L2
ηijdx

idxj +
L2

ρ2 + d2
+

L2ρ2

ρ2 + d2
dΩ2

3 . (2.65)
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If we set d = 0 we see that the induced metric is exactly AdS5×S3. The AdS5 factor suggests
that theory should still be conformally invariant. Indeed, in the probe limit with vanishing
quark masses the theory is classically conformal. This is also true quantum mechanically.
The β-function for the ’t Hooft coupling is is proportional to the ratio Nf/Nc between the
number of D7-and D3-branes, which goes to zero in the probe limit [30]. Now, if we separate
the D7-branes from the D3-branes the above metric becomes AdS5 × S3 only asymptotically
(ρ � d). This reflects the fact that conformal symmetry is explicitly broken by the mass of
the hypermultiplet, but is restored at energies E � mq.

With the possibility of including fields in the fundamental representation, quarks, it is possible
to study systems that are closer to QCD. This is what we will do in the rest of this work. We
will study the properties of strongly coupled systems in the presence of fundamental fields in
two different models.
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Chapter 3

Heavy-light mesons

In the last section we have shown how fundamental fields can be included in the framework of
the AdS/CFT correspondence. In the following we will investigate various strongly coupled
systems with fundamental matter and explore their properties. In this chapter we use the
correspondence to compute the energy spectrum of heavy-light mesons. We start with N = 2
super Yang-Mills theory with two massive hypermultiplets. In the heavy quark limit, similar
to QCD, we find that the excitation energies are independent of the heavy quark mass. We
also find some degeneracies in the spectrum which can be attributed to the presence of super-
symmetry, protecting the masses of mesons inside supermultiplets. Then we inspect the mass
spectrum of heavy-light mesons in deformed N = 2 super Yang-Mills theory and demonstrate
how some of the degeneracies of the supersymmetric mesons can be removed upon breaking
supersymmetry.

This chapter is organized as follows. We begin with an introduction and motivate our
work. In Section 3.3 we review the dual supergravity construction of N = 2 SYM theory
with two massive fundamental hypermultiplets, and in addition we make some remarks about
related constructions with less supersymmetry. Section 3.4 fixes our notation and sets up the
supergravity calculation of the heavy-light meson spectrum. In Section 3.5, we analyze small
fluctuations of the string dual to the heavy-light meson. Section 3.6 follows with a discussion
of spinning strings dual to heavy-light mesons with large charge and angular momentum. In
Section 3.7 we break supersymmetry by two different mechanisms, one leading to the emergence
of hyperfine splitting and the other to the Zeemann effect. This chapter is based on [31, 32].

3.1 Heavy quark effective theory

The heavy quark limit of QCD has been an important tool in understanding the spectrum
and decays of mesons and baryons with a heavy quark constituent; see Ref. [58] for a review.
When the mass of the heavy quark is large compared to the QCD scale, mh � ΛQCD, the
interaction between the heavy quark and the light quarks and gluons becomes independent
of the spin and flavor of the heavy quark. This independence yields predictions for the mh

dependence of the meson spectrum and weak decay amplitudes.
One reason why heavy quarks are easier to understand in QCD than light quarks is asymp-

totic freedom; at short distance scales and high energies, the strong force becomes weak.
Roughly speaking, for energies sufficiently above ΛQCD, the coupling constant αs becomes
small, and thus the interactions of the heavy quarks, charm, bottom and top, are governed
by a weak effective coupling αs(mh). The light quarks, up, down, and strange, on the other
hand experience a much stronger coupling αs(Λ), with Λ only slightly above ΛQCD, where
the coupling diverges. Indeed, the strong force between two heavy quarks is weak enough
to be treated perturbatively, and is similar to the force between an electron and a positron.
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Heavy-heavy mesons, which are bound states of two heavy quarks, therefore have measured
properties very similar to positronium.1

Heavy-light mesons, in contrast, are more complicated objects, as their light quark con-
stituent experiences strong interactions. Qualitatively, the heavy quark is a small object of
size 1/mh surrounded by the“brown muck”, of size 1/ΛQCD, of virtual strongly interacting
light quarks, antiquarks, and gluons. However, the small size of the heavy quark leads to
simplifications. The “brown muck” cannot resolve the spin or flavor of the heavy quark to
leading order in 1/mh, which means the interaction is spin and flavor blind. The light degrees
of freedom only experience its color field, which extends over large distances due to confine-
ment. Suppose we have a hadron with one single heavy quark Q(v, s) with spin s and velocity
v surrounded by the light degrees of freedom. If we replace the quark by another heavy quark
Q′(v, s′) with different flavor or spin but with the same velocity the configuration of the light
degrees of freedom does not change. Both heavy quarks lead to the same static color field.
This is the heavy quark symmetry. The heavy quark symmetry is an approximate symmetry
and corrections arise since the quark masses are not infinite. This symmetry is similar to the
isotopic symmetry in atomic physics, where different isotopes (same number of protons but
different number if neutrons) of an atom have the same chemical properties to a very good
approximation.
Heavy Quark Effective theory predicts a heavy-light spectrum of the parametric form

Mhl = mh + ΛQCD +
Λ2

QCD

mh
+O

(
Λ3

QCD

m2
h

)
. (3.1)

The second term in the above equation originates from the light quark quantum numbers and
is called fine structure. The third term, called hyperfine structure, is due to the coupling of
the heavy quark spin to the light degrees of freedom. In the heavy quark limit mh → ∞
there are degenerate states of mesons. For example, there is a degenerate doublet of S-wave
mesons. At large but finite quark mass this doublet is not exactly degenerate. Hyperfine
splitting proportional to Λ2/mh appears.

Equation (3.1) and the effect of hyperfine splitting are our main motivations to study
heavy-light mesons from holography. Concretely we are interested if holography can reproduce
predictions from HQET and/or give new predictions.

3.2 Holographic heavy-light mesons

We investigate the heavy quark limit not in QCD but in a cousin of N = 4 SU(N) super
Yang-Mills (SYM) theory. We add two fundamental hypermultiplets, with masses ml and mh,
to N = 4 SYM, breaking the supersymmetry to N = 2. Using the AdS/CFT correspondence
[59, 52, 53], we study the spectrum of heavy-light mesons in this theory at large N and large
’t Hooft coupling λ = g2

YMN .
We want to know, what parallels exist between heavy-light mesons in real world QCD and

in strongly coupled N = 2 SU(N) SYM theory with two massive hypermultiplets. The parent
theory N = 4 SU(N) SYM is clearly very different from QCD. Most importantly for our
comparison, N = 4 SYM is conformal, and we thus have no equivalent notion of the coupling
constant being mh dependent. We also have no notion of a confinement or QCD scale ΛQCD;
for us the IR scale will be ml. It is true that adding Nf = 2 hypermultiplets to N = 4 SYM
breaks the conformal symmetry (see Section 4.1.2), but the nonzero beta function in fact runs

1Note however that highly excited charmonium and bottomonium states are expected to be sensitive to
the details of confinement. For these excited states, the quarks are separated by relatively large distances and
experience a linear confining potential rather than a Coulombic potential. To reproduce the full spectrum, the
Cornell potential, which interpolates between these two limiting forms, is often used.
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in the wrong direction, toward strong coupling in the UV. We will, however, work in the limit
Nf � N , and therefore ignore Nf/N suppressed effects.

Despite these differences, there is persistent hope that we may gain insights into QCD by
asking the right questions about N = 4 SYM and its relatives at strong coupling. For example,
at zero temperature, the Klebanov-Strassler model [60] provides a geometric understanding of
abelian chiral symmetry breaking and confinement for a N = 1 supersymmetric gauge theory
in this AdS/CFT context. Regarding nonzero temperature physics, where the arguments are
perhaps more compelling, Refs. [61, 62] made the following two observations. First, consider
the ratio of the pressure at strong and weak coupling. The ratio for N = 4 SYM was computed
by Ref. [63] to be 3/4. QCD is not conformal, but lattice simulations can be used to compute
the pressure at a few times the deconfinement temperature where the theory is relatively
strongly interacting and the pressure slowly varying. The ratio of this pressure to the free
result is about 0.8. The second observation is that at strong coupling, both N = 4 SYM and
QCD are believed to have very small viscosities (see e.g. Refs. [64, 65])

The AdS/CFT correspondence maps N = 4 SU(N) SYM theory to type IIB string theory
in the curved background AdS5 × S5. We will work in the large N and λ limit, where the
string theory becomes classical and can be well approximated by supergravity. As described
by Ref. [30], a hypermultiplet can be added to the gauge theory by placing a D7-brane in the
dual geometry. The heavy-light mesons we consider then, according to the duality, correspond
to strings stretching between two parallel D7-branes, and the energy spectrum consists of the
vibrational and rotational modes of the strings. Consistent with our large N limit, we will
neglect the back reaction of the D-branes on the geometry, as well as the back reaction of the
strings on the D-branes and the geometry.

Despite the conformal nature of the theory we consider, we find that the meson spectrum
is, in an appropriate sense, spin and flavor blind in the heavy quark and strong coupling limit.
The mass Mhl of the heavy-light mesons we find has the form

Mhl = mh +ml f1

(
J√
λ
,
Q√
λ
,
n√
λ

)
+O

(
m2
l

mh

)
, (3.2)

where J is the angular momentum of the meson, Q an R-charge, and n a quantum number
specifying a radial excitation.2 We have not introduced a confinement scale and thus ml takes
the place of ΛQCD.

One important aspect of this heavy-light meson spectrum is its mh independence, which
can be understood in the following way. The excitations (at least in n and J) we find are closely
analogous to the modes of a guitar string, the length of which is proportional to 1/ml−1/mh.
In the heavy quark limit, the length of the string becomes independent of 1/mh, and hence it
is expected that also the frequencies of the modes become 1/mh independent.

The fluctuation analysis also shows a degeneracy in the spectrum. For example, we find
that a scalar meson and a vector meson have the same energy. By breaking supersymmetry
this degeneracy gets lifted and hyperfine structure appears.

Let us also comment on the existing literature. After the appearance of Ref. [30], there
have been many detailed studies of the meson spectrum of the N = 2 SU(N) SYM theory
beginning with Refs. [66, 67]. In fact, a nice review [68] has appeared to which we point the
interested reader for a more complete list of references. To understand what is new about
our work, it is useful to outline the differences of our work from Ref. [67], where the authors
considered the meson spectrum for N = 2 SYM theory with a single massive hypermultiplet of

2Recall that N = 2 supersymmetric gauge theories have a global R-symmetry. Geometrically, Q is an
angular momentum in the internal S5.
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mass m. They considered two different types of mesons. The first type have a very small mass
M ∼ m/

√
λ and spin 0, 1/2, or 1, and are dual to fluctuations of the D7-brane embedding. The

second type are dual to U-shaped semiclassical strings with much larger angular momentum J
and mass. For J �

√
λ, the mass obeys Regge scaling M ∼ m

√
J/λ1/4 while for J �

√
λ, the

potential is Coulombic M = 2m− const/J2. While the behavior of these types of mesons are
qualitatively diffferent, there is expected to be a way in which as we consider mesons with larger
and larger angular momentum, the D7-brane fluctuations in fact morph into semiclassical
string configurations.

The ground state of our heavy-light meson is a string, which stretches between two D7-
branes separated by a finite distance proportional to the mass difference between the hyper-
multiplets. Having taken the heavy-quark limit, there is no sense in which our meson spectrum
is well approximated by D7-brane fluctuations. To find the spectrum, we therefore instead
consider fluctuations of the string itself, which will correspond to radial excitations of the
meson. We also consider the dependence of the string energy on its angular momentum J and
charge Q, and this part of the analysis is similar to the second half of Ref. [67] and Section 2
of [69].

The types of heavy-light mesons we consider have been studied before, in Refs. [70, 71, 69].
Ref. [69], is very similar in spirit to ours. Indeed, Section 2 of Ref. [69] overlaps to some
extent with our discussion of the spinning strings in Section 3.6.1. In Refs. [70, 71], it was
pointed out that the ground state heavy-light mesons have a mass which scales as the difference
of the heavy quark masses, M = mh −ml. This scaling is very different from the D7-brane
fluctuations considered in Ref. [67], which yielded masses M ∼ m/

√
λ for the heavy-heavy and

light-light mesons. Ref. [70] also demonstrated that the excitation energies above the ground
state are suppressed by a power of λ. This work should in principle be very similar to what
we do here, as the authors of Ref. [70] also study the fluctuation spectrum of a semiclassical
string stretching between two D7-branes in the AdS5 × S5 geometry. However, they work
in an approximation where the strings do not bend and find that the excitation energies for
heavy-light mesons scale with mh instead of ml. Ref. [71] in contrast is a calculation in a
different limit: They consider the case where the masses of the two hypermultiplets become
degenerate and thus non-abelian effects on the D7-branes are important.

3.3 Holographic setup and supersymmetry considerations

We know that type IIB strings in an AdS5 × S5 space-time are dual to N = 4 SU(N) super
Yang-Mills theory through the AdS/CFT correspondence. The space AdS5 × S5 has the line
element

ds2 = L2

[
u2ηµνdx

µdxν +
δijdy

idyj

u2

]
, (3.3)

where the indices i and j run from one to six, µ and ν run from zero to three, and L is the
radius of curvature. The coordinate u2 ≡ ∑i(y

i)2 is a radial coordinate, and as u → ∞,
we reach the boundary of AdS5. In this notation, the metric is clearly a warped product of
Minkowski space R1,3 with R6. The line element can also be written to make the AdS5 more
explicit:

ds2 =
L2

z2
(ηµνdxµdxν + dz2) + L2dΩ2 , (3.4)

where dΩ2 is a line element on the S5 and u = 1/z. The SO(6) isometry group of the S5

geometrically realizes the SO(6) R-symmetry of the dual field theory.
As described by Karch and Katz [30], adding an N = 2 hypermultiplet to the gauge

theory is dual to placing a D7-brane in the dual geometry. The D7-brane spans the Minkowski
directions xµ and four of the remaining directions in R6. With this ansatz, the D7-brane is
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insensitive to the RR-five form flux in the curved geometry, and its behavior is determined
solely through the DBI action

SDBI = −T7

∫
d8ξ
√
−det(Gab + 2πα′Fab) , (3.5)

where T7 = 1/(2π)7α′4gs is the D7-brane tension, 1/2πα′ is the string tension, gs is the string
coupling constant, Gab is the induced metric on the D7-brane, and Fab is the gauge field on the
D7-brane. We will consider only the case Fab = 0 in these remarks. Recall that the AdS/CFT
dictionary relates

L2

α′
=
√
λ and 4πgs = g2

YM , (3.6)

where λ = g2
YMN is the ’t Hooft coupling.

To correspond to a hypermultiplet, the D7-brane must span R1,3, and thus the four re-
maining dimensions of the D7-brane lie in R6. It seems natural to choose a gauge in which
four of the coordinates on the D7-brane are the xµ. Moreover we pick an embedding in R6

that does not depend on the xµ. Given this independence, the determinant of the induced
metric on the D7-brane will not depend on the warp factor u2 in the ten dimensional metric
(3.3). Dividing out by the volume of Minkowski space, the DBI action can be written in the
form

SDBI = −T7L
8

∫
d4ξ

√
det
(
∂~y

∂ξa
· ∂~y
∂ξb

)
. (3.7)

The D7-brane will satisfy the same equations of motion that it does in flat space; the D7-brane
describes a minimal four dimensional hypersurface in R6. Note that the normalization of the
DBI action can be written in gauge theory language as

T7L
8 =

2λN
(2π)6

.

The DBI action is smaller by a factor of N compared to the supergravity action, justifying
our neglect of the back reaction of the D7-brane on the geometry.

A particularly simple class of hypersurfaces which satisfy the equations of motion are
surfaces described by a holomorphic embedding equation. If we think of R6 = C3 as a complex
manifold and define coordinates wj = y2j−1 + iy2j , a D7-brane which satisfies an equation
of the form f(w1, w2, w3) = 0 for an arbitrary function f will locally satisfy the equations of
motion away from singularities.

The Karch-Katz D7-brane is a hyperplane described by two linear equations ~a1 · ~y = c1

and ~a2 · ~y = c2. Given the SO(6) rotational symmetry of the sphere, such a hyperplane can
be rotated so that the two equations become y5 = c and y6 = 0.3 In complex coordinates, the
hyperplane is the complex submanifold described by f = w3 − c. The parameter c is dual to
the mass of the hypermultiplet.

The Karch-Katz D7-brane preserves N = 2 supersymmetry, while the more general case
f(w1, w2, w3) = 0 preserves only N = 1 supersymmetry (see e.g. Ref. [72]). In brief, there are
32 real spinors generating supersymmetry transformations that leave invariant the AdS5 × S5

type IIB supergravity background, 16 of which correspond to ordinary supercharges and the
remainder of which are superconformal. This number of supercharges is sufficient to generate
theN = 4 superconformal algebra of the dual Yang-Mills field theory. Of these 32 spinors, only
four of the ordinary and none of the superconformal generate supersymmetry transformations

3Use the SO(6) symmetry to rotate ~a1 into the y5 direction and ~a2 into the y5–y6 plane. The problem
reduces to considering the intersection of two lines in a plane. There is a residual SO(2) symmetry in the y5–y6

plane which always allows us to rotate the intersection point onto the y5 axis.
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which leave a general D7-brane satisfying f(w1, w2, w3) = 0 invariant. The four invariant
spinors are independent of the choice of f(w1, w2, w3). The Karch-Katz D7-brane, on the
other hand, is left invariant by 8 of the ordinary spinors.

Given that a single Karch-Katz D7-brane corresponds to adding a single N = 2 hypermul-
tiplet, adding two such D7-branes should correspond to adding two hypermultiplets. In the
literature [70, 71, 73], we find that the second D7-brane is usually added in a way such that
the embedding equation for the second D7-brane is parallel to the first, w3 = c′ where c′ ∈ R.
Adding the second D7-brane in such a way has a number of desirable features. The theory
remains N = 2 supersymmetric. Moreover, an unbroken SO(4) ⊂ SO(6) of the global R-
symmetry is preserved. Note that c′ ∈ C still preserves N = 2 supersymmetry and the SO(4)
R-symmetry. The relative phase of c and c′ affects the relative phase of the hypermultiplet
masses and also the mass of the heavy-light meson, a fact we will return to in the discussion.

However, a generic second D7-brane would not be parallel to the first. Assuming the
second D7-brane is also described by a four dimensional hyperplane inside R6, the two D7-
branes will generically intersect along a plane R2. Such an intersection generically breaks all
the supersymmetry. If supersymmetry is broken, then there will probably be a tachyon, i.e. an
instability, and the D7-branes will recombine; it’s not clear what the final state will be, and
we have little to say about this nonsupersymmetric situation.

While the remaining SO(4) symmetry is not enough to guarantee the second Karch-Katz
D7-brane can be described by a complex equation as well, there will be a special case where
both D7-brane embeddings are described by complex equations in C3. This special case pre-
serves N = 1 supersymmetry. Indeed, if we add any number of Karch-Katz D7-branes such
that they are all described by complex equations in C3, N = 1 supersymmetry is preserved.
The reason is that the four spinors preserved by both the supergravity background and the
D7-brane are independent of the choice of f(w1, w2, w3). These intersecting brane configura-
tions should lead to a heavy-light meson spectrum similar to the heavy-heavy and light-light
meson spectra found in Ref. [67]. There will be short strings localized at the intersection of
the two D-branes whose masses should scale as the distance of the intersection from the origin
of the geometry divided by

√
λ. These intersecting configurations also provide a novel way of

thinking about meson decay, which is different from what has been considered in the litera-
ture before [74, 75]. The case of three intersecting Karch-Katz D7-branes would be especially
interesting to consider because the intersection of three four dimensional hyperplanes in R6 is
in general a point. We, however, leave a study of such spectra and decays for the future.

Finally, we make a short remark on the field theory aspects of the system we are studying.
We know that N = 4 SU(N) SYM has the superpotential

W = TrX[Y,Z] (3.8)

where X, Y , and Z are chiral superfields transforming in the adjoint of SU(N). The Karch-
Katz D7-brane leads to the modified superpotential

W = TrX[Y, Z] + Q̃(m−X)Q , (3.9)

where Q and Q̃ are chiral superfields that transform in the fundamental of SU(N) and combine
to form a hypermultiplet.4 The N = 2 supersymmetry preserving case of two parallel D7-
branes has the superpotential

W = TrX[Y,Z] + Q̃h(mh −X)Qh + Q̃l(ml −X)Ql . (3.10)

When mh and ml are both real, we chose above both c and c′ ∈ R. However, we may introduce
a relative phase between mh and ml as well corresponding to c′ ∈ C. Adding the D7-branes

4We have been careless of the relative normalizations of the different terms in W , but they will be fixed by
supersymmetry. See e.g. Ref. [76] for details.

41



Figure 3.1: A cartoon of our heavy-light mesons as strings stretched between two D7-branes.

in a way that preserves only N = 1 superysmmetry corresponds to more general types of
superpotentials, for example

W = TrX[Y,Z] + Q̃h(mh −X)Qh + Q̃l(ml − Y )Ql . (3.11)

In most of the rest of what follows, we will restrict to the case where mh and ml are real and
the two D7-branes preserve N = 2 supersymmetry.

3.4 Mass spectra of heavy-light mesons: Preliminaries

We consider the special configuration of two parallel D7-branes in the N = 2 supersymmetric
scenario described above where the ground state string will have a nonzero length. The string
hangs from one brane to the other and the string endpoints correspond to one heavy and one
light quark. Our aim is to derive the mass spectrum of heavy-light mesons by investigating
the spectrum of fluctuations of strings hanging between the branes.

The AdS5 × S5 metric (3.3) can be thought of as a warped product metric on R1,3 × R6.
We will write the line element on R6 as

δijdy
idyj = dρ2 + ρ2dθ2 + ρ2 sin2 θ dΩ2

2 + dy2 + (dy6)2 , (3.12)

where dΩ2
2 is a metric on a unit S2 and we have defined ρ2 ≡ u2 − (y5)2 − (y6)2 and y ≡ y5.

The metric on Minkowski space R1,3 we will write as

ηµνdx
µdxν = −dt2 + dr2 + r2dφ2 + dx2 . (3.13)

In this geometry, strings that stretch from one D7-brane to another are dual to mesons, as
illustrated in Figure 3.1 which displays our geometric picture of heavy-light mesons. Classical
strings are described by the Nambu-Goto action

SNG =
∫
dτdσL = − 1

2πα′

∫
dτdσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 , (3.14)

where XA(τ, σ) describes the embedding of the string in AdS5× S5. In our notation, X · Y =
gABX

AY B is contracted with the ten dimensional metric, and we have defined ∂σX ≡ X ′ and
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∂τX ≡ Ẋ. We choose a gauge in which the worldsheet coordinates are τ = t, σ = y. The
locations of the light and heavy D7-branes will be denoted by y = yl and y = yh, and the light
and heavy quark masses [30] read

ml =
L2

2πα′
yl ; mh =

L2

2πα′
yh , (3.15)

where L2/α′ =
√
λ. The Nambu-Goto action is suppressed by a relative power of N with

respect to the DBI action, and thus we are justified in neglecting the back reaction of the
string on the D7-brane and the geometry in the large N limit.

We wish to study the profile that a string stretching between the D7-branes takes, assuming
that the string sits at a constant position in the internal unit S2. The Nambu-Goto action
(3.14) produces the equation of motion

0 =
∂

∂τ

gAB (Ẋ ·X ′)(X ′)B − (X ′)2ẊB√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

+
∂

∂σ

gAB (Ẋ ·X ′)ẊB − (Ẋ)2(X ′)B√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

 (3.16)

− 1√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

∂gAB
∂XC

(
ẊAX ′B(X ′)2 − 1

2
ẊAẊB(X ′)2 − 1

2
X ′AX ′B(Ẋ)2

)
.

The second line will only give a contribution to the equation of motion when we consider
spinning strings in Section 3.6. The various scalar products have the forms

Ẋ ·X ′ = L2

{
u2
(
ẋx′ + ṙr′ + r2φ̇φ′

)
+

1
u2

(
ρ̇ρ′ + ρ2θ̇θ′ + ẏ6y

′
6

)}
, (3.17)

(Ẋ)2 = L2

{
u2(−1 + ẋ2 + ṙ2 + r2φ̇2) +

1
u2

(
ρ̇2 + ρ2θ̇2 + ẏ2

6

)}
, (3.18)

(X ′)2 = L2

{
u2
(
(x′)2 + (r′)2 + r2(φ′)2

)
+

1
u2

(
1 + (ρ′)2 + ρ2(θ′)2 + (y′6)2

)}
, (3.19)

where we have rewritten y6 as y6 to avoid confusing superscripts. The energy and momentum
densities of the string are

π0
A =

∂L
∂ẊA

= − 1
2πα′

gAB
(Ẋ ·X ′)(X ′)B − (X ′)2(Ẋ)B√

(Ẋ ·X ′)2 − (X ′)2(Ẋ)2

, (3.20)

while the energy and momentum currents read

π1
A =

∂L
∂(X ′)A

= − 1
2πα′

gAB
(Ẋ ·X ′)(Ẋ)B − (Ẋ)2(X ′)B√

(Ẋ ·X ′)2 − (X ′)2(Ẋ)2

. (3.21)

We will apply Neumann boundary conditions in the D7-brane directions at y = yl and y = yh

π1
A

∣∣
y=yh,yl

= 0 , (3.22)

for A = x, r, φ, ρ, and θ, implying that no momentum is assumed to flow into the string
from the D7-brane in these directions. The coordinate y6 is in contrast subject to Dirichlet
boundary conditions.
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3.5 Fluctuations in x, ρ and y6

In this section, we study radial excitations of the heavy-light mesons. Specializing to the
background of θ̇ = 0, r = 0 and a constant ρ = ρ0, we consider infinitesimal fluctuations of
the string action in the form of x = x(t, y), ρ(t, y) = ρ0 + δρ(t, y) and y6 = y6(t, y). Applying
Eqs. (3.17)–(3.19) where now u2 = y2 + (ρ0 + δρ)2, we expand the action to second order in
the fluctuations, and obtain

SNG =
L2

2πα′

∫
dτdσ

{
1− 1

2
ẋ2 +

1
2
u4

0(x′)2 +
1
2

((δρ′)2 + (y′6)2)− 1
2u4

0

(
δρ̇2 + ẏ2

6

)}
, (3.23)

with u2
0 ≡ y2 + ρ2

0.
Translational symmetry in the Minkowski directions guarantees that a constant value of

x is a solution to the equation of motion and thus that there is a zero mode in the spec-
trum corresponding to motion of the string at constant velocity in the x direction. Perhaps
surprisingly, a constant value of ρ is also a solution and thus there is another zero mode in
the spectrum corresponding to translations of the ρ coordinate, even though we do not have
translational symmetry in these directions. However, we will see below that this zero mode
is only present for the ground state string. The fluctuating string can minimize its energy by
moving to ρ = 0.

There exists an interesting relationship between the equation of motion for the fluctuations
in the y6 and δρ directions and the equation of motion for the fluctuations in x which we believe
may be a consequence of supersymmetry. We will assume that the fluctuations have the time
dependence XA ∼ e−iωt so that ẌA = −ω2XA. The equations of motion thus become

∂

∂y

(
f(y)x′

)
= −ω2x , (3.24)

f(y)δρ′′ = −ω2δρ , and f(y)y′′6 = −ω2y6 , (3.25)

where f(y) = (y2 + ρ2
0)2. From these expressions, it is clear that if we have a solution x to

Eq. (3.24), then δρ = f(y)x′ (or y6 = f(y)x′) satisfies Eq. (3.25). Moreover, given a solution
δρ (or y6) to Eq. (3.25), then x = δρ′ (or x = y′6) satisfies Eq. (3.24).

A consideration of boundary conditions now reveals that the fluctuations in x and y6

have the same spectrum up to a zero mode. While x and δρ satisfy Neumann boundary
conditions, y6 satisfies Dirichlet boundary conditions. If we solve Eq. (3.24) for the allowed
fluctuation modes x satisfying Neumann boundary conditions, then the relations between the
two equations of motion give us all the fluctuation modes y6 satisfying Dirichlet boundary
conditions. We have to perform a separate calculation for the δρ fluctuations, but had the x
fluctuations satisfied Dirichlet boundary conditions instead of Neumann, they would, too, be
trivially related to the δρ fluctuations. We begin with the x fluctuations.

3.5.1 The x fluctuations

The equation (3.24) for the x fluctuations can be solved to yield

x(t, y) =
Cρ0√
y2 + ρ2

0

{√
1 +

ω2

ρ2
0

cos

[√
1 +

ω2

ρ2
0

arctan
[
y

ρ0

]
+ α

]

+
y

ρ0
sin

[√
1 +

ω2

ρ2
0

arctan
[
y

ρ0

]
+ α

]}
e−iωt , (3.26)

where C and α are the two integration constants. We now apply Neumann boundary conditions
x′(yl) = x′(yh) = 0 to determine the allowed spectrum ω. Doing this at the light D7-brane,
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we find

α = −
√

1 +
ω2

ρ2
0

arctan
[
yl
ρ0

]
, (3.27)

while applying the boundary conditions at the heavy brane then yields the discrete spectrum:

ωxn = ρ0

√
n2π2

(arctan[ρ0/yl]− arctan[ρ0/yh])2 − 1 , (3.28)

where n ∈ Z+. In addition to these values of n however, the spectrum also contains a zero
mode, the trivial solution of ω = 0.

Before moving onto the y6 fluctuations, we note that in the ρ0 = 0 limit, the mode functions
and spectrum become simpler:

x = C(ωz cos(ω(z − zl))− sin(ω(z − zl)))e−iωt , (3.29)

ωxn =
πn

zl − zh
, where z = 1/y . (3.30)

The frequencies are the same as those of a guitar string of length zl− zh, and we thus see that
in the heavy quark limit, zh → 0, the frequencies become mh independent.

3.5.2 The y6 fluctuations

The solution to the equation of motion (3.25) is now related in a trivial way to the x fluctuations
studied above:

y6 = (y2 + ρ2
0)2x′ = −Cω2

√
ρ2

0 + y2 sin

[√
1 +

ω2

ρ2
0

arctan
[
y

ρ0

]
+ α

]
e−iωt . (3.31)

In the ρ0 = 0 limit, the mode function again takes a simpler form

y6 =
Cω2

z
sin(ω(z − zl))e−iωt where z = 1/y . (3.32)

The Dirichlet boundary conditions y6(yl) = 0 = y6(yh) are equivalent to the Neumann
boundary conditions applied to the x fluctuations above, leading to the same value of α given
in Eq. (3.27) and the same spectrum

ωyn = ρ0

√
n2π2

(arctan[ρ0/yl]− arctan[ρ0/yh])2 − 1 , (3.33)

where n ∈ Z+. This time, however, there is no zero mode.

3.5.3 The δρ fluctuations

For the δρ fluctuations, we will not be able to find an analytic spectrum, but will eventually
attempt to understand the spectrum’s features both qualitatively and numerically. We begin
with the general solution to Eq. (3.25),

δρ(t, y) = C
√
ρ2

0 + y2 sin

[√
1 +

ω2

ρ2
0

arctan
[
y

ρ0

]
+ α

]
e−iωt . (3.34)
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Applying Neumann boundary conditions at the light brane δρ′(yl) = 0, we find

α = −
√

1 +
ω2

ρ2
0

arctan
[
yl
ρ0

]
− arctan

[√
1 +

ω2

ρ2
0

ρ0

yl

]
, (3.35)

while demanding that the boundary conditions are satisfied at the heavy brane leads to

tan

[√
1 +

ω2

ρ2
0

(
arctan

[
yl
ρ0

]
− arctan

[
yh
ρ0

])
+ arctan

[√
1 +

ω2

ρ2
0

ρ0

yl

]]

=

√
1 +

ω2

ρ2
0

ρ0

yh
. (3.36)

The solutions of this equation give us the spectrum of the fluctuations ωρn.
Unfortunately, the transcendental nature of the above equation prevents us from solving it

analytically. There are, however, various limits, where we can simplify the numerical solution.
The first simplification occurs in the limit of large yh, in which one may attempt a power
expansion in yl/yh. To this end, we write

ωρn ≡ ωn = yl ×
∞∑
i=0

ωn,i

(
yl
yh

)i
, (3.37)

substitute this into Eq. (3.36), and proceed to solve the equation order by order in the small
parameter yl/yh. At leading order, we easily obtain for ωn,0√

1 +
ω2
n,0 y

2
l

ρ2
0

(
π

2
− arccot

[
ρ0

yl

])
− arctan

[√
1 +

ω2
n,0 y

2
l

ρ2
0

ρ0

yl

]
= nπ, (3.38)

with n ∈ Z+. The numerical solution to this equation quickly leads to the forms of the
functions ωn,0 (ρ0/yl). The next two terms in the power series expansion of Eq. (3.36) are
solved trivially by setting ωn,1 and ωn,2 equal to zero, and it is only at order i = 3 that we find
the next nonzero term in the expansion of Eq. (3.37). The forms of the resulting functions
ωn,0 (ρ0/yl) and ωn,3 (ρ0/yl) will be displayed for n = 1, 2, ..., 5 in the next section in a slightly
different notation.

One limit, where the functions ωn,i are in fact analytically solvable is that of large ρ0/yl.
There, it is straightforward to see that Eq. (3.38) reduces to the solution

ωn,0 =
√

(2n+ 1)2 − 1
ρ0

yl
, (3.39)

while the three next orders produce

ωn,1 = ωn,2 = 0 and ωn,3 =
4

3π

√
n(n+ 1)(2n+ 1)2

(
ρ0

yl

)4

. (3.40)

It is interesting to contrast Eq. (3.39) with the spectra of the x and y6 fluctuations, which in
the same limit (yh →∞ and ρ0/yl large) produce from Eq. (3.28)

ωxn =
√

(2n)2 − 1 ρ0. (3.41)

We thus see that at least in this limit, the fluctuation energies in the x and y6 direction lie
exactly in between the energies of the ρ fluctuations.
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Finally, we note that in the limit ρ0 = 0, Eq. (3.34) reduces to

δρ =
−C

z
√

1 + ω2z2
l

(ωzl cos(ω(z − zl)) + sin(ω(z − zl))) e−iωt , (3.42)

while condition (3.36) on the frequencies reduces to the simple expression

ω(zh − zl) = arctan(ωzh)− arctan(ωzl)− πn , (3.43)

where n is an integer. This equation, however, is not of an analytically solvable type either, so
it must be dealt with numerically. In the limit yh →∞, the first few solutions are ωzl = 4.493,
7.725, and 10.904.

3.5.4 The meson mass spectrum

Let us finally look at the energy spectrum of the string fluctuations in more detail. Using the
result

E = −
∫

dσ π0
t , (3.44)

we see that to quadratic order in the fluctuations the energy of the string can be obtained by
integrating the canonical momentum density

π0
t = − L2

2πα′

(
1 +

1
2
u4(x′)2 +

1
2
ẋ2 +

1
2

(δρ′)2 +
1

2u4
(δρ̇)2 +

1
2

(y′6)2 +
1

2u4
(ẏ6)2

)
.

From a classical perspective, the energies will depend on the amplitudes of the fluctuations,
while from a quantum perspective, these amplitudes can only take on discrete values cor-
responding to the occupation number of a given mode. At quadratic order, we essentially
have a version of the quantum harmonic oscillator. The equal time commutation relation
[XA(y), π0

A(y′)] = iδ(y − y′) implies, in units where ~ = 1, that the smallest quanta of exci-
tation are the frequencies we determined before, the ωwn where w = x, ρ, or y. We find the
simple result

E = mh −ml +
∑
w,n

Nn
wω

w
n , (3.45)

where Nn
w is the occupation number of the mode (w, n).5 We therefore note that in order to

inspect the mass spectrum of the heavy-light mesons below, we merely need to consider the
frequencies ωwn obtained above. We anticipate Eq. (3.45) remains valid provided Nn

w �
√
λ

and we can neglect the nonlinearities in the string equation of motion.

The x and y6 fluctuations

Denoting q ≡ ρ0L
2/2πα′ and using the relation L2/α′ =

√
λ, we can write the energy spectrum

of the x or y6 fluctuations in the form

Exn = Eyn = mh −ml +
2πq√
λ

√
n2π2

(arctan[q/ml]− arctan[q/mh])2 − 1 . (3.46)

This formula gives the energy for a string with a single quantum of excitation in the nth mode
of the y6 or x fluctuations. In the Introduction, we claimed that in the heavy quark limit,

5Calculating the zero point energy contribution to these oscillators requires also investigating the fermionic
fluctuations of the superstring. We suspect supersymmetry implies that the zero point energy vanishes.
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Figure 3.2: Plots of the functions ωn,0(q/ml) and ωn,3(q/ml), respectively. The index n grows
from 1 to 5 from the bottom to the top curve in both figures.

mh � ml, the energy of the excitations scaled with ml. Here, seemingly in contradiction with
the earlier claim, we find that in the limit mh � q, we may expand the ωxn in inverse powers
of mh, producing

Exn = mh −ml +
2πq√
λ
fn

(
q

ml

)
+

2π3n2q2

√
λmh

1
arctan3[q/ml]fn(q/ml)

+O
(

1
m2
h

)
, (3.47)

where we have denoted

fn(x) ≡
√

n2π2

arctan2[x]
− 1 . (3.48)

Thus, the excitation spectrum depends on both light scales ml and q.
We now give two reasons why the scale q should disappear. First, the derivative of the

excitation energies with respect to q is non-negative

∂Exn
∂q

=
∂Eyn
∂q
≥ 0 , (3.49)

and is equal to zero at q = 0, implying that fluctuations about q 6= 0 have more energy than
the equivalent fluctuations about q = 0. This inequality suggests that a string fluctuating
about a nonzero value ρ0 will in addition begin to oscillate about ρ = 0. In the case of q = 0,
the energy spectra reduce to

Exn = Eyn = mh −ml +
mhml

mh −ml

2π2n√
λ

, (3.50)

where n ∈ Z+. In the heavy quark limit mh � ml, the excitation spectrum does indeed
depend only on ml to leading order in ml/mh.

The second reason for the disappearance of the scale q will be developed more in Section
3.6, where we will see that for slowly spinning strings in the ρ–θ plane, a nonzero value of
ρ0 is stabilized. Thus what would seem to be a zero mode in the ρ direction is lifted and a
continuous change of q will not be possible for these spinning strings. However, the stable
value of ρ0 is of order ml or zero, regardless of the angular momentum, and thus the extra
scale q again disappears from the excitation spectrum.
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The δρ fluctuations

For the δρ fluctuation spectrum given by Eq. (3.36), we have to resort to numerics. In the limit
of large yh � yl, we may use our earlier numerical solution utilizing a power series expansion
in yl/yh, in terms of which the spectrum can be written in the form

Eρn = mh −ml +ml ωn,0(q/ml)
2π√
λ

+
m4
l

m3
h

ωn,3(q/ml)
2π√
λ

+O(m5
l /m

4
h) . (3.51)

This formula corresponds to the energy of a string with a single quantum of energy in the nth
mode of the ρ fluctuations. We plot the functions ωn,0 and ωn,3 in Figure 3.2. From there,
we see that the energies of the fluctuations are always minimized at ρ0 = 0 or q = 0, just as
it was for the x and y6 fluctuations. Another interesting aspect of these excitation energies is
the absence of the two first leading corrections in ml/mh in the heavy quark limit.

3.6 Spinning strings

To supplement our discussion of the small fluctuations of strings around static quark-antiquark
solutions, we now turn to consider the case where the string joining the heavy and the light
brane is spinning. First, we consider strings spinning in the real space where they have a
conserved angular momentum, and then look into strings spinning in the internal θ direction
where the corresponding angular momentum can be reinterpreted as a charge. Our analysis
is purely classical, but we expect valid, provided the angular momentum and charge of the
strings are large.

As we have discussed briefly already, there is an interesting wrinkle in the discussion of
the ρ–θ spinning strings. A straight, motionless string stretching between the D7-branes at a
nonzero value of ρ0 is a solution for all ρ0. That such a string is a solution is surprising given
the lack of translation invariance in ρ. As we saw before in the analysis of the fluctuations, if
we excite one of these straight strings with ρ0 6= 0, it will experience a force pulling it toward
ρ = 0. In this section on spinning strings, we will find that a string spinning in the ρ–θ plane
is not free to sit at an arbitrary average value of ρ0 either.

3.6.1 Strings spinning in real space

We start by looking into the profile and energy spectrum of a string spinning in real space,
more specifically in the x1–x2 plane, assuming that x3 = ρ = y6 = 0. To begin with, we
transform from Cartesian (x1, x2) to polar coordinates (r, φ), and make the uniformly rotating
ansatz of Ref. [67], where φ = Ωt is independent of the worldsheet coordinate σ. At the same
time, we assume that z(σ) and r(σ) are t independent, which leads to an action of the form

S = − L2

2πα′

∫
dt dσ

1
z2

√
(1− Ω2r2)((z′)2 + (r′)2) , (3.52)

invariant under reparametrizations of the worldsheet coordinate σ = f(σ′). For the most part,
we will choose σ = z, though for the numerical studies we will shortly present, we found it
sometimes convenient to make other choices, such as σ = r. This action leads to the following
formulae for the energy and angular momentum of the string:

E =
L2

2πα′

∫
dσ

1
z2

√
(z′)2 + (r′)2

1− Ω2r2
, (3.53)

J =
L2Ω
2πα′

∫
dσ

r2

z2

√
(z′)2 + (r′)2

1− Ω2r2
. (3.54)

49



Figure 3.3: Top: A schematic plot showing the forms of the spinning string solutions r(z)
for various n. The lower (thick) horizontal line corresponds to the heavy brane sitting at
zh = 1/100 and the upper (thin) line to the light brane at zl = 1, with the coordinate z
growing vertically. The six curves, from left to right, correspond to the cases of n = 1, 2, 3, 4, 9
and 13, respectively. Bottom: Another schematic plot showing the evolution of the n = 3
branch as Ω is decreased from 9.52 (left) to 0.5 (right). The critical solution Ω3c = 5.84 is
the third from the left. For the smallest value of Ω, corresponding to large J and E, we have
rescaled the solution in the z direction by a factor of 4.4 in order to make it fit in the figure. In
the Ω→ 0 limit, the solution becomes symmetric in the r direction about the center of mass.

Choosing now σ = z, the equation of motion for r(z) has the form

r′′

1 + (r′)2
− 2
z
r′ +

Ω2r

1− Ω2r2
= 0 , (3.55)

which we now proceed to solve, demanding that Neumann boundary conditions be satisfied
on the heavy and light branes at z = zh and z = zl. Neumann boundary conditions for φ are
satisfied trivially because φ′ = 0, while for r the boundary conditions read

r′

√
1− Ω2r2

1 + (r′)2

∣∣∣∣∣
z=zh,zl

= 0 . (3.56)

Thus, we must either require that r′ = 0 at the boundary or that Ω2r2 = 1, which physically
is the condition that the endpoint of the string is moving at the local speed of light. We will
in general choose r′ = 0, but will nevertheless find certain “critical” solutions that satisfy the
light-like boundary conditions.

The linearized form of Eq. (3.55) provides a good place to begin our study, as this form

z2

(
r′

z2

)′
+ Ω2r = 0 , (3.57)

of Eq. (3.55), valid when r′ and Ωr � 1, is easy to solve. Indeed, we already solved it;
Eq. (3.57) is identical to Eq. (3.24) in the case ρ0 = 0. Assuming then that the string takes
the form

r = A (ωnz cos(ωn(z − zl))− sin(ωn(z − zl))) , (3.58)

φ = ωnt =
πn

zl − zh
t (3.59)

for small A, where we have adapted Eq. (3.29), the energy and angular momentum are given
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by the approximate expressions

E =
L2

2πα′

(
1
zh
− 1
zl
− (πn)4A2

2(zh − zl)3
+O(A4)

)
, (3.60)

J =
L2

2πα

(
(πn)3A2

2(zh − zl)2
+O(A4)

)
. (3.61)

Eliminating A from here, we find that6

E ≈ mh −ml + nπ
mlmh

mh −ml

2πJ√
λ
, (3.62)

which corresponds to the dashed straight lines in Figure 3.4 (left), where we display the E
vs. J dependence of our spinning strings. This linear scaling of E with J is characteristic of
a particle in a Hooke’s law potential, where the constant of proportionality is given by the
frequency of the oscillator.

As the E and J of the string get larger, r will get larger as well, and eventually our
linearized approximation breaks down. To make further progress, we resort to numerics to
calculate the profile (r, z) of the spinning strings. For simplicity, we rescale our variables so
that zl = 1, and have zh take the values 1/10 and 1/100, corresponding roughly to the heavy-
to-light quark mass ratios one finds in QCD for charm and bottom quarks. We find that for
each n, there is a continuous family of rotating string solutions for all Ω such that 0 < Ω < ωn.
The index n parametrizes the number of turning points in the solutions: For the branch n,
the string profile (r, z) has always n− 1 (local) extremal values in r. Examples of the profile
(r, z) for various n are exhibited in Figure 3.3 (top).

Once the results for (r, z) are obtained in a numerical form, we insert them into the integrals
of Eqs. (3.53) and (3.54), thus obtaining the energies of the spinning strings in terms of their
angular momenta. The resulting curves f(x), parametrizing the energies through

E = mh −ml +ml f(2πJ/
√
λ), (3.63)

are shown for n = 1, 2, 3, 4 and zh = 1/100 in Figure 3.4 (left) and in more detail for the n = 1
branch in Figure 3.5. Intriguingly, reducing Ω increases both E and J . A similar behavior
was observed for the heavy-heavy mesons in Ref. [67], and is explained by the fact that the
decrease in Ω is made up for by the growing size of the string. The evolution of the profile of
the n = 3 branch string as a function of Ω is shown in Figure 3.3 (bottom).

The dependence of the E(J) curves on mh is relatively mild and easily modeled. The
Eq. (3.62) suggests a rescaling of the variable J by 1/(1−ml/mh), defining

J̃ =
mh

mh −ml

2πJ√
λ
. (3.64)

With this small correction, we see from Figure 3.4 (right) that the curves corresponding to
zh = 1/10 and 1/100 practically overlap.

As Ω is decreased, there is a critical Ωnc for each family of solutions where the light quark
endpoint of the string is moving at the local speed of light, Ωnc r(zl) = 1. For the short strings
with Ω > Ωnc, the string is contained entirely between the two D7-branes, while for the long
strings with Ω < Ωnc, there is a loop of string in the region z > zl. Like the ωn, the critical
Ωnc depend to some extent on the choice of the heavy and light quark masses. For the first
few n, we find that

zh = 1/10 : Ω1c = 1.54, Ω2c = 3.98, Ω3c = 6.22, Ω4c = 8.41,
zh = 1/100 : Ω1c = 1.38, Ω2c = 3.72, Ω3c = 5.84, Ω4c = 7.91.

6The n = 1 version of this formula (3.62) was first presented in Ref. [69].
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Figure 3.4: Left: The dependence of E versus J for the spinning heavy-light mesons. We
display the curves for mh = 100ml and n = 1, 2, 3, 4 from right to left, with the adjacent dashed
straight lines corresponding to the respective analytic small-J approximations of Eq. (3.62)
and the dots on the curves denoting the critical solutions at Ω = Ωnc. Right: The E(J̃) curves
for both the mh = 100ml (solid blue curve) and mh = 10ml (dotted red) cases for the n = 1
branch, together with their difference multiplied by a factor of 100 (dashed black).
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Figure 3.5: We plot E versus J for the n = 1 branch of the spinning heavy-light mesons.
The solid curve is the numerical result for the case mh = 100ml, while the red and blue
dashed curves are the analytic small and large-J approximations of Eqs. (3.62) and (3.67),
respectively.

We furthermore observe that for n = 1, the critical energies and angular momenta obey the
results

Ec = mh −
m2
l

2mh
+O

(
m3
l

m2
h

)
, (3.65)

J̃c = 0.473− 0.262
ml

mh
+O

(
m2
l

m2
h

)
, (3.66)

and that for n > 1, the forms of the equations stay intact, while the numbers in the latter
relation somewhat change. Especially the former of these results deserves some attention; we
have verified this relation to more than 1 part in 10000, but have so far no explanation for
why the limiting energy should obtain such a simple form.

As Ω is decreased below Ωnc, the strings quickly begin to get very large compared to the
separation between the D7-branes, and in the Ω → 0 limit, their size in fact diverges both
in the r and z directions. Indeed, in this limit the spinning string solutions can be seen to
approach those of the heavy-heavy mesons considered in Ref. [67], where both ends of the
string end on the same D7-brane. The limit Ω→ 0 of the n = 1 branch is special because the
velocity of any point on the n = 1 string approaches zero as Ω decreases, while for the n > 1
branches, there always exists a finite set of points σi along the string where, due to the large
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size of the string, r(σi)Ω→ 1 as Ω→ 0. As noticed originally by Refs. [67, 69], the small size
of Ωr allows for an analytic treatment of the E and J of the n = 1 branch in the Ω→ 0 limit.

In the Ω → 0 limit, the strings correspond to marginally bound heavy-light mesons with
an energy E ≈ mh+ml. By marginally bound, we mean that the binding energy becomes very
small. For the Ω→ 0 limit of the n = 1 branch, the string profile must be well approximated by
the static configuration that determines the potential between two infinitely massive quarks.
As shown in Ref. [69], in this limit the energy of the string obeys the relation

E = mh +ml − κ
mlmh

mh +ml

λ

J2
, (3.67)

where

κ = 2
(

Γ(3/4)
Γ(1/4)

)4

≈ 0.0261 ,

consistent with a Coulombic attraction between the quarks. We see from Figure 3.5 that
Eq. (3.67) is quite a good approximation to the E(J) curve already at moderately large J . In
contrast, the Ω→ 0 limit of the n > 1 branches all terminate at finite values of J . Numerically,
for the case of mh = 100ml, these terminal values of 2πJ/

√
λ are 0.946, 0.546, and 0.409 for

the n = 2, 3 and 4 branches, respectively.
We believe that the long strings are much less stable than the short strings. For one, they

intersect the D7-brane and thus can break in two. For another, they are much bigger in size
than the short strings, and thus it is likely that they are subject to instabilities, which do not
respect the uniformly rotating φ = Ωt ansatz.

3.6.2 String profile in ρ and θ

Next, we look at the profile of a string spinning inside the R6, in the ρ–θ directions. Let Q
be the corresponding angular momentum. Although Q is an angular momentum from the
ten dimensional point of view, in the four dimensional field theory it is a charge, namely the
R-charge of the R-symmetry of our supersymmetric field theory. From the point of view of
QCD, Q could be viewed as a model of the electromagnetic charge of the meson.

To begin with, we assume that x = r = y6 = 0, and in analogy with our discussion of
strings spinning in real space, make an ansatz where ρ(y) is time independent and θ = Ωt
is y independent. The Neumann boundary conditions for θ are then again trivially satisfied
because θ′ = 0. With these simplifications, the action for the string reduces to

SNG = − L2

2πα′

∫
dt dy

√
(1− ρ2Ω2/u4) (1 + (ρ′)2) , (3.68)

leading to the equation of motion for ρ(y),

u2ρ′′

1 + (ρ′)2
+ Ω2ρ

u2 − 2ρ2 + 2yρρ′

u4 − Ω2ρ2
= 0 . (3.69)

The energy E and internal angular momentum Q of the spinning strings are given by

E =
L2

2πα′

∫
dy

√
1 + (ρ′)2

1− ρ2Ω2/u4
, (3.70)

Q =
L2

2πα′

∫
dy
ρ2Ω
u4

√
1 + (ρ′)2

1− ρ2Ω2/u4
. (3.71)
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Figure 3.6: Top: Profiles of the spinning strings ρ(z) stretching between the two branes at
zl = 1 and zh = 1/100, with z ≡ 1/y and the notation as in Figure 3.3. The black dotted line
corresponds to the n = 0 branch, while the blue, red and brown solid curves correspond to
the n = 1, 2, 3 cases, respectively. The gray dashed lines, from left to right, mark the points
ρ = 0, 1/2, 1, 3/2. Bottom: The evolution of the n = 2 branch of solutions as Ω is decreased
from 7.725 to 1. The critical solution is again the third from the left, while the smallest Ω
solution has been rescaled in the z direction by a factor 2.55. In the Ω→ 0 limit, the part of
the solution extending beyond the light brane doubles back on itself.

The Neumann boundary conditions for ρ on the other hand reduce to the requirement

ρ′

√
1− ρ2Ω2/u4

1 + (ρ′)2

∣∣∣∣∣
y=yh,yl

= 0 , (3.72)

from where we see that we must again either require that ρ′ = 0 at the boundary or that
the ends of the string move at the local speed of light. Similar to the strings spinning in real
space, we generically enforce ρ′ = 0, but in addition find certain special solutions that satisfy
the light-like boundary conditions. Note that a motionless string with ρ = ρ0 and Ω = 0 is a
solution to the equations of motion for all ρ0. Once Ω 6= 0, however, the story becomes much
more interesting.

For non-zero Ω, the equation of motion for ρ, Eq. (3.69), seems difficult to solve analytically
at least in full generality, and we will therefore resort to numerics, setting again yl = 1 and
varying the location of the heavy brane yh. The story we encounter is strongly reminiscent of
the strings spinning in real space. We again find multiple branches of solutions indexed by an
integer n, n ≥ 1, with the corresponding string profiles ρn(y) containing exactly n−1 extrema
in ρ.

The low energy behavior of our strings can again be understood analytically through the
fluctuation analysis of the previous Section. In this E → 0 limit, we may take the string
profiles to be complex combinations of ρ fluctuations with infinitesimal amplitude. The com-
plex combination produces a string spinning in the ρ–θ plane with angular velocity Ω = ωn,
corresponding to the solutions to Eq. (3.43). Consistent with the results from Section 4.3, we
see that for yh = 100, the values of the first few ωn’s are 4.493, 7.725, 10.904.

For a given n > 0, we find a continuous family of solutions in the range 0 < Ω < ωn.
Decreasing Ω corresponds to increasing E and J , the increase in the size of the string more
than making up for the loss of angular velocity. There are again critical angular frequencies
Ωnc which separate the long strings with Ω < Ωnc from the short strings with Ω > Ωnc, the
former extending to the region y < yl. For the critical solution, the endpoint of the string
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Figure 3.7: Left: E versus Q for the spinning heavy-light mesons. From right to left, the solid
curves correspond to the n = 0, 1, 2, 3 branches, and the corresponding dashed curves to the
analytic small Q approximations of Eqs. (3.75) and (3.88). The value of yh is set to 100, and
the dots on the curves again denote the critical solutions. Right: The effect of changing the
heavy brane location from yh = 100 (solid blue curve) to yh = 10 (dotted red) in the n = 0
case. The difference of the two curves is also shown as the dashed black line, magnified by a
factor of 500.

sitting on the light brane is moving at the local speed of light. For yh = 100, the critical
angular velocities for the first three branches are found to equal Ω1c = 3.260, Ω2c = 5.152 and
Ω3c = 7.108.

In addition to the branches with n ≥ 1, we find an additional branch of solutions, n = 0,
which has no analog for the strings spinning in real space. This branch of the spinning strings
emerges from the lifting of the zero fluctuation mode corresponding to translations in the ρ
direction, and as we will show shortly, it is possible to understand its low-energy properties
in a semi-analytic fashion. Earlier in our fluctuation analysis, we saw that while the ground
state string sitting at ρ 6= 0 with Ω = 0 did not experience a potential, excited strings felt a
force pulling them toward ρ = 0. Here, we instead find that strings with even an arbitrarily
small Ω are not free to move in the ρ direction, but must sit at a constant ρ = ρ0 in the limit
where Ω tends to zero.

Inspecting the n = 0 branch numerically for yh = 100, we observe that Ω can be arbitrarily
close to zero, with the Ω → 0 limit corresponding to small angular momenta and energies,
in contrast to the branches with n ≥ 1. In this limit, the string profile becomes a constant,
equaling ρ(y) ≡ ρ0 ≈ 1.825. This time there is no maximal angular velocity at which the
solution breaks down, but we rather find that the curve that this branch of solutions draws
on the (Ω, ρ(yl)) plane is not a single valued function of Ω. For the yh = 100 case we are
considering, it starts from the point (0, 1.825), follows monotonically to the point (2.082, 1.361)
and finally turns back to end at (2.069, 1.300), where the light end of the string is spinning
at the local speed of light. We exhibit the forms of the string profiles for n = 0, 1, 2, 3 in
Figure 3.6.

In Figure 3.7, we plot the E vs. Q dependence of the different branches of spinning string
solutions we have encountered. Let us first focus on the n ≥ 1 branches, and specifically
on their small Q limits. Similar to the analysis of the strings spinning in real space, we can
consider the approximate solution, valid for small A,

δρ = A
1
z

(ωnzl cos(ωn(z − zl)) + sin(ωn(z − zl))) , (3.73)

θ = ωnt , (3.74)

with z ≡ 1/y and the ωn’s given by our ρ fluctuation spectrum. This solution leads to the
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approximate small Q relation

E ≈ mh −ml +ml ωnzl
2πQ√
λ
, (3.75)

which is shown as the dashed straight lines in Figure 3.7 (left).
Decreasing Ω towards the critical angular velocities Ωnc, n ≥ 1, we observe that the charge

Q approaches a critical value Qnc, varying according to n, while the energy E approaches a
universal constant Ec ≈ mh, independent of the branch in question. Both values, as well as
the forms of the E(Q) curves, are highly independent of the location of the heavy brane at
sufficiently large values of yh, and for yh ≥ 10, the first few values ofQnc areQ1c = 0.258

√
λ/2π,

Q2c = 0.156
√
λ/2π, and Q3c = 0.112

√
λ/2π. This mh independence can be understood by

inspecting the form of the canonical momentum densities appearing in Eqs. (3.70)–(3.71). The
charge density π0

θ behaves at large y as 1/y4. The energy density scales at leading order as
√
λ,

giving rise to the ground state mass mh−ml of the heavy-light meson, but the first correction
also behaves as 1/y4. These 1/y4 terms mean that the excitation energy as a function of the
charge of the spinning string is highly insensitive to the form of the string profile at y & 10yl.

If we proceed to even smaller frequencies, 0 < Ω < Ωnc, we notice that these n > 0 branches
persist all the way down to zero. In the limit Ω → 0, the strings become marginally bound,
like their real-space spinning counterparts, with an energy E ≈ mh + ml. In contrast, the
charges Q for the terminal solutions are not universal. For the case mh = 100ml, we find that
the terminal values of 2πQ/

√
λ are 0.762, 0.518, and 0.390 for the n = 1, 2, and 3 branches

respectively. Like their real-space spinning counterparts, we suspect that these long strings
are not stable for the exact same reasons.

Switching then to following the n = 0 branch on the (Q,E) plane, we observe that for a
given value of the charge, these strings are always energetically favored in comparison with
their n ≥ 1 counterparts. In the limit yh → ∞, we find that the energy and charge of the
critical solution on the n = 0 branch very quickly approach

E0c = mh − 6(1)
m4
l

m3
h

+O
(
m5
l

m4
h

)
, (3.76)

2πQ0c√
λ

= 0.69868(1)− 4.0(5)
m3
l

m3
h

+O
(
m4
l

m4
h

)
, (3.77)

where the coefficients of the first terms have been found by fitting a variety of trial functions
to our numerical data and the errors have been estimated in a very conservative manner. The
vanishing of the first few corrections in 1/mh is similar to the suppression of 1/mh corrections
in the ρ fluctuation analysis of Section 3.5.3. The n = 0 branch does not appear to admit long
string solutions.

Small Ω limit of the n = 0 branch

To conclude our inspection of the string spinning in the θ direction, we will now take a closer
look at the limit of infinitesimally small Ω in order to gain more understanding of the behavior
of the n = 0 solutions there. We note that this limit corresponds to approximating yl � Ω,
and therefore implies that we may use the relation u4 − Ω2ρ2 ≈ u4 in the equation of motion
for ρ. On the other hand, the observed fact that ρ is nearly a constant in this case implies
that (

u2 − 2ρ2 + 2y5ρρ
′) (1 + (ρ′)2

)
ρ ≈

(
u2 − 2ρ2

)
ρ, (3.78)

finally giving as the equation to solve

u6ρ′′ + Ω2
(
u2 − 2ρ2

)
ρ = 0. (3.79)
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In the last form, we note that we may write

ρ(y) = ρ0 + δρ(y), (3.80)

where ρ0 is a constant and δρ(y) satisfies the Neumann boundary conditions at y = yl and
y = yh. We define ρ0 by the constraint that δρ → 0, as y → yh. Using this parametrization
and the fact that yl � Ω, we see that δρ satisfies the equation of motion

δρ′′ = −Ω2

(
y2 − ρ2

0

)
(y2 + ρ2

0)3
ρ0 . (3.81)

If we enforce the boundary condition at y = yh, this differential equation can then be integrated
to yield

δρ(y)/Ω2 =
(y − yh)

(
ρ4

0(y − 2yh)− ρ2
0yyh(3y − yh)− y2y3

h

)
4ρ0(y2 + ρ2

0)(y2
h + ρ2

0)2

+
y

4ρ2
0

(
arctan

[
y

ρ0

]
− arctan

[
yh
ρ0

])
, (3.82)

from where — demanding that the derivative of this expression vanish also at y = yl — we
finally obtain as the equation for ρ0

(y2
l + 3ρ2

0)ylρ0

(y2
l + ρ2

0)2
− (y2

h + 3ρ2
0)yhρ0

(y2
h + ρ2

0)2
= arctan

[
yh
ρ0

]
− arctan

[
yl
ρ0

]
. (3.83)

Solving this equation numerically produces two solutions, ρ0 = 0 and ρ0 = F (yh/yl) × yl, of
which we can throw out the former, as it is not consistent with our assumption of a small
δρ and furthermore leads to a vanishing angular momentum. The latter result, on the other
hand, is a slowly varying function of yh/yl for large values of this ratio, approaching in the
yh/yl →∞ limit the result ρ0 ≈ 1.82526 yl. In contrast, for yh ≈ yl, F (yh/yl) ≈ 1.

Properties of the small-Ω solution

To get some feeling for the physical properties of the above solutions obtained for small Ω� yl,
we will next compute their energy E and internal angular momentum Q using Eq. (3.70), where
the canonical momentum and internal angular momentum densities read approximately

π0
t ≈ −

L2

2πα′

(
1 +

ρ2
0Ω2

2u4
0

)
and π0

θ ≈
L2

2πα′
ρ2

0Ω
u4

0

, (3.84)

with u2
0 ≡ y2 + ρ2

0. Here, we have neglected higher order corrections in Ω and used the
approximate solution (3.82). Performing the integrals, we obtain

E ≈ L2

2πα′
(
yh − yl +

Ω2

2yl
Υ
)

and Q ≈ L2

2πα′
Ω
yl

Υ, (3.85)

in which we have defined the dimensionless constant

Υ ≡ ρ2
0yl

∫ yh

yl

dy
1

(y2 + ρ2
0)2

= ρ2
0yl

(
yl

(ρ2
0 + y2

l )
2
− yh

(ρ2
0 + y2

h)2

)
. (3.86)

In deriving Eq. (3.86), we have made use of Eq. (3.83). Note that we have

lim
yh→∞

Υ ≈ 0.17757 while lim
yh→yl

Υ =
yh − yl

4yl
. (3.87)
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We may now easily solve Ω in terms of Q from Eq. (3.85) above, which allows us to write
E in terms of Q

E ≈ mh −ml +
ml

2Υ

(
2πQ√
λ

)2

. (3.88)

Thus we find again that the excitation spectrum does not depend on mh at leading order in
the heavy quark mass limit. As we can see from Figure 3.7, this analytic approximation is
quite good even for moderately large values of Q.

3.7 Hyperfine splitting and the Zeeman effect

In the previous sections we have calculated the spectrum of heavy-light mesons and found
that the spectrum is mh independent in the heavy quark limit but we could not see hyperfine
splitting (3.50). But in our fluctuation analysis, there are degeneracies in the spectrum, which
provide us with a starting point to look for hyperfine splitting. For example, the lowest
lying mode in the x direction is a vector meson with the same energy as the scalar meson
corresponding to the lowest lying excitation in the y6 direction. This the degeneracy is a
consequence of supersymmetry, protecting the masses of mesons inside supermultiplets.

We will now demonstrate how some of the degeneracies of the supersymmetric meson
spectrum can be removed upon breaking supersymmetry, thus leading to the emergence of
hyperfine structure. The explicit SUSY breaking scenarios we consider involve on one hand
tilting one of the two fundamental D7-branes inside the internal R6 space, and on the other
hand applying an external magnetic field on the (untilted) branes. The latter scenario leads
to the well-known Zeeman effect, which we inspect for both weak and strong magnetic fields.

3.7.1 Hyperfine splitting

Now we are breaking SUSY by tilting the heavy brane. Consider a slight deformation of the
setup introduced in the previous Section 3.4, in which the embedding equations of the heavy
brane are shifted to y = yh and

cos θ y6 − sin θ y4 = 0, (3.89)

corresponding to tilting the brane in the y4, y6 plane by an angle θ. (From now on, we
will write the 4 and 6 as lower indices.) On the field theory side, the redefinition of the
AdS5 × S5 coordinates that would keep the tilted D7-brane at y6 = 0 corresponds to an
SU(4) R symmetry transformation acting on the N = 4 scalars and fermions in the 6 and 4
representations, respectively. Hence, the Lagrangian of the deformed, non-SUSY theory can
be obtained from that of pure N = 2 SYM theory by applying suitable transformations on its
fields, which has indeed been performed in Ref. [77].

In Ref. [77], it was pointed out that for massless and thus overlapping D7-branes, the
tilting produces tachyonic modes which translate into a Coleman-Weinberg instability in the
effective potential for the fundamental scalars. In our theory, we assume that the D7-branes
are separated by a large enough distance that the tachyon is absent. In field theory terms, this
assumption implies that the difference in mass between the hypermultiplets is large compared
to the string scale. However, because SUSY is broken, the force between the D7-branes will
not vanish and the form of the potential can be found in Ref. [78]. We ignore this force in
this Section and assume some unspecified physical effect has stabilized the D7-branes at their
rotated positions 7.

7 While we can specify the asymptotic behavior of the D7-branes through boundary conditions, a stabilization
mechanism is needed to keep the branes from deforming in the interior of the geometry.
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On the gravity side, the tilting of the heavy brane affects the spectra of string fluctuations
by modifying the boundary conditions that the y6 and y4 fluctuations have to satisfy. The
respective Dirichlet and Neumann boundary conditions of these two modes at y = yh now
become

cos θ y6(yh)− sin θ y4(yh) = 0, (3.90)
sin θ y′6(yh) + cos θ y′4(yh) = 0, (3.91)

which leads to a shift in the frequencies ω that in the θ → 0 limit can be read off from (3.33).
To see this shift quantitatively, we now choose the worldsheet coordinate as σ = 1/y and
assume a time dependence yi ∼ e−iωt for the fluctuations. In this case, both fluctuations
satisfy the same linearized differential equation

y′′i +
2
σ
y′i = −ω2yi, (3.92)

where y′i ≡ ∂σyi [31].
It is easily verified that the solutions to Eq. (3.92) that satisfy the correct boundary con-

ditions at the untilted light brane can be written in the forms y6 = C6D(σ) and y4 = C4N(σ),
where

D(σ) =
1
σ

sin(ω(σ − σl)), (3.93)

N(σ) =
1
σ

[ωσl cos(ω(σ − σl)) + sin(ω(σ − σl))] . (3.94)

We may now write the boundary conditions at the heavy brane as a two-by-two matrix equation
for the vector v ≡ (C6, C4), Mv = 0, from which we immediately see that the condition for
having non-zero solutions is that the determinant of the matrix M vanish,

cos2 θ D(σh)N ′(σh) + sin2 θD′(σh)N(σh) = 0. (3.95)

The solutions to this equation and the corresponding eigenvectors of M correspond to linear
combinations of the y6 and y4 fluctuations that are the physical fluctuation modes of the new
system.

An observation important for understanding the solutions to Eq. (3.95) in the heavy quark
limit σh ∼ 1/mh ≈ 0 is that because of the prefactor 1/σ in Eqs. (3.93) and (3.94),

N ′(σh) = − 1
σh
N(σh) +O(1), (3.96)

D′(σh) = − 1
σh
D(σh) +O(1). (3.97)

This implies that to leading order in σh, the θ dependence vanishes from Eq. (3.95) and the
allowed frequencies are given by the solutions to N ′(σh) = 0 and D(σh) = 0 that can be read
off from (3.50). For the y6 case, the unperturbed solutions read

ωn =
πn

σl − σh
, n ∈ Z+, (3.98)

while for the y4 fluctuations, we have to solve the transcendental equation

ω (σl − σh)
1 + σlσhω2

= tan(ω(σl − σh)) (3.99)

that also leads to a discrete spectrum.
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To determine the leading order corrections to the frequency spectra due to the tilting of
the heavy brane, we proceed as follows. Anticipating that the eigenvectors of M can at least
to leading order still be identified with the y6 and y4 fluctuations, we make a frequency ansatz
of the form

ω = ω0 + ω1
σh
σl

+O
(
σ2
h

σ2
l

)
, (3.100)

where ω0 corresponds to the θ = 0 frequencies of Eqs. (3.98) and (3.99). Looking first at
fluctuations in the (mostly) y6 direction, we expand Eq. (3.95) around ω0n ≡ πn/(σl − σh),
obtaining

ωn =
πn

σl − σh
− nπσh

σ2
l

sin2 θ +O
(
σ2
h

σ3
l

)
. (3.101)

For the y4 direction, we similarly get

ωn = ω0n +
2σh
σ2
l

csc[2ω0nσl] sin2 θ +O
(
σ2
h

σ3
l

)
, (3.102)

where the ω0n’s are now obtained from Eq. (3.99).
Eqs. (3.101) and (3.102) describe the energy spectra of our heavy-light mesons. To make

the existence of hyperfine structure clear, recall that σh ∼ 1/mh and σl ∼ 1/ml. Recall also
that the energy spectra of the heavy-light excitations that correspond to fluctuations in the xi

and yi, i = 1, 2, 3, directions were unchanged in the tilting, and are thus given by the θ → 0
limit of Eqs. (3.101) and (3.102), respectively. Thus, there exist energy splittings between
the y4, y6 fluctuations and the the xi and yi fluctuations of order m2

l /mh. It would be a
very interesting exercise in perturbation theory to try to produce a similar structure in the
energies of the weakly coupled bound states of the deformed theory, proceeding along the lines
of Ref. [79]. We, however, leave this investigation for future work.

3.7.2 The Zeeman effect

Another possibility for breaking SUSY in the setup of Section 3.3 is to apply an external
magnetic field on one or both of the D7-branes in the system. In general this will lead to
a force between the branes, but there are certain configurations, e.g. if the same magnetic
field is applied to both branes, where the system will be a stable BPS configuration [80] .
However, in what follows we will use arbitrary magnetic fields and again assume a stabilizing
mechanism.

Here, we will for simplicity study a setting in which the U(1) gauge fields living on the
branes correspond to a constant magnetic field pointing in the x3 direction, i.e.

2πF(2) = 2πH dx1 ∧ dx2 =
√
λb dx1 ∧ dx2, (3.103)

where we have introduced a rescaled field b ≡ 2πH/
√
λ. In general, the magnetic field will

change the embedding profiles of the branes, which become functions of the radial coordinate
of the AdS space [57].
In order to study the change in embedding, we need to consider the DBI action (3.5), which
governs the dynamics of the D7-branes at leading order in α′. We will set B(2) = 0. For the
following analysis it will be convenient to break R6 = R4 × R2 and write the transverse part
of the metric (3.3) as

L2

χ2 + ξ2

[
dχ2 + χ2dθ2 + dξ2 + ξ2dΩ2

3

]
. (3.104)
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We will assume that the D7-brane sits at constant θ and is described by two functions χ(σ)
and ξ(σ), leading to an effective Lagrangian

L = − λN

(2π)4
ξ3
√
χ′2 + ξ′2

√
1 +

b2

(ξ2 + χ2)2
, (3.105)

where we have made use of the normalization

τ7L
8Vol(S3) =

λN

(2π)4
. (3.106)

We will analyze this Lagrangian in a gauge where σ = ξ.
A consequence of introducing a magnetic field on the brane is that the profile is not a

constant but a more complicated function of the radial coordinate. The AdS/CFT dictionary
relates asymptotics of χ to the bare mass of the quark m0 and the chiral condensate 〈ψ̄ψ〉:8

m0 =

√
λ

2π
lim
ξ→∞

χ(ξ) ; 〈ψ̄ψ〉 =

√
λN

(2π)3
lim
ξ→∞

ξ3χ′(ξ) . (3.107)

The kinetic mass of the quark [73] on the other hand can be computed from the length of the
lightest straight string that stretches from the D7-brane to the origin

mkin =

√
λ

2π
χ(ξmin) . (3.108)

Following Ref. [57] we can solve the equation of motion that comes from (3.105) in the
limit m2

0 � H. We find that

χ(ξ) = χ0 +
b2

4χ0(ξ2 + χ2
0)

+O(H4) where m0 =

√
λ

2π
χ0 . (3.109)

From this perturbative solution, we can determine the relation between the bare and kinetic
mass and also the value of the chiral condensate:

mkin = m0 +
λH2

16π2m3
0

+O(H4) , (3.110)

and

〈ψ̄ψ〉 = − N

(2π)2

[
H2

m0
+O(H4)

]
. (3.111)

The most important conclusion for what follows is that the difference between m0 and mkin in
the limit m2

0 � H is suppressed by a power of H2/m4
kin. The suppression implies that unless

we consider very large magnetic fields, we may ignore these bending effects at least for the
heavy brane.

We may also consider the embedding of a general D7-brane with a magnetic field of an arbi-
trary size by numerically solving the equation of motion derived from Eq. (3.105). Normalizing
the various quantities in the natural way, we obtain the chiral condensate

√
λ〈ψ̄ψ〉/(Nm2

kin)
as functions of the magnetic field

√
λH/(2πm2

kin) in the form shown in Figure 3.8.

Now we will study the effect of an external magnetic field on the heavy-light mesons. Starting
from the most general case possible, we introduce independent magnetic fields, Hh and Hl

(or bh and bl) for the heavy and light branes, respectively, and study small fluctuations of the
8 Note that defining S =

R
Ldξ, the action evaluated on-shell for our static configuration is minus the free

energy S = −F . Then we have 〈ψ̄ψ〉 = ∂F
∂m0

.
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Figure 3.8: Plot of the chiral condensate,
√
λ〈ψ̄ψ〉/(Nm2

kin), as function of the magnetic field
H.

string around the unperturbed solution. The unperturbed straight string is orthogonal to the
D7-brane at the point where they meet, and thus the fluctuations don’t experience the bending
of the brane to linear order. Neglecting bending effects, we may simply repeat the analysis
of the previous section. The only difference is that it is now the coupling of the magnetic
field to the endpoints of the string (which behave just like charged particles) that changes the
boundary conditions and thus the fluctuation spectra.

The new boundary conditions of the string can be read off from the equation

∂σX
µ + 2πα′Fµν∂τXν = 0, (3.112)

where Xµ are the coordinates of the string on the world volume of the brane and Fµν is our
field strength tensor. Working in the gauge σ = 1/y, we again assume a time dependence
of the form xi ∼ e−iωt, in which case the fluctuations in the x1 and x2 directions satisfy the
linearized differential equation

x′′i −
2
σ
x′i = −ω2xi. (3.113)

This equation has the general solution xi =
∑2

j=1Cijfj(σ), where

f1 = sinωσ − ωσ cosωσ , f2 = cosωσ + ωσ sinωσ, (3.114)

using which the boundary conditions of Eq. (3.112) can be expressed in the form of a four-by-
four matrix equation Mv = 0, with v = (C11, C12, C21, C22).

The condition for the allowed frequencies becomes again that the determinant of the matrix
M vanish. While the full expression for the determinant is too messy to reproduce here, we
can study various limits thereof. One particularly simple one is that of small blσ2

l and bhσ
2
h,

in which case we easily obtain

ωn± =
πn± (blσ2

l − bhσ2
h)

σl − σh
, (3.115)

the bl = bh = 0 limit of which naturally agrees with Eq. (3.98). Moreover, if we set bl = 0, then
the magnetic field on the heavy brane leads to meson mass splittings proportional to 1/m2

h.
Finally, we study in some more detail the case where a magnetic field of an arbitrary

magnitude is applied on the heavy brane but bl = 0. Here, the vanishing of the determinant
leads to the condition

bh = ± ω/σh
|1 + ωσh cot((σl − σh)ω)| , (3.116)
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Figure 3.9: The dependence of the x1 and x2 fluctuation frequencies ω on the magnitude of
the magnetic field H in the case where mh/ml = 100: a) the branches n = 1, 2, ..., 6 (and half
of the zero branch) are displayed; b) the branches n = 301, 302, ..., 306. In the limit of small
H, the frequencies can be read off from Eq. (3.115), while for large values of the magnetic
field, the behavior of the curves is given by Eq. (3.118).

which we may attempt to invert to find the allowed frequency spectrum. While the small-bh
limit is given by Eq. (3.115), for very large values of the magnetic field we clearly obtain the
bh independent equation

tan((σl − σh)ω) = −ωσh, (3.117)

which comes with the approximate solutions

ωn ≈ πn

σl
, n ≈ 1, (3.118)

ωn ≈ πn

σl − σh
− 1
σl − σh

arctan
[

πn

σl/σh − 1

]
, n� 1.

In Figure 3.9, we display the behavior of the frequencies as functions of bh, obtained after
numerically inverting Eq. (3.116). From here, we can identify both the usual Zeeman splitting,
described by Eq. (3.115), as well as the subsequent rejoining of the frequencies according to
Eq. (3.118).

3.8 Discussion

Although different in many respects, the heavy-light mesons we have studied have a spectrum
which shares certain properties of real-world heavy-light mesons. For example, consider the
case where there are two heavy quarks h and h′ and two light quarks l and l′. We find for the
ground state heavy-light mesons that

Mhl −Mhl′ = ml′ −ml = Mh′l −Mh′l′ . (3.119)

This kind of relation is similar to the real world relation (see for example Ref. [58]) for mesons
containing a charm or bottom quark,

mBs −mB ≈ mDs −mD ≈ 100 MeV . (3.120)

Of course, the sign of the above difference is wrong: While for us, given that ml > ml′ ,
we would find a negative difference, in the real world the difference is positive. This sign
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difference is, however, of little significance in this N = 2 SYM theory. In Section 3.3, we noted
that we could let the lighter D7-brane end along w3 = c′ where c′ ∈ C and |c′| = 1/zl. This
case still preserves N = 2 supersymmetry and allows us to tune the mass of the ground state
heavy-light meson to be anything between mh −ml and mh +ml.

Continuing the comparison with QCD, we can consider the mass difference between an
excited and a ground state heavy-light meson in QCD. From the review [58], we learn that
a typical QCD prediction of this heavy quark limit is that the difference in energy between
excited and ground state heavy-light mesons should obey the relations

mB∗2
−mB ≈ mD∗2

−mD ≈ 593 MeV , mB1 −mB ≈ mD1 −mD ≈ 557 MeV . (3.121)

Unfortunately, there is no good data yet for mB∗2
and mB1 . These differences are consistent

with our result that the energy excitations scale with ml, although in real world QCD, we
expect to have ml replaced with ΛQCD.

The electromagnetic mass splittings of heavy-light mesons in QCD are typically tiny [81].
For example, mD± − mD0 ≈ 5 MeV while mB0 − mB± ≈ 0.4 MeV. It is suggestive that
in the large λ limit, our approximate formula (3.88) for the Q dependence of the masses is
suppressed by an additional power of Q/

√
λ compared with the linear scaling of Eq. (3.62) on

J/
√
λ. However, we have no good understanding of the relative sizes of the splittings for these

D and B mesons.
Finally, we make some comments regarding two specific open questions related to our work.

Hybrid mesons

In phenomenological QCD literature, one finds discussion of hybrid mesons. In perturbative
language, such an object would be a bound state of a quark, antiquark, and gluon [82], while
at strong coupling, there exist models of a heavy quark and antiquark joined by a vibrating
flux tube [83]. This second picture is similar to but also rather different from our model. Like
us, the authors of Ref. [83] begin by finding the modes of the vibrating flux tube joining the
quarks. However, in their model, both quarks are heavy. Also, and perhaps more importantly,
the quarks themselves have a mass large compared to the energy of the flux tube, whereas
in ours, the mass of the meson is the mass of the flux tube. As a next step, the authors of
Ref. [83] use the vibrating flux tube to construct a phenomenological Cornell like potential
through which the massive quarks interact. Despite these differences, one wonders if there
exists a closer connection between our heavy-light mesons in N = 2 SYM and hybrid heavy-
light mesons in QCD — if such things exist — rather than the “ordinary” heavy-light mesons
of QCD.

W bosons

One may also consider Higgsing the N = 4 SU(N) SYM theory down to SU(N − 2)× U(1)2.
In the dual gravitational picture, this Higgsing corresponds to pulling two D3 branes off of the
stack of N D3 branes, whose low energy description this SYM theory is. As long as we keep
the D3 branes parallel in this AdS5× S5 geometry, they do not experience a potential and we
can imagine placing them at nonzero values of y, just as we did for the D7-branes. There is
then a semi-classical string that stretches between the two D3 branes, whose fluctuations we
may study and which has a dual field theory interpretation as a W boson.9

We mention this D3 brane and string construction because we can at this point in our anal-
ysis treat it very easily. The treatment of the string spinning in real space and corresponding
to a heavy-light meson is identical for the W bosons. Also, the x fluctuations of such a string

9We would like to thank I. Klebanov for suggesting we think about this extension of our results.
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are identical to the x fluctuations for the heavy-light meson. Finally, the y6 fluctuations are
identical, except that there are now four additional y6-like directions perpendicular to the D3
brane string configuration. Whereas for the heavy-light meson, the x and y6 fluctuations gave
us four towers of identical modes, and the ρ fluctuations gave us another four towers, for the
W boson, the x and y6 fluctuations give us eight towers of identical modes. We believe this
regrouping of one pair of four identical towers into eight identical towers is related to the dou-
bling in the amount of supersymmetry. The N = 2 SYM relevant for the heavy-light mesons
has eight supercharges, whereas the N = 4 SYM, after the Higgsing which breaks conformal
invariance, should have 16.
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Chapter 4

The Sakai-Sugimoto model

The model by Karch and Katz is the simplest model at hand where fundamental fields are
introduced. But in order to come closer to QCD one wants models that exhibit dynamical
chiral symmetry breaking, have less or no supersymmetry and also incorporate the chirality of
fermions. A popular supergravity solution dual to a confining gauge theory is the Klebanov-
Strassler background [60]. The dual field theory has N = 1 supersymmetry and exhibits chiral
symmetry breaking.

An example where supersymmetry is completely broken and confinement is present is
the Constable-Mayers background [84]. This background has a non-constant dilaton and is
convenient for embedding probe D7-branes because it preserves SO(6) symmetry.

A model that can also account for chiral fermions is a setup where D6 and D6-brane probes
are embedded in a D4 background geometry [85]. On the gauge theory side one has a N = 2
supersymmetric five dimensional gauge theory that exhibits chiral symmetry breaking and
confinement. But this model is still supersymmetric and can not account for the massless
Goldstone bosons associated with the spontaneous breaking of chiral symmetry in QCD.

In another model, which comes even closer to QCD, D8 and D8-branes are embedded in
a D4 background geometry. This model has very nice features. It provides a holographic
description for chiral symmetry breaking in a very intuitive geometrical form and can account
for chiral fermions. It exhibits confinement and supersymmetry is completely broken, and it
also contains the massless Goldstone bosons associated with chiral symmetry breaking. This
model is based on an idea by Witten [21] and was improved by Sakai and Sugimoto [29]. In
this chapter we give an introduction into this model and we will use it in Chapter 5 and 6.

4.1 The model

The idea is the following. One starts with Nc D4-branes in type IIA superstring theory.
The D4-brane theory is a five dimensional supersymmetric SU(Nc) gauge theory whose field
content includes fermions, scalars and gauge fields in the adjoint representation of SU(Nc).
Then one compactifies one direction of the D4-branes on a circle with radius M−1

KK , where MKK

is the Kaluza-Klein mass and imposes anti-periodic boundary conditions for the worldvolume
fermions on this circle. This breaks supersymmetry completely by giving Kaluza-Klein masses
to the fermions and scalars. The fermions acquire a mass at tree level and the scalars acquire
a mass through one loop-effects. At energies sufficiently below the compactification scale the
theory is effectively a four dimensional SU(Nc) gauge theory without supersymmetry.

In the dual string theory the D4-branes are replaced by their near horizon supergravity
background with one compact dimension. There are two different solutions for the metric,
realized in two different temperature regimes. The transition from one to the other is inter-
preted as the deconfinement phase transition. Similar to the original AdS/CFT setting at
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finite temperature [21], the deconfined phase has a black hole which is absent in the confined
phase.

4.1.1 D4 background

We start with the confined phase. The type IIA supergravity (euclidean) metric of the confined
phase is given by [85]

ds2
conf =

( u
R

)3/2
[dτ2 + δijdx

idxj + f(u)dx2
4] +

(
R

u

)3/2 [ du2

f(u)
+ u2dΩ2

4

]
(4.1)

eφ = gs

( u
R

)3/4
, F4 = dC3 =

2πNc

V4
ε4, f(u) = 1− u3

KK

u3
(4.2)

Here, φ is the dilaton, dΩ2
4 is the metric of a four-sphere, F4 is the field strength, ε4 is the

volume form on the unit four-sphere and V4 = 8π2/3 is its volume. u has dimension of length
and can be interpreted as a radial coordinate in the directions transverse to the D4-branes. R
is the curvature radius of the background which is related to the string coupling gs and the
string length `s via (B.15)

R3 = πgsNc`
3
s . (4.3)

A crucial feature of the model is the compactified dimension x4. In order to avoid a conical
singularity at u = uKK, x4 must be identified with period

x4 ∼ x4 + δx4, δx4 =
4π
3
R1/2

u
3/2
KK

. (4.4)

We can relate the radius of the compact dimension to the Kaluza-Klein mass by identifying
x4 with the compact direction in the gauge theory

MKK ≡
2π
δx4

=
3
2
u

1/2
KK

R3/2
. (4.5)

This breaks supersymmetry completely by giving Kaluza-Klein masses to the adjoint fermions
of the dual gauge theory and the analogue of thermal masses to the adjoint scalars, leaving
only gauge bosons in the spectrum of the low-energy limit as the latter are protected by gauge
symmetry [21]. The point u = uKK is the tip of the cigar-shaped subspace spanned by x4

and the holographic coordinate u. The subspace spanned by the euclidean time τ and the
coordinate u is cylinder-shaped, with the circumference given by the inverse temperature,
τ ≡ τ + 1/T .

In the deconfined phase the coordinates τ and x4 interchange their roles, i.e., now the subspace
spanned by x4 and u is cylinder-shaped while the subspace spanned by τ and u is cigar-shaped.
In this case, the metric is

ds2
deconf =

( u
R

)3/2
[f̃(u)dτ2 + δijdx

idxj + dx2
4] +

(
R

u

)3/2 [ du2

f̃(u)
+ u2dΩ2

4

]
, (4.6)

where

f̃(u) ≡ 1− u3
T

u3
. (4.7)

Again, by avoiding a conical singularity at u = uT and identifying τ ≡ τ + 1/T we can relate
the temperature to the tip of the cigar-shaped τ -u space uT via

T =
3

4π
u

1/2
T

R3/2
. (4.8)

67



The deconfinement phase transition is located at a critical temperature T = Tc where the
free energies corresponding to the two phases are identical. This occurs at uKK = uTc and
thus Tc = MKK/(2π). This critical temperature is independent of the chemical potential.
Consequently, the model predicts a horizontal phase transition line in the T -µB plane, in
accordance with expectations from QCD at infinite number of colors Nc [86].

The supergravity prescription depends on having the background weakly curved compared
to the string scale. This is the case for large four-dimensional ’t Hooft coupling [85] (see also
Section 2.7)

λ = g2
YMNc =

g2
5Nc

2πM−1
KK

� 1 , (4.9)

where the five-dimensional gauge coupling g5 is given by g2
5 = (2π)2gs`s.

The Kaluza-Klein mass sets the energy scale below which the dual field theory is effectively
four-dimensional. For large ’t Hooft coupling, this scale is of the same order as the mass gap
of the field theory; only for small λ, where string corrections become important, does one have
duality with non-supersymmetric large-Nc QCD in four dimensions. However, there is already
ample evidence that the limit of large ’t Hooft coupling, where supergravity calculations are
meaningful, does provide a useful tool for unravelling certain nonperturbative features of QCD.

4.1.2 Adding flavor branes

As explained in Section 2.9 one can introduce fields in the fundamental representation by
adding flavor branes to the system to obtain a more realistic holographic model. Sakai and
Sugimoto [29] extended Wittens model by adding Nf pairs of D8 and D8-branes which are
transverse to the circle along x4. The D8 and D8-branes extend in all dimensions except for
the coordinate x4 (whereas the D4-branes extend in the t, xi, i = 1, . . . , 4 directions)

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

D4 x x x x x
D8 x x x x x x x x x

(4.10)

This leaves only one function to specify the embedding of the probe branes in the background.
As long as Nf � Nc, the D8/D8-branes can be treated as probe branes, i.e., the backreaction
on the background geometry is neglected. The induced metrics on the probe branes in the
confined and deconfined backgrounds are

ds2
D8,conf =

( u
R

)3/2 (
dτ2 + δijdx

idxj
)

+
(
R

u

)3/2 [v2(u)
f(u)

du2 + u2dΩ4

]
, (4.11a)

ds2
D8,deconf =

( u
R

)3/2 [
f̃(u)dτ2 + δijdx

idxj
]

+
(
R

u

)3/2 [ ṽ2(u)
f̃(u)

du2 + u2dΩ4

]
,(4.11b)

where we abbreviated

v(u) ≡
√

1 + f2(u)
( u
R

)3
(∂ux4)2 , ṽ(u) ≡

√
1 + f̃2(u)

( u
R

)3
(∂ux4)2 . (4.12)

Here the function x4(u) gives the embedding of the D8-branes in the x4-u subspace.

By adding the flavor branes we introduced new degrees of freedom, namely strings with one
endpoint attached to the D4-brane and the other attached to the D8 or the D8-branes. From
these new strings we obtain Nf flavors of massless fermions in the fundamental representation
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Figure 4.1: T-µ phase diagram as predicted by the Sakai-Sugimoto model. The horizontal
line separates the confined phase from the deconfined phase. In the confined phase the τ − u
subspace is cylinder-shaped and the x4 − u subspace is cigar-shaped. In the deconfined phase
their roles are exchanged. We also show the embedding of the D8 and D8-branes. In the
confined phase the probe branes must connect, and the gauge fields living on them can not
be rotated separately, giving a symmetry group U(Nf )L+R. In the deconfined phase there
are two possible embeddings for the D8-branes. If they are connected one is in the deconfined
chiraly broken phase and if they are separated one is in deconfined phase with chiral symmetry
U(Nf )L × U(Nf )R.

of the color group of opposite chirality, which are located on the intersection of the D8 and and
D8-branes with the Nc D4-branes. We interpret these fermions as massless quarks of QCD.

The D4/D8-D8 setup provides the tools to study not only the deconfinement phase tran-
sition but also the chiral phase transition. In the x4 direction, the D8-branes are separated
from the D8-branes by a distance L. The maximal separation of the branes is L = π/MKK in
which case the branes are attached at opposite sides of the circle spanned by x4. Gauge fields
on the D8 and D8-branes transforming under a local symmetry group U(Nf ) induce a global
symmetry group U(Nf ) on the five-dimensional boundary at u =∞. More precisely, a gauge
symmetry on the D8-branes induces a global symmetry at the four-dimensional subspace of
the holographic boundary at x4 = 0, while the gauge symmetry on the D8-branes induces a
separate global symmetry on the four-dimensional subspace at x4 = L. Therefore the total
global symmetry can be interpreted as the chiral group U(Nf )L × U(Nf )R.

So far we have viewed the gauge symmetry on the D8-branes as independent from that
on the D8-branes. This is correct if the branes are geometrically separate. For example in
the deconfined background, where the x4-u subspace is cylinder-shaped, the branes follow
straight lines from u = uT up to u =∞, and thus are disconnected. However, it may also be
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energetically favored for the branes to be connected. In this case, the gauge symmetry reduces
to joint rotations, given by the vectorial subgroup U(Nf )L+R. This is exactly the symmetry
breaking pattern induced by a chiral condensate. In fact, in the confined phase, where the
x4-u subspace is cigar-shaped, the branes must connect. In other words, chiral symmetry is
always broken in the confined phase. Whether the branes are disconnected in the deconfined
phase depends on the separation scale L. For sufficiently large L they are always disconnected,
while for smaller L the connected phase may be favored for certain temperatures [87]. In other
words, in the former case, deconfinement and the chiral phase transition are identical while in
the latter case they differ and there exists a deconfined but chirally broken phase in the T -µB
plane [88]. We show the phase diagram in Figure 4.1. In this work, we shall use maximally
separated branes, i.e., L = π/MKK. This simplifies the treatment since in this case we always
have ∂ux4 = 0 because the D8-branes follow geodesics. The case of not maximally separated
planes, more precisely the limit where the radius of the compactified dimension is much larger
than the separation distance, 1/MKK � L, corresponds to an NJL model on the field theory
side [89].

Temperature and chemical potentials enter the model in very different ways. As explained
above, temperature has a geometric effect on the background metric, in particular a black hole
forms for sufficiently large T . Chemical potentials, however, enter as boundary conditions
for the gauge fields on the D8 and D8-branes, i.e., in the subsequent Sections we will fix the
baryon and isospin components of the temporal components of the “right-handed” and “left-
handed” gauge fields at the boundary u = ∞ by the isospin and baryon chemical potentials.
Analogously, nontrivial boundary values of the spatial components of the gauge fields have the
interpretation of spatial gradients in chiral condensates, corresponding to supercurrents. We
shall discuss the gauge field action associated with the flavor branes in more detail now.

4.2 Yang-Mills and Chern-Simons action

Now we write down the action that describes the dynamics of the flavor branes. We will at
most work with two flavors and therefore we derive everything for a two flavor system and take
the one flavor limit when we need to. The total action for the D8 and D8-branes is given by the
sum of the Dirac-Born-Infeld (DBI) and the Chern-Simons (CS) actions. As indicated in the
introduction and as will become clear below, the Chern-Simons term is necessary to account
for nonzero baryon and isospin numbers. For simplicity, we shall expand the DBI action for
small gauge fields such that we obtain a Yang-Mills contribution instead. This was also done
for instance in Ref. [90], while other works used the full DBI action in a similar context,
however for the simpler cases of a one-flavor system without isospin chemical potential [91]
and without currents and magnetic field [92]. Our action takes the form

SD8 = SYM + SCS . (4.13)

Here, the Yang-Mills contribution is

SYM = 2NfT8V4

∫
d4x du e−Φ√g

(
1− (2πα′)2

4Nf
gµνgρσTr[FνρFσµ]

)
, (4.14)

where T8 = 1/[(2π)8`9s] is the D8-brane tension, where α′ = `2s, and where V4 = 8π2/3 is the
volume of the unit 4-sphere. The remaining integrations are done over four-dimensional space-
time t, x1, x2, x3, and over the holographic coordinate u. In the confined (deconfined) phase
the limits for this integration are uKK(uT ) < u < ∞, and the factor 2 on the right-hand side
of Eq. (4.14) accounts for integration over D8 and D8-branes. In this section, all expressions
are thus valid for both confined and deconfined phase, which differ, besides the integration
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limits for u, by the metric g. The dilaton is eΦ = gs(u/R)3/4, and the trace is taken over the
internal U(2) space (from now on Nf = 2). Our convention for the field strength tensor is

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] , (4.15)

where µ, ν = 0, 1, 2, 3, u, and where Aµ is the U(2) gauge field. It is convenient to separate
the U(1) part from the gauge fields and field strengths,

Aµ =
Âµ
2

1 +
Aaµ
2
τa , Fµν =

F̂µν
2

1 +
F aµν
2
τa , (4.16)

where a = 1, 2, 3 and τa are the Pauli matrices. With these conventions we have

F̂µν = ∂µÂν − ∂νÂµ , F aµν = ∂µA
a
ν − ∂νAaµ +AbµA

c
νεabc . (4.17)

The Chern-Simons contribution in Eq. (4.13) is [93]

SCS = −i Nc

12π2

∫ {
3
2
ÂTr[F 2] +

1
4
ÂF̂ 2 +

1
2
d

[
ÂTr

(
2FA− i

2
A3

)]}
= −i Nc

96π2

∫
d4x du

{
3
2
Âµ

(
F aνρF

a
σλ +

1
3
F̂νρF̂σλ

)
+ 2∂µ

[
Âν

(
F aρσA

a
λ +

1
4
εabcA

a
ρA

b
σA

c
λ

)]}
εµνρσλ , (4.18)

where, in the first line, we have used a notation in terms of differential forms in order to
connect our expression to the one from Ref. [93] (our integration range is uKK < u < ∞;
therefore, in order to integrate over D8 and D8-branes we need an additional factor 2 in the
prefactor compared to Eq. (2.8) in Ref. [93]). The change of numerical prefactors in going
from the first to the second line comes from performing the trace and from our convention of
the field strength (4.15) (the factors for the latter are hidden in the wedge products in the first
line). The boundary term does not enter the equations of motion but gives a contribution to
the free energy.

4.3 Equations of motion

We can now derive the equations of motion for the gauge fields. We start by taking the variation
with respect to the gauge fields of the Yang-Mills and Chern-Simons Lagrangians LYM and
LCS. They are given by the integrands (including the prefactors outside the integral) of the
actions in (4.14) and (4.18). We present the general form of the variations for the confined
phase in detail in Appendix C.1.

The equations of motion obtained from the variations (C.2), (C.3), (C.6), (C.7) are com-
plicated coupled nonlinear differential equations for the gauge fields. We shall now simplify
these equations by transforming the holographic coordinate u and by choosing a particular
gauge. The new coordinate z we shall use from now on is defined through

u = (u3
KK + uKKz

2)1/3 . (4.19)

We have z ∈ [−∞,∞] while u ∈ [uKK,∞]. In the new coordinate, the boundaries of the
connected D8 and D8-branes correspond to z = −∞ for x4 = 0 (“left-handed fermions”) and
z = +∞ for x4 = L = π/MKK (“right-handed fermions”), while the point z = 0 corresponds
to the tip of the cigar-shaped z-x4 subspace in the bulk. We work in a gauge where Az = 0
[29, 94], see Section 6.2.1 for a discussion of this choice.

71



With the metric of the confined phase (4.1), the relations between the parameters of the
model (4.3), (4.5), (4.9), and the new coordinate z (4.19), the Yang-Mills part of the action
(5.2a) can be written as

SYM = κ

∫
d4x

∫ ∞
−∞

dz

{
16M2

KKk
2/3(z)

9(2πα′)2uKK
+
M2

KK

u2
KK

k(z)Tr[F2
zµ] +

1
2
h(z)Tr[F2

µν ]

}
, (4.20)

where µ, ν = 0, 1, 2, 3. Here,

h(z) ≡ (u3
KK + uKKz

2)−1/3 , k(z) ≡ u3
KK + uKKz

2 (4.21)

and
κ ≡ λNc

216π3
. (4.22)

In deriving Eq. (4.20) we have used that the field strengths are symmetric or antisymmetric
functions of z.

Since we work at finite temperature, we need to work in Euclidean space. However, in what
follows, it turns out to be more convenient to use Minkowski notation. More precisely, we
start from the Euclidean action with imaginary time τ and replace A0 → iA0, after which we
may write the result using a Minkowski metric with signature (−,+,+,+). The space-time
integral is denoted by d4x for simplicity but actually is an integral dτ d3x over imaginary time
τ and three-dimensional space. Our convention for the ε-tensor is ε0123 = 1. In this notation
the equations of motion for the confined phase in the new coordinate z are

κM2
KK∂z[k(z)F̂ zµ] + κh(z)∂νF̂ νµ =

Nc

32π2
(F (a)

zν F
(a)
ρσ + F̂ zνF̂ ρσ)εµνρσ , (4.23a)

κM2
KK∂µ[k(z)F̂ zµ] =

Nc

128π2
(F (a)

µν F
(a)
ρσ + F̂µνF̂ρσ)εµνρσ , (4.23b)

κM2
KKDz[k(z)F (c)zµ] + κh(z)DzF

(c)zµ =
Nc

16π2
(F̂zνF (a)

ρσ )εµνρσ (4.23c)

κM2
KKDµ[k(z)F (c)zµ] =

Nc

64π2
(F̂µνF aρσ)εµνρσ , (4.23d)

where the covariant derivative is given by

DzF
(a)zµ = (δac∂z +Abzεabc)F

(c)zµ DµF
(a)µν = (δac∂µ +Abzεabc)F

(c)µν . (4.24)

The second and fourth equation of motion are obtained by varying Âz, A
(a)
z in the action prior

to setting Az = 0.
To obtain the equations of motion for the deconfined phase one has to replace k(z) → kµ(z)
where

k0(z) ≡ (u3
T + uT z

2)3/2

z u
1/2
T

, k3(z) ≡ z u1/2
T (u3

T + uT z
2)1/2 , (4.25)

due to different metric functions for the temporal and spatial coordinates in the metric (4.6).
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Chapter 5

Anomalies and chiral currents in the
Sakai-Sugimoto model

This chapter is based on [33]. Topologically charged gauge field configurations in QCD gen-
erate chirality due to the nonabelian axial anomaly. In the presence of a magnetic field, this
chirality, i.e., an imbalance in the number of right- and left-handed quarks, has been predicted
to generate an electromagnetic current parallel to the applied magnetic field. This is a conse-
quence of the QED axial anomaly and has been termed chiral magnetic effect [95, 96, 97]. As a
result, electric charge separation may occur in noncentral heavy-ion collisions, where magnetic
fields up to 1017 G can be generated temporarily, and corresponding experimental evidence
has in fact been reported in Refs. [98, 99] (see however Ref. [100]).

In a simplified picture, one may study the induced current for a static magnetic field.
The generalization to time-dependent magnetic fields, as produced in heavy-ion collisions, in
principle amounts to computing a frequency-dependent conductivity [97, 101]. However, the
observed charge separation is proportional to the zero-frequency limit [97]. In this work, the
currents we compute always correspond to the zero-frequency limits of the conductivities.

Another simplification of the highly nontrivial scenario of a heavy-ion collision is to mimic
the (event-by-event) topologically induced chirality by a nonzero axial chemical potential µ5,
the difference of right- and left-handed chemical potentials. The resulting current is a vector
current proportional to µ5. In a more general setup, although negligible in the heavy-ion
context, one may also include a quark chemical potential µ, which is the same for right- and
left-handed fermions. Again via a nonzero magnetic field, an axial current is generated in this
case [102, 103]. This effect may be of relevance for the physics of compact stars [104], where
strongly interacting matter can reach densities of several times nuclear ground state density,
and (surface) magnetic fields up to 1015 G have been measured, indicating the possibility of
even higher magnetic fields in the interior. Also the direct high-density analogue of the chiral
magnetic effect has been studied in the context of neutron star physics [105].

We apply a strong-coupling approach, based on the AdS/CFT correspondence [14, 106,
107], to compute both kinds of currents. We use a general setup to account for nonzero
temperatures, relevant in the context of heavy-ion collisions, as well as for nonzero quark
chemical potentials, relevant in the astrophysical context. Besides the chirally symmetric
phase we also consider the chirally broken phase which is important in both contexts: heavy-
ion collisions are expected to probe the region of the QCD chiral phase transition; in quark
matter at densities present in compact stars, chiral symmetry may also be spontaneously
broken, for example in the color-flavor locked phase [8].

The Sakai-Sugimoto model [29] introduced in the previous Section is particularly suited for
our purpose since it has a well-defined concept for chirality and the chiral phase transition. It is
straightforward to introduce right- and left-handed chemical potentials independently. Several
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previous works have considered currents in a magnetic field at nonzero chemical potentials in
this model [91, 90, 34, 108]. The purpose of this chapter is two-fold. The physical motivation
is to extend these calculations to the currents relevant for the chiral magnetic effect, and to
compare our strong-coupling results to the weak-coupling results [96] as well as the lattice
results [109] in the existing literature. There is also a more theoretical purpose of our work,
addressing certain fundamental properties of the Sakai-Sugimoto model. We discuss in detail
how to implement the covariant QED anomaly into the model in order to obtain physically
acceptable predictions. Moreover, we elaborate on an ambiguity in the definition of the chiral
currents in the presence of a Chern-Simons term that has been observed previously [91, 34, 108]
(see also [110]).

This chapter is organized as follows. We start with a general discussion of the currents, in
particular the appearance of consistent and covariant anomalies, in Section 5.1. In Section 5.2
we discuss the solution of the equations of motion in the presence of background magnetic and
electric fields. We present analytical solutions for the chirally broken phase, Section 5.2.1, and
the chirally symmetric phase, Section 5.2.2. We then discuss the ambiguity of the currents,
defined on the one hand via the general definition from Section 5.1, and on the other hand
from the thermodynamic potentials obtained in Section 5.2. In Section 5.3 we present our
results for the axial and vector currents.

5.1 Anomalies in the Sakai-Sugimoto model

5.1.1 Action, equations of motion, and currents

In this section we give the one flavor version of the action and the equation of motion, discussed
in Sections (4.2, 4.3), in the broken phase where the D8- and D8-branes are connected. The
equations for the symmetric phase are very similar and shall be given later where necessary.
Throughout this chapter we shall work with one quark flavor, Nf = 1. The currents we com-
pute are expected to be simple sums over quark flavors, each flavor contributing in the same
way, distinguished only by its electric charge. This is rather obvious in the chirally symmetric
phase. In the chirally broken phase, the flavor contributions may be more complicated in
the case of charged pion condensation. However, since we work at vanishing isospin chem-
ical potential, there is only neutral pion condensation and the different flavor contributions
decouple.

To obtain the action for one quark flavor in the gauge Az = 0 we simply have to set
Âµ = Aµ in (4.20) and (4.18). Remember that we work in Minkowski signature and that
A0 → iA0. The (Euclidean) action for Nf = 1,

S = SYM + SCS (5.1)

is given by

SYM = κM2
KK

∫
d4x

∫ ∞
−∞

dz

[
k(z)FzµF zµ +

h(z)
2M2

KK

FµνF
µν

]
, (5.2a)

SCS =
Nc

24π2

∫
d4x

∫ ∞
−∞

dz AµFzνFρσε
µνρσ , (5.2b)

with Greek indices running over µ, ν, . . . = 0, 1, 2, 3. Our convention for the epsilon tensor is
ε0123 = +1. The metric functions k(z) and h(z) are given by (4.21) and the dimensionless
constant κ is given by (4.22). The integration over the four-sphere has already been done, and
we are left with the integral over space-time (τ,x) and the holographic coordinate z which
extends from the left-handed boundary (z = +∞) over the tip of the cigar-shaped (x4, z)
subspace (z = 0) to the right-handed boundary (z = −∞). The coordinate z is dimensionless
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and is obtained from the dimensionful coordinate z of (4.19) upon defining z′ = z/uKK (T < Tc)
and then dropping the prime. Here, uKK = 4R3M2

KK/9, with R being the curvature radius of
the background metric. The equations of motion (4.23) for Nf = 1 are

κM2
KK ∂z[k(z)F zµ] + κh(z)∂νF νµ =

Nc

16π2
FzνFρσε

µνρσ , (5.3a)

κM2
KK ∂µ[k(z)F zµ] =

Nc

64π2
FµνFρσε

µνρσ , (5.3b)

where the second equation is obtained from varying Az in the action prior to setting Az = 0.
Next we introduce the chiral currents. The usual way is to define them through the

variation of the on-shell action with respect to the boundary values of the gauge fields (see
however Ref. [110] for a discussion of possible alternatives). We thus replace
Aµ(x, z)→ Aµ(x, z) + δAµ(x, z) in the action and keep the terms linear in δAµ(x, z) to obtain

δSYM = 2κM2
KK

{∫
d4x k(z)F zµδAµ

∣∣∣z=∞
z=−∞

+
∫
d3x

∫ ∞
−∞

dz
h(z)
M2

KK

F νµδAµ

∣∣∣
xν

−
∫
d4x

∫ ∞
−∞

dz

[
∂z[k(z)F zµ] +

h(z)
M2

KK

∂νF
νµ

]
δAµ

}
, (5.4a)

δSCS =
Nc

8π2

{
−1

3

∫
d4xAνFρσδAµ

∣∣∣z=∞
z=−∞

− 2
3

∫
d3x

∫ ∞
−∞

dz AσFzνδAµ

∣∣∣
xρ

+
∫
d4x

∫ ∞
−∞

dz FzνFρσδAµ

}
εµνρσ . (5.4b)

In the total variation δS = δSYM + δSCS the bulk terms vanish upon using the equation of
motion for Aµ (5.3a) and we are left with boundary terms only. According to the holographic
correspondence, we keep only the boundary terms at |z| = ∞ and drop any terms from
space-time infinities. This may seem natural but possibly is problematic in our case as we
shall discuss later after we have implemented our specific ansatz. The boundary terms at the
holographic boundary z = ±∞ lead to the left- and right-handed currents

J µL/R ≡ −
δS

δAµ(x, z = ±∞)
= ∓

(
2κM2

KKk(z)F zµ − Nc

24π2
εµνρσAνFρσ

)
z=±∞

, (5.5)

where the first (second) term is the YM (CS) contribution. This result of the currents is in
agreement with Refs. [34, 110, 111], see also [112, 113]. The overall minus sign in the definition
originates from our use of the Euclidean action which is minus the Minkowski action, and the
functional derivative is taken with respect to the space-time coordinates x (and not also with
respect to the holographic coordinate z plus a subsequent limit z → ±∞). The currents (5.5)
can also be obtained from

J µL/R = ∓ ∂L
∂ ∂zAµ

∣∣∣∣
z=±∞

, (5.6)

in accordance with the usual rules of the gauge/gravity correspondence.
As already pointed out in Ref. [34], it is only the YM part of the current, i.e., the first

term in eq. (5.5), which appears in the asymptotic expansion of the gauge fields. From the
definition (5.5) and with k(z) = 1 + z2 we find

Aµ(x, z) = Aµ(x, z = ±∞)±
J L/Rµ,YM

2κM2
KK

1
z

+O
(

1
z2

)
. (5.7)

One can also confirm this relation from our explicit results in the subsequent sections.
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5.1.2 Consistent and covariant anomalies

The divergence of the currents (5.5) can be easily computed with the help of the equation of
motion for Az (5.3b). One obtains

∂µJ µL/R = ∂µ(JYM + JCS)µL/R = ∓ Nc

16π2

(
1− 2

3

)
FL/Rµν F̃µνL/R , (5.8)

with the left- and right-handed field strengths FL/Rµν (x) ≡ Fµν(x, z = ±∞), and the left- and
right-handed dual field strength tensors F̃µνL/R = 1

2 F
L/R
ρσ εµνρσ. (For notational convenience we

use the labels L, R and related labels such as V,A sometimes as superscript, sometimes as
subscript.) With the vector and axial currents

J µ ≡ J µR + J µL , J µ5 ≡ J µR − J
µ
L , (5.9)

and the vector and axial field strengths introduced as FRµν = F Vµν + FAµν , FLµν = F Vµν − FAµν , eq.
(5.8) yields the vector and axial anomalies

∂µJ µ =
Nc

12π2
F VµνF̃

µν
A , (5.10a)

∂µJ µ5 =
Nc

24π2

(
F VµνF̃

µν
V + FAµνF̃

µν
A

)
. (5.10b)

The coefficients on the right-hand side (which as we saw receive contributions from both the
YM and CS parts of the currents) are in accordance with the standard field theoretic results
for Nc chiral fermionic degrees of freedom coupled to left and right chiral gauge fields [114].
The above form of the anomaly, which is symmetric in vector and axial-vector gauge fields,
is called consistent anomaly. If left- and right-handed Weyl spinors are treated separately,
this form of the anomaly arises unambiguously. This is explained for instance in Ref. [115],
where left- and right-handed fields are separated by an extra dimension. This is not unlike our
present model and it is thus not surprising that the consistent anomaly arises naturally from
the above definition of the currents. In QED, however, we must require that the vector current
be strictly conserved, even in the presence of axial field strengths. As was first discussed by
Bardeen [114], this can be achieved by the introduction of a counterterm that mixes left- and
right-handed gauge fields. Having even parity, Bardeen’s counterterm is uniquely given by
[115]

∆S = c

∫
d4x(ALµA

R
ν F

L
ρσ +ALµA

R
ν F

R
ρσ)εµνρσ , (5.11)

where c is a constant determined by requiring a strictly conserved vector current. Because this
expression can be naturally written as a (metric-independent) integral over a hypersurface at
|z| = Λ→∞ with left- and right-handed fields concentrated at the respective brane locations,
∆S can actually be interpreted as a (finite) counterterm in holographic renormalization. In
particular, it does not change the equations of motion.

To obtain the contribution of Bardeen’s counterterm to the chiral currents we replace
A
L/R
µ → A

L/R
µ + δA

L/R
µ to obtain

δ∆S = ±c
∫
d4x

(
AR/Lν FR/Lρσ −AL/Rν FR/Lρσ + 2AR/Lν FL/Rρσ

)
δAL/Rµ εµνρσ

∓ 2c
∫
d3xAR/Lν AL/Rσ δAL/Rµ

∣∣∣
xρ
εµνρσ . (5.12)

Again dropping the space-time surface terms, the contribution to the currents is therefore

∆J µL/R = ∓c
(
AR/Lν FR/Lρσ −AL/Rν FR/Lρσ + 2AR/Lν FL/Rρσ

)
εµνρσ , (5.13)
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and the contribution to the divergence of the currents becomes

∂µ∆J µL/R = ∓c
(
FR/Lµν F̃µνR/L + FL/Rµν F̃µνR/L

)
. (5.14)

Denoting renormalized left- and right-handed currents as

J̄ µL/R ≡ J
µ
L/R + ∆J µL/R , (5.15)

and similarly the renormalized axial and vector currents as J̄µ, J̄ 5
µ , we find that the choice

c =
Nc

48π2
(5.16)

leads to the covariant anomaly

∂µJ̄ µ = 0 , (5.17a)

∂µJ̄ µ5 =
Nc

8π2
F VµνF̃

µν
V +

Nc

24π2
FAµνF̃

µν
A . (5.17b)

Note that the prefactor in front of the first term in the axial anomaly now has changed to
Nc/(8π2), from Nc/(24π2) in eq. (5.10b), which is the well-known result for the Adler-Bell-
Jackiw anomaly for QED [116, 117] and which is essential for getting the correct pion decay
rate π0 → 2γ. The necessity of adding the counterterm (5.11) to the Sakai-Sugimoto model
is in fact completely analogous to the very same and well-known procedure in chiral models
where a Wess-Zumino-Witten term accounts for the anomaly [118].

In the literature sometimes the coefficient of the subleading term in the asymptotic behavior
of Aµ(x, |z| → ∞) and thus the YM part of the current (see eq. (5.7)) is identified with the full
current [101], see also [119, 120, 121, 122]. Using this identification, it has also been assumed
that the equation of motion for Az (5.3b) represents the anomaly equation [108]. Indeed, from
eq. (5.3b) one obtains the apparent anomaly

∂µJ µYM,L/R = ∓ Nc

16π2
FL/Rµν F̃µνL/R , (5.18)

which leads to

∂µJ µYM =
Nc

4π2
F VµνF̃

µν
A , (5.19a)

∂µJ µYM,5 =
Nc

8π2

(
F VµνF̃

µν
V + FAµνF̃

µν
A

)
, (5.19b)

and this does contain the same coefficient in front of F VµνF̃
µν
V as the full covariant anomaly

(5.17). However, it differs from the latter in the presence of axial gauge fields. In particular,
the vector current is then not strictly conserved. The renormalized current J̄L/R satisfies eq.
(5.18) only for FLµν = FRµν .1 Even when this issue may be ignored, because all axial vector field
strengths are set to zero, it appears to be questionable to keep only part of the full current
(5.5).

In the remainder of this chapter we shall consider the full currents for which Bardeen’s
counterterm is needed, and study the implications, which indeed differ from keeping only the
YM part of the currents. (The effect of truncating to the YM part can be easily read off from
the expressions that we shall give.)

1The more general validity of eq. (5.18) has been assumed incorrectly in eq. (2.1) of ref. [101] and eq. (36)
of Ref. [96].
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5.2 Background electromagnetic fields and chemical potentials

The discussion in the previous section was general in the sense that we have not specified
any gauge fields except for the gauge choice Az = 0. In this section we specify our ansatz
according to the physical situation we are interested in. This includes a background magnetic
field B as well as separate left- and right-handed chemical potentials. The left- and right-
handed chemical potentials are defined as the boundary values of the temporal component of
the gauge field

µL/R = A0(±∞). (5.20)

Equivalently, they can be written in terms of the ordinary quark chemical potential µ =
(µR + µL)/2 and an axial chemical potential µ5 = (µR − µL)/2. With these ingredients we
can obtain results relevant for the heavy-ion context (nonzero µ5, negligibly small µ) and
for the astrophysical context (vanishing µ5, large µ). In order to be able to check the axial
anomaly explicitly, we also add an electric field E and an “axial electric field” ε parallel to
the magnetic field. The electric field E is needed because the axial anomaly is proportional to
E ·B. The (unphysical) field ε shall be used to check the absence of a vector anomaly, i.e., the
conservation of the vector current, which must be true even in the presence of ε, and would
be trivial without ε. In our final results for the currents, the electric fields are however set to
zero.

For previous discussions of background electric and magnetic fields in the Sakai-Sugimoto
model see for instance Refs. [91, 90, 34, 123, 124]. We shall only consider spatially homogeneous
systems. This is the simplest case, which might however require generalization when the true
ground state is more complicated, for instance when Skyrme crystals are formed [125].

5.2.1 Chirally broken phase

In our ansatz the nonzero fields are A0(t, z), A1(x2), A3(t, z), where the dependence on t will
only be present for nonvanishing electric fields E and ε at the holographic boundary. The
temporal component A0 is needed to account for nonzero (left- and right-handed) chemical
potentials which correspond to the values of A0 at the boundary. The electromagnetic fields are
encoded in the boundary values of the spatial components. Since the gauge symmetry in the
bulk corresponds to a global symmetry for the dual field theory, the fields at the holographic
boundary are not dynamical and merely serve as background fields. This is however sufficient
for our purpose. The magnetic field B is assumed to point into the 3-direction, B = (0, 0, B).
Consequently, we can choose

A1(x2) = −x2B (5.21)

at the holographic boundary. The equations of motion show that A1 can be chosen to be
constant in z throughout the bulk. (This is different in the presence of an isospin chemical
potential [34].) Consequently, F12(x, z) = B. For notational convenience we have absorbed
the electric quark charge qf into B, i.e., actually B → qfB with qf = 2/3 e for f = u, and
qf = −1/3 e for f = d. With nonzero A0 and A1, accounting for the chemical potential
and the magnetic field, a nonzero A3 is induced, even without electric field. In the broken
phase, A3 develops a nonzero boundary value, corresponding to the gradient of the neutral
pion [91, 90, 34] (see also Chapter 6). Just as for a usual superfluid, where the gradient of
the phase of the order parameter is proportional to the superfluid velocity, this gradient of the
pion field can be viewed as an axial supercurrent [34].

Next we introduce the electric field E = (0, 0, E) parallel to B and, as explained above, an
“axial electric field” ε = (0, 0, ε). We thus have to add −t(E∓ ε) to the boundary value of A3,
such that, together with the axial supercurrent t, we have

A3(t, z = ±∞) = −t(E ∓ ε)∓ t . (5.22)
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Due to the axial electric field we allow the supercurrent to become time-dependent. Strictly
speaking the electric fields prevent us from using a thermodynamic description since it intro-
duces a time-dependence and thus non-equilibrium physics. Therefore, our electric field should
be considered infinitesimal. This is sufficient for our purpose since we can check the anomaly
relations with an arbitrarily small electric field. Moreover, as mentioned above, the physical
situations we are interested in do not require finite electric fields anyway.

With the above ansatz, the YM and CS contributions to the action (5.2) become

SYM = κM2
KK

∫
d4x

∫ ∞
−∞

dz k(z)
[
−(∂zA0)2 + (∂zA3)2

]
, (5.23a)

SCS =
Nc

12π2

∫
d4x

∫ ∞
−∞

dz
{

(∂2A1) [A0(∂zA3)−A3(∂zA0)]

−A1 [(∂2A0)(∂zA3)− (∂2A3)(∂zA0)]
}
. (5.23b)

We have written all terms which are needed to derive the equations of motion, including the
ones that vanish on-shell. More specifically, the second line in the CS action (5.23b) vanishes
on-shell because neither A0 nor A3 depends on x2, but yields a finite contribution to the
equations of motion. The equations of motion are

∂z(k∂zA0) = 2β∂zA3 , (5.24a)
∂z(k∂zA3) = 2β∂zA0 , (5.24b)
∂t(k∂zA0) = 2β∂tA3 , (5.24c)

with the dimensionless magnetic field

β ≡ αB

M2
KK

, (5.25)

and α ≡ 27π/(2λ). We defer the details of solving the equations of motion to appendix C.6.1.
The results for the gauge fields and field strengths are

A0(t, z) = µt − µ5,t
sinh(2β arctan z)

sinhβπ

−(t − εt)
[

cosh(2β arctan z)
sinhβπ

− cothβπ
]
, (5.26a)

A3(t, z) = −tE − µ5,t

[
cosh(2β arctan z)

sinhβπ
− cothβπ

]
−(t − εt)

sinh(2β arctan z)
sinhβπ

, (5.26b)

and

k∂zA0 = −2β
[
µ5,t

cosh(2β arctan z)
sinhβπ

+ (t − εt)
sinh(2β arctan z)

sinhβπ

]
, (5.27a)

k∂zA3 = −2β
[
µ5,t

sinh(2β arctan z)
sinhβπ

+ (t − εt)
cosh(2β arctan z)

sinhβπ

]
. (5.27b)

Here we have denoted

µt ≡ µ+ εt cothβπ , µ5,t ≡ µ5 + Et tanhβπ , (5.28)

i.e., both boundary values of A0 become time-dependent through the electric fields. As can
be seen from the detailed derivation in appendix C.6.1, this time-dependence is unavoidable.
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Figure 5.1: Gauge fields in the chirally broken phase as functions of the holographic coordinate
z ∈ [−∞,∞] for a finite quark chemical potential and vanishing axial chemical potential (left)
and vice versa (right). Dashed lines: gauge fields with vanishing magnetic field; solid lines:
gauge fields with a nonzero magnetic field β = 0.6. In both plots we have set the electric fields
to zero, E = ε = 0. The boundary values at z = ±∞ correspond to left- and right-handed
quantities. The magnetic field induces an axial supercurrent (boundary value of A3) in the
case of a nonvanishing quark chemical potential. If both µ and µ5 are nonvanishing, the gauge
fields are neither symmetric nor antisymmetric in z. The analytic expressions for these curves
are given in eqs. (6.27).

In Figure 5.1 we plot the gauge fields for E = ε = 0 at the minimum, i.e., after t has been
determined to minimize the free energy, see below.

The thermodynamic potential Ω = T
V Son−shell is obtained from eqs. (C.60), treating t as

an external parameter,

Ω =
8κM2

KK

3

{ [
(t − εt)2 − µ2

5,t

]
ρ(β) + β [µt(t − εt) + tEµ5,t]

}
, (5.29)

where we have abbreviated

ρ(β) ≡ β cothβπ +
πβ2

2 sinh2 βπ
'


3

2π
+
π

6
β2 for β → 0

|β| for |β| → ∞
. (5.30)

Minimization of Ω with respect to t yields the axial supercurrent

t = − βµ

2ρ(β)
+ εt

[
1− β cothβπ

2ρ(β)

]
. (5.31)

We see that the supercurrent depends neither on µ5 nor on E. Therefore, at t = 0 it is
simply the one-flavor limit of the result obtained in Ref. [34] (where the D8 and D8 branes
were identified with R and L, not with L and R, respectively, hence the different sign of the
supercurrent).

5.2.2 Chirally symmetric phase

As explained in Section 4.1.2, in the chirally symmetric phase the D8 and D8-branes are not
connected. On both branes the holographic coordinate z now runs from z = 0, the black hole
horizon, to the holographic boundary at z =∞, and both branes yield separate contributions
to the action,

S = (SLYM + SRYM) + (SLCS − SRCS) . (5.32)
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The CS action assumes different overall signs on the D8- and D8-branes since its parity is odd.
The YM and CS contributions are

ShYM = κM2
KKθ

3

∫
d4x

∫ ∞
0

dz
[
−k0(z)(∂zAh0)2 + k3(z)(∂zAh3)2

]
, (5.33a)

ShCS =
Nc

12π2

∫
d4x

∫ ∞
0

dz
{

(∂2A
h
1)[Ah0(∂zAh3)−Ah3(∂zAh0)]

−Ah1 [(∂2A
h
0)(∂zAh3)− (∂2A

h
3)(∂zAh0)]

}
, (5.33b)

with h = L,R. Here, we have defined the dimensionless temperature

θ ≡ 2πT
MKK

. (5.34)

In contrast to the broken phase there are different metric functions for temporal and spatial
components of the gauge fields,

k0(z) ≡ (1 + z2)3/2

z
, k3(z) ≡ z(1 + z2)1/2 . (5.35)

Note the slight difference in notation of the gauge fields: while in the broken phase AL/Rµ (x) ≡
Aµ(x, z = ±∞) always implies evaluation at the holographic boundary, here we label the bulk
gauge fields AL/Rµ (x, z) by L and R to indicate whether they live on the D8- or on the D8-
brane. Since we always discuss broken and symmetric phases separately, this should not cause
any confusion.

The equations of motion on the separate branes become

∂z(k0∂zA
L/R
0 ) = ±2β

θ3
∂zA

L/R
3 , (5.36a)

∂z(k3∂zA
L/R
3 ) = ±2β

θ3
∂zA

L/R
0 , (5.36b)

∂t(k0∂zA
L/R
0 ) = ±2β

θ3
∂tA

L/R
3 . (5.36c)

Details of solving the equations of motion are presented in appendix C.6.2. The final solution
for the gauge fields is

A
L/R
0 (t, z) = (µt ∓ µ5,t)

[
p(z)− p0

q0
q(z)

]
, (5.37a)

A
L/R
3 (t, z) = −t(E ∓ ε)± µt ∓ µ5,t

2β/θ3

[
k0∂zp−

p0

q0
(1 + k0∂zq)

]
, (5.37b)

which is plotted in Figure 5.2 for E = ε = 0. Below we shall also need the field strengths on
the branes,

k0∂zA
L/R
0 = (µt ∓ µ5,t)

(
k0∂zp−

p0

q0
k0∂zq

)
, (5.38a)

k3∂zA
L/R
3 = ±2β

θ3
(µt ∓ µ5,t)

[
p(z)− p0

q0
q(z)

]
. (5.38b)

The functions p(z), q(z) are hypergeometric functions which we defined in eqs. (C.66) and
which depend on the ratio β/θ3. Their values at z = 0 are denoted by p0, q0, see eqs. (C.69),
and the ratio p0/q0 behaves for small and large magnetic fields as

p0

q0
'

 1 + (2β/θ3)2(ln4− 1) for β/θ3 → 0

2|β|/θ3 for |β|/θ3 →∞
. (5.39)
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Figure 5.2: Left- and right-handed gauge fields (left and right panel, respectively) in the
chirally symmetric phase as functions of the holographic coordinate z ∈ [0,∞] for µ = 0.9,
µ5 = 0.1. We have set the electric fields to zero, E = ε = 0. The temporal components AL/R0

approach the chemical potentials µ∓µ5 at the boundary z =∞, while the spatial components
A
L/R
3 vanish at z = ∞. A finite magnetic field (solid lines, here β/θ3 = 0.6) distorts the

gauge fields compared to the case of vanishing magnetic fields (dashed lines). In particular,
the spatial component develops a nonzero value at z = 0. The different sign of this value
for left- and right-handed fields, i.e., on the D8- and D8-branes, ensures the correct parity
behavior of the fields. The analytical expressions for these curves are given in eqs. (5.37).

The boundary values of the temporal components are AL/R0 (t, z =∞) = µt ∓ µ5,t with

µt ≡ µ+ 2tε
β

θ3

q0

p0
, µ5,t ≡ µ5 + 2tE

β

θ3

q0

p0
. (5.40)

It is instructive to compare this behavior of the axial chemical potential with the expected
behavior for free fermions in a magnetic field. To this end, consider the lowest Landau level
in which the spin of all (say, positively charged) fermions is aligned parallel to the magnetic
field. As a consequence, all right- (left-) handed massless fermions move parallel (antiparallel)
to the magnetic field. An electric field parallel to the magnetic field now shifts all momenta
in the positive 3-direction by an amount Et. Consequently, some of the left- handed fermions
are converted into right-handed fermions and a shift Et is induced in the difference of right-
and left-handed Fermi momenta, (pRF − pLF )/2 = Et [96, 126]. Interpreting µ5,t as (pRF −
pLF )/2 (strictly speaking there is no well-defined Fermi momentum in our model), eq. (5.40)
reproduces this shift for asymptotically large magnetic fields because in this case q0/p0 →
θ3/(2β). For small magnetic fields q0/p0 → 1, and the shift becomes linear in the magnetic
field. Since β/θ3 ∝ B/T 3, we can in principle also obtain µ5,t = µ5 + tE for sufficiently small
temperatures and fixed magnetic field. However, we cannot reduce the temperature arbitrarily
in the above expression since below the critical temperature Tc we are in the chirally broken
phase. In this case the analogous, temperature-independent relation in eq. (5.28) holds.

The free energy, obtained from the YM and CS contributions (C.80), is

Ω = −2κM2
KK

3
[
θ3(µ2

t + µ2
5,t)η − 4β t (µtε+ µ5,tE)

]
, (5.41)

where we introduced the function

η(β/θ3) ≡ I0 − (2β/θ3)2I3 + 2
p0

q0
'
{

3 + (2β/θ3)2(ln4− 1) for β/θ3 → 0

4|β|/θ3 for |β|/θ3 →∞
, (5.42)

with integrals I0 and I3 defined in eqs. (C.81).
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5.2.3 Ambiguity of currents

In the following discussion we restrict ourselves to the symmetric phase, but one can easily
check that all arguments hold for the broken phase as well. Let us first give the analogue of
the definition of the currents (5.5) for the symmetric phase,

J µL/R = −
(

2κM2
KKθ

3k(µ)F
zµ
L/R ∓

Nc

24π2
εµνρσAL/Rν FL/Rρσ

)
z=∞

, (5.43)

where the notation k(µ) (no summation over µ) indicates the different metric functions for
temporal and spatial components, see eq. (5.35). Equivalently, and in analogy to eq. (5.6), we
can write the currents in the symmetric phase as

J µL/R = − ∂L
∂ ∂zA

L/R
µ

∣∣∣∣∣
z=∞

. (5.44)

We shall now show that the currents defined via these equations are different from the ones
obtained via taking the derivative of the free energy (5.41) with respect to the corresponding
source. We do so for the vector density, i.e., the sum of left- and right–handed 0-components
of the currents. One can observe the same ambiguity for the other nonvanishing components.
The following arguments do not depend on the electric fields, so we temporarily set ε = E = 0
for simplicity (and for a truly equilibrated situation). From the definition (5.43) and the gauge
fields (5.37) and field strengths (5.38) we obtain

J 0 = J 0
R + J 0

L = 4κM2
KKθ

3 p0

q0
µ . (5.45)

On the other hand, the free energy Ω of the system should yield the number density via the
thermodynamic relation

n = −∂Ω
∂µ

=
4κM2

KKθ
3

3
µ η . (5.46)

This result shows that n 6= J 0 which, given spatial homogeneity, is inconsistent. This in-
consistency is absent for vanishing magnetic fields: using the behavior of the functions p0/q0

and η from eqs. (5.39) and (5.42) one sees that for β = 0 the expressions for J 0 and n are
identical. We can formulate this observation in a more general way. To this end we write the
left- and right-handed on-shell Lagrangians, i.e., the integrands of the on-shell action (5.32),
as Lh(Ah0 , ∂zA

h
0 , A

h
3 , ∂zA

h
3), where all arguments of Lh depend on the chemical potentials µh

with h = L,R and µL/R = µ∓ µ5. Then, with Ωh = T/V
∫
d4x

∫∞
0 dz Lh we have

∂Ωh

∂µh
=

T

V

∑
i=0,3

∫
d4x

∫ ∞
0

dz

(
∂Lh
∂Ahi

∂Ahi
∂µh

+
∂Lh
∂ ∂zAhi

∂ ∂zA
h
i

∂µh

)

=
T

V

∑
i=0,3

[∫
d4x

∂Lh
∂ ∂zAhi

∂Ahi
∂µh

∣∣∣∣z=∞
z=0

+
∫
d4x

∫ ∞
0

dz ∂2
∂Lh
∂ ∂2Ahi

∂Ahi
∂µh

]
, (5.47)

where we have used partial integration and added and subtracted the derivative term in x2 in
order to make use of the equations of motion. Now we use

∂Ah0
∂µh

∣∣∣∣
z=∞

= 1 ,
∂Ah0
∂µh

∣∣∣∣
z=0

=
∂Ah3
∂µh

∣∣∣∣
z=∞

=
∂Lh
∂ ∂zAh3

∣∣∣∣
z=0

= 0 , (5.48)

which follows from the explicit solutions (5.37), whose behavior at z = 0, z = ∞ is obtained
with the help of eqs. (C.68), (C.69), and (C.70). With these relations and the definition of the
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current from eq. (5.44) we obtain

− ∂Ω
∂µ

= J 0 − T

V

∑
h=L,R

∑
i=0,3

∫
d4x

∫ ∞
0

dz ∂2
∂Lh
∂ ∂2Ahi

∂Ahi
∂µh

. (5.49)

This is the general form of the difference between the density defined as the 0-component
of the current defined via eq. (5.44) and the density defined via the thermodynamic relation
(5.46). For an explicit check of this relation one inserts the expressions

∂2

∂LL/R
∂ ∂2A

L/R
0

= ±4κM2
KK

3
β∂zA

L/R
3 , (5.50a)

∂2

∂LL/R
∂ ∂2A

L/R
3

= ∓4κM2
KK

3
β∂zA

L/R
0 , (5.50b)

and

∂A
L/R
0

∂µL/R
= p(z)− p0

q0
q(z) , (5.51a)

∂A
L/R
3

∂µL/R
= ± θ

3

2β

[
k0∂zp−

p0

q0
(1 + k0∂zq)

]
, (5.51b)

into eq. (5.49). This yields

− ∂Ω
∂µ

= J 0 +
4κM2

KKθ
3

3
µ

[
I0 −

(
2β
θ3

)2

I3 −
p0

q0

]
. (5.52)

With the definition (5.42) this confirms the difference between n and J 0 obtained from eqs.
(5.45) and (5.46).

From the general form (5.49) we see that the additional term is a boundary term at the
spatial boundary of the system. This suggests that the ambiguity in the currents is related
to the terms we have dropped in Section 5.1.1, see eqs. (5.4). These terms correspond to
currents at the spatial boundary and disappear in the presence of a homogeneous magnetic
field only if the variation δAµ(x, z = ±∞) can be chosen to vanish at this boundary. So this
problem might be resolved by considering more complicated, spatially inhomogeneous gauge
fields. In our homogeneous ansatz, it is however a priori not clear which definition of the
currents corresponds to the correct physics.

A possible solution to this ambiguity was suggested and applied in Refs. [91, 108, 127]. In
these references, the CS action has been modified according to

S′hCS =
Nc

12π2

∫
d4x

∫ ∞
0

dz

{
3
2

(∂2A
h
1)
[
Ah0(∂zAh3)−Ah3(∂zAh0)

]
− 1

2
(∂zAh1)

[
Ah0(∂2A

h
3)−Ah3(∂2A

h
0)
]}

. (5.53)

This modified action (marked by a prime) is obtained from the original CS action (5.33b) by
adding a boundary term at the holographic and the spatial boundary,

S′hCS = ShCS + Shboundary , (5.54)

with

Shboundary =
Nc

24π2

{∫
d3x

∫ ∞
0

dz Ah1

[
Ah0(∂zAh3)−Ah3(∂zAh0)

]
x2

−
∫
d4xAh1

[
Ah0(∂2A

h
3)−Ah3(∂2A

h
0)
]z=∞
z=0

}
. (5.55)
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Note that this boundary term cannot be considered as a holographic counterterm since it
involves an integration over z. From eq. (5.53) we see that the addition of Shboundary effectively
amounts to a multiplication of the on-shell action by 3/2 because the second line in eq. (5.53)
vanishes on-shell. The benefit of the modified action is that the integrand on the right-hand
side of eq. (5.49) vanishes now, i.e., there is no ambiguity in the currents anymore.

Modifications of a CS action by boundary terms are in fact sometimes necessary in order
to ensure validity of the variational principle in the presence of nontrivial boundary values
[128]. However, this is not what the above modification is achieving. Instead, it leads to
gauge invariance under the residual gauge transformations A1 → A1 + ∂1Λ(x1) which are
compatible with the boundary conditions of our ansatz and which do not vanish at spatial
infinity x2 = ±∞ [91]. In fact, by this modification one loses all anomalies for the (now
uniquely defined) currents, as we show now. To this end, we switch on the electric fields again.
Then, the currents of the original action in the symmetric phase are

T > Tc : J 0
L/R = 2κM2

KK

p0

q0

[
θ3(µt ∓ µ5,t)±

2
3
q0

p0
β(E ∓ ε)t

]
, (5.56a)

J 1
L/R = 0 , (5.56b)

J 2
L/R = ±4κM2

KK

3
β x2(E ∓ ε) , (5.56c)

J 3
L/R = ∓4κM2

KKβ (µt ∓ µ5,t)
(

1− 1
3

)
, (5.56d)

where we have used the definition (5.43) and the gauge fields (5.37) and field strengths (5.38).
All terms containing a 1/3 originate from the CS contribution of the current, i.e., from the sec-
ond term in eq. (5.43). All other terms are YM contributions. In particular, the 2-component of
the current is a pure CS term. This component is unphysical because it depends on our choice
to introduce the magnetic field via the gauge field A1. We could have introduced the same
magnetic field via A2 or a combination of A1 and A2, in which case the 1- and 2-components of
the currents would have been different. We shall see below that Bardeen’s counterterm solves
this problem by canceling the 2-component. Here, however, it gives a nonzero contribution to
the anomaly. Namely, the divergence of the (unmodified) currents becomes

∂µJ µL/R = ∂tJ 0
L/R + ∂2J 2

L/R = ∓ Nc

12π2
B(E ∓ ε) , (5.57)

where we have used the definition of µ5,t (5.40) and κM2
KKβ ≡ NcB/16π2. This is exactly the

consistent anomaly (5.8), because

∓ Nc

48π2
FL/Rµν F̃µνL/R

∣∣∣∣
z=∞

= ∓ Nc

12π2
B(E ∓ ε) . (5.58)

The new currents J ′µL/R from the modified action are simply obtained by multiplying the CS
contribution of the currents (5.56) by 3/2. Doing so in the explicit results (5.56), this yields

∂µJ ′µL/R = ∂tJ ′0L/R + ∂2J ′2L/R = 0 , (5.59)

which can also be inferred in generality from (5.8). Consequently, the anomaly has disappeared.
In other words, the new vector and the axial currents are both conserved. Nevertheless, one
finds nonzero currents in the direction of the magnetic field. Multiplying the CS contribution
in eq. (5.56d) by 3/2 one obtains J ′3R + J ′3L = Nc/(4π2)Bµ5 and J ′3R − J ′3L = Nc/(4π2)Bµ
[91], both of which are 1/2 times the results of refs. [96] and [103, 129], respectively (cf. sec.
5.3.1 below).

In the remainder of this chapter we shall again consider the full, unmodified chiral currents
(5.5) which contain the complete covariant anomaly upon inclusion of the counterterm (5.11).
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5.3 Axial and vector currents

In this section we shall use the results from the previous Sections to compute the vector and
axial currents in the presence of a magnetic field and a quark chemical potential µ as well as
an axial chemical potential µ5. We have seen that a consistent definition of the currents is
not obvious in the given setup. We shall focus on the definition of the currents presented in
Section 5.1.1 since they reproduce, together with Bardeen’s counterterm, the correct anomaly.
Before going into the details, let us explain the expected physics behind the vector current, in
other words the chiral magnetic effect.

5.3.1 The chiral magnetic effect

A (noncentral) heavy-ion collision, where the chiral magnetic effect is expected to occur, is
more complicated than we can capture with our thermodynamic description. The physical
situation and its simplified description within a thermodynamic approach is as follows [96].
In the high-temperature phase gluonic sphaleron configurations with nonzero winding number
should be produced with relatively high probability, inducing an imbalance in left- and right-
handed quarks due to the QCD anomaly and thus a nonzero axial number density n5. In the
simple picture applied in Ref. [96], such chirality changing transitions are assumed to have
taken place in a nonequilibrium situation, after which in equilibrium a finite n5 is no longer
changed by the QCD anomaly. The QED anomaly on the other hand does not change n5

as long as only a magnetic field is present, so n5 can be considered a conserved quantity for
which we may introduce µ5 as the corresponding chemical potential. (We have introduced also
electric fields above for the sake of checking the axial anomaly, but shall set them to zero in
the final results.) Nonzero quark masses and/or nonzero chiral condensates can be expected
to lead to a decay of n5. In the given context, it is thus questionable to apply the equilibrium
description also to the chirally broken phase, and strictly speaking our approach should be
extended to a nonequilibrium calculation.

Let us now briefly recapitulate the physics behind the occurrence of the vector current
which constitutes the chiral magnetic effect in terms of a (quasi)particle picture [95, 96]. Sup-
pose the magnetic field leads to a spin polarization of all fermions, i.e., the spins of all quarks
are aligned parallel or antiparallel to the magnetic field depending on their charge being posi-
tive or negative. Massless right-handed fermions, which have positive helicity, have momenta
parallel to their spin, so they move parallel to the magnetic field if they have positive charge,
and antiparallel otherwise. For left-handed fermions with negative helicity, the situation is
exactly reversed. If there are more right-handed than left-handed fermions, n5 > 0, there
is a resulting net electromagnetic current parallel to the magnetic field. (Antifermions have
helicity opposite to chirality but also opposite charge, so they give a current in the same di-
rection.) For weakly-coupled fermions this picture applies since in the lowest Landau level
indeed all fermions have their spins aligned in the direction of the magnetic field according to
their charge. The chiral magnetic effect then results solely from the lowest Landau level. The
contribution of fermions in higher Landau levels, where both parallel and antiparallel spin pro-
jections are populated, cancels out. This can be seen explicitly upon using the thermodynamic
potential of free fermions in a magnetic field, and the resulting current is [96]

J =
Nc

2π2
µ5B . (5.60)

In our model we cannot see any Landau levels directly. Therefore, let us also repeat another,
apparently more general, derivation of the chiral magnetic effect. It is based on an energy
conservation argument originally pointed out by Nielsen and Ninomiya [130] and applied in
Ref. [96]. It states that an energy 2µ5 is needed to replace a fermion at the left-handed Fermi
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surface µL with a fermion at the right-handed Fermi surface µR. This conversion changes the
axial number density by dN5 = 2, i.e., the energy actually is µ5dN5. Such a change in N5

is possible through the QED anomaly in the presence of an electric and a (non-orthogonal)
magnetic field. The energy can thus be provided by an electric current. Hence, the change in
N5 per unit volume and time is given by the electric power per unit volume J ·E,

J ·E = µ5
dn5

dt
. (5.61)

Now we know from the (covariant) axial anomaly (5.17b) that, with ∇ · J5 = 0 and n5 = J 0
5 ,

dn5

dt
=

Nc

2π2
B ·E . (5.62)

Inserting this into eq. (5.61) and taking B and E parallel yields a current J in the direction of
B, given by eq. (5.60). Note that this argument only works for a nonzero, although arbitrarily
small, electric field.

Besides the vector current we shall also compute the axial current for which the analogous
topological result is [103, 129]

J5 =
Nc

2π2
µB , (5.63)

which is proportional to the ordinary quark chemical potential and thus of potential interest
in neutron and quark star physics.

5.3.2 Currents with consistent anomaly

We have already computed the currents in the symmetric phase, see eqs. (5.56). The analogue
for the broken phase, obtained from the definition (5.5) and the gauge fields and field strengths
(6.27) and (5.27) is

T < Tc : J 0
L/R = ±4κM2

KKβ

[
−µ5,t cothβπ ∓ (t − εt) +

Et± (t − εt)
3

]
, (5.64a)

J 1
L/R = 0 , (5.64b)

J 2
L/R = ±4κM2

KK

3
β x2

[
E ∓ εβ cothβπ

2ρ(β)

]
, (5.64c)

J 3
L/R = ∓4κM2

KKβ

[
∓µ5,t − (t − εt) cothβπ − µt ∓ µ5,t

3

]
. (5.64d)

Again, to make the origin of the various terms transparent we have written the CS contributions
separately. All terms containing a 1/3 come from the CS action. As for the symmetric phase,
we can easily check the consistent anomaly (5.8). Using the expression for the supercurrent
(6.31) and κM2

KKβ ≡ NcB/16π2 we find

∂tJ 0
L/R + ∂2J 2

L/R = ∓ Nc

12π2
B

(
E ∓ εβ cothβπ

2ρ(β)

)
(5.65)

and

∓ Nc

48π2
FL/Rµν F̃µνL/R = ∓ Nc

12π2
B

(
E ∓ εβ cothβπ

2ρ(β)

)
, (5.66)

which confirms eq. (5.8). The axial electric field seems to be modified by a complicated function
of the dimensionless magnetic field. This originates from the mixing of the electric field with
the supercurrent, which both enter the boundary value of A3. We shall see that this somewhat
strange structure disappears after adding Bardeen’s counterterm. From the results (5.56) and
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Figure 5.3: Vector current J‖ = J3 per imbalance of right- and left-handed fermions n5 = J 0
5

as a function of the dimensionless temperature θ = 2πT/MKK for different values of the
dimensionless magnetic field β = αB/M2

KK ' B/(0.35 GeV2) ' B/(2 · 1019 G) (left panel)
and as a function of β for different values of θ (right panel). The critical temperature for the
chiral phase transition is Tc = MKK/(2π), i.e., θc = 1. The currents in this plot are obtained
using the consistent anomaly, i.e., before adding Bardeen’s counterterm to fulfill the covariant
anomaly. After this term is added, the vector current vanishes exactly. The left plot shows
the discontinuity at the first order chiral phase transition. This discontinuity vanishes for
asymptotically large magnetic fields. The right panel shows that the current saturates at a
value of J‖ = 2

3J 0
5 , in very good agreement with the lattice data for the root mean square

value of fluctuations of vector currents and axial densities [109]. The three lattice data points
are taken from from figs. 4 and 8 of ref. [109] and correspond to a temperature T = 1.12Tc.
The shaded area indicates the results read off from Figure 11 of ref. [109] for the cleaner
case of a (T = 0) instanton-like configuration, where the corresponding points lie between
J‖/J 0

5 ' 0.66− 0.77 for magnetic fields of β ' 3.0 and higher.

(5.64) we may compute the vector currents in the chirally symmetric and broken phases. For
the following results we set E = ε = 0. We find the same result for both phases which is

J3 = (JYM + JCS)3 =
(

1− 1
3

)
Nc

2π2
Bµ5 . (5.67)

This differs by a factor 2/3 from the topological result (5.60). This difference is not surprising
since we have not implemented the covariant anomaly yet. To this end we must add Bardeen’s
counterterm. Before doing so we point out an interesting result which we obtain by considering
the ratio of the vector current over the axial density. From eqs. (5.56) and (5.64) we obtain

J3

J 0
5

=
2
3


2β
θ3

q0

p0
for T > Tc

tanhβπ for T < Tc

, (5.68)

which is displayed in Figure 5.3. In the left panel we see that the first order chiral phase
transition manifests itself in the discontinuity of the ratio J3/J 0

5 . Interestingly, the jump
vanishes for asymptotically large magnetic fields. The curves for the symmetric phase are in
qualitative agreement with the weak-coupling results in Figure 2 of Ref. [96]. The right panel
shows an intriguing agreement of our result for the ratio J3/J 0

5 with recent lattice results [109]
for the root mean square values of electric currents and chiral densities at large magnetic fields.
While the very good numerical agreement might be a coincidence, the lattice results as well as
our result clearly show an asymptotic value significantly smaller than 1. If it were 1, the entire
imbalance J 0

5 in right-and left-handed fermions, i.e., all excess right-handed fermions, would
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contribute to the current for asymptotically large magnetic fields. This is expected at least
at weak coupling. In this case, for sufficiently large magnetic fields, all fermions populate the
lowest Landau level. Consequently, since the current originates solely from the lowest Landau
level, as explained above, one expects J3/J 0

5 → 1. This is confirmed in the weak-coupling
calculation of ref. [96], see Figure 6 in this Reference. The lattice result suggests that at strong
coupling there may be important modifications to the Landau level picture. We emphasize,
however, that Figure 5.3 is not yet our final physical prediction. The model has not yet been
appropriately renormalized in order to exhibit the covariant anomaly.

We also remark that the scale of our magnetic fields is very large such that for all physical
applications, be it in heavy-ion collisions or in magnetars, the limit of weak magnetic fields
is sufficient. In fact, a dimensionless magnetic field β = 1 corresponds roughly to a magnetic
field B ' 2 · 1019 G if one follows Refs. [29, 131] and sets Nc = 3, MKK ' 949 MeV,
κ ' 0.00745, which fits the experimental values for the pion decay constant and the rho
meson mass. Therefore, for all applications we have in mind, β � 1. Moreover, one should
recall that we have used the YM approximation for the DBI action. This is of course a good
approximation for small magnetic fields, but our extrapolation to larger magnetic fields may be
subject to modification when the full DBI action is employed. On the other hand, in the limit
β � 1, the results for the on-shell action, eqs. (C.60) and (C.80) exhibit a strong suppression
of the YM action compared to the CS action. This suggests that our approximation is reliable
also for asymptotically large magnetic fields.

5.3.3 Currents with covariant anomaly and absence of the chiral magnetic
effect

The next step is to include Bardeen’s counterterm (5.11) in order to implement the covariant
anomaly. In the broken phase there is a slight complication because the counterterm should
only involve genuine background gauge fields, and not those boundary values of the bulk gauge
fields that due to the gauge choice Az = 0 represent gradients of the pion field. This means
that we have to subtract the time-independent part of the supercurrent  = −βµ/2ρ from the
boundary values of the AL/R3 . Then, with eq. (5.13) and the value of c from eq. (5.16), the
contributions of the counterterm to the currents are

T < Tc : ∆J 0
L/R = ±2κM2

KK

3
β[3(AR/L3 ∓ )− (AL/R3 ± )]

= ∓4κM2
KK

3
βt

[
E ± 2ε

β cothβπ
2ρ(β)

]
, (5.69a)

∆J 1
L/R = 0 , (5.69b)

∆J 2
L/R = ∓4κM2

KK

3
β x2

[
E ∓ β cothβπ

2ρ(β)

]
, (5.69c)

∆J 3
L/R = ∓2κM2

KK

3
β(3AR/L0 −AL/R0 ) = ∓4κM2

KK

3
β(µt ± 2µ5,t) . (5.69d)

The first observation is that the 2-component of the current vanishes after adding the coun-
terterm. As mentioned above, this 2-component was unphysical anyway. The cancellation of
this component is therefore, besides the covariant anomaly, another sign for the necessity of
the counterterm. The covariant anomaly is now correctly contained in the renormalized cur-
rents J̄ µL/R = J µL/R + ∆J µL/R. This is clear by construction, and can also be verified explicitly:
adding eqs. (5.69) to eqs. (5.64), yields

∂µJ̄ µ = 0 , ∂µJ̄ µ5 = ∂tJ̄ 0
5 =

Nc

2π2
BE , (5.70)
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J̄ 0 J̄ 0
5 J̄‖ J̄ 5

‖

T > Tc
Nc

4π2
µB

θ3

β

p0

q0

Nc

4π2
µ5B

θ3

β

p0

q0
0

Nc

2π2
µB

T < Tc
Nc

6π2
µB

β

ρ

Nc

2π2
µ5B cothβπ 0

Nc

4π2
µB

β cothβπ
ρ

Table 5.1: Vector and axial densities J̄ 0, J̄ 0
5 , and vector and axial currents J̄‖, J̄ 5

‖ in the
direction of the magnetic field B after adding Bardeen’s counterterm. All results are given as
functions of the dimensionless temperature θ = 2πT/MKK and the dimensionless magnetic field
β = αB/M2

KK. The densities in the chirally symmetric phase (T > Tc) depend on temperature;
the ratio p0/q0 behaves as p0/q0 → 1 for β/θ3 → 0 and p0/q0 → 2β/θ3 for β/θ3 →∞. In the
chirally broken phase (T < Tc), all quantities are independent of temperature; the function ρ
behaves as ρ→ 3/(2π) for β → 0 and ρ→ β for β →∞. The vector current vanishes exactly
in both symmetric and broken phases; this indicates the absence of a chiral magnetic effect in
the Sakai-Sugimoto model, see discussion in the text. For the axial current, the temperature-
independent topological result is reproduced in the symmetric phase. See Figure 5.4 for the
comparison of the axial currents in the symmetric and broken phases.

with the vector and axial currents J̄ µ, J̄ µ5 .
The contributions of the counterterm to the currents in the symmetric phase are

T > Tc : ∆J 0
L/R = ±2κM2

KK

3
β(3AR/L3 −AL/R3 ) = ∓4κM2

KK

3
βt(E ± 2ε) , (5.71a)

∆J 1
L/R = 0 , (5.71b)

∆J 2
L/R = ∓4κM2

KK

3
β x2(E ∓ ε) , (5.71c)

∆J 3
L/R = ∓2κM2

KK

3
β(3AR/L0 −AL/R0 ) = ∓4κM2

KK

3
β(µt ± 2µ5,t) . (5.71d)

These counterterms have to be added to the currents (5.56). Again, the 2-component of the
currents is canceled, and the covariant anomaly can again be verified explicitly. The results
for the currents after setting E = ε = 0 are given in Table 5.1 for both the symmetric and the
chirally broken phase. For the axial current we find that the counterterm exactly cancels the
CS part of the current,

J̄ 3
5 = J 3

5 + ∆J 3
5 = (JYM)3

5 . (5.72)

In the chirally symmetric phase, this yields exactly the expected topological result (5.63).
In the broken phase, the current is suppressed (but nonvanishing, in contrast to the results
obtained with a modified CS action [91]). To lowest order in the magnetic fields as well as for
asymptotically large magnetic fields this suppression is simply given by a numerical factor. For
intermediate magnetic fields the difference to the symmetric phase is given by a complicated
function of B. We plot this result in Figure 5.4.

The most striking of our results shown in Table 5.1 is that for both phases the renormalized
vector current is zero for all magnetic fields,

J̄3 = (JYM + JCS + ∆J )3 =
(

1− 1
3
− 2

3

)
Nc

2π2
Bµ5 = 0, (5.73)

i.e., the chiral magnetic effect has completely disappeared after adding Bardeen’s counterterm.
The vector current has been computed in the Sakai-Sugimoto model before, and both existing
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Figure 5.4: Axial current J̄ 5
‖ in chirally symmetric (T > Tc) and chirally broken (T < Tc)

phases in the presence of chemical potential µ as functions of the dimensionless magnetic field
β = αB/M2

KK, i.e., the magnetic field in units of M2
KK/α ' 2 ·1019 G. In the symmetric phase

the current is linear in B, while the current in the broken phase is linear only for small B
and asymptotically large B as indicated by the dashed lines. Due to the huge scale for the
magnetic field, the small-B approximation for the axial current is sufficient for astrophysical
applications. In this case the current in the broken phase is simply 1/3 of the current in the
symmetric phase. The analytical results are given in Table 5.1 where it is also shown that the
vector current vanishes.

(but differing) results are nonvanishing. One of the results [91] is 1/2 of the topological
result (5.60). This result, however, has been obtained with the modified action discussed in
Section 5.2.3 which amounts to multiplying the CS contribution by 3/2 (and leaving out the
counterterm). As we have seen, this modified action leads to a vanishing anomaly. Another
result has recently been presented in Ref. [101] as a limit case of a more general frequency-
dependent calculation, but using only the YM part of the current. This gives the topological
result (5.60), as can also be seen from eq. (5.73). However, as we have shown, this does not
produce the complete covariant anomaly, see eqs. (5.19).

One of the purposes of our work is to point out the differences of these results and the
problems of the various approaches regarding the correct anomaly. A summary of our findings
is given in table 5.2. Although in our approach the correct anomaly is ensured, we do not
claim to have the final answer since the problem of the ambiguity of the currents, see Section
5.2.3, remains. Our approach shows that the CS part of the currents is important for two
reasons. First, as realized already in earlier works [34, 110, 111], it naturally gives a nonzero
contribution when the currents are defined by varying the full action. Second, and maybe
more importantly, only by including the CS contribution does one reproduce the standard
result for the consistent anomaly. And only then one can completely implement the covariant
anomaly (i.e., a conserved vector current even in the presence of axial gauge fields) by adding
an appropriate counterterm as a holographic renormalization. We have explained why this
counterterm, even in the absence of axial field strengths, but in the presence of an axial
chemical potential, changes the result for the vector current. We do not, however, see a general
reason why the counterterm must render the vector current zero, i.e., why by requiring the
current to be conserved the current itself should disappear as it turned out to be the case in
our explicit calculation.

After having understood the difference of our result to previous results in the same model,
let us discuss its significance in view of the apparent contradiction to the result (5.60). As
explained above, this result can be derived by using the Landau-level structure of fermions in
a magnetic field. One might thus view our result as an indication that there are no fermionic
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JYM JYM+CS JYM+CS + ∆J J ′YM+CS

anomaly “semi-covariant”: consistent: covariant: absent:

∂µJ µ5 / Nc
24π2 3FV F̃V +3FAF̃A FV F̃V + FAF̃A 3FV F̃V + FAF̃A 0

∂µJ µ/ Nc
24π2 6FV F̃A 2FV F̃A 0 0

(J 5
‖ /

µBNc
2π2 )

∣∣∣
T>Tc

1 2
3 1 1

2

J‖/µ5BNc
2π2 1 2

3 0 1
2

(J‖/J 0
5 )
∣∣
B→∞ 1 2

3 0 1
2

Table 5.2: Summary of results for the different (parts of the) chiral currents: the Yang-Mills
part JYM (exclusively considered in Ref. [101]), the complete current prior to renormalization
JYM+CS (≡ J in the text), the complete current plus Bardeen’s counterterm JYM+CS +
∆J ≡ J̄ , and the chiral current obtained by modifying the Chern-Simons action according
to Ref. [91, 108], J ′YM+CS. The correct result for the covariant anomaly is underlined. A
“1” in the results for the axial current J 5

‖ means agreement with the exact QCD result of
ref. [103, 129]; a “1” in the results for the electromagnetic current J‖ means agreement with
the weak-coupling approach of ref. [96].

quasiparticles filling Landau levels in the Sakai-Sugimoto model. This may be particularly
interesting in view of the recent attempts to see Landau-level-like structures in holographic
models [132, 133]. However, as we have pointed out, the derivation of the chiral magnetic
effect via the energy conservation argument by Nielsen and Ninomiya appears to be more
general. Obviously, the energy conservation (5.61) does not hold with our results because
the left-hand side is zero while the right-hand side yields the expected nonzero result from
the anomaly, see eq. (5.70). More precisely, one can check that eq. (5.61) holds before adding
Bardeen’s counterterm while the counterterm itself violates eq. (5.61). However, the form of the
counterterm seems to be uniquely determined by the requirements of parity and the possibility
of accommodating it in holographic renormalization. This raises the question whether the
apparently general energy argument actually uses properties of the system which are different
in our strong-coupling approach. Clearly, also in our system, chirality is converted by a
rate simply given by the anomaly. Possibly the energy needed for this conversion cannot be
written as in eq. (5.61). A reason might be that this energy makes use of the existence of Fermi
surfaces for the right- and left-handed particles which are absent in our model. It is tempting to
speculate that the chiral magnetic effect indeed vanishes in the strong-coupling limit and that
the weak-coupling results together with the recent observations of charge separation in heavy-
ion collisions suggest that the quark-gluon plasma generated in such a collision is sufficiently
weakly coupled to exhibit the chiral magnetic effect. A deeper understanding of our result,
however, seems required before drawing this conclusion.

We recall that in the context of heavy-ion collisions the magnetic field clearly is time-
dependent, in contrast to our assumption of a constant magnetic field. Therefore, in order to
compute the induced current, one has to consider the frequency-dependent chiral conductivity
[97, 101], whereas our result only corresponds to the zero-frequency limit2. In other words,
even if the conductivity at zero frequency vanishes, a nonzero (time-dependent) current can be

2 Judging from the calculation of the chiral magnetic conductivity in Ref. [101] (where only the YM part was
taken into account), one might expect that the full result, taking into account also the (frequency-independent)
CS part and Bardeen’s counterterm, leads to a nonzero conductivity for asymptotically large frequency [134].
This seems curious, although we do not see a fundamental reason for this to be unphysical.
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expected if there is a nonvanishing conductivity at nonzero frequencies. However, this does not
imply electric charge separation because the separation of charges is proportional to the zero-
frequency limit of the conductivity [97]. This is easy to understand in analogy to a capacitor
which cannot be charged with an alternating current, i.e., integrating the induced current over
time will lead to a vanishing charge separation as long as there is no direct current.
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Chapter 6

Meson supercurrents and the
Meissner effect in the
Sakai-Sugimoto model

This chapter is based on [34]. In dense quark matter, chiral symmetry can be broken by the
usual chiral condensates 〈ψ̄ψ〉 or, in a three-flavor system at sufficiently large densities, by
diquark condensates 〈ψψ〉 in the color-flavor locked state [8]. In this chapter we shall consider
a two-flavor system at finite baryon and isospin chemical potential in the strong-coupling
regime at large Nc, which may form different kinds of chiral condensates 〈ψ̄ψ〉 depending on
the values of temperature, the chemical potentials, and the external magnetic field.

It has been shown using a Nambu-Jona-Lasinio (NJL) model that a magnetic field can
act as a catalyst for chiral symmetry breaking [135, 136], see also [137, 138]. Also chiral
perturbation theory has been used to study the effect of magnetic fields [139, 140], recently
for instance in the context of the deconfinement and chiral phase transitions in Refs. [141] and
[142, 143], respectively. All these studies are restricted to the vacuum, i.e., they are done for
the case of vanishing chemical potentials. Dense matter with nonvanishing chemical potentials
in a magnetic field has been studied in the context of color superconductivity [144, 145, 146],
which, due to Goldstone boson currents and the axial anomaly, can be ferromagnetic [147].
We use the holographic model by Sakai and Sugimoto, see Chapter 4, at nonzero isospin and
baryon chemical potentials to study the effect of a magnetic field on chirally broken phases.1

We shall find meson supercurrents and the Meissner effect in the chirally broken phases.
Both phenomena are best understood as an analogy to (weak-coupling) superfluidity or su-
perconductivity. For instance, a charged pion condensate of the form 〈d̄γ5u〉 can be viewed as
Cooper pairing of two different fermion species, here an anti-down-quark and an up-quark. In
general, Cooper pairing of two fermion species with chemical potentials µ1 and µ2 takes place
at a common Fermi surface given by µ̄ = (µ1 + µ2)/2. A mismatch in chemical potentials
δµ = (µ1 − µ2)/2 induces a “stress” on the pairing in trying to move the two Fermi surfaces
apart. For not too large values of δµ, the system can sustain the stress and the densities of
the two fermion species are (at zero temperature) “locked” together, i.e., the difference in
densities δn = n1 − n2 vanishes. For larger values of δµ, and before completely breaking the
condensate, the system may respond to the stress by leaving some, but not all, fermions around
the Fermi surfaces unpaired, allowing for a nonzero δn. The resulting state breaks rotational
invariance, and it may even break translational invariance by giving rise to a crystalline struc-
ture. Anisotropic pion condensates in nuclear matter have been discussed a long time ago
[150, 151, 152, 153]; crystalline structures of the superfluid order parameter are well-known in

1For effects of magnetic fields in other holographic models of strongly coupled gauge theories with flavor
degrees of freedom see e.g. Refs. [57, 148, 149].
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condensed matter physics [154, 155] as well as in dense quark matter [156], and also have been
discussed in the context of chiral condensates [157]. In either case, be it in a homogeneous
manner or in a complicated crystalline structure, this unconventional pairing induces nonzero
“supercurrents” in the system, see for instance Refs. [158, 159, 160]. These supercurrents are
cancelled by counter-propagating currents, typically coming from unpaired fermions, such that
the net current in the system vanishes.

In the case of a pion condensate of the form 〈d̄γ5u〉, µ̄ and δµ correspond to the isospin, µI ,
and baryon, µB, chemical potential, respectively. Consequently, one might expect anisotropic
pairing upon increasing the “mismatch” µB. And, corresponding to the above δn, a nonzero
baryon number nB is expected. In the Sakai-Sugimoto model, a finite baryon number is taken
into account via the Chern-Simons term. Localized baryons can be described by instantons of
the effective gauge theory of the flavor branes [93, 111, 161] corresponding to chiral skyrmions,
which in the ground state form crystals rather than a liquid [162, 163, 125]. However, we are
interested in a homogeneous distribution of baryon (and isospin) density. It turns out that
this can be achieved by a nonzero magnetic field in the model [91, 90], which is anyway of
interest in the context of neutron star physics.

A magnetic field, however, is expelled from the charged pion condensate because a con-
densate of charged bosons (be it Cooper pairs or, in our case, Goldstone bosons) acts as a
superconductor and thus exhibits a Meissner effect.2 Accordingly, we shall find the above
expectations of a supercurrent and nonzero baryon number not realized in the charged pion
condensate which remains unmodified for (not too large) magnetic fields. A meson supercur-
rent as well as nonzero baryon (and isospin) numbers occur, for nonzero magnetic field, instead
in the phase with a neutral pion condensate.

This chapter is organized as follows. In Section 6.1 we discuss our ansatz for solutions
in the presence of baryon and isospin chemical potentials and a magnetic field and derive
the equations of motion and the free energy for the chirally broken phases. The main part
of this chapter is Section 6.2. In this part we first discuss how to incorporate different chiral
condensates into the model, see Section 6.2.1. In Section 6.2.2 we solve the equations of motion
for the sigma and the charged pion phase and compute their free energies. In particular, we
discuss the Meissner effect in Section 6.2.4. The results are used to discuss the currents and
number densities in these phases in Section 6.2.5. Finally, we compare their free energies and
discuss the resulting phase diagram in Section 6.2.6.

6.1 Equation of motion and free energy in the chirally broken
phase

In this Section we specify our ansatz according to the physical situation we are interested in
and write down the corresponding equations of motion and we explain how to renormalize
the free energy. In this chapter we shall be concerned with the confined, i.e., chirally broken,
phase whose metric g is given in Eq. (4.11a). For completeness we present the equations of
motion and the free energy of the deconfined, i.e., chirally restored, phase in Appendix C.4.

6.1.1 Equations of motion and ansatz including magnetic field, chemical
potentials, and supercurrents

Now we specify our ansatz for the gauge fields. As already mentioned in Section 4.2, we set
all components of the gauge field proportional to to τ1 and τ2 in flavor space to zero and write
the gauge fields and field strengths proportional to 1 as (Â, F̂ ) and the ones proportional to

2Holographic models of superconductors and superfluids have recently been investigated in Refs. [164, 165,
166, 167], see Ref. [168] for a discussion of the Meissner effect.
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τ3 as (A,F ). First, we set all components proportional to τ1 and τ2 in flavor space to zero and
may then, for notational convenience drop the superscript 3 from the gauge fields and field
strengths. Consequently, in the following we are only left with gauge field and field strength
components with a hat (Â, F̂ ), corresponding to the 1-components, and without any flavor
index (A,F ), corresponding to the τ3-components. This choice simplifies the calculations
significantly but is a restriction for the possible chiral condensates we can capture, as we shall
explain in Section 6.2.1.

The magnetic field is introduced as follows. The electromagnetic gauge group with gen-
erator Q = diag(q1, q2), where q1 and q2 are the electric charges of the quark flavors, is a
subgroup of U(2)L×U(2)R. The magnetic field Bem thus has baryon and isospin components,
QBem = B̂1 + Bτ3, or

B̂ =
q1 + q2

2
Bem , B =

q1 − q2

2
Bem . (6.1)

We are interested in a system of up and down flavors, i.e., q1 = 2/3 e, q2 = −1/3 e with
e2 = 4π/137 and B̂ = eBem/6, B = eBem/2, but mostly we shall derive general results, keeping
B̂ and B independent of each other. We should recall that the gauge symmetry in the bulk
corresponds to a global symmetry at the boundary. Therefore, there is no electromagnetic
gauge symmetry at the boundary, and in this sense Bem is not a dynamical magnetic field.

We consider a spatially homogeneous magnetic field and, without loss of generality, let it
point into the 3-direction. This requires nonzero field strengths F̂12 and F12. We can therefore
choose the ansatz

Â1(x, z) = −x2
b̂(z)

2
, Â2(x, z) = x1

b̂(z)
2

, (6.2a)

A1(x, z) = −x2
b(z)

2
, A2(x, z) = x1

b(z)
2

, (6.2b)

such that F̂12(z) = b̂(z), F12(z) = b(z), and the boundary values at z = ±∞ of b̂(z), b(z) given
by B̂, B. (Note that for non-constant b̂(z), b(z), we also have nonzero field strengths F̂iz, Fiz.)

Next we account for the chemical potentials. This is done by identifying the boundary
values at z = ±∞ for the gauge fields Â0(z) and A0(z) with the baryon and isospin chemical
potentials µB and µI [162, 88, 92]. Consequently, we may have nonzero field strengths F̂0z,
F0z. It turns out that within this ansatz nonzero values of the spatial gauge fields may be
induced, i.e., we have to take into account Â3(z), A3(z) and thus the field strengths F̂3z, F3z.
The boundary values at z = ±∞ of the spatial gauge fields are identified with the gradients of
the meson fields [29, 91]. These gradients correspond, according to the usual hydrodynamic
theory of a superfluid [169, 170], to “supercurrents”, i.e., currents of the condensate, in our
context for instance the current of a pion condensate; see also Refs. [158, 159]. Consequently,
we shall identify Â3(±∞), A3(±∞) with meson supercurrents ̂, . The supercurrents are not
external parameters, hence we shall minimize the free energy with respect to them [91, 90].
They should not be confused with the “normal” currents Ji = δSeff/δA

i, discussed in the
Sakai-Sugimoto model in detail in Refs. [110, 111] and Chapter 5, and computed below in
Section 6.2.3. The supercurrents rather act as a source for the normal currents.

Now we can insert the ansatz into the general equations of motion (4.23). We then need to
replace A0 → iA0, since we are working in euclidean space. We find the following equations
for the magnetic field

∂z[k(z)∂z b̂] = ∂z[k(z)∂zb] = 0 , (6.3)

where
k(z) ≡ u3

KK + uKKz
2 . (6.4)

They arise from the Yang-Mills variation with respect to the spatial gauge field, Eqs. (C.2b)
and (C.3b) and contain no contribution from the Chern-Simons term. Moreover, they decouple
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from the equations for the other fields, which are

∂z[k(z)F̂z0] =
αu2

KK

M2
KK

[
b(z)Fz3 + b̂(z)F̂z3

]
, (6.5a)

∂z[k(z)Fz0] =
αu2

KK

M2
KK

[
b(z)F̂z3 + b̂(z)Fz3

]
, (6.5b)

∂z[k(z)F̂z3] =
αu2

KK

M2
KK

[
b(z)Fz0 + b̂(z)F̂z0

]
, (6.5c)

∂z[k(z)Fz3] =
αu2

KK

M2
KK

[
b(z)F̂z0 + b̂(z)Fz0

]
, (6.5d)

where
α ≡ 27π

2λ
. (6.6)

In all four equations in (6.5) the left-hand side comes from the variation of the Yang-Mills
contribution, while the right-hand side originates from the Chern-Simons contribution. We
see that the latter is proportional to the magnetic field. The equations (6.3) and (6.5) shall be
solved analytically in Section 6.2. Before doing so we use these equations to derive a simple
expression for the free energy.

6.1.2 Free energy and holographic renormalization

In order to compute the free energy we have to evaluate the action for our specific ansatz.
Recall that the Yang-Mills part of the action can be written as

SYM = κ

∫
d4x

∫ ∞
−∞

dz

{
16M2

KKk
2/3(z)

9(2πα′)2uKK
+
M2

KK

u2
KK

k(z)Tr[F2
zµ] +

1
2
h(z)Tr[F2

µν ]

}
, (6.7)

where µ, ν = 0, 1, 2, 3 and the functions k(z) and h(z) are given in (4.21). To compute the
Chern-Simons contribution to the free energy we first note that the surface term (last term
on the right-hand side of Eq. (4.18)) gives a nonzero contribution. Within our ansatz the
term ∝ d(ÂTr[A3]) vanishes since our only nonzero flavor components of the gauge fields are
proportional to 1 and τ3; however, the term ∝ d(ÂTr[FA]) does not vanish. We find

ÂµFνρFσλε
µνρσλ = 8b(Â3Fz0 − Â0Fz3) , (6.8a)

ÂµF̂νρF̂σλε
µνρσλ = 8b̂(Â3F̂z0 − Â0F̂z3) , (6.8b)

∂µ(ÂνFρσAλ)εµνρσλ = 2b(A3F̂z0 −A0F̂z3 + 2Â0Fz3 − 2Â3Fz0)

+ 2b̂(A3Fz0 −A0Fz3) . (6.8c)

Inserting these expressions into the Chern-Simons action (4.18) yields, with A0 → iA0 and
Nc/(16π2) = ακ,

SCS =
ακ

3

∫
dx4

∫ ∞
−∞

dz
[
b̂
(
Â3F̂z0 +A3Fz0 − Â0F̂z3 −A0Fz3

)
+ b
(
Â3Fz0 +A3F̂z0 − Â0Fz3 −A0F̂z3

)]
=

κM2
KK

3u2
KK

V

T

{∫ ∞
−∞

dz k(z)(F̂ 2
z0 + F 2

z0 − F̂ 2
z3 − F 2

z3)

−
[
k(z)(Â0F̂z0 +A0Fz0 − Â3F̂z3 −A3Fz3)

]z=+∞

z=−∞

}
, (6.9)
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where, in the second step, we have used the equations of motion (6.5), and where V is the
three-dimensional volume of space and T the temperature. In changing the integration over
the holographic coordinate from u ∈ [uKK,∞] to z ∈ [−∞,∞] we have assumed that the
integrand is symmetric in z. In all phases we consider this turns out to be the case. Putting
the Yang-Mills and Chern-Simons contribution together, we obtain the free energy density
Ω ≡ T (SYM + SCS)/V

Ω = Ωg + Ωb +
κM2

KK

6u2
KK

∫ ∞
−∞

dz k(z)(−F̂ 2
z0 − F 2

z0 + F̂ 2
z3 + F 2

z3)

− κM
2
KK

3u2
KK

[
k(z)(Â0F̂z0 +A0Fz0 − Â3F̂z3 −A3Fz3)

]z=+∞

z=−∞
, (6.10)

where the geometric contribution Ωg is given by the field-independent first term on the right-
hand side of Eq. (4.20). This term is independent of all gauge fields and field strengths and
thus plays no role in discussing the physical properties of a given phase. For free energy
comparisons of phases with different geometries one can handle this term with the proper
renormalization explained in Ref. [21]. We shall only compare free energies of phases with
identical embedding of the flavor branes. Hence, for our purpose, this term can simply be
dropped from now on. The term Ωb in Eq. (6.10) is given by

Ωb ≡
κ

4

∫ ∞
−∞

dz h(z)[b̂2(z) + b2(z)]

+
κM2

KK

4u2
KK

∫
dx1dx2(x2

1 + x2
2)∫

dx1dx2

∫ ∞
−∞

dz k(z)[(∂z b̂)2 + (∂zb)2] . (6.11)

Both contributions of Ωb solely depend on the magnetic field (remember that the equations of
motion for b̂ and b (6.3) decouple from the other field equations). Therefore, Ωb is irrelevant
for minimizing the free energy with respect to the supercurrents ̂ and . However, both terms
of Ωb are divergent.

Let us first consider only constant functions b(z) = B and b̂(z) = B̂, for which only the
first term in Ωb is present. Since we have already divided by the volume V of 3-space, we
would expect a finite energy density from a homogeneous magnetic field, but because of the
extra holographic dimension, this is not the case. In fact, since h(z) ∼ z−2/3, the divergence of
Ωb comes from the |z| → ∞ limits of integration and is thus a typical holographic divergence
which can be treated by holographic renormalization [171]. Here we do not attempt to provide
a complete discussion of this procedure, which for the (nonconformal) Sakai-Sugimoto model
has been introduced only recently [172, 173]. We rather follow the method outlined in these
papers and subtract a counterterm, fixed by a physical renormalization condition, as follows.
After restricting the holographic integration in Ωb to a finite interval −Λ < z < Λ, we subtract
a counterterm δΩb(Λ) which cancels the divergence and obtain a renormalized contribution
Ωren
b . We also include a finite counterterm which is fixed by requiring the free energy in the

absence of any chemical potential to vanish,

Ω(µB,I = 0) = 0 . (6.12)

This condition is motivated by the observation that Ω should be the matter part of the free
energy, i.e., it should describe the fermions and their interaction with the magnetic field. In
particular, we thus require that the energy density of the (nondynamical) magnetic field in the
absence of any matter be left out. This we shall later treat separately when we consider the
Gibbs free energy (the Legendre transform from fixed internal magnetic field to fixed external
magnetic field) in Section 6.2.6. The condition (6.12) implies that we have to require

0 = Ωren
b ≡ lim

Λ→∞
[Ωb(Λ)− δΩb(Λ)] . (6.13)
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To find the exact form of the counterterms we first note that, for constant b̂(z) = B̂ and
b(z) = B,

Ωb(Λ) =
3κ
2

(B̂2 + B2)

[
Λ1/3

u
1/3
KK

−√π Γ(5/6)
Γ(1/3)

+O
(
u

5/3
KK

Λ5/3

)]
. (6.14)

The counterterm δΩb(Λ) should depend only on fields and geometric data on the slice z = Λ, in
particular it should only involve the induced metric γµν on the slice and not the complete metric
g. By including appropriate factors of the dilaton [172, 173] and an appropriate numerical
factor to fulfill the condition (6.13) we find

δΩb(Λ) = R

[(
eΦ

gs

)1/3

−
√
π Γ(5/6)
Γ(1/3)

(uKK

R

)1/2
(
eΦ

gs

)−1/3
]
C(Λ) , (6.15)

with

C(Λ) ≡ −T8V4(2πα′)2e−Φ√γ γµνγρσTr[FνρFσµ]

=
3κ

2u1/4
KKR

3/4
(B̂2 + B2)

[
Λ1/6

u
1/6
KK

+O
(

1
Λ11/6

)]
, (6.16)

where we have used Eq. (C.4) and where the indices µ, ν, ρ, σ run over 0, 1, 2, 3. With this
counterterm, the term proportional to Λ1/3 (Λ0) in Eq. (6.14) are cancelled by the first (second)
term in Eq. (6.15)3 .

In the case of a magnetic field which is not constant in the bulk, the second term in Ωb as
given by Eq. (6.11) is also divergent, but its divergence comes from the integration over the
spatial directions perpendicular to the magnetic field, regardless of whether the holographic
z-integration is finite or not. Therefore, we cannot treat this term by the usual holographic
renormalization and we interpret this divergence, when present, as a Meissner effect: a phase
where a homogeneous magnetic field Bem, which fixes the boundary values of b̂(z) and b(z), is
only possible for non-constant functions in z, is infinitely penalized such that only Bem = 0 is
allowed. As we shall see, this will be the case for the charged pion condensate, to be discussed
further in Section 6.2.4. At this point we already observe that the role of the spatial directions
transverse to the magnetic field is no coincidence. It points to the necessity of currents in
these directions which produce a magnetic field equal in magnitude but with opposite direction
compared to the external magnetic field. This leads to a vanishing total magnetic field in the
system, which is nothing but the Meissner effect for superconductors.

6.2 Chirally broken phases in a magnetic field

In this section we solve the equations of motion for the chirally broken phase. We shall
distinguish between two different chirally broken phases, the σ and the π phase. This is the
main part of this chapter, and the main physical results can be found in Sections. 6.2.5 and
6.2.6.

6.2.1 Chiral rotations and resulting boundary conditions

In Nf = 2 chiral perturbation theory the chiral field U ∈ U(2) describing the Goldstone bosons
is given by

U = ei(η+ϕaτa)/fπ , (6.17)

3Note that equations (6.11)-(6.16) have different prefactors than equations (3.14)-(3.19) in Ref. [34] where
we used a wrong prefactor in (3.19) and missed a factor of 1/2 in the first term in (3.14).
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where fπ is the pion decay constant (in the Sakai-Sugimoto model, fπ = 2MKK

√
κ/π [29, 111]).

The η meson becomes massive in QCD due to the explicit breaking of the U(1)A. This
is realized in the Sakai-Sugimoto model through the Chern-Simons term, and the mass of
the η can be computed within the model, mη = λMKK

√
Nf/Nc/(3

√
3π) [29], see also Refs.

[174, 175, 176]. For the purpose of the following arguments we assume the full U(2)L×U(2)R
symmetry to be intact, i.e., the η meson appears massless. We comment on this assumption
below Eq. (6.22). In the Sakai-Sugimoto model the chiral field is given by the holonomy [29]

U = P exp
(
i

∫ ∞
−∞

dzAz
)
. (6.18)

As mentioned above, we work in a gauge where Az = 0. It seems we can then only consider
the vacuum U = 1. However, we can keep the Az = 0 gauge and recover other vacua encoded
in the boundary values of the gauge fields. This is explained in detail for instance in Ref. [94].
We shall now recapitulate this explanation and apply it to our case.

Consider a potential V [µL, µR, U(φ)] which is invariant under U(Nf )L × U(Nf )R. Here,
µL, µR ∈ U(Nf ) are fixed external parameters. For the following argument we denote these
parameters simply by µL, µR, reminiscent of the chemical potentials, but one should keep in
mind that this notation also includes the external magnetic field. The chiral field U is written
as a function of a parameter φ with respect to which we have to minimize the potential to find
the vacuum. This parameter is a symbol for the fields ϕa given in Eq. (6.17). The external
parameters transform under the global symmetry as µL → g−1

L µLgL, µR → g−1
R µRgR, while the

chiral field transforms as U → g−1
L UgR, where gL ∈ U(Nf )L, gR ∈ U(Nf )R. Via a global sym-

metry transformation we have V [µL, µR, U(φ)] = V [g−1
L (φ)µLgL(φ), g−1

R (φ)µRgR(φ),1] with
φ-dependent transformations gL(φ), gR(φ) such that g−1

L (φ)U(φ)gR(φ) = 1. To find the vac-
uum of the theory it obviously does not matter whether we use the original potential or the
potential with the transformed quantities because both expressions are simply identical. Con-
sequently, instead of keeping the external parameters fixed and varying the chiral field we can
fix the chiral field to be the unit matrix and vary the external parameters. Of course we cannot
simply treat the external parameters as arbitrary continuous quantities with respect to which
we minimize the potential. We need to ensure that they are connected by a transformation
to their physical values. We shall see below that within our ansatz the allowed rotated pa-
rameters only assume two discrete values, such that we simply have to compare two separate
phases with each other. After minimization of the potential, the physical vacuum is given by
applying the rotation found from minimization “backwards” onto the unit matrix, i.e.,

U = gLg
−1
R . (6.19)

Without loss of generality we can set gR = 1 and thus U = gL. We can write

gL = ei(η+ϕaτa)/fπ = eiη/fπ
σ + iπaτa

fπ
, (6.20)

where σ/fπ ≡ cos(ϕ/fπ), πa/fπ = ϕa/ϕ sin(ϕ/fπ) with ϕ ≡ (ϕ2
1+ϕ2

2+ϕ2
3)1/2. This is the usual

form of the chiral field in chiral perturbation theory, where the massive mode, the “sigma”,
is frozen and the effective theory describes the remaining light Goldstone modes, the pions.
Therefore, both sides of Eq. (6.20) contain four degrees of freedom; for the right-hand side we
have the condition σ2 + π2 = f2

π which is obvious from the definitions of σ and πa.
To apply a rotation given by gL on the (left-handed) external parameter µL note that our

physical chemical potentials and the magnetic field are diagonal in flavor space and identical
for L and R, µL = µR = µB1 + µIτ3, Bem,L = Bem,R = B̂1 + Bτ3. The baryon part ∝ 1 does
obviously not change under an SU(2) transformation. We thus only have to consider how the

100



Figure 6.1: A cartoon of our condensates. Left: σ condensate: 〈ūγ5u〉 − 〈d̄γ5d〉. The left
handed up brane is connected with the right handed up brane. Right: π± condensate with
nonzero 〈d̄γ5u〉 and 〈ūγ5d〉. The left handed up brane is connected with the left handed down
brane and vice versa. The u and d branes are separated ony for illustrative purpose.

isospin part ∝ τ3 transforms. We find

g−1
L τ3gL =

1
fπ

[
π+(π0 + iσ)τ+ + π−(π0 − iσ)τ− + (1− 2π+π−)τ3

]
, (6.21)

where τ± ≡ τ1 ± iτ2, and where we have introduced the neutral pion π0 = π3 and the charged
pions π± ≡ π1 ∓ iπ2. In our ansatz described in Section 6.1.1 we have restricted ourselves to
diagonal gauge fields. Since the chemical potentials and the magnetic field are the boundary
values for the gauge fields, they have to be diagonal too. Consequently, we can only allow
for transformations (6.21) that transform τ3 into a matrix ∝ τ3. There are two (nontrivial)
possibilities to make the coefficients in front of τ+, τ− vanish: (i) π+ = π− = 0 which leads to
g−1
L τ3gL = τ3 and (ii) π0 = σ = 0 which leads to g−1

L τ3gL = −τ3. Hence we can either leave
the isospin components of the chemical potentials and the magnetic field invariant or flip their
sign. This means that the parameter φ in U(φ) above is in fact discrete, not continuous. Had
we allowed for off-diagonal components in the gauge fields, we could have described arbitrary
linear combinations of the pion fields.

These somewhat formal arguments have a very intuitive geometric interpretation [92]:
another (simpler, but less precise) way of saying what we have just explained is the following.
Think of the D8-branes as a left-handed up-brane and a left-handed down-brane and of the
D8-branes as a right-handed up-brane and a right-handed down-brane. Then, a chirally broken
phase can be constructed by connecting (i) the left-handed up-brane with the right-handed up-
brane and likewise for the down-branes or (ii) the left-handed up-brane with the right-handed
down-brane and vice versa. These two possibilities correspond exactly to the two cases from
the above formal argument: case (i) corresponds to a condensate where equal quark flavors
participate, i.e., a combination of σ and π0 with ū − u and d̄ − d pairing. In the remainder
of this chapter we shall refer to this case as the σ phase. Case (ii) corresponds to a charged
pion condensate with nonzero 〈d̄γ5u〉, 〈ūγ5d〉, to which we shall refer as the π phase (this
phase is sometimes called “ρ” [92, 177]). As a summary of this section and a reminder for the
subsequent sections, we present the resulting boundary conditions for the σ and the π phases
in Table 6.1 4.

4 In [34] we used twice the boundary conditions for the chemical potentials and supercurrents as we do here
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Â0(±∞) A0(±∞) b̂(±∞) b(±∞) Â3(±∞) A3(±∞)

σ µB µI B̂ B ∓̂ ∓
π µB ±µI B̂ (0) ±B (0) ∓̂ 0

Table 6.1: Boundary conditions in the sigma and pion phases. The boundary conditions for
the temporal components of the gauge fields correspond to the baryon and isospin chemical
potentials, while the boundary conditions for the field strengths F̂12 ≡ b̂, F12 ≡ b correspond
to the baryon and isospin components of the magnetic field. The boundary conditions for
the spatial components Â3, A3 are given by the meson supercurrents ̂, . These currents are
not external parameters but have to be determined by minimizing the free energy. In the π
phase A3(±∞) has to vanish to ensure a well-defined behavior of the gauge fields under parity
transformations, see Eq. (C.29) and discussion above this equation. The zeros in parantheses
for the magnetic fields in the charged pion condensed phase indicate that eventually we shall
set B̂ = B = 0 because of the Meissner effect in this phase, see Section 6.2.4.

In this Table we also have included the supercurrents which, in our gauge gL = U , have
the form g−1

L ∇gL [29]. With Eq. (6.20) this becomes for the two phases

(i) σ phase : ig−1
L ∇gL = −∇η

fπ
+
τ3

f2
π

(
π0∇σ − σ∇π0

)
, (6.22a)

(ii) π phase : ig−1
L ∇gL = −∇η

fπ
+
iτ3

2f2
π

(
π+∇π− − π−∇π+

)
. (6.22b)

Note that the right-hand sides of both equations are real. We see that the supercurrents are
diagonal, i.e., our ansatz with nonvanishing 1-component ̂ and τ3-component  is consistent.
Interestingly, an anisotropic η condensate appears in the 1-components ̂. The η condensate has
dropped out in Eq. (6.21), and thus our boundary conditions, given by the chemical potentials
and the magnetic field modified by the rotation (6.21), do not seem to reveal whether there is
an admixture of an η condensate in the σ phase. On the other hand, a nonzero supercurrent
̂ seems to indicate the presence of an η supercurrent. Indeed, we shall see later that in
the σ phase a nonzero ̂ is induced. The term ∇η in Eqs. (6.22) appears due to our use of
the full U(2)L × U(2)R symmetry. Strictly speaking, our Lagrangian breaks the axial U(1)A
because of the presence of the Chern-Simons term. However, this symmetry is preserved if
one compensates a U(1)A rotation by a shift of the θ parameter, whose realization in the
Sakai-Sugimoto model is discussed in Ref. [29], see also Ref. [178]. We thus implicitly adjust
the θ parameter to apply the full gauge symmetry. We shall proceed within this simplification,
but have to keep in mind that in a more complete approach one would have to consider a
fixed θ. Such an approach would be of interest especially in view of recent studies of possible
(CP-violating) η condensates in an NJL model calculation [179], or, including a magnetic field,
in the linear sigma model [143].

We finally remark that our setup does not include the possibility of diquark condensation
of the form 〈ud〉, which is expected to lead to color superconductivity of quark matter at
sufficiently large baryon chemical potential [9]. However, color superconductivity does not
necessarily occur in the large Nc limit where a “chiral density wave” is a strong candidate for
the ground state [180, 181], or, as suggested recently, quark matter may be confined even for
large chemical potentials [86, 182].

to ensure thermodynamic consistency (see discussion below (6.50)). Also note that we exchanged R ↔ L in
(C.8) compared to [34] to be consistent with Chapter 5.
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6.2.2 Solutions of the equations of motion and free energies

We can now solve the equations of motion (6.3) and (6.5) for the two sets of boundary condi-
tions given in Table 6.1. For notational convenience we set uKK = 1 (the final results in Secs.
6.2.5 and 6.2.6 do not depend on uKK and thus all physical quantities will have the correct
dimensions). For both sets of boundary conditions we first note that the differential equations
(6.5) can be solved by defining the new functions

F±0 (z) ≡ k(z)
F̂z0 ± Fz0

2
, F±3 (z) ≡ k(z)

F̂z3 ± Fz3
2

. (6.23)

Then, the four equations (6.5) are equivalent to

∂zF
±
0 =

α[b̂(z)± b(z)]
k(z)M2

KK

F±3 (z) , ∂zF
±
3 =

α[b̂(z)± b(z)]
k(z)M2

KK

F±0 (z) . (6.24)

Now the two equations with the upper sign are decoupled from the two equations with the
lower sign. To proceed, we have to distinguish between the two chirally broken phases.

6.2.3 Sigma phase

With the boundary conditions of the σ phase from Table 6.1 and with Eqs. (6.3) we conclude
that the magnetic fields are constant in the bulk

b̂(z) = B̂ , b(z) = B . (6.25)

In the following, we shall denote the dimensionless magnetic fields by

B̂ ≡ αB̂
M2

KK

, B ≡ αB
M2

KK

, Bem ≡
αBem

M2
KK

. (6.26)

We can now solve Eqs. (6.24) for completely general boundary conditions for the gauge fields.
This is done in Appendix C.2, where we also present some technical details. Here we proceed
with the specific solution obtained from the boundary conditions given in the first row of Table
6.1. This solution yields the gauge fields

Â0(z) = µB −
̂

2
[C+(z) + C−(z)− T+]− 

2
[C+(z)− C−(z)− T−] , (6.27a)

A0(z) = µI −


2
[C+(z) + C−(z)− T+]− ̂

2
[C+(z)− C−(z)− T−] , (6.27b)

Â3(z) = − ̂
2

[S+(z) + S−(z)]− 

2
[S+(z)− S−(z)] , (6.27c)

A3(z) = − 
2

[S+(z) + S−(z)]− ̂

2
[S+(z)− S−(z)] , (6.27d)

where we have abbreviated

C±(z) ≡ cosh[(B̂ ±B) arctan z]
sinh[π(B̂ ±B)/2]

, S±(z) ≡ sinh[(B̂ ±B) arctan z]
sinh[π(B̂ ±B)/2]

, (6.28a)

T± ≡ coth
π(B̂ +B)

2
± coth

π(B̂ −B)
2

. (6.28b)

Note that T± = C+(∞) ± C−(∞) = C+(−∞) ± C−(−∞). Since the functions C±(z) and
S±(z) are symmetric and antisymmetric in z, respectively, both temporal components of the
gauge fields are symmetric while both spatial components are antisymmetric. Together with
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Figure 6.2: Energetically preferred configuration of the gauge fields as a function of the
holographic coordinate z for sigma phase (left panel) and the charged pion phase (right panel).
For the sigma phase we have chosen a dimensionless magnetic field eBem = 2. In the pion
phase, Bem = 0 due to the Meissner effect. The boundary values for Â0(z) and A0(z) are given
by the baryon and isospin chemical potentials, respectively. The boundary values of Â3(z) and
A3(z) yield the meson supercurrents and are determined dynamically from minimization of
the free energy.

the behavior of the supercurrents under a parity transformation this ensures that the gauge
fields transform as a vector under parity, see discussion below Eq. (C.16). We plot the gauge
fields with the supercurrents determined from minimization of the free energy, see Eqs. (6.31),
in the left panel of Figure 6.2. Next, we insert the gauge fields and the resulting field strengths
into the free energy (6.10) and obtain (for details see Appendix C.2)

Ω =
κM2

KK

6

[
(̂+ )2ρ+(B̂, B) + (̂− )2ρ−(B̂, B)

+ 4µB(̂B̂ + B) + 4µI(̂B + B̂)
]
, (6.29)

with

ρ±(B̂, B) ≡ 2(B̂ ±B) coth
π(B̂ ±B)

2
+

π(B̂ ±B)2

2 sinh2[π(B̂ ±B)/2]
. (6.30)

The asymptotic values of the functions ρ±(B̂, B) at small and large magnetic fields are shown
in Table C.1 in Appendix C.2.

Minimizing Ω with respect to ̂,  yields

̂ = −µB + µI
2

B̂ +B

ρ+(B̂, B)
− µB − µI

2
B̂ −B
ρ−(B̂, B)

, (6.31a)

 = −µB + µI
2

B̂ +B

ρ+(B̂, B)
+
µB − µI

2
B̂ −B
ρ−(B̂, B)

. (6.31b)

One can check that this is indeed a minimum of Ω: the matrix of second derivatives of Ω with
respect to the supercurrents has eigenvalues 8κM2

KKρ+/3, 8κM2
KKρ−/3, which are independent

of ̂ and  and positive for all B̂, B.
As already mentioned below Eq. (6.2) we recall that the supercurrents ̂,  act as a source

for the currents Ĵ , J which we compute now. The currents Ĵ , J are the spatial 3-components
of the currents

J̄ µL/R = J µYM,L/R + J µCS,L/R + ∆J µL/R, (6.32)
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we derived in (5.1). The Yang-Mills, Chern-Simons and Bardeen contributions are given by
(5.5) and (5.11)

J µYM,L/R = ∓2κM2
KKk(z)Fzµ

∣∣∣
z=±∞

, (6.33a)

J µCS,L/R = ± Nc

24π2
εµνρσAνFρσ

∣∣∣
z=±∞

, (6.33b)

∆J µL/R = ∓ Nc

48π2

(
AR/Lν FR/Lρσ −AL/Rν FR/Lρσ + 2AR/Lν FL/Rρσ

)
εµνρσ

∣∣∣
z=±∞

. (6.33c)

Here, the indices µ, ν, ρ, σ run over 0,1,2,3, the upper (lower) signs correspond to L (R), and
we have, in the CS contribution, already used that in our ansatz the off-diagonal components
of the gauge fields in flavor space vanish. With the gauge field (6.27) and the field strengths
(C.16) we obtain the baryon and isospin components of the spatial currents,

Ĵ = ĴYM + ĴCS ≡ ĴL = −ĴR = −κM
2
KK

2

[
(µB + µI)

(B̂ +B)2

ρ+(B̂, B)
coth

π(B̂ +B)
2

+ (µB − µI)
(B̂ −B)2

ρ−(B̂, B)
coth

π(B̂ −B)
2

− 2
3

(µBB̂ + µIB)

]
, (6.34a)

J = JYM + JCS ≡ JL = −JR =
κM2

KK

2

[
(µB + µI)

(B̂ +B)2

ρ+(B̂, B)
coth

π(B̂ +B)
2

− (µB − µI)
(B̂ −B)2

ρ−(B̂, B)
coth

π(B̂ −B)
2

− 2
3

(µBB + µIB̂)

]
, (6.34b)

where the terms with prefactor 2/3 are the Chern-Simons contributions and we used NcB =
16π2M2

KKκ . These currents are already evaluated at the minimum of the free energy, i.e., we
have inserted the supercurrents (6.31). After adding Barddeen’s counterterm (6.33c) only the
YM parts of the currents (6.34) survive

¯̂JL/R = ĴYM , J̄L/R = JYM,L/R. (6.35)

Note that Bardeen’s counterterm only cancels the (CS) contribution in the case of vanishing
axial chemical potential. They add up to zero in the sums JL+JR and ĴL+ĴR, corresponding
to vanishing baryon and isospin currents, however they yield nonzero axial currents (see Section
5.3. We remark that the subleading term in the expansion of the 3-component of the gauge
fields only agrees with the current (6.33) after adding Bardeen’s counterterm.

Â3(z) = ∓̂±
ĴYM,L/R

κM2
KK

1
z

+O
(

1
z2

)
, A3(z) = ∓±

JYM,L/R

κM2
KK

1
z

+O
(

1
z2

)
. (6.36)

Finally, we insert the values (6.31) back into Ω yields the value of the free energy at the
minimum,

Ωσ = −κM
2
KK

6

[
(µB + µI)2 (B̂ +B)2

ρ+(B̂, B)
+ (µB − µI)2 (B̂ −B)2

ρ−(B̂, B)

]
. (6.37)

We see that for vanishing magnetic fields Ωσ = 0, i.e., the free energy does not depend on any
of the chemical potentials. This is the expected result for the sigma phase and has also been
observed in Ref. [92].
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6.2.4 Pion phase and Meissner effect

In this case the boundary conditions are given in the second row of Table 6.1, and the differ-
ential equations (6.3) for the magnetic fields have the solution

b̂(z) = B̂ , b(z) =
2B
π

arctan z . (6.38)

As we have discussed at the end of Section 6.1.2, nonconstant functions b̂ or b lead to an infinite
contribution to the free energy which cannot be removed by holographic renormalization, but
which enforces a vanishing magnetic field, indicating a Meissner effect. In the π phase, it is
the nonconstant isospin component b(z) which leads to this conclusion. This is only to be
expected since the condensate of pions carries an electric charge, and thus the system is an
electromagnetic superconductor. By the Meissner effect, a magnetic field is induced which is
opposite, but equal in magnitude, to the applied magnetic field, such that Bem = 0 and thus
B̂ = B = 0. Of course our electromagnetic group is only global and thus the microscopic
description of the Meissner effect, for instance in terms of a Meissner mass for the photon,
is not straightforward. However, in terms of supercurrents, the effect can be described quite
naturally: in fact we have to allow for a supercurrent in the directions transverse to the
magnetic field, i.e., s(x, z) = 1

2b(z) (x2,−x1, 0), such that curl s = −b (and the same for the
components ̂s, b̂). This is the usual London equation for a superconductor, see for instance
Ref. [183]. Consequently, we need to add the supercurrents ̂s, s to the boundary conditions
of the gauge fields Â1(x, z), Â2(x, z), A1(x, z), A2(x, z) from Eqs. (6.2) such that the total
boundary conditions (and thereby the total magnetic field in the superconductor) vanish,
B̂ = B = 0. This condition renders the equations of motion for the pion phase very simple.
We shall, however, solve these equations for arbitrary magnetic fields and only at the end set
B̂ = B = 0. This provides us with a better understanding of the structure of the solution, for
instance its behavior under parity transformations.

We defer all technical details and the solution for general boundary conditions with the
magnetic fields (6.38) to Appendix C.3. For the specific boundary conditions characterizing
the charged pion condensate we find the solutions

Â0(z) = µB +
µI
2

[
C̃+(z) + C̃−(z)− T̃+

]
− ̂

2

[
[C̃+(z)− C̃−(z)− T̃−

]
, (6.39a)

A0(z) =
µI
2

[
S̃+(z) + S̃−(z)

]
− ̂

2

[
S̃+(z)− S̃−(z)

]
, (6.39b)

Â3(z) = − ̂
2

[
S̃+(z) + S̃−(z)

]
+
µI
2

[
S̃+(z)− S̃−(z)

]
, (6.39c)

A3(z) = − ̂
2

[
C̃+(z) + C̃−(z)− T̃−

]
+
µI
2

[
C̃+(z)− C̃−(z)− T̃+

]
, (6.39d)

where we abbreviated

C̃+(z) ≡ P+(z) + P−(z)
P+

+ − P−+
, C̃−(z) ≡ Q+(z) +Q−(z)

Q+
+ −Q−+

, (6.40a)

S̃+(z) ≡ P+(z)− P−(z)
P+

+ − P−+
, S̃−(z) ≡ Q+(z)−Q−(z)

Q+
+ −Q−+

, (6.40b)

T̃± ≡ P+
+ + P−+
P+

+ − P−+
± Q+

+ +Q−+
Q+

+ −Q−+
, (6.40c)
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with

Q±(z) ≡ π

2
√
B
e
πB̂2

4B erf

(
πB̂ ± 2B arctan z

2
√
πB

)
, (6.41a)

P±(z) ≡ π

2
√
B
e−

πB̂2

4B erfi

(
πB̂ ± 2B arctan z

2
√
πB

)
, (6.41b)

and Q±+ ≡ Q+(±∞), P±+ ≡ P+(±∞). Here, erf is the error function and erfi(z) ≡ erf(iz)/i.
The functions C̃±, S̃±, T̃± are the more complicated counterparts of the functions C±, S±, T±
from Eqs. (6.28). They share the same property T̃± = C̃+(∞)±C̃−(∞) = C̃+(−∞)±C̃−(−∞),
and, as their counterparts, C̃±(z) and S̃±(z) are symmetric and antisymmetric in z, respec-
tively. This means that the temporal 1 component and the spatial τ3 component are symmetric
in z while the temporal τ3 component and the spatial 1 component are antisymmetric. Again,
together with the parity transformations of the current, this gives the correct parity behav-
ior of the gauge fields, see discussion in Appendix C.3. In particular, the requirement of a
well-defined parity leads to the condition  = 0.

Inserting Eqs. (6.39) and the corresponding field strengths into the free energy (6.10) yields

Ω =
κM2

KK

6

{
̂2 − µ2

I ρ(B̂, B)− 2µB
[
µI η+(B̂, B)− ̂ η−(B̂, B)

]}
+ Ωb , (6.42)

with Ωb given in Eq. (6.11) and

ρ(B̂, B) ≡ 4π
(P+

+ − P−+ )(Q+
+ −Q−+)

+ 4 cosh
πB̂

2

(
e
πB
4

P+
+ − P−+

+
e−

πB
4

Q+
+ −Q−+

)
, (6.43a)

η±(B̂, B) ≡ 2 sinh
πB̂

2

(
e
πB
4

P+
+ − P−+

∓ e−
πB
4

Q+
+ −Q−+

)
. (6.43b)

Again, the asymptotic values of these functions are given in Table C.1 in Appendix C.2.
Minimization of Ω with respect to ̂ yields

̂ = −µB
η−(B̂, B)
ρ(B̂, B)

, (6.44)

and the minimum of the free energy becomes

Ωπ = −κM
2
KK

6

[
µ2
B

η2
−(B̂, B)

ρ(B̂, B)
+ µ2

I ρ(B̂, B) + 2µBµI η+(B̂, B)

]
+ Ωb . (6.45)

We see that for vanishing magnetic fields the free energy depends on the isospin chemical
potential, giving rise to a nonzero isospin density. This is expected from the quark content of
the charged pion condensate and was also observed within the Sakai-Sugimoto model in Ref.
[92].

Taking into account the Meissner effect, which is enforced by the infrared divergence in
Ωb as discussed at the beginning of this subsection, we have to set B̂ = B = 0, leading to the
simple result for the free energy

Ωπ = −2κM2
KK

π
µ2
I . (6.46)

From Eq. (6.44) we conclude that for B̂ = B = 0 we have ̂ = 0. And, from the definitions
(6.33), we see that in the absence of a magnetic field also the normal currents vanish,
Ĵ = J = 0. In the following we shall discuss the results of the pion phase only in the presence
of the Meissner effect.
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Figure 6.3: Left panel: Meson supercurrents ̂σ (red solid) and σ (blue solid), normal currents
Ĵ σ (red dashed) and J σ (blue dashed) and the Yang-Mills currents Ĵ σYM (red dotted) and
J σYM (blue dotted) as a function of the dimensionless magnetic field eBem in the sigma phase.
The units are MKK/α for ̂σ, σ and κM3

KK/α for Ĵ σ, J σ,Ĵ σYM , J σYM . Right panel: baryon
and isospin number densities as a function of the dimensionless magnetic field in the sigma
phase. The analytical expressions for the functions are given in Eqs. (6.31), (6.34), and (6.48).
We have fixed µB = 2µI = MKKα. In the (charged) pion phase, all currents as well as the
baryon density vanish due to the Meissner effect; the isospin density is given by the simple
expression (6.52b).

6.2.5 Meson supercurrents and number densities

We have seen that all currents in the charged pion phase vanish (except for the supercurrents in
the transverse 1- and 2-directions which cancel the applied magnetic field). The supercurrents
and normal currents in the sigma phase, given in Eqs. (6.31) and (6.34), respectively, are
shown in the left panel of Figure 6.3 as a function of the magnetic field. We have used the
electromagnetic field Bem, defined in Eq. (6.1), with the electric charges of up and down
quarks. We see that the supercurrents behave linear in Bem for small Bem and approach an
asymptotic value for a large magnetic field. These limit cases assume very simple forms in
terms of the electric quark charges qi and the quark chemical potentials µ1,2 ≡ µB ± µI . The
quark supercurrents 1,2 ≡ ̂±  then are

σi ' −
1
2


πqiµiBem

3
for small Bem

µi sgn qi for large Bem

. (6.47)

The limit of a large magnetic field is strictly speaking not consistent with our approximations.
Firstly, we have expanded the DBI action for small gauge fields. Secondly, we have treated
the flavor branes as probe branes which becomes questionable for large magnetic fields since
one would have to consider the backreaction on the background geometry. As mentioned in
Ref. [90] in the same context, the case of a large magnetic field within the present approach
can only be meaningful if one thinks of the action (4.13) as a “bottom-up” model for QCD,
which is not derived from an AdS/CFT correspondence. Indeed, with appropriate functions
k(z), h(z), the bottom-up model from Ref. [184] can be recovered from Eq. (4.20). Thus, in
the following we shall use our analytical functions to discuss the whole range of magnetic fields
with this qualification in mind.

We can compute the baryon and isospin densities from the 0-component of the current
defined in Eq. (6.32). For a vanishing electric field Bardeen’s counterterm does not contribute
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to the densities as can be seen from (5.69a). We obtain for the sigma phase

nσB =
κM2

KK

3

[
(µB + µI)

(B̂ +B)2

ρ+
+ (µB − µI)

(B̂ −B)2

ρ−

]
, (6.48a)

nσI =
κM2

KK

3

[
(µB + µI)

(B̂ +B)2

ρ+
− (µB − µI)

(B̂ −B)2

ρ−

]
. (6.48b)

In principle one could also compute the densities from the free energies computed in the
previous section via

nB,I = − ∂Ω
∂µB,I

. (6.49)

It turns out that
1
2

(J 0
R + J 0

L) = − ∂Ω
∂µB

− ∂Ω
∂µI

τ3 . (6.50)

As we explained in (5.2.3) this thermodynamic inconsistency can be traced back to spatial
boundary terms of the system. In [34] we used different boundary conditions to ensure ther-
modynamic consistency, namely twice the values for the chemical potentials and supercurrents
we use here. By comparing the results of this chapter with [34] one can check that the differ-
ent boundary conditions only lead to quantitative changes due to the rescaling of the chemical
potentials and supercurrents by a factor 1/2. Using a modified action as in Ref.[91] cures this
problem but one looses all anomalies. See Section (5.5) for a detailed discussion of this prob-
lem. In Appendix C.5 we give the results obtained with the modified action for comparison.
It is still not clear to us how to ensure thermodynamic consistency and keep the anomaly at
the same time. In what follows we use the densities obtained via Eq. (6.32) with the result
given in (6.48).

The densities are plotted in the right panel of Figure 6.3. As expected, both densities vanish
in the case of a vanishing magnetic field. Switching on a magnetic field induces currents as
well as nonzero densities. Again, it is convenient to express the number densities in terms of
the quark flavor components, n1,2 ≡ nB ± nI , rather than in baryon and isospin components.
We obtain for small and large magnetic fields

nσi '
κM2

KK

3


πq2

i µiB
2
em

3
for small Bem

µi|qi|Bem for large Bem

. (6.51)

For the pion phase we find from the free energy (6.46)

nπB = 0 , (6.52a)

nπI =
2κM2

KK

π
µI . (6.52b)

From the baryon and isospin densities we can immediately deduce the electric charge density
nQ = q1n1+q2n2. The electric charge of the system is relevant for example in the astrophysical
context because in a neutron star the overall electric charge has to vanish. Here we simply
observe which electric charge is carried by our system for given chemical potentials. For more
realistic applications one would have to require charge neutrality and possibly counterbalance
the charge of the chiral condensate for instance by the presence of electrons or protons. For
the σ condensate we find nσQ = 0 for vanishing magnetic fields, as expected. Switching on a
magnetic field induces electric charges in the system. For infinitesimally small Bem a straight
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line µB = −9µI/7 appears in the µB-µI plane dividing the plane into a region with infinites-
imally positive (above/right of the line) and negative (below/left of the line) charge. With
increasing magnetic field, giving rise to larger charges, the slope of the line slightly decreases
and approaches the value µB = −5µI/3 asymptotically for large Bem. For the pion phase we
have nπQ = nπI , which is positive (negative) for positive (negative) isospin chemical potentials
and independent of the baryon chemical potential.

We may finally recover the scenario considered in Ref. [90] as a limit of our more general
results. In that paper, a vanishing isospin chemical potential, a vanishing baryon component
of the magnetic field, and an isospin magnetic field constant in the holographic coordinate
z (as in Eq. (6.38)) was considered. For a comparison it is thus instructive to compute the
energy density ε of the sigma phase. We write the free energy (6.29) as Ω = ε− µBnB − µInI
with nB, nI given in Eqs. (6.48). Then we can express the energy density in terms of the
number densities,

εσ =
3

8κM2
KK

[
(nσB + nσI )2 ρ+

(B̂ +B)2
+ (nσB − nσI )2 ρ−

(B̂ −B)2

]
. (6.53)

For small and large magnetic fields we obtain

εσ '



8λM2
KK

3Nc

[
(nσB + nσI )2

(B̂ + B)2
+

(nσB − nσI )2

(B̂ − B)2

]
for small B̂,B

12π2

Nc

[
(nσB + nσI )2

|B̂ + B|
+

(nσB − nσI )2

|B̂ − B|

]
for large B̂,B

, (6.54)

where we have reinstated the dimensionful magnetic fields according to Eq. (6.26). For large
magnetic fields we thus obtain, up to a numerical prefactor, an equation of state as for a free
fermion gas in a magnetic field: setting nσI = B̂ = 0 we have εσ = 24π2(nσB)2/(BNc) while for
a free gas ε0 = π2n2

B/(BNc) [90]. In Ref. [90] even the prefactor is exactly that of the free
gas. We have checked that this discrepancy comes from the surface term in the Chern-Simons
action.

6.2.6 Phase diagram and critical magnetic field

In this section we determine which of the two phases is favored for given values of the chemical
potentials and the magnetic field. Since we want to compare the phases at a fixed external
magnetic field Hem (and not at fixed Bem), we need the Gibbs free energy G. In the case of
the charged pion condensate, where Bem = 0, the Gibbs free energy is identical to the above
computed free energy,

Gπ = Ωπ = −2κM2
KK

π
µ2
I . (6.55)

It is convenient to introduce dimensionless free energies ωσ,π via

Ωσ,π =
M4

KK

α2
κωσ,π . (6.56)

As we shall see below, κ is the only parameter of the model on which the structure of the
phase diagram depends, see Eq. (6.67). The other constants MKK and α only set the energy
scale. To make this κ dependence explicit, we have pulled the dimensionless constant κ out of
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ωσ,π. The dimensionless free energies are (using Eqs. (6.37) and (6.46))

ωπ = −2µ̃2
I

π
, (6.57a)

ωσ = −1
6

[
(µ̃B + µ̃I)2 (B̂ +B)2

ρ+(B̂, B)
+ (µ̃B − µ̃I)2 (B̂ −B)2

ρ−(B̂, B)

]
, (6.57b)

where we have introduced the dimensionless chemical potentials

µ̃B ≡
αµB
MKK

, µ̃I ≡
αµI
MKK

. (6.58)

To obtain the Gibbs free energy in the sigma phase we add the contribution B2
em/2 and Legen-

dre transform the free energy with respect to the change of variable Bem → Hem. Consequently,

Gσ =
1
2
B2

em + Ωσ − BemHem . (6.59)

For a given external field Hem one determines Bem from the stationarity condition

0 =
∂Gσ
∂Bem

= Bem −Mσ −Hem , (6.60)

where we defined the magnetization in the sigma phase

Mσ = − ∂Ωσ

∂Bem
=
M2

KK

α
κMσ . (6.61)

Here, the dimensionless magnetization is given by

Mσ =
1
3

[
q1µ̃

2
1

B̂ +B

ρ+

(
1− B̂ +B

2ρ+

∂ρ+

∂B̂

)
+ q2µ̃

2
2

B̂ −B
ρ−

(
1− B̂ −B

2ρ−
∂ρ−

∂B̂

)]
. (6.62)

We have used Eq. (6.1) for the electromagnetic field, and expressed the derivatives with respect
to B through derivatives with respect to B̂. Before coming back to the Gibbs free energy let
us discuss the magnetization and the resulting magnetic susceptibility χσ. To obtain Mσ as
a function of the external magnetic field we first solve Eq. (6.60), which, in dimensionless
quantities reads

Hem = Bem − κMσ , (6.63)

numerically for Bem. (Here, the dimensionless field Hem is defined analogously to the field
Bem, see Eq. (6.26).) Then, we insert the solution back into Eq. (6.62). The result depends on
κ, for which we have to choose a numerical value. In order to get some numerical estimates
from our following results we also need to assign values to the other parameters of the model.
Following [29, 131, 111] we shall use

κ = 0.00745, MKK = 949 MeV , (6.64)

which has been obtained from fits to the rho meson mass and the pion decay constant. From
this value for κ we obtain, with Nc = 3 and Eq. (4.22), λ ≈ 16.6, and then, with Eq. (6.6),
α ≈ 2.55.

The full numerical result for the magnetization is shown in Figure 6.4. Our result is in
qualitative agreement with Ref. [91], where the magnetization was computed for a one-flavor
system. (Note, however, that in this reference the boundary value of the field strength was
interpreted as H, not B.) We see that the magnetization behaves linearly for small magnetic
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Figure 6.4: Dimensionless magnetization Mσ for the sigma phase as a function of the di-
mensionless magnetic field Hem for two different values of the isospin chemical potential and
a baryon chemical potential µ̃B = 2. The dashed lines are the susceptibilities χσ from Eq.
(6.65), which approximate the magnetization for small magnetic fields, Mσ = χσHem, and the
asymptotic values from Eq. (6.66).

fields. The slope is the magnetic susceptibility, i.e., Mσ ' χσHem. Upon expanding Eq. (6.62)
for small magnetic fields we find

χσ =
π

18
q2

1µ̃
2
1 + q2

2µ̃
2
2

1− 2κπ
9 (q2

1µ̃
2
1 + q2

2µ̃
2
2)
. (6.65)

Since we neither expect the susceptibility to diverge nor to change sign, this result can only be
trusted for sufficiently small chemical potentials, roughly speaking µ̃2

i � 1/(κe2). Given the
numerical value (κe2)−1/2 ' 38 and given that one unit of the quark chemical potential µ̃i = 1
corresponds to µi ' 400 MeV, this is not a severe restriction for realistic values of µi. However,
this result shows that in principle one has to be careful with large chemical potentials in the
present approximation where we not only have expanded the DBI action for small gauge fields
but also neglected the backreaction of the branes to the background geometry.

For large magnetic fields the magnetization saturates. From Eq. (6.62) we find the constant
value

lim
Hem→∞

Mσ =
q1µ̃

2
1 − q2µ̃

2
2

12
, (6.66)

where we have used that B > B̂ for a two-flavor system with up and down quarks. We now
return to the free energy comparison. For the sigma phase we insert Eq. (6.60) into the Gibbs
free energy (6.59). Then we obtain the following difference in Gibbs free energies

∆G
M4

KK/α
2
≡ Gσ −Gπ
M4

KK/α
2

= −1
2
H2

em +
1
2
κ2M2

σ + κ(ωσ − ωπ) . (6.67)

If ∆G > 0 (∆G < 0) the π (σ) phase is preferred. It is instructive to relate the comparison
between the sigma and pion phases to a usual superconducting material, say a metal, where
we compare the superconducting phase (corresponding to the pion phase) and the normal-
conducting phase (corresponding to the sigma phase). With the help of this analogy we
can understand the various terms in ∆G. The term quadratic in Hem is negative, i.e., it
works in favor of the normal-conducting phase. This term is the free energy cost which the
superconducting phase has to pay for creating a counter magnetic field in order to expel the
external magnetic field. In a usual superconductor, this term is thus responsible for a critical
magnetic field beyond which the Cooper pair condensate breaks down. There is an additional
term, working against the normal-conducting phase, proportional to M2

σ . This term is absent
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Figure 6.5: Critical magnetic field for the phase transition from the pion to the sigma phase as
a function of the isospin chemical potential for baryon chemical potentials µ̃B = 4 (red curve)
and µ̃B = 40 (blue curve). The dashed line is the approximation from Eq. (6.69) and almost
coincides with the curve for µ̃B = 4. Our model does not include a finite pion mass. It can be
expected that the effect of the pion mass shifts the curves such that they start at µI = ±mπ

(corresponding to µ̃I ' ±0.375) instead of µI = 0.

in most usual superconductors which, to a good approximation, have no magnetic properties
in their normal-conducting phase. We thus expect a competition between the two terms, i.e.,
between the costs that the sigma and charged pion phase have to pay for the magnetization
and the Meissner effect, respectively. This competition, together with the difference ωσ − ωπ,
will determine the resulting phase diagram.

For small magnetic fields, Hem � 1, and dimensionless chemical potentials of order one,
µ̃B,I . 1, we can discuss the phase transition between the sigma and the charged pion phase
analytically. In this case, the term κ2M2

σ is of the order of κ2e4 and thus negligible. The free
energy of the sigma phase κωσ is proportional to κe2 and thus also small compared to the
remaining terms. We are left with the simple result

∆G
M4

KK/α
2
' −1

2
H2

em +
8κ
π
µ̃2
I . (6.68)

At the phase transition ∆G = 0 we thus have

µ̃I = ±
√
π

κ

Hem

4
≈ ±5.13Hem . (6.69)

This relation can be read as an equation for the critical magnetic field for a given chemical
potential, or as an equation for the critical chemical potential for a given magnetic field. We
see that, in this approximation, the phase transition is independent of the baryon chemical
potential. In Figure 6.5 we plot the critical magnetic field as a function of the isospin chemical
potential for two different values of the baryon chemical potential.

Let us now discuss the resulting phase diagram in the µB-µI plane. Firstly, we consider
the case of vanishing magnetic field, Hem = 0. From Eq. (6.68) we see that, in this case, the
pion phase is favored in the entire µB-µI plane except for the µB axis. To understand this
result we recall several features of our model. We treat the fermions as massless (in most
applications of the Sakai-Sugimoto model, this approximation is used; for a discussion about
how to incorporate finite mass effects into the model see the recent Ref. [185]). Therefore, a
charged pion condensate appears for arbitrarily small isospin chemical potentials, and not only
beyond a finite threshold given by the pion mass. Moreover, since we consider the confined
phase, we cannot account for phases where there is a vanishing 〈ūu〉 and a nonvanishing 〈d̄d〉
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Figure 6.6: Phase diagram for the σ and π phases in the plane of baryon and isospin chemical
potentials. We have chosen two different values of the dimensionless magnetic field, Hem = 0.5
(solid lines, dark shaded sigma phase) and Hem = 5 (dashed lines, light shaded sigma phase).
The sigma phase contains meson supercurrents while the pion phase contains an isotropic π±

condensate and exhibits the Meissner effect. All lines indicate first order phase transitions.
The units of this plot, upon fitting the parameters of the model according to (6.64), are
µ̃B,I ≈ µB,I/(370 MeV) and Hem ≈ Hem/(1.8 · 1019 G). Hence, due to the huge scales even
compared to magnetar scales, this phase diagram is rather of academic interest; for more
realistic chemical potentials and magnetic fields, the simple approximation (6.69) is sufficient.

condensate or vice versa. In other words, we cannot connect the up-flavor branes and leave
the down-flavor branes disconnected, as done in Ref. [92], where the deconfined (but chirally
broken) phase was considered. And finally, in our approach we do not see a phase transition
to the chirally restored phase. Since we are in the confined phase, where the subspace of
the compactified extra dimension x4 and the holographic coordinate z is cigar-shaped, the
D8 and D8-branes must connect, i.e., chiral symmetry must be broken for all values of the
chemical potentials. The chiral symmetry can only be restored above the deconfinement phase
transition. Taking into account these restrictions, our phase diagram at vanishing magnetic
field is in accordance for instance with Refs. [92, 179].

Next, we discuss the case of a nonzero magnetic field. The phase diagram for two different
magnetic fields is shown in Figure 6.6. From Eq. (6.69) we see that a region for the sigma
phase opens up, with straight phase transition lines independent of µB. These lines start to
bend for larger magnetic fields. We may use the numerical values of the parameters of the
model given below Eq. (6.63) for some (very) rough quantitative predictions from this phase
diagram. First we notice that a dimensionless field Hem = 1 corresponds to5 Hem ' 2 · 1019 G,
about 4 – 5 orders of magnitude larger than the surface field of magnetars, and most likely even
larger than the magnetic field in the interior of the star. For the chemical potentials we find
that µ̃B,I = 1 corresponds to µB,I ' 400 MeV. As a comparison, a typical baryon chemical
potential for neutron stars is at most µB . 1500 MeV, corresponding to µ̃B ' 4. Now, as a
rough estimate, let us assume an isospin chemical potential of 1/10 times the baryon chemical
potential in a neutron star, i.e., µ̃I ' 0.4. Then, the phase transition from the charged pion
condensed phase to the sigma phase occurs at a very large magnetic field of approximately
Hem ' 1.6 · 1018 G. In other words, the charged pion condensate at finite isospin chemical
potentials appears to be, in terms of realistic values for the magnetic field, very robust.

The superconducting properties of a charged pion condensate have been studied in con-
ventional chiral models [186, 187, 188, 189]. There, for an isotropic charged pion condensate,

5In the natural Heavyside-Lorentz system of units of particle physics, a magnetic field strength of 1 eV2

corresponds to 51.189. . . G in the Gaussian system.
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the scale of the critical magnetic field is set by m2
π, which is of the order of 1018 G, whereas

an anisotropic charged pion condensate has been argued to give a critical magnetic field of the
order of 1019 G. In our model, in the π phase we have an isotropic π condensate and a vanish-
ing mπ, but nevertheless we have obtained a critical field of comparable magnitude. It should
be noted that in conventional chiral models the charged pion condensate has been found to
behave as a type-II superconductor [186, 187, 188], which means that there is another, smaller
critical field strength, above which the magnetic field can penetrate in the form of magnetic
vortices. By considering only homogeneous fields, we have of course not taken this possibility
into account. Our result for the critical magnetic field corresponds to the larger value where
the charged pion condensate is destroyed completely.
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Chapter 7

Conclusions and Outlook

In this thesis we have used the gauge/gravity duality to investigate properties of strongly
coupled matter. The gauge/gravity duality relates string theory living on asymptotically anti
de Sitter space with a gauge theory living on the boundary of this space. When one side is
weakly coupled the other side is strongly coupled and vice versa. This duality gives us a new
tool to study strongly coupled gauge theories from the low energy limit of string theory, which
is supergravity. Since the original statement of the correspondence, great effort has been put
into the construction of new dual theories to come closer to QCD. Unfortunately so far no
perfect dual string theory to QCD has been found. In this chapter we summarize our findings
from the Sakai-Sugimoto model and the D3-D7 brane setup.

7.1 D3-D7 setup

In Chapter 3 we have used the D3-D7 brane setup to calculate the energy spectrum of heavy-
light mesons. Our heavy light mesons are described by a string stretching between two D7
branes separated by a finite distance proportional to the mass difference between the hypermul-
tiplets. In the heavy quark limit the meson spectrum is not well approximated by the D7 brane
fluctuations but by the fluctuations of the string itself which can be treated semi-classically.
In Section 3.5 we calculated a portion of the energy spectrum of heavy-light mesons in N = 2
SYM with two massive hypermultiplets. One generic feature of the energy spectrum of the
heavy-light meson spectrum is the mh independence of the excitation energies in the infinite
heavy quark mass limit. For example, for low lying fluctuations in the x and y6 directions we
found the energy spectrum

En = mh −ml +ml
2π2n√
λ

+O
(
m2
l

mh

)
. (7.1)

For the ρ fluctuations, we were not able to determine a spectrum analytically, but were never-
theless able to determine this mh independence numerically. The x fluctuations should corre-
spond to vector-like mesons, while the y6 and ρ fluctuations should correspond to scalar-like
mesons.

We have also studied spinning strings in Section 3.6. For the strings spinning in real space,
we have found several branches, characterized by a radial excitation number n. For small
angular momentum J , we were able to determine the analytic formula

EJn = mh −ml +ml
2π2nJ√

λ
+O

(
m2
l

mh

)
, (7.2)

which displays this mh independence. Finally we have studied strings spinning in the internal
space, which correspond to mesons with R-charge Q from the field theory perspective. For
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small Q, we have found the analytic formulae of Eqs. (3.75) and (3.88) which again displays
mh independence. The mh independence at leading order is in agreement with heavy quark
effective theory.

We have also found a degeneracy in the spectrum. For example, the lowest lying mode in
the x direction had the same energy as the lowest lying excitation in the y6 direction.

In Section 3.7.1 we have shown that this degeneracy is a consequence of supersymmetry and
that it can be removed upon breaking supersymmetry. By tilting the heavy brane in the in-
ternal R6 space by an angle θ we have broken supersymmetry completely. The analysis of the
energy spectrum has revealed the emergence of hyperfine splitting, e.g. the energy spectrum
for the y6 fluctuations was

Ey6 = mh −ml +ml
2π2n√
λ
− m2

l

mh

2nπ2 sin2 θ√
λ

, (7.3)

giving splitting terms proportional to sin2(θ)/mh.

In Section 3.7.2 we have broken supersymmetry by applying an external magnetic field and
found Zeeman splitting effects proportional to b/m2

h for weak magnetic fields b. Increasing the
value of b we found an interesting effect, where the Zeeman split frequencies rejoined in the
limit b→∞.

While we have chosen to approach the question of hadron spectra in QCD-like theories by con-
sidering field theories with well-known gravity duals rather than trying to build phenomenolog-
ical models for QCD itself, it is interesting to note how some effects characterizing the QCD
meson spectrum can be realized in relatively simple settings. Our holographic heavy-light
mesons certainly deserve further investigation. We have commented in Section 3.8 that it is
possible to tune the mass of the ground state to be anything between mh−ml and mh+ml. It
would be an interesting project for the future to study this more general heavy-light mesons.
The setup involving a tilted heavy D7 brane certainly warrants further work. In particular, one
should try to find a way to stabilize the positions of the two D7-branes. We are also interested
in performing a detailed analysis of the bound states of the theory at weak coupling, building
on the results of Refs. [79, 190, 77].

7.2 Sakai-Sugimoto model

In the rest of this work we have used the Sakai-Sugimoto model, which is the model that at
present comes closest to providing a gravity dual to (large-Nc) QCD. The model consists of
an D4/D8-D8 system in which a bulk gauge symmetry on the D8 and D8 branes corresponds
to a global (flavor) symmetry at the boundary which is interpreted as chiral symmetry. Here,
left- and right-handed fermions are separated by a fifth extra dimension. The electromagnetic
subgroup of this flavor symmetry group has been used to incorporate an external magnetic
and electric field.

In Chapter 5 we have studied the strong-coupling behavior of chiral fermions in the pres-
ence of a chemical potential and a background magnetic field in the chirally broken and the
chirally symmetric phases. In particular, we have investigated the chiral magnetic effect, which
has been studied previously in a weak-coupling approach [96] and on the lattice [109]. We have
pointed out that a reliable calculation within the Sakai-Sugimoto model requires a careful dis-
cussion of the QED anomaly in the model. The standard value of the consistent anomaly
arises naturally in the model for the most straightforward definition of the current. For this
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result it is crucial to include the contributions from the CS term which are sometimes ignored
in the literature. The covariant anomaly can then be implemented by adding Bardeen’s coun-
terterm [114], which is also known to be required in chiral models with a Wess-Zumino-Witten
term [118], and we have pointed out that this (finite) counterterm has a form that appears
consistent with the procedure of holographic renormalization.

After these general discussions we have solved the equations of motion for the chirally
broken and the chirally symmetric phases explicitly. In our approximation of the DBI action
to lowest order in the gauge fields, the solutions are completely analytical. Electric (vector and
axial) fields parallel to the magnetic field have been considered in order to check the anomaly
explicitly, but they are not needed and set to zero for our physical (equilibrium) results, which
only require magnetic fields in the presence of chemical potentials.

In the presence of a quark chemical potential and a large magnetic field, we have calcu-
lated the axial current, which may be of interest for astrophysical phenomena such as pulsar
kicks [104]. In the chirally symmetric phase we have reproduced the known topological result
[103, 129], while in the chirally broken phase, the current has turned out to be smaller but
nonvanishing. These results can also be obtained by using only the YM part of the current,
i.e., in the case of the axial current the CS contribution and the contribution of Bardeen’s
counterterm cancel each other.

This is different for the vector current. In this case, only the YM contribution yields the
expected topological result for both phases in in agreement with ref. [96]. With the full current,
and after adding Bardeen’s counterterm, the vector current becomes zero for both phases. The
absence of the chiral magnetic effect in the deconfined phase comes as surprise. One might
have expected the known topological result because it can be derived from the anomaly only
[130] and we have made sure to incorporate the correct covariant anomaly. Our result of a
vanishing vector current in the confined phase seems less puzzling. The usual explanation of
the chiral magnetic effect, using a quasiparticle picture (which is not guaranteed to hold in
our strong-coupling approach), relies on individual, electrically charged, massless quarks which
move in different directions according to their chirality. A suppression of the effect may thus
indeed be expected in the confined, chirally broken phase [96, 191].

In comparison to the result from recent lattice calculations [109] we have pointed out an
intriguing agreement before adding Bardeen’s counterterm, i.e., within the consistent anomaly.
There the vector current per chirality approaches approximately the value 2/3 for asymptot-
ically large magnetic field. This is clearly different from the weak-coupling approach where
this ratio approaches 1. This raises the question whether this asymptotic value can distinguish
between strong and weak coupling. It also raises the question whether the lattice result relates
to the consistent, as opposed to the covariant, anomaly.

There are several problems in our current approach that certainly need further studies. First,
although we have implemented the correct covariant anomaly, a problem remains. Namely,
upon computing the free energy explicitly and then taking the derivative with respect to the
appropriate source, the currents turn out to be different from the straightforward definition via
the gauge/gravity correspondence. This somewhat disturbing discrepancy can be attributed
to boundary terms at spatial infinity. We have discussed that a previously suggested fix of this
problem by modifying the action [91] seems to be not acceptable because it entirely eliminates
the axial anomaly from the correspondingly modified currents. Only the YM part of these
currents are anomalous, but those suffer from the same thermodynamic inconsistency that
this modification was meant to fix (see also ref. [110] for other issues concerning the definition
of chiral currents in the Sakai-Sugimoto model). Second, the introduction of an axial chem-
ical potential might be problematic. It has been argued that a chemical potential can only
be introduced if it is associated to a conserved charge N . Only then it is possible to obtain
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a physically meaningful vector current. This conserved charge is only gauge invariant when
integrated over all of space in spatially homogeneous situations [192, 193]. But for charge
separation in heavy-ion collisions one needs inhomogeneous situations, because with ∇B ≡ 0
we have [194]

∂ρ

∂t
= −∇J = −e

2Nc

2π
B∇µ5. (7.4)

In [194] a toy model similar to the Sakai-Sugimoto model has been considered. There it
has been pointed out that it is important to carefully distinguish between the boundary values
of the gauge field and the definition of the chemical potential. According to the dictionary the
boundary value of the gauge field is the source for an operator and the chemical potential is the
difference between the value of the gauge field at the horizon and the boundary. Using linear
response theory and the distinction between sources and chemical potentials the topological
result has been obtained. The reason is that one can set the sources to zero in the end which
leads to vanishing Chern-Simons contribution to the currents.

It has also been suggested that the canonical ensemble is more appropriate for describing
the chiral magnetic effect in heavy-ion collisions. We have tried to combine the different ap-
proaches, namely using the modified action, going to the canonical ensemble and distinguishing
between the sources and chemical potentials. With this combination we were able to satisfy
thermodynamic consistency, and obtain the topological result for the axial and vector current.
However, by setting the sources to zero we also lost the axial anomaly. It is still not clear to
us how to satisfy thermodynamic consistency and keep the anomaly at the same time.

Quantitative improvements could be achieved by extending our calculation to the full DBI
action, though they should be minor for magnetic field strengths of practical interest. More
critical, but also considerably more difficult, would be the generalization of our ansatz to al-
low for inhomogeneous field configurations and/or inhomogeneous solutions. This might be
required to resolve the ambiguities in the definition of the chiral currents that we have dis-
cussed, since those are related to spatial surface contributions in the CS action. With our
present definition of the chiral currents we have been led to question the very existence of
the chiral magnetic effect in the strong-coupling regime of the Sakai-Sugimoto model (which
is gravity dual to large-Nc QCD only in its inaccessible weak coupling limit). In this context
it would be important to understand whether in the strong-coupling regime one has Landau-
level-like structures, as conjectured in ref. [90]. This is interesting also in view of recent studies
in different gauge/gravity models [132, 133].

In Chapter 6 we studied chiral symmetry breaking in a two-flavor system with a magnetic
field and baryon and isospin chemical potentials. Our results are independent of temperature,
valid for temperatures below the critical temperature for chiral symmetry breaking. We have
discussed how the model can account for different Goldstone boson condensates, two of which
we have described within our ansatz of abelian gauge field components. Starting from the D-
brane action, consisting of Yang-Mills plus Chern-Simons contributions, we have analytically
solved the equations of motion and computed the Gibbs free energies of these two phases.

The first phase, briefly termed sigma phase, is a linear combination of the usual chiral
sigma condensate and a neutral pion condensate. We have found that for nonzero magnetic
fields this phase exhibits a nonzero meson supercurrent. In addition, a normal current is
generated which carries baryon and isospin charge. For both currents, there exist counter-
propagating currents such that the net current of the system is zero. This is reminiscent of
unconventional (anisotropic) superfluids and superconductors in condensed matter systems or
deconfined dense quark matter. In accordance with our results for the normal currents, we
have found that the baryon and isospin densities in the system, which obviously vanish without
a magnetic field, become nonzero once a magnetic field is switched on. As a consequence, also
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an electric charge appears in the sigma phase.
In the second phase, briefly termed pion phase, charged pions form a condensate. This

phase reacts very differently to a magnetic field. It acts as an electromagnetic superconductor,
and thus expels the magnetic field due to the Meissner effect. We have seen that the as-
sumption of a nonzero magnetic field would lead to infrared divergencies in the energy density
which cannot be removed by holographic renormalization. Therefore, we have introduced su-
percurrents which induce a magnetic field opposite, but equal in magnitude, to the externally
applied field. Then the total magnetic field in the π phase vanishes, and a consistent treatment
without divergencies is possible. In contrast to the σ phase, the π phase, due to the Meissner
effect, appears unaltered under the influence of a magnetic field. In particular, the baryon
number and all currents (except for the supercurrents cancelling the external magnetic field)
vanish.

Besides the calculation of the supercurrent and the observation of the Meissner effect in
the charged π condensate, the main result of Chapter 6 is the free energy comparison between
the two phases and the resulting phase diagram in the µB-µI plane. For a vanishing magnetic
field, a nonzero isospin chemical potential leads to the rotation of the sigma condensate into
a charged pion condensate. This is expected from studies using the same and other models
[92, 177, 179, 195]. In the present study, which does not include quark masses, this means that
in the absence of a magnetic field the pion condensate is favored over the sigma condensate in
the entire µB-µI plane. For a nonzero magnetic field the rotation is partially undone, i.e., for
a given external magnetic field, there is a region for sufficiently small µI where the σ phase is
favored over the π phase. This is not unlike the transition in a metal from its superconducting
to its normal conducting state. We have found that for small magnetic fields, the critical
magnetic field for this phase transition is linear in µI and independent of µB, Hc ∝ |µI |. As a
quantitative estimate from our result we have discussed that for magnetic fields on compact
star scales, the charged pion phase at nonzero µI is very robust. We have estimated that
magnetic fields of the order of 1018 G (well beyond surface magnetic fields of magnetars) are
needed to induce a phase transition from the π to the σ phase for isospin chemical potentials
of the order of 150 MeV.

There are several interesting extensions to our work. One may study the question whether the
solutions found here (anisotropic but homogeneous) are stable against formation of crystalline
structures. Moreover, since charged pion condensates have been found to behave as type-II
superconductors in conventional chiral models [186, 187, 188], it would be interesting to con-
sider inhomogeneous vortex-like configurations of magnetic fields. It is also important to check
whether the states we have described are stable with respect to other meson condensates. We
already know that without magnetic field a rho meson condensate is expected to form for
sufficiently large isospin chemical potentials [94].

One question posed in [34], how the magnetic field affects chiral symmetry restoration in
the Sakai-Sugimoto model, was answered in [196] where it was found that the addition of a
magnetic field decreases the critical chemical potential for chiral symmetry restoration. This
effect is called ”inverse magnetic catalysis”, in contrast to the usual ”magnetic catalysis”,
where a magnetic field favors the chirally broken phase for vanishing chemical potential.

7.3 Final remarks

To conclude let us make some final remarks. As we have pointed out several times, the
AdS/CFT correspondence is a duality between strongly coupled gauge theory and weakly
coupled string theory and vice versa. We have used the duality to gain insights into strongly
coupled matter by using supergravity and then translating it into the field theory quantities.
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There is huge progress in this field and recently it has also been applied to condensed matter
systems, such as high temperature superconductors and superfluids [164, 165]. One obstacle
that makes it difficult to come closer to the real world is the large N limit which is taken in all
the applications of the correspondence. Resolving this problem would be huge step towards a
gravity dual of QCD.

There is also the other side of the duality where one can use the field theory to learn
something about quantum gravity because all physical degrees of freedom from quantum grav-
ity are encoded in the boundary theory [197]. This approach turns out to be rather difficult
because it is not clear how local operators living on the boundary can be matched to local
observables living deep inside the bulk but it seems to be a promising way to learn something
about quantum gravity.

Despite these difficulties the AdS/CFT correspondence is one of the most ground breaking
discoveries in theoretical physics and will certainly surprise us many times on our way to
understand the laws of nature.
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Appendix A

Fields in AdS

In this appendix we want to illustrate how correlation functions are computed via the corre-
spondence (2.51).

A.1 Massless scalar field in AdS

We calculate the correlation function of a massless field in d+1 dimensional AdS space. Note
that in this appendix we will use the following notation

xµ = {z, ~x}, ~x = t, x1 ... xd−1, (A.1)

and we will work in Euclidean space Rn. We start with the action

S =
∫
dd+1x

√
g

(
1
2

(∂φ)2

)
, (A.2)

with the equation of motion
1√
g
∂µ (
√
g∂µφ(x)) = 0 (A.3)

We want to solve for φ(x) in terms of the boundary field φ0(x′), where x ∈ AdSd+1 and
x′ ∈ R, in order to compute the two point correlation function of the operator O in (2.51). To
do so we first look for a Green’s function K(z, ~x; ~x′) of the Laplace equation whose boundary
value is a delta function at the boundary:

�K(z, ~x; ~x′) = δd(~x− ~x′). (A.4)

Then we can construct the classical solution as

φ(z, ~x) =
∫
ddx′K(z, ~x; ~x′)φ0(~x′). (A.5)

To find this function it is convenient to use the metric (2.19). In this representation the
boundary consists of a copy of Rd, at z = 0, together with a single point P at z = ∞. Note
that the propagator is invariant under the isometry group of AdS space. We let the boundary
point ~x′ represent the point P at z = ∞: K(z, ~x; ~x′) = K(z, ~x;P ). Since the boundary
condition and the metric are invariant under translations of the ~x the propagator will also
have this symmetry and will be only a function of z.

Thus we seek a solution to the problem

d

dz
z−d+1 d

dz
K(z) = 0. (A.6)

123



We keep the solution that vanishes at the boundary z = 0, which is

K(z, ~x;P ) = czd, (A.7)

with c a constant. There is some sort of singularity at the boundary point P , since this
solution diverges at infinity. To show that this singularity is a delta function at the boundary
we make an SO(1, d+ 1) transformation (which is an isometry of AdS space and preserves the
parametrization space)

xµ →
xµ

z2 + ~x2
(A.8)

that maps P to the origin, P → ~x′ = 0, and transforms K(z, ~x;P ) to

K(z, ~x; 0) = c
zd

(z2 + ~x2)d
. (A.9)

From translational invariance on the boundary we find

K(z, ~x; 0) = c
zd

(z2 + |~x− ~x′|2)d
.

Now lets check if this is indeed proportional to a delta function at the boundary. Firstly, by
scaling, ~x→ ~x/z, we see that

c

∫
ddx

zd

(z2 + ~x2)d
→ c

∫
ddx

1
(1 + ~x2)n

= c
√
π

Γ
(
n− 1

2

)
Γ(n)

is independent of z and convergent. By requiring that above integral is equal to one the
integration constant can be fixed. Secondly, as z → 0, K vanishes except at ~x = 0. We
conclude that K becomes a delta function at the boundary supported at ~x = 0 with unit
coefficient if c is chosen properly.

Using this Greens function, the solution to the Laplace equation is

φ(z, ~x) =
Γ(d)

π
d
2 Γ
(
d− 1

2

) ∫ dd~x′
zd

(z2 + |~x− ~x′|2)d
φ0(~x′). (A.10)

In order to compute the two point function we need to evaluate the on shell action

S(φ) =
∫
dd+1xµ

√
g

(
1
2

(∂φ)2

)
=

1
2

∫
dd+1xµ z

1−d∂µφ∂µφ (A.11)

=
1
2

∫
dd+1xµ ∂µ

(
z1−dφ∂µφ

)
− 1

2

∫
dd+1xµ φ∂µ

(
z−d+1∂µφ

)
. (A.12)

The last term vanishes due to the equation of motions and the total derivative term vanishes
in all directions except in the z direction where we have the boundary. We are left with

S(φ) =
1
2

∫
dd~x z1−dφ(z, ~x)∂µφ(z, ~x)|z=ε, (A.13)

where we have introduced a cutoff to avoid divergencies. In the limit z → 0 we use φ0(z, ~x) =
φ0(~x) and evaluate

∂µφ(z, ~x) = c

∫
dd~x′

zn

(z2 + |~x− ~x′|2)d
φ0(~x′) (A.14)

=
Γ(d)

π
d
2 Γ
(
d− 1

2

)dzd−1

∫
dd~x′

φ0(~x′)

(|~x− ~x′|2)d
+O

(
zd+1

)
. (A.15)
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Inserting this into (A.13) we get for the on-shell action

S(φ) =
d

2
Γ(d)

π
d
2 Γ
(
d− 1

2

) ∫ dd~xdd~x′
φ0(~x)φ0(~x′)

(z2 + |~x− ~x′|2)d
, (A.16)

where the singular behavior for z → 0 dropped out. Plugging this action into (2.51) and taking
two derivatives w.r.t. the boundary fields we obtain the two point correlation function of the
operator O 〈

O(~x)O(~x′)
〉

=
Γ(d)

π
d
2 Γ
(
d− 1

2

) d

(|~x− ~x′|2)d
, (A.17)

as expected for a field of conformal dimension d.

A.2 Massive scalar field in AdS

Now we are ready to repeat the computation from the previous section for massive scalars
but now we are looking for a function that obeys the massive wave equation and behaves as
f−∆+φ0 at the boundary. Again the first step is to find a Green’s function only depending on
z that vanishes at the boundary except for one point P at z = ∞ where it becomes a delta
function. The action of a massive scalar in AdSd+1 is

S =
∫
dd+1xµ

√
g

(
1
2

(∂φ)2 +
1
2
m2φ2

)
, (A.18)

leading to the equation of motion(
zd+1 d

dz
z−d+1 d

dz
−m2

)
K(z) = 0. (A.19)

There are two linearly independent solutions of the form

K(z) ∼ zλ± , ∆± =
1
2

(
d±

√
d2 + 4m2

)
(A.20)

The solution that vanishes at z = 0 is K(z) = z∆+ but there is again some sort of singularity
at z = ∞. To show that this becomes a delta function we use the inversion transformation
(A.8)

K(z, ~x) = C
z∆+

(z2 + |~x− ~x′|)∆+
. (A.21)

Note that K does not tend to a delta function at z = 0 but

lim
z→0

z∆+−∆−

(z2 + ~x2)∆+
= Cδd(~x− ~x′) (A.22)

does, where we have used ∆+ = d −∆−. To see this one uses the same arguments as in the
previous section. C is a normalization constant given by

C = π
d
2

Γ
(
∆− 1

2

)
Γ(∆)

. (A.23)

Now we can build the classical solution

φ(z, ~x) = C−1z∆−

∫
dn~x′

z∆+−∆−

(z2 + |~x− ~x′|2)∆+
φ0(~x′). (A.24)
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The asymptotic solution near the boundary is given by

φ(z, ~x)|z→0 = C−1z∆−φ0(~x) + C−1z∆+

∫
dd~x′

φ0(~x′)
|~x− ~x′|2∆

. (A.25)

The boundary condition limz→0 Φ(z, ~x) = C−1z∆−φ0(~x) reflects the important point that the
theory on the boundary is only defined up to conformal transformations.

The dimension of the operator O can be obtained in the following way. We know from the
action (A.18) that the five dimensional scalar field is dimensionless and therefore we conclude
from (A.25) that the boundary field has dimension [length]−∆− . This implies, through the
right hand side of (2.51), that the associated operator O has mass dimension

∆ = d−∆− =
d

2
+

1
2

√
4 + 4m2 = ∆+. (A.26)

With the solution (A.24) we can evaluate the on shell action as in the massless case and find

S(φ0) = −
(

∆− d

2

)
π−

d
2 Γ(∆)

Γ
(
∆− 1

2

) ∫ dd~xdd~x′
φ0(~x)φ0(~x′)
|~x− ~x′|2∆

. (A.27)

Taking one derivative with respect to the source function φ0 gives the expectation value of the
operator of conformal dimension ∆ and taking two derivatives gives the two point function

〈
O(~x)

〉
=

2∆− d
C

∫
dd~x′

φ0(~x′)

(|~x− ~x′|2)∆
,

〈
O(~x)O(~x′)

〉
=

2∆− d
C

1

(|~x− ~x′|2)∆
, (A.28)

where we reinstalled the constant C.
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Appendix B

Supergravity solution

The supergravity action is given by

Sp =
1

2κ10

∫
d10x
√−g

[
e−2Φ

(
R+ 4(∇Φ)2

)
− 2

2(p+ 2)!
F 2
p+2

]
, (B.1)

where R is the Ricci scalar, Φ is the dilaton and Fp+2 = dCp+1 is the field strength of the
(p+1)-form potential. The equations of motion stemming from varying the action (B.1) are

Rµν + 2∇µ∇νΦ =
e2Φ

2(p+ 1)!

[
F 2
µν −

gµν
2(p+ 2)

F 2

]
(B.2)

d?Fp+2 = 0, R = 4(∇Φ)2 − 4�Φ . (B.3)

The solutions to these equations are given by

ds2 =

(
−f(u)dt2 + d~x2

p

)√
Hp(u)

+
√
Hp(u)

(
du2

f(u)
+ u2dΩ2

8−p

)
(B.4)

e−2φ = Hp(u)
p−3
2 , Hp(u) = 1 +

L7−p

u7−p , f(u) = 1− u7−p
0

u7−p , (B.5)

F01...pu = −

√
1 +

u7−p
0

L7−p
H ′p(u)
H2
p (u)

. (B.6)

In order to calculate the RR-charge we need to impose Dirac’s quantization condition: We
integrate 1

κ10

?
Fp+2 over S8−p and set it equal to an integer times the tension. We obtain

N =
(7− p)Ω2

8−p
2κ2

10Tp
L(7−p)/2

√
u7−p

0 + L7−p. (B.7)

The ADM mass of the solution is

M =
Ω8−pVp

2κ2
10

[
(8− p)u7−p

0 + (7− p)L7−p
]
. (B.8)

In order to understand the geometry better its useful to change coordinates to extend the
metric past u = 0.

ρ7−p = L7−p + u7−p, r− = L, r7−p
+ = u7−p

0 + L7−p (B.9)

The metric now becomes

ds2 = − f+(ρ)√
f−(ρ)

dt2 +
√
f−(ρ)d~x2

p +
f−(ρ)−

1
2
− 5−p

7−p

f+(ρ)
+ r2f−(ρ)

1
2
− 5−p

7−pdΩ2
8−p, (B.10)
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where the dilaton and harmonic functions are given by

e−Φ = g−2
s f−(ρ)−

p−3
2 , f±(ρ) = 1−

(
r±
ρ

)7−p
. (B.11)

The parameters r+ and r− are related to the ADM mass and the RR-charge N of the solution
by

M =
Ω8−pVp

2κ2
10

[
(8− p)r7−p

+ − r7−p
−

]
, N =

(7− p)Ω2
8−p

2κ2
10Tp

(r+r−)(7−p)/2. (B.12)

The metric (B.10) has a horizon at ρ = r+ and a curvature singularity at ρ = r− for p ≤ 6. For
an acceptable brane solution we must have r+ ≥ r−, otherwise we will have a naked singularity.
The condition r+ ≥ r− translates into an inequality between the mass M and the R-R charge
N . For a fixed value of N , according to (B.12), the mass is an increasing function of r+ and
takes the form

M ≥ TpVpN. (B.13)

Solutions whose mass is at the lower bound, r+ = r− (or equivalently u0 = 0), are called
extremal p-branes. Equation (B.13) is also the BPS bound with respect to the 10-dimensional
supersymmetry. In supersymmetry a BPS state is a state that carries conserved charges and
the supersymmetry algebra determines the mass of the state in terms of its charges. In what
follows we will always consider extremal or near-extremal p-branes. For extremal p-branes the
metric (B.4) takes the form

ds2 = H(u)−
1
2
(
−dt2 + d~x2

p

)
+Hp(u)

1
2
(
du2 + u2dΩ2

8−p
)
. (B.14)

The region around u = 0 is known as the ”throat” of the solution or its near horizon region.
From (B.7) we see that the throat size L is proportional to the charge

(
L

2πls

)7−p
=

gsN

7− p
Γ
[

9−p
2

]
2π(9−p)/2 . (B.15)

This relation is very important for the AdS/CFT correspondence because it gives a relation
between supergravity and field theory quantities. For near extremal p-branes the horizon is
located far down its throat. This means that we can use the throat approximation u� L and
the metric becomes

ds2 =
(u
L

) 7−p
2 (
−f(u)dt2 + d~x2

p

)
+
(
L

u

) 7−p
2
(
du2

f(u)
+ u2dΩ2

8−p

)
(B.16)

B.1 Important Relations

2κ10 = 2κ2
0g

2
s = 16πGN = (2π)7α′4g2

s (B.17)

Ωn =
2π(n+1)/2

Γ[(n+ 1)/2]
(B.18)

Gd =
G10

(2π)10−dV10−d
(B.19)

TDp =
√
π

κ10(2πls)p−3
=

1
(2π)pgsl

p+1
s

(B.20)
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Appendix C

Equation of motions and solutions
for the Sakai-Sugimoto model

C.1 General form of equations of motion

Here we present the general form of the variations of the Yang-Mills Lagrangian LYM and the
Chern-Simons Lagrangian LCS (which can be read off from Eqs. (5.2a) and (5.2b)) for the
chirally broken phase. The variation of the Yang-Mills Lagrangian is

δLYM

δAaλ
= −2T8V4(2πα′)2Tr

[
(ta∂ρ − i[ta,Aρ])e−Φ√g gµλgρσFσµ

]
, (C.1)

where the greek indices run over 0, 1, 2, 3, u, and where t0 ≡ 1/2, ta ≡ τa/2, according to the
convention (4.16). Consequently,

− 3u3/2
KK

4κM2
KK

δLYM

δÂ0

= ∂u

(
u5/2f1/2

v
F̂u0

)
+ ∂i

(
R3v

u1/2f1/2
F̂i0

)
, (C.2a)

− 3u3/2
KK

4κM2
KK

δLYM

δÂi
= ∂u

(
u5/2f1/2

v
F̂ui

)
+ ∂0

(
R3v

u1/2f1/2
F̂0i

)
+ ∂j

(
R3v

u1/2f1/2
F̂ji

)
,(C.2b)

− 3u3/2
KK

4κM2
KK

δLYM

δÂu
= ∂0

(
u5/2f1/2

v
F̂0u

)
+ ∂i

(
u5/2f1/2

v
F̂iu

)
, (C.2c)

and

− 3u3/2
KK

4κM2
KK

δLYM

δAa0
= (δac∂u +Abuεabc)

u5/2f1/2

v
F cu0 + (δac∂i +Abiεabc)

R3v

u1/2f1/2
F ci0 , (C.3a)

− 3u3/2
KK

4κM2
KK

δLYM

δAai
= (δac∂u +Abuεabc)

u5/2f1/2

v
F cui + (δac∂0 +Ab0εabc)

R3v

u1/2f1/2
F c0i

+ (δac∂j +Abjεabc)
R3v

u1/2f1/2
F cji , (C.3b)

− 3u3/2
KK

4κM2
KK

δLYM

δAau
= (δac∂0 +Ab0εabc)

u5/2f1/2

v
F c0u + (δac∂i +Abiεabc)

u5/2f1/2

v
F ciu , (C.3c)

where the indices i, j, k run over 1,2,3, and where we used

T8V4(2πα′)2R3/2

gs
=

4κM2
KK

3u3/2
KK

, (C.4)
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with κ defined in Eq. (4.22).
The variations of the Chern-Simons Lagrangian with respect to the 1 and τ3 components

are

δLCS

δÂµ
= −iκα

4
(F aνρF

a
σλ + F̂νρF̂σλ)εµνρσλ , (C.5a)

δLCS

δAaµ
= −iκα

2
F̂νρF

a
σλε

µνρσλ , (C.5b)

with α defined in Eq. (6.6). Consequently,

δLCS

δÂ0

= iκα(F auiF
a
jk + F̂uiF̂jk)εijk , (C.6a)

δLCS

δÂi
= iκα

(
2F aj0F

a
uk − F au0F

a
jk + 2F̂j0F̂uk − F̂u0F̂jk

)
εijk , (C.6b)

δLCS

δÂu
= iκα(F ai0F

a
jk + F̂i0F̂jk)εijk , (C.6c)

and

δLCS

δAa0
= iκα(F auiF̂jk + F ajkF̂ui)ε

ijk , (C.7a)

δLCS

δAai
= iκα

(
2F aukF̂j0 − F ajkF̂u0 + 2F aj0F̂uk − F au0F̂jk

)
εijk , (C.7b)

δLCS

δAau
= iκα(F ai0F̂jk + F ajkF̂i0)εijk . (C.7c)

As mentioned in the Chapter 4, we consider maximally separated branes L = π/MKK, for
which the embedding of the D8-branes is trivial, ∂ux4 = 0, and thus v = 1 (see Eq. (4.12)).
This simplifies the above expressions and also ensures that there is no equation of motion for
x4(u). The expressions (C.2), (C.3), (C.6), (C.7) are used in Sec. 6.1.1 to derive the field
equations for our specific ansatz.

C.2 Solving the equations of motion for constant magnetic
fields

In this appendix we solve the equations of motion for a constant magnetic field for general
boundary conditions. The resulting general expressions are instructive to see the structure
and symmetries of the solution. By inserting the boundary conditions from Table 6.1 into the
general expressions we obtain the solution for the sigma phase, see Eqs. (6.27) (the charged
pion condensate requires a nonconstant magnetic field and is discussed in Appendix C.3). The
general boundary conditions used here are denoted by

Â0(±∞) = µL,RB , A0(±∞) = µL,RI , (C.8a)

Â3(±∞) = ̂L,R , A3(±∞) = L,R , (C.8b)

where the upper (lower) sign corresponds to R (L). It is convenient to express the boundary
values in terms of their sums and differences,

µVB,I ≡
µRB,I + µLB,I

2
, µAB,I ≡

µRB,I − µLB,I
2

, (C.9a)

Ĵ ≡ ̂R + ̂L

2
, ̂ ≡ ̂R − ̂L

2
, J ≡ R + L

2
,  ≡ R − L

2
. (C.9b)
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Here, V and A stand for the vector and axial parts of the chemical potentials.
The general solution for (6.24) with the magnetic field (6.25) is

F+
0 = c1ζ

−1
+ + c2ζ+ , F−0 = d1ζ

−1
− + d2ζ− , (C.10a)

F+
3 = −c1ζ

−1
+ + c2ζ+ , F−3 = −d1ζ

−1
− + d2ζ− , (C.10b)

with constants c1, c2, d1, d2 and with

ζ±(z) ≡ e(B̂±B) arctan z . (C.11)

Consequently, from Eqs. (6.23) we obtain

kF̂z0 = c1ζ
−1
+ + c2ζ+ + d1ζ

−1
− + d2ζ− , (C.12a)

kFz0 = c1ζ
−1
+ + c2ζ+ − d1ζ

−1
− − d2ζ− , (C.12b)

kF̂z3 = −c1ζ
−1
+ + c2ζ+ − d1ζ

−1
− + d2ζ− , (C.12c)

kFz3 = −c1ζ
−1
+ + c2ζ+ + d1ζ

−1
− − d2ζ− . (C.12d)

Here and in the remainder of this and the following appendices we often omit the argument
z in the various functions for the sake of brevity. For the integration of the field strengths we
use ∫

dz
ζ±(z)
k(z)

=
ζ±(z)
B̂ ±B

,

∫
dz
ζ−1
± (z)
k(z)

= −ζ
−1
± (z)

B̂ ±B
. (C.13)

This yields the gauge fields

Â0 = − c1ζ
−1
+

B̂ +B
+

c2ζ+

B̂ +B
− d1ζ

−1
−

B̂ −B
+

d2ζ−

B̂ −B
+ â0 , (C.14a)

A0 = − c1ζ
−1
+

B̂ +B
+

c2ζ+

B̂ +B
+
d1ζ
−1
−

B̂ −B
− d2ζ−

B̂ −B
+ a0 , (C.14b)

Â3 =
c1ζ
−1
+

B̂ +B
+

c2ζ+

B̂ +B
+
d1ζ
−1
−

B̂ −B
+

d2ζ−

B̂ −B
+ â3 , (C.14c)

A3 =
c1ζ
−1
+

B̂ +B
+

c2ζ+

B̂ +B
− d1ζ

−1
−

B̂ −B
− d2ζ−

B̂ −B
+ a3 , (C.14d)

with integration constants â0, a0, â3, a3. We determine the eight constants from the eight
boundary conditions (C.8). This yields the gauge fields

Â0 = µVB −
µAB
2

(S+ + S−)− µAI
2

(S+ − S−)

− ̂

2
(C+ + C− − T+)− 

2
(C+ − C− − T−) , (C.15a)

A0 = µVI −
µAI
2

(S+ + S−)− µAB
2

(S+ − S−)

− 

2
(C+ + C− − T+)− ̂

2
(C+ − C− − T−) , (C.15b)

Â3 = Ĵ − ̂

2
(S+ + S−)− 

2
(S+ − S−)

− µ
A
B

2
(C+ + C− − T+)− µAI

2
(C+ − C− − T−) , (C.15c)

A3 = J − 

2
(S+ + S−)− ̂

2
(S+ − S−)

− µ
A
I

2
(C+ + C− − T+)− µAB

2
(C+ − C− − T−) , (C.15d)

and (k(z) times) the field strengths
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kF̂z0 = −µ
A
B

2

[
B̂(C+ + C−) +B(C+ − C−)

]
− µAI

2

[
B̂(C+ − C−) +B(C+ + C−)

]
− ̂

2

[
B̂(S+ + S−) +B(S+ − S−)

]
− 

2

[
B̂(S+ − S−) +B(S+ + S−)

]
, (C.16a)

kFz0 = −µ
A
B

2

[
B̂(C+ − C−) +B(C+ + C−)

]
− µAI

2

[
B̂(C+ + C−) +B(C+ − C−)

]
− ̂

2

[
B̂(S+ − S−) +B(S+ + S−)

]
− 

2

[
B̂(S+ + S−) +B(S+ − S−)

]
, (C.16b)

kF̂z3 = −µ
A
B

2

[
B̂(S+ + S−) +B(S+ − S−)

]
− µAI

2

[
B̂(S+ − S−) +B(S+ + S−)

]
− ̂

2

[
B̂(C+ + C−) +B(C+ − C−)

]
− 

2

[
B̂(C+ − C−) +B(C+ + C−)

]
, (C.16c)

kFz3 = −µ
A
B

2

[
B̂(S+ − S−) +B(S+ + S−)

]
− µAI

2

[
B̂(S+ + S−) +B(S+ − S−)

]
− ̂

2

[
B̂(C+ − C−) +B(C+ + C−)

]
− 

2

[
B̂(C+ + C−) +B(C+ − C−)

]
,(C.16d)

where the functions C±(z), S±(z), and T± are defined in Eqs. (6.28). As it should be, the
gauge fields (C.15) transform as a vector under a parity transformation once we impose the
physical boundary conditions of the σ condensate which imply µAB = µAI = 0. This can be
seen as follows. A parity transformation is given by (x1, x2, x3, z) → (−x1,−x2,−x3,−z). In
particular, the transformation z → −z implies a chirality transformation L→ R since the two
halves of the D8/D8-branes, namely z > 0 and z < 0, correspond to right- and left-handed
fermions. Consequently, a parity transformation acts as C±(z) → +C±(z), S±(z) → −S±(z)
(since the magnetic fields B̂, B are even under parity). For the supercurrents we have ̂,  →
+̂,+ and Ĵ , J → −Ĵ ,−J . Here we have used that the Goldstone boson is a pseudoscalar
(for a detailed discussion of the parity of the mesons in the Sakai-Sugimoto model see Ref.
[29]). As a result we see that the temporal components (C.15a), (C.15b) have even parity,
while the spatial components (C.15c), (C.15d) have odd parity. This statement is true for
arbitrary values of the currents ̂, , Ĵ , J . We shall see below that in the case of a charged pion
condensate the requirement of a well-defined parity results in conditions for the supercurrents,
see discussion below Eq. (C.33).

In order to compute the free energy we note that

C2
± − S2

± =
1

sinh2[π(B̂ ±B)/2]
. (C.17)

Therefore, the following combination of field strengths, needed for the free energy, becomes
independent of z,

k2
(
−F̂ 2

z0 − F 2
z0 + F̂ 2

z3 + F 2
z3

)
= [(̂+ )2 − (µAB + µAI )2]

(B̂ +B)2

2 sinh2[π(B̂ +B)/2]

+ [(̂− )2 − (µAB − µAI )2]
(B̂ −B)2

2 sinh2[π(B̂ −B)/2]
. (C.18)

Next we use the fact that S± and C± are antisymmetric and symmetric in z, respectively, as
well as

C±(∞) = coth
π(B̂ ±B)

2
, S±(∞) = 1 , (C.19)
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small B̂, B large |B̂|, |B|
|B̂| > |B| |B̂| < |B|

ρ±
6
π

+
π(B̂ ±B)2

6
2|B̂ ±B|

ρ
12
π

+
5B̂2 +B2

15
π 4|B̂| 2(|B̂|+ |B|)

η+
πB̂B

3
2B sgn B̂ B sgn B̂ + B̂ sgnB

η− 2B̂ 2B̂ (|B̂|+ |B|) sgn B̂

Table C.1: Behavior of the functions ρ, ρ±, η±, defined in Eqs. (6.30), (6.43) for small and
large magnetic fields B̂, B. We have kept relative magnitude and sign of baryon and isospion
components arbitrary. They can then later be inserted according to the electric charges of the
quarks. We show the behavior for small magnetic fields up to second order and the behavior
for large magnetic fields in leading linear order.

to obtain (
Â0kF̂z0 +A0kFz0 − Â3kF̂z3 −A3kFz3

)z=∞
z=−∞

= −2µVB(̂B̂ + B)− 2µVI (̂B + B̂) + 2Ĵ(µABB̂ + µAI B) + 2J(µABB + µAI B̂)

+ [(µAB + µAI )2 − (̂+ )2](B̂ +B) coth
π(B̂ +B)

2

+ [(µAB − µAI )2 − (̂− )2](B̂ −B) coth
π(B̂ −B)

2
. (C.20)

Inserting Eqs. (C.18) and (C.20) into Eq. (6.10) yields the free energy

Ω =
κM2

KK

6

{ [
(+ ̂)2 − (µAB + µAI )2

]
ρ+ +

[
(− ̂)2 − (µAB − µAI )2

]
ρ−

+µVB(̂B̂ + B) + µVI (̂B + B̂)

− Ĵ(µABB̂ + µAI B)− J(µABB + µAI B̂)
}
, (C.21)

with ρ± defined in Eq. (6.30). For the behavior of ρ± for small and large magnetic fields see
Table C.1. We see that if we allowed for nonzero axial chemical potentials µAB, µAI , the free
energy would be unbounded from below in the directions of the sum of left- and right-handed
supercurrents Ĵ and J . However, in the physical case of the σ condensate where µAB = µAI = 0
the free energy remains bounded and independent of Ĵ and J . The latter is a manifestation
of a residual gauge symmetry (“residual” since we have already employed the gauge Az = 0),
i.e., we can choose a gauge where Ĵ = J = 0. This is in accordance with the discussion in Ref.
[29], see in particular Eq. (5.23) in this reference.

Minimization of Ω with respect to the currents ̂,  yields

̂ = −µ
V
B + µVI

2
B̂ +B

ρ+
− µVB − µVI

2
B̂ −B
ρ−

, (C.22a)

 = −µ
V
B + µVI

2
B̂ +B

ρ+
+
µVB − µVI

2
B̂ −B
ρ−

, (C.22b)
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and the minimum of the free energy becomes (with µAB = µAI = 0)

Ω0 = −κM
2
KK

6

[
(µVB + µVI )2 (B̂ +B)2

ρ+
+ (µVB − µVI )2 (B̂ −B)2

ρ−

]
. (C.23)

C.3 Solving the equations of motion for nonconstant magnetic
fields

In this appendix we present the general solution to the differential equations (6.24) for the
case of a nonconstant isospin magnetic field given in Eq. (6.38). The general expressions given
below reduce to the results for the charged pion phase upon inserting the specific boundary
conditions from the second row of Table 6.1. The general boundary conditions considered here
are the same as the ones given in Eqs. (C.8).

Then, the solution of (6.24) has the same form as given in Eqs. (C.10) and (C.12), with
ζ±(z) replaced by

ζ̃±(z) ≡ e(B̂±B
π

arctan z) arctan z . (C.24)

To obtain the gauge fields we need

∫
dz
ζ̃+(z)
k(z)

= P+(z) ,
∫
dz
ζ̃−1
− (z)
k(z)

= −P−(z) , (C.25a)∫
dz
ζ̃−1

+ (z)
k(z)

= Q+(z) ,
∫
dz
ζ̃−(z)
k(z)

= −Q−(z) , (C.25b)

with P±, Q± given in Eqs. (6.41). We shall denote Q+
± ≡ Q±(+∞), Q−± ≡ Q±(−∞), P+

± ≡
P±(+∞), P−± ≡ P±(−∞), and use P±− = P∓+ , Q±− = Q∓+. Hence we can express the values of
P−, Q− at z = ±∞ through the values of P+, Q+ at z = ∓∞. Then, after determining the
integration constants from the boundary conditions we can write the gauge fields as

Â0 = µVB −
µAB
2

(S̃+ + S̃−)− 

2
(S̃+ − S̃−)

− µ
A
I

2
(C̃+ + C̃− − T̃+)− ̂

2
(C̃+ − C̃− − T̃−) , (C.26a)

A0 = µVI −
µAI
2

(S̃+ + S̃−)− ̂

2
(S̃+ − S̃−)

− µ
A
B

2
(C̃+ + C̃− − T̃+)− 

2
(C̃+ − C̃− − T̃−) , (C.26b)

Â3 = Ĵ − ̂

2
(S̃+ + S̃−)− µAI

2
(S̃+ − S̃−)

− 

2
(C̃+ + C̃− − T̃+)− µAB

2
(C̃+ − C̃− − T̃−) , (C.26c)

A3 = J − 

2
(S̃+ + S̃−)− µAB

2
(S̃+ − S̃−)

− ̂

2
(C̃+ + C̃− − T̃+)− µAI

2
(C̃+ − C̃− − T̃−) , (C.26d)
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and the field strengths as

kF̂z0 = −µ
A
B

2
(c+ + c−)− 

2
(c+ − c−)− µAI

2
(s+ + s−)− ̂

2
(s+ − s−) , (C.27a)

kFz0 = −µ
A
I

2
(c+ + c−)− ̂

2
(c+ − c−)− µAB

2
(s+ + s−)− (s+ − s−) , (C.27b)

kF̂z3 = − ̂
2

(c+ + c−)− fracµAI 2(c+ − c−)− 

2
(s+ + s−)− µAB

2
(s+ − s−) , (C.27c)

kFz3 = − 
2

(c+ + c−)− µAB
2

(c+ − c−)− ̂

2
(s+ + s−)− µAI

2
(s+ − s−) , (C.27d)

where C̃±, S̃±, and T̃± are defined in Eqs. (6.40), and where

c+(z) ≡ ζ̃+(z) + ζ̃−1
− (z)

P+
+ − P−+

, c−(z) ≡ ζ̃−1
+ (z) + ζ̃−(z)
Q+

+ −Q−+
, (C.28a)

s+(z) ≡ ζ̃+(z)− ζ̃−1
− (z)

P+
+ − P−+

, s−(z) ≡ ζ̃−1
+ (z)− ζ̃−(z)
Q+

+ −Q−+
. (C.28b)

(These additional definitions were not necessary in the case of constant magnetic fields, since
there the integration of the solution could be expressed in terms of the same functions as the
solution itself.)

We now have to check the behavior of the gauge fields (C.26) under a parity transformation.
For the pion phase we have µAB = µVI = 0. We have to require Â0 → +Â0, A0 → −A0,
Â3 → −Â3, A3 → +A3 (note the additional “twist” for the isospin components originating
from the isospin rotation explained in Sec. 6.2.1). Since C̃±(z)→ +C̃±(z), S̃±(z)→ −S̃±(z),
and ̂, → +̂,+ and Ĵ , J → −Ĵ ,−J under a parity transformation, we have to require

J =  = 0 . (C.29)

We shall continue with the general solution but have to keep this condition in mind for the
final result.

For the free energy we first note that the following combinations are independent of z,

c+c− + s+s− =
4

(P+
+ − P−+ )(Q+

+ −Q−+)
, s+c− + s−c+ = 0 . (C.30)

Then, we find

k2
(
−F̂ 2

z0 − F 2
z0 + F̂ 2

z3 + F 2
z3

)
= 16

(̂2 + 2)− [(µAB)2 + (µAI )2]
(P+

+ − P−+ )(Q+
+ −Q−+)

. (C.31)

Next we use that c± and s± are symmetric and antisymmetric in z, respectively, and denote
c+
± ≡ c±(∞) = c±(−∞), s+

± ≡ s±(∞) = −s±(−∞). Then,(
Â0kF̂z0 +A0kFz0 − Â3kF̂z3 −A3kFz3

)z=∞
z=−∞

= (s+
+ + s+

−)(Ĵ + ̂J − µVBµAI − µVI µAB) + (s+
+ − s+

−)(ĴµAB + JµAI − ̂µVB − µVI )

+(c+
+ + c+

−)[(µAB)2 + (µAI )2 − (̂2 + 2)] . (C.32)

Inserting this into the free energy (6.10) yields

Ω =
κM2

KK

6

{ [
̂2 + 2 − (µAB)2 − (µAI )2

]
ρ+ 2(µVBµ

A
I + µVI µ

A
B) η+ + 2(µVB ̂+ µVI ) η−

− 2Ĵ(µABη− + η+)− 2J(µAI η− + ̂η+)
}
, (C.33)
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with ρ and η± ≡ s+
+ ± s+

− given in Eqs. (6.43); their behavior for small and large magnetic
fields can be found in Table C.1. As in the case of constant magnetic fields discussed in the
previous appendix, see Eq. (C.21), the free energy is unbounded from below without further
constraints. This can be seen by computing the matrix of second derivatives ∂2Ω/(∂xm∂xn)
with xm, xn = ̂, , Ĵ , J . This matrix has eigenvalues 2κM2

KK/3 [ρ ± (ρ2 + 4η2
+)1/2], two of

which are negative for all magnetic fields. However, we already know from the requirement
of a well-defined parity of the gauge fields that J =  = 0. Then, with µAB = µVI = 0, as
required for the charged pion condensate, we see that the free energy becomes bounded from
below. The only remaining current with respect to which we need to minimize the free energy
is then ̂. The sum of left- and right-handed currents, Ĵ , remains undetermined, which is, as
mentioned for the case of the sigma phase below Eq. (C.21), a consequence of the residual
gauge freedom. We may thus set Ĵ = 0.

We can now minimize with respect to ̂,

̂ = −µVB
η−
ρ
, (C.34)

and insert this back into the free energy,

Ω0 = −κM
2
KK

6

{
(µVB)2 η

2
−
ρ

+ (µAI )2ρ+ 2η+µ
V
Bµ

A
I

}
. (C.35)

C.4 Equations of motion and free energy in the chirally re-
stored phase

Within our approximation of treating the flavor branes as probe branes, the free energies
discussed in the main part of the paper are negligible for the finite-temperature phase transition
to the chirally restored phase. It is rather the background geometry which is responsible for
this phase transition [21, 88]. Therefore, our approach cannot show magnetic-field induced
corrections beyond the order of Nf/Nc to the critical temperature Tc for chiral symmetry
breaking. This is different when the D8 and D8-branes are not maximally separated in the
extra dimension [123, 198].

Therefore, in this appendix we simply give the equations of motion and the free energy
for the chirally restored phase without discussing the solutions. We do so for the sake of
completeness but also because these expressions may be useful to compute possible small
corrections to Tc of the order of Nf/Nc. One might then speculate whether these corrections
persist for smaller and thus more realistic values of Nc. We leave such a study for the future.

The derivation of the equations of motion and the free energy of the chirally restored phase
is analogous to the one for the confined phase given in Section 6.1.2 and Appendix C.1. The
only difference is the use of the metric (4.11b) instead of (4.11a) and Eq. (4.8) instead of (4.5).
We use the same coordinate transformation as in the chirally broken phase, i.e., Eq. (4.19)
with uKK replaced by uT and with z ∈ [0,∞]. This is not really a simplifiaction in this case
but it helps to compare the result to the one for the chirally broken phase. We find for the
equations of motion

∂z[k3(z)∂z b̂] = ∂z[k3(z)∂zb] = 0 , (C.36)
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and

∂z[k0(z)F̂z0] =
αMKKu

2
T

(2πT )3

[
b(z)Fz3 + b̂(z)F̂z3

]
, (C.37a)

∂z[k0(z)Fz0] =
αMKKu

2
T

(2πT )3

[
b(z)F̂z3 + b̂(z)Fz3

]
, (C.37b)

∂z[k3(z)F̂z3] =
αMKKu

2
T

(2πT )3

[
b(z)Fz0 + b̂(z)F̂z0

]
, (C.37c)

∂z[k3(z)Fz3] =
αMKKu

2
T

(2πT )3

[
b(z)F̂z0 + b̂(z)Fz0

]
. (C.37d)

In contrast to the confined phase, there are now two different functions appearing for the
temporal and spatial components,

k0(z) ≡ (u3
T + uT z

2)3/2

z u
1/2
T

, k3(z) ≡ z u1/2
T (u3

T + uT z
2)1/2 . (C.38)

The free energy becomes

Ωdeconf = Ωdeconf
g + Ωdeconf

b +
κ(2πT )3

3MKKu2
T

∫ ∞
0

dz
[
−k0(z)(F̂ 2

z0 + F 2
z0) + k3(z)(F̂ 2

z3 + F 2
z3)
]

− 2κ(2πT )3

3MKKu2
T

[
k0(z)(Â0F̂z0 +A0Fz0)− k3(z)(Â3F̂z3 −A3Fz3)

]z=+∞

z=0
, (C.39)

where

Ωdeconf
g ≡ 32κ(2πT )3

9(2πα′)2u2
TMKK

∫ ∞
0

dz z u
3/2
T (u3

T + uT z
2)1/6 , (C.40a)

Ωdeconf
b ≡ κ(2πT )

MKK
(B̂2 + B2)

∫ ∞
0

dz z u
1/2
T (u3

T + uT z
2)−5/6 . (C.40b)

Here we have assumed the magnetic field to be constant in z, b̂(z) = B̂, b(z) = B, which solves
Eq. (C.36). We see that at the critical temperature where 2πT = MKK and thus uT = uKK the
free energy assumes a form very similar to the one in the confined phase. The only differences
are then the functions k0(z) and k3(z) (vs. the single function k(z) in the confined phase) and
the different integrands in Ωg and Ωb.

C.5 Phase diagram with modified action

The modified action (5.53) suggested in [91] restores thermodynamic consistency in the sense
that the number densities defined via the thermodynamic potential agree with the holographic
definition (5.6). However, one looses the axial anomaly, see Section 5.2.3. Since there has not
been a resolution to this problem, we present here the main results of (6) with the modified
action for comparison.

The modified action is given by

S̃ = SYM +
3
2
SCS , (C.41)

where SYM and SCS are given by (5.2a) and (5.2b) respectively. By using the equation of
motion the YM part of the action drops out and only boundary terms survive. The action is
given by

Ω̃ =
κM2

KK

u2
KK

[
k(z)(Â0F̂z0 +A0Fz0 − Â3F̂z3 −A3Fz3)

]z=+∞

z=−∞
. (C.42)
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Figure C.1: Phase diagram for the σ and π phases in the plane of baryon and isospin chemical
potentials with the modified action with the same values for the magnetic field and units as
in Figure 6.6. This diagram almost coincides with Figure 6.6, with the only difference that
the bending of the first order phase transition line sets in earlier but is still only visible for
magnetic fields several times larger than those expected in compact stars. For Hem = 5 the
interval for µI where the phase transition lies is twice as the interval in Figure 6.6.

With the solutions for the gauge fields (6.27) and fieldstrengths (C.16) we obtain

Ω̃ =
κ

2

{
2˜̂(µBB̃ + µIB) + 2̃(µIB̂ + µBB) + (˜̂+ ̃)2(B̂ +B) coth

[π
2

(B̂ +B)
]
(C.43)

+ (˜̂− ̃)2(B̂ −B) coth
[π

2
(B̂ −B)

]}
. (C.44)

Minimizing with respect to the supercurrents yields

˜̂ = −µB + µI
4

tanh
[π

2
(B̂ +B)

]
− µB − µI

4
tanh

[π
2

(B̂ −B)
]
, (C.45a)

 = −µB + µI
4

tanh
[π

2
(B̂ +B)

]
+
µB − µI

4
tanh

[π
2

(B̂ −B)
]
. (C.45b)

Inserting this back into Ω̃ yields the free energy at the minimum

Ω̃σ =
κMKK

2

[
(B̂ +B)(µB + µI)2 tanh

[π
2

(B̂ +B)
]

+ (B̂ −B)(µB − µI)2 tanh
[π

2
(B̂ −B)

]]
.

(C.46)
Now one can check that the 0-component of the four current (6.33) agrees with the definition
via the free energy

J̃ 0
L + J̃ 0

R = − ∂Ω̃
∂µB

− ∂Ω̃
∂µI

τ3, (C.47)

and therefore thermodynamic consistency is ensured.
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C.6 Solving the equations of motion with electric field

C.6.1 Chirally broken phase

In this appendix we solve the equations of motion in the broken phase, eqs. (5.24). The
equation of motion for Az (5.24c) is trivially integrated with respect to time t to yield

k∂zA0 = −2βte(z) + k∂zÃ0 , (C.48)

where we have denoted e(z) ≡ −∂tA3 and where we have written the t-independent integration
constant as k∂zÃ0, to be determined below. Inserting this into eqs. (5.24a) and (5.24b) yields

∂z(k∂zÃ0) = 2β∂zA3 + 2βt∂ze , (C.49a)

∂z(k∂zA3) = 2β∂zÃ0 − (2β)2t
e(z)
k(z)

. (C.49b)

Since the left-hand side of eq. (C.49a) does not depend on t, the right-hand side must be
independent of t too which implies

∂zA3 = −t∂ze+ ∂zÃ3 , (C.50)

where we have written the t-independent part as ∂zÃ3. Consequently, eqs. (C.49a) and (C.49b)
become

∂z(k∂zÃ0) = 2β∂zÃ3 , (C.51a)

∂z(k∂zÃ3) = 2β∂zÃ0 − t
[
(2β)2 e(z)

k(z)
− ∂z(k∂ze)

]
. (C.51b)

Now the square bracket on the right-hand side of eq. (C.51b) must vanish because all other
terms in the equation do not depend on t. This yields a differential equation for e(z). Since
e(z) = −∂tA3, the boundary conditions for A3 (5.22) imply e(±∞) = E ∓ (ε− 1), where we
have decomposed the supercurrent as

t = + 1t , (C.52)

with , 1 being t-independent. With these boundary conditions the equation for e(z) is solved
by

e(z) = E
cosh(2β arctan z)

coshβπ
− (ε− 1)

sinh(2β arctan z)
sinhβπ

. (C.53)

To find the solution for A0 and A3 we first conclude from eqs. (C.48) and (C.50),

A0(t, z) = Ã0(z) + g0(t)

−t
[
E

sinh(2β arctan z)
coshβπ

− (ε− 1)
cosh(2β arctan z)

sinhβπ

]
, (C.54a)

A3(t, z) = Ã3(z)− t
[
E

cosh(2β arctan z)
coshβπ

− (ε− 1)
sinh(2β arctan z)

sinhβπ

]
. (C.54b)

From the z-integration in eq. (C.48) we have obtained a t-dependent integration constant g0(t).
Such a constant is not permissible in A3 because of the constraint e(z) = −∂tA3. Integration
constants independent of z and t are included in Ã0(z), Ã3(z). We shall fix g0(t) = 1t cothβπ.
This removes the supercurrent from the vector boundary value of A0(t, z). We cannot at the
same time remove the axial field ε from this boundary value. This becomes clear in hindsight
after determining t from minimization of the free energy. Only with the given choice of g0(t)
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this minimization leads to a consistent, i.e., time-independent, result for , 1. It is thus
unavoidable for the boundary values of A0(t, z) to become time-dependent,

A0(t, z = ±∞) = µt ∓ µ5,t , (C.55)

where we defined
µt ≡ µ+ tε cothβπ , µ5,t ≡ µ5 + tE tanhβπ . (C.56)

We have now reduced the equations of motion (C.51) to equations for Ã0(z), Ã3(z) which are
simply the gauge fields in the absence of an electric field. These equations can be solved in
general,

Ã0(z) = a0 −
c

2β
e−2β arctan z +

d

2β
e2β arctan z , (C.57a)

Ã3(z) = a3 +
c

2β
e−2β arctan z +

d

2β
e2β arctan z , (C.57b)

with integration constants a0, a3, c, and d which are fixed by the boundary conditions
Ã0(±∞) = µ ∓ µ5, Ã3(±∞) = ∓. The resulting gauge fields Ã0(z), Ã3(z) are then inserted
into the gauge fields A0(t, z) A3(t, z) from eqs. (C.54) to obtain the final solution

A0(t, z) = µt − µ5,t
sinh(2β arctan z)

sinhβπ

−(t − εt)
[

cosh(2β arctan z)
sinhβπ

− cothβπ
]
, (C.58a)

A3(t, z) = −tE − µ5,t

[
cosh(2β arctan z)

sinhβπ
− cothβπ

]
−(t − εt)

sinh(2β arctan z)
sinhβπ

. (C.58b)

For the free energy we also need the field strengths (times k(z)),

k∂zA0 = −2β
[
µ5,t

cosh(2β arctan z)
sinhβπ

+ (t − εt)
sinh(2β arctan z)

sinhβπ

]
, (C.59a)

k∂zA3 = −2β
[
µ5,t

sinh(2β arctan z)
sinhβπ

+ (t − εt)
cosh(2β arctan z)

sinhβπ

]
. (C.59b)

As a check, we can perform a parity transformation on the gauge fields. With µ → +µ,
µ5 → −µ5, t → +t, B → +B, E → −E, ε→ +ε and z → −z we find A0(t, z)→ A0(t, z) and
A3(t, z) → −A3(t, z), i.e., the fields have the correct behavior under parity transformations
for each t and z.

We can now insert the gauge fields and field strengths into the action (5.23) to obtain the
thermodynamic potential Ω = T

V Son−shell. The YM and CS contributions are

ΩYM = κM2
KK

4πβ2

sinh2 βπ

[
(t − εt)2 − µ2

5,t

]
, (C.60a)

ΩCS =
8κM2

KK

3

(
β cothβπ − πβ2

sinh2 βπ

)[
(t − εt)2 − µ2

5,t

]
+

8κM2
KK

3
β [µt(t − εt) + tEµ5,t] , (C.60b)

where the real time parameter t is treated as an external parameter, unrelated to the imag-
inary time τ , whose integration is assumed to just give a factor 1/T . In the YM part we
have dropped the terms ∝ B2, E2. This vacuum subtraction can be understood in terms of
holographic renormalization and follows from the renormalization condition that the thermo-
dynamic potential be zero for vanishing chemical potentials; for the explicit procedure see ref.
[34].
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C.6.2 Chirally symmetric phase

Here we solve the equations of motion for the chirally symmetric phase, eqs. (5.36). For
notational convenience, let us, in this subsection, denote

β′ ≡ β

θ3
. (C.61)

The time-dependence of the gauge fields is treated analogously to the broken phase. Thus,
eqs. (5.36c) and (5.36b) imply

k0∂zA
L/R
0 = ∓2β′teL/R(z) + k0∂zÃ

L/R
0 , (C.62)

and
∂zA

L/R
3 = −t∂zeL/R(z) + ∂zÃ

L/R
3 , (C.63)

where ÃL/R0 , ÃL/R3 are constant in t, and where eL/R ≡ −∂tAL/R3 . Then, eqs. (5.36a) and
(5.36b) read

∂z(k0∂zÃ
L/R
0 ) = ±2β′∂zÃ

L/R
3 , (C.64a)

∂z(k3∂zÃ
L/R
3 ) = ±2β′∂zÃ

L/R
0 − t

[
(2β′)2 eL/R(z)

k0(z)
− ∂z(k3∂zeL/R)

]
. (C.64b)

This is analogous to eq. (C.51), the only difference being the two functions k0(z) and k3(z)
instead of the single function k(z). Again the square bracket in eq. (C.64b) has to vanish. This
yields a differential equation for eL/R(z) which is solved as follows. With ẽL/R = k3∂zeL/R one
can rewrite this differential equation as

∂z(k0∂z ẽL/R) = (2β′)2 ẽL/R

k3
. (C.65)

This equation has the two independent solutions

p(z) = 2F1

[
−
√

1− 16β′2 + 1
4

,

√
1− 16β′2 − 1

4
,
1
2
,

1
1 + z2

]
, (C.66a)

q(z) =
1√

1 + z2
2F1

[
−
√

1− 16β′2 − 1
4

,

√
1− 16β′2 + 1

4
,
3
2
,

1
1 + z2

]
. (C.66b)

Consequently, ẽL/R(z) = PL/R p(z) +QL/R q(z), with constants PL/R, QL/R, and thus

eL/R(z) =
1

(2β′)2

(
PL/R k0∂zp+QL/R k0∂zq

)
. (C.67)

In the following we need the behavior of the functions p(z), q(z), k0∂zp, k0∂zq at z =∞ and
z = 0. At z =∞ we have

p(∞) = −k0∂zq(∞) = 1 , q(∞) = k0∂zp(∞) = 0 . (C.68)

At z = 0 one finds

p0 ≡ p(0) =
√
π

Γ
[(

3−
√

1− 16β′2
)
/4
]

Γ
[(

3 +
√

1− 16β′2
)
/4
] , (C.69a)

q0 ≡ q(0) =
√
π

2Γ
[(

5−
√

1− 16β′2
)
/4
]

Γ
[(

5 +
√

1− 16β′2
)
/4
] , (C.69b)
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and
k0∂zp(z → 0) = (2β′)2p0 lnz , k0∂zq(z → 0) = (2β′)2q0 lnz . (C.70)

The boundary conditions eL/R(z = ∞) = E ∓ ε yield QL/R = −(2β′)2(E ∓ ε). Inserting
this constant into eq. (C.67), the result into eqs. (C.62), (C.63), and integrating the resulting
equations over z yields the gauge fields

A
L/R
0 (t, z) = ∓2β′t

[
PL/R

(2β′)2
p(z)− (E ∓ ε) q(z)

]
+ g

L/R
0 (t) + Ã

L/R
0 (z) , (C.71a)

A
L/R
3 (t, z) = −t

[
PL/R

(2β′)2
k0∂zp(z)− (E ∓ ε) k0∂zq

]
+ Ã

L/R
3 (z) . (C.71b)

Here, gL/R0 (t) are time-dependent integration constants from the z integration. We proceed
by solving eqs. (C.64) for ÃL/R0 , ÃL/R3 . Recalling that p(z), q(z) fulfill the differential equation
(C.65) one easily checks that the functions

Ã
L/R
0 (z) = a

L/R
0 ± 2β′

[
CL/R p(z) +DL/R q(z)

]
, (C.72a)

Ã
L/R
3 (z) = a

L/R
3 + CL/R k0∂zp+DL/R k0∂zq , (C.72b)

with integration constants aL/R0 , aL/R3 , CL/R and DL/R, are solutions of eqs. (C.64). One now
inserts these functions into eqs. (C.71) and determines the integration constants as follows.
First we recall that all constants except for gL/R0 (t) must not depend on t. This will be
used repeatedly in the following. Then we require the boundary condition A

L/R
3 (t, z =∞) =

−t(E ∓ ε) which implies DL/R = a
L/R
3 . Next, we require regularity of AL/R3 (t, z) at z = 0.

With eq. (C.70) we find that AL/R3 (t, z → 0) diverges logarithmically. Requiring the factor in
front of the lnz term to vanish yields the conditions

CL/R = − q0

p0
DL/R , PL/R = (2β′)2 q0

p0
(E ∓ ε) . (C.73)

For the temporal component we need to require AL/R0 (t, z = 0) = 0 [88] which yields aL/R0 =
g
L/R
0 (t) = 0. With these results the boundary value of AL/R0 (t, z) becomes

A
L/R
0 (t, z =∞) = ∓2β′

q0

p0
[DL/R + t(E ∓ ε)] . (C.74)

This result shows that, as in the broken phase, the boundary values of axial and vector parts
of A0 necessarily become time-dependent. In other words, in the presence of an electric field
one cannot fix these boundary values to be time-independent chemical potentials. At t = 0
we require AL/R0 (t = 0, z =∞) = µ∓ µ5. With these initial values we find

DL/R = ∓p0

q0

µ∓ µ5

2β′
, (C.75)

and the time-dependent chemical potentials become

A
L/R
0 (t, z =∞) = µt ∓ µ5,t , (C.76)

with
µt ≡ µ+ 2β′tε

q0

p0
, µ5,t ≡ µ5 + 2β′tE

q0

p0
. (C.77)

142



Collecting all the integration constants, we obtain from eqs. (C.71) and (C.72) the final solution
for the gauge fields,

A
L/R
0 (t, z) = (µt ∓ µ5,t)

[
p(z)− p0

q0
q(z)

]
, (C.78a)

A
L/R
3 (t, z) = −t(E ∓ ε)± µt ∓ µ5,t

2β′

[
k0∂zp−

p0

q0
(1 + k0∂zq)

]
. (C.78b)

Again we can check the behavior of the gauge fields under parity transformations. In con-
trast to the broken phase, we have separate right- and left-handed fields which transform as
A
L/R
0 (t, z) → A

R/L
0 (t, z), and A

L/R
3 (t, z) → −AR/L3 (t, z), as it should be. The field strengths

become

k0∂zA
L/R
0 = (µt ∓ µ5,t)

(
k0∂zp−

p0

q0
k0∂zq

)
, (C.79a)

k3∂zA
L/R
3 = ±2β′(µt ∓ µ5,t)

[
p(z)− p0

q0
q(z)

]
. (C.79b)

Inserting these results into the action, given by eqs. (5.32) and (5.33), yields the YM and CS
contributions to the free energy,

ΩYM = −2κθ3M2
KK(µ2

t + µ2
5,t)[I0 − (2β′)2I3] , (C.80a)

ΩCS =
4κM2

KKθ
3

3

{
(µ2
t + µ2

5,t)
[
I0 − (2β′)2I3 −

p0

q0

]
+ 2β′ t (µtε+ µ5,tE)

}
, (C.80b)

where we abbreviated the integrals

I0 ≡
∫ ∞

0

dz

k0

(
k0∂zp−

p0

q0
k0∂zq

)2

, (C.81)

I3 ≡
∫ ∞

0

dz

k3

[
p(z)− p0

q0
q(z)

]2

. (C.82)

In the limit β � 1, the combination I0 − (2β′)2I3 → 0, so that for very strong magnetic fields
ΩCS � ΩYM, as is also the case in the chirally broken phase, see eqs. (C.60).
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dense quark matter, Rev. Mod. Phys. 80 (2008) 1455–1515 [0709.4635].

[10] H. Georgi, Effective Field Theory, Annual Review of Nuclear and Particle Science 43
(1993), no. 1 209–252.

[11] A. Pich, Effective field theory, hep-ph/9806303.

[12] J. Smit, Introduction to quantum fields on the lattice, Cambrifge Lecture Notes in
Physics (2002).

[13] J. Rothe, Heinz, Lattice gauge theories: An introduction, Bookmark and Share World
Scientific Lecture Notes in Physics 74.

[14] J. M. Maldacena, The large N limit of superconformal field theories and supergravity,
Adv. Theor. Math. Phys. 2 (1998) 231–252 [hep-th/9711200].

[15] A. Buchel and J. T. Liu, Universality of the shear viscosity in supergravity,
Phys.Rev.Lett. 93 (2004) 090602 [hep-th/0311175].

[16] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz et. al., The QCD equation of
state with dynamical quarks, JHEP 1011 (2010) 077 [1007.2580].

144

http://arXiv.org/abs/hep-ph/0211321
http://arXiv.org/abs/hep-ph/0305183
http://arXiv.org/abs/hep-ph/9804403
http://arXiv.org/abs/0709.4635
http://arXiv.org/abs/hep-ph/9806303
http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/0311175
http://arXiv.org/abs/1007.2580


[17] P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field
theories from black hole physics, Phys.Rev.Lett. 94 (2005) 111601 [hep-th/0405231].
An Essay submitted to 2004 Gravity Research Foundation competition.

[18] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann,
Gauge/String Duality, Hot QCD and Heavy Ion Collisions, 1101.0618.

[19] S. Sachdev, Condensed matter and AdS/CFT, 1002.2947.

[20] G. T. Horowitz and J. Polchinski, Gauge / gravity duality, gr-qc/0602037.

[21] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge
theories, Adv. Theor. Math. Phys. 2 (1998) 505–532 [hep-th/9803131].

[22] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 0810 (2008)
091 [0806.1218].

[23] G. ’t Hooft, Dimensional reduction in quantum gravity, Published in Salamfest
:0284-296 (1993) [gr-qc/9310026].

[24] L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377–6396
[hep-th/9409089].

[25] R. Bousso, The Holographic principle, Rev.Mod.Phys. 74 (2002) 825–874
[hep-th/0203101].

[26] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, QCD and a holographic model of
hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128].

[27] A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Linear confinement and
AdS/QCD, Phys.Rev. D74 (2006) 015005 [hep-ph/0602229].

[28] U. Gursoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I,
JHEP 02 (2008) 032 [0707.1324].

[29] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog.
Theor. Phys. 113 (2005) 843–882 [hep-th/0412141].

[30] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043
[hep-th/0205236].

[31] C. P. Herzog, S. A. Stricker and A. Vuorinen, Remarks on Heavy-Light Mesons from
AdS/CFT, JHEP 05 (2008) 070 [0802.2956].

[32] C. P. Herzog, S. A. Stricker and A. Vuorinen, Hyperfine Splitting and the Zeeman
Effect in Holographic Heavy-Light Mesons, Phys. Rev. D82 (2010) 041701 [1005.3285].

[33] A. Rebhan, A. Schmitt and S. A. Stricker, Anomalies and the chiral magnetic effect in
the Sakai- Sugimoto model, JHEP 01 (2010) 026 [0909.4782].

[34] A. Rebhan, A. Schmitt and S. A. Stricker, Meson supercurrents and the Meissner effect
in the Sakai- Sugimoto model, JHEP 05 (2009) 084 [0811.3533].

[35] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field
theories, string theory and gravity, Phys. Rept. 323 (2000) 183–386 [hep-th/9905111].

145

http://arXiv.org/abs/hep-th/0405231
http://arXiv.org/abs/1101.0618
http://arXiv.org/abs/1002.2947
http://arXiv.org/abs/gr-qc/0602037
http://arXiv.org/abs/hep-th/9803131
http://arXiv.org/abs/0806.1218
http://arXiv.org/abs/gr-qc/9310026
http://arXiv.org/abs/hep-th/9409089
http://arXiv.org/abs/hep-th/0203101
http://arXiv.org/abs/hep-ph/0501128
http://arXiv.org/abs/hep-ph/0602229
http://arXiv.org/abs/0707.1324
http://arXiv.org/abs/hep-th/0412141
http://arXiv.org/abs/hep-th/0205236
http://arXiv.org/abs/0802.2956
http://arXiv.org/abs/1005.3285
http://arXiv.org/abs/0909.4782
http://arXiv.org/abs/0811.3533
http://arXiv.org/abs/hep-th/9905111


[36] E. D’Hoker and Freedman, Supersymmetric gauge theories and the AdS / CFT
correspondence, hep-th/0201253.

[37] H. Nastase, Introduction to AdS-CFT, 0712.0689.

[38] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory: Volume 1,
Introduction. Volume II: Loop Amplitudes, Anomalies and Phenomenology. Cambridge
University Press, July, 1988.

[39] J. Polchinski, String Theory, Vol. 1 An introduction to the bosonic string, String
theory. Vol. 2: Superstring theory and beyond. Cambridge University Press, June, 2005.

[40] E. Kiritsis, String Theory in a Nutshell. Princeton University Press, March, 2007.

[41] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time.
Cambridge University Press, Feb., 1975.

[42] C. R. Graham and E. Witten, Conformal anomaly of submanifold observables in
AdS/CFT correspondence, Nucl. Phys. B546 (1999) 52–64 [hep-th/9901021].

[43] C. A. Bayona and N. R. Braga, Anti-de Sitter boundary in Poincare coordinates,
Gen.Rel.Grav. 39 (2007) 1367–1379 [hep-th/0512182].

[44] S. Coleman and J. Mandula, All possible symmetries of the s matrix, Phys. Rev. 159
(Jul, 1967) 1251–1256.

[45] J. Wess and J. Bagger, Supersymmetry and Supergravity. Princeton University Press, 2
revised ed., Mar., 1992.

[46] R. Grimm, M. Sohnius and J. Wess, Extended Supersymmetry and Gauge Theories,
Nucl. Phys. B133 (1978) 275.

[47] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B72 (1974)
461.

[48] D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field
theories, Phys. Rev. D 10 (Nov, 1974) 3235–3253.

[49] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75
(1995) 4724–4727 [hep-th/9510017].

[50] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the
CFT(d)/AdS(d+ 1) correspondence, Nucl. Phys. B546 (1999) 96–118
[hep-th/9804058].

[51] S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three-point functions of chiral
operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697–718
[hep-th/9806074].

[52] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
253–291 [hep-th/9802150].

[53] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from
non-critical string theory, Phys. Lett. B428 (1998) 105–114 [hep-th/9802109].

[54] I. R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl.
Phys. B556 (1999) 89–114 [hep-th/9905104].

146

http://arXiv.org/abs/hep-th/0201253
http://arXiv.org/abs/0712.0689
http://arXiv.org/abs/hep-th/9901021
http://arXiv.org/abs/hep-th/0512182
http://arXiv.org/abs/hep-th/9510017
http://arXiv.org/abs/hep-th/9804058
http://arXiv.org/abs/hep-th/9806074
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/9905104


[55] P. Breitenlohner and D. Z. Freedman, Stability in Gauged Extended Supergravity, Ann.
Phys. 144 (1982) 249.

[56] E. Bergshoeff, R. Kallosh, T. Ortin and G. Papadopoulos, Kappa symmetry,
supersymmetry and intersecting branes, Nucl.Phys. B502 (1997) 149–169
[hep-th/9705040].

[57] V. G. Filev, C. V. Johnson, R. C. Rashkov and K. S. Viswanathan, Flavoured large N
gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001].

[58] M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259–396
[hep-ph/9306320].

[59] J. M. Maldacena, The large N limit of superconformal field theories and supergravity,
Adv. Theor. Math. Phys. 2 (1998) 231–252 [hep-th/9711200].

[60] I. R. Klebanov and M. J. Strassler, Supergravity and a confining gauge theory: Duality
cascades and chiSB-resolution of naked singularities, JHEP 08 (2000) 052
[hep-th/0007191].

[61] E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?,
Prog. Part. Nucl. Phys. 53 (2004) 273–303 [hep-ph/0312227].

[62] E. V. Shuryak, What RHIC experiments and theory tell us about properties of
quark-gluon plasma?, Nucl. Phys. A750 (2005) 64–83 [hep-ph/0405066].

[63] S. S. Gubser, I. R. Klebanov and A. W. Peet, Entropy and Temperature of Black
3-Branes, Phys. Rev. D54 (1996) 3915–3919 [hep-th/9602135].

[64] P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear
Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett. 99 (2007)
172301 [0706.1522].

[65] G. Policastro, D. T. Son and A. O. Starinets, The shear viscosity of strongly coupled N
= 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601
[hep-th/0104066].

[66] A. Karch, E. Katz and N. Weiner, Hadron masses and screening from AdS Wilson
loops, Phys.Rev.Lett. 90 (2003) 091601 [hep-th/0211107].

[67] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, Meson spectroscopy in
AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032].

[68] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals -
A Review, Eur.Phys.J. A35 (2008) 81–133 [0711.4467].

[69] A. Paredes and P. Talavera, Multiflavor excited mesons from the fifth dimension,
Nucl.Phys. B713 (2005) 438–464 [hep-th/0412260].

[70] J. Erdmenger, N. Evans and J. Grosse, Heavy-light mesons from the AdS/CFT
correspondence, JHEP 0701 (2007) 098 [hep-th/0605241].

[71] J. Erdmenger, K. Ghoroku and I. Kirsch, Holographic heavy-light mesons from
non-Abelian DBI, JHEP 0709 (2007) 111 [0706.3978].

[72] J. Gomis, F. Marchesano and D. Mateos, An Open string landscape, JHEP 0511
(2005) 021 [hep-th/0506179].

147

http://arXiv.org/abs/hep-th/9705040
http://arXiv.org/abs/hep-th/0701001
http://arXiv.org/abs/hep-ph/9306320
http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/0007191
http://arXiv.org/abs/hep-ph/0312227
http://arXiv.org/abs/hep-ph/0405066
http://arXiv.org/abs/hep-th/9602135
http://arXiv.org/abs/0706.1522
http://arXiv.org/abs/hep-th/0104066
http://arXiv.org/abs/hep-th/0211107
http://arXiv.org/abs/hep-th/0304032
http://arXiv.org/abs/0711.4467
http://arXiv.org/abs/hep-th/0412260
http://arXiv.org/abs/hep-th/0605241
http://arXiv.org/abs/0706.3978
http://arXiv.org/abs/hep-th/0506179


[73] C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark
moving through N=4 supersymmetric Yang-Mills plasma, JHEP 0607 (2006) 013
[hep-th/0605158].

[74] A. Cotrone, L. Martucci and W. Troost, String splitting and strong coupling meson
decay, Phys.Rev.Lett. 96 (2006) 141601 [hep-th/0511045].

[75] K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic decays of large-spin mesons,
JHEP 0602 (2006) 009 [hep-th/0511044].

[76] P. Chesler and A. Vuorinen, Heavy flavor diffusion in weakly coupled N=4 super
Yang-Mills theory, JHEP 0611 (2006) 037 [hep-ph/0607148].

[77] E. Pomoni and L. Rastelli, Intersecting Flavor Branes, 1002.0006.

[78] H. Arfaei and M. Sheikh Jabbari, Different d-brane interactions, Phys.Lett. B394
(1997) 288–296 [hep-th/9608167].

[79] C. P. Herzog and T. Klose, The Perfect Atom: Bound States of Supersymmetric
Quantum Electrodynamics, Nucl.Phys. B839 (2010) 129–156 [0912.0733].

[80] J.-H. Cho, P. Oh, C. Park and J. Shin, String pair creations in D-brane systems, JHEP
0505 (2005) 004 [hep-th/0501190].

[81] K. Nakamura and P. D. Group, Review of particle physics, Journal of Physics G:
Nuclear and Particle Physics 37 (2010), no. 7A 075021.

[82] R. L. Jaffe and K. Johnson, Unconventional States of Confined Quarks and Gluons,
Phys. Lett. B60 (1976) 201.

[83] N. Isgur and J. E. Paton, A Flux Tube Model for Hadrons, Phys. Lett. B124 (1983)
247.

[84] N. R. Constable and R. C. Myers, Exotic scalar states in the AdS / CFT
correspondence, JHEP 9911 (1999) 020 [hep-th/9905081].

[85] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, Towards a holographic dual
of large-N(c) QCD, JHEP 05 (2004) 041 [hep-th/0311270].

[86] L. McLerran and R. D. Pisarski, Phases of Cold, Dense Quarks at Large Nc, Nucl.
Phys. A796 (2007) 83–100 [0706.2191].

[87] O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of
deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420–1443
[hep-th/0604161].

[88] N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential,
JHEP 01 (2007) 072 [hep-th/0608198].

[89] E. Antonyan, J. A. Harvey, S. Jensen and D. Kutasov, NJL and QCD from string
theory, hep-th/0604017.

[90] E. G. Thompson and D. T. Son, Magnetized baryonic matter in holographic QCD,
Phys. Rev. D78 (2008) 066007 [0806.0367].

[91] O. Bergman, G. Lifschytz and M. Lippert, Magnetic properties of dense holographic
QCD, 0806.0366.

148

http://arXiv.org/abs/hep-th/0605158
http://arXiv.org/abs/hep-th/0511045
http://arXiv.org/abs/hep-th/0511044
http://arXiv.org/abs/hep-ph/0607148
http://arXiv.org/abs/1002.0006
http://arXiv.org/abs/hep-th/9608167
http://arXiv.org/abs/0912.0733
http://arXiv.org/abs/hep-th/0501190
http://arXiv.org/abs/hep-th/9905081
http://arXiv.org/abs/hep-th/0311270
http://arXiv.org/abs/0706.2191
http://arXiv.org/abs/hep-th/0604161
http://arXiv.org/abs/hep-th/0608198
http://arXiv.org/abs/hep-th/0604017
http://arXiv.org/abs/0806.0367
http://arXiv.org/abs/0806.0366


[92] A. Parnachev, Holographic QCD with Isospin Chemical Potential, JHEP 02 (2008) 062
[0708.3170].

[93] H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic
QCD, hep-th/0701280.

[94] O. Aharony, K. Peeters, J. Sonnenschein and M. Zamaklar, Rho meson condensation at
finite isospin chemical potential in a holographic model for QCD, JHEP 02 (2008) 071
[0709.3948].

[95] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, The effects of topological charge
change in heavy ion collisions: ’Event by event P and CP violation’, Nucl. Phys. A803
(2008) 227–253 [0711.0950].

[96] K. Fukushima, D. E. Kharzeev and H. J. Warringa, The Chiral Magnetic Effect, Phys.
Rev. D78 (2008) 074033 [0808.3382].

[97] D. E. Kharzeev and H. J. Warringa, Chiral Magnetic conductivity, Phys.Rev. D80
(2009) 034028 [0907.5007].

[98] STAR Collaboration, S. A. Voloshin, Probe for the strong parity violation effects at
RHIC with three particle correlations, 0806.0029.

[99] STAR Collaboration Collaboration, B. Abelev et. al., Azimuthal Charged-Particle
Correlations and Possible Local Strong Parity Violation, Phys.Rev.Lett. 103 (2009)
251601 [0909.1739].

[100] F. Wang, Effects of Cluster Particle Correlations on Local Parity Violation
Observables, Phys.Rev. C81 (2010) 064902 [0911.1482].

[101] H.-U. Yee, Holographic Chiral Magnetic Conductivity, JHEP 0911 (2009) 085
[0908.4189].

[102] D. T. Son and A. R. Zhitnitsky, Quantum anomalies in dense matter, Phys. Rev. D70
(2004) 074018 [hep-ph/0405216].

[103] M. A. Metlitski and A. R. Zhitnitsky, Anomalous axion interactions and topological
currents in dense matter, Phys. Rev. D72 (2005) 045011 [hep-ph/0505072].

[104] E. V. Gorbar, V. A. Miransky and I. A. Shovkovy, Chiral asymmetry of the Fermi
surface in dense relativistic matter in a magnetic field, 0904.2164.

[105] J. Charbonneau and A. Zhitnitsky, Topological Currents in Neutron Stars: Kicks,
Precession, Toroidal Fields, and Magnetic Helicity, 0903.4450.

[106] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from
non-critical string theory, Phys. Lett. B428 (1998) 105–114 [hep-th/9802109].

[107] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
253–291 [hep-th/9802150].

[108] G. Lifschytz and M. Lippert, Anomalous conductivity in holographic QCD, 0904.4772.

[109] P. V. Buividovich, M. N. Chernodub, E. V. Luschevskaya and M. I. Polikarpov,
Numerical evidence of chiral magnetic effect in lattice gauge theory, 0907.0494.

149

http://arXiv.org/abs/0708.3170
http://arXiv.org/abs/hep-th/0701280
http://arXiv.org/abs/0709.3948
http://arXiv.org/abs/0711.0950
http://arXiv.org/abs/0808.3382
http://arXiv.org/abs/0907.5007
http://arXiv.org/abs/0806.0029
http://arXiv.org/abs/0909.1739
http://arXiv.org/abs/0911.1482
http://arXiv.org/abs/0908.4189
http://arXiv.org/abs/hep-ph/0405216
http://arXiv.org/abs/hep-ph/0505072
http://arXiv.org/abs/0904.2164
http://arXiv.org/abs/0903.4450
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/0904.4772
http://arXiv.org/abs/0907.0494


[110] H. Hata, M. Murata and S. Yamato, Chiral currents and static properties of nucleons
in holographic QCD, Phys. Rev. D78 (2008) 086006 [0803.0180].

[111] K. Hashimoto, T. Sakai and S. Sugimoto, Holographic Baryons : Static Properties and
Form Factors from Gauge/String Duality, 0806.3122.

[112] K.-Y. Kim and I. Zahed, Electromagnetic Baryon Form Factors from Holographic
QCD, JHEP 0809 (2008) 007 [0807.0033].

[113] K.-Y. Kim and I. Zahed, Nucleon-Nucleon Potential from Holography, JHEP 0903
(2009) 131 [0901.0012].

[114] W. A. Bardeen, Anomalous Ward identities in spinor field theories, Phys. Rev. 184
(1969) 1848–1857.

[115] C. T. Hill, Anomalies, Chern-Simons terms and chiral delocalization in extra
dimensions, Phys.Rev. D73 (2006) 085001 [hep-th/0601154].

[116] J. S. Bell and R. Jackiw, A PCAC puzzle: pi0 → gamma gamma in the sigma model,
Nuovo Cim. A60 (1969) 47–61.

[117] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969)
2426–2438.

[118] O. Kaymakcalan, S. Rajeev and J. Schechter, Nonabelian Anomaly and Vector Meson
Decays, Phys. Rev. D30 (1984) 594.

[119] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged
black holes, JHEP 0901 (2009) 055 [0809.2488].

[120] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam et. al.,
Hydrodynamics from charged black branes, 0809.2596.

[121] M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with
multiple/non-Abelian symmetries, JHEP 0908 (2009) 020 [0903.4894].

[122] D. T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys.Rev.Lett.
103 (2009) 191601 [0906.5044].

[123] O. Bergman, G. Lifschytz and M. Lippert, Response of Holographic QCD to Electric
and Magnetic Fields, JHEP 05 (2008) 007 [0802.3720].

[124] C. V. Johnson and A. Kundu, External Fields and Chiral Symmetry Breaking in the
Sakai- Sugimoto Model, JHEP 12 (2008) 053 [0803.0038].

[125] K.-Y. Kim, S.-J. Sin and I. Zahed, Dense Holographic QCD in the Wigner-Seitz
Approximation, JHEP 09 (2008) 001 [0712.1582].

[126] J. Ambjorn, J. Greensite and C. Peterson, THE AXIAL ANOMALY AND THE
LATTICE DIRAC SEA, Nucl. Phys. B221 (1983) 381.

[127] G. Lifschytz and M. Lippert, Holographic Magnetic Phase Transition, Phys.Rev. D80
(2009) 066007 [0906.3892].

[128] S. Elitzur, G. W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical
Quantization of the Chern-Simons- Witten Theory, Nucl. Phys. B326 (1989) 108.

150

http://arXiv.org/abs/0803.0180
http://arXiv.org/abs/0806.3122
http://arXiv.org/abs/0807.0033
http://arXiv.org/abs/0901.0012
http://arXiv.org/abs/hep-th/0601154
http://arXiv.org/abs/0809.2488
http://arXiv.org/abs/0809.2596
http://arXiv.org/abs/0903.4894
http://arXiv.org/abs/0906.5044
http://arXiv.org/abs/0802.3720
http://arXiv.org/abs/0803.0038
http://arXiv.org/abs/0712.1582
http://arXiv.org/abs/0906.3892


[129] G. M. Newman and D. T. Son, Response of strongly-interacting matter to magnetic
field: Some exact results, Phys. Rev. D73 (2006) 045006 [hep-ph/0510049].

[130] H. B. Nielsen and M. Ninomiya, ADLER-BELL-JACKIW ANOMALY AND WEYL
FERMIONS IN CRYSTAL, Phys. Lett. B130 (1983) 389.

[131] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114
(2005) 1083–1118 [hep-th/0507073].

[132] P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Holographic Non-Fermi Liquid in a
Background Magnetic Field, Phys. Rev. D82 (2010) 044036 [0908.1436].

[133] F. Denef, S. A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing,
Phys. Rev. D80 (2009) 126016 [0908.1788].

[134] H.-U. Yee, private communication, .

[135] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Catalysis of dynamical flavor
symmetry breaking by a magnetic field in (2+1)-dimensions, Phys. Rev. Lett. 73 (1994)
3499–3502 [hep-ph/9405262].

[136] V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Dimensional reduction and
catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys. B462 (1996)
249–290 [hep-ph/9509320].

[137] S. P. Klevansky and R. H. Lemmer, Chiral symmetry restoration in the
Nambu-Jona-Lasinio model with a constant electromagnetic field, Phys. Rev. D39
(1989) 3478–3489.

[138] S. P. Klevansky, The Nambu-Jona-Lasinio model of quantum chromodynamics, Rev.
Mod. Phys. 64 (1992) 649–708.

[139] N. O. Agasian and I. A. Shushpanov, Gell-Mann-Oakes-Renner relation in a magnetic
field at finite temperature, JHEP 10 (2001) 006 [hep-ph/0107128].

[140] T. D. Cohen, D. A. McGady and E. S. Werbos, The chiral condensate in a constant
electromagnetic field, Phys. Rev. C76 (2007) 055201 [0706.3208].

[141] N. O. Agasian and S. M. Fedorov, Quark-hadron phase transition in a magnetic field,
Phys. Lett. B663 (2008) 445–449 [0803.3156].

[142] E. S. Fraga and A. J. Mizher, Chiral transition in a strong magnetic background, Phys.
Rev. D78 (2008) 025016 [0804.1452].

[143] A. J. Mizher and E. S. Fraga, CP violation and chiral symmetry restoration in the hot
linear sigma model in a strong magnetic background, 0810.5162.

[144] E. J. Ferrer, V. de la Incera and C. Manuel, Magnetic color flavor locking phase in high
density QCD, Phys. Rev. Lett. 95 (2005) 152002 [hep-ph/0503162].

[145] K. Fukushima and H. J. Warringa, Color superconducting matter in a magnetic field,
Phys. Rev. Lett. 100 (2008) 032007 [0707.3785].

[146] J. L. Noronha and I. A. Shovkovy, Color-flavor locked superconductor in a magnetic
field, Phys. Rev. D76 (2007) 105030 [0708.0307].

151

http://arXiv.org/abs/hep-ph/0510049
http://arXiv.org/abs/hep-th/0507073
http://arXiv.org/abs/0908.1436
http://arXiv.org/abs/0908.1788
http://arXiv.org/abs/hep-ph/9405262
http://arXiv.org/abs/hep-ph/9509320
http://arXiv.org/abs/hep-ph/0107128
http://arXiv.org/abs/0706.3208
http://arXiv.org/abs/0803.3156
http://arXiv.org/abs/0804.1452
http://arXiv.org/abs/0810.5162
http://arXiv.org/abs/hep-ph/0503162
http://arXiv.org/abs/0707.3785
http://arXiv.org/abs/0708.0307


[147] D. T. Son and M. A. Stephanov, Axial anomaly and magnetism of nuclear and quark
matter, Phys. Rev. D77 (2008) 014021 [0710.1084].

[148] T. Albash, V. G. Filev, C. V. Johnson and A. Kundu, Finite Temperature Large N
Gauge Theory with Quarks in an External Magnetic Field, JHEP 07 (2008) 080
[0709.1547].

[149] J. Erdmenger, R. Meyer and J. P. Shock, AdS/CFT with Flavour in Electric and
Magnetic Kalb-Ramond Fields, JHEP 12 (2007) 091 [0709.1551].

[150] A. B. Migdal, Phase Transition in Nuclear Matter and Non-pair Nuclear Forces, Sov.
Phys. JETP 36 (1973) 1052.

[151] R. F. Sawyer, Condensed π− phase in neutron star matter, Phys. Rev. Lett. 29 (1972)
382–385.

[152] D. J. Scalapino, π− condensate in dense nuclear matter, Phys. Rev. Lett. 29 (1972)
386–388.

[153] G. Baym, Pion condensation in nuclear and neutron star matter, Phys. Rev. Lett. 30
(1973) 1340–1342.

[154] A. I. Larkin and Y. N. Ovchinnikov, Inhomogeneous state of superconductors, Sov.
Phys. JETP 20 (1965) 762.

[155] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys.
Rev. 135 (1964) A550.

[156] M. G. Alford, J. A. Bowers and K. Rajagopal, Crystalline color superconductivity,
Phys. Rev. D63 (2001) 074016 [hep-ph/0008208].

[157] O. Schnetz, M. Thies and K. Urlichs, Phase diagram of the Gross-Neveu model: Exact
results and condensed matter precursors, Ann. Phys. 314 (2004) 425–447
[hep-th/0402014].

[158] A. Kryjevski, Spontaneous superfluid current generation in the kaon condensed color
flavor locked phase at nonzero strange quark mass, Phys. Rev. D77 (2008) 014018
[hep-ph/0508180].
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